JP2001244630A - Multilayer interconnection circuit board and manufacturing method therefor - Google Patents

Multilayer interconnection circuit board and manufacturing method therefor

Info

Publication number
JP2001244630A
JP2001244630A JP2000049624A JP2000049624A JP2001244630A JP 2001244630 A JP2001244630 A JP 2001244630A JP 2000049624 A JP2000049624 A JP 2000049624A JP 2000049624 A JP2000049624 A JP 2000049624A JP 2001244630 A JP2001244630 A JP 2001244630A
Authority
JP
Japan
Prior art keywords
circuit board
liquid crystal
crystal polymer
thermoplastic liquid
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000049624A
Other languages
Japanese (ja)
Inventor
Minoru Onodera
稔 小野寺
Yoshiki Tanaka
善喜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2000049624A priority Critical patent/JP2001244630A/en
Publication of JP2001244630A publication Critical patent/JP2001244630A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a multilayer interconnection circuit board having a good appearance, sufficient dimensional stability and high adhesive force at a low cost and the multilayer interconnection circuit board obtained thereby. SOLUTION: The method for manufacturing the multilayer interconnection circuit board using a thermoplastic liquid crystal polymer film as an insulator comprises the steps of superposing the film 1 having a high heat resistance and a metal sheet 2, press bonding them by a pair of heating rolls 3, then forming a wiring circuit on the sheet 2, manufacturing a wiring circuit board 5 having high heat resistance, then disposing the boards 5 each having the high heat resistance on both upper and lower surfaces of a thermoplastic liquid crystal polymer film 6 having lower heat resistance than that of the film 1, and press bonding them by a pair of heating rolls 7, 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学的異方性の溶
融相を形成し得る熱可塑性ポリマーからなるフィルム
(以下、これを熱可塑性液晶ポリマーフィルムと称する
ことがある)を使用した多層配線回路基板を連続して製
造する方法と、これにより得られる多層配線回路基板に
関するものである。本発明による多層配線回路基板は、
その電気絶縁材として用いる熱可塑性液晶ポリマーフィ
ルムに由来した優れた寸法安定性、低吸湿性、耐熱性、
耐薬品性および電気的性質を有しており、フレキシブル
配線板や半導体実装用回路基板の原材料として有用であ
る。
The present invention relates to a multilayer wiring using a film made of a thermoplastic polymer capable of forming an optically anisotropic molten phase (hereinafter, this may be referred to as a thermoplastic liquid crystal polymer film). The present invention relates to a method for continuously manufacturing a circuit board and a multilayer wiring circuit board obtained by the method. The multilayer wiring circuit board according to the present invention comprises:
Excellent dimensional stability, low moisture absorption, heat resistance, derived from the thermoplastic liquid crystal polymer film used as the electrical insulating material,
It has chemical resistance and electrical properties and is useful as a raw material for flexible wiring boards and circuit boards for semiconductor mounting.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、熱可塑性液晶ポリマーフィルムを用いてプリント配
線板等に使用される多層配線回路基板を製造する場合、
真空熱プレス装置を使用して、その2枚の熱平盤の間に
所定の大きさに裁断された熱可塑性液晶ポリマーフィル
ムと金属シートを重ねて置き、真空状態で加熱圧着させ
た(バッチ式真空熱プレス積層法)後、金属シートに配
線回路を形成して配線回路基板とし、これに異なる耐熱
性の熱可塑性液晶ポリマーフィルムを真空状態で加熱圧
着させて、多層配線回路基板を得ている。しかし、真空
熱プレス積層法は枚葉式であるため、材料を重ねて置く
時間、1回のプレス時間、プレス後の材料取り出し時間
などが長くなり、生産速度が遅くなってコストが高いと
いう問題がある。また、生産速度を高めるため、同時に
多数枚を製造できるように設備を改善すると、設備が大
型化するとともに、設備費が高くなり好ましくない。し
かも、プレスによる加熱圧着時に、金属シートと熱可塑
性液晶ポリマーフィルムの間や、配線回路基板と熱可塑
性液晶ポリマーフィルムの間にずれが発生したり、また
周囲に樹脂流れが発生したりして、外観不良を招くこと
がある。したがって、これらの問題を解決し、低コスト
で多層配線回路基板を提供できる製造方法が求められて
いる。
2. Description of the Related Art Conventionally, when manufacturing a multilayer wiring circuit board used for a printed wiring board or the like using a thermoplastic liquid crystal polymer film,
Using a vacuum heat press device, a thermoplastic liquid crystal polymer film cut into a predetermined size and a metal sheet are placed one on top of the other between two hot flat plates, and heated and pressed in a vacuum state (batch type). After the vacuum hot press laminating method), a wiring circuit is formed on the metal sheet to form a wiring circuit board, and a different heat-resistant thermoplastic liquid crystal polymer film is heated and pressed under vacuum to obtain a multilayer wiring circuit board. . However, since the vacuum hot press lamination method is a single-wafer method, the time for stacking the materials, the time for one press, and the time for removing the materials after pressing are increased, and the production speed is slow and the cost is high. There is. Further, if the equipment is improved so that a large number of sheets can be manufactured at the same time in order to increase the production speed, the equipment becomes large and the equipment cost increases, which is not preferable. Moreover, at the time of press-fitting by pressing, a gap occurs between the metal sheet and the thermoplastic liquid crystal polymer film, between the wiring circuit board and the thermoplastic liquid crystal polymer film, and a resin flow occurs around, It may cause poor appearance. Therefore, there is a need for a manufacturing method that can solve these problems and provide a multilayer wiring circuit board at low cost.

【0003】また、多層配線回路基板は、化学組成や耐
熱性(融点)の異なる材料からなるシートを用い、シー
トに配線パターン(回路)を形成した後、これらを組み
合わせて熱圧着して製造される。このとき、多層配線回
路基板の各シートの材料が同一融点であれば、熱圧着時
に両方の材料が融けてしまうので、一方側材料の融点を
他方側材料の融点よりも高くする必要がある(特開平8
−97565号公報参照)。また、融点の異なる材料は
通常は化学組成が互いに異なっており、互いの材料界面
において接着力が通常低くなる。したがって、融点の異
なる材料を用いると、多層配線回路基板の加工工程や製
品後の環境変化により剥離する問題がある。さらに、多
層配線回路基板を使用済み後に廃棄処理する時には、そ
れぞれの材料に分別しないと有効に再利用できないの
で、環境および資源管理上も好ましくないという問題が
ある。
Further, a multilayer wiring circuit board is manufactured by using a sheet made of a material having a different chemical composition and heat resistance (melting point), forming a wiring pattern (circuit) on the sheet, and combining these to form a thermocompression bonding. You. At this time, if the materials of the respective sheets of the multilayer wiring circuit board have the same melting point, both materials are melted at the time of thermocompression bonding, so that the melting point of one side material needs to be higher than the melting point of the other side material ( JP 8
-97565). In addition, materials having different melting points usually have different chemical compositions from each other, and generally have low adhesive strength at the interface between the materials. Therefore, when materials having different melting points are used, there is a problem that the layers are peeled off due to a processing step of the multilayer wiring circuit board or an environmental change after the product. Furthermore, when the multilayer wiring circuit board is disposed of after use, it cannot be effectively reused unless it is separated into respective materials, which is not preferable in terms of environment and resource management.

