JPH0453739A - Laminated sheet - Google Patents

Laminated sheet

Info

Publication number
JPH0453739A
JPH0453739A JP16488990A JP16488990A JPH0453739A JP H0453739 A JPH0453739 A JP H0453739A JP 16488990 A JP16488990 A JP 16488990A JP 16488990 A JP16488990 A JP 16488990A JP H0453739 A JPH0453739 A JP H0453739A
Authority
JP
Japan
Prior art keywords
film
temp
liquid crystal
crystal compound
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16488990A
Other languages
Japanese (ja)
Inventor
Kenichi Tsudaka
津高 健一
Mitsuo Matsumoto
松本 光郎
Yoshikazu Ito
伊東 嘉一
Koichi Saito
晃一 斉藤
Junji Nakagawa
中川 順司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP16488990A priority Critical patent/JPH0453739A/en
Publication of JPH0453739A publication Critical patent/JPH0453739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To thermally weld a film to a metal foil by bonding the film composed of a high-molecular liquid crystal compound optically forming an anisotropic melting phase within a specific temp. range under pressure. CONSTITUTION:A high-molecular liquid crystal compound pref. has transition temp. to an optically anisotropic melting phase within the temp. range of 200-400 deg.C from the aspect of the heat resistance and flexibility of a film. The film composed of the high-molecular liquid crystal compound is usually bonded to a metal foil by a thermal press bonding method using a hot press or a hot roll. The press bonding temp. of the foil is different according to the structure of the high-molecular crystal compound to be used but set to the range from temp. lower than the transition temp. to a liquid crystal by 80 deg.C to the transition temp. When the press bonding temp. is below temp. lower than the transition temp. to a liquid crystal by 80 deg.C, adhesiveness is insufficient and, when the press bonding temp. exceeds temp. higher than the transition to a liquid crystal, not only the flow of the film at the time of press bonding becomes large and the shape as a laminated sheet is not held but also the capacity of the film is lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フレキシブルプリント配線板(以下。[Detailed description of the invention] [Industrial application field] The present invention relates to a flexible printed wiring board (hereinafter referred to as "flexible printed wiring board").

FPCと略す)などの展進に用いられる積層板に関する
。さらに詳しくは使用雰囲気の温度変化に対して安定な
性能を有する積層板に関する。
It relates to a laminate plate used for the development of FPC (abbreviated as FPC) and the like. More specifically, the present invention relates to a laminate having stable performance against temperature changes in the atmosphere in which it is used.

〔従来の技術〕[Conventional technology]

近年、電子・電気工業分野において機器の小型化・軽量
化の要求からFPCの需要が増大しつつある。このFP
Cの一般的な構成は、基材フィルムの少なくとも一方の
面に鋼箔などの金属箔を積層したのち電気回路を形成し
、この回路の上にカバーフィルムを積層するというもの
である。基材フィルムおよびカバーフィルムとしてはポ
リイミドフィルム、ポリエステルフィルムなどが多用さ
れておシ、特にFPCへの部品実装時に半田浴へF P
 Ct−f!l漬させる場合には、耐熱性の点から基材
フィルムおよびカバーフィルム共にポリイミドフィルム
を用い九FPCが使用されている。
In recent years, demand for FPCs has been increasing due to demands for smaller and lighter equipment in the electronics and electrical industries. This FP
The general structure of C is that after metal foil such as steel foil is laminated on at least one side of a base film, an electric circuit is formed, and a cover film is laminated on top of this circuit. Polyimide films, polyester films, etc. are often used as base films and cover films.
Ct-f! In the case of dipping, polyimide films are used for both the base film and the cover film, and 9FPC is used from the viewpoint of heat resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら%基材フィルムとしてポリイミドフィルム
を用いた場合、金属箔との接着剤としてゴム系接着剤や
エポキシ系接着剤、フエ/−y重接着剤、アクリル系接
着剤などが用いられているが、これらの接着剤の耐熱性
は必ずしも充分ではなく、高温で接着強度が低下するた
め、FPCとしての耐熱m度は用いる接着剤の耐熱温度
で決まってしまい、ボリイ電ドフイルムが本来有する耐
熱性が充分にいかされない場合が多い。
However, when a polyimide film is used as the base film, rubber adhesives, epoxy adhesives, Fe/-y heavy adhesives, acrylic adhesives, etc. are used as adhesives to the metal foil. The heat resistance of these adhesives is not necessarily sufficient, and the adhesive strength decreases at high temperatures, so the heat resistance of FPC is determined by the heat resistance temperature of the adhesive used, and the heat resistance inherent in the polyelectrode film is sufficient. There are many cases where it is not taken advantage of.

