JP2004090238A - Insulating film and multi-layer wiring board using the film - Google Patents

Insulating film and multi-layer wiring board using the film Download PDF

Info

Publication number
JP2004090238A
JP2004090238A JP2002250795A JP2002250795A JP2004090238A JP 2004090238 A JP2004090238 A JP 2004090238A JP 2002250795 A JP2002250795 A JP 2002250795A JP 2002250795 A JP2002250795 A JP 2002250795A JP 2004090238 A JP2004090238 A JP 2004090238A
Authority
JP
Japan
Prior art keywords
insulating film
liquid crystal
crystal polymer
polymer layer
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250795A
Other languages
Japanese (ja)
Inventor
Takuji Seri
世利 拓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002250795A priority Critical patent/JP2004090238A/en
Publication of JP2004090238A publication Critical patent/JP2004090238A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating film excellent in insulation and conduction reliability and a multi-layer wiring board using the film. <P>SOLUTION: In the analysis of the chemical bond of carbon by an X-ray photoelectron spectroscopic analysis method, coating layers 2 of polyphenylene ether-based organic matter are formed on the upper and lower surfaces of a liquid crystal polymer layer 1 of 7-18% area ratio caused by carboxy groups in the C1s peak area of the surface. The insulating film 3 excellent in insulation and conduction reliability is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種AV機器や家電機器・通信機器・コンピュータやその周辺機器等の電子機器に使用される絶縁フィルムおよびこれを用いた多層配線基板に関し、特に液晶ポリマーを一部に用いた絶縁フィルムおよびこれを用いた多層配線基板に関する。
【0002】
【従来の技術】
従来、半導体素子等の能動部品や容量素子・抵抗素子等の受動部品を多数搭載して所定の電子回路を構成した混成集積回路を形成するための多層配線基板は、通常、ガラスクロスにエポキシ樹脂を含浸させて成る絶縁フィルムにドリルによって上下に貫通孔を形成し、この貫通孔内部および絶縁層表面に複数の配線導体を形成した配線基板を、多数積層することによって形成されている。
【0003】
一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高性能・高機能・高品質・高信頼性が要求されており、このような電子機器に搭載される混成集積回路等の電子部品も小型・高密度化が要求されるようになってきており、このような高密度化の要求に応えるために、電子部品を構成する多層配線基板も、配線導体の微細化や絶縁層の薄層化・貫通孔の微細化が必要となってきている。このため、近年、貫通孔を微細化するために、ドリル加工より微細加工が可能なレーザ加工が用いられるようになってきた。
【0004】
しかしながら、ガラスクロスにエポキシ樹脂を含浸させて成る絶縁フィルムは、ガラスクロスをレーザにより穿設加工することが困難なために貫通孔の微細化には限界があり、また、ガラスクロスの厚みが不均一のために均一な孔径の貫通孔を形成することが困難であるという問題点を有していた。
【0005】
このような問題点を解決するために、アラミド樹脂繊維で製作した不織布にエポキシ樹脂を含浸させて成る絶縁フィルムや、ポリイミドフィルムにエポキシ系接着剤を塗布して成る絶縁フィルムを絶縁層に用いた多層配線基板が提案されている。
【0006】
しかしながら、アラミド不織布やポリイミドフィルムを用いた絶縁フィルムは吸湿性が高く、吸湿した状態で半田リフローを行なうと半田リフローの熱により吸湿した水分が気化してガスが発生し、絶縁層間で剥離してしまう等の問題点を有していた。
【0007】
このような問題点を解決するために、多層配線基板の絶縁層の材料として液晶ポリマーを用いることが検討されている。液晶ポリマーから成る層は、剛直な分子で構成されているとともに分子同士がある程度規則的に並んだ構成をしており分子間力が強いことから、高耐熱性・高弾性率・高寸法安定性・低吸湿性を示し、ガラスクロスのような強化材を用いる必要がなく、また、微細加工性にも優れるという特徴を有している。さらに、高周波領域においても、低誘電率・低誘電正接であり高周波特性に優れるという特徴を有している。
【0008】
このような液晶ポリマーの特徴を活かし、特開平8−97565号公報には、回路層が第1の液晶ポリマーを含み、この回路層間に第1の液晶ポリマーの融点よりも低い融点を有する第2の液晶ポリマーを含む接着剤層を挿入して成る多層プリント回路基板が提案されている。
【0009】
【発明が解決しようとする課題】
しかしながら、特開平8−97565号公報に提案された多層プリント回路基板は、回路層同士を間に液晶ポリマーを含む接着剤層を挿入して熱圧着により接着する際、液晶ポリマー分子が剛直であるとともにある程度分子が規則正しく配向して分子間力が強くなっているために分子が動き難くなり、回路層の液晶ポリマーと接着剤層の液晶ポリマーの表面のごく一部の分子だけしか絡み合うことができないために密着性が悪く、高温バイアス試験において層間で剥離して絶縁不良が発生してしまうという問題点を有していた。また、回路層の導体箔と液晶ポリマーを熱融着により接着する際、液晶ポリマー分子が動き難いために導体箔表面の微細な凹部に入ることができず、その結果、十分なアンカー効果を発揮することができず、導体箔と液晶ポリマーとの密着性が悪くなって、高温高湿下において両者間で剥離して導体箔が断線してしまうという問題点も有していた。
【0010】
本発明はかかる従来技術の問題点に鑑み案出されたものであり、その目的は、絶縁性・導通信頼性に優れた絶縁フィルムおよびこれを用いた多層配線基板を提供することに有る。
【0011】
【課題を解決するための手段】
本発明の絶縁フィルムは、X線光電子分光分析法による炭素の化学結合状態の分析で、表面のC1sピーク面積におけるカルボキシル基に起因する面積の割合が7〜18%である液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層を形成して成ることを特徴とするものである。
【0012】
また、本発明の絶縁フィルムは、上記構成において、液晶ポリマー層の厚みが絶縁フィルムの厚みの40〜90%であることを特徴とするものである。
【0013】
さらに、本発明の絶縁フィルムは、上記構成において、前記液晶ポリマー層の上下面はトリアリルイソシアヌレートとの接触角が3〜50°であって、かつ表面エネルギーが45〜80mJ/mであることを特徴とするものである。
【0014】
また、本発明の絶縁フィルムは、上記構成において、前記液晶ポリマー層の上下面の算術平均粗さRaが0.05〜5μmであることを特徴とするものである。
【0015】
また、本発明の絶縁フィルムは、上記構成において、被覆層は粒子径が0.1〜2μmでの無機絶縁粉末を10〜70体積%含有していることを特徴とするものである。
【0016】
さらに、本発明の絶縁フィルムは、上記構成において、無機絶縁粉末はその形状が略球状であることを特徴とするものである。
【0017】
また、本発明の絶縁フィルムは、上記構成において、ポリフェニレンエーテル系有機物が熱硬化性ポリフェニレンエーテルであることを特徴とするものである。
【0018】
本発明の多層配線基板は、上下面の少なくとも一方の面に金属箔から成る配線導体が配設された上記の絶縁フィルムを複数積層して成るとともに、この絶縁フィルムを挟んで上下に位置する配線導体間を絶縁フィルムに形成された貫通導体を介して電気的に接続したことを特徴とするものである。
【0019】
本発明の絶縁フィルムによれば、X線光電子分光分析法(XPS)による炭素(C)の化学結合状態の分析で、表面のC1sピーク面積におけるカルボキシル基に起因する面積の割合が7〜18%である液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層を形成して成ることから、液晶ポリマー層の上下面に存在するカルボキシル基内の電気的に正に分極した水素と、ポリフェニレンエーテル系有機物を構成する重合結合鎖内のベンゼン環間に位置する電気的に負に分極した酸素とが電気的な引力を生じるため、液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層が良好に濡れ広がるとともに、液晶ポリマー層表面のカルボキシル基が形成された分子層と被覆層とが水素結合力により良好に結合し、その結果、高温バイアス試験においても両者間で剥離することのない絶縁フィルムとすることができる。また、ポリフェニレンエーテル系有機物分子が液晶ポリマー分子ほど剛直ではなく、また、規則正しい配向性も示さないことから分子が比較的動きやすく、その結果、絶縁フィルムを多層化した場合おいても、絶縁フィルム同士の密着性が良好となり、高温バイアス試験において絶縁フィルム間で剥離して絶縁不良が発生してしまうということもない。さらに、絶縁フィルム表面に配線導体を配設した場合においても、ポリフェニレンエーテル系有機物分子が配線導体表面の微細な凹部に入り込み十分なアンカー効果を発揮することができ、絶縁フィルムと配線導体との密着性が良好となり、その結果、高温高湿下で両者間で剥離して配線導体が断線してしまうということもない。
【0020】
また、本発明の絶縁フィルムによれば、上記構成において、液晶ポリマー層の厚みを絶縁フィルムの厚みの40〜90%とした場合には、温度サイクル試験等の際に絶縁フィルムに熱応力が印加されたとしても、熱膨張係数の小さい液晶ポリマー層が熱膨張係数の大きいポリフェニレンエーテル系有機物から成る被覆層を良好に拘束して絶縁フィルム全体の熱膨張を小さなものとすることができ、また、この絶縁フィルムを用いて多層配線基板を製作した場合においても、絶縁フィルムの熱膨張係数が配線導体の熱膨張係数に近似し、絶縁フィルムと配線導体との熱膨張差による応力をより小さなものとすることができ、その結果、温度サイクル信頼性や高温高湿信頼性により優れた絶縁フィルムとすることができる。
【0021】
さらに、本発明の絶縁フィルムによれば、上記構成において、液晶ポリマー層をトリアリルイソシアヌレートとの接触角を3〜50°であって、かつ表面エネルギーが45〜80mJ/mとした場合には、液晶ポリマー層表面の活性化された比較的熱運動しやすい分子層とポリフェニレンエーテル系有機物から成る被覆層とが良好に絡み合って結合し、液晶ポリマー層と被覆層とがより強固に密着した絶縁フィルムとすることができる。
【0022】
また、本発明の絶縁フィルムによれば、上記構成において、液晶ポリマー層の上下面の算術平均粗さRaを0.05〜5μmとした場合には、液晶ポリマー層の上下面がポリフェニレンエーテル系有機物から成る被覆層と良好なアンカー効果を有する密着性の良好なものとなり、液晶ポリマー層と被覆層とがより強固に密着した絶縁フィルムとすることができる。
【0023】
また、本発明の絶縁フィルムによれば、上記構成において、被覆層を粒子径が0.1〜2μmの無機絶縁粉末を10〜70体積%含有するものとした場合には、絶縁フィルムに配線導体および貫通導体を配設するとともに絶縁フィルムを多層化して多層配線基板を製作する場合においても、無機絶縁粉末が被覆層の流動性を抑制し、多層化する際の加熱プレスによって層方向における貫通導体の位置ずれや貫通導体の直径のばらつき、さらには被覆層の厚みばらつきを低減することができ、より寸法安定性に優れた絶縁フィルムとすることができる。
【0024】
さらに、本発明の絶縁フィルムによれば、上記構成において、無機絶縁粉末の形状を略球状とした場合には、無機絶縁粉末をポリフェニレンエーテル系有機物へ充填する際に充填性や混練性が良好となり、無機絶縁粉末をポリフェニレンエーテル系有機物から成る被覆層へ一様に分布させることができ、その結果、被覆層の熱膨張係数がより均一な絶縁フィルムとすることができる。
【0025】
また、本発明の絶縁フィルムによれば、上記構成において、ポリフェニレンエーテル系有機物を熱硬化性ポリフェニレンエーテルとした場合には、熱硬化性ポリフェニレンエーテルが耐熱性に優れるとともに寸法安定性に優れることから、温度サイクル信頼性に優れるとともに、配線導体を接着する際の位置精度の良好な絶縁フィルムとすることができる。
【0026】
本発明の多層配線基板によれば、多層配線基板を上記の絶縁フィルムを用いて形成したことから、耐湿性・導通信頼性に優れた多層配線基板とすることができる。
【0027】
【発明の実施の形態】
次に本発明の絶縁フィルムおよびこれを用いた多層配線基板を添付の図面に基づいて詳細に説明する。
図1は、本発明の絶縁フィルムの実施の形態の一例を示す断面図、図2は、図1の絶縁フィルムを用いて製作した本発明の多層配線基板の実施の形態の一例を示す断面図、図3は、図2に示す多層配線基板の、配線導体の幅方向における要部拡大断面図である。なお、図2では、本発明の多層配線基板に半導体素子等の電子部品を搭載して成る混成集積回路としている場合の例を示している。
【0028】
これらの図において1は液晶ポリマー層、2は熱硬化性樹脂から成る被覆層で、主にこれらで本発明の絶縁フィルム3が構成されている。また、4は配線導体、5は貫通導体、7は半導体素子等の電子部品で、主に絶縁フィルム3と配線導体4と貫通導体5とで本発明の多層配線基板6が構成されている。なお、本例の多層配線基板6では、絶縁フィルム3を4層積層して成るものを示している。
【0029】
絶縁フィルム3は、液晶ポリマー層1と、その上下面に被着形成されたポリフェニレンエーテル系有機物から成る被覆層2とから構成されており、これを用いて多層配線基板6を形成した場合、配線導体4や多層配線基板6に搭載される電子部品7の支持体としての機能を有する。
【0030】
なお、ここで液晶ポリマーとは、溶融状態あるいは溶液状態において、液晶性を示すポリマーあるいは光学的に複屈折する性質を有するポリマーを指し、一般に溶液状態で液晶性を示すリオトロピック液晶ポリマーや溶融時に液晶性を示すサーモトロピック液晶ポリマー、あるいは熱変形温度で分類される1型・2型・3型すべての液晶ポリマーを含むものであり、本発明に用いる液晶ポリマーとしては、温度サイクル信頼性・半田耐熱性・加工性の観点からは230〜420℃の温度、特に270〜380℃の温度に融点を有するものが好ましい。
