WO2007094459A1 - 膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池 - Google Patents

膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池 Download PDF

Info

Publication number
WO2007094459A1
WO2007094459A1 PCT/JP2007/052862 JP2007052862W WO2007094459A1 WO 2007094459 A1 WO2007094459 A1 WO 2007094459A1 JP 2007052862 W JP2007052862 W JP 2007052862W WO 2007094459 A1 WO2007094459 A1 WO 2007094459A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
membrane
polymer electrolyte
catalyst
main surface
Prior art date
Application number
PCT/JP2007/052862
Other languages
English (en)
French (fr)
Inventor
Miho Gemba
Yoichiro Tsuji
Shinya Kosako
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/162,768 priority Critical patent/US20090011322A1/en
Priority to CN2007800055981A priority patent/CN101385174B/zh
Priority to JP2008500566A priority patent/JP5095601B2/ja
Priority to EP07714392.3A priority patent/EP1986258B1/en
Publication of WO2007094459A1 publication Critical patent/WO2007094459A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Membrane / catalyst layer assembly membrane electrode assembly, and polymer electrolyte fuel cell
  • the present invention relates to a membrane catalyst layer assembly, a membrane electrode assembly, and a polymer electrolyte fuel cell.
  • a fuel cell using a polymer electrolyte membrane having cation (hydrogen ion) conductivity electrochemically reacts a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. Power and heat are generated simultaneously.
  • FIG. 12 is a schematic cross-sectional view showing an example of a basic configuration of a unit cell mounted on a conventional polymer electrolyte fuel cell.
  • a unit cell 111 mounted on a conventional polymer electrolyte fuel cell has an electrode catalyst (for example, platinum metal) on both sides of a polymer electrolyte membrane 101 that selectively transports hydrogen ions.
  • Electrode catalyst for example, platinum metal
  • Membrane electrodes formed with a catalyst layer 102a and a catalyst layer 102b formed by containing a mixture of conductive particles (e.g., carbon particles) supporting a noble metal catalyst) and a polymer electrolyte having hydrogen ion conductivity Conjugate 1 10 is included.
  • Gas diffusion layers 103a and 103b are disposed outside the catalyst layers 102a and 102b, respectively, and the catalyst layer 102a and the gas diffusion layer 103a ⁇ anode (fuel electrode) or force sword (oxidant electrode) ⁇
  • the catalyst layer 102b and the gas diffusion layer 103b constitute a gas diffusion electrode ⁇ force sword (oxidizer electrode) or anode (fuel electrode) ⁇ .
  • Gaskets 106a and 106b are arranged around the diffusion electrode so as to sandwich the polymer electrolyte membrane 101 therebetween. Gaskets 106a and 106b may be integrated with the gas diffusion electrode and polymer electrolyte membrane 101 and assembled in advance, and the resulting structure may be referred to as a membrane electrode assembly.
  • the unit cell 111 mechanically fixes a plurality of adjacent unit cells.
  • conductive separators 104a and 104b are provided for electrical connection.
  • Reactor gas fuel gas or oxidant gas
  • Reactor gas is supplied to the main surface of the gas diffusion electrode on the side where the separators 104a and 104b are in contact with the gas diffusion layers 103a and 103b, respectively, and the generated gas and surplus gas are carried away.
  • Gas flow paths 105a and 105b are formed.
  • Each of the gas flow paths 105a and 105b includes a plurality of linear grooves, a turn-shaped groove (curved groove) that connects adjacent ones of these linear grooves, and a force
  • a so-called serpentine type gas flow path having a groove having a meandering shape is often used.
  • the serpentine type gas flow path has the following structure. That is, two adjacent linear grooves and one turn-shaped groove connecting these two linear grooves are arranged upstream of the two linear grooves.
  • the downstream end of the object is connected to one end upstream of the turn-shaped groove, and the other end downstream of the turn-shaped groove is upstream of the two straight grooves disposed downstream. It has a structure formed so that the end of the side is connected.
  • the downstream end of the two linear grooves arranged on the downstream side is connected to the upstream end of another turn-shaped groove formed further downstream.
  • a plurality of linear grooves and a plurality of turn-shaped grooves are sequentially connected as described above over the upstream force downstream, thereby having one serpentine shape gas flow path (serpentine Mold gas flow path) is formed.
  • the serpentine-type gas flow path is formed in a state in which a plurality of the above-described one-shaped meandering-shaped grooves and a plurality of the "one meandering-shaped grooves" are arranged. There is a type.
  • the grooves constituting the serpentine type gas flow path may be formed at equal intervals, or may be formed at different intervals.
  • gas flow paths 105a and 105b can be provided separately from the separators 104a and 104b, the gas flow paths 105a and 105b are generally configured by providing grooves.
  • separators 104a and 104b At least one of them is provided with cooling fluid channels 107a and 107b on the surface opposite to the surface where the gas channels 105a and 105b are formed, and a cooling fluid such as cooling water is circulated therethrough.
  • the cooling fluid flow paths 107a and 107b include a plurality of linear grooves, and a turn-shaped groove (curved groove) that connects the ends of the adjacent linear grooves to the upstream force downstream side.
  • the serpentine type cooling fluid flow path made of the above is used, and the grooves are generally formed at equal intervals.
  • the cooling fluid flow paths 107a and 107b may be constituted by a plurality of substantially parallel straight grooves. In this case as well, the grooves are generally formed at equal intervals.
  • the electrode reaction that proceeds in the force sword (oxidant electrode) and the anode (fuel electrode) of the polymer electrolyte fuel cell as described above is as follows.
  • the polymer electrolyte membrane 101 is permeated (diffused) to reach a force sword, and the reaction formula (2) proceeds.
  • the anode is supplied with hydrogen (gas) necessary for the reaction, and the power sword is supplied with oxygen (gas).
  • the membrane electrode assembly 110 or a membrane catalyst layer assembly (catalyst layers 102a and 102b and polymer electrolyte membrane 101 included in the membrane electrode assembly 110) is used. It is important to improve the durability of the bonded body), and various studies have been made on the conventional strength.
  • Patent Document 1 states that “a catalyst layer made of conductive particles carrying a catalyst between a polymer electrolyte membrane and an electrode, and the catalyst layer are arranged for the purpose of improving durability.
  • Fuel cell (polymer electrolyte fuel cell) J proposed with a refractory layer formed by laying refractory particles in the adjacent region of the catalyst that surrounds the outer periphery and divides the region occupied by the catalyst layer It has been.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-201346
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a membrane / catalyst layer assembly having excellent durability.
  • Another object of the present invention is to provide a membrane electrode assembly having the above-described membrane catalyst layer assembly of the present invention and having excellent durability.
  • the present invention has an object of providing a polymer electrolyte fuel cell having the above-described membrane catalyst layer assembly or membrane electrode assembly of the present invention and having excellent durability. Means for solving the problem
  • the present inventors who have solved the above problems have obtained the following knowledge.
  • the inventors of the present invention have found that there is a slight displacement based on assembly tolerances between the anode-side catalyst layer and the force-sword-side catalyst layer (the substantially normal direction of the main surface of the polymer electrolyte membrane described above). It was found that the deviation) caused the degradation of the polymer electrolyte membrane at the outer periphery of the catalyst layer.
  • the degradation of the polymer electrolyte membrane is also caused by hydroxyl radicals caused by hydrogen peroxide peroxygen produced by the side reaction of oxygen reduction, as represented by the following formula (7).
  • the amount of reaction gas that cross-leaks is largely related to the presence or absence of a counter electrode catalyst layer. I found out. In the portion where the catalyst layer is present, the reactions (1) and (2) above occur, so that hydrogen gas and oxygen gas are consumed, and the polymer electrolyte does not react with the electrode that should undergo the electrode reaction. The amount of reaction gas that crosses the membrane and cross leaks to the opposite electrode is small.
  • the present inventors have focused on the fact that it is extremely difficult to reduce the above-mentioned assembly tolerance to zero, and as a result of intensive studies, the main catalyst layer of one catalyst layer has been found. There is an intentional difference between the area (size) of the surface and the area (size) of the main surface of the other catalyst layer, and a membrane-side catalyst, which will be described later, is placed on the outer periphery of the catalyst layer with the smaller area of the main surface.
  • the area of the concentration reduction area consists of the part (first part) in contact with one main surface (first main surface) of the polymer electrolyte membrane and the remaining part (second part) other than the first part. And at least two regions.
  • the first part does not contain a catalyst or contains a catalyst, it does not catalyze the reactions (3) and (7) above of the reaction gas, or the reaction gas above.
  • An amount (concentration) of catalyst that does not deteriorate the polymer electrolyte membrane due to the reaction heat generated by the reaction even if the reaction of (3) and (7) is catalyzed is contained in the second part.
  • Catalyst concentration contained in the catalyst layer A catalyst concentration of less than 1 degree is included. ⁇ In order to cause the reactions (3) and (7) of the reaction gas to occur farther from the polymer electrolyte membrane in the membrane-side catalyst concentration reduction region, and to cause the reaction on the membrane-side catalyst concentration reduction region.
  • the present invention is arranged between the first catalyst layer and the second catalyst layer disposed to face each other, and between the first catalyst layer and the second catalyst layer.
  • the outer periphery of the main surface of the second catalyst layer is located between the contacting edge and the facing edge, and the membrane-side catalyst concentration reduction region is A first portion that contacts the first main surface of the electrolyte membrane and has hydrogen ion conductivity and fire resistance; and a remaining portion other than the first portion that has hydrogen ion conductivity and fire
  • the excellent durability of the membrane-catalyst layer assembly can be realized by the following mechanism.
  • the reaction gas that has reached the first catalyst layer side due to the cross leak reaches the first portion in contact with the polymer electrolyte membrane in the membrane side catalyst concentration reduction region. Since the first part does not contain a catalyst, the cross-leaked reaction gas reaches the second part without causing the combustion reaction (3) or the reaction (7). Then, the reaction gas that has reached the second part causes the reaction (3) or (7). [0034] Since these reactions occur in the second part that is not in direct contact with the polymer electrolyte membrane via the first part of the membrane side catalyst concentration reduction region, It is possible to suppress deterioration due to active oxygen species such as hydrogen peroxide and hydrogen peroxide.
  • the membrane-side catalyst concentration reduction region when viewed from the substantially normal direction of the main surface of the polymer electrolyte membrane, the membrane-side catalyst concentration reduction region has hydrogen ion conductivity, so the reactions (1) and (2) above Therefore, the second part of the membrane-side catalyst concentration reduction region can be used as a catalyst layer without interfering with power generation as a polymer electrolyte fuel cell. . For this reason, in the polymer electrolyte fuel cell equipped with the membrane catalyst layer assembly according to the present invention, efficient power generation can be performed in a small space.
  • the first portion does not catalyze the reaction of the reaction gas flowing into the first portion, or the reaction of the reaction gas.
  • the catalyst contains an amount of the catalyst that does not deteriorate the polymer electrolyte membrane due to the reaction heat generated by the reaction even when the catalyst acts, and the catalyst concentration of the first part is the contact of the second part. It may be formed to be lower than the medium concentration and the catalyst concentration of the first catalyst layer.
  • the catalyst concentration for the reaction (3) or (7) is substantially zero.
  • the reaction (3) or (7) due to the cross leaked reaction gas is sufficiently suppressed.
  • the cross leaked reaction gas reaches the second portion without causing the reaction (3) or (7) so much in the first portion.
  • the reaction gas that has reached the second part is consumed by causing the reaction (3) or (7) in the second part far from the polymer electrolyte membrane. Therefore, deterioration due to heat of the polymer electrolyte membrane and deterioration due to active oxygen species such as hydrogen peroxide can be sufficiently suppressed.
  • the membrane-side catalyst concentration reduction region is a region close to the first main surface from a region far from the first main surface of the polymer electrolyte membrane. However, it is formed so that the catalyst concentration is lowered.
  • the second part is used.
  • the catalyst concentration may be reduced from a portion far from the first main surface of the polymer electrolyte membrane to a portion close to the first main surface.
  • the first main portion of the polymer electrolyte membrane in the second portion is used. The part force far from the surface may be formed so that the catalyst concentration decreases toward the part close to the first main surface.
  • the polymer electrolyte membrane does not cause the reaction (3) or (7) so much in the first portion close to the polymer electrolyte membrane. It is possible to consume the reaction gas which causes the reaction of the above (3) or (7) in the second part and cross leaks.
  • the first portion is composed of a refractory proton conductive layer extending in contact with the one main surface of the polymer electrolyte membrane
  • the second portion contains at least the same constituent material as that contained in the first catalyst layer, is continuous with the first catalyst layer, and is refractory proton conducting. It may be composed of an additional portion to the first catalyst layer extending in layers so as to cover the layer.
  • a catalyst is used as a constituent material of the first part.
  • carbon having a higher V heat resistance than carbon used as a constituent material of the first part as a catalyst support e.g., crystal
  • a catalyst support e.g., crystal
  • One example is a configuration that employs highly conductive electron conductive carbon).
  • the membrane-side catalyst concentration reduction region comprises a polymer electrolyte having hydrogen ion conductivity and inorganic particles having fire resistance (heat resistance).
  • the inorganic particles are not particularly limited as long as the particles have fire resistance (heat resistance).
  • the inorganic particles are preferably particles that are chemically stable and do not generate chemical species that decompose the polymer electrolyte under the operating conditions of the polymer electrolyte fuel cell (operating temperature: 0 ° C. to 120 ° C.).
  • it may be a particle containing a metal as a constituent material or a particle containing a non-metal as a constituent material.
  • Non Examples of the metal material include ceramics ⁇ non-metallic inorganic solid material produced by heat treatment (however, a metal element may be included as a constituent element) ⁇ .
  • the ceramics include metal oxides, non-metal oxides (such as silicates described later), non-metal compounds (non-metal carbides, non-metal nitrides, etc.), metal non-metal compounds ( Metal carbide, metal nitride, etc.).
  • the inorganic particles may be particles containing at least one inorganic solid material selected from the group consisting of carbon and silica as a constituent material.
  • the inorganic particles may be adopted as inorganic particles, or only particles containing silica as a constituent material may be adopted as inorganic particles.
  • the carbon particles described above may be crystallized carbon particles having acid resistance.
  • the crystallized carbon particles may be graphite particles having electron conductivity.
  • electronic conductivity can be imparted to at least a part of the membrane-side catalyst concentration reduction region.
  • the crystallized carbon particles may be high-purity single crystal carbon particles (particles belonging to the ceramics) used in heat-radiating insulating plates.
  • the second catalyst layer should not overlap the second main surface of the polymer electrolyte membrane and the second catalyst layer.
  • the first space filling member is disposed, and the inner edge of the first space filling member is the membrane side catalyst concentration when viewed from a substantially normal direction of the main surface of the polymer electrolyte membrane. It is located between the edge in contact with the first catalyst layer in the reduction region and the edge opposite to the contact edge.