最近、基材フィルムを金属箔上に熱融着する方法が提案
されているが、従来用いられているポリイミドは溶融し
ないためこの方法には使用できない。熱融着が可能な樹
脂としてはポリエステルなどかわるが、従来用いられて
いるポリイミドに比べて耐熱性が極めて低く、耐熱m度
に限界がある。
Recently, a method has been proposed in which a base film is heat-sealed onto a metal foil, but conventionally used polyimide cannot be used in this method because it does not melt. Polyester is an alternative resin that can be heat-sealed, but its heat resistance is extremely low compared to conventionally used polyimide, and there is a limit to its heat resistance.

また、金属箔上にポリイミド前駆体の有機溶媒溶液を塗
布12.乾燥したのちイミド化してポリイミドフィルム
を金属箔上に形成する方法も知られているが、金属箔上
にポリイミド前駆体を塗布乾燥した彼イξド化反応を行
うために加熱すると。
Also, apply an organic solvent solution of polyimide precursor on the metal foil12. It is also known to form a polyimide film on a metal foil by drying and then imidizing the film. However, when a polyimide precursor is applied onto a metal foil and then dried, it is heated to carry out the ξ-idization reaction.

水分などの飛散によシ表面られが生ずると共に接着強度
が低く、生産性が悪いという問題を有する。
There are problems in that the surface is cracked due to the scattering of moisture and the adhesive strength is low, resulting in poor productivity.

本発明者らは、金属箔上に熱融着することかで喰、耐熱
性、耐水性、耐薬品性、可撓性に優れ念プラスチックフ
ィルムを検討した結果、本発明を完成するに至った。
The inventors of the present invention have completed the present invention as a result of studying a plastic film that has excellent properties such as heat resistance, water resistance, chemical resistance, and flexibility by being heat-sealed onto metal foil. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、光学的に異方性の溶融相を形成する高分子液
晶化合物よシなるフィルムを金属箔に圧着せしめてなる
積層板である。
The present invention is a laminate made by pressing a film made of a polymeric liquid crystal compound that forms an optically anisotropic melt phase onto a metal foil.

本発明において用いられる高分子液晶化合物は光学的に
異方性の溶融相を形成する任意の高分子液晶化合物、n
ゆるサーモトロピック液晶化合物である。光学的に異方
性の溶融相を形成する化合物とは当業者にはよく知られ
ているように加熱装置を備えた偏光顕微鏡直交ニコル下
で溶融状態の試料を観察した時に偏光を透過する化合物
である。
The polymeric liquid crystal compound used in the present invention is any polymeric liquid crystal compound that forms an optically anisotropic melt phase, n
It is a thermotropic liquid crystal compound. As is well known to those skilled in the art, a compound that forms an optically anisotropic molten phase is a compound that transmits polarized light when a sample in a molten state is observed under crossed Nicols under a polarizing microscope equipped with a heating device. It is.

本発明において用いられる高分子液晶化合物のA体側と
しては以下VcfPO示する(1)から(4)の化合物
およびその誘導体から導ひかれる公知のサーモトロピッ
ク液晶ポリエステルおよびポリエステルアミド化合物を
挙げることができる。但し、高分子液晶を形成するため
には、各々の原料化合物の組み合わせには適当な範囲が
あることは言うまでもない。
Examples of the A-form side of the polymeric liquid crystal compound used in the present invention include known thermotropic liquid crystal polyesters and polyesteramide compounds derived from the compounds (1) to (4) shown below as VcfPO and their derivatives. However, it goes without saying that in order to form a polymeric liquid crystal, there is an appropriate range of combinations of each raw material compound.