【0031】
液晶ポリマー層1は、その上下面がポリフェニレンエーテル系有機物から成る被覆層2と良好な密着性を有するものとし、高温バイアス試験で両者間の剥離を防止するという観点からは、X線光電子分光分析法(XPS)による測定で、C1sピークでの表面のカルボキシル基の割合を7〜18%としておくことが必要であり、そして、本発明の絶縁フィルム3においてはこのことが重要である。
【0032】
本発明の絶縁フィルム3によれば、X線光電子分光分析法による測定で、C1sピークでの表面のカルボキシル基の割合を7〜18%である液晶ポリマー層1の上下面にポリフェニレンエーテル系有機物から成る被覆層2を形成したことから、液晶ポリマー層1の上下面に存在するカルボキシル基内の電気的に正に分極した水素と、ポリフェニレンエーテル系有機物を構成する重合結合鎖内のベンゼン環間に位置する電気的に負に分極した酸素とが電気的な引力を生じるため、液晶ポリマー層1の上下面にポリフェニレンエーテル系有機物から成る被覆層2が良好に濡れ広がるとともに、液晶ポリマー層1表面のカルボキシル基が形成された分子層と被覆層2とが水素結合力により良好に結合し、その結果、高温バイアス試験においても両者間で剥離することのない絶縁フィルム3とすることができる。
【0033】
また、ポリフェニレンエーテル系有機物分子が液晶ポリマー分子ほど剛直ではなく、また、規則正しい配向性も示さないことから分子が比較的動きやすく、その結果、絶縁フィルム3を多層化した場合おいても、絶縁フィルム3同士の密着性が良好となり、高温バイアス試験において絶縁フィルム3間で剥離して絶縁不良が発生してしまうということもない。さらに、絶縁フィルム3表面に配線導体を配設した場合においても、ポリフェニレンエーテル系有機物分子が配線導体4表面の微細な凹部に入り込み十分なアンカー効果を発揮することができ、絶縁フィルム3と配線導体4との密着性が良好となり、その結果、高温高湿下で両者間で剥離して配線導体4が断線してしまうということもない。
【0034】
液晶ポリマー層1は、X線光電子分光分析法による測定で、C1sピークでの表面カルボキシル基の割合が7%未満であると、液晶ポリマー層1表面に形成されるカルボキシル基の量が不十分となり、液晶ポリマー層1と被覆層2とを水素結合力により良好に結合することが困難となる傾向があり、18%を超えると液晶ポリマー層1の表面の水素結合力が非常に高くなって空気中の水と結合してその表面に水を吸着した分子層が形成され、その結果、液晶ポリマー層1と被覆層2との密着性が低下して両者間で剥離し易くなる傾向がある。従って、液晶ポリマー層1は、X線光電子分光分析法による測定で、C1sピークでの表面のカルボキシル基の割合を7〜18%とすることが重要である。
【0035】
なお、ここで表面のカルボキシル基の割合を7〜18%とするには、プラズマ処理やコロナ処理・紫外線処理で液晶ポリマー層1の上下面を表面処理する際に、印加電圧や雰囲気、また、処理時間を適宜調整することにより所望の値とすることができる。特にプラズマ処理のガスとして、プラズマ中でガス分子を励起してラジカルを発生させ、液晶ポリマー層1表面にカルボキシル基を形成し易くするという観点からは、ヘリウム等の不活性ガスを用いることが好適である。
【0036】
なお、ここで表面のC1sピーク面積におけるカルボキシル基の割合とは、X線光電子分光分析法によって測定可能なものであり、束縛エネルギーが292〜282eVに現れるC1sピークの面積(横軸が束縛エネルギー、縦軸がエネルギー強度)において、この面積と束縛エネルギーが290〜287eVの範囲に現れるカルボキシル基に起因した面積との相対比を指す。
【0037】
さらに、液晶ポリマー層1は、層としての物性を損なわない範囲内で、熱安定性を改善するための酸化防止剤や耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を付加するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステル・高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整するため、および/または機械的強度を向上するための酸化アルミニウム・酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・チタン酸カリウム・チタン酸バリウム・チタン酸ストロンチウム・チタン酸カルシウム・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材を含有してもよい。
【0038】
なお、上記の充填材等の粒子形状は、略球状・針状・フレーク状等があり、充填性の観点からは略球状が好ましい。また、粒子径は、通常0.1〜15μm程度であり、液晶ポリマー層1の厚みよりも小さい。
【0039】
また、液晶ポリマー層1の厚みは、熱膨張係数の小さい液晶ポリマー層1が熱膨張係数の大きい被覆層2を良好に拘束して絶縁フィルム3全体の熱膨張を小さなものとするという観点からは、絶縁フィルム3の厚みの40〜90%としておくことが好ましい。
【0040】
液晶ポリマー層1の厚みが絶縁フィルム3の厚みの40%未満であると液晶ポリマー層1が被覆層2の熱膨張を拘束することが困難となり、例えばこの絶縁フィルム3を用いて多層配線基板を製作した際、絶縁フィルム3の熱膨張係数が配線導体4の熱膨張係数よりも大きくなり、これらの熱膨張差による応力により絶縁フィルム3にクラックが発生し易くなる傾向にある。また、液晶ポリマー層1の厚みが90%を超えると、被覆層2の熱膨張が絶縁フィルム3の熱膨張に寄与する効果が小さくなって絶縁フィルム3の熱膨張係数が配線導体4の熱膨張係数よりも小さくなり、これらの熱膨張差により配線導体4の剥離を生じる傾向にある。従って、液晶ポリマー層1の厚みは絶縁フィルム3の厚みの40〜90%としておくことが好ましく、特に多層配線基板6を製作し電子部品7を実装したときの接続信頼性の観点からは50〜85%の範囲としておくことが好ましい。
【0041】
さらに、液晶ポリマー層1は、被覆層2との密着性を良好とするために、その表面をバフ研磨・ブラスト研磨・ブラシ研磨・プラズマ処理・コロナ処理・紫外線処理・薬品処理等の方法を用いてトリアリルイソシアヌレートとの接触角が3〜50゜であって、かつ表面エネルギーが45〜80mJ/mとなるように処理しておくことが好ましい。
【0042】
本発明の絶縁フィルム3によれば、液晶ポリマー層1のトリアリルイソシアヌレートとの接触角を3〜50°とし、かつ液晶ポリマー層1の表面エネルギーを45〜80mJ/mとした場合には、液晶ポリマー層1表面の活性化された比較的熱運動しやすい分子層とポリフェニレンエーテル系有機物から成る被覆層2とが良好に絡み合って結合し、液晶ポリマー層1と被覆層2とがより強固に密着した絶縁フィルム3とすることができる。
【0043】
液晶ポリマー層1に対する液体のトリアリルイソシアヌレートの濡れ性は、液晶ポリマー層1に対するポリフェニレンエーテルの濡れ性に近似しており、液晶ポリマー層1の上下面をトリアリルイソシアヌレートとの接触角が3〜50°とすることにより、被覆層2が液晶ポリマー層1の上下面に良好に濡れ広がり、液晶ポリマー層1と被覆層2との密着性を良好となすことができ、その結果、高温バイアス試験においても両者間で剥離することのない絶縁フィルム3とすることができる。なお、トリアリルイソシアヌレートとの接触角が3°より小さいと、被覆層2が液晶ポリマー層1上に極端に広がってしまって位置精度が低下して、絶縁フィルム3を複数枚重ねるとともに加熱・加圧して多層化する際に、絶縁フィルム3の表面に形成される配線導体4や内部に形成される貫通導体5の位置がずれて断線し易くなる傾向があり、50°を超えると高温バイアス試験において液晶ポリマー層1と被覆層2との密着性が低下して両者間で剥離し易くなる傾向がある。したがって、液晶ポリマー層1の上下面のトリアリルイソシアヌレートとの接触角を3〜50°とすることが好ましい。
【0044】
また、液晶ポリマー層1は、表面の活性化された比較的熱運動しやすい分子層と被覆層2とが良好に絡み合って結合し、両者の密着をさらに強固なものとするという観点からは、その表面エネルギーを45〜80mJ/mとすることが好ましい。表面エネルギーが45mJ/m未満であると、液晶ポリマー層1表面の分子層が十分に活性化されず、被覆層2と良好に絡み合って結合することが困難となる傾向があり、80mJ/mを超えると液晶ポリマー層1の表面が非常に反応性が高くなって空気中の酸素と反応してその表面に強度の弱い酸化物が形成され、その結果、液晶ポリマー層1と被覆層2との密着性が低下して両者間で剥離し易く成る傾向がある。したがって、液晶ポリマー層1の表面エネルギーを45〜80mJ/mとすることが好ましい。
【0045】
さらに、液晶ポリマー層1は、その表面の算術平均粗さRaを0.05〜5μmとしておくことが好ましい。表面の算術平均粗さRaを0.05〜5μmとした場合には、液晶ポリマー層1の上下面が被覆層2と良好なアンカー効果を有する密着性の良好なものとなり、液晶ポリマー層1と被覆層2とがより強固に密着したものとすることができる。
【0046】
なお、算術平均粗さRaは、半田リフローの際に液晶ポリマー層1と被覆層2との剥離を防止するという観点からは0.05μm以上であることが好ましく、表面に被覆層2を形成する際に空気のかみ込みを防止するという観点からは5μm以下であることが好ましい。従って、液晶ポリマー層1は、その表面の算術平均粗さRaを0.05〜5μmとすることが好ましい。
【0047】
次に、被覆層2は、熱硬化性樹脂から成り、後述する配線導体4を被着形成する際の接着剤の機能を有するとともに、絶縁フィルム3を用いて多層配線基板6を構成する際に、絶縁フィルム3同士を積層する際の接着剤の役目を果たす。
【0048】
被覆層2は、ポリフェニレンエーテル樹脂やその誘導体、または、これらのポリマーアロイ等のポリフェニレンエーテル系有機物を30〜90体積%含有しており、とりわけ熱サイクル信頼性や配線導体4を接着する際の位置精度の観点からは、アリル変性ポリフェニレンエーテル等の熱硬化性ポリフェニレンエーテルを含有することが好ましい。
【0049】
本発明の絶縁フィルム3によれば、ポリフェニレンエーテル系有機物を熱硬化性ポリフェニレンエーテルとした場合には、熱硬化性ポリフェニレンエーテルが耐熱性に優れるとともに寸法安定性に優れ、その結果、温度サイクル信頼性に優れるとともに、配線導体4を接着する際の位置精度の良好な絶縁フィルム3とすることができる。
【0050】
なお、ポリフェニレンエーテル系有機物の含有量が30体積%未満であると、後述する充填材との混錬性が低下する傾向があり、また、90体積%を超えると、液晶ポリマー層1表面に被覆層2を形成する際に、被覆層2の厚みバラツキが大きくなる傾向がある。したがって、ポリフェニレンエーテル系有機物の含有量は、30〜90体積%の範囲が好ましい。
【0051】
また、被覆層2は、液晶ポリマー層1との接着性や配線導体4・後述する貫通導体5との密着性を良好にするという観点からは、重合反応可能な官能基を2個以上有する他官能性モノマーあるいは多官能性重合体等の添加剤を含有することが好ましく、例えば、トリアリルイソシアヌレートやトリアリルシアヌレートおよびこれらの重合体等を含有することが好ましい。
【0052】
さらに、被覆層2は、弾性率を調整するためのゴム成分や熱安定性を改善するための酸化防止剤、耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を付加するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛・メタホウ酸バリウム・酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステルや高級脂肪酸金属塩・フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整したり機械的強度を向上するための酸化アルミニウムや酸化珪素・酸化チタン・酸化バリウム・酸化ストロンチウム・酸化ジルコニウム・酸化カルシウム・ゼオライト・窒化珪素・窒化アルミニウム・炭化珪素・チタン酸カリウム・チタン酸バリウム・チタン酸ストロンチウム・チタン酸カルシウム・ホウ酸アルミニウム・スズ酸バリウム・ジルコン酸バリウム・ジルコン酸ストロンチウム等の充填材、あるいは、充填材との親和性を高めこれらの接合性向上と機械的強度を高めるためのシラン系カップリング剤やチタネート系カップリング剤等のカップリング剤を含有してもよい。
【0053】
特に絶縁フィルム3を積層・加圧して多層配線基板6を形成する際に、被覆層2の流動性を抑制し、貫通導体5の位置ずれや被覆層2の厚みばらつきを防止するという観点からは、被覆層2は充填材として10体積%以上の無機絶縁粉末を含有することが好ましい。また、液晶ポリマー層1との接着界面および配線導体4との接着界面での半田リフロー時の剥離を防止するという観点からは、無機絶縁粉末の含有量を70体積%以下とすることが好ましい。従って、熱硬化性樹脂から成る被覆層2は10〜70体積%の無機絶縁粉末を含有させておくことが好ましい。
【0054】
なお、上記の無機絶縁粉末の形状は、略球状・針状・フレーク状等があり、充填性の観点からは、粒子径が0.1〜2μmであって、形状は略球状であることが好ましく、被覆層2の厚みよりも小さい。
【0055】
このような絶縁フィルム3は、例えば粒径が0.1〜2μm程度の酸化珪素等の無機絶縁粉末に、熱硬化性ポリフェニレンエーテル樹脂と溶剤・可塑剤・分散剤等を添加して得たペーストを、プラズマ処理により、X線光電子分光分析法による炭素の化学結合状態の分析で、表面のC1sピーク面積におけるカルボキシル基に起因する面積の割合が7〜18%となるように表面処理した、融点が230〜420℃の液晶ポリマー層1の上下表面に従来周知のドクタブレード法等のシート成型法を採用して被覆層2を形成した後、あるいは上記のペースト中に液晶ポリマー層1を浸漬し垂直に引き上げることによって液晶ポリマー層1の表面に被覆層2を形成した後、これを60〜100℃の温度で5分〜3時間加熱・乾燥することにより製作される。
【0056】
なお、絶縁フィルム3の厚みは絶縁信頼性を確保するという観点からは10〜300μmであることが好ましく、また、高耐熱性・低吸湿性・高寸法安定性を確保するという観点からは液晶ポリマー層1の厚みを絶縁フィルム3の厚みの40〜90%の範囲としておくことが好ましい。
【0057】
次に、本発明の多層配線基板6は、上下面の少なくとも一方の面に金属箔から成る配線導体4が配設された絶縁フィルム3を複数積層して成るとともに、この絶縁フィルム3を挟んで上下に位置する配線導体4間を絶縁フィルム3に形成された貫通導体5を介して電気的に接続することにより形成されている。
【0058】
配線導体4は、その厚みが2〜30μmで銅・金等の良導電性の金属箔から成り、多層配線基板6に搭載される電子部品7を外部電気回路(図示せず)に電気的に接続する機能を有する。
【0059】
このような配線導体4は、絶縁フィルム3を複数積層する際、配線導体4の周囲にボイドが発生するのを防止するという観点から、図3の要部拡大断面図に示すように、被覆層2に少なくとも配線導体4の表面と被覆層2の表面とが平坦となるように埋設されていることが好ましい。また、配線導体4を被覆層2に埋設する際に、被覆層2の乾燥状態での気孔率を3〜40体積%としておくと、配線導体4周囲の被覆層2の樹脂盛り上がりを生じさせず平坦化することができるとともに配線導体4と被覆層2の間に挟まれる空気の排出を容易にして気泡の巻き込みを防止することができる。なお、乾燥状態での気孔率が40体積%を超えると、複数積層した絶縁フィルム3を加圧・加熱硬化した後に被覆層2内に気孔が残存し、この気孔が空気中の水分を吸着して絶縁性が低下してしまうおそれがあるので、被覆層2の乾燥状態での気孔率を3〜40体積%の範囲としておくことが好ましい。