【0004】熱可塑性液晶ポリマーフィルムは、耐熱
性、耐薬品性などに優れた性質を有している。このよう
なフィルムを用いて多層配線回路基板とする場合、同一
材料であるので、廃棄処理する時の環境および資源管理
上の問題はクリアできる。しかし、前記フィルムを多層
配線回路基板に利用する場合も、上記場合と同様の不都
合が発生するので、これを解決する必要がある。つま
り、多層配線回路基板を製造するためには、熱圧着する
上で種々の異なる融点をもつ耐熱材料を用いる必要があ
り、さらに配線パターンが形成された基板の寸法が、低
い耐熱性の接着シートと熱圧着させる工程で著しく変化
してはならない。
[0004] Thermoplastic liquid crystal polymer films have excellent properties such as heat resistance and chemical resistance. When a multilayer wiring circuit board is formed using such a film, since the same material is used, problems in environment and resource management at the time of disposal can be solved. However, when the film is used for a multilayer wiring circuit board, the same inconvenience as the above case occurs, and it is necessary to solve this. In other words, in order to manufacture a multilayer wiring circuit board, it is necessary to use a heat-resistant material having various different melting points in thermocompression bonding, and furthermore, the dimensions of the board on which the wiring pattern is formed have a low heat-resistant adhesive sheet. Should not change significantly in the process of thermocompression bonding.

【0005】そこで、本発明の目的は、外観が良好で十
分な寸法安定性および高接着力を有する多層配線回路基
板を低コストで製造できる方法と、これより得られる多
層配線回路基板を提供することにある。
Accordingly, an object of the present invention is to provide a method for manufacturing a multilayer wiring circuit board having good appearance, sufficient dimensional stability and high adhesive strength at low cost, and a multilayer wiring circuit board obtained therefrom. It is in.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本件第1発明は、熱可塑性液晶ポリマーフィルムを
絶縁材とする多層配線回路基板の製造方法であって、高
い耐熱性を有する熱可塑性液晶ポリマーフィルムと金属
シートを重ねて一対の加熱ロールで圧着した後、金属シ
ートに配線回路を形成して高耐熱性の配線回路基板を作
製し、次いで、得られた高耐熱性の配線回路基板を、前
記高耐熱性の熱可塑性液晶ポリマーフィルムよりも低い
耐熱性を有する熱可塑性液晶ポリマーフィルムの上下面
に配置して一対の加熱ロールで圧着させる。
Means for Solving the Problems In order to achieve the above object, the first invention is a method for manufacturing a multilayer wiring circuit board using a thermoplastic liquid crystal polymer film as an insulating material. After the plastic liquid crystal polymer film and the metal sheet are stacked and pressed with a pair of heating rolls, a wiring circuit is formed on the metal sheet to produce a high heat-resistant wiring circuit board, and then the obtained high heat-resistant wiring circuit The substrate is placed on the upper and lower surfaces of a thermoplastic liquid crystal polymer film having heat resistance lower than that of the high heat-resistant thermoplastic liquid crystal polymer film, and is pressed by a pair of heating rolls.

【0007】また、本件第2発明は、以上の第1発明で
得られる多層配線回路基板の上下面に、さらに前記低耐
熱性の熱可塑性液晶ポリマーフィルムを重ねて一対の第
2加熱ロールで圧着させる。
In the second invention, the thermoplastic liquid crystal polymer film having low heat resistance is further laminated on the upper and lower surfaces of the multilayer wiring circuit board obtained in the first invention and pressure-bonded by a pair of second heating rolls. Let it.

【0008】以上の第1および第2発明によれば、周囲
での樹脂の流れがなく外観良好で、十分な寸法安定性お
よび高接着力を有する多層配線回路基板が低コストで得
られる。また、第2発明では、配線回路基板に形成され
た配線回路のすべてが熱可塑性液晶ポリマーフィルムで
覆われるので、寸法安定性などの面でより優れた多層配
線回路基板が得られる。
According to the first and second aspects of the present invention, it is possible to obtain a multilayer wiring circuit board having good appearance, sufficient dimensional stability and high adhesive strength, with no resin flow around, at low cost. Further, in the second aspect, since all of the wiring circuits formed on the wiring circuit board are covered with the thermoplastic liquid crystal polymer film, a multilayer wiring circuit board having more excellent dimensional stability and the like can be obtained.

【0009】以上の各発明においては、前記配線回路基
板の加熱ロールによる圧着前後の寸法変化率が0.1%
以下であり、かつ、前記配線回路基板と低耐熱性の熱可
塑性液晶ポリマーフィルムとの接着強度が0.5Kg/
cm以上であることが好ましい。これによれば、寸法安
定性がより優れ、しかも外観良好で接着力がより優れた
多層配線回路基板が得られる。このとき、前記寸法変化
率が0.1%を越える場合、また接着強度が0.5Kg
/cm未満の場合は、十分な寸法安定性が得られず、し
かも得られる多層配線回路基板に斑が発生したりして接
着力不足や外観不良を招く。
In each of the above inventions, the dimensional change rate of the printed circuit board before and after pressing by the heating roll is 0.1%.
And the adhesive strength between the printed circuit board and the low heat-resistant thermoplastic liquid crystal polymer film is 0.5 kg /
cm or more. According to this, a multilayer wiring circuit board having more excellent dimensional stability, better appearance, and more excellent adhesive strength can be obtained. At this time, when the dimensional change rate exceeds 0.1%, and when the adhesive strength is 0.5 kg
If it is less than / cm, sufficient dimensional stability cannot be obtained, and furthermore, the resulting multilayer wiring circuit board may have unevenness, resulting in insufficient adhesive strength and poor appearance.

【0010】本発明に使用される熱可塑性液晶ポリマー
フィルムの原料としては、特に限定されるものではない
が、その具体例として、以下に例示する(1)から
(4)に分類される化合物およびその誘導体から導かれ
る公知のサーモトロピック液晶ポリエステルおよびサー
モトロピック液晶ポリエステルアミドを挙げることがで
きる。但し、光学的に異方性の溶融相を形成し得るポリ
マーを得るためには、各々の原料化合物の組み合わせに
は適当な範囲があることは言うまでもない。
The raw material of the thermoplastic liquid crystal polymer film used in the present invention is not particularly limited, but specific examples thereof include compounds classified into the following (1) to (4) and Known thermotropic liquid crystal polyesters and thermotropic liquid crystal polyesteramides derived from the derivatives can be mentioned. However, in order to obtain a polymer capable of forming an optically anisotropic molten phase, it goes without saying that there is an appropriate range for each combination of the starting compounds.

【0011】(1)芳香族または脂肪族ジヒドロキシ化
合物(代表例は表1参照)
(1) Aromatic or aliphatic dihydroxy compounds (see Table 1 for typical examples)

【0012】[0012]

【表1】 [Table 1]

【0013】(2)芳香族または脂肪族ジカルボン酸
(代表例は表2参照)
(2) Aromatic or aliphatic dicarboxylic acids (see Table 2 for typical examples)

【0014】[0014]

【表2】 [Table 2]

【0015】(3)芳香族ヒドロキシカルボン酸(代表
例は表3参照)
(3) Aromatic hydroxycarboxylic acids (see Table 3 for typical examples)

【0016】[0016]

【表3】 [Table 3]

【0017】(4)芳香族ジアミン、芳香族ヒドロキシ
アミンまたは芳香族アミノカルボン酸(代表例は表4参
照)
(4) Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)

【0018】[0018]

【表4】 [Table 4]

【0019】これらの原料化合物から得られる熱可塑性
液晶ポリマーの代表例として表5に示す構造単位を有す
る共重合体(a)〜(e)を挙げることができる。
Representative examples of thermoplastic liquid crystal polymers obtained from these starting compounds include copolymers (a) to (e) having the structural units shown in Table 5.