(1)芳香族または脂肪族ジヒドロキン化会物HO登y
−4トリH(Yは一〇−1−12−1−8−など)HO
(CHi)nOH(nは2〜12の]1数)(2)芳香
族または脂肪族ジカルボン酸これらの原料化合物から得
られる高分子液晶化合物の異体側として以下の構造単位
を有する重合体を挙げることができる。
(1) Aromatic or aliphatic dihydroquinated compound HOden
-4 triH (Y is 10-1-12-1-8-, etc.) HO
(CHi) nOH (n is a number from 2 to 12) (2) Aromatic or aliphatic dicarboxylic acid Polymers having the following structural units are listed as the variant side of the polymeric liquid crystal compound obtained from these raw material compounds. be able to.

(1りモ0C−C)−Co−)(−OCJ(gcHto
士モα?()0−3−共重合体ooc HOOC(CHz)、C0OH(n Fi2〜12の整
数)(81芳香族ヒドロキシカルボン酸 (4)  芳書族ジアンンまたは芳香族ヒドロキシルア
ミンtたけ芳香族アミノカルボン酸 −E−06XトO士 共重合体 (e) (−0−O−CO−)(−OC−Q−CO−)
%−0%0−3−モ0−Q−X−O−0士 共重合体 (Xは一〇−7−四ト、−8−など) これらの高分子液晶化合物は、フィルムの耐熱性、加工
性の点で200〜400″C1特に250〜350℃の
範囲に光学的に異方性の溶融相への転移温度を有するも
のが好ましい。また、フィルふとしての物性を損わない
範囲で、滑剤、酸化防止剤、充填剤などが配合されてい
てもよい。
(1rimo0C-C)-Co-)(-OCJ(gcHto
Shimo α? ()0-3-copolymer ooc HOOC (CHz), C0OH (n Fi integer from 2 to 12) (81 aromatic hydroxycarboxylic acid (4) aromatic dianne or aromatic hydroxylamine t take aromatic aminocarboxylic acid -E-06X copolymer (e) (-0-O-CO-) (-OC-Q-CO-)
%-0%0-3-mo0-Q-X-O-0 copolymer (X is 10-7-4, -8-, etc.) These polymeric liquid crystal compounds improve the heat resistance of the film. In terms of processability, it is preferable to have a transition temperature to an optically anisotropic molten phase in the range of 200 to 400" C1, particularly 250 to 350 °C. Also, it is a range that does not impair the physical properties of the film. A lubricant, an antioxidant, a filler, etc. may also be added.

本発明において、上記の高分子液晶化合物よ)なるフィ
ルムの熱膨張係数は1.OX 10−’ (1/’C)
以下であることが好ま1−<、更に好ましくはFh、o
xxo−’(l/”C)以下である。これは金属箔特に
鋼箔と該フィルムを熱融着させた場合には、銅とフィル
ムの熱膨張係数が異なると常温に戻した際にカールする
からである。また、本発明の積層板をFPCとして用い
る場合、かかるFPCに部品を実装する際にハンダ浴に
浸漬するような場合にも同様の問題が生ずる。
In the present invention, the thermal expansion coefficient of the film made of the above polymeric liquid crystal compound is 1. OX 10-'(1/'C)
The following is preferably 1-<, more preferably Fh, o
xxo-'(l/"C) or less. This means that when the film is heat-sealed to a metal foil, especially a steel foil, if the thermal expansion coefficients of the copper and film are different, curling will occur when the film is returned to room temperature. Furthermore, when the laminate of the present invention is used as an FPC, a similar problem occurs when the laminate is immersed in a solder bath when mounting components on the FPC.

また上記の高分子液晶化合物よりなるフィルムの熱収縮
率は、250℃において2チ以下、特に0.5%以下が
好ましい。これはハンダ浴の温度が通常250〜260
℃であるため1例えばFPCをハンダ浴に浸漬する場合
フィルムの熱収縮率が大きいとFPCにシワを生じやす
いためである。
Further, the heat shrinkage rate of the film made of the above polymeric liquid crystal compound is preferably 2% or less, particularly 0.5% or less at 250°C. This is because the temperature of the solder bath is usually 250 to 260.
1. For example, when the FPC is immersed in a solder bath, if the heat shrinkage rate of the film is large, the FPC is likely to wrinkle.