  • the first space filling member may include engineering plastic as a constituent material.
  • the first main surface of the polymer electrolyte membrane is provided.
  • it may further include a second space filling member arranged so as not to overlap the membrane side catalyst concentration reduction region outside the membrane side catalyst concentration reduction region.
  • the second space filling member may include engineering plastic as a constituent material.
  • the first catalyst layer may be an anode catalyst layer
  • the second catalyst layer may be a force sword catalyst layer.
  • the first catalyst layer may be a force sword catalyst layer
  • the second catalyst layer may be an anode catalyst layer
  • the membrane electrode assembly according to the present invention is a membrane catalyst layer assembly according to claim 1, wherein the membrane electrode assembly according to the present invention is disposed between a pair of gas diffusion layers arranged opposite to each other and the pair of gas diffusion layers. And.
  • the membrane / electrode assembly according to the present invention includes the membrane / catalyst layer assembly according to the present invention, the membrane / electrode assembly exhibits excellent durability.
  • a polymer electrolyte fuel cell according to the present invention includes the membrane electrode assembly.
  • the polymer electrolyte fuel cell according to the present invention includes the membrane catalyst layer assembly or the membrane electrode assembly according to the present invention described above, and thus exhibits excellent durability.
  • a membrane catalyst layer assembly for use in a polymer electrolyte fuel cell capable of efficiently generating power in a space-saving manner.
  • a membrane electrode assembly having excellent durability can be provided.
  • a polymer electrolyte fuel cell comprising the membrane catalyst layer assembly or membrane electrode assembly of the present invention and having excellent durability. Further, according to the present invention, the production of the membrane catalyst layer assembly is simplified, and the productivity of the membrane catalyst layer assembly is improved.
  • FIG. 1 is a schematic cross-sectional view showing an example of the basic configuration of a single battery mounted in the first embodiment of the polymer electrolyte fuel cell of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a basic configuration of a membrane electrode assembly mounted on the single battery 11 shown in FIG.
  • FIG. 3 is a schematic sectional view showing a membrane catalyst layer assembly constituting the membrane electrode assembly 10 shown in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view showing a membrane / catalyst layer assembly constituting the membrane / electrode assembly 10 mounted on the unit cell 11 in the second embodiment of the polymer electrolyte fuel cell of the present invention. is there.
  • FIG. 5 is a schematic cross-sectional view showing a membrane electrode assembly 30 mounted on a unit cell 11 in a third embodiment of the polymer electrolyte fuel cell of the present invention.
  • Fig. 6 shows a cell 1 in the fourth embodiment of the polymer electrolyte fuel cell of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a membrane electrode assembly 40 mounted on 1.
  • FIG. 7 is a perspective view showing the membrane catalyst layer assembly shown in FIG. 3.
  • FIG. 7 is a perspective view showing the membrane catalyst layer assembly shown in FIG. 3.
  • FIG. 8 is a cross-sectional view schematically showing a modified example of the membrane catalyst layer assembly of the first embodiment.
  • FIG. 9 is a graph showing the relationship between the catalyst concentration included in the membrane-side catalyst concentration reduction region shown in FIG. 8 and the distance of surface force contacting the main surface of the polymer electrolyte membrane 1.
  • FIG. 10 is a graph showing the relationship between the catalyst concentration included in the membrane-side catalyst concentration reduction region shown in FIG. 8 and the distance of surface force in contact with the main surface of the polymer electrolyte membrane 1 .
  • FIG. 11 is a graph showing the relationship between the catalyst concentration included in the membrane-side catalyst concentration reduction region shown in FIG. 8 and the distance of surface force contacting the main surface of the polymer electrolyte membrane 1 .
  • FIG. 12 is a schematic cross-sectional view showing an example of the basic configuration of a unit cell mounted on a conventional polymer electrolyte fuel cell.
  • FIG. 1 is a schematic cross-sectional view showing an example of the basic configuration of a unit cell mounted in a preferred embodiment of a polymer electrolyte fuel cell of the present invention. First, the components of the cell 11 shown in FIG. 1 will be described.
  • the unit cell 11 mounted on the polymer electrolyte fuel cell of the present invention includes a polymer electrolyte membrane 1 that selectively transports hydrogen ions, and both surfaces of the polymer electrolyte membrane 1.
  • a first electrode comprising a mixture of conductive particles (e.g., carbon particles) carrying an electrode catalyst (e.g., a noble metal catalyst such as platinum metal) and a polymer electrolyte having hydrogen ion conductivity.
  • the catalyst layer 2a and the second catalyst layer 2b are provided with a membrane-electrode assembly (MEA) 10.
  • MEA membrane-electrode assembly
  • Gas diffusion layers 3a and 3b are disposed outside the first catalyst layer 2a and the second catalyst layer 2b, respectively.
  • the unit cell 11 is connected to the first catalyst layer 2a and the gas diffusion layer.
  • the unit cell 11 shown in FIG. 1 has a gas diffusion structure in order to prevent leakage of fuel gas and oxidant gas supplied to the gas diffusion electrode to the outside, and to prevent mixing of the two types of reaction gases.
  • annular and substantially rectangular gaskets 6a and 6b are arranged so as to sandwich the polymer electrolyte membrane 1 around the electrode.
  • Gaskets 6a and 6b may be integrated with the gas diffusion electrode and the polymer electrolyte membrane 1 and assembled in advance, and the resulting structure may be referred to as a membrane electrode assembly.
  • the unit cell 11 has plate separators 4a and 4b having conductivity.
  • a reactive gas fuel gas and oxidant gas
  • a gas containing a product generated by the electrode reaction or an unreacted reactant is obtained.
  • Gas flow paths 5a and 5b for carrying away to the outside of the membrane electrode assembly 10 are One surface (that is, the main surface on the side where the anode-side separator 4a and the force sword-side separator 4b are in contact with the membrane electrode assembly 10) is formed.
  • each of the gas flow paths 5a and 5b has a plurality of straight grooves and turns that connect the ends of the adjacent straight grooves from the upstream side to the downstream side.
  • These grooves (curved grooves) and a powerful serpentine type gas flow path can be used, and the grooves only need to be formed at equal intervals.
  • the serpentine type gas flow path includes a type having a groove force having one meandering shape and a type in which a plurality of the "grooves having one meandering shape" are arranged side by side. is there.
  • the grooves constituting the serpentine type gas flow path may be formed at equal intervals or at different intervals.
  • the separators 4a and 4b have a configuration in which the cooling fluid channels 7a and 7b are provided on the surface opposite to the surface on which the gas channels 5a and 5b are formed.
  • the structure of the cooling fluid flow paths 7a and 7b is not particularly limited.
  • the cooling fluid flow paths 7a and 7b are turned to connect a plurality of linear grooves and the ends of the adjacent linear grooves from the upstream side to the downstream side. (A curved groove) and a powerful serpentine type cooling fluid flow path can be used, and the grooves only need to be formed at equal intervals.
  • the cooling fluid flow paths 7a and 7b may be constituted by a plurality of substantially parallel straight grooves. In this case as well, the grooves are generally formed at equal intervals.
  • FIG. 2 is a schematic cross-sectional view of the membrane electrode assembly of the present invention mounted on the unit cell 11 shown in FIG. 1
  • FIG. 3 is mounted on the membrane electrode assembly 10 shown in FIG. 1 is a schematic cross-sectional view of a membrane-catalyst layer assembly (CCM: Catalyst-coated membrane) of the present invention.
  • FIG. 7 is a perspective view showing the membrane-catalyst layer assembly shown in FIG. In FIG. 3, the vertical direction of the membrane catalyst layer assembly is shown as the vertical direction in the figure. Also, in FIG. 7, a part is cut away to show the internal structure.
  • CCM Catalyst-coated membrane
  • the membrane electrode assembly 10 of the present embodiment is a membrane catalyst layer assembly 9 of the present invention.
  • the gas diffusion layer 3a and the polymer electrolyte membrane of the second catalyst layer 2b disposed on the surface of the first catalyst layer 2a opposite to the surface with which the polymer electrolyte membrane 1 is in contact. 1 and a gas diffusion layer 3b disposed on a surface opposite to the surface.
  • the membrane-catalyst layer assembly 9 of the present embodiment includes a first catalyst layer 2a and a second catalyst layer 2b that are arranged to face each other, and a first catalyst layer 2a, And a polymer electrolyte membrane 1 disposed between the second catalyst layer 2b.
  • the polymer electrolyte membrane 1 in the membrane-catalyst layer assembly 9 of the present invention is formed in a substantially quadrangular shape (here, a rectangle), and first main surfaces facing each other. F10 and the second main surface F20. Similarly, the first and second catalyst layers 2a and 2b have substantially rectangular (here, rectangular) main surfaces facing each other. Yes.
  • the first main surface F10 of the polymer electrolyte membrane 1 is arranged so that one main surface (lower surface) of the first catalyst layer 2a is in contact with the first main surface F10. On the surface F20, one main surface (upper surface) of the second catalyst layer 2b is arranged in contact with the second main surface F20.
  • the first catalyst layer 2a When viewed from the substantially normal direction (thickness direction) of the main surface of the polymer electrolyte membrane 1, the first catalyst layer 2a has an outer periphery (portion indicated by R in FIG. 3) of the second catalyst layer 2b. It is formed so as to be located inside the outer periphery (the part indicated by Q in Fig. 3).
  • a membrane-side catalyst concentration reduction region 80 is disposed so as to be in contact with the outer periphery of the first catalyst layer 2a.
  • the membrane-side catalyst concentration reduction region 80 is formed in an annular and substantially rectangular shape. Specifically, the membrane-side catalyst concentration reduction region 80 is in contact with the outer periphery of the first catalyst layer 2a (hereinafter referred to as the inner edge) and the inner edge. It is formed so as to have opposite edges (hereinafter referred to as outer edges). Then, the outer edge of the membrane-side catalyst concentration reduction region 80 (portion indicated by P in FIG.
  • the second catalyst layer 2b when viewed from the substantially normal direction of the main surface of the polymer electrolyte membrane 1 It is formed so as to be located outside the outer periphery and to be located inward from the outer periphery of the polymer electrolyte membrane 1. That is, the second catalyst layer 2b is arranged so that the outer periphery thereof is located between the inner edge and the outer edge of the low concentration catalyst layer region 80.
  • the membrane side catalyst concentration reduction region 80 is in contact with the first main surface F10 of the polymer electrolyte membrane 1.
  • a first portion 8 which is a portion and a second portion 81 which is the remaining portion.
  • It is formed to have a two-layer structure of a first part 8 and a second part 81!
  • the first portion 8 is formed of a layered refractory proton conductive layer 8 composed of inorganic particles not supporting a catalyst and a polymer electrolyte.
  • the refractory proton conductive layer 8 has a pair of main surfaces facing each other, and one main surface (lower surface) is in contact with the polymer electrolyte membrane 1.
  • the second portion 81 has the same composition as the first catalyst layer 2a, and is formed in a layer shape so as to cover the other main surface (upper surface) of the refractory proton conductive layer 8.
  • One end (more precisely, the inner circumference) of the second portion 81 is formed so as to be continuous with the first catalyst layer 2a.
  • the second part 81 is formed integrally with the first catalyst layer 2a, and can be considered as an additional part to the first catalyst layer 2a or an extension part of the first catalyst layer 2a. Is possible.
  • the other end (more precisely, the outer periphery) of the second portion 81 is formed so as to coincide with the outer periphery of the refractory proton conductive layer 8 (to be flush with each other).
  • the other end of the second portion 81 has a refractory proton conductive layer 8 when viewed from a substantially normal direction of the main surface of the polymer electrolyte membrane 1 from the viewpoint of obtaining the effects of the present invention. It may be formed so as to be outside of the outer periphery.
  • the second portion 81 of the membrane-side catalyst concentration reduction region 80 has substantially the same configuration as the first catalyst layer 2a, the second portion 81 can be used as the catalyst layer. it can. For this reason, in the polymer electrolyte fuel cell equipped with the membrane catalyst layer assembly of the present invention, it is possible to generate power with reduced space and efficiency.
  • the refractory proton conductive layer 8 is disposed between the outer periphery of the polymer electrolyte membrane 1 and the outer periphery of the first catalyst layer 2a. Manufacturing can be facilitated by adopting a configuration in which the outer periphery of the refractory proton conductive layer 8 and the outer periphery of the second portion 81 are aligned when the force in the substantially normal direction of the surface is also seen. As will be described later, for example, when the refractory proton conductive layer 8 is formed on the polymer electrolyte membrane 1 and the second portion 81 is further formed, the polymer electrolyte can be obtained by using only one mask. After forming the refractory proton conductive layer 8 on the membrane 1, the second portion 81 and the first catalyst layer 2a can be integrally formed.
  • the polymer electrolyte membrane 1 As the polymer electrolyte membrane 1, a conventionally known one can be used, which is a polymer electrolyte membrane having an ion exchange group for hydrogen ions, in which hydrogen ions are selectively selected along the film thickness direction. It penetrates through. CF for example
  • An acidic polymer electrolyte membrane can be used.
  • Electrolyte membranes can be used.
  • the film thickness of the polymer electrolyte membrane 1 is generally 20 to 200 m.
  • the first catalyst layer 2a on the anode side and the second catalyst layer 2b on the force sword side are composed of conductive carbon particles carrying an electrode catalyst made of a noble metal, and a high molecular electrolyte having hydrogen ion conductivity. It has the structure containing these.
  • the polymer electrolyte includes, as a cation exchange group, a sulfonic acid group, a carboxylic acid group, Those having a phosphonic acid group and a sulfonimide group are preferred. From the viewpoint of hydrogen ion conductivity, those having a sulfonic acid group are particularly preferred.
  • Examples of the polymer electrolyte having a sulfonic acid group have an ion exchange capacity of 0.5 to 1.
  • What is 5 meqZg dry rosin is preferable.
  • the ion exchange capacity of the polymer electrolyte is 0.5 m eqZg or higher, the resistance of the first catalyst layer 2a and the second catalyst layer 2b is more reliably suppressed from increasing during power generation.
  • the preferred ion exchange capacity is 1.5 meqZg dry resin or less, the moisture content of the first catalyst layer 2a and the second catalyst layer 2b can be reduced, and swelling can be suppressed. This is preferable because flooding can be reliably prevented without blocking the holes.
  • the ion exchange capacity is particularly preferably 0.8 to 1.2 meqZg dry resin.
  • CF CF- (OCF CFX) —O— (CF) —SO PTC
  • a perfluorolobule compound (m represents an integer of 0 to 3, n represents an integer of 1 to 12, p represents 0 or 1, and X represents a fluorine atom or It represents a trifluoromethyl group, and is preferably a copolymer comprising a polymer unit based on) and a polymer unit based on tetrafluoroethylene.