【0060】
このような被覆層2の乾燥状態での気孔率は、被覆層2を液晶ポリマー層1の表面上に塗布し乾燥する際に、乾燥温度や昇温速度等の乾燥条件を適宜調整することにより所望の値とすることができる。
【0061】
さらに、絶縁フィルム3に配設された配線導体4の幅方向の断面形状を、絶縁フィルム3側の底辺の長さが対向する底辺の長さよりも短い台形状とするとともに、絶縁フィルム3側の底辺と側辺との成す角度を95〜150°とすることが好ましい。絶縁フィルム3に配設された配線導体4の幅方向の断面形状を、絶縁フィルム3側の底辺の長さが対向する底辺の長さよりも短い台形状とするとともに、絶縁フィルム3側の底辺と側辺との成す角度を95〜150°とすることにより、配線導体4を被覆層2に埋設する際に、配線導体4を被覆層2に容易に埋設して配線導体4を埋設した後の被覆層2表面をほぼ平坦にすることができ、積層の際に空気をかみ込んで絶縁性を低下させることのない多層配線基板6とすることができる。なお、気泡をかみ込むことなく埋設するという観点からは、絶縁フィルム3側の底辺と側辺との成す角度を95°以上とすることが好ましく、配線導体2を微細化するという観点からは150°以下とすることが好ましい。
【0062】
また、絶縁フィルム3の層間において、配線導体4の長さの短い底辺と液晶ポリマー層1との間に位置する被覆層2の厚みx(μm)が、上下の液晶ポリマー層1間の距離をT(μm)、配線導体4の厚みをt(μm)としたときに、3μm≦0.5T−t≦x≦0.5T≦35μm(ただし、8μm≦T≦70μm、1μm≦t≦32μm)であることが好ましい。
【0063】
液晶ポリマー層1間の距離をT(μm)、配線導体4の厚みをt(μm)としたときに、配線導体4の長さの短い底辺と液晶ポリマー層1間の熱硬化性樹脂から成る被覆層2の厚みx(μm)を3μm≦0.5T−t≦x≦0.5T≦35μmとすることにより、配線導体4の長さの短い底辺と液晶ポリマー層1間の距離および配線導体4の長さの長い底辺と隣接する液晶ポリマー層1間の距離の差をt(μm)未満と小さくすることができ、被覆層2の厚みが大きく異なることから生じる多層配線基板6の反りを防止することができる。従って、配線導体4の台形状の上底側表面と液晶ポリマー層1の間に位置する、被覆層2の厚みx(μm)を、液晶ポリマー層1間の距離をT(μm)、配線導体4の厚みをt(μm)としたときに、3μm≦0.5T−t≦x≦0.5T≦35μmの範囲とすることが好ましい。
【0064】
このような配線導体4は、絶縁フィルム3となる前駆体シートに、公知のフォトレジストを用いたサブトラクティブ法によりパターン形成した、例えば銅から成る金属箔を転写法等により被着形成することにより形成される。先ず、支持体と成るフィルム上に銅から成る金属箔を接着剤を介して接着した金属箔転写用フィルムを用意し、次に、フィルム上の金属箔を公知のフォトレジストを用いたサブトラクティブ法を使用してパターン状にエッチングする。この時、パターンの表面側の側面は、フィルム側の側面に較べてエッチング液に接する時間が長いためにエッチングされやすく、パターンの幅方向の断面形状を台形状とすることができる。なお、台形の形状は、エッチング液の濃度やエッチング時間を調整することにより短い底辺と側辺とのなす角度を95〜150°の台形状とすることができる。そして、この金属箔転写用フィルムを絶縁フィルム3と成る前駆体シートに積層し、温度が100〜200℃で圧力が0.5〜10MPaの条件で10分〜1時間ホットプレスした後、支持体と成るフィルムを剥離除去して金属箔を絶縁フィルム3と成る前駆体シート表面に転写させることにより、台形状の上底側が被覆層2に埋設された配線導体4を形成することができる。
【0065】
なお、配線導体4の長さの短い底辺と対向する液晶ポリマー層1間の被覆層2の厚みx(μm)は、金属箔転写時のホットプレスの圧力を調整することにより所望の範囲とすることができる。また、配線導体4は被覆層2との密着性を高めるためにその表面にバフ研磨・ブラスト研磨・ブラシ研磨・薬品処理等の処理で表面を粗化しておくことが好ましい。
【0066】
また、絶縁フィルム3には、直径が20〜150μm程度の貫通導体5が形成されている。貫通導体5は、絶縁フィルム3を挟んで上下に位置する配線導体4を電気的に接続する機能を有し、絶縁フィルム3にレーザにより穿設加工を施すことにより貫通孔を形成した後、この貫通孔に銅・銀・金・半田等から成る導電性ペーストを従来周知のスクリーン印刷法により埋め込むことにより形成される。
【0067】
本発明の多層配線基板6によれば、絶縁フィルム3を液晶ポリマー層1の上下面に熱硬化性樹脂から成る被覆層2を有したものとしたことから、液晶ポリマー層1が高耐熱性・高弾性率・高寸法安定性・低吸湿性であり、ガラスクロスのような強化材を用いなくとも絶縁フィルム3を構成することが可能となり、その結果、レーザによる穿設加工が容易となり微細で均一な貫通孔を形成できる。
【0068】
このような多層配線基板6は、上述したような方法で製作した絶縁フィルム3と成る前駆体シートの所望の位置に貫通導体5を形成した後、パターン形成した例えば銅の金属箔を、温度が100〜200℃で圧力が0.5〜10MPaの条件で10分〜1時間ホットプレスして転写し、これらを積層して最終的に温度が150〜300℃で圧力が0.5〜10MPaの条件で30分〜24時間ホットプレスして完全硬化させることにより製作される。
【0069】
かくして本発明の多層配線基板6によれば、上記構成の多層配線基板6の上面に形成した配線導体4の一部から成る接続パッド8に半田等の導体バンプ8を介して半導体素子等の電子部品7を電気的に接続するとともに、多層配線基板6の下面に形成した配線導体4の一部から成る接続パッド8に半田等の導体バンプ9を形成することにより配線密度が高く絶縁性に優れた混成集積回路とすることができる。
【0070】
なお、本発明の多層配線基板6は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の実施例では4層の絶縁フィルム3を積層することによって多層配線基板6を製作したが、2層や3層、あるいは5層以上の絶縁フィルム3を積層して多層配線基板6を製作してもよい。また、本発明の多層配線基板6の上下表面に、1層や2層、あるいは3層以上の有機樹脂を主成分とする絶縁層から成るビルドアップ層やソルダーレジスト層10、あるいは多層配線基板6に電子部品7を搭載後、多層配線基板6と電子部品6との間にアンダーフィル材11を形成してもよい。
【0071】
【実施例】
次に本発明の絶縁フィルムおよびこれを用いた多層配線基板を、以下の試料を用いて評価した。
【0072】
(実施例1)
先ず、熱硬化性ポリフェニレンエーテル樹脂に平均粒径が0.6μmの球状溶融シリカをその含有量が40体積%となるように加え、これに溶剤としてトルエン、さらに有機樹脂の硬化を促進させるための触媒を添加し、1時間混合してワニスを調整した。次に、融点が290℃であるとともに、かつ上下面に平行な方向における熱膨張係数が−3×10−6/℃の液晶ポリマー層の表面を、真空プラズマ装置を用いて、電圧を27kV、雰囲気をO、CFおよびヘリウム(ガス流量がそれぞれ800、400、65cm/分)とし、片面20分×2回の条件でプラズマ処理して、X線光電子分光分析法による炭素の化学結合状態の分析で、表面のC1sピーク面積におけるカルボキシル基に起因する面積の割合が種々の値のものとなるようにし、この液晶ポリマー層の上面に上記ワニスをドクターブレード法により塗布し、厚さが30μmの熱硬化性ポリフェニレンエーテル被覆層を成形した。そして、この液晶ポリマー層の下面にも同様に熱硬化性ポリフェニレンエーテル被覆層を成形し絶縁フィルムを製作した。
【0073】
さらに、この絶縁フィルムに、UV−YAGレーザにより直径50μmの貫通孔を形成し、この貫通孔に銅粉末と有機バインダを含有する導体ペーストをスクリーン印刷により埋め込むことにより貫通導体を形成した。
【0074】
次に、厚さが9μmで、回路状に形成した銅箔が付いた転写用支持フィルムと、貫通導体が形成された絶縁フィルムとを位置合わせして真空積層機により5MPaの圧力で30秒加圧した後、転写用支持フィルムを剥離して配線導体を絶縁フィルム上に埋設した。最後に、この配線導体が形成された絶縁フィルムを4枚重ね合わせ、3MPaの圧力下で200℃の温度で5時間加熱処理して完全硬化させて多層配線基板を得た(試料No.1〜7)。
【0075】
(比較例)
比較例用として用いた多層配線基板は、まず、表面に銅箔を熱溶融により接着した融点が320℃の液晶ポリマー層にフォトレジストを用いて回路状の配線導体を形成し、次に、UV−YAGレーザにより直径50μmの貫通孔を形成し、さらにこの貫通孔に銅粉末と有機バインダを含有する導体ペーストをスクリーン印刷により埋め込むことにより貫通導体を形成して回路基板を作製した後、これらの回路基板を融点が280℃の液晶ポリマー層を間に挟んで1MPaの圧力下で285℃の温度で5分間加熱プレスすることにより製作した。
【0076】
なお、絶縁性の評価を行なうためのテスト基板として、直径が4000μmの円形の導体パターンを多層配線基板内に絶縁層を挟んで対向するように形成し、絶縁信頼性の評価は、試料を温度が130℃、相対湿度が85%の条件で、印加電圧5.5Vの高温バイアス試験を行ない、円形の導体パターン間の絶縁抵抗を測定し、試験前後の変化量を比較することにより評価した。絶縁信頼性の良否の判断は、絶縁抵抗が1.0×10Ω以上を良、1.0×10Ω未満を否とした。
表1に絶縁信頼性結果を示す。
【0077】
【表1】

Figure 2004090238
【0078】
表1からは、液晶ポリマー層表面のカルボキシル基の割合が7%未満の多層配線基板(試料No.1、2)およびカルボキシル基の割合が18%を超える多層配線基板(試料No.6、7)では、高温バイアス試験168時間後の絶縁抵抗は良好であるものの、240時間以上では絶縁抵抗が8.8×10Ω以下と劣化する傾向があることがわかった。また、比較例の多層配線基板では、高温バイアス試験168時間後でも絶縁抵抗が4.0×10Ωと劣化し絶縁信頼性に劣ることがわかった。
【0079】
それらに対して本発明の多層配線基板である実施例(試料No.3〜5)では、高温バイアス試験240時間後でも2.1×10Ω以上であり、絶縁信頼性において特に優れていることがわかった。
【0080】
(実施例2)
実施例2用として用いた多層配線基板は、液晶ポリマー層を、その絶縁フィルムに対する厚さが種々の割合になるように変更した以外は、実施例1用の多層配線基板と同様の方法で製作した(試料No.8〜13)。なお、X線光電子分光分析法による炭素の化学結合状態の分析で、表面のC1sピーク面積におけるカルボキシル基に起因する面積の割合が13%となるように調整した。また、絶縁フィルムの厚さが200μmとなるように、液晶ポリマー層と被覆層の厚さも調整した。
【0081】
導通性の評価を行なうテスト基板として、その内部に多層配線基板の絶縁層を介して位置する上下2層の配線導体と両者を電気的に接続する貫通導体とでビアチェーンを形成したものとし、導通信頼性の評価は、温度が130℃、相対湿度が85%の条件で高温高湿試験を行ない、導通抵抗の試験前に対する変化率が15%未満を良、15%以上を否とした。
表2に導通信頼性結果を示す。
【0082】
【表2】
Figure 2004090238
【0083】
表2からは、液晶ポリマー層の絶縁フィルムに対する厚さの割合が40%未満の多層配線基板(試料No.8、9)および90%を超える多層配線基板(試料No.13)では、高温高湿試験168時間後でも導通抵抗は変化率が12%以下と小さいが、240時間後で導通抵抗は変化率が16%以上と大きく、導通信頼性にやや劣る傾向があることがわかった。
【0084】
それらに対して本発明の多層配線基板である実施例(試料No.10〜12)では、いずれも高温高湿試験168時間後で導通抵抗の変化率は7%以下と小さく、さらに240時間後でも導通抵抗の変化率は12%以下と小さく、導通信頼性において特に優れていることがわかった。
【0085】
(実施例3)
実施例3用として用いた多層配線基板は、表面が種々のトリアリルイソシアヌレートとの接触角および表面エネルギーを有する液晶ポリマー層に変更した以外は、実施例1用の多層配線基板と同様の方法で製作した(試料No.14〜22)。
【0086】
なお、密着性の評価は、多層配線基板を種々の温度の半田浴に20秒間浸漬し、これを5回繰り返した後、多層配線基板の外観を観察することにより密着性の評価を行なった。
表3に密着性の評価結果を示す。
【0087】
【表3】
Figure 2004090238
【0088】
表3からは、液晶ポリマー層表面のトリアリルイソシアヌレートとの接触角が3°未満の多層配線基板(試料No.14)および接触角が50°を超える多層配線基板(試料No.18)では、温度が260℃の半田浴への浸漬を5回繰り返しても多層配線基板の外観に変化は無かったが、温度が290℃の半田浴への浸漬を5回繰り返した時点で、液晶ポリマー層と被覆層間で剥がれを生じることにより多層配線基板に膨れ部が発生し、密着性にやや劣る傾向があった。それらに対し、接触角が3〜50°の多層配線基板(試料No.15〜17)では、温度が290℃の半田浴への浸漬を5回繰り返しても多層配線基板の外観に変化は無く、密着性に優れていた。しかし、接触角が3〜50°であっても、液晶ポリマー層の表面エネルギーが45mJ/m未満の多層配線基板(試料No.19)および80mJ/m以上の多層配線基板(試料No.22)では、温度が260℃の半田浴への浸漬を5回繰り返しても多層配線基板の外観に変化は無かったが、温度が290℃の半田浴への浸漬を5回繰り返した時点で、液晶ポリマー層と被覆層間で剥がれを生じることにより多層配線基板に膨れ部が発生し、密着性にやや劣る傾向があった。一方、接触角が3〜50°であり、かつ、表面エネルギーが45〜80mJ/mの多層配線基板(試料No.15〜17、20、21)では、温度が290℃の半田浴への浸漬を5回繰り返しても多層配線基板の外観に変化は無く、密着性において特に優れていることがわかった。
【0089】
【発明の効果】
本発明の絶縁フィルムによれば、X線光電子分光分析法による測定で、C1sピークでの表面のカルボキシル基の割合が7〜18%である液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層を形成して成ることから、液晶ポリマー層の上下面に存在するカルボキシル基内の電気的に正に分極した水素と、ポリフェニレンエーテル系有機物を構成する重合結合鎖内のベンゼン環間に位置する電気的に負に分極した酸素とが電気的な引力を生じるため、液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層が良好に濡れ広がるとともに、液晶ポリマー層表面のカルボキシル基が形成された分子層と被覆層とが水素結合力により良好に結合し、その結果、高温バイアス試験においても両者間で剥離することのない絶縁フィルムとすることができる。また、ポリフェニレンエーテル系有機物分子が液晶ポリマー分子ほど剛直ではなく、また、規則正しい配向性も示さないことから分子が比較的動きやすく、その結果、絶縁フィルムを多層化した場合おいても、絶縁フィルム同士の密着性が良好となり、高温バイアス試験において絶縁フィルム間で剥離して絶縁不良が発生してしまうということもない。さらに、絶縁フィルム表面に配線導体を配設した場合においても、ポリフェニレンエーテル系有機物分子が配線導体表面の微細な凹部に入り込み十分なアンカー効果を発揮することができ、絶縁フィルムと配線導体との密着性が良好となり、その結果、高温高湿下で両者間で剥離して配線導体が断線してしまうということもない。