しかし、本発明の積層板をFPCなどの製造工Sあるい
はその使用時に、フィルムに対して加熱が行われないよ
うな場合においては、上記の熱膨張係数、熱収縮率の範
囲を満たす必要はない。
However, in the case where the laminate of the present invention is used in the manufacturing of FPCs or the like, or when the film is not heated, it is not necessary to satisfy the above-mentioned ranges of thermal expansion coefficient and thermal contraction rate. .

高分子液晶化合物よりなるフィルムはTダイ法。Films made of polymeric liquid crystal compounds are produced using the T-die method.

インフレーション法、これらの方法を組み合わせた方法
など公知の製膜方法によって成形される。
It is molded by a known film forming method such as an inflation method or a combination of these methods.

本発明において用いられる高分子液晶化合物は。The polymeric liquid crystal compound used in the present invention is:

いったん溶融して冷却すると通常の二軸延伸が困崩とな
るため、成形ダイ出口から吐出して冷却するまでの関に
機械軸方向(以下、MD方向と称す)および機械軸に直
角な方向(以下、TD力方向称す)の両方向に同時Kg
伸することが、MD方向およびTD力方向両方向の機械
的物性を高めるうえで好ましい。MD方向の延伸倍率は
1.0以上。
Once melted and cooled, normal biaxial stretching becomes difficult. Kg simultaneously in both directions (hereinafter referred to as TD force direction)
Stretching is preferable in order to improve mechanical properties in both the MD direction and the TD force direction. The stretching ratio in the MD direction is 1.0 or more.

49に1.25〜15の範囲であ#)% TD力方向延
伸倍率は1.0以上、#に1.5〜20の範囲であシ、
かつTD力方向延伸倍率がMD方向の延伸倍率の1.2
〜2.4倍の範囲であることが好ましい。かかる条件で
製膜することKよj5MD方向のみならず。
#49 is in the range of 1.25 to 15%) TD force direction stretch ratio is 1.0 or more, # is in the range of 1.5 to 20,
and the stretching ratio in the TD force direction is 1.2 of the stretching ratio in the MD direction.
It is preferable that it is in the range of ~2.4 times. Films can be formed under these conditions not only in the 5-MD direction.

TD力方向おいても優れた性質を有するフィルムが得ら
れる。かかるフィルムはインフレーション法によシ容易
に成形することができる。使用されるフィルム厚は、5
00P以下、好ましくは0.00f〜500 /#、さ
らに好ましくは1〜250μmの範囲である。
A film having excellent properties also in the TD force direction can be obtained. Such films can be easily formed by the inflation method. The film thickness used is 5
00P or less, preferably in the range of 0.00f to 500/#, more preferably in the range of 1 to 250 μm.

本発明において用いられる金属箔は、電気的接続に使用
される金属から選択され、好ましくは金。
The metal foil used in the present invention is selected from metals used for electrical connections, preferably gold.

銀、鋼、ニッケル、アルミニウム、さらに好ましくは鋼
からなるものである。かがる銅箔は圧延法。
It is made of silver, steel, nickel, aluminum, and more preferably steel. Copper foil is rolled using the rolling method.

電気分解法によって製造されるいずれのものも使用する
ことができるが、表面粗さの大@b電気分解法によって
製造されるものが好ましい。金属箔の厚さは0.001
〜500μm、好ましくは1〜500Iimさらに好ま
しくは5〜500μmの範囲である。
Any material produced by electrolysis can be used, but those produced by electrolysis are preferred because of their large surface roughness. The thickness of metal foil is 0.001
-500 μm, preferably 1-500 μm, more preferably 5-500 μm.