【0020】[0020]

【表5】 [Table 5]

【0021】また、熱可塑性液晶ポリマーとしては、フ
ィルムの所望の耐熱性および加工性を得る目的において
は、約200〜約400℃の範囲内、とりわけ約250
〜約350℃の範囲内に融点を有するものが好ましい
が、フィルム製造の観点からは比較的低い融点を有する
ものが好ましい。
In order to obtain the desired heat resistance and processability of the film, the thermoplastic liquid crystal polymer is used in the range of about 200 to about 400 ° C., especially about 250 ° C.
Those having a melting point in the range of from about 350 ° C. to about 350 ° C. are preferred, but those having a relatively low melting point are preferred from the viewpoint of film production.

【0022】本発明に使用される熱可塑性液晶ポリマー
フィルムは、熱可塑性液晶ポリマーを押出成形して得ら
れる。任意の押出成形法が適用できるが、周知のTダイ
法、ラミネート体延伸法、インフレーション法などが工
業的に有利である。特にインフレーション法やラミネー
ト体延伸法では、フィルムの機械軸方向(以下、MD方
向と略す)だけでなく、これと直交する方向(以下、T
D方向と略す)にも応力が加えられるため、MD方向と
TD方向における機械的性質および熱的性質のバランス
のとれたフィルムが得られる。
The thermoplastic liquid crystal polymer film used in the present invention is obtained by extruding a thermoplastic liquid crystal polymer. Although any extrusion molding method can be applied, a well-known T-die method, a laminate stretching method, an inflation method and the like are industrially advantageous. In particular, in the inflation method or the laminate stretching method, not only the mechanical axis direction (hereinafter abbreviated as MD direction) of the film but also a direction orthogonal thereto (hereinafter T).
(Hereinafter abbreviated as D direction), a stress is also applied, so that a film having good balance of mechanical properties and thermal properties in the MD direction and the TD direction can be obtained.

【0023】本発明に使用される金属シートの材質とし
ては、電気的接続に使用されるような金属などから選択
され、例えば金、銀、銅、ニッケル、アルミニウムなど
が挙げられる。これらの中でも特に銅が好ましい。銅と
しては、圧延法や電気分解法によって製造されるいずれ
のものでも使用することができるが、電気分解法によっ
て製造される表面粗さの大きいものが好ましい。金属シ
ートには、銅箔に通常施される酸洗浄などの化学表面処
理などが本発明が奏する効果が損なわれない範囲内で施
されていてもよい。金属シートの厚さとしては、7〜1
00μmの範囲が好ましく、9〜75μmの範囲内がよ
り好ましい。
The material of the metal sheet used in the present invention is selected from metals and the like used for electrical connection, and examples thereof include gold, silver, copper, nickel, and aluminum. Of these, copper is particularly preferred. As the copper, any copper produced by a rolling method or an electrolytic method can be used, but copper having a large surface roughness produced by an electrolytic method is preferable. The metal sheet may be subjected to a chemical surface treatment such as acid cleaning usually applied to the copper foil, as long as the effect of the present invention is not impaired. The thickness of the metal sheet is 7 to 1
A range of 00 μm is preferable, and a range of 9 to 75 μm is more preferable.

【0024】[0024]

【発明の実施の形態】以下、本発明にかかる製造方法の
一実施形態を図面に基づいて説明する。図1は、本発明
で使用される配線回路基板を製造するときの一例を模式
的に示す図である。同図のように、高耐熱性の熱可塑性
液晶ポリマーフィルム1の上下面に金属シート2,2を
重ねるように供給しながら、上下一対の加熱ロール3,
3間を通過させることにより、前記フィルム1と各金属
シート2を圧着させて、高耐熱性の両面金属張積層板4
を作製する。そして、この積層板4に通常の回路パター
ン作製方法と同様な処理を施して配線回路基板5を作
る。つまり、積層板4の上下の各金属シート2上に感光
性樹脂を塗布し、あるいは感光性フィルムを圧着してか
ら、所定の回路パターン露光を行い、次いで、感光性樹
脂回路パターン以外の樹脂を除去した後にエッチング処
理を行うことにより配線回路基板5を得る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the manufacturing method according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically illustrating an example of manufacturing a printed circuit board used in the present invention. As shown in the figure, a pair of upper and lower heating rolls 3, while supplying metal sheets 2, 2 on the upper and lower surfaces of the thermoplastic liquid crystal polymer film 1 having high heat resistance, so as to overlap each other.
3, the film 1 and each metal sheet 2 are pressed to form a high heat-resistant double-sided metal-clad laminate 4.
Is prepared. Then, a printed circuit board 5 is manufactured by performing the same processing on the laminated board 4 as in a normal circuit pattern manufacturing method. That is, a photosensitive resin is applied on each of the upper and lower metal sheets 2 of the laminated plate 4 or a photosensitive film is pressed, and then a predetermined circuit pattern exposure is performed, and then a resin other than the photosensitive resin circuit pattern is removed. The printed circuit board 5 is obtained by performing an etching process after the removal.

【0025】図2は、本発明にかかる多層配線回路基板
の製造方法の一実施形態を模式的に示す図である。同図
では、4層配線回路基板、すなわち厚さ方向に4つの配
線回路が施されている回路基板の製造方法を示してい
る。同図において、上記で得られた高耐熱性の配線回路
基板5の2枚を、前記高耐熱性の熱可塑性液晶ポリマー
フィルム1よりも融点が低い、すなわち低耐熱性の熱可
塑性液晶ポリマーフィルム6の上下両面に供給しなが
ら、上下一対の第1加熱ロール7,7間を通過させる。
これにより、前記各配線回路基板5と低耐熱性の熱可塑
性液晶ポリマーフィルム6を圧着一体化させて、4層配
線回路基板Aを作製する(第1発明)。このとき、各加
熱ロール7が各配線回路基板5の外表面に形成された配
線回路を破損したりするのを防止するため、同図の実施
形態では、各加熱ロール7とこれらと対向配置されたロ
ール(図示せず)の間に離型シート8を掛回して、この
各離型シート8を前記各配線回路基板5の表面に接触さ
せながら前記各加熱ロール7による加圧を行っている。
FIG. 2 is a view schematically showing one embodiment of a method for manufacturing a multilayer wiring circuit board according to the present invention. This figure shows a method of manufacturing a four-layer wiring circuit board, that is, a circuit board provided with four wiring circuits in the thickness direction. In the same figure, two of the high heat-resistant wiring circuit boards 5 obtained above are melted at a lower melting point than the high heat-resistant thermoplastic liquid crystal polymer film 1, that is, the low heat-resistant thermoplastic liquid crystal polymer film 6. While being supplied to both the upper and lower surfaces of the first heating roll 7, and passing between the pair of upper and lower first heating rolls 7, 7.
In this way, each of the printed circuit boards 5 and the thermoplastic liquid crystal polymer film 6 having low heat resistance are pressure-bonded and integrated to produce a four-layer printed circuit board A (first invention). At this time, in order to prevent each heating roll 7 from damaging a wiring circuit formed on the outer surface of each wiring circuit board 5, in the embodiment of FIG. The release sheet 8 is wrapped between rolls (not shown), and each heating sheet 7 is pressed while each release sheet 8 is in contact with the surface of each printed circuit board 5. .