【0090】
また、本発明の絶縁フィルムによれば、上記構成において、液晶ポリマー層の厚みを絶縁フィルムの厚みの40〜90%とした場合には、温度サイクル試験等の際に絶縁フィルムに熱応力が印加されたとしても、熱膨張係数の小さい液晶ポリマー層が熱膨張係数の大きいポリフェニレンエーテル系有機物から成る被覆層を良好に拘束して絶縁フィルム全体の熱膨張を小さなものとすることができ、また、この絶縁フィルムを用いて多層配線基板を製作した場合においても、絶縁フィルムの熱膨張係数が配線導体の熱膨張係数に近似し、絶縁フィルムと配線導体との熱膨張差による応力をより小さなものとすることができ、その結果、温度サイクル信頼性や高温高湿信頼性により優れた絶縁フィルムとすることができる。
【0091】
さらに、本発明の絶縁フィルムによれば、上記構成において、液晶ポリマー層をトリアリルイソシアヌレートとの接触角を3〜50°であって、かつ表面エネルギーが45〜80mJ/mとした場合には、液晶ポリマー層表面の活性化された比較的熱運動しやすい分子層とポリフェニレンエーテル系有機物から成る被覆層とが良好に絡み合って結合し、液晶ポリマー層と被覆層とがより強固に密着した絶縁フィルムとすることができる。
【0092】
また、本発明の絶縁フィルムによれば、上記構成において、液晶ポリマー層の上下面の算術平均粗さRaを0.05〜5μmとした場合には、液晶ポリマー層の上下面がポリフェニレンエーテル系有機物から成る被覆層と良好なアンカー効果を有する密着性の良好なものとなり、液晶ポリマー層と被覆層とがより強固に密着した絶縁フィルムとすることができる。
【0093】
また、本発明の絶縁フィルムによれば、上記構成において、被覆層を粒子径が0.1〜2μmの無機絶縁粉末を10〜70体積%含有するものとした場合には、絶縁フィルムに配線導体および貫通導体を配設するとともに絶縁フィルムを多層化して多層配線基板を製作する場合においても、無機絶縁粉末が被覆層の流動性を抑制し、多層化する際の加熱プレスによって層方向における貫通導体の位置ずれや貫通導体の直径のばらつき、さらには被覆層の厚みばらつきを低減することができ、より寸法安定性に優れた絶縁フィルムとすることができる。
【0094】
さらに、本発明の絶縁フィルムによれば、上記構成において、無機絶縁粉末の形状を略球状とした場合には、無機絶縁粉末をポリフェニレンエーテル系有機物へ充填する際に充填性や混練性が良好となり、無機絶縁粉末をポリフェニレンエーテル系有機物から成る被覆層へ一様に分布させることができ、その結果、被覆層の熱膨張係数がより均一な絶縁フィルムとすることができる。
【0095】
また、本発明の絶縁フィルムによれば、上記構成において、ポリフェニレンエーテル系有機物を熱硬化性ポリフェニレンエーテルとした場合には、熱硬化性ポリフェニレンエーテルが耐熱性に優れるとともに寸法安定性に優れることから、温度サイクル信頼性に優れるとともに、配線導体を接着する際の位置精度の良好な絶縁フィルムとすることができる。
【0096】
本発明の多層配線基板によれば、多層配線基板を上記の絶縁フィルムを用いて形成したことから、耐湿性・導通信頼性に優れた多層配線基板とすることができる。
【図面の簡単な説明】
【図1】本発明の絶縁フィルムの実施の形態の一例を示す断面図である。
【図2】本発明の多層配線基板の実施の形態の一例を示す断面図である。
【図3】図2に示す多層配線基板の要部拡大断面図である。
【符号の説明】
1・・・・・・・・液晶ポリマー層
2・・・・・・・・被覆層
3・・・・・・・・絶縁フィルム
4・・・・・・・・配線導体
5・・・・・・・・貫通導体
6・・・・・・・・多層配線基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulating film used for electronic devices such as various AV devices, home appliances, communication devices, computers and peripheral devices thereof, and a multilayer wiring board using the same, particularly an insulating film partially using a liquid crystal polymer. And a multilayer wiring board using the same.
[0002]
[Prior art]
Conventionally, a multi-layer wiring board for forming a hybrid integrated circuit in which a predetermined electronic circuit is formed by mounting a large number of active parts such as semiconductor elements and passive parts such as capacitance elements and resistance elements is usually made of epoxy resin on glass cloth. Are formed by drilling up and down through holes in an insulating film impregnated with, and a plurality of wiring boards having a plurality of wiring conductors formed inside the through holes and on the surface of the insulating layer.
[0003]
In general, modern electronic devices are required to be small, thin, lightweight, high-performance, high-performance, high-quality, and high-reliable, as represented by mobile communication devices. Electronic components such as hybrid integrated circuits are also required to be smaller and have higher densities. In order to respond to such demands for higher densities, multilayer wiring boards that make up electronic components have also been required to have wiring conductors. It has become necessary to reduce the size of insulating layers, to make insulating layers thinner, and to make through holes finer. For this reason, in recent years, in order to miniaturize the through holes, laser processing that can perform finer processing than drill processing has been used.
[0004]
However, an insulating film formed by impregnating a glass cloth with an epoxy resin has difficulty in making the glass cloth with a laser, so there is a limit to miniaturization of the through-hole, and the thickness of the glass cloth is not sufficient. There is a problem that it is difficult to form a through hole having a uniform diameter for uniformity.
[0005]
In order to solve such problems, an insulating film formed by impregnating a non-woven fabric made of aramid resin fiber with an epoxy resin, or an insulating film formed by applying an epoxy-based adhesive to a polyimide film was used as an insulating layer. A multilayer wiring board has been proposed.
[0006]
However, insulating films made of aramid nonwoven fabric or polyimide film have high hygroscopicity, and when solder reflow is performed in a state of moisture absorption, the moisture absorbed by the heat of the solder reflow vaporizes to generate gas, which is separated between the insulating layers. There was a problem such as getting lost.
[0007]
In order to solve such problems, use of a liquid crystal polymer as a material for an insulating layer of a multilayer wiring board has been studied. The layer composed of liquid crystal polymer is composed of rigid molecules and has a structure in which the molecules are regularly arranged to some extent. Since the intermolecular force is strong, it has high heat resistance, high elastic modulus, and high dimensional stability. -It has low hygroscopicity, does not require the use of a reinforcing material such as glass cloth, and has excellent features of fine workability. Further, it has a characteristic that it has a low dielectric constant and a low dielectric loss tangent and is excellent in high frequency characteristics even in a high frequency region.
[0008]
Utilizing such characteristics of the liquid crystal polymer, JP-A-8-97565 discloses that a circuit layer contains a first liquid crystal polymer, and a second layer having a melting point lower than the melting point of the first liquid crystal polymer between the circuit layers. There has been proposed a multilayer printed circuit board formed by inserting an adhesive layer containing a liquid crystal polymer.
[0009]
[Problems to be solved by the invention]
However, in the multilayer printed circuit board proposed in Japanese Patent Application Laid-Open No. H8-97565, the liquid crystal polymer molecules are rigid when the circuit layers are bonded by thermocompression bonding by inserting an adhesive layer containing a liquid crystal polymer therebetween. At the same time, the molecules are regularly oriented to some extent and the intermolecular force is strengthened, making it difficult for the molecules to move, and only a small portion of the molecules on the surface of the liquid crystal polymer in the circuit layer and the liquid crystal polymer in the adhesive layer can be entangled. Therefore, there is a problem in that the adhesion is poor, and the layers are peeled off in a high-temperature bias test to cause insulation failure. In addition, when the conductor foil of the circuit layer and the liquid crystal polymer are bonded by heat fusion, the liquid crystal polymer molecules are difficult to move and cannot enter the fine recesses on the conductor foil surface, resulting in a sufficient anchor effect. In addition, the adhesion between the conductor foil and the liquid crystal polymer is deteriorated, and the conductor foil is peeled off under high temperature and high humidity to cause a disconnection of the conductor foil.