高分子液晶化合物よ)なるフィルムと金属箔との接着は
1通常、熱プレス、熱ローラーなどにょる熱圧着法によ
ってなされる。圧着温度は、用いる高分子液晶化合物の
構造により異なるが、液晶への転移温度より80℃低い
温度から、液晶への転移温度よシ20°C高い温度の範
囲であることが好ましい。圧着温度が液晶への転移温度
よ)8゜℃低い温度未満の場合では接着が不充分でおり
Adhesion between a film made of a polymeric liquid crystal compound and a metal foil is usually performed by a thermocompression bonding method using a hot press, a hot roller, or the like. The compression temperature varies depending on the structure of the liquid crystal polymer compound used, but is preferably in the range from 80° C. lower than the transition temperature to liquid crystal to 20° C. higher than the transition temperature to liquid crystal. If the pressure bonding temperature is less than 8°C (lower than the transition temperature to liquid crystal), the adhesion will be insufficient.

液晶への転移温度よシ20℃高い温度を越えると圧着時
におけるフィルムの流動が太きくなp、積層板としての
形態が保たれないばかシか、フィルムの性能が低下する
場合がある。
If the temperature exceeds the temperature 20° C. higher than the transition temperature to liquid crystal, the film may not flow as thickly during pressure bonding, the form of the laminate may not be maintained, or the performance of the film may deteriorate.

本発明の積層板の主な用途としてFPCを挙げることが
できる。FPCは本発明によシ得られた積層板の金!R
箔を月的とするパターンにエツチングを行って回路を形
成し、電気回路が多層である場合にはスルーホール加工
などを行い、この回路の上にカバーフィルムを耐熱性接
着剤等によって積層し、更に穴あけ、打抜きなどを行っ
て所定の形状に成形される。カバーフィルムは本発明に
用いられる高分子液晶化合物よシなるフィルムであって
も他のフィルムであってもよい。ポリイミドフィルムな
ト他のフィルムをカバーフィルムとして用いる場合、カ
バーフィルムがFPCの最外層に位置し外気と接触して
水分を吸収すると% FPCO線関絶縁抵抗が低下する
場合があるため、水蒸気透過係数が3.Of/100 
in”−24hr−mLJ!以下のフィルムを用いるの
が好ましい。
FPC can be mentioned as a main use of the laminate of the present invention. FPC is a gold laminate obtained according to the present invention! R
A circuit is formed by etching the foil into a lunar pattern, and if the electrical circuit is multi-layered, through-hole processing is performed, and a cover film is laminated on top of this circuit using a heat-resistant adhesive. It is then formed into a predetermined shape by drilling and punching. The cover film may be a film made of the polymeric liquid crystal compound used in the present invention, or may be another film. When using a polyimide film or other film as a cover film, if the cover film is located at the outermost layer of the FPC and absorbs moisture through contact with the outside air, the water vapor permeability coefficient may decrease. 3. Of/100
in''-24hr-mLJ! or less is preferably used.

本発明の積層板の用途は王妃FPCに限られたものでは
ない。また本発明の積層板は高分子液晶化合物よシなる
フィルムと金属箔との二層構造を基本とするが、金属箔
/フィルム/金属箔の3層構造、金属箔/フィルム/金
属箔/フィルム/金属箔などの多層構造をも含むもので
ある。
The application of the laminate of the present invention is not limited to Queen FPC. Furthermore, the laminate of the present invention basically has a two-layer structure of a film made of a polymeric liquid crystal compound and a metal foil, but may also have a three-layer structure of metal foil/film/metal foil, metal foil/film/metal foil/film. /It also includes multilayer structures such as metal foil.

〔実施例〕〔Example〕

以下、実施例によシ本発明を具体的に説明するが5本発
明はこれら実施例によシ何ら限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

なお、実施例における物性値は以下の方法によル測定し
た。
In addition, the physical property values in the examples were measured by the following method.