【0026】これに続いて、前記第1加熱ロール7の送
り方向前方側において、前記4層配線回路基板Aの上下
両面を挟むように2枚の低耐熱性の熱可塑性液晶ポリマ
ーフィルム9,9を供給して、これらを上下一対の第2
加熱ロール10,10間に通過させる。これにより、前
記4層配線回路基板Aと各低耐熱性の熱可塑性液晶ポリ
マーフィルム9を圧着一体化させて、4層配線回路基板
Aの両外表面が低耐熱性の熱可塑性液晶ポリマーフィル
ム9で覆われた4層配線回路基板Bを作製する(第2発
明)。このときにも、各加熱ロール10の周囲には離型
シート8が掛回される。
Subsequently, two low heat-resistant thermoplastic liquid crystal polymer films 9 and 9 are sandwiched between the upper and lower surfaces of the four-layer wiring circuit board A on the front side in the feeding direction of the first heating roll 7. And a pair of upper and lower second
It passes between the heating rolls 10 and 10. As a result, the four-layer printed circuit board A and each of the low heat-resistant thermoplastic liquid crystal polymer films 9 are pressed and integrated, and both outer surfaces of the four-layer printed circuit board A have low heat-resistant thermoplastic liquid crystal polymer films 9. To produce a four-layer wiring circuit board B covered with (2nd invention). Also at this time, the release sheet 8 is wound around each heating roll 10.

【0027】上記の第1および第2加熱ロール7,10
の表面温度は、低耐熱性の熱可塑性液晶ポリマーフィル
ム6,9の融点より50℃低い温度から融点より5℃高
い温度までの範囲内であることが好ましい。各加熱ロー
ル7,10としては、例えば誘電加熱方式や熱媒油循環
式の金属ロールが表面温度の均一性の観点から好まし
く、ロール表面に被覆層が設けられていても構わない。
表面の被覆層としてはゴムなどの弾性のある素材やポリ
イミドやテフロンなどの離型性のある樹脂素材が好適に
使用される。各加熱ロールの直径は35〜45cmの範
囲が好ましく、一対の各加熱ロールの直径は両者ほぼ同
じであるのがより好ましい。また、高耐熱性の熱可塑性
液晶ポリマーフィルム1と低耐熱性の熱可塑性液晶ポリ
マーフィルム6,9の融点差は、10℃以上が好まし
く、25℃以上がより好ましく、50℃以上がさらに好
ましい。
The first and second heating rolls 7, 10
Is preferably in the range from 50 ° C. lower than the melting point of the low heat-resistant thermoplastic liquid crystal polymer films 6 and 9 to 5 ° C. higher than the melting point. As each of the heating rolls 7 and 10, for example, a metal roll of a dielectric heating type or a heating medium oil circulation type is preferable from the viewpoint of surface temperature uniformity, and a coating layer may be provided on the roll surface.
An elastic material such as rubber or a releasable resin material such as polyimide or Teflon is preferably used as the surface coating layer. The diameter of each heating roll is preferably in the range of 35 to 45 cm, and the diameter of each pair of heating rolls is more preferably substantially the same. Further, the difference in melting point between the high heat-resistant thermoplastic liquid crystal polymer film 1 and the low heat-resistant thermoplastic liquid crystal polymer films 6 and 9 is preferably 10 ° C. or higher, more preferably 25 ° C. or higher, even more preferably 50 ° C. or higher.

【0028】以上の製造方法において、加熱ロール3,
7,10によりそれぞれの熱可塑性液晶ポリマーフィル
ム1,6,9および金属シート2に加えられる圧力は、
加圧部位で実質的に変形が生じるロールを使用する場合
には、面圧換算において20Kg/cm2 以上であるこ
とが好ましい。また加圧部位で実質的に変形が生じない
ロールを使用する場合は、線圧換算で5Kg/cm以上
が十分な接着力を発現させる上で好ましい。このように
すれば、斑の発生を抑制して十分な接着力を発現でき
る。圧力の上限は特に限定されるものではないが、低耐
熱性の熱可塑性液晶ポリマーフィルムの加圧時の流れや
配線回路基板からのはみ出しが無い状態で、配線回路基
板の接着力を十分に発現させるには、線圧換算で200
Kg/cmを越えないか、また面圧換算で100Kg/
cm2 を越えないことが望ましい。加熱ロールの表面温
度が低い温度領域にある場合には、上記圧力を越えても
低耐熱性の熱可塑性液晶ポリマーフィルムの流れや配線
回路基板からのはみ出しがなくなる。
In the above manufacturing method, the heating roll 3
The pressure applied to each of the thermoplastic liquid crystal polymer films 1, 6, 9 and the metal sheet 2 by 7, 10 is:
In the case of using a roll that substantially deforms at the pressurized portion, it is preferably at least 20 kg / cm 2 in terms of surface pressure. When a roll that does not substantially deform at the pressurized portion is used, it is preferably 5 kg / cm or more in terms of linear pressure in order to develop a sufficient adhesive force. By doing so, it is possible to suppress the occurrence of spots and express a sufficient adhesive force. Although the upper limit of the pressure is not particularly limited, the adhesive strength of the printed circuit board is sufficiently exhibited in a state where the flow of the low heat-resistant thermoplastic liquid crystal polymer film during pressurization and the protrusion from the printed circuit board are not caused. In order to make it
Kg / cm does not exceed 100 kg / cm
It is desirable not to exceed cm 2 . When the surface temperature of the heating roll is in a low temperature range, the flow of the low heat-resistant thermoplastic liquid crystal polymer film and the protrusion from the printed circuit board are prevented even if the pressure is exceeded.

【0029】ここで、加熱ロールの線圧とは、加熱ロー
ルに付与した力(圧着荷重)を加熱ロールの有効幅で除
した値である。また、加熱ロールの面圧とは、圧着時に
加熱ロールの変形により形成される加圧面の面積で圧着
荷重を除した値である。
Here, the linear pressure of the heating roll is a value obtained by dividing the force (pressure load) applied to the heating roll by the effective width of the heating roll. In addition, the surface pressure of the heating roll is a value obtained by dividing a pressing load by an area of a pressing surface formed by deformation of the heating roll at the time of pressing.