[0010]
The present invention has been made in view of the problems of the related art, and an object of the present invention is to provide an insulating film having excellent insulating properties and conduction reliability and a multilayer wiring board using the same.
[0011]
[Means for Solving the Problems]
The insulating film of the present invention is characterized in that the ratio of the area due to the carboxyl group in the C1s peak area of the surface is 7 to 18% in the analysis of the chemical bonding state of carbon by X-ray photoelectron spectroscopy. A coating layer made of a polyphenylene ether-based organic material.
[0012]
Further, the insulating film of the present invention is characterized in that, in the above configuration, the thickness of the liquid crystal polymer layer is 40 to 90% of the thickness of the insulating film.
[0013]
Furthermore, in the insulating film of the present invention, in the above configuration, the upper and lower surfaces of the liquid crystal polymer layer have a contact angle with triallyl isocyanurate of 3 to 50 ° and a surface energy of 45 to 80 mJ / m 2 . It is characterized by the following.
[0014]
Further, the insulating film of the present invention is characterized in that, in the above structure, the arithmetic average roughness Ra of the upper and lower surfaces of the liquid crystal polymer layer is 0.05 to 5 μm.
[0015]
Further, the insulating film of the present invention is characterized in that, in the above configuration, the coating layer contains 10 to 70% by volume of an inorganic insulating powder having a particle diameter of 0.1 to 2 μm.
[0016]
Furthermore, the insulating film of the present invention is characterized in that, in the above configuration, the shape of the inorganic insulating powder is substantially spherical.
[0017]
Further, the insulating film of the present invention is characterized in that, in the above configuration, the polyphenylene ether-based organic substance is a thermosetting polyphenylene ether.
[0018]
The multilayer wiring board of the present invention is formed by laminating a plurality of the above-mentioned insulating films in which wiring conductors made of metal foil are disposed on at least one of the upper and lower surfaces, and the wirings located above and below the insulating film. The invention is characterized in that the conductors are electrically connected via a through conductor formed in the insulating film.
[0019]
According to the insulating film of the present invention, in the analysis of the chemical bonding state of carbon (C) by X-ray photoelectron spectroscopy (XPS), the ratio of the area due to the carboxyl group to the C1s peak area on the surface is 7 to 18%. Is formed by forming a coating layer made of a polyphenylene ether-based organic material on the upper and lower surfaces of the liquid crystal polymer layer, and electrically positively polarized hydrogen in the carboxyl groups present on the upper and lower surfaces of the liquid crystal polymer layer and polyphenylene ether. Since the electrically negatively polarized oxygen located between the benzene rings in the polymerized bond chain constituting the organic organic substance generates an electric attractive force, a coating layer made of a polyphenylene ether organic substance is formed on the upper and lower surfaces of the liquid crystal polymer layer. While spreading well, the molecular layer with carboxyl groups on the surface of the liquid crystal polymer layer and the coating layer are well bonded by the hydrogen bonding force. And, as a result, it may be an insulating film not to peel between them even in a high temperature bias test. In addition, the polyphenylene ether-based organic molecules are not as rigid as liquid crystal polymer molecules, and do not exhibit regular orientation, so that the molecules are relatively mobile. As a result, even when the insulating films are multilayered, the insulating films are not bonded to each other. And the adhesion between the insulating films does not occur in the high-temperature bias test, thereby preventing defective insulation. Furthermore, even when the wiring conductor is provided on the surface of the insulating film, the polyphenylene ether-based organic molecules can enter the fine recesses on the surface of the wiring conductor and exert a sufficient anchor effect, and the adhesion between the insulating film and the wiring conductor can be improved. As a result, the wiring conductor does not peel off under high temperature and high humidity.
[0020]
Further, according to the insulating film of the present invention, when the thickness of the liquid crystal polymer layer is set to 40 to 90% of the thickness of the insulating film in the above configuration, thermal stress is applied to the insulating film during a temperature cycle test or the like. Even if the thermal expansion coefficient is small, the liquid crystal polymer layer having a small coefficient of thermal expansion can restrain the coating layer made of the polyphenylene ether-based organic material having a large coefficient of thermal expansion well, thereby reducing the thermal expansion of the entire insulating film. Even when a multilayer wiring board is manufactured using this insulating film, the coefficient of thermal expansion of the insulating film is close to the coefficient of thermal expansion of the wiring conductor, and the stress due to the difference in thermal expansion between the insulating film and the wiring conductor is reduced. As a result, an insulating film having excellent temperature cycle reliability and high-temperature high-humidity reliability can be obtained.
[0021]
Furthermore, according to the insulating film of the present invention, in the above configuration, when the liquid crystal polymer layer has a contact angle of 3 to 50 ° with triallyl isocyanurate and a surface energy of 45 to 80 mJ / m 2. The activated polymer layer on the surface of the liquid crystal polymer layer and the relatively easily movable molecular layer and the coating layer made of a polyphenylene ether-based organic substance are entangled and bonded well, and the liquid crystal polymer layer and the coating layer are more firmly adhered to each other. It can be an insulating film.
[0022]
According to the insulating film of the present invention, when the arithmetic mean roughness Ra of the upper and lower surfaces of the liquid crystal polymer layer is set to 0.05 to 5 μm in the above configuration, the upper and lower surfaces of the liquid crystal polymer layer are formed of a polyphenylene ether-based organic material. And an adhesive film having a good anchoring effect and a liquid crystal polymer layer and a coating layer can be more firmly adhered to each other.
[0023]
According to the insulating film of the present invention, when the coating layer contains 10 to 70% by volume of an inorganic insulating powder having a particle size of 0.1 to 2 μm in the above-described configuration, the wiring film is formed on the insulating film. Also, when a multilayer wiring board is manufactured by arranging a through conductor and multilayering an insulating film, the inorganic insulating powder suppresses the fluidity of the coating layer, and the through conductor in the layer direction is heated by a hot press when forming the multilayer. And the variation in the diameter of the through conductor and the variation in the thickness of the coating layer can be reduced, and an insulating film having more excellent dimensional stability can be obtained.
[0024]
Furthermore, according to the insulating film of the present invention, in the above configuration, when the shape of the inorganic insulating powder is substantially spherical, the filling property and the kneading property are improved when the inorganic insulating powder is filled into the polyphenylene ether-based organic substance. In addition, the inorganic insulating powder can be uniformly distributed in the coating layer made of the polyphenylene ether-based organic material, and as a result, an insulating film having a more uniform thermal expansion coefficient of the coating layer can be obtained.
[0025]
According to the insulating film of the present invention, in the above-described configuration, when the polyphenylene ether-based organic material is a thermosetting polyphenylene ether, the thermosetting polyphenylene ether has excellent heat resistance and excellent dimensional stability. An insulating film having excellent temperature cycle reliability and good positional accuracy when bonding a wiring conductor can be obtained.
[0026]
According to the multilayer wiring board of the present invention, since the multilayer wiring board is formed using the insulating film, a multilayer wiring board having excellent moisture resistance and conduction reliability can be obtained.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an insulating film of the present invention and a multilayer wiring board using the same will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing an example of an embodiment of the insulating film of the present invention, and FIG. 2 is a cross-sectional view showing an example of an embodiment of the multilayer wiring board of the present invention manufactured using the insulating film of FIG. FIG. 3 is an enlarged sectional view of a main part of the multilayer wiring board shown in FIG. 2 in the width direction of the wiring conductor. FIG. 2 shows an example of a hybrid integrated circuit in which electronic components such as semiconductor elements are mounted on the multilayer wiring board of the present invention.
[0028]
In these figures, 1 is a liquid crystal polymer layer, 2 is a coating layer made of a thermosetting resin, and these mainly constitute the insulating film 3 of the present invention. Reference numeral 4 denotes a wiring conductor, 5 denotes a through conductor, and 7 denotes an electronic component such as a semiconductor element. The multilayer wiring board 6 of the present invention mainly includes the insulating film 3, the wiring conductor 4, and the through conductor 5. In addition, the multilayer wiring board 6 of the present embodiment shows a structure in which the insulating films 3 are laminated in four layers.
[0029]
The insulating film 3 is composed of a liquid crystal polymer layer 1 and a coating layer 2 made of a polyphenylene ether-based organic substance formed on the upper and lower surfaces thereof. It has a function as a support of the conductor 4 and the electronic component 7 mounted on the multilayer wiring board 6.
[0030]
Here, the liquid crystal polymer refers to a polymer exhibiting liquid crystallinity or a polymer having an optically birefringent property in a molten state or a solution state, and is generally a lyotropic liquid crystal polymer exhibiting liquid crystallinity in a solution state or a liquid crystal polymer in a molten state. The liquid crystal polymer used in the present invention includes a thermotropic liquid crystal polymer exhibiting properties, or all types of liquid crystal polymers of type 1, type 2, and type 3 classified by heat distortion temperature. From the viewpoints of properties and workability, those having a melting point at a temperature of 230 to 420 ° C, particularly 270 to 380 ° C are preferred.
[0031]
The upper and lower surfaces of the liquid crystal polymer layer 1 have good adhesion to the coating layer 2 made of a polyphenylene ether-based organic substance, and from the viewpoint of preventing separation between the two in a high temperature bias test, X-ray photoelectron spectroscopy is used. In the measurement by the XPS method, it is necessary to set the ratio of the carboxyl group on the surface at the C1s peak to 7 to 18%, and this is important in the insulating film 3 of the present invention.
[0032]
According to the insulating film 3 of the present invention, the ratio of the carboxyl group on the surface at the C1s peak is 7 to 18% as measured by X-ray photoelectron spectroscopy. Is formed between the electrically positively polarized hydrogen in the carboxyl groups present on the upper and lower surfaces of the liquid crystal polymer layer 1 and the benzene ring in the polymerized bonding chain constituting the polyphenylene ether-based organic substance. Since the electrically negatively polarized oxygen located generates an electric attractive force, the coating layer 2 made of a polyphenylene ether-based organic material satisfactorily wets and spreads on the upper and lower surfaces of the liquid crystal polymer layer 1 and the surface of the liquid crystal polymer layer 1 The carboxyl group-formed molecular layer and the coating layer 2 are well bonded by the hydrogen bonding force. In may be an insulating film 3 not to peel.
[0033]
Further, since the polyphenylene ether-based organic molecules are not as rigid as the liquid crystal polymer molecules and do not show a regular orientation, the molecules are relatively mobile, and as a result, even when the insulating film 3 is multilayered, the insulating film is not The adhesion between the insulating films 3 becomes good, and there is no possibility that insulation failure occurs due to peeling between the insulating films 3 in the high-temperature bias test. Furthermore, even when the wiring conductor is provided on the surface of the insulating film 3, the polyphenylene ether-based organic molecules can enter the minute recesses on the surface of the wiring conductor 4 and exert a sufficient anchoring effect. As a result, the wiring conductor 4 does not break due to peeling between the two under high temperature and high humidity.
[0034]
In the liquid crystal polymer layer 1, when the ratio of the surface carboxyl groups at the C1s peak is less than 7% as measured by X-ray photoelectron spectroscopy, the amount of carboxyl groups formed on the surface of the liquid crystal polymer layer 1 becomes insufficient. In addition, it tends to be difficult to satisfactorily bond the liquid crystal polymer layer 1 and the coating layer 2 by the hydrogen bonding force, and if it exceeds 18%, the hydrogen bonding force on the surface of the liquid crystal polymer layer 1 becomes very high, and A molecular layer that adsorbs water is formed on the surface by combining with the water therein, and as a result, the adhesion between the liquid crystal polymer layer 1 and the coating layer 2 is reduced, and the liquid crystal polymer layer 1 and the coating layer 2 tend to be easily separated from each other. Therefore, it is important that the ratio of the carboxyl group on the surface of the liquid crystal polymer layer 1 at the C1s peak is 7 to 18% as measured by X-ray photoelectron spectroscopy.
[0035]
Here, in order to make the ratio of the carboxyl group on the surface 7 to 18%, when the upper and lower surfaces of the liquid crystal polymer layer 1 are surface-treated by plasma treatment, corona treatment, and ultraviolet treatment, an applied voltage, an atmosphere, A desired value can be obtained by appropriately adjusting the processing time. In particular, it is preferable to use an inert gas such as helium as a gas for plasma treatment, from the viewpoint of exciting gas molecules in plasma to generate radicals and easily forming a carboxyl group on the surface of the liquid crystal polymer layer 1. It is.
[0036]
Here, the ratio of the carboxyl group in the C1s peak area of the surface can be measured by X-ray photoelectron spectroscopy, and the area of the C1s peak where the binding energy appears at 292 to 282 eV (the binding energy is represented by the horizontal axis, The vertical axis indicates the energy intensity), and indicates the relative ratio between this area and the area attributable to the carboxyl group whose binding energy appears in the range of 290 to 287 eV.