(1)光学的に異方性の溶融相(液晶)への転移温度 示差走査熱量計(メトラー社製T)I−3000)を用
いて、20℃/分の速度で昇温し、試料の熱挙動を観測
した時の吸熱ピークの位置によった。
(1) Transition temperature to optically anisotropic molten phase (liquid crystal) Using a differential scanning calorimeter (Mettler T) I-3000), the sample was heated at a rate of 20°C/min. It depends on the position of the endothermic peak when thermal behavior is observed.

a) 熱膨張係数 フィルムをいったん150℃まで加熱し徐々に冷却して
行った時の80〜150℃の領域における寸法変化から
計算した。寸法変化量は熱機器分析計(TMA)によっ
て測定した。
a) Coefficient of thermal expansion Calculated from dimensional changes in the range of 80 to 150°C when the film was heated to 150°C and gradually cooled. The amount of dimensional change was measured using a thermal mechanical analyzer (TMA).

(8)  熱収縮率 フィルムのMD方向及びTD方向に一定長さの印を付け
、250℃に設定したTABAI製高温熱風乾燥機内に
無緊張下で30分間放置した後、熱処理前後の長さの蜜
動を測定し、熱収縮率を次式によって算出した。
(8) Heat shrinkage rate Mark a certain length in the MD and TD directions of the film, leave it in a TABAI high-temperature hot air dryer set at 250°C for 30 minutes without tension, and then measure the length before and after heat treatment. The honeymoon was measured, and the heat shrinkage rate was calculated using the following formula.

(4) 剥離強度 2、 Otx幅のフィルムと銅箔を熱圧着したのち。(4) Peel strength 2. After hot-pressing the Otx width film and copper foil.

T剥離法により剥離強度を測定した。Peel strength was measured by the T-peel method.

(6)  ヒートサイクル試験 積層板を一42℃のメタノール−ドライアイス溶液中に
5分間浸漬したのち、200℃の熱風乾燥機中に5分間
放置する処理を20回繰シ返したのちの剥離強度を測定
した。
(6) Heat cycle test Peel strength after immersing the laminate in a methanol-dry ice solution at -42°C for 5 minutes and then leaving it in a hot air dryer at 200°C for 5 minutes, repeated 20 times. was measured.

(6)耐ハンダ特性 積層板を260℃のハンダ浴KIO秒間浸漬した場合の
フクレ、ハガレなどを目視観察した。
(6) Solder resistance properties When the laminate was immersed in a KIO solder bath at 260° C. for seconds, blisters, peeling, etc. were visually observed.

実施例1 後述の繰り返し単位を有する高分子液晶化合物A(ベク
トラ、ヘキスト七うニーズ社製)を単軸押出機で280
〜300℃に加熱混練し、インフレーションダイよシ溶
融押出し、100P厚みの外観良好なフィルムを得た。
Example 1 Polymer liquid crystal compound A (Vectra, manufactured by Hoechst Seven Needs Co., Ltd.) having the repeating unit described below was heated to 280 ml using a single-screw extruder.
The mixture was heated and kneaded at ~300°C and melt-extruded through an inflation die to obtain a film with a thickness of 100P and a good appearance.

このフィルムト35μm厚みの電解鋼箔を230℃およ
び290”Cで加熱圧着して積層板を得た。
This electrolytic steel foil having a thickness of 35 μm was heat-pressed at 230° C. and 290″C to obtain a laminate.

フィルムおよび積層板の各物性を測定し、結果を表1に
示す。
The physical properties of the film and laminate were measured, and the results are shown in Table 1.

実施例2 後述の繰シ返し単位を有する高分子液晶化合物Bを単軸
押出機で300〜320℃に加熱混練し。
Example 2 Polymer liquid crystal compound B having a repeating unit described below was heated and kneaded at 300 to 320°C using a single screw extruder.

インフレーションダイよシ溶融押出シ、looIJm厚
みの外観良好なフィルムを得た。仁のフィルムと35μ
m厚みの電解鋼を240℃および300”Cで加熱圧着
して積層板を得た。
By melt extrusion using an inflation die, a film having a thickness of 100 Jm and having a good appearance was obtained. Jin's film and 35μ
Electrolytic steel having a thickness of m was heat-pressed at 240° C. and 300″C to obtain a laminate.

フィルムおよび積層板の各物性を測定し、結果を表1に
示す。
The physical properties of the film and laminate were measured, and the results are shown in Table 1.