  • fluorovinyl compound examples include compounds represented by the following formulas (4) to (6).
  • q represents an integer of 1 to 8
  • r represents an integer of 1 to 8
  • t represents an integer of 1 to 3.
  • the constituent material of the polymer electrolyte membrane 1 the polymer electrolyte described above may be used.
  • the electrode catalyst used in the present invention is used by being supported on conductive carbon particles (powder), and also has a metal particle force.
  • the metal particles are not particularly limited, and various metals including noble metals can be used. For example, select from the group consisting of platinum, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, chromium, iron, titanium, manganese, conoleto, nickel, molybdenum, tungsten, aluminum, silicon, zinc and tin. The One or more types are preferred.
  • platinum and ruthenium alloys which are precious metals, platinum and platinum alloys, are particularly preferred for the anode because the activity of the catalyst is stable.
  • the carbon particles preferably have a specific surface area of 50 to 1500 m 2 Zg.
  • the specific surface area is 50 m 2 / g or more, it is relatively easy to increase the loading ratio of the electrode catalyst, and sufficient output characteristics of the first catalyst layer 2a and the second catalyst layer 2b can be obtained more reliably.
  • the preferred specific surface area is 1500 m 2 Zg or less, the pores do not become too fine and the coating with the polymer electrolyte becomes easier, and the first catalyst layer 2a and the second catalyst layer 2b It is preferable because sufficient output characteristics can be obtained more reliably.
  • the specific surface area is particularly preferably 200 to 900 m 2 Zg.
  • the electrode catalyst particles have an average particle diameter of 1 to 30 nm. Electrocatalysts with an average particle size of 1 nm or more are preferred because they are industrially easy to prepare. Also, when they are 30 nm or less, sufficient activity per mass of the electrode catalyst is obtained, and the increase in fuel cell costs is suppressed. Can be preferable.
  • the gas diffusion layers 3a and 3b arranged outside the first catalyst layer 2a and the second catalyst layer 2b, respectively, are a carbon woven fabric or a carbon cloth having gas permeability and conductivity. It can comprise using conventionally well-known porous base materials, such as a bonfelt.
  • the porous substrate may have a structure subjected to a water repellent treatment by a conventionally known method.
  • a conventionally known water-repellent conductive layer carbon layer, water-repellent material and conductivity
  • the anode side separator 4a and the force sword side separator 4b in the present embodiment may be made of a conventionally known material.
  • it has a configuration in which gas flow paths 5a and 5b are provided for flowing hydrogen gas and oxygen gas as long as they are formed of gas-impermeable carbon which is compressed by gas and impermeable to gas.
  • the anode side separator 4a and the force sword side separator 4b have electrical conductivity, mechanically fix the membrane electrode assembly 10 and electrically connect adjacent membrane electrode assemblies to each other in series. Connecting. Therefore, the polymer electrolyte fuel cell of this embodiment is It can also be used as a stack obtained by stacking a plurality of unit cells 11.
  • the anode side separator 4a and the force sword side separator 4b are provided with surfaces opposite to the surfaces in contact with the membrane electrode assembly 10 (that is, the cooling fluid flow paths 7a and 7b are provided).
  • a current collector plate made of a metal plate in which copper is plated with gold may be provided. According to this, it is possible to more reliably collect current from the separator 4a on the anode side and the separator 4b on the force sword side.
  • the membrane-side catalyst concentration reduction region 80 uses inorganic particles as its constituent material from the viewpoint of having fire resistance. As described above, as the inorganic particles, particles containing at least one inorganic solid material selected from the group consisting of carbon and silica as a constituent material are preferable. The inorganic particles preferably include at least carbon particles used in the first and second catalyst layers 2a and 2b from the viewpoint of efficiency of the manufacturing process.
  • the membrane side catalyst concentration reduction region 80 uses a polymer electrolyte as a constituent material from the viewpoint of hydrogen ion conductivity. As the polymer electrolyte, the polymer electrolyte described above can be used. Further, the membrane-side catalyst concentration reduction region 80 has a catalyst from the viewpoint of causing the oxidant gas that has cross-leaked and the fuel gas to react slowly, and the catalyst includes the inorganic particles (here, carbon particles). It is carried on.
  • the refractory proton conductive layer 8 is composed of inorganic particles and a polymer electrolyte, and as the inorganic particles, the pressure applied to the main surface of the polymer electrolyte membrane 1 is increased as the efficiency of the manufacturing process increases.
  • the inorganic particles used in the first catalyst layer 2a are composed of at least carbon particles which are preferable.
  • carbon particles for example, ketjen black
  • the first catalyst layer 2a and the second catalyst layer 2b may be used.
  • the carbon particles it is preferable to use a crystallized force carbon from the viewpoint of more reliably suppressing the acidity of the carbon particles in the refractory proton conductive layer 8.
  • carbon having carbon atoms graphitized is more preferably used. It is preferable to use “Toca Black # 3855” (trade name) as the graphite-treated acid-resistant carbon.
  • As the graphitized carbon it is preferable to use carbon black having a characteristic of I / 1 ⁇ 1.2 ⁇ V> 90 as a characteristic obtained by Raman spectroscopy.
  • the first catalyst layer 2a and the second catalyst layer 2b are for forming a catalyst layer including at least conductive carbon particles carrying a noble metal electrode catalyst, a polymer electrolyte, and a dispersion medium. It is formed using ink.
  • a liquid containing an alcohol that can dissolve or disperse the polymer electrolyte (including a dispersed state in which the polymer electrolyte is partially dissolved) is used. I prefer that.
  • the dispersion medium preferably contains at least one of water, methanol, propanol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol. These water and alcohol may be used alone or in combination of two or more.
  • the alcohol is particularly preferably a straight chain having one OH group in the molecule, and ethanol is particularly preferable. This alcohol includes those having an ether bond such as ethylene glycol monomethyl ether.
  • the catalyst layer forming ink preferably has a solid content concentration of 0.1 to 20 mass%.
  • the solid content concentration is 0.1% by mass or more, a catalyst layer having a predetermined thickness can be obtained without spraying or applying repeatedly many times when the catalyst layer is produced by spraying or applying the ink for forming the catalyst layer. Production efficiency is not reduced.
  • the solid content concentration is 20% by mass or less, it is easy to moderately adjust the viscosity of the mixed solution, and there is no possibility that the first catalyst layer 2a and the second catalyst layer 2b are not uniform. Especially, it is especially preferable that it is 1-10 mass% in solid content concentration.
  • the catalyst layer forming ink can be prepared based on a conventionally known method. Specifically, narrow partial force dispersions that use high-speed rotation such as using a stirrer such as a homogenizer or homomixer, or using a high-speed rotating jet flow method, or applying high pressure such as a high-pressure emulsifier And a method of applying a shearing force to the dispersion by extruding.
  • first catalyst layer 2a and the second catalyst layer 2b using the catalyst layer forming ink of the present invention
  • a conventionally known method such as a bar coater method or a spray method is used. Used That's fine. That is, the first catalyst layer 2a on the other support sheet on which the first catalyst layer 2a and the second catalyst layer 2b may be formed directly on the polymer electrolyte membrane 1 or the gas diffusion layers 3a and 3b. And the second catalyst layer 2b may be formed and transferred onto the polymer electrolyte membrane 1 or the gas diffusion layers 3a and 3b.
  • the gas diffusion layers 3a and 3b disposed on the outside of the first catalyst layer 2a and the second catalyst layer 2b are carbon permeable and electrically conductive as described above. It can be constructed using a conventionally known porous substrate such as a woven fabric or carbon felt. The porous substrate may be subjected to a water repellent treatment by a conventionally known method.
  • the surface of the porous substrate that is in contact with the first catalyst layer 2a and Z or the second catalyst layer 2b has a conventionally known water-repellent conductive layer (carbon).
  • a layer, a layer containing a water repellent material and conductive carbon particles) may be provided!
  • the anode-side separator 4a and the force sword-side separator 4b in the present embodiment can be manufactured using various materials.
  • the gas flow paths 5a and 5b for flowing hydrogen gas and oxygen gas may be provided as long as they are formed by gas impervious carbon that is compressed and impervious to carbon by a conventional method.
  • the anode side separator 4a and the force sword side separator 4b have conductivity, mechanically fix the membrane electrode assembly 10 and electrically connect adjacent membrane electrode assemblies to each other in series. To connect. Therefore, the polymer electrolyte fuel cell of the present invention can also be used as a stack obtained by stacking a plurality of unit cells 11.
  • the surface opposite to the surface in contact with the membrane electrode assembly 11 that is, the surface on which the cooling fluid flow paths 7a and 7b are provided
  • a current collector plate made of a metal plate obtained by plating gold on copper may be provided.
  • the refractory proton conductive layer 8 is formed by preparing a refractory proton conductive layer forming ink containing carbon particles having electron conductivity, a polymer electrolyte, and a dispersion medium. Can do.
  • the carbon particles used in the ink for forming the refractory proton conductive layer the same particles (for example, Ketjen Black) as those used for the first catalyst layer 2a and the second catalyst layer 2b may be used. it can.
  • acid-resistant carbon that has been graphitized. It is preferable to use “Talka Black # 3855” (trade name) as the acid-resistant carbon that has been graphed.
  • such graphite-treated oxidation-resistant carbon has the characteristics obtained by Raman spectroscopy.
  • the polymer electrolyte and the dispersion medium used in the refractory proton conductive layer forming ink the same ones as those used in the first catalyst layer 2a and the second catalyst layer 2b can be used.
  • the solid content of the refractory proton conductive layer forming ink is, for example, a carbon ink obtained by mixing the resin until it is equivalent to 2 mg / m 2 carbon.
  • the amount of the resin can be appropriately adjusted according to the specific surface area, pore size, dispersibility, and the like of the carbon particles. The greater the specific surface area and the higher the dispersibility, the greater the amount of greaves.
  • the optimum amount of resin decreases.
  • the optimum amount of grease per g is 1.4 g / g-carbon.
  • the refractory proton conductive layer 8 can be formed by various methods, and can be produced in the same manner as the first catalyst layer 2a and the second catalyst layer 2b.
  • a rubber-like first plate having a square opening of 6 cm ⁇ 6 cm and a second rubber-like plate of 5.8 cm ⁇ 5.8 cm may be used as a mask.
  • the material constituting the mask is not particularly limited, and examples thereof include rubber, silicon, EPDM, and engineering plastic.
  • the first plate is placed on the polymer electrolyte membrane 1, the second plate is placed in the center of the opening, and hot-pressed.
  • a square annular groove having a width of 2 mm is formed on the polymer electrolyte membrane 1.
  • the above-mentioned ink for forming a refractory proton conductive layer is printed with a bar coater and dried.
  • the second plate at the center is removed, and the ink for forming the catalyst layer on the anode side is Print on the printer and dry.
  • a 1 mm wide fire-resistant layer is formed between the outer periphery of the first catalyst layer 2a (the portion indicated by R in FIG. 3) and the outer periphery of the polymer electrolyte membrane 1.
  • the proton conductive layer 8 can be formed, and the second portion 81 can be formed integrally with the first catalyst layer 2a on the main surface of the refractory proton conductive layer 8.
  • the displacement of the second catalyst layer 2b on the force sword side is within 500 m, for example, the outer edge (portion indicated by P in FIG. 3) and the inner edge of the refractory proton conductive layer 8 That is, the outer periphery of the main surface of the second catalyst layer 2b on the cathode side (Q in FIG. 3) is between the outer periphery of the first catalyst layer 2a on the anode side (the portion indicated by R in FIG. 3). The part shown) can be located.
  • reaction heat generated when water is generated by the reaction of the fuel gas and the oxidizing agent gas becomes difficult to be transmitted to the polymer electrolyte membrane 1.
  • the second portion 81 of the membrane-side catalyst concentration reduction region 80 has the same configuration as the first catalyst layer 2a, the second portion 81 can be used as a catalyst layer. it can. For this reason, the polymer electrolyte fuel cell equipped with the membrane-catalyst layer assembly of the present invention can generate power efficiently in a small space.
  • the membrane catalyst layer assembly and membrane electrode assembly of the present embodiment having the above-described configuration have excellent durability. Therefore, the membrane catalyst layer assembly or membrane electrode assembly of the present embodiment described above.
  • the polymer electrolyte fuel cell according to the present embodiment including the coalescence also has excellent durability.
  • the refractory proton conductive layer 8 in the membrane-side catalyst concentration reduction region 80 does not carry a catalyst and has inorganic particles (carbon particles) as a constituent material.
  • the present invention is not limited to this, and if the concentration of the catalyst contained in the refractory proton conductive layer 8 is substantially zero, that is, in the refractory proton conductive layer 8, the reaction of the cross leaked reaction gas is catalyzed.
  • a catalyst is included in such an amount that the reaction heat generated by the reaction does not deteriorate the polymer electrolyte membrane 1 even if the reaction of the cross leaked reaction gas is catalyzed.
  • the refractory proton conductive layer 8 may be configured to include a catalyst.
  • FIG. 8 is a cross-sectional view schematically showing a modification of the membrane catalyst layer assembly of the first embodiment.
  • the catalyst concentration of the first portion 8 of the membrane side catalyst concentration reduction region 80 (the first (Catalyst concentration that does not catalyze the reaction of the reaction gas flowing into the portion of the gas or that does not deteriorate the polymer electrolyte membrane by the reaction heat generated by the reaction even if the reaction of the reaction gas is catalyzed) Is formed so as to be lower than the catalyst concentration of the second portion 81, and the membrane-side catalyst concentration decreasing region 80 is first from a portion far from the first main surface F10 of the polymer electrolyte membrane 1. Close to the main surface F10, it is formed so that the catalyst concentration decreases toward the site!
  • the region force far from the first principal surface F10 of the polymer electrolyte membrane 1 is also close to the first principal surface F10, and is formed so that the catalyst concentration decreases toward the region. This will be described with reference to FIGS.
  • FIG. 9 to FIG. 11 are graphs showing the relationship between the catalyst concentration in the membrane-side catalyst concentration reduction region 80 shown in FIG. 8 and the distance from the surface in contact with the main surface F10 of the polymer electrolyte membrane 1. is there.
  • the membrane-side catalyst concentration reduction region 80 of Modification 1 abuts on the main surface F10 of the polymer electrolyte membrane 1 in the membrane-side catalyst concentration reduction region 80.
  • High power The catalyst concentration may be formed so as to increase monotonically as the distance increases with the force in the direction of the substantially normal line of the main surface of the child electrolyte membrane 1.
  • the membrane side catalyst concentration reduction region
  • the membrane side catalyst concentration reduction region 80 may be formed so that the upper main surface force of the membrane side catalyst concentration reduction region 80 is also applied to the lower main surface (see FIG. 3) so that the catalyst concentration decreases monotonously.