【0030】以上の本発明により、外観が良好で寸法安
定性および接着力に優れた多層配線回路基板を得るため
には、高耐熱性の配線回路基板と低耐熱性の熱可塑性液
晶ポリマーフィルムを、低耐熱性の熱可塑性液晶ポリマ
ーフィルムの融点よりも50℃低い温度から融点よりも
5℃低い温度までの範囲内で加熱ロール間を通過させて
圧着するとき、加熱ロールの回転速度を、その外周の線
速度に換算して30m/分以下とすることが好ましい。
特に、高耐熱性の配線回路基板への熱伝達を容易にする
ためには、20m/分以下とすることがより好ましい。
加熱ロールの回転速度の下限は特に限定されるものでは
ないが、回転速度が低すぎると生産効率の低下を招くの
で、工業的には0.1m/分より低くしないことが望ま
しい。
According to the present invention described above, in order to obtain a multilayer wiring circuit board having good appearance, excellent dimensional stability and excellent adhesive strength, it is necessary to use a high heat-resistant wiring circuit board and a low heat-resistant thermoplastic liquid crystal polymer film. When passing between the heating rolls in a range from a temperature lower than 50 ° C. lower than the melting point of the low heat-resistant thermoplastic liquid crystal polymer film to a temperature lower by 5 ° C. than the melting point, and press-bonding, the rotation speed of the heating roll It is preferable to be 30 m / min or less in terms of the linear velocity of the outer periphery.
In particular, in order to facilitate heat transfer to a high heat resistant printed circuit board, it is more preferable to set the speed to 20 m / min or less.
The lower limit of the rotation speed of the heating roll is not particularly limited, but if the rotation speed is too low, the production efficiency is reduced. Therefore, it is industrially desirable that the rotation speed is not lower than 0.1 m / min.

【0031】[0031]

【実施例】以下、本発明を実施例を挙げて具体的に説明
するが、本発明はそれにより何ら制限されるものではな
い。なお、以下の実施例および比較例において、熱可塑
性液晶ポリマーフィルムの融点、多層配線回路基板の加
熱ロール圧着前後での寸法変化率および接着強度などの
測定および外観の評価は次のようにして行った。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the following Examples and Comparative Examples, measurement and evaluation of appearance, such as the melting point of the thermoplastic liquid crystal polymer film, the dimensional change rate before and after the heating roll compression bonding of the multilayer wiring circuit board and the adhesive strength, were performed as follows. Was.

【0032】(1)融点 示差走査熱量計を用いて、フィルムの熱挙動を観察して
得た。すなわち、供試フィルムを20℃/分の速度で昇
温して完全に溶融させた後、溶融物を50℃/分の速度
で50℃まで急冷し、再び20℃/分の速度で昇温した
時に現れる吸熱ピークの位置を、フィルムの融点として
記録した。
(1) Melting point Obtained by observing the thermal behavior of the film using a differential scanning calorimeter. That is, after the temperature of the test film is raised at a rate of 20 ° C./min to completely melt it, the melt is rapidly cooled to 50 ° C. at a rate of 50 ° C./min, and the temperature is raised again at a rate of 20 ° C./min. The position of the endothermic peak that appeared when the recording was performed was recorded as the melting point of the film.

【0033】(2)接着強度 多層配線回路基板から1.0cm幅の剥離試験片を作成
し、その低耐熱性のフィルム層を両面接着テープにより
平板に固定し、JIS C 5016に準じて、180
°法により、高耐熱性の配線回路基板層を50mm/分
の速度で剥離したときの強度を測定した。
(2) Adhesive Strength A peel test specimen having a width of 1.0 cm was prepared from the multilayer wiring circuit board, and the low heat-resistant film layer was fixed to a flat plate with a double-sided adhesive tape.
The strength when the highly heat-resistant wiring circuit board layer was peeled off at a rate of 50 mm / min was measured by the ° method.

【0034】(3)加熱ロール圧着前後での寸法変化率 寸法安定性は、IPC−TM−650 2.2.4に準
じて長さ方向に3点、幅方向に3点の合計9点を測定
し、配線回路基板の加熱ロールによる圧着前の寸法を基
準とした時の変化率とした。
(3) Dimensional change rate before and after press-bonding with a heating roll The dimensional stability is 3 points in the length direction and 3 points in the width direction according to IPC-TM-650 2.2.4, for a total of 9 points. The measured value was defined as the rate of change based on the dimension before the pressure bonding of the printed circuit board by the heating roll.

【0035】(4)外観 多層配線回路基板を目視により観察し、長さ10mにお
いて空気噛み込み(フクレとして観察できる)や樹脂流
れなどが全く観察されないものを良好とし、長さ1m当
たり1個未満の空気噛み込みが観察されたり、1mm以
下の樹脂流れが観察されたものを可とし、長さ1m当た
り1個以上の空気噛み込みまたは未着部分が観察された
り、1mm以上の樹脂流れが観察されたものを不良とし
て評価した。
(4) Appearance The multilayer wiring circuit board is visually observed, and when a length of 10 m, no air entrapment (observable as blisters) or resin flow is observed at all, it is regarded as good. Air entrapment was observed or resin flow of 1 mm or less was observed. One or more air entrapment or unattached part per 1 m of length was observed, and resin flow of 1 mm or more was observed. Those that were evaluated were evaluated as defective.

【0036】(5)熱膨張係数 熱膨張係数は、熱機械分析装置を用い、配線回路基板お
よび多層配線回路基板に用いられる熱可塑性液晶ポリマ
ーフィルムの30℃から150℃までの間における熱膨
張量から算出した。
(5) Coefficient of thermal expansion The coefficient of thermal expansion is determined by measuring the amount of thermal expansion of a thermoplastic liquid crystal polymer film used for a printed circuit board and a multilayer printed circuit board between 30 ° C. and 150 ° C. using a thermomechanical analyzer. Calculated from

【0037】参考例1 p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフト
エ酸の共重合物で、融点が280℃である熱可塑性液晶
ポリマーを吐出量20Kg/時で溶融押出し、横延伸倍
率4.77倍、縦延伸倍率2.09倍の条件でインフレ
ーション製膜した。これにより、平均膜厚50μm、膜
厚分布±7%の小さい膜厚分布の熱可塑性液晶ポリマー
フィルムを得た。次いで、耐熱性を向上させる目的で、
窒素雰囲気中の熱風乾燥機中で熱処理を行った。この熱
処理条件は、265℃で1時間、次いで275℃で6時
間処理した。その結果、融点330℃の高耐熱性の熱可
塑性液晶ポリマーフィルムが得られた。また、図1に示
した方法に基づき、この高耐熱性の熱可塑性液晶ポリマ
ーフィルムを2枚の金属シート(18μm厚みの電解銅
箔)の間に挟んで、表面温度が320℃とされた一対の
加熱ロール間で圧着一体化させて高耐熱性の両面金属張
積層板を得た。次いで、この金属張積層板の各金属シー
トに、加熱ロールによる圧着前後における寸法変化率を
評価するための回路パターンを形成した。得られた金属
張積層板から回路パターンを化学的に除去し、熱膨張係
数を測定したところ、+5×10-6cm/cm/℃であ
った。
REFERENCE EXAMPLE 1 A thermoplastic liquid crystal polymer having a melting point of 280 ° C., which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, is melt-extruded at a discharge rate of 20 kg / hour. An inflation film was formed under the conditions of 0.77 times and a longitudinal stretching ratio of 2.09 times. As a result, a thermoplastic liquid crystal polymer film having an average film thickness of 50 μm and a small film thickness distribution of ± 7% was obtained. Then, for the purpose of improving heat resistance,
The heat treatment was performed in a hot air drier in a nitrogen atmosphere. The heat treatment was performed at 265 ° C. for 1 hour and then at 275 ° C. for 6 hours. As a result, a high heat-resistant thermoplastic liquid crystal polymer film having a melting point of 330 ° C. was obtained. Further, based on the method shown in FIG. 1, this highly heat-resistant thermoplastic liquid crystal polymer film was sandwiched between two metal sheets (electrolytic copper foil having a thickness of 18 μm) to form a pair having a surface temperature of 320 ° C. To obtain a high heat-resistant double-sided metal-clad laminate. Next, a circuit pattern was formed on each metal sheet of the metal-clad laminate to evaluate a dimensional change rate before and after pressure bonding by a heating roll. The circuit pattern was chemically removed from the obtained metal-clad laminate, and the coefficient of thermal expansion was measured to be + 5 × 10 −6 cm / cm / ° C.