実施例3 後述の繰シ返し単位を有する高分子液晶化合物Cを単軸
押出機で210℃に加熱混練し、Tダイよシ溶融押出し
、100μm厚みの外観良好なフィルムを得た。このフ
ィルムと35μm厚みの電解鋼を260℃および290
℃で加熱圧着して積層板を得た。
Example 3 Polymer liquid crystal compound C having a repeating unit as described below was heated and kneaded at 210° C. using a single screw extruder, and melt extruded through a T-die to obtain a 100 μm thick film with good appearance. This film and 35 μm thick electrolytic steel were heated at 260°C and 290°C.
A laminate was obtained by heat-pressing at ℃.

フィルムおよび積層板の各物性を測定し、結果を表1に
示す。
The physical properties of the film and laminate were measured, and the results are shown in Table 1.

実施例4 実施例1において、積層構造をフィルム/鋼箔に代えて
銅箔/フィルム/銅箔にする以外は同様圧して、電解鋼
箔と230℃で加熱圧着して積層板を得た。
Example 4 A laminate was obtained by pressing in the same manner as in Example 1, except that the laminate structure was copper foil/film/copper foil instead of film/steel foil, and hot-press bonded with electrolytic steel foil at 230°C.

積層板の各物性を測定し、結果を表IK示す。Each physical property of the laminate was measured and the results are shown in Table IK.

比較例1 実施例1において、高分子液晶化合物よシなるフィルム
の代わ9にポリイミドフィルム(ニーピロン、宇部興産
■製、厚さ100μm)を用いる以外は同様にして、電
解銅箔と300℃および350℃で加熱圧着して積層板
を得た。
Comparative Example 1 In the same manner as in Example 1, except that a polyimide film (Kneepilon, manufactured by Ube Industries, Ltd., thickness 100 μm) was used in place of the film made of polymeric liquid crystal compound, electrolytic copper foil was heated at 300°C and 350°C. A laminate was obtained by heat-pressing at ℃.

フィルムおよび積層板の各物性を測定し、結果を!!1
に示す。
Measure the physical properties of films and laminates and report the results! ! 1
Shown below.

以下余白 〔発明の効果〕 本発明の積層板は接着剤を使用しないため容易に製造す
ることが可能であシ、また耐熱性、iす薬品性、可撓性
に優れているため、発熱の激しい素子を使用するなど高
温下にさらされる電子材料に適している。
Blank space below [Effects of the Invention] The laminate of the present invention does not use adhesives, so it can be easily manufactured, and it also has excellent heat resistance, chemical resistance, and flexibility, so it does not generate heat. Suitable for electronic materials that are exposed to high temperatures, such as those that use harsh elements.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 光学的に異方性の溶融相を形成する高分子液晶化合物よ
りなるフィルムを金属箔に圧着せしめてなる積層板。
A laminate made by pressing a film made of a polymeric liquid crystal compound that forms an optically anisotropic molten phase onto a metal foil.
JP16488990A 1990-06-22 1990-06-22 Laminated sheet Pending JPH0453739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16488990A JPH0453739A (en) 1990-06-22 1990-06-22 Laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16488990A JPH0453739A (en) 1990-06-22 1990-06-22 Laminated sheet

Publications (1)

Publication Number Publication Date
JPH0453739A true JPH0453739A (en) 1992-02-21

Family

ID=15801807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16488990A Pending JPH0453739A (en) 1990-06-22 1990-06-22 Laminated sheet

Country Status (1)