  • the membrane-side catalyst concentration reduction region 80 of Modification 1 has a catalyst concentration from the upper main surface to the lower main surface of the membrane-side catalyst concentration reduction region 80.
  • the line L4 in FIG. 11 may be formed so as to decrease stepwise (stepped), from the upper main surface to the lower main surface of the membrane side catalyst concentration reduction region 80, If the catalyst concentration decreases as a whole, a part of the catalyst concentration may be formed to be higher with respect to the portion located on the upper side.
  • the force of the part far from the first main surface F10 of the polymer electrolyte membrane 1 decreases so that the catalyst concentration decreases toward the part close to the first main surface F10.
  • the catalyst is distributed so that the catalyst concentration decreases as a whole from the upper main surface to the lower main surface of the membrane-side catalyst concentration reduction region 80. It means being.
  • Such a membrane-side catalyst concentration reduction region 80 is formed using an ink adjusted in the same manner as the catalyst layer forming ink described above. Specifically, an ink containing at least inorganic particles carrying a catalyst (here, bonbon particles), a polymer electrolyte, and a dispersion medium is prepared. At this time, a plurality of inks having different amounts of catalyst contained in the ink are prepared. Then, the ink having the lowest catalyst concentration (or no catalyst is contained) is sprayed or applied onto the main surface F10 of the polymer electrolyte membrane 1, and the ink is sequentially sprayed or applied. A plurality of layers are formed by coating to form the first portion 8 and the second portion 81 (that is, the membrane side catalyst concentration reduction region 80).
  • the portion of the membrane-side catalyst concentration reduction region 80 that is in contact with one main surface F10 of the polymer electrolyte membrane 1, that is, the first portion 8 is the second portion where the catalyst concentration is the remaining portion.
  • Part 81 catalyst The boundary between the region of the first portion 8 and the region of the second portion 81 in the membrane-side catalyst concentration reduction region 80 should be arbitrarily considered. Is possible.
  • the polymer electrolyte fuel cell according to the second embodiment is the same as the unit cell 11 mounted on the polymer electrolyte fuel cell according to the first embodiment shown in FIG.
  • the mounted membrane catalyst layer assembly 9 is replaced with a different configuration, and the configuration other than the membrane catalyst layer assembly is the same as that of the polymer electrolyte fuel cell of the first embodiment.
  • the membrane catalyst layer assembly 9 (the second embodiment of the membrane catalyst layer assembly of the present invention) mounted on the unit cell 11 of the second embodiment will be described.
  • FIG. 4 is a schematic cross-sectional view of the membrane catalyst layer assembly 9 mounted on the unit cell 11 of the present embodiment.
  • the membrane-catalyst layer assembly 9 of the present embodiment has an area force of the main surface of the first catalyst layer 22a on the force sword side. Area of the main surface of the second catalyst layer 2b on the anode side Smaller than.
  • the inner edge (the part indicated by R in FIG. 4) and the outer edge (the part indicated by R in FIG. 4) of the refractory proton conductive layer 8 which is the outer periphery of the main surface of the first catalyst layer 2a on the force sword side
  • the outer periphery (portion indicated by Q in FIG. 4) of the main surface of the second catalyst layer 2b on the anode side is located between the two.
  • the anode side second catalyst layer 2b of the polymer electrolyte membrane 1 does not exist, and from the portion (the portion indicated by Y in Fig. 4) to the force sword side. Even if the amount of fuel gas that cross-leaks into the first catalyst layer 2a increases, the portion where the second catalyst layer 2b does not exist and the portion on the force sword side facing the Y does not contain a catalyst.
  • Active proton conductive layer 8 exists, active oxygen species such as hydrogen peroxide and hydrogen generated in the second portion 81 of the membrane-side catalyst concentration reduction region 80 reach the polymer electrolyte membrane 1 and In addition, the reaction heat generated when the fuel gas and the oxidant gas react to generate water is difficult to be transmitted to the polymer electrolyte membrane 1. By blocking the hydrogen peroxide and the heat of reaction in this way, deterioration of the polymer electrolyte membrane 1 can be prevented.
  • the second portion 81 of the membrane-side catalyst concentration reduction region 80 has the same structure as that of the first catalyst layer la. Therefore, the second portion 81 can be used as a catalyst layer. For this reason, in the polymer electrolyte fuel cell equipped with the membrane catalyst layer assembly of the present invention, it is possible to generate power with a small space and high efficiency.
  • the membrane-catalyst layer assembly and membrane-electrode assembly of the present embodiment having the above-described configuration have excellent durability, and therefore, the membrane-catalyst layer assembly or membrane-electrode assembly of the present embodiment described above.
  • the polymer electrolyte fuel cell according to the present embodiment including the coalescence also has excellent durability.
  • the membrane side catalyst concentration reduction region 80 in the membrane catalyst layer assembly 9 of the second embodiment has the same configuration as the membrane side catalyst concentration reduction region 80 of the first embodiment, but is not limited thereto. Instead, a configuration like the membrane side catalyst concentration reduction region 80 in Modification 1 of the catalyst layer assembly 9 of the first embodiment may be adopted.
  • the polymer electrolyte fuel cell of this third embodiment is different from the membrane electrode assembly 10 mounted on the unit cell 11 mounted on the polymer electrolyte fuel cell of the first embodiment shown in FIG.
  • the configuration other than the membrane electrode assembly is the same as that of the polymer electrolyte fuel cell of the first embodiment.
  • the membrane / electrode assembly 10 (third embodiment of the membrane / electrode assembly of the present invention) provided in the unit cell 11 of the third embodiment will be described.
  • FIG. 5 is a schematic cross-sectional view of the membrane electrode assembly 10 mounted on the single battery 11 of the present embodiment.
  • the second catalyst is placed on the other main surface F20 of the polymer electrolyte membrane 1 and outside the second catalyst layer 2b on the force sword side.
  • a first space filling member (sub-gasket) 32 is further provided so as not to overlap the layer 2b.
  • the first space filling member 32 has an annular and substantially rectangular shape, and when viewed from the substantially normal direction of the main surface of the polymer electrolyte membrane 1, The catalyst layer 2b is disposed outside the catalyst layer 2b so as to fill a space formed between the polymer electrolyte membrane 1 and the gas diffusion layer 3b.
  • the first space filling member 32 has an inner periphery (indicated by V in Fig. 5) when viewed from a substantially normal direction of the main surface of the polymer electrolyte membrane 1. Part) is resistant Located between the outer edge (portion indicated by P in FIG. 5) and the inner edge (portion indicated by R in FIG. 5) of the pyrogenic proton conductive layer 8, the outer periphery of the first space filling member 32 is gas diffusion It is formed so as to be located outside the outer periphery of the layer 2b.
  • the first space filling member 32 may use any material as long as it can fill the space formed between the polymer electrolyte membrane 1 and the gas diffusion layer 3b. A material similar to the gaskets 6a and 6b described in the embodiment may be used. The first space filling member 32 more reliably ensures that the outer periphery of the polymer electrolyte membrane 1 is damaged by the edge of the gas diffusion layer 3b when the membrane electrode assembly 10 is fastened together with the separators 4a and 4b.
  • the synthetic resin has appropriate mechanical strength and flexibility.
  • a synthetic resin composed of at least one resin selected from the group consisting of ether ether ketone, polyether sulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, and polyimide amide.
  • the first space filling member 32 As a method of installing the first space filling member 32 as described above, for example, as a rubber-like mask used when the second catalyst layer 2b is formed by coating, a stack of two thin sheets is used. Use the body. Then, after forming and drying the refractory proton conductive layer 8, the first catalyst layer 2a, and the second catalyst layer 2b, the upper sheet of the laminate is peeled off, and the lower sheet is removed.
  • One space filling member 32 may be used. According to the powerful method, the force that can narrow the gap Z formed between the second catalyst layer 2b and the first space filling member 32 more reliably, or the gap Z is eliminated as much as possible. be able to.
  • the second catalyst layer 2b and the first space are provided.
  • the refractory proton conductive layer 8 exists on the anode side as a counter electrode against the oxidant gas that cross-leaks, the generated hydrogen peroxide does not reach the polymer electrolyte membrane 1, and the heat of combustion reaction is reduced. It is difficult for the polymer electrolyte membrane 1 to be transmitted, and the polymer electrolyte membrane 1 can be prevented from deteriorating.
  • the first space filling member 32 is such that the end of the gas diffusion layer 3b hangs down on the main surface of the polymer electrolyte membrane 1. It is possible to prevent the reactive gas from cross-leaking even when the main surface of the polymer electrolyte membrane 1 is damaged by the end of the gas diffusion layer 3a.
  • the first space filling member 32 is disposed so as to fill the space formed between the polymer electrolyte membrane 1 and the gas diffusion layer 3b, the amount of the oxidant gas that crosses the polymer electrolyte membrane 1 and cross leaks can be reduced, and the polymer electrolyte membrane 1 can be physically protected.
  • the refractory proton conductive layer 8 is present on the anode side, so that the combustion reaction heat that does not cause the generated hydrogen peroxide to reach the polymer electrolyte membrane 1 is high. It can be transmitted to 1, and the deterioration of the polymer electrolyte membrane can be prevented.
  • the membrane / catalyst layer assembly and membrane / electrode assembly of the present embodiment having the above-described configuration have excellent durability, and therefore, the membrane / catalyst layer assembly or membrane / electrode assembly of the present embodiment described above.
  • the polymer electrolyte fuel cell according to the present embodiment including the coalescence also has excellent durability.
  • the membrane-side catalyst concentration reduction region 80 in the membrane-catalyst layer assembly 9 of the third embodiment has the same configuration as the membrane-side catalyst concentration reduction region 80 of the first embodiment, but is not limited thereto. Instead, a configuration like the membrane side catalyst concentration reduction region 80 in Modification 1 of the catalyst layer assembly 9 of the first embodiment may be adopted.
  • the polymer electrolyte fuel cell of the fourth embodiment is different from the membrane electrode assembly 10 mounted on the unit cell 11 mounted on the polymer electrolyte fuel cell of the first embodiment shown in FIG.
  • the configuration other than the membrane electrode assembly is the same as that of the polymer electrolyte fuel cell of the first embodiment.
  • the membrane / electrode assembly 10 (fourth embodiment of the membrane / electrode assembly of the present invention) provided in the unit cell 11 of the fourth embodiment will be described.
  • FIG. 6 is a schematic cross-sectional view of the membrane electrode assembly 10 mounted on the single battery 11 of the present embodiment.
  • the membrane electrode assembly 10 of the present embodiment has the first space filling member 32 as in the membrane electrode assembly 10 of the third embodiment, and further includes the polymer electrolyte membrane 1
  • One main surface F10 has a second space filling member (sub-gasket) 43 arranged outside the membrane-side catalyst concentration reduction region 80 so as not to overlap the membrane-side catalyst concentration reduction region 80. I will do it.
  • the second space filling member 42 has an annular shape and a substantially rectangular shape. When viewed from a direction substantially normal to the main surface of the polymer electrolyte membrane 1, the membrane-side catalyst concentration is reduced. Outside the region 80, it is arranged so as to fill a space formed between the polymer electrolyte membrane 1 and the gas diffusion layer 3a.
  • the second space filling member 42 has an outer periphery of the gas diffusion layer 3a and an inner periphery of the second space filling member 42 when viewed from the substantially normal direction of the main surface of the polymer electrolyte membrane 1. It is formed so as to be located between the outer periphery.
  • the second space filling member 43 can be formed and installed in the same manner as the first space filling member 32 in the third embodiment.
  • the membrane-catalyst layer assembly and membrane-electrode assembly of the present embodiment having the above-described configuration have excellent durability, and therefore, the membrane-catalyst layer assembly or membrane-electrode assembly of the present embodiment described above.
  • the polymer electrolyte fuel cell according to the present embodiment including the coalescence also has excellent durability.
  • the membrane side catalyst concentration reduction region 80 in the membrane catalyst layer assembly 9 of the fourth embodiment has the same configuration as the membrane side catalyst concentration reduction region 80 of the first embodiment, but is not limited thereto.
  • the membrane side catalyst concentration reduction region 80 in Modification 1 of the catalyst layer assembly 9 of the first embodiment 80 It is good also as such a structure.
  • the gasket and the first space filling member may be integrated, or the gasket and the second space filling member may be integrated.
  • the unit cell has been described as the polymer electrolyte fuel cell.
  • a plurality of unit cells (for example, 10 to 200 units) are stacked to form a stack.
  • the stack is sandwiched between a pair of end plates via a current collecting plate and an insulating plate, and the stack, current collecting plate, insulating plate and end plate are fixed with fastening bolts and nuts.
  • the cooling fluid channel is provided in both the anode side and the force sword side separator.
  • the cooling fluid channel may be provided in one of the separators.
  • a current collector plate may be provided on the surface opposite to the surface in contact with the membrane electrode assembly of the separator regardless of the presence or absence of the cooling fluid flow path.
  • a cooling fluid channel may not be provided between each unit cell, and a cooling fluid channel may be provided for every two unit cells, for example.
  • a single gas flow path for fuel gas on one side and a gas flow path for oxidant gas on the other side serves as both an anode side separator plate and a force sword side separator plate. It is also possible to use a separator.
  • the force described as the membrane-side catalyst concentration reduction region is formed over the entire outer periphery of the first catalyst layer is not limited to this. Instead, it may be formed such that a part thereof is omitted within the range where the effects of the present invention can be obtained.
  • the gas diffusion electrode has a configuration in which another layer is disposed between the gas diffusion layer and the catalyst layer (for example, the gas diffusion electrode has water repellency and electron conductivity and has a gas diffusion property). A structure in which another layer for improving the adhesion between the catalyst layer and the catalyst layer is disposed).
  • the polymer electrolyte fuel cell according to the first embodiment of the present invention described above was produced.
  • the size of the first catalyst layer 2a on the anode side was set to 60 mm x 60 mm, and the size of the second catalyst layer 2b on the force sword side was set to 58 mm x 58 mm.
  • the anode-side refractory proton conductive layer 8 was formed so that its width (distance between the outer edge and the inner edge shown in FIG. 1) was 3 mm.
  • the refractory proton conductive layer 8 has an inner edge on the outer periphery of the first catalyst layer 2a when viewed from a direction substantially normal to the main surface of the polymer electrolyte membrane 1. They were formed so that the outer edge of the main surface of the second catalyst layer 2b was located between the outer edge and the inner edge.
  • the size of the first catalyst layer 2a on the anode side was 140 mm ⁇ 140 mm
  • the size of the second catalyst layer 2b on the force sword side was 138 mm ⁇ 138 mm.
  • Example 1 The following power generation tests were performed on the single cells fabricated in Example 1 and Comparative Example 1.
  • hydrogen was used for the anode gas under the conditions of a humidification temperature of the anode gas of 50 ° C, a cell temperature of 90 ° C, and a humidification temperature of the sword gas of 50 ° C.