[0037]
Further, the liquid crystal polymer layer 1 is provided with a light stabilizer such as an antioxidant for improving thermal stability and an ultraviolet absorber for improving light resistance, as long as the physical properties of the layer are not impaired. Halogen or phosphoric acid-based flame retardants to add water, flame retardant aids such as antimony compounds and zinc borate / barium metaborate / zirconium oxide, higher fatty acids and higher fatty acids to improve lubricity Lubricants such as esters, higher fatty acid metal salts, fluorocarbon surfactants, etc., aluminum oxide, silicon oxide, titanium oxide, barium oxide, strontium oxide for adjusting the coefficient of thermal expansion and / or improving mechanical strength Zirconium oxide, calcium oxide, zeolite, silicon nitride, aluminum nitride, silicon carbide, potassium titanate, barium titanate, titanium A filler, such as strontium titanate calcium borate aluminum tin barium zirconate barium strontium zirconate may contain.
[0038]
In addition, the particle shape of the above-mentioned filler and the like includes a substantially spherical shape, a needle shape, a flake shape and the like, and a substantially spherical shape is preferable from the viewpoint of the filling property. The particle diameter is usually about 0.1 to 15 μm, which is smaller than the thickness of the liquid crystal polymer layer 1.
[0039]
The thickness of the liquid crystal polymer layer 1 is determined from the viewpoint that the liquid crystal polymer layer 1 having a small coefficient of thermal expansion satisfactorily constrains the coating layer 2 having a large coefficient of thermal expansion to reduce the thermal expansion of the entire insulating film 3. It is preferable to set the thickness of the insulating film 3 to 40 to 90%.
[0040]
When the thickness of the liquid crystal polymer layer 1 is less than 40% of the thickness of the insulating film 3, it becomes difficult for the liquid crystal polymer layer 1 to restrain the thermal expansion of the coating layer 2. When manufactured, the thermal expansion coefficient of the insulating film 3 becomes larger than the thermal expansion coefficient of the wiring conductor 4, and the stress due to the difference in thermal expansion tends to easily cause cracks in the insulating film 3. If the thickness of the liquid crystal polymer layer 1 exceeds 90%, the effect of the thermal expansion of the coating layer 2 contributing to the thermal expansion of the insulating film 3 becomes small, and the thermal expansion coefficient of the insulating film 3 becomes smaller than that of the wiring conductor 4. The thermal expansion difference tends to cause peeling of the wiring conductor 4. Therefore, the thickness of the liquid crystal polymer layer 1 is preferably set to 40 to 90% of the thickness of the insulating film 3, and particularly from the viewpoint of connection reliability when the multilayer wiring board 6 is manufactured and the electronic components 7 are mounted, the thickness is 50 to 90%. It is preferable to set the range to 85%.
[0041]
Further, the liquid crystal polymer layer 1 uses a method such as buffing, blast polishing, brush polishing, plasma treatment, corona treatment, ultraviolet treatment, and chemical treatment to improve the adhesion to the coating layer 2. It is preferable to carry out the treatment so that the contact angle with triallyl isocyanurate is 3 to 50 ° and the surface energy is 45 to 80 mJ / m 2 .
[0042]
According to the insulating film 3 of the present invention, when the contact angle of the liquid crystal polymer layer 1 with triallyl isocyanurate is 3 to 50 ° and the surface energy of the liquid crystal polymer layer 1 is 45 to 80 mJ / m 2 , In addition, the activated molecular layer on the surface of the liquid crystal polymer layer 1 that is relatively easily moved with heat and the coating layer 2 made of a polyphenylene ether-based organic substance are entangled and bonded to each other, so that the liquid crystal polymer layer 1 and the coating layer 2 are more strongly bonded. The insulating film 3 can be in close contact with the insulating film 3.
[0043]
The wettability of the liquid triallyl isocyanurate to the liquid crystal polymer layer 1 is similar to the wettability of polyphenylene ether to the liquid crystal polymer layer 1, and the upper and lower surfaces of the liquid crystal polymer layer 1 have a contact angle of 3 with the triallyl isocyanurate. When the angle is set to about 50 °, the coating layer 2 wets and spreads well on the upper and lower surfaces of the liquid crystal polymer layer 1, and the adhesion between the liquid crystal polymer layer 1 and the coating layer 2 can be improved. An insulating film 3 that does not peel off between the two can also be obtained in the test. If the contact angle with triallyl isocyanurate is smaller than 3 °, the coating layer 2 is extremely spread on the liquid crystal polymer layer 1 and the positional accuracy is reduced. When a multilayer structure is formed by applying pressure, the position of the wiring conductor 4 formed on the surface of the insulating film 3 and the position of the through conductor 5 formed therein tend to shift, and the wiring tends to be broken. In the test, the adhesiveness between the liquid crystal polymer layer 1 and the coating layer 2 is reduced, and the two tend to be easily separated from each other. Therefore, it is preferable that the contact angle between the upper and lower surfaces of the liquid crystal polymer layer 1 and the triallyl isocyanurate be 3 to 50 °.
[0044]
Further, the liquid crystal polymer layer 1 has a surface layer in which the activated molecular layer which is relatively easily subjected to thermal motion and the coating layer 2 are entangled and bonded well, and from the viewpoint of further strengthening the adhesion between them, It is preferable that the surface energy is 45 to 80 mJ / m 2 . When the surface energy is less than 45 mJ / m 2 , the molecular layer on the surface of the liquid crystal polymer layer 1 is not sufficiently activated, and it tends to be difficult to entangle and bond well with the coating layer 2. If it exceeds 2 , the surface of the liquid crystal polymer layer 1 becomes very reactive and reacts with oxygen in the air to form an oxide having low strength on the surface. As a result, the liquid crystal polymer layer 1 and the coating layer 2 The adhesiveness between the two tends to decrease, and the two tend to peel off easily. Therefore, the surface energy of the liquid crystal polymer layer 1 is preferably set to 45 to 80 mJ / m 2 .
[0045]
Further, the arithmetic average roughness Ra of the surface of the liquid crystal polymer layer 1 is preferably set to 0.05 to 5 μm. When the arithmetic mean roughness Ra of the surface is set to 0.05 to 5 μm, the upper and lower surfaces of the liquid crystal polymer layer 1 have good adhesion with the coating layer 2 and have a good anchoring effect. The coating layer 2 can be more firmly adhered.
[0046]
The arithmetic average roughness Ra is preferably 0.05 μm or more from the viewpoint of preventing peeling of the liquid crystal polymer layer 1 and the coating layer 2 during solder reflow, and the coating layer 2 is formed on the surface. In this case, the thickness is preferably 5 μm or less from the viewpoint of preventing air entrapment. Therefore, it is preferable that the arithmetic average roughness Ra of the surface of the liquid crystal polymer layer 1 is 0.05 to 5 μm.
[0047]
Next, the coating layer 2 is made of a thermosetting resin, has a function of an adhesive when a wiring conductor 4 to be described later is adhered and formed, and is used when forming the multilayer wiring board 6 using the insulating film 3. And serves as an adhesive when the insulating films 3 are laminated.
[0048]
The coating layer 2 contains 30 to 90% by volume of a polyphenylene ether-based organic material such as a polyphenylene ether resin or a derivative thereof, or a polymer alloy thereof. From the viewpoint of accuracy, it is preferable to contain a thermosetting polyphenylene ether such as an allyl-modified polyphenylene ether.
[0049]
According to the insulating film 3 of the present invention, when the polyphenylene ether-based organic substance is a thermosetting polyphenylene ether, the thermosetting polyphenylene ether has excellent heat resistance and dimensional stability, and as a result, the temperature cycle reliability In addition, the insulating film 3 having excellent positional accuracy when bonding the wiring conductor 4 can be obtained.
[0050]
If the content of the polyphenylene ether-based organic substance is less than 30% by volume, the kneading property with the filler described later tends to decrease. When the layer 2 is formed, the thickness variation of the coating layer 2 tends to increase. Therefore, the content of the polyphenylene ether-based organic substance is preferably in the range of 30 to 90% by volume.
[0051]
The coating layer 2 has two or more functional groups capable of performing a polymerization reaction from the viewpoint of improving the adhesiveness to the liquid crystal polymer layer 1 and the adhesiveness to the wiring conductor 4 and the through conductor 5 described later. It is preferable to contain an additive such as a functional monomer or a polyfunctional polymer. For example, it is preferable to contain triallyl isocyanurate, triallyl cyanurate, and a polymer thereof.
[0052]
Further, the coating layer 2 has a rubber component for adjusting the elastic modulus, an antioxidant for improving thermal stability, a light stabilizer such as an ultraviolet absorber for improving light resistance, and a flame retardant. Halogen or phosphoric acid-based flame retardants, antimony compounds and flame retardant aids such as zinc borate, barium metaborate, and zirconium oxide, higher fatty acids and higher fatty acid esters to improve lubricity Lubricants such as higher fatty acid metal salts and fluorocarbon surfactants, aluminum oxide, silicon oxide, titanium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, for adjusting the coefficient of thermal expansion and improving mechanical strength Zeolite, silicon nitride, aluminum nitride, silicon carbide, potassium titanate, barium titanate, strontium titanate, calcium titanate Filler such as uranium, aluminum borate, barium stannate, barium zirconate, strontium zirconate, or a silane-based coupling agent to increase the affinity with the filler to improve their bonding and mechanical strength And a coupling agent such as a titanate coupling agent.
[0053]
In particular, when the insulating film 3 is laminated and pressed to form the multilayer wiring board 6, from the viewpoint of suppressing the fluidity of the coating layer 2 and preventing the displacement of the through conductor 5 and the thickness variation of the coating layer 2. Preferably, the coating layer 2 contains 10% by volume or more of an inorganic insulating powder as a filler. Further, from the viewpoint of preventing peeling during solder reflow at the bonding interface with the liquid crystal polymer layer 1 and the bonding interface with the wiring conductor 4, the content of the inorganic insulating powder is preferably set to 70% by volume or less. Therefore, it is preferable that the coating layer 2 made of the thermosetting resin contains 10 to 70% by volume of the inorganic insulating powder.
[0054]
In addition, the shape of the above-mentioned inorganic insulating powder has a substantially spherical shape, a needle shape, a flake shape, and the like. From the viewpoint of filling properties, the particle diameter is 0.1 to 2 μm, and the shape is substantially spherical. Preferably, it is smaller than the thickness of the coating layer 2.
[0055]
Such an insulating film 3 is, for example, a paste obtained by adding a thermosetting polyphenylene ether resin, a solvent, a plasticizer, and a dispersant to an inorganic insulating powder such as silicon oxide having a particle size of about 0.1 to 2 μm. Was subjected to a plasma treatment by X-ray photoelectron spectroscopy to analyze the chemical bonding state of carbon such that the ratio of the area attributable to the carboxyl group to the C1s peak area of the surface was 7 to 18%. After the covering layer 2 is formed on the upper and lower surfaces of the liquid crystal polymer layer 1 at 230 to 420 ° C. by using a conventionally known sheet molding method such as a doctor blade method, or by dipping the liquid crystal polymer layer 1 in the above paste. After forming the coating layer 2 on the surface of the liquid crystal polymer layer 1 by pulling up vertically, it is manufactured by heating and drying at a temperature of 60 to 100 ° C. for 5 minutes to 3 hours. It is.
[0056]
The thickness of the insulating film 3 is preferably from 10 to 300 μm from the viewpoint of ensuring insulation reliability, and from the viewpoint of ensuring high heat resistance, low moisture absorption, and high dimensional stability, a liquid crystal polymer. It is preferable that the thickness of the layer 1 be in the range of 40 to 90% of the thickness of the insulating film 3.
[0057]
Next, the multilayer wiring board 6 of the present invention is formed by laminating a plurality of insulating films 3 each having a wiring conductor 4 made of metal foil disposed on at least one of the upper and lower surfaces, and sandwiching the insulating film 3 therebetween. It is formed by electrically connecting the upper and lower wiring conductors 4 through the through conductors 5 formed in the insulating film 3.
[0058]
The wiring conductor 4 has a thickness of 2 to 30 μm and is made of a highly conductive metal foil such as copper or gold, and electrically connects the electronic component 7 mounted on the multilayer wiring board 6 to an external electric circuit (not shown). Has the function of connecting.
[0059]
Such a wiring conductor 4 has a coating layer as shown in an enlarged sectional view of a main part of FIG. 3 from the viewpoint of preventing a void from being generated around the wiring conductor 4 when a plurality of insulating films 3 are laminated. 2 is preferably buried so that at least the surface of the wiring conductor 4 and the surface of the coating layer 2 are flat. When the porosity of the coating layer 2 in the dry state is set to 3 to 40% by volume when the wiring conductor 4 is embedded in the coating layer 2, the resin swelling of the coating layer 2 around the wiring conductor 4 does not occur. Flattening can be performed, and air trapped between the wiring conductor 4 and the coating layer 2 can be easily discharged to prevent air bubbles from being trapped. If the porosity in the dry state exceeds 40% by volume, pores remain in the coating layer 2 after pressurizing and heating and curing the laminated insulating films 3, and the pores adsorb moisture in the air. Therefore, it is preferable that the porosity of the coating layer 2 in a dry state is in the range of 3 to 40% by volume.
[0060]
The porosity of the coating layer 2 in the dry state can be adjusted by appropriately adjusting drying conditions such as a drying temperature and a temperature rising rate when the coating layer 2 is applied on the surface of the liquid crystal polymer layer 1 and dried. It can be a desired value.