Country Link
JP (1) JPH0453739A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507332A2 (en) * 1991-04-05 1992-10-07 Kuraray Co., Ltd. Laminate
US5360672A (en) * 1991-04-08 1994-11-01 Kuraray Co., Ltd. Process for treating film comprising liquid crystal polymer
US5529740A (en) * 1994-09-16 1996-06-25 Jester; Randy D. Process for treating liquid crystal polymer film
JPH0918106A (en) * 1995-06-28 1997-01-17 Kuraray Co Ltd Laminated board and production thereof
JPH11214250A (en) * 1998-01-28 1999-08-06 Kuraray Co Ltd Device and circuit board mounted with the device
JPH11297458A (en) * 1998-04-06 1999-10-29 Kuraray Co Ltd Flexible heater
WO2017154811A1 (en) * 2016-03-08 2017-09-14 株式会社クラレ Method for producing metal-clad laminate, and metal-clad laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130046A (en) * 1984-11-28 1986-06-17 ポリプラスチックス株式会社 Manufacture of laminated film
JPS6298792A (en) * 1985-10-25 1987-05-08 旭化成株式会社 Flexible printed circuit substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130046A (en) * 1984-11-28 1986-06-17 ポリプラスチックス株式会社 Manufacture of laminated film
JPS6298792A (en) * 1985-10-25 1987-05-08 旭化成株式会社 Flexible printed circuit substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507332A2 (en) * 1991-04-05 1992-10-07 Kuraray Co., Ltd. Laminate
EP0507332A3 (en) * 1991-04-05 1992-10-28 Kuraray Co., Ltd. Laminate
US5360672A (en) * 1991-04-08 1994-11-01 Kuraray Co., Ltd. Process for treating film comprising liquid crystal polymer
US5529740A (en) * 1994-09-16 1996-06-25 Jester; Randy D. Process for treating liquid crystal polymer film
US5703202A (en) * 1994-09-16 1997-12-30 Hoechst Celanese Corp Process for treating liquid crystal polymer film
JPH0918106A (en) * 1995-06-28 1997-01-17 Kuraray Co Ltd Laminated board and production thereof
JPH11214250A (en) * 1998-01-28 1999-08-06 Kuraray Co Ltd Device and circuit board mounted with the device
JPH11297458A (en) * 1998-04-06 1999-10-29 Kuraray Co Ltd Flexible heater
WO2017154811A1 (en) * 2016-03-08 2017-09-14 株式会社クラレ Method for producing metal-clad laminate, and metal-clad laminate
US10807352B2 (en) 2016-03-08 2020-10-20 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate

Similar Documents

Publication Publication Date Title
JP3245437B2 (en) Manufacturing method of laminate
JP4216433B2 (en) Method for producing metal-clad laminate for circuit board
KR100349952B1 (en) Liquid crystal polymer film, laminate, method of making them and multi-layered parts-mounted circuit board
CN107079594B (en) Circuit substrate and its manufacturing method
WO2006051693A1 (en) Metal-clad laminate and method for production thereof
US6334922B1 (en) Coating method utilizing a polymer film and method of making metal-polymer laminates
JP5119401B2 (en) Flexible laminate having thermoplastic polyimide layer and method for producing the same
WO2007013330A1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
JP5254901B2 (en) LIQUID CRYSTAL POLYMER FILM AND LAMINATE, PROCESS FOR PRODUCING THEM, AND MULTILAYER MOUNTED CIRCUIT BOARD
JP2001244630A (en) Multilayer interconnection circuit board and manufacturing method therefor
JP2016107507A (en) Metal-clad laminated sheet and method for producing the same
WO2020153391A1 (en) Double-sided metal-clad laminate and production method therefor, insulating film, and electronic circuit base board
JPH0453739A (en) Laminated sheet
EP1238800A2 (en) Method for producing metal laminate
JP4004139B2 (en) MULTILAYER LAMINATE, MANUFACTURING METHOD THEREOF, AND MULTILAYER MOUNTED CIRCUIT BOARD
JP2004358677A (en) Method for manufacturing laminate
JP2002137231A (en) Mold release film and its manufacturing method
JP2001239585A (en) Metal-clad laminate and manufacturing method therefor
JP2002047360A (en) Polyphenylene sulfide film and method of preparing the same and circuit board produced from the same
JP3568171B2 (en) Liquid crystal polymer sheet laminate having metal surface and liquid crystal polymer sheet laminate having adhesive surface
JP2009071021A (en) Method for manufacturing multilayer wiring circuit board
JP5085823B2 (en) LAMINATE OF FILM AND METAL AND METHOD FOR PRODUCING THE SAME
JP2002331589A (en) Method for manufacturing metal-clad laminated sheet
JP2006305921A (en) Circuit board and its production method
JP2805882B2 (en) Laminate