【0038】参考例2 p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフト
エ酸の共重合物で、融点が280℃である熱可塑性液晶
ポリマーを吐出量20Kg/時で溶融押出し、横延伸倍
率3.18倍、縦延伸倍率2.09倍の条件でインフレ
ーション製膜した。これにより、平均膜厚75μm、膜
厚分布±7%の小さい膜厚分布の低耐熱性の熱可塑性液
晶ポリマーフィルムを得た。得られたフィルムの熱膨張
係数は、−5×10-6cm/cm/℃であった。
REFERENCE EXAMPLE 2 A thermoplastic liquid crystal polymer having a melting point of 280 ° C., which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, is melt-extruded at a discharge rate of 20 kg / hour, and a transverse stretching ratio of 3 is obtained. An inflation film was formed under the conditions of .18 times and a longitudinal stretching ratio of 2.09 times. Thus, a low heat-resistant thermoplastic liquid crystal polymer film having an average film thickness of 75 μm and a small film thickness distribution of ± 7% was obtained. The coefficient of thermal expansion of the obtained film was −5 × 10 −6 cm / cm / ° C.

【0039】実施例1 図2に示した方法に基づき、参考例1で得られた高耐熱
性の配線回路基板の2枚を、参考例2で得られた低耐熱
性の熱可塑性液晶ポリマーフィルムの上下面に供給しな
がら、上下一対の第1加熱ロール間を通過させることに
より、前記各配線回路基板と低耐熱性の熱可塑性液晶ポ
リマーフィルムとを圧着一体化させた。次いで、これの
上下面に低耐熱性の熱可塑性液晶ポリマーフィルムを供
給して、一対の第2加熱ロール間を通過させることによ
り、上下面に低耐熱性の熱可塑性液晶ポリマーフィルム
が圧着された4層配線回路基板を作製した。このとき、
各加熱ロールに掛回する離型シートとしてはガラス織布
含浸テフロンシートを用い、また各加熱ロールの表面温
度はそれぞれ300℃とし、これら加熱ロールの面圧は
20Kg/cm2 とした。ガラス織布含浸テフロンシー
トを連続的に除去して得られた4層配線回路基板の外観
は良好であり、接着強度は幅方向の斑がなく0.8Kg
/cm以上あり、十分であった。加熱ロールによる圧着
前後の寸法変化率は、場所による斑が全くなく、すべて
の場所で0.1%以下であり良好であった。
Example 1 Based on the method shown in FIG. 2, two of the high heat-resistant printed circuit boards obtained in Reference Example 1 were replaced with the low heat-resistant thermoplastic liquid crystal polymer film obtained in Reference Example 2. Each of the printed circuit boards and the low heat-resistant thermoplastic liquid crystal polymer film were pressure-bonded and integrated by being passed between a pair of upper and lower first heating rolls while being supplied to the upper and lower surfaces of the substrate. Next, a low heat-resistant thermoplastic liquid crystal polymer film was supplied to the upper and lower surfaces, and the low heat-resistant thermoplastic liquid crystal polymer film was pressure-bonded to the upper and lower surfaces by passing between a pair of second heating rolls. A four-layer wiring circuit board was manufactured. At this time,
A woven glass impregnated Teflon sheet was used as a release sheet wound around each heating roll. The surface temperature of each heating roll was 300 ° C., and the surface pressure of these heating rolls was 20 kg / cm 2 . The appearance of the four-layer wiring circuit board obtained by continuously removing the Teflon sheet impregnated with the glass woven fabric is good, and the adhesive strength is 0.8 kg without unevenness in the width direction.
/ Cm or more, which was sufficient. The dimensional change rate before and after pressure bonding by the heating roll was good, with no spot-like unevenness at all and 0.1% or less at all places.

【0040】比較例1 参考例1で得られた高耐熱性の配線回路基板の2枚を、
参考例2で得られた低耐熱性の熱可塑性液晶ポリマーフ
ィルムの上下面に重ね、さらにその上下にガラス織布含
浸テフロンシートを配置して、真空熱プレス機(平板熱
プレス機)の260℃に加熱された熱盤上に置き、真空
状態で15分保持した後に、300℃にまで昇温させ、
20Kg/cm2 の圧力で10分間保持した。100℃
まで冷却してから圧力を解除し、大気圧にして4層配線
回路基板を取り出した。得られた4層配線回路基板は、
周囲での樹脂流れが目立ち、外観不良であった。接着強
度は、4層配線回路基板の中央付近が0.8Kg/cm
であるのに対し、周囲では0.5Kg/cmと低く、し
かも斑があった。熱圧着前後での寸法変化率は、中央付
近が0.1%であるのに対し、周囲では0.3%と大き
く、しかも斑があった。これらから外観不良と判定し
た。
Comparative Example 1 Two of the high heat-resistant wiring circuit boards obtained in Reference Example 1 were used.
The Teflon sheet impregnated with a glass woven fabric was placed on the upper and lower surfaces of the thermoplastic liquid crystal polymer film of low heat resistance obtained in Reference Example 2, and the Teflon sheet impregnated with glass woven fabric was placed above and below the film. Placed on a heated platen and kept in a vacuum state for 15 minutes, then heated to 300 ° C.
The pressure was kept at 20 kg / cm 2 for 10 minutes. 100 ℃
After cooling, the pressure was released to atmospheric pressure, and the four-layer wiring circuit board was taken out. The obtained four-layer wiring circuit board is
The resin flow around was noticeable, and the appearance was poor. The adhesive strength is 0.8 kg / cm near the center of the four-layer wiring circuit board.
On the other hand, the surrounding area was as low as 0.5 kg / cm, and there were spots. The dimensional change before and after thermocompression bonding was 0.1% in the vicinity of the center and 0.3% in the periphery, and was uneven. From these, the appearance was determined to be poor.

【0041】[0041]

【発明の効果】以上のように本発明によれば、外観が良
好で、十分な寸法安定性および高接着力を有する多層配
線回路基板を低コストで製造できる。
As described above, according to the present invention, a multilayer wiring circuit board having good appearance, sufficient dimensional stability and high adhesive strength can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる高耐熱性の金属張積層板の製造
方法の一例を模式的に示す図である。
FIG. 1 is a view schematically showing an example of a method for producing a metal clad laminate having high heat resistance used in the present invention.

【図2】本発明の多層配線回路基板の製造方法の一例を
模式的に示す図である。
FIG. 2 is a diagram schematically illustrating an example of a method for manufacturing a multilayer wiring circuit board according to the present invention.