[0061]
Further, the cross-sectional shape in the width direction of the wiring conductor 4 provided on the insulating film 3 is a trapezoidal shape in which the length of the base on the side of the insulating film 3 is shorter than the length of the base opposite thereto, and It is preferable that the angle between the bottom side and the side side is 95 to 150 °. The cross-sectional shape in the width direction of the wiring conductor 4 disposed on the insulating film 3 is trapezoidal in which the length of the base on the insulating film 3 side is shorter than the length of the opposing base, and the cross-sectional shape of the base on the insulating film 3 side is reduced. When the wiring conductor 4 is embedded in the coating layer 2 by setting the angle between the side conductors to 95 to 150 °, the wiring conductor 4 is easily embedded in the coating layer 2 and the wiring conductor 4 after the wiring conductor 4 is embedded. The surface of the coating layer 2 can be made substantially flat, and the multilayer wiring board 6 can be obtained in which the air is not trapped during the lamination and the insulating property is not reduced. In addition, from the viewpoint of burying without entrapping air bubbles, it is preferable that the angle between the bottom side and the side of the insulating film 3 side is 95 ° or more, and from the viewpoint of miniaturizing the wiring conductor 2, it is 150 °. ° or less.
[0062]
The thickness x (μm) of the coating layer 2 located between the short base of the wiring conductor 4 and the liquid crystal polymer layer 1 between the layers of the insulating film 3 is determined by the distance between the upper and lower liquid crystal polymer layers 1. T (μm), assuming that the thickness of the wiring conductor 4 is t (μm), 3 μm ≦ 0.5T−t ≦ x ≦ 0.5T ≦ 35 μm (8 μm ≦ T ≦ 70 μm, 1 μm ≦ t ≦ 32 μm) It is preferable that
[0063]
When the distance between the liquid crystal polymer layers 1 is T (μm) and the thickness of the wiring conductor 4 is t (μm), the wiring conductor 4 is made of a thermosetting resin between the short bottom of the length and the liquid crystal polymer layer 1. By setting the thickness x (μm) of the coating layer 2 to 3 μm ≦ 0.5T−t ≦ x ≦ 0.5T ≦ 35 μm, the distance between the short bottom of the wiring conductor 4 and the liquid crystal polymer layer 1 and the wiring conductor 4 can be reduced to less than t (μm), and the warpage of the multilayer wiring board 6 caused by the large difference in the thickness of the coating layer 2 can be reduced. Can be prevented. Accordingly, the thickness x (μm) of the coating layer 2 located between the trapezoidal upper bottom surface of the wiring conductor 4 and the liquid crystal polymer layer 1 is defined as the distance between the liquid crystal polymer layers 1 as T (μm). Assuming that the thickness of No. 4 is t (μm), it is preferable that the range of 3 μm ≦ 0.5T−t ≦ x ≦ 0.5T ≦ 35 μm is satisfied.
[0064]
Such a wiring conductor 4 is formed by forming a metal foil made of, for example, copper on a precursor sheet to be the insulating film 3 by a subtractive method using a known photoresist, for example, by a transfer method or the like. It is formed. First, a metal foil transfer film is prepared by bonding a metal foil made of copper on a film serving as a support via an adhesive, and then the metal foil on the film is subjected to a subtractive method using a known photoresist. Is used to etch in a pattern. At this time, the side surface on the front surface side of the pattern is more likely to be etched because it has a longer contact time with the etchant than the side surface on the film side, and the cross-sectional shape in the width direction of the pattern can be trapezoidal. Note that the trapezoidal shape can be a trapezoidal shape in which the angle between the short base and the side is 95 to 150 ° by adjusting the concentration of the etching solution and the etching time. Then, the metal foil transfer film is laminated on a precursor sheet to be the insulating film 3 and hot-pressed at a temperature of 100 to 200 ° C. and a pressure of 0.5 to 10 MPa for 10 minutes to 1 hour. By peeling off the film and transferring the metal foil to the surface of the precursor sheet as the insulating film 3, the wiring conductor 4 having the trapezoidal upper bottom side embedded in the coating layer 2 can be formed.
[0065]
In addition, the thickness x (μm) of the coating layer 2 between the liquid crystal polymer layer 1 and the base having the shorter length of the wiring conductor 4 is adjusted to a desired range by adjusting the pressure of the hot press during the transfer of the metal foil. be able to. The surface of the wiring conductor 4 is preferably roughened by a process such as buffing, blasting, brushing, or chemical treatment in order to enhance the adhesion to the coating layer 2.
[0066]
In addition, a through conductor 5 having a diameter of about 20 to 150 μm is formed on the insulating film 3. The through conductor 5 has a function of electrically connecting the wiring conductors 4 positioned above and below the insulating film 3 with the insulating film 3 interposed therebetween. It is formed by embedding a conductive paste made of copper, silver, gold, solder, or the like in the through hole by a conventionally known screen printing method.
[0067]
According to the multilayer wiring board 6 of the present invention, since the insulating film 3 has the covering layer 2 made of a thermosetting resin on the upper and lower surfaces of the liquid crystal polymer layer 1, the liquid crystal polymer layer 1 has high heat resistance. It has high elastic modulus, high dimensional stability, and low hygroscopicity, making it possible to form the insulating film 3 without using a reinforcing material such as glass cloth. A uniform through hole can be formed.
[0068]
In such a multilayer wiring board 6, after forming the through conductor 5 at a desired position of the precursor sheet to be the insulating film 3 manufactured by the method described above, the patterned metal foil of copper, for example, is heated at a desired temperature. Transfer by hot pressing at 100 to 200 ° C for 10 minutes to 1 hour under the condition of pressure of 0.5 to 10 MPa, laminating these, finally temperature of 150 to 300 ° C and pressure of 0.5 to 10 MPa. It is manufactured by hot-pressing for 30 minutes to 24 hours under the conditions to completely cure.
[0069]
Thus, according to the multilayer wiring board 6 of the present invention, the connection pads 8 formed on a part of the wiring conductor 4 formed on the upper surface of the multilayer wiring board 6 having the above structure are connected to the connection pads 8 of the semiconductor elements or the like via the conductor bumps 8 such as solder. The parts 7 are electrically connected, and the conductor bumps 9 such as solder are formed on the connection pads 8 formed on a part of the wiring conductors 4 formed on the lower surface of the multilayer wiring board 6 so that the wiring density is high and the insulation is excellent. Hybrid integrated circuit.
[0070]
The multilayer wiring board 6 of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. Although the multilayer wiring board 6 was manufactured by laminating the insulating films 3 of the above, the multilayer wiring board 6 may be manufactured by laminating two, three, or five or more layers of the insulating film 3. In addition, a build-up layer or a solder resist layer 10 composed of an insulating layer containing one, two, or three or more organic resins as a main component, or a multilayer wiring board 6 on the upper and lower surfaces of the multilayer wiring board 6 of the present invention. After the electronic component 7 is mounted on the electronic component 6, the underfill material 11 may be formed between the multilayer wiring board 6 and the electronic component 6.
[0071]
【Example】
Next, the insulating film of the present invention and the multilayer wiring board using the same were evaluated using the following samples.
[0072]
(Example 1)
First, spherical fused silica having an average particle size of 0.6 μm is added to a thermosetting polyphenylene ether resin so that the content thereof becomes 40% by volume, and toluene is used as a solvent, and further, a solvent for accelerating the curing of the organic resin. The catalyst was added and mixed for 1 hour to prepare a varnish. Next, the surface of the liquid crystal polymer layer having a melting point of 290 ° C. and a coefficient of thermal expansion of −3 × 10 −6 / ° C. in a direction parallel to the upper and lower surfaces was applied with a voltage of 27 kV using a vacuum plasma device. The atmosphere is O 2 , CF 4, and helium (gas flow rates are 800, 400, and 65 cm 3 / min, respectively), plasma treatment is performed for 20 minutes per side × 2 times, and carbon chemical bonding is performed by X-ray photoelectron spectroscopy. In the analysis of the state, the ratio of the area due to the carboxyl group in the C1s peak area on the surface was made to have various values, and the varnish was applied to the upper surface of the liquid crystal polymer layer by a doctor blade method, and the thickness was reduced. A 30 μm thermosetting polyphenylene ether coating layer was formed. Then, a thermosetting polyphenylene ether coating layer was similarly formed on the lower surface of the liquid crystal polymer layer to produce an insulating film.
[0073]
Further, a through hole having a diameter of 50 μm was formed in the insulating film by a UV-YAG laser, and a conductive paste containing copper powder and an organic binder was embedded in the through hole by screen printing to form a through conductor.
[0074]
Next, a transfer support film having a thickness of 9 μm and having a copper foil formed in a circuit shape and an insulating film on which a through conductor is formed are aligned, and a pressure of 5 MPa is applied for 30 seconds by a vacuum laminating machine. After pressing, the transfer support film was peeled off, and the wiring conductor was embedded on the insulating film. Finally, four insulating films on which the wiring conductors were formed were superimposed, heated at 200 ° C. for 5 hours under a pressure of 3 MPa and completely cured to obtain a multilayer wiring board (Sample No. 1 to No. 1). 7).
[0075]
(Comparative example)
In the multilayer wiring board used for the comparative example, first, a circuit-like wiring conductor was formed by using a photoresist on a liquid crystal polymer layer having a melting point of 320 ° C. in which a copper foil was bonded by heat melting to the surface, and then UV A through-hole having a diameter of 50 μm is formed by a −YAG laser, and a conductive paste containing copper powder and an organic binder is further embedded in the through-hole by screen printing to form a through-conductor. A circuit board was manufactured by hot pressing at a temperature of 285 ° C. for 5 minutes under a pressure of 1 MPa with a liquid crystal polymer layer having a melting point of 280 ° C. interposed therebetween.
[0076]
As a test board for evaluating the insulation properties, a circular conductor pattern having a diameter of 4000 μm was formed in a multilayer wiring board so as to face each other with an insulating layer interposed therebetween. Under a condition of 130 ° C. and a relative humidity of 85%, a high-temperature bias test with an applied voltage of 5.5 V was performed, the insulation resistance between the circular conductor patterns was measured, and the change amount before and after the test was evaluated. The insulation reliability was determined to be good if the insulation resistance was 1.0 × 10 8 Ω or more, and if the insulation resistance was less than 1.0 × 10 8 Ω.
Table 1 shows the results of insulation reliability.
[0077]
[Table 1]
Figure 2004090238
[0078]
From Table 1, it can be seen that the multilayer wiring board having a carboxyl group ratio of less than 7% on the surface of the liquid crystal polymer layer (samples Nos. 1 and 2) and the multilayer wiring board having a carboxyl group ratio of more than 18% (samples Nos. 6 and 7) In (2), it was found that the insulation resistance after 168 hours of the high-temperature bias test was good, but the insulation resistance tended to deteriorate to 8.8 × 10 7 Ω or less after 240 hours. Further, in the multilayer wiring board of the comparative example, the insulation resistance was degraded to 4.0 × 10 6 Ω even after 168 hours of the high-temperature bias test, indicating that the insulation reliability was poor.
[0079]
On the other hand, in the example (sample Nos. 3 to 5) which is the multilayer wiring board of the present invention, even after 240 hours of the high temperature bias test, the resistance is 2.1 × 10 8 Ω or more, and the insulation reliability is particularly excellent. I understand.
[0080]
(Example 2)
The multilayer wiring board used for Example 2 was manufactured in the same manner as the multilayer wiring board for Example 1 except that the thickness of the liquid crystal polymer layer with respect to the insulating film was changed to various ratios. (Sample Nos. 8 to 13). In the analysis of the chemical bond state of carbon by X-ray photoelectron spectroscopy, the ratio of the area attributable to the carboxyl group to the C1s peak area on the surface was adjusted to 13%. The thickness of the liquid crystal polymer layer and the thickness of the coating layer were also adjusted so that the thickness of the insulating film was 200 μm.
[0081]
As a test board for conducting evaluation, a via chain is formed by upper and lower two-layered wiring conductors located through the insulating layer of the multilayer wiring board and through conductors for electrically connecting both of them, For the evaluation of conduction reliability, a high-temperature and high-humidity test was performed under the conditions of a temperature of 130 ° C. and a relative humidity of 85%, and the rate of change in conduction resistance compared to before the test was less than 15%, and 15% or more.
Table 2 shows the conduction reliability results.
[0082]
[Table 2]
Figure 2004090238
[0083]
From Table 2, it can be seen that the multilayer wiring boards (samples Nos. 8 and 9) in which the ratio of the thickness of the liquid crystal polymer layer to the insulating film is less than 40% and the multilayer wiring boards exceeding 90% (sample No. 13) have high temperatures. Even after 168 hours of the humidity test, the change rate of the conduction resistance was as small as 12% or less, but after 240 hours, the change rate of the conduction resistance was as large as 16% or more, and it was found that the conduction reliability tended to be slightly inferior.
[0084]
On the other hand, in the examples (samples Nos. 10 to 12) which are the multilayer wiring boards of the present invention, the change rate of the conduction resistance is as small as 7% or less after 168 hours in the high-temperature and high-humidity test, and further after 240 hours. However, the rate of change in conduction resistance was as small as 12% or less, and it was found that conduction reliability was particularly excellent.
[0085]
(Example 3)
The multilayer wiring board used for Example 3 was the same as the multilayer wiring board for Example 1 except that the surface was changed to a liquid crystal polymer layer having a contact angle with various triallylisocyanurates and a surface energy. (Sample Nos. 14 to 22).