  • oxygen used in Sodoga scan, hydrogen utilization rate of 70%, an oxygen utilization rate of 55% at a current density 0. 16AZcm 2, was generated by driving 1500 hours.
  • the humidifying conditions for the cell of Example 1 are more severe than the humidifying conditions for the cell of Comparative Example 1 described later.
  • the humidifying conditions were the same as that of Example 1 except that the humidification temperature of the anode gas was 60 ° C and the humidification temperature of the strong sword gas was 60 ° C. Power was generated under the same conditions as the battery.
  • Example 1 The unit cell of Example 1 and the unit cell of Comparative Example 1 were continuously generated under the above conditions, and the power generation times when the output battery voltage was 0V were compared. The results are shown in Table 1.
  • the polymer electrolyte fuel cell of Example 1 included in the polymer electrolyte fuel cell of the present invention has severer operating conditions than the polymer electrolyte fuel cell of Comparative Example 1 ( It was confirmed that it has excellent durability despite the humidification conditions).
  • the present invention is useful as a means for producing a highly durable fuel cell with high productivity, and is a fuel cell using a polymer solid electrolyte membrane, particularly a stationary cogeneration system or an electric vehicle. Etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 互いに対向して配置された第一の触媒層(2a)及び第二の触媒層(2b)と、第一の触媒層(2a)と第二の触媒層(2b)との間に配置され、互いに対向する第1主面(F10)及び第2主面(F20)を有する高分子電解質膜1と、第一の触媒層(2a)の外周と高分子電解質膜1の第1主面(F10)とに接触するように形成された水素イオン伝導性と耐火性とを有する膜側触媒濃度低減領域80と、を有しており、膜側触媒濃度低減領域(80)の第一の触媒層(2a)と接触する縁と該接触する縁と対向する縁の間に、第二の触媒層(2b)の主面の外周が位置し、膜側触媒濃度低減領域(80)は、高分子電解質膜(1)の第1主面(F10)に接触し水素イオン伝導性と耐火性とを有する第一の部分(8)と、第一の部分(8)以外の残りの部分であり水素イオン伝導性と耐火性とを有し更に触媒を含む第二の部分(81)とを含んでいる、膜触媒層接合体。

Description

明 細 書
膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池 技術分野
[0001] 本発明は、膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池に関す る。
背景技術
[0002] 陽イオン (水素イオン)伝導性を有する高分子電解質膜を用いた燃料電池は、水素 を含有する燃料ガスと、空気などの酸素を含有する酸化剤ガスとを電気化学的に反 応させて、電力と熱とを同時に発生させる。
[0003] ここで、図 12は、従来の高分子電解質形燃料電池に搭載される単電池の基本構 成の一例を示す概略断面図である。図 12に示すように、従来の高分子電解質形燃 料電池に搭載される単電池 111には、水素イオンを選択的に輸送する高分子電解 質膜 101の両面に、電極触媒 (例えば白金金属などの貴金属触媒)を担持した導電 性粒子 (例えばカーボン粒子)と、水素イオン伝導性を有する高分子電解質との混合 物を含んで構成された触媒層 102a及び触媒層 102bが形成された膜電極接合体 1 10が含まれている。
[0004] 触媒層 102a及び 102bの外側には、それぞれガス拡散層 103a及び 103bが配置 されており、触媒層 102aとガス拡散層 103a {アノード (燃料極)又は力ソード (酸化剤 極) }を構成し、触媒層 102bとガス拡散層 103bとがガス拡散電極 {力ソード (酸化剤 極)又はアノード (燃料極) }を構成して 、る。
[0005] また、図 12に示す従来の単電池 111においては、ガス拡散電極に供給される燃料 ガス及び酸化剤ガスの外部へのリーク防止や、前記 2種類のガスの混合防止のため 、ガス拡散電極の周囲に、高分子電解質膜 101を挟持するようにしてガスケット 106a 及び 106bが配置されている。なお、ガスケット 106a及び 106bは、ガス拡散電極及 び高分子電解質膜 101と一体化してあらかじめ組み立てられ、得られた構造体を膜 電極接合体と呼ぶこともある。
[0006] また、図 12に示すように、単電池 111は、隣接する複数の単電池を機械的に固定 しかつ電気的に接続するための、導電性を有する板状のセパレータ 104a及び 104b を有する。セパレータ 104a及び 104bがそれぞれガス拡散電極のガス拡散層 103a 及び 103bに接触する側の主面の部分には、反応ガス (燃料ガス又は酸化剤ガス)を 供給し、生成ガスや余剰ガスを運び去るためのガス流路 105a及び 105bが形成され ている。
[0007] ガス流路 105a及び 105bのそれぞれは、複数の直線状の溝と、これら直線状の溝 のうちの隣接するもの同士を連結するターン状の溝 (カーブした形状の溝)と、力 な る蛇行した形状を有する溝を有する、いわゆるサーペンタイン型のガス流路が用いら れることが多い。
[0008] より詳しく説明すると、サーペンタイン型のガス流路は以下の構造を有している。す なわち、隣り合う 2本の直線状の溝とこれら 2本の直線状の溝を連結する 1本のターン 状の溝とが、 2本の直線状の溝のうち上流側に配置されるものの下流側の端とターン 状の溝の上流側の一端とが接続され、当該ターン状の溝の下流側の他端が 2本の直 線状の溝のうち下流側に配置されるものの上流側の端とが接続されるようにして形成 された構造を有している。そして、上記の 2本の直線状の溝のうち下流側に配置され るものの下流側の端は、更に下流に形成される別のターン状の溝の上流側の一端に 接続される。このように、複数の直線状の溝と複数のターン状の溝とが上流側力 下 流側にかけて上述のようにして順次連結されることにより 1本の蛇行した形状を有する ガス流路 (サーペンタイン型のガス流路)が形成される。
[0009] サーペンタイン型のガス流路は、上述の 1本の蛇行した形状を有する溝からなるタ イブと、当該「1本の蛇行した形状を有する溝」が複数並んだ状態で形成されているタ イブとがある。サーペンタイン型のガス流路を構成する各溝は等間隔で形成されて ヽ てもよく、異なる間隔で形成されていてもよい。
[0010] なお、ガス流路 105a及び 105bは、セパレータ 104a及び 104bと別に設けることも できるが、溝を設けてガス流路 105a及び 105bを構成するのが一般的である。
[0011] 更に、発電が行われると膜電極接合体 110は発熱するため、膜電極接合体 110の 温度を許容される動作温度に維持するために、冷却水等の冷却流体を流通させて 余剰熱を取り除くことが行われる。そこで、一般的にはセパレータ 104a及び 104bの 少なくとも一方において、ガス流路 105a及び 105bが形成された面の反対側の面に 、冷却流体流路 107a及び 107bを設け、ここに冷却水などの冷却流体を流通させて いる。
[0012] 冷却流体流路 107a及び 107bとしては、複数の直線状の溝と、隣接する直線状の 溝の端を上流側力 下流側へ連結するターン状の溝 (カーブした形状の溝)と、から なるサーペンタイン型の冷却流体流路が用いられることが多ぐ各溝は等間隔で形成 されているのが一般的である。また、冷却流体流路 107a及び 107bは、略平行な複 数の直線状の溝によって構成されることもある力 この場合も各溝は等間隔に形成さ れているのが一般的である。
[0013] ここで、上記のような高分子電解質形燃料電池の力ソード (酸化剤極)およびァノー ド (燃料極)において進行する電極反応は、以下のとおりである。
[0014] アノード :2H →4H++4e— · · · (1)
2
力ソード :4H+ + 4e" + O → 2H O · · · (2)
2 2
そして、アノードで上記(1)の反応式により生成した水素イオンが H+ ( H O)の水和
2 状態で高分子電解質膜 101を透過 (拡散)して力ソードに至り、上記 (2)の反応式が 進行する。なお、アノードには反応に必要な水素 (ガス)が供給され、力ソードには酸 素 (ガス)が供給されている。
[0015] 高分子電解質形燃料電池の実用化のためには、膜電極接合体 110又は当該膜電 極接合体 110に含まれる膜触媒層接合体 (触媒層 102a及び 102bと高分子電解質 膜 101との接合体)の耐久性の向上が重要であり、これにつ 、て従来力も様々な検 討がなされている。
[0016] 例えば、特許文献 1には、耐久性の向上を意図して、「高分子電解質膜と電極との 間に、触媒を担持した導電性粒子からなる触媒層と、該触媒層をその外周縁に沿つ て取り囲み該触媒層の占める領域を区画する触媒隣接領域に、耐火性を有する粒 子を敷設してなる耐火層を備えた燃料電池 (高分子電解質形燃料電池) Jが提案さ れている。
特許文献 1:特開平 7— 201346号公報
発明の開示 発明が解決しょうとする課題
[0017] しかしながら、上記特許文献 1に記載の従来技術であっても、高分子電解質膜の 劣化 (機械的損傷及び化学的劣化)の進行は必ずしも十分には防止できず未だ改 善の余地があった。
[0018] そこで、本発明は、上記のような問題を解決するためになされたものであり、優れた 耐久性を有する膜触媒層接合体を提供することを目的とする。
[0019] また、本発明は、上記本発明の膜触媒層接合体を備えており、優れた耐久性を有 する膜電極接合体を提供することを目的とする。
[0020] 更に本発明は、上記本発明の膜触媒層接合体又は膜電極接合体を備えており、 優れた耐久性を有する高分子電解質形燃料電池を提供することを目的とする。 課題を解決するための手段
[0021] 上述のような課題を解決すベぐ本発明者らは更に鋭意研究を重ねた結果、以下 の知見を得た。即ち、本発明者らは、アノード側の触媒層と力ソード側の触媒層との 間において組立公差に基づくわず力なずれ (先に述べた高分子電解質膜の主面の 略法線方向から見た場合のずれ)が生じ、当該ずれが触媒層外周部での高分子電 解質膜の劣化を引き起こすことを見出した。
[0022] より詳しく説明すると、即ち、本来、アノード側の触媒層及び力ソード側の触媒層で は、上記(1)及び(2)の反応が起こり、高分子電解質膜を通るのは H+のみである。
[0023] しカゝしながら、水に溶存した酸素ガスや水素ガスが対極から高分子電解質膜を通つ て、クロスリークしてくると、上記(1)及び(2)の反応に対し、下記(3)の燃焼反応が副 反応として競争的に起こる。そして、この式(3)の反応は発熱反応であるため、熱で 高分子電解質膜を劣化させる。
[0024] 2H + O → 2H O · · · (3)
2 2 2
また、高分子電解質膜の劣化は、下記式 (7)で表されるように、酸素還元の副反応 により生成する過酸ィ匕水素に起因するヒドロキシルラジカルによっても生じると考えら れている。
[0025] H + O → H O · · · (7)
2 2 2 2
ここで、クロスリークする反応ガスの量は、対極の触媒層の存在の有無に大きく関わ ることがわかった。触媒層が存在する部分においては、上記(1)及び(2)の反応が起 こるため、水素ガス及び酸素ガスが消費され、本来、電極反応を起こすべき電極で反 応せずに高分子電解質膜を通過して反対の電極へクロスリークする反応ガスの量は 少ない。
[0026] しかし、触媒層のない部分では、上記(1)及び(2)の反応が起こらないため、水素 ガス及び酸素ガスの濃度が大きくなり、それらの分圧に比例してクロスリークする反応 ガスの量が多くなる。