【符号の説明】[Explanation of symbols]

1…高耐熱性の熱可塑性液晶ポリマーフィルム、2…金
属シート、3…加熱ロール、4…両面金属張積層板、5
…配線回路基板、6,9…低耐熱性の熱可塑性液晶ポリ
マーフィルム、7…第1加熱ロール、10…第2加熱ロ
ール、A,B…多層配線回路基板
DESCRIPTION OF SYMBOLS 1 ... High heat-resistant thermoplastic liquid crystal polymer film, 2 ... Metal sheet, 3 ... Heating roll, 4 ... Double-sided metal-clad laminate, 5
... wiring circuit board, 6, 9 ... low heat-resistant thermoplastic liquid crystal polymer film, 7 ... first heating roll, 10 ... second heating roll, A, B ... multilayer wiring circuit board

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光学的異方性の溶融相を形成し得る熱可
塑性ポリマーからなるフィルム(以下、これを熱可塑性
液晶ポリマーフィルムと称する)を絶縁材とする多層配
線回路基板の製造方法であって、 高い耐熱性を有する熱可塑性液晶ポリマーフィルムと金
属シートを重ねて一対の加熱ロールで圧着した後、 金属シートに配線回路を形成して、高耐熱性の配線回路
基板を作製し、 次いで、得られた高耐熱性の配線回路基板を、前記高耐
熱性の熱可塑性液晶ポリマーフィルムよりも低い耐熱性
を有する熱可塑性液晶ポリマーフィルムの上下面に配置
して一対の加熱ロールで圧着させることを特徴とする多
層配線回路基板の製造方法。
1. A method for manufacturing a multilayer wiring circuit board using a film made of a thermoplastic polymer capable of forming an optically anisotropic molten phase (hereinafter referred to as a thermoplastic liquid crystal polymer film) as an insulating material. After laminating a thermoplastic liquid crystal polymer film having high heat resistance and a metal sheet and pressing them with a pair of heating rolls, a wiring circuit is formed on the metal sheet to produce a high heat resistant wiring circuit board, The obtained high heat-resistant printed circuit board is disposed on the upper and lower surfaces of a thermoplastic liquid crystal polymer film having a lower heat resistance than the high heat-resistant thermoplastic liquid crystal polymer film, and is pressed by a pair of heating rolls. A method for manufacturing a multilayer wiring circuit board.
【請求項2】 熱可塑性液晶ポリマーフィルムを絶縁材
とする多層配線回路基板の製造方法であって、 高い耐熱性を有する熱可塑性液晶ポリマーフィルムと金
属シートを重ねて一対の加熱ロールで圧着した後、 前記金属シートに配線回路を形成して、高耐熱性の配線
回路基板を作製し、 次いで、得られた高耐熱性の配線回路基板を前記高耐熱
性の熱可塑性液晶ポリマーフィルムよりも低い耐熱性を
有する熱可塑性液晶ポリマーフィルムの上下面に配置し
て一対の第1加熱ロールで圧着させ、 さらに、得られた多層配線回路基板の上下面に前記低耐
熱性の熱可塑性液晶ポリマーフィルムを重ねて一対の第
2加熱ロールで圧着させることを特徴とする多層配線回
路基板の製造方法。
2. A method for producing a multilayer wiring circuit board using a thermoplastic liquid crystal polymer film as an insulating material, comprising: laminating a thermoplastic liquid crystal polymer film having high heat resistance and a metal sheet and pressing them by a pair of heating rolls. Forming a wiring circuit on the metal sheet to produce a high heat-resistant wiring circuit board, and then heating the obtained high heat-resistant wiring circuit board with a lower heat resistance than the high heat-resistant thermoplastic liquid crystal polymer film. Placed on the upper and lower surfaces of a thermoplastic liquid crystal polymer film having heat resistance and pressed by a pair of first heating rolls, and furthermore, the low heat-resistant thermoplastic liquid crystal polymer film is overlaid on the upper and lower surfaces of the obtained multilayer wiring circuit board. A plurality of second heating rolls for pressure bonding.
【請求項3】 請求項1または2において、前記配線回
路基板の加熱ロールによる圧着前後の寸法変化率が0.
1%以下であり、かつ、前記配線回路基板と低耐熱性の
熱可塑性液晶ポリマーフィルムとの接着強度が0.5K
g/cm以上である多層配線回路基板の製造方法。
3. The method according to claim 1, wherein a dimensional change rate of the printed circuit board before and after pressure bonding by a heating roll is 0.1.
1% or less, and the adhesive strength between the printed circuit board and the low heat-resistant thermoplastic liquid crystal polymer film is 0.5K.
g / cm or more.
【請求項4】 請求項1または2記載の製造方法により
得られる多層配線回路基板。
4. A multilayer wiring circuit board obtained by the method according to claim 1.
JP2000049624A 2000-02-25 2000-02-25 Multilayer interconnection circuit board and manufacturing method therefor Pending JP2001244630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049624A JP2001244630A (en) 2000-02-25 2000-02-25 Multilayer interconnection circuit board and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049624A JP2001244630A (en) 2000-02-25 2000-02-25 Multilayer interconnection circuit board and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001244630A true JP2001244630A (en) 2001-09-07

Family

ID=18571532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049624A Pending JP2001244630A (en) 2000-02-25 2000-02-25 Multilayer interconnection circuit board and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001244630A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538211B2 (en) 2000-08-15 2003-03-25 World Properties, Inc. Multi-layer circuits and methods of manufacture thereof
US6602583B2 (en) 2000-12-14 2003-08-05 World Properties, Inc. Liquid crystalline polymer bond plies and circuits formed therefrom
US6761834B2 (en) 2000-09-20 2004-07-13 World Properties, Inc. Electrostatic deposition of high temperature, high performance liquid crystalline polymers
JP2004273744A (en) * 2003-03-07 2004-09-30 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin material and manufacturing method of printed circuit board
US6994896B2 (en) 2002-09-16 2006-02-07 World Properties, Inc. Liquid crystalline polymer composites, method of manufacture thereof, and articles formed therefrom
WO2007013330A1 (en) * 2005-07-27 2007-02-01 Kuraray Co., Ltd. Process for producing wiring board covered with thermoplastic liquid crystal polymer film
US7180172B2 (en) 2003-06-19 2007-02-20 World Properties, Inc. Circuits, multi-layer circuits, and methods of manufacture thereof
WO2007097366A1 (en) * 2006-02-21 2007-08-30 Nippon Steel Chemical Co., Ltd. Multilayer printed wiring board and method for manufacturing same
JP2007258697A (en) * 2006-02-27 2007-10-04 Nippon Steel Chem Co Ltd Method of manufacturing multilayer printed wiring board
JP2008205413A (en) * 2007-02-23 2008-09-04 Kuraray Co Ltd Method of manufacturing printed wiring board with cover lay
JP2009049197A (en) * 2007-08-20 2009-03-05 Denki Kagaku Kogyo Kk Method of manufacturing substrate for light emitting element package, and light emitting element package
JP2009071021A (en) * 2007-09-13 2009-04-02 Kuraray Co Ltd Method for manufacturing multilayer wiring circuit board
US7524388B2 (en) 2005-05-10 2009-04-28 World Properties, Inc. Composites, method of manufacture thereof, and articles formed therefrom
JP2009105153A (en) * 2007-10-22 2009-05-14 Denki Kagaku Kogyo Kk Manufacturing method of substrate for light emitting element package, and light emitting element package
US7549220B2 (en) 2003-12-17 2009-06-23 World Properties, Inc. Method for making a multilayer circuit
JP2009283667A (en) * 2008-05-22 2009-12-03 Kuraray Co Ltd Method for manufacturing conductive circuit board
JP2019161206A (en) * 2018-03-08 2019-09-19 株式会社クラレ Manufacturing method of thermoplastic liquid crystal polymer multilayer structure
WO2021193385A1 (en) * 2020-03-26 2021-09-30 株式会社クラレ Method for producing multilayer circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542603A (en) * 1991-04-05 1993-02-23 Kuraray Co Ltd Manufacture of laminate
JPH05152755A (en) * 1991-11-26 1993-06-18 Nitto Denko Corp Multilayered board and its manufacture
JPH0897565A (en) * 1994-09-16 1996-04-12 Hoechst Celanese Corp Monolithic lcp polymer microelectronic wiring module
JPH11309803A (en) * 1998-04-27 1999-11-09 Kuraray Co Ltd Multi-layered laminated sheet, its manufacture, and multilayered mounting circuit board
JPH11348178A (en) * 1998-04-09 1999-12-21 Kuraray Co Ltd Coating method using polymer film and manufacture of metal foil laminated body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542603A (en) * 1991-04-05 1993-02-23 Kuraray Co Ltd Manufacture of laminate
JPH05152755A (en) * 1991-11-26 1993-06-18 Nitto Denko Corp Multilayered board and its manufacture
JPH0897565A (en) * 1994-09-16 1996-04-12 Hoechst Celanese Corp Monolithic lcp polymer microelectronic wiring module
JPH11348178A (en) * 1998-04-09 1999-12-21 Kuraray Co Ltd Coating method using polymer film and manufacture of metal foil laminated body
JPH11309803A (en) * 1998-04-27 1999-11-09 Kuraray Co Ltd Multi-layered laminated sheet, its manufacture, and multilayered mounting circuit board