[0086]
The adhesion was evaluated by immersing the multilayer wiring board in a solder bath at various temperatures for 20 seconds, repeating this five times, and then observing the appearance of the multilayer wiring board to evaluate the adhesion.
Table 3 shows the evaluation results of the adhesion.
[0087]
[Table 3]
Figure 2004090238
[0088]
Table 3 shows that the multilayer wiring board having a contact angle with triallyl isocyanurate on the surface of the liquid crystal polymer layer of less than 3 ° (sample No. 14) and the multilayer wiring board having a contact angle of more than 50 ° (sample No. 18) Although the appearance of the multilayer wiring board did not change when the immersion in the solder bath at a temperature of 260 ° C. was repeated five times, the liquid crystal polymer layer was repeatedly immersed in the solder bath at a temperature of 290 ° C. five times. And peeling between the coating layers, a swelling portion is generated in the multilayer wiring board, and the adhesiveness tends to be slightly inferior. On the other hand, in the multilayer wiring board having a contact angle of 3 to 50 ° (Sample Nos. 15 to 17), the appearance of the multilayer wiring board did not change even if the immersion in the solder bath at a temperature of 290 ° C. was repeated 5 times. , And excellent adhesion. However, even when the contact angle is 3 to 50 °, the multilayer wiring board having a surface energy of the liquid crystal polymer layer of less than 45 mJ / m 2 (Sample No. 19) and the multilayer wiring board of 80 mJ / m 2 or more (Sample No. 19). In 22), the appearance of the multilayer wiring board did not change even if the immersion in the solder bath at a temperature of 260 ° C. was repeated 5 times, but when the immersion in the solder bath at a temperature of 290 ° C. was repeated 5 times, The peeling between the liquid crystal polymer layer and the coating layer causes a swelling portion in the multilayer wiring board, and the adhesion tends to be slightly inferior. On the other hand, in a multilayer wiring board having a contact angle of 3 to 50 ° and a surface energy of 45 to 80 mJ / m 2 (sample Nos. 15 to 17, 20, and 21), the temperature of the solder bath at 290 ° C. Even when the immersion was repeated five times, there was no change in the appearance of the multilayer wiring board, and it was found that the adhesion was particularly excellent.
[0089]
【The invention's effect】
According to the insulating film of the present invention, the upper and lower surfaces of a liquid crystal polymer layer having a carboxyl group ratio of 7 to 18% at the C1s peak as measured by X-ray photoelectron spectroscopy are coated with a polyphenylene ether-based organic material. Since it is formed by forming a layer, it is located between electrically positively polarized hydrogen in the carboxyl group existing on the upper and lower surfaces of the liquid crystal polymer layer and the benzene ring in the polymer bond chain constituting the polyphenylene ether organic substance Since the electrically negatively polarized oxygen generates an electric attractive force, the coating layer made of a polyphenylene ether-based organic material spreads well on the upper and lower surfaces of the liquid crystal polymer layer, and a carboxyl group on the surface of the liquid crystal polymer layer is formed. The molecular layer and the coating layer are well bonded by the hydrogen bonding force, and as a result, they are separated from each other even in the high temperature bias test. It can be collected by the no insulating film. In addition, the polyphenylene ether-based organic molecules are not as rigid as liquid crystal polymer molecules, and do not exhibit regular orientation, so that the molecules are relatively mobile. As a result, even when the insulating films are multilayered, the insulating films are not bonded to each other. And the adhesion between the insulating films does not occur in the high-temperature bias test, thereby preventing defective insulation. Furthermore, even when the wiring conductor is provided on the surface of the insulating film, the polyphenylene ether-based organic molecules can enter the fine recesses on the surface of the wiring conductor and exert a sufficient anchor effect, and the adhesion between the insulating film and the wiring conductor can be improved. As a result, the wiring conductor does not peel off under high temperature and high humidity.
[0090]
Further, according to the insulating film of the present invention, when the thickness of the liquid crystal polymer layer is set to 40 to 90% of the thickness of the insulating film in the above configuration, thermal stress is applied to the insulating film during a temperature cycle test or the like. Even if the thermal expansion coefficient is small, the liquid crystal polymer layer having a small coefficient of thermal expansion can restrain the coating layer made of the polyphenylene ether-based organic material having a large coefficient of thermal expansion well, thereby reducing the thermal expansion of the entire insulating film. Even when a multilayer wiring board is manufactured using this insulating film, the coefficient of thermal expansion of the insulating film is close to the coefficient of thermal expansion of the wiring conductor, and the stress due to the difference in thermal expansion between the insulating film and the wiring conductor is reduced. As a result, an insulating film having excellent temperature cycle reliability and high-temperature high-humidity reliability can be obtained.
[0091]
Furthermore, according to the insulating film of the present invention, in the above configuration, when the liquid crystal polymer layer has a contact angle of 3 to 50 ° with triallyl isocyanurate and a surface energy of 45 to 80 mJ / m 2. The activated polymer layer on the surface of the liquid crystal polymer layer and the relatively easily movable molecular layer and the coating layer made of a polyphenylene ether-based organic substance are entangled and bonded well, and the liquid crystal polymer layer and the coating layer are more firmly adhered to each other. It can be an insulating film.
[0092]
According to the insulating film of the present invention, when the arithmetic mean roughness Ra of the upper and lower surfaces of the liquid crystal polymer layer is set to 0.05 to 5 μm in the above configuration, the upper and lower surfaces of the liquid crystal polymer layer are formed of a polyphenylene ether-based organic material. And an adhesive film having a good anchoring effect and a liquid crystal polymer layer and a coating layer can be more firmly adhered to each other.
[0093]
According to the insulating film of the present invention, when the coating layer contains 10 to 70% by volume of an inorganic insulating powder having a particle size of 0.1 to 2 μm in the above-described configuration, the wiring film is formed on the insulating film. Also, when a multilayer wiring board is manufactured by arranging a through conductor and multilayering an insulating film, the inorganic insulating powder suppresses the fluidity of the coating layer, and the through conductor in the layer direction is heated by a hot press when forming the multilayer. And the variation in the diameter of the through conductor and the variation in the thickness of the coating layer can be reduced, and an insulating film having more excellent dimensional stability can be obtained.
[0094]
Furthermore, according to the insulating film of the present invention, in the above configuration, when the shape of the inorganic insulating powder is substantially spherical, the filling property and the kneading property are improved when the inorganic insulating powder is filled into the polyphenylene ether-based organic substance. In addition, the inorganic insulating powder can be uniformly distributed in the coating layer made of the polyphenylene ether-based organic material, and as a result, an insulating film having a more uniform thermal expansion coefficient of the coating layer can be obtained.
[0095]
According to the insulating film of the present invention, in the above-described configuration, when the polyphenylene ether-based organic material is a thermosetting polyphenylene ether, the thermosetting polyphenylene ether has excellent heat resistance and excellent dimensional stability. An insulating film having excellent temperature cycle reliability and good positional accuracy when bonding a wiring conductor can be obtained.
[0096]
According to the multilayer wiring board of the present invention, since the multilayer wiring board is formed using the insulating film, a multilayer wiring board having excellent moisture resistance and conduction reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of an insulating film of the present invention.
FIG. 2 is a sectional view showing an example of an embodiment of a multilayer wiring board of the present invention.
FIG. 3 is an enlarged sectional view of a main part of the multilayer wiring board shown in FIG. 2;
[Explanation of symbols]
1 ... Liquid crystal polymer layer 2 ... Coating layer 3 ... Insulating film 4 ... Wiring conductor 5 ... ..... through conductor 6 ..... multilayer wiring board

Claims (8)

X線光電子分光分析法による炭素の化学結合状態の分析で、表面のC1sピーク面積におけるカルボキシル基に起因する面積の割合が7〜18%である液晶ポリマー層の上下面にポリフェニレンエーテル系有機物から成る被覆層を形成して成ることを特徴とする絶縁フィルム。X-ray photoelectron spectroscopy analysis of the chemical bond state of carbon revealed that the ratio of the area due to the carboxyl group in the C1s peak area of the surface was 7 to 18%, and the upper and lower surfaces of the liquid crystal polymer layer were composed of a polyphenylene ether organic material. An insulating film comprising a coating layer. 前記液晶ポリマー層は、その厚みが前記絶縁フィルムの厚みの40〜90%であることを特徴とする請求項1記載の絶縁フィルム。The insulating film according to claim 1, wherein the thickness of the liquid crystal polymer layer is 40 to 90% of the thickness of the insulating film. 前記液晶ポリマー層は、トリアリルイソシアヌレートとの接触角が3〜50°であって、かつ表面エネルギーが45〜80mJ/mであることを特徴とする請求項1または請求項2記載の絶縁フィルム。3. The insulation according to claim 1, wherein the liquid crystal polymer layer has a contact angle with triallyl isocyanurate of 3 to 50 ° and a surface energy of 45 to 80 mJ / m 2. 4. the film. 前記液晶ポリマー層は、前記上下面の算術平均粗さRaが0.05〜5μmであることを特徴とする請求項1乃至請求項3のいずれかに記載の絶縁フィルム。4. The insulating film according to claim 1, wherein the liquid crystal polymer layer has an arithmetic mean roughness Ra of the upper and lower surfaces of 0.05 to 5 μm. 5. 前記被覆層は、粒子径が0.1〜2μmである無機絶縁粉末を10〜70体積%含有していることを特徴とする請求項1乃至請求項4のいずれかに記載の絶縁フィルム。The insulating film according to claim 1, wherein the coating layer contains 10 to 70% by volume of an inorganic insulating powder having a particle size of 0.1 to 2 μm. 前記無機絶縁粉末は、その形状が略球状であることを特徴とする請求項5記載の絶縁フィルム。The insulating film according to claim 5, wherein the inorganic insulating powder has a substantially spherical shape. 前記ポリフェニレンエーテル系有機物が熱硬化性ポリフェニレンエーテルであることを特徴とする請求項1乃至請求項6のいずれかに記載の絶縁フィルム。The insulating film according to any one of claims 1 to 6, wherein the polyphenylene ether-based organic substance is a thermosetting polyphenylene ether. 上下面の少なくとも一方の面に金属箔から成る配線導体が配設された請求項1乃至請求項7のいずれかに記載の絶縁フィルムを複数積層して成るとともに、該絶縁フィルムを挟んで上下に位置する前記配線導体間を前記絶縁フィルムに形成された貫通導体を介して電気的に接続したことを特徴とする多層配線基板。A wiring conductor made of a metal foil is disposed on at least one of the upper and lower surfaces, wherein the insulating film according to any one of claims 1 to 7 is laminated, and vertically arranged with the insulating film interposed therebetween. A multilayer wiring board, wherein the located wiring conductors are electrically connected via a through conductor formed in the insulating film.
JP2002250795A 2002-08-29 2002-08-29 Insulating film and multi-layer wiring board using the film Pending JP2004090238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250795A JP2004090238A (en) 2002-08-29 2002-08-29 Insulating film and multi-layer wiring board using the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250795A JP2004090238A (en) 2002-08-29 2002-08-29 Insulating film and multi-layer wiring board using the film

Publications (1)

Publication Number Publication Date
JP2004090238A true JP2004090238A (en) 2004-03-25

Family

ID=32057532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250795A Pending JP2004090238A (en) 2002-08-29 2002-08-29 Insulating film and multi-layer wiring board using the film

Country Status (1)

Country Link
JP (1) JP2004090238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105291520A (en) * 2014-07-01 2016-02-03 中国科学院大连化学物理研究所 High-temperature-resistant coating structure and application thereof to rocket launching pad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105291520A (en) * 2014-07-01 2016-02-03 中国科学院大连化学物理研究所 High-temperature-resistant coating structure and application thereof to rocket launching pad

Similar Documents

Publication Publication Date Title
JP2005072328A (en) Multilayer wiring board
JP4462872B2 (en) Wiring board and manufacturing method thereof
JP4025695B2 (en) Insulating layer with protective film and method for producing wiring board
JP3872360B2 (en) Multilayer wiring board
JP2005019686A (en) Multilayer circuit board incorporating capacitor element
JP3694673B2 (en) Insulating film and multilayer wiring board using the same
JP2002261453A (en) Multilayer interconnection board
JP2004082554A (en) Insulating film and multilayer printed circuit board using the same
JP2006191145A (en) Multilayer wiring board
JP2004090238A (en) Insulating film and multi-layer wiring board using the film
JP2003069237A (en) Insulation film and multilayer interconnection board using the same
JP4959066B2 (en) Insulating film and multilayer wiring board using the same
JP3878832B2 (en) Multilayer wiring board
JP2004179011A (en) Insulating film and multilayer wiring board using this
JP2003347454A (en) Multilayer wiring board
JP2005050877A (en) Wiring board
JP2004195807A (en) Insulating film and multi-layer wiring board using the same
JP2003062942A (en) Insulating film and multilayered wiring board using the same
JP2004322482A (en) Insulating film and multi-layer wiring board using the film
JP2004055405A (en) Insulated film and multilevel wiring board using the same
JP2004063529A (en) Insulating film and multilayer circuit substrate using the same
JP2003159768A (en) Insulation film and multilayer wiring board using the same
JP2004235265A (en) Insulating film and multilayered wiring board using it
JP2004244568A (en) Insulating film and multilayer circuit board
JP2005072398A (en) Multilayer wiring board