[0027] さらに調べると、上述のように、アノード側の触媒層と力ソード側の触媒層との間に おいて組立公差に基づくわずかなずれ (前記高分子電解質膜の主面の略法線方向 力も見た場合のずれ)が生じ、このずれに起因して高分子電解質膜上にアノード側の 触媒層と力ソード側の触媒層のいずれかが存在しない部分が形成されることがわか つた o
[0028] そして、触媒層の存在しな 、側からのクロスリークガス量が増加し、対極の触媒層で 上記(3)の反応により生じる生成熱や上記(7)の反応により生じる過酸ィ匕水素等の 過酸化物、及び、当該過酸ィ匕物等力 生成する酸素を構成元素として含むラジカル 等の活性酸素種により高分子電解質膜が劣化することがわ力 た。そして、この組立 公差をゼロにすることは、高分子電解質形燃料電池の実際の製造工程上極めて困 難である。
[0029] 本発明者らは、以上のような知見に基づいて上述の組立公差をゼロにすることが極 めて困難であることに着目し鋭意研究を重ねた結果、一方の触媒層の主面の面積( 大きさ)と他方の触媒層の主面の面積 (大きさ)とに意図的に差を設け、更に主面の 面積の小さい方の触媒層の外周に、後述する膜側触媒濃度低減領域にの領域は、 高分子電解質膜の一方の主面 (第 1主面)に接触する部分 (第 1の部分)と第 1の部 分以外の残りの部分 (第 2の部分)との少なくとも 2つの領域を有する。そして第 1の部 分には、触媒を含有させないか又は触媒を含有させたとしても、反応ガスの上記(3) 及び (7)の反応を触媒作用することがない、又は、反応ガスの上記(3)及び (7)の反 応を触媒作用しても反応によって生成される反応熱で高分子電解質膜を劣化させる ことがない量 (濃度)の触媒を含有させ、第 2の部分には、触媒層に含まれる触媒濃 度よりも低い触媒濃度の触媒を含有させる。 }を設けて、当該膜側触媒濃度低減領 域の高分子電解質膜からより遠 、部分にぉ 、て反応ガスの上記(3)及び (7)の反応 を起こさせ、膜側触媒濃度低減領域の高分子電解質膜に接触する部分 (高分子電 解質膜に近い部分)においては上記(3)及び (7)の反応を抑制することが、上述の 目的を達成する上で極めて有効であることを見出し、本発明に想到した。
[0030] 即ち、本発明は、互いに対向して配置された第一の触媒層及び第二の触媒層と、 前記第一の触媒層と前記第二の触媒層との間に配置されており、互いに対向する第 1主面及び第 2主面を有しており、前記第 1主面が前記第一の触媒層の一方の主面 と接触するように配置され、前記第 2主面が前記第二の触媒層の一方の主面と接触 するように配置された高分子電解質膜と、前記第一の触媒層の外周と前記高分子電 解質膜の前記第 1主面とに接触するように形成された水素イオン伝導性と耐火性とを 有する膜側触媒濃度低減領域と、を少なくとも有しており、前記膜側触媒濃度低減 領域の前記第一の触媒層と接触する縁と該接触する縁と対向する縁の間に、前記第 二の触媒層の主面の外周が位置し、前記膜側触媒濃度低減領域は、前記高分子電 解質膜の前記第 1主面に接触し水素イオン伝導性と耐火性とを有する第一の部分と 、前記第一の部分以外の残りの部分であり水素イオン伝導性と耐火性とを有し更に 触媒を含む第二の部分とを含んで 、る、膜触媒層接合体を提供する。
[0031] 本構成によれば、以下のようなメカニズムによって膜触媒層接合体の優れた耐久性 を実現することができる。
[0032] 即ち、上述したように高分子電解質形燃料電池の作動時には、高分子電解質膜の 第二の触媒層側において、第二の触媒層の存在しない部分から、第二の触媒層に 流れている反応ガスが高分子電解質膜中をクロスリークして第一の触媒層側へ移動 する場合がある。
[0033] このような場合、クロスリークによって第一の触媒層側に到達した反応ガスは、膜側 触媒濃度低減領域の高分子電解質膜と接触する第一の部分に到達する。そして第 一の部分には、触媒が含有されていないのでクロスリークした反応ガスは、上記(3) の燃焼反応や上記 (7)の反応を起こさずに、第二の部分へ到達する。そして、第二 の部分に到達した反応ガスは、上記(3)又は(7)の反応を起こす。 [0034] これらの反応は、膜側触媒濃度低減領域の第一の部分を介して高分子電解質膜 に直接には接しない場所である第二の部分で起こるため、高分子電解質膜の熱によ る劣化や過酸ィ匕水素等の活性酸素種による劣化を抑制することができる。
[0035] なお、高分子電解質膜の主面の略法線方向カゝらみた場合に、膜側触媒濃度低減 領域は、水素イオン伝導性を有するので、上記(1)及び(2)の反応に必要な H+の移 動を妨げることがないため、高分子電解質形燃料電池としての発電を妨げることはな ぐ当該膜側触媒濃度低減領域の第二の部分を触媒層として使用することもできる。 このため、本発明に係る膜触媒層接合体を搭載した高分子電解質形燃料電池では 、省スペースで効率のよい発電を行うことができる。
[0036] また、第一の触媒層の位置と第二の触媒層の位置とを完全に合わせなくてもよいた め、膜触媒層接合体の作製が簡易になり、生産性が向上する。
[0037] また、本発明の膜触媒層接合体では、前記第一の部分には、当該第一の部分に 流入する反応ガスの反応を触媒作用することがない、又は、反応ガスの反応を触媒 作用しても反応によって生成される反応熱で高分子電解質膜を劣化させることがな い量の触媒が含まれており、前記第一の部分の触媒濃度が、前記第二の部分の触 媒濃度及び前記第一の触媒層の触媒濃度より低くなるように形成されていてもよい。
[0038] このように、膜側触媒濃度低減領域の第一の部分に僅かに触媒が含有される場合 であっても上記 (3)又は (7)の反応に対する触媒濃度が実質的にゼロとなる構成とす ることにより、第一の部分では、クロスリークした反応ガスによる上記 (3)又は (7)の反応 が十分に抑制される。そして、クロスリークした反応ガスは第一の部分で上記(3)又は (7)の反応を余り起こさずに第二の部分へ到達する。そして、第二の部分に到達した 反応ガスは、高分子電解質膜から遠い当該第二の部分で上記 (3)又は(7)の反応を 起こして消費される。そのため、高分子電解質膜の熱による劣化や過酸化水素等の 活性酸素種による劣化を充分に抑制することができる。
[0039] また、本発明の膜触媒層接合体では、前記膜側触媒濃度低減領域は、前記高分 子電解質膜の前記第 1主面に対して遠い部位から前記第 1主面に近い部位にかけ て触媒濃度が低くなるように形成されて 、てもよ 、。
[0040] 例えば、第 1の部分に触媒を含有させない構成を採用する場合、第 2の部分にお いて、前記高分子電解質膜の前記第 1主面に対して遠い部位から前記第 1主面に近 い部位にかけて触媒濃度が低くなるように形成されていてもよい。また、例えば、第 1 の部分に触媒を含有させる構成 (上述の触媒濃度を実質的にゼロとする構成)を採 用する場合、第 2の部分において、前記高分子電解質膜の前記第 1主面に対して遠 い部位力 前記第 1主面に近い部位にかけて触媒濃度が低くなるように形成されて いてもよい。
[0041] 上記の何れの構成を採用する場合であっても、高分子電解質膜に近い第一の部 分で上記(3)又は(7)の反応を余り起こさせずに、高分子電解質膜から遠!、第二の 部分で上記(3)又は(7)の反応を起こさせてクロスリークする反応ガスを消費すること ができる。
[0042] また、本発明の膜触媒層接合体では、前記第一の部分が前記高分子電解質膜の 前記一方の主面に接触して延在する耐火性プロトン伝導層で構成されており、前記 第二の部分が、前記第一の触媒層に含まれる構成材料と同一の構成材料を少なくと も含んでおり、かつ、該第一の触媒層に連続し、かつ、前記耐火性プロトン伝導層を 覆うように層状に延在する第一の触媒層への付加部分で構成されて 、てもよ ヽ。この 場合の具体例としては、例えば、第一の部分の構成材料として例えば触媒を担持し ていない電子伝導性のカーボンを使用し、反応熱の発生する第二の部分の構成材 料として、触媒層と同等の触媒機能をもたせつつ優れた耐火性 (耐熱性)をもたせる 観点から、触媒の担体として第一の部分の構成材料として使用するカーボンよりも高 Vヽ耐熱性を有するカーボン (例えば結晶化度の高 ヽ電子伝導性カーボン)を採用す る構成があげられる。
[0043] また、本発明の膜触媒層接合体では、前記膜側触媒濃度低減領域が、水素イオン 伝導性を有する高分子電解質と、耐火性 (耐熱性)を有する無機粒子と、を構成材料 として含んでいてもよい。ここで、この無機粒子としては、耐火性 (耐熱性)を有してい る粒子であれば特に限定されない。この無機粒子としては、高分子電解質形燃料電 池の作動条件 (作動温度 0°C〜120°C)において化学的に安定で高分子電解質を 分解させるような化学種を発生させない粒子が好ましい。例えば、金属を構成材料と して含む粒子であってもよぐ非金属を構成材料として含む粒子であってもよい。非 金属材料としては、例えば、セラミックス {熱処理によって製造された非金属の無機質 固体材料 (但し構成元素として金属元素を含む場合がある。)}があげられる。セラミツ タスとしては、例えば、金属酸化物、非金属酸ィ匕物(後述のケィ素酸ィ匕物など)、非金 属化合物 (非金属炭化物、非金属窒化物など)、金属非金属化合物 (金属炭化物、 金属窒化物など)があげられる。
[0044] 更に、上記無機粒子は、カーボン及びシリカからなる群より選択される少なくとも 1種 の無機質固体材料を構成材料として含む粒子であってもよい。もちろん、無機粒子と してカーボンを構成材料として含む粒子のみを採用してもよぐ無機粒子としてシリカ を構成材料として含む粒子のみを採用してもよ 、。
[0045] 上述のカーボン粒子としては、結晶化された耐酸ィ匕性を有するカーボン粒子であつ てもよい。この場合、結晶化されたカーボン粒子は、電子伝導性を有するグラフアイト 粒子であってもよい。この場合、膜側触媒濃度低減領域のうちの少なくとも一部に電 子伝導性を付与することができる。また、結晶化されたカーボン粒子は、放熱性絶縁 板に使用されている高純度単結晶のカーボンの粒子(上記セラミックスに属する粒子 )であってもよい。
[0046] また、本発明に係る膜触媒層接合体では、前記高分子電解質膜の前記第 2主面に 、前記第二の触媒層の外側に該第二の触媒層と重ならないようにして配置された第 一の空間充填部材を更に有しており、前記高分子電解質膜の主面の略法線方向か らみた場合に、前記第一の空間充填部材の内縁が前記膜側触媒濃度低減領域の 前記第一の触媒層と接触する縁と該接触する縁と対向する縁との間に位置していて ちょい。
[0047] また、本発明に係る膜触媒層接合体では、前記第一の空間充填部材は、ェンジ- ァリングプラスチックを構成材料として含んで 、てもよ!/、。
[0048] また、本発明に係る膜触媒層接合体では、前記高分子電解質膜の前記第 1主面に
、前記膜側触媒濃度低減領域の外側に該膜側触媒濃度低減領域と重ならな!/ヽよう にして配置された第二の空間充填部材を更に有して 、てもよ 、。
[0049] また、本発明に係る膜触媒層接合体では、前記第二の空間充填部材は、ェンジ- ァリングプラスチックを構成材料として含んで 、てもよ!/、。 [0050] また、本発明に係る膜触媒層接合体では、前記第一の触媒層がアノード用触媒層 であり、前記第二の触媒層が力ソード用触媒層であってもよい。
[0051] 更に、本発明に係る膜触媒層接合体では、前記第一の触媒層が力ソード用触媒層 であり、前記第二の触媒層がアノード用触媒層であってもよい。
[0052] また、本発明に係る膜電極接合体は、互いに対向配置される一対のガス拡散層と、 前記一対のガス拡散層の間に配置された請求項 1に記載の膜触媒層接合体と、を 備える。
[0053] 本発明に係る膜電極接合体は、上述の本発明に係る膜触媒層接合体を備えるた め、優れた耐久性を示す。
[0054] また、本発明に係る高分子電解質形燃料電池は、前記膜電極接合体を備える。
[0055] 本発明に係る高分子電解質形燃料電池は、上述の本発明に係る膜触媒層接合体 又は膜電極接合体を備えるため、優れた耐久性を示す。
発明の効果
[0056] 本発明によれば、優れた耐久性を有する膜触媒層接合体を提供することができる。
また、本発明によれば、省スペースで効率のよい発電を行うことができる高分子電解 質形燃料電池に使用する膜触媒層接合体を提供することができる。また、本発明に よれば、優れた耐久性を有する膜電極接合体を提供することができる。更に、本発明 によれば、上記本発明の膜触媒層接合体又は膜電極接合体を備えており、優れた 耐久性を有する高分子電解質形燃料電池を提供することができる。また、本発明に よれば、膜触媒層接合体の作製が簡易になり、膜触媒層接合体の生産性が向上す る。
図面の簡単な説明
[0057] [図 1]図 1は、本発明の高分子電解質形燃料電池の第一実施形態に搭載される単電 池の基本構成の一例を示す概略断面図である。
[図 2]図 2は、図 1に示す単電池 11に搭載される膜電極接合体の基本構成を示す概 略断面図である。
[図 3]図 3は、図 2に示す膜電極接合体 10を構成する膜触媒層接合体を示す概略断 面図である。 [図 4]図 4は、本発明の高分子電解質形燃料電池の第二実施形態において、単電池 11に搭載される膜電極接合体 10を構成する膜触媒層接合体を示す概略断面図で ある。
[図 5]図 5は、本発明の高分子電解質形燃料電池の第三実施形態において単電池 1 1に搭載される膜電極接合体 30を示す概略断面図である。
[図 6]図 6は、本発明の高分子電解質形燃料電池の第四実施形態において単電池 1
1に搭載される膜電極接合体 40を示す概略断面図である。
[図 7]図 7は、図 3に示す膜触媒層接合体を示す斜視図である。
[図 8]図 8は、第一実施形態の膜触媒層接合体の変形例を模式的に示す断面図であ る。