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538211B2 (en) 2000-08-15 2003-03-25 World Properties, Inc. Multi-layer circuits and methods of manufacture thereof
US6761834B2 (en) 2000-09-20 2004-07-13 World Properties, Inc. Electrostatic deposition of high temperature, high performance liquid crystalline polymers
US6602583B2 (en) 2000-12-14 2003-08-05 World Properties, Inc. Liquid crystalline polymer bond plies and circuits formed therefrom
US6994896B2 (en) 2002-09-16 2006-02-07 World Properties, Inc. Liquid crystalline polymer composites, method of manufacture thereof, and articles formed therefrom
JP2004273744A (en) * 2003-03-07 2004-09-30 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin material and manufacturing method of printed circuit board
US7180172B2 (en) 2003-06-19 2007-02-20 World Properties, Inc. Circuits, multi-layer circuits, and methods of manufacture thereof
US7549220B2 (en) 2003-12-17 2009-06-23 World Properties, Inc. Method for making a multilayer circuit
US7524388B2 (en) 2005-05-10 2009-04-28 World Properties, Inc. Composites, method of manufacture thereof, and articles formed therefrom
JP4866853B2 (en) * 2005-07-27 2012-02-01 株式会社クラレ Method for producing wiring board coated with thermoplastic liquid crystal polymer film
WO2007013330A1 (en) * 2005-07-27 2007-02-01 Kuraray Co., Ltd. Process for producing wiring board covered with thermoplastic liquid crystal polymer film
US8771458B2 (en) 2005-07-27 2014-07-08 Kuraray Co., Ltd. Method of making wiring boards covered by thermotropic liquid crystal polymer film
WO2007097366A1 (en) * 2006-02-21 2007-08-30 Nippon Steel Chemical Co., Ltd. Multilayer printed wiring board and method for manufacturing same
KR101262135B1 (en) 2006-02-21 2013-05-14 신닛테츠 수미킨 가가쿠 가부시키가이샤 Multilayer printed wiring board and method for manufacturing same
JP2007258697A (en) * 2006-02-27 2007-10-04 Nippon Steel Chem Co Ltd Method of manufacturing multilayer printed wiring board
JP2008205413A (en) * 2007-02-23 2008-09-04 Kuraray Co Ltd Method of manufacturing printed wiring board with cover lay
JP2009049197A (en) * 2007-08-20 2009-03-05 Denki Kagaku Kogyo Kk Method of manufacturing substrate for light emitting element package, and light emitting element package
JP2009071021A (en) * 2007-09-13 2009-04-02 Kuraray Co Ltd Method for manufacturing multilayer wiring circuit board
JP2009105153A (en) * 2007-10-22 2009-05-14 Denki Kagaku Kogyo Kk Manufacturing method of substrate for light emitting element package, and light emitting element package
JP2009283667A (en) * 2008-05-22 2009-12-03 Kuraray Co Ltd Method for manufacturing conductive circuit board
JP2019161206A (en) * 2018-03-08 2019-09-19 株式会社クラレ Manufacturing method of thermoplastic liquid crystal polymer multilayer structure
JP7201371B2 (en) 2018-03-08 2023-01-10 株式会社クラレ Manufacturing method of thermoplastic liquid crystal polymer multilayer structure
WO2021193385A1 (en) * 2020-03-26 2021-09-30 株式会社クラレ Method for producing multilayer circuit board

Similar Documents

Publication Publication Date Title
KR100349952B1 (en) Liquid crystal polymer film, laminate, method of making them and multi-layered parts-mounted circuit board
JP2001244630A (en) Multilayer interconnection circuit board and manufacturing method therefor
JP4866853B2 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
JP4216433B2 (en) Method for producing metal-clad laminate for circuit board
JP4162321B2 (en) Method for producing metal foil laminate
WO2006051693A1 (en) Metal-clad laminate and method for production thereof
JP6031352B2 (en) Method for producing double-sided metal-clad laminate
JP5254901B2 (en) LIQUID CRYSTAL POLYMER FILM AND LAMINATE, PROCESS FOR PRODUCING THEM, AND MULTILAYER MOUNTED CIRCUIT BOARD
JP2016107507A (en) Metal-clad laminated sheet and method for producing the same
JP5234647B2 (en) Composite adhesive film, multilayer circuit board using the same, and manufacturing method thereof
JP4255580B2 (en) Method for producing single-sided metal-clad laminate
EP1238800B1 (en) Method for producing metal laminate
JP4004139B2 (en) MULTILAYER LAMINATE, MANUFACTURING METHOD THEREOF, AND MULTILAYER MOUNTED CIRCUIT BOARD
JP2004358677A (en) Method for manufacturing laminate
JP2005105165A (en) Thermoplastic liquid crystalline polymer film laminatable at low temperature
JP2001239585A (en) Metal-clad laminate and manufacturing method therefor
JP4389627B2 (en) Method for producing flexible metal laminate
JP2002047360A (en) Polyphenylene sulfide film and method of preparing the same and circuit board produced from the same
JPH0453739A (en) Laminated sheet
JP4184529B2 (en) Thermoplastic liquid crystal polymer film and method for modifying the same
JP4498498B2 (en) Method for producing double-sided metal-clad laminate
JP2002052614A (en) Method for manufacturing laminated sheet
KR20210043710A (en) Method for producing a metal clad laminate
CN114007832B (en) Method for producing metal-clad laminate
JP2009071021A (en) Method for manufacturing multilayer wiring circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421