[図 9]図 9は、図 8に示す膜側触媒濃度低減領域に含まれる触媒濃度と高分子電解 質膜 1の主面と接触する面力もの距離との関係を示したグラフである。
[図 10]図 10は、図 8に示す膜側触媒濃度低減領域に含まれる触媒濃度と高分子電 解質膜 1の主面と接触する面力もの距離との関係を示したグラフである。
[図 11]図 11は、図 8に示す膜側触媒濃度低減領域に含まれる触媒濃度と高分子電 解質膜 1の主面と接触する面力もの距離との関係を示したグラフである。
[図 12]図 12は、従来の高分子電解質形燃料電池に搭載される単電池の基本構成の 一例を示す概略断面図である。
符号の説明
1 高分子電解質膜
2a 第一の触媒層
2b 第二の触媒層
3a ガス拡散層
3b ガス拡散層
4a セパレータ
4b セノ レータ
5a ガス流路
5b ガス流路 a ガスケット
b ガスケット
a 冷却流体流路
b 冷却流体流路
第一の部分 (耐火性プロトン伝導層) 膜触媒層接合体
0 膜電極接合体
1 単電池
2 第一の空間充填部材
3 第二の空間充填部材
0 膜側触媒濃度低減領域
1 第二の部分
01 高分子電解質膜
02a 触媒層
02b 触媒層
03a ガス拡散層
03b ガス拡散層
04a セノ レータ
04b セパレータ
05a ガス流路
05b ガス流路
06a ガスケット
06b ガスケット
07a 冷却流体流路
07b 冷却流体流路
09 膜触媒層接合体
10 膜電極接合体
11 単電池 発明を実施するための最良の形態
[0059] 以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、全 ての図面において、同一又は相当部分には同一符号を付し、重複する説明は省略 する。
[0060] [第一実施形態]
図 1は、本発明の高分子電解質形燃料電池の好適な一実施形態に搭載される単 電池の基本構成の一例を示す概略断面図である。まず、図 1に示す単電池 11の構 成要素について説明する。
[0061] 図 1に示すように、本発明の高分子電解質形燃料電池に搭載される単電池 11は、 水素イオンを選択的に輸送する高分子電解質膜 1と、高分子電解質膜 1の両面に配 置された、電極触媒 (例えば白金金属などの貴金属触媒)を担持した導電性粒子 (例 えばカーボン粒子)及び水素イオン伝導性を有する高分子電解質との混合物を含ん で構成された第一の触媒層 2a及び第二の触媒層 2bと、を具備する膜電極接合体( MEA: Membrane- electrode assembly) 10 備 てぃ 。
[0062] また、第一の触媒層 2a及び第二の触媒層 2bの外側には、それぞれガス拡散層 3a 及び 3bが配置されており、単電池 11は、第一の触媒層 2aとガス拡散層 3aとを含む ガス拡散電極 {アノード (燃料極))、及び第二の触媒層 2bとガス拡散層 3bとを含む ガス拡散電極 {力ソード (酸化剤極) }を備えている。
[0063] 更に、図 1に示す単電池 11は、ガス拡散電極に供給される燃料ガス及び酸化剤ガ スの外部へのリーク防止や、前記 2種類の反応ガスの混合防止のため、ガス拡散電 極の周囲に、高分子電解質膜 1を挟持するようにして、例えば環状でかつ略矩形の ガスケット 6a及び 6bが配置された構成を有する。なお、ガスケット 6a及び 6bは、ガス 拡散電極及び高分子電解質膜 1と一体化してあらかじめ組み立てられ、得られた構 造体を膜電極接合体と呼ぶこともある。
[0064] また、図 1に示すように、単電池 11は導電性を有する板状のセパレータ 4a及び 4b を有する。アノード側のガス拡散層 3a及び力ソード側のガス拡散層 3bに反応ガス (燃 料ガス及び酸化剤ガス)を供給し、電極反応により生成した生成物や未反応の反応 物を含むガスを、膜電極接合体 10の外部に運び去るためのガス流路 5a及び 5bが、 一方の面(即ちアノード側のセパレータ 4a及び力ソード側のセパレータ 4bが膜電極 接合体 10と接する側の主面)に形成されている。
[0065] ガス流路 5a及び 5bの構造は特に限定されることないが、例えば、それぞれ複数の 直線状の溝と、隣接する直線状の溝の端を上流側から下流側へ連結するターン状の 溝 (カーブした形状の溝)と、力 なるサーペンタイン型のガス流路を用いることができ 、また、各溝は等間隔で形成されていればよい。
[0066] サーペンタイン型のガス流路は、 1本の蛇行した形状を有する溝力 なるタイプと、 当該「1本の蛇行した形状を有する溝」が複数並んだ状態で形成されているタイプと がある。サーペンタイン型のガス流路を構成する各溝は等間隔で形成されて ヽてもよ ぐ異なる間隔で形成されていてもよい。
[0067] 更に、発電が行われると膜電極接合体 10は発熱するため、膜電極接合体 10の温 度を許容される動作温度に維持するために、冷却水等の冷却流体を流通させて余 剰熱を取り除くことが行われる。そこで、セパレータ 4a及び 4bは、ガス流路 5a及び 5b が形成された面の反対側の面に、冷却流体流路 7a及び 7bが設けられた構成を有し ている。
[0068] 冷却流体流路 7a及び 7bの構造は特に限定されることないが、例えば、複数の直線 状の溝と、隣接する直線状の溝の端を上流側から下流側へ連結するターン状の溝( カーブした形状の溝)と、力 なるサーペンタイン型の冷却流体流路を用いることがで き、また、各溝は等間隔で形成されていればよい。また、冷却流体流路 7a及び 7bは 、略平行な複数の直線状の溝によって構成されてもよぐこの場合も各溝は等間隔に 形成されて 、るのが一般的である。
[0069] ここで、図 2は、図 1に示す単電池 11に搭載される本発明の膜電極接合体の概略 断面図であり、図 3は、図 2に示す膜電極接合体 10に搭載される本発明の膜触媒層 接合体(CCM : Catalyst- coated membrane)の概略断面図である。また、図 7は、図 3 に示す膜触媒層接合体を示す斜視図である。なお、図 3においては、膜触媒層接合 体の上下方向を図における上下方向として表している。また、図 7においては、一部 を切り欠 、て内部構造を表して 、る。
[0070] 図 2に示すように、本実施形態の膜電極接合体 10は、本発明の膜触媒層接合体 9 の、第一の触媒層 2aのうちの高分子電解質膜 1が接する面とは反対側の面に配置さ れた、ガス拡散層 3aと、第二の触媒層 2bのうちの高分子電解質膜 1とは反対側の面 に配置された、ガス拡散層 3bと、を有する。また、図 3に示すように、本実施形態の膜 触媒層接合体 9は、互いに対向して配置された第一の触媒層 2a及び第二の触媒層 2bと、第一の触媒層 2aと第二の触媒層 2bとの間に配置される高分子電解質膜 1と、 を有する。
[0071] ここで、本発明の膜触媒層接合体 9について、図 3及び図 7を参照しながら詳細に 説明する。
[0072] 図 3及び図 7に示すように、本発明の膜触媒層接合体 9における高分子電解質膜 1 は、略 4角形 (ここでは、矩形)に形成され、互いに対向する第 1主面 F10と第 2主面 F 20を有しており、同様に、第一及び第二の触媒層 2a、 2bは、互いに対向する略 4角 形 (ここでは、矩形)の主面を有している。高分子電解質膜 1の第 1主面 F10には、第 一の触媒層 2aの一方の主面(下面)が第 1主面 F10と接触するようにして配置されて おり、また、第 2主面 F20には、第二の触媒層 2bの一方の主面(上面)が第 2主面 F2 0と接触するように配置されている。第一の触媒層 2aは、高分子電解質膜 1の主面の 略法線方向(厚み方向)からみた場合に、その外周(図 3において Rで示される部分) が第二の触媒層 2bの外周(図 3において Qで示される部分)の内側に位置するように 形成されている。
[0073] また、高分子電解質膜 1の第 1主面 F10には、第一の触媒層 2aの外周に接触する ように膜側触媒濃度低減領域 80が配置されて ヽる。膜側触媒濃度低減領域 80は、 ここでは、環状で略矩形に形成されており、具体的には、第一の触媒層 2aの外周と 接触する縁 (以下、内縁という)と、該内縁と対向する側の縁 (以下、外縁という)を有 するように形成されている。そして、膜側触媒濃度低減領域 80の外縁 (図 3において Pで示される部分)は、高分子電解質膜 1の主面の略法線方向カゝらみた場合に、第 二の触媒層 2bの外周の外側に位置するように、かつ、高分子電解質膜 1の外周より 内方に位置するように形成されている。即ち、第二の触媒層 2bは、低濃度触媒層領 域 80の内縁と外縁との間に、その外周が位置するように配置されて 、る。
[0074] また、膜側触媒濃度低減領域 80は、高分子電解質膜 1の第 1主面 F10に接触する 部分である第一の部分 8と、その残りの部分である第二の部分 81とを有しており、ここ では、高分子電解質膜 1の主面の略法線方向からみた場合に、第一の部分 8と第二 の部分 81の 2層構造となるように形成されて!、る。
[0075] 第一の部分 8は、触媒を担持していない無機粒子と高分子電解質とから構成され た層状の耐火性プロトン伝導層 8で形成されている。耐火性プロトン伝導層 8は、互 いに対向する 1対の主面を有しており、その一方の主面(下面)が高分子電解質膜 1 と接触している。また、第二の部分 81は、第一の触媒層 2aと同じ組成を有し、耐火性 プロトン伝導層 8の他方の主面(上面)を覆うように層状に形成されている。第二の部 分 81の一方の端 (正確には、内周)は、第一の触媒層 2aと連続するように形成されて いる。つまり、第二の部分 81は、第一の触媒層 2aと一体的に形成されていて、第一 の触媒層 2aへの付加部分、あるいは、第一の触媒層 2aの延長部分と観念することが できる。一方、第二の部分 81の他方の端 (正確には、外周)は、耐火性プロトン伝導 層 8の外周と一致するように(面一になるように)形成されている。なお、第二の部分 8 1の他方の端は、本発明の作用効果が得られる観点から、高分子電解質膜 1の主面 の略法線方向から見た場合に、耐火性プロトン伝導層 8の外周よりも外側になるよう に形成されていてもよい。
[0076] 上記の構成により、高分子電解質膜 1のうちの力ソード側の第二の触媒層 2bが存 在しな 、部分(図 1にお 、て Xで示される部分)からアノード側の第一の触媒層 2aに クロスリークする酸化剤ガスの量が増加しても、第二の触媒層 2bが存在しない部分 X と対向するアノード側の部分には、触媒を含まな ヽ耐火性プロトン伝導層 8が存在す るため、クロスリークした酸化剤ガスは燃料ガスと反応しない。そして、耐火性プロトン 伝導層 8を通過した酸化剤ガスは、膜側触媒濃度低減領域 80の第二の部分 81で燃 料ガスと反応する。
[0077] このため、第一の触媒層 2aの外周周縁部で燃料ガスとクロスリークした酸化剤ガス の急激な反応が生じないため、高分子電解質膜 1の劣化を防ぐことができる。また、 膜側触媒濃度低減領域 80の第二の部分 81で発生した過酸化水素等の活性酸素種 は高分子電解質膜 1まで到達しに《なり、また、燃料ガスと酸化剤ガスとが反応して 水が生成されるときに発生する反応熱は高分子電解質膜 1へ伝わりにくくなる。この ように過酸ィ匕水素及び反応熱をブロックすることにより、高分子電解質膜 1の劣化を 防ぐことができる。
[0078] また、膜側触媒濃度低減領域 80の第二の部分 81は、第一の触媒層 2aと実質的に 同じ構成であるので、該第二の部分 81を触媒層として使用することができる。このた め、本発明の膜触媒層接合体を搭載した高分子電解質形燃料電池では、省スぺー スで効率のょ 、発電を行うことができる。
[0079] 更に、上記のように、耐火性プロトン伝導層 8が、高分子電解質膜 1の外周と第一の 触媒層 2aの外周との間に配置されており、高分子電解質膜 1の主面の略法線方向 力もみた場合に、耐火性プロトン伝導層 8の外周と第二の部分 81の外周とがー致し ている構成とすると、製造を容易することができる。後述するように、例えば、高分子 電解質膜 1上に、耐火性プロトン伝導層 8を形成し、更に、第二の部分 81を形成する 場合、 1つのマスクのみを使用することで、高分子電解質膜 1上に耐火性プロトン伝 導層 8を形成した後に、第二の部分 81と第一の触媒層 2aとを一体形成することがで きる。
[0080] 次に、本発明の高分子電解質形燃料電池に搭載される単電池 11の各構成要素に ついて説明する。
[0081] 高分子電解質膜 1としては、従来公知のものを用いることができ、水素イオンに対す るイオン交換基を有する高分子電解質膜であり、水素イオンを膜厚方向に沿って選 択的に透過するものである。例えば CF
2—で構成された主鎖及びスルホン酸基(
- SO H)を末端の官能基として含む側鎖とを有するパーフルォロカーボンスルホン
3
酸力 なる高分子電解質膜を用いることができる。
[0082] 具体的には、例えば、 Nafion (米国 Du Pont社製)、 Flemion (旭硝子(株)製)及び Ac iplex (旭化成 (株)製)等の商品名で販売されて!ヽる高分子電解質膜を使用すること ができる。なお、高分子電解質膜 1の膜厚は、一般的に 20〜200 mである。
[0083] また、アノード側の第一の触媒層 2a及び力ソード側の第二の触媒層 2bは、貴金属 からなる電極触媒を担持した導電性カーボン粒子と、水素イオン伝導性を有する高 分子電解質とを含む構成を有する。
[0084] 上記高分子電解質としては、陽イオン交換基として、スルホン酸基、カルボン酸基、 ホスホン酸基、及びスルホンイミド基を有するものなどが好ましく挙げられる。水素ィォ ン伝導性の観点から、スルホン酸基を有するものが特に好まし 、。
[0085] スルホン酸基を有する高分子電解質としては、例えばイオン交換容量が 0. 5〜1.
5meqZg乾燥榭脂であるものが好ましい。高分子電解質のイオン交換容量が 0. 5m eqZg乾燥榭脂以上であると、第一の触媒層 2a及び第二の触媒層 2bの抵抗値が発 電時に上昇することをより確実に抑制することができ好ましぐイオン交換容量が 1. 5 meqZg乾燥榭脂以下であると、第一の触媒層 2a及び第二の触媒層 2bの含水率を 低減させて膨潤を抑制することができ、細孔が閉塞させずにより確実にフラッデイング を防止することができるため好ましい。イオン交換容量は 0. 8〜1. 2meqZg乾燥榭 脂が特に好ましい。
[0086] 上記高分子電解質としては、 CF =CF-(OCF CFX) —O—(CF )—SO PTC
2 2 m p 2 n 3 表されるパーフルォロビュル化合物(mは 0〜3の整数を示し、 nは 1〜12の整数を示 し、 pは 0又は 1を示し、 Xはフッ素原子又はトリフルォロメチル基を示す。 )に基づく重 合単位と、テトラフルォロエチレンに基づく重合単位とを含む共重合体であることが好 ましい。
[0087] 上記フルォロビニル化合物の好ま ヽ例としては、下記式 (4)〜(6)で表される化 合物が挙げられる。ただし、下記式中、 qは 1〜8の整数、 rは 1〜8の整数、 tは 1〜3 の整数を示す。
[0088] CF = CFO (CF ) — SO H · · · (4)
2 2 q 3
CF =CFOCF CF (CF ) 0 (CF ) -SO H · · · (5)
2 2 3 2 r 3
CF =CF (OCF CF (CF ) ) 0 (CF ) — SO H · · · (6)
2 2 3 t 2 2 3
また、高分子電解質膜 1の構成材料として、上述した高分子電解質を用いてもよい
[0089] 本発明において使用される電極触媒は、導電性カーボン粒子 (粉末)に担持されて 用いられ、金属粒子力もなる。当該金属粒子としては、特に限定されず貴金属を含 む種々の金属を使用することができる。例えば、白金、金、銀、ルテニウム、ロジウム、 パラジウム、オスミウム、イリジウム、クロム、鉄、チタン、マンガン、コノ レト、ニッケル、 モリブデン、タングステン、アルミニウム、ケィ素、亜鉛及びスズよりなる群カゝら選択さ れる 1種以上のものが好ましい。
[0090] なかでも、貴金属や白金及び白金との合金が好ましぐ白金とルテニウムの合金が 、アノードにお 、ては触媒の活性が安定することから特に好まし 、。
[0091] 上記カーボン粒子は比表面積が 50〜1500m2Zgであることが好ましい。比表面積 50m2/g以上であると、電極触媒の担持率を上げることが比較的容易であり、第一 の触媒層 2a及び第二の触媒層 2bの充分な出力特性をより確実に得ることができるた め好ましぐ比表面積が 1500m2Zg以下であると、細孔が微細になり過ぎず高分子 電解質による被覆がより容易となり、第一の触媒層 2a及び第二の触媒層 2bの充分な 出力特性をより確実に得ることができ好ま 、。比表面積は 200〜900m2Zgが特に 好ましい。
[0092] 更に、電極触媒の粒子は平均粒径 l〜30nmであることがより好ましい。平均粒径 1 nm以上の電極触媒は工業的に調製が容易であるため好ましぐまた、 30nm以下で あると、電極触媒質量あたりの活性が充分に得られ、燃料電池のコストアップを抑制 することができ好ましい。
[0093] それぞれ第一の触媒層 2a及び第二の触媒層 2bの外側に配置されているガス拡散 層 3a及び 3bは、ガス透過性及び導電性を有するカーボンぺ一ノ^織布、又はカー ボンフェルト等の従来公知の多孔質基材を用いて構成することができる。また、当該 多孔質基材には従来公知の方法によって撥水処理を施された構成を有していてもよ い。特に、当該多孔質基材の面のうち、第一の触媒層 2a及び Z又は第二の触媒層 2 bに接する面に、従来公知の撥水性導電層(カーボン層、撥水材と導電性カーボン 粒子とを含む層)を設けられた構成を有して 、てもよ 、。
[0094] また、本実施形態におけるアノード側のセパレータ 4a及び力ソード側のセパレータ 4bは、従来公知の材料で構成されていてよい。例えば、カーボンを圧縮してガス不 透過としたガス不透過カーボンにより形成されて ヽればよぐ水素ガスおよび酸素ガ スを流すためのガス流路 5a及び 5bが設けられた構成を有する。
[0095] アノード側セパレータ 4a及び力ソード側セパレータ 4bは、導電性を有しており、膜 電極接合体 10を機械的に固定するとともに、隣接する膜電極接合体同士を互いに 電気的に直列に接続する。したがって、本実施形態の高分子電解質形燃料電池は 、複数の単電池 11を積層して得られるスタックとして用いることもできる。
[0096] なお、アノード側のセパレータ 4a及び力ソード側のセパレータ 4bにお!/、て、膜電極 接合体 10に接する面と反対側の面 (即ち、冷却流体流路 7a及び 7bが設けられた面 )には、例えば銅に金メッキをした金属板で構成された集電板を設けられた構成を有 していてもよい。これによれば、アノード側のセパレータ 4a及び力ソード側のセパレー タ 4bからの集電をより確実にすることができる。
[0097] 膜側触媒濃度低減領域 80は、耐火性を有する観点カゝら無機粒子をその構成材料 としている。無機粒子としては、先に述べたように、カーボン及びシリカからなる群より 選択される少なくとも 1種の無機質固体材料を構成材料として含む粒子が好ましく挙 げられる。無機粒子としては、製造工程の効率ィ匕の観点から、第一及び第二の触媒 層 2a、 2bで使用されるカーボン粒子を少なくとも含むことが好ましい。また、膜側触 媒濃度低減領域 80は、水素イオン伝導性を有する観点から高分子電解質をその構 成材料としている。該高分子電解質は、上述した高分子電解質を使用することができ る。更に、膜側触媒濃度低減領域 80は、クロスリークした酸化剤ガスと燃料ガスを緩 やかに反応させる観点から触媒を有しており、該触媒は、上記無機粒子 (ここでは、 カーボン粒子)に担持されている。
[0098] また、耐火性プロトン伝導層 8は、無機粒子と高分子電解質とで構成されており、無 機粒子としては、製造工程の効率化や高分子電解質膜 1の主面にかかる圧力を第 一の触媒層 2aと同じ圧力にする観点から、第一の触媒層 2aに使用される無機粒子 が好ましぐ少なくともカーボン粒子で構成されていることがより好ましい。本実施の形 態においては、第一の触媒層 2a及び第二の触媒層 2bに用いられるカーボン粒子( 例えばケチェンブラック)であってもよい。カーボン粒子のなかでも、耐火性プロトン伝 導層 8におけるカーボン粒子の酸ィ匕をより確実に抑制する観点から、結晶化された力 一ボンを用いるのが好ましぐ該結晶化されたカーボンのうち、炭素原子がグラフアイ ト化されたカーボンを用いるのがより好ましい。このようなグラフアイトイ匕された耐酸ィ匕 性を有するカーボンとしては、「トーカブラック # 3855」(商品名)を用いるのが好まし い。また、グラフアイトイ匕されたカーボンとしては、ラマン分光法により得られる特性とし て、 I /1 〈1.2 Δ V >90の特性を持つカーボンブラックを用いるのが好ましい。 [0099] 次に、本実施の形態の単電池 11及び膜電極接合体 10は、常法により作製すること ができる力 好ま 、作製方法の一例にっ 、て説明する。
[0100] 上記第一の触媒層 2a及び第二の触媒層 2bは、貴金属からなる電極触媒を担持し た導電性カーボン粒子と、高分子電解質と、分散媒と、を少なくとも含む触媒層形成 用インクを用いて形成する。
[0101] 触媒層形成用インクを調製するために用いる分散媒としては、高分子電解質を溶 解又は分散可能 (高分子電解質が一部溶解した分散状態も含む)であるアルコール を含む液体を用いることが好まし 、。
[0102] 分散媒は、水、メタノール、プロパノール、 n—ブチルアルコール、イソブチルアルコ ール、 sec—ブチルアルコール及び tert—ブチルアルコールのうちの少なくとも 1種を 含んでいることが好ましい。これらの水及びアルコールは単独でも使用してもよぐ 2 種以上混合してもよい。アルコールは、分子内に OH基を 1つ有する直鎖のものが特 に好ましく、エタノールが特に好ましい。このアルコールには、エチレングリコールモノ メチルエーテルなどのエーテル結合を有するものも含まれる。
[0103] また、触媒層形成用インクは、固形分濃度 0. 1〜20質量%であることが好ましい。
固形分濃度が 0. 1質量%以上であると、触媒層形成用インクの噴霧又は塗布により 触媒層を作製するにあたり、何回も繰り返し噴霧又は塗布しなくても所定の厚さの触 媒層を得ることができ生産効率が低下しない。また、固形分濃度が 20質量%以下で あると、混合液の粘度を適度に調整することが容易となり、第一の触媒層 2a及び第 二の触媒層 2bが不均一となるおそれがない。なかでも、固形分濃度で 1〜10質量% であることが特に好ましい。
[0104] 上記触媒層形成用インクは、従来公知の方法に基づいて調製することができる。具 体的には、ホモジナイザ、ホモミキサ等の撹拌機を使用したり、高速回転ジェット流方 式を使用するなどの高速回転を使用する方法、高圧乳化装置などの高圧をかけて 狭い部分力 分散液を押出すことで分散液にせん断力を付与する方法などが挙げら れる。
[0105] 本発明の触媒層形成用インクを用いて第一の触媒層 2a及び第二の触媒層 2bを形 成する際には、例えばバーコ一ター法やスプレー法等の従来公知の方法を用いれ ばよい。即ち、高分子電解質膜 1又はガス拡散層 3a及び 3b上に直接第一の触媒層 2a及び第二の触媒層 2bを形成してもよぐ他の支持体シート上に第一の触媒層 2a 及び第二の触媒層 2bを形成し、これらを高分子電解質膜 1又はガス拡散層 3a及び 3 b上に転写してもよい。
[0106] 次に、それぞれ第一の触媒層 2a及び第二の触媒層 2bの外側に配置されているガ ス拡散層 3a及び 3bは、上述のように、ガス透過性及び導電性を有するカーボンぺー ノ^織布、又はカーボンフェルト等の従来公知の多孔質基材を用いて構成することが できる。また、当該多孔質基材には従来公知の方法によって撥水処理を施してもよ い。
[0107] 更に、上述のように、当該多孔質基材の面のうち、第一の触媒層 2a及び Z又は第 二の触媒層 2bに接する面には、従来公知の撥水性導電層(カーボン層、撥水材と導 電性カーボン粒子とを含む層)を設けてもよ!ヽ。
[0108] また、本実施形態におけるアノード側のセパレータ 4a及び力ソード側のセパレータ 4bには、種々の材料を用いて作製することができる。例えば、常法により、カーボンを 圧縮してガス不透過としたガス不透過カーボンにより形成すればよぐ水素ガスおよ び酸素ガスを流すためのガス流路 5a及び 5bを設ければよい。
[0109] アノード側セパレータ 4a及び力ソード側セパレータ 4bは、導電性を有しており、膜 電極接合体 10を機械的に固定するとともに、隣接する膜電極接合体同士を互いに 電気的に直列に接続するものである。したがって、本発明の高分子電解質形燃料電 池は、複数の単電池 11を積層して得られるスタックとして用 、ることもできる。
[0110] なお、アノード側のセパレータ 4a及び力ソード側のセパレータ 4bにおいて、膜電極 接合体 11に接する面と反対側の面 (即ち、冷却流体流路 7a及び 7bが設けられた面 )には、例えば銅に金メッキをした金属板で構成された集電板を設けてもよい。
[0111] これによれば、アノード側のセパレータ 4a及び力ソード側のセパレータ 4bからの集 電をより確実にすることができる。
[0112] また、耐火性プロトン伝導層 8は、電子伝導性を有するカーボン粒子と高分子電解 質と分散媒とを含む耐火性プロトン伝導層形成用インクを調製し、これを用いて形成 することができる。 [0113] ここで耐火性プロトン伝導層形成用インクに用いるカーボン粒子としては、上記第 一の触媒層 2a及び第二の触媒層 2bに用いるものと同じもの(例えばケチェンブラック )を用いることができる。なかでも、耐火性プロトン伝導層 8におけるカーボン粒子の 酸ィ匕をより確実に抑制するために、グラフアイトイ匕された耐酸ィ匕性カーボンを用いるの が好ましい。このようなグラフアイトイ匕された耐酸ィ匕性カーボンとしては、「トーカブラッ ク # 3855」(商品名)を用いるのが好ましい。また、このようなグラフアイトイ匕された耐酸 化性カーボンとしては、ラマン分光法により得られる特性として、 I
1355 /\ < 1. 2、 1580
Δ V > 90の特性を持つカーボンブラックを用いるのが好まし!/、。
1580
[0114] 耐火性プロトン伝導層形成用インクに用いる高分子電解質及び分散媒としても、上 記第一の触媒層 2a及び第二の触媒層 2bに用いるものと同じものを用いることができ る。なかでも、耐火性プロトン伝導層形成用インクの固形分榭脂量は、例えば、 2mg/ m2カーボン相当となるまで榭脂を混合して得られるカーボンインクである。この榭脂 の量は、上記カーボン粒子の比表面積、細孔サイズ及び分散性等に応じて適宜調 整することができる。比表面積が大きく分散性が高いほど、榭脂量は多くてもよい。
[0115] 例えば、榭脂が進入することができないほど小さな細孔によって比表面積が大きく なっている場合、最適榭脂量は少なくなる。例えば、ケッチェンブラックの場合、単位 g当たりの最適榭脂量は 1. 4g/g-カーボンである。
[0116] 上記耐火性プロトン伝導層 8は、種々の方法で形成することができ、上記第一の触 媒層 2a及び第二の触媒層 2bと同様にして作製することができる。例えば 6cm X 6c mの四角い開口部を有するゴム状の第一の板と、例えば 5. 8cm X 5. 8cmの四角い ゴム状の第二の板をマスクとして用いて形成すればょ 、。
[0117] 当該マスクを構成する材料しては、特に限定はないが、例えばゴム、シリコン、 EPD M並びにエンジニアリングプラスチック等が挙げられる。
[0118] 上記第一の板を高分子電解質膜 1上に配置し、上記開口部の中央に上記第二の 板を配置し、ホットプレスする。これにより、高分子電解質膜 1上に 2mm幅の四角い 環状の溝ができあがる。この溝に、上述した耐火性プロトン伝導層形成用インクをバ ーコーターで印刷し、乾燥させる。
[0119] 乾燥後に中央の第二の板を取り外し、アノード側の触媒層形成用インクをバーコ一 ターで印刷し、乾燥させる。これにより、高分子電解質膜 1の主面の上において、第 一の触媒層 2aの外周(図 3において Rで示される部分)と高分子電解質膜 1の外周と の間に、 1mm幅の耐火性プロトン伝導層 8を形成することができ、該耐火性プロトン 伝導層 8の主面の上において第二の部分 81を第一の触媒層 2aと一体形成すること ができる。
[0120] なお、力ソード側の第二の触媒層 2bを形成するためには、上記耐火性プロトン伝導 層 8及び第一の触媒層 2a (第二の部分 80を含む)を形成した後に、高分子電解質膜 1を裏返し、例えば 5. 9 X 5. 9cmの四角い開口部を有するゴム状の第三の板を中 央に配置してホットプレスし、力ソード側の触媒層形成用インクを印刷し、乾燥させる
[0121] これにより、力ソード側の第二の触媒層 2bの位置ずれが例えば 500 m以内であ れば、耐火性プロトン伝導層 8の外縁(図 3において Pで示される部分)と内縁、即ち、 アノード側の第一の触媒層 2aの外周(図 3において Rで示される部分)との間に、カソ ード側の第二の触媒層 2bの主面の外周(図 3において Qで示される部分)を位置さ せることができる。
[0122] 即ち、上記のような構成により、高分子電解質膜 1のうちの力ソード側の第二の触媒 層 2bが存在しな 、部分(図 1にお 、て Xで示される部分)からアノード側の第一の触 媒層 2aにクロスリークする酸化剤ガスの量が増加しても、第二の触媒層 2bが存在し な 、部分 Xと対向するアノード側の部分には、触媒を含まな!/ヽ耐火性プロトン伝導層 8が存在するため、膜側触媒濃度低減領域 80の第二の部分 81で発生した過酸ィ匕水 素等の活性酸素種は高分子電解質膜 1まで到達しに《なり、また、燃料ガスと酸ィ匕 剤ガスとが反応して水が生成されるときに発生する反応熱は高分子電解質膜 1へ伝 わりにくくなる。このように過酸ィ匕水素及び反応熱をブロックすることにより、高分子電 解質膜 1の劣化を防ぐことができる。
[0123] また、膜側触媒濃度低減領域 80の第二の部分 81は、第一の触媒層 2aと同様の構 成であるので、該第二の部分 81を触媒層して使用することができる。このため、本発 明の膜触媒層接合体を搭載した高分子電解質形燃料電池では、省スペースで効率 のよ 、発電を行うことができる。 [0124] 以上のような構成を有する本実施形態の膜触媒層接合体及び膜電極接合体は優 れた耐久性を有し、したがって、上記本実施形態の膜触媒層接合体又は膜電極接 合体を備える本実施形態の高分子電解質形燃料電池も優れた耐久性を有する。
[0125] なお、本実施形態にぉ ヽては、膜側触媒濃度低減領域 80の耐火性プロトン伝導 層 8は、触媒を担持しな!ヽ無機粒子 (カーボン粒子)を構成材料として有するとしたが 、これに限定されず、耐火性プロトン伝導層 8に含まれる触媒の濃度が実質的にゼロ であれば、即ち、耐火性プロトン伝導層 8において、クロスリークした反応ガスの反応 を触媒作用することがない、又は、クロスリークした反応ガスの反応を触媒作用しても 反応によって生成される反応熱等が高分子電解質膜 1を劣化することがない量の触 媒が含まれているのであれば、耐火性プロトン伝導層 8が触媒を含むように構成され ていてもよい。
[0126] 次に、本実施形態の変形例について説明する。
[0127] (変形例 1)
図 8は、第一実施形態の膜触媒層接合体の変形例を模式的に示す断面図である。
[0128] 変形例 1の膜触媒層接合体 9では、第一実施形態の膜触媒層接合体 9と同様に、 膜側触媒濃度低減領域 80の第一の部分 8の触媒濃度(当該第一の部分に流入する 反応ガスの反応を触媒作用することがない、又は、反応ガスの反応を触媒作用しても 反応によって生成される反応熱で高分子電解質膜を劣化させることがない触媒濃度 )が、第二の部分 81の触媒濃度より低くなるように形成されており、膜側触媒濃度低 減領域 80は、前記高分子電解質膜 1の第 1主面 F10に対して遠い部位から第 1主面 F10に近 、部位にかけて触媒濃度が低くなるように形成されて!、る。
[0129] ここで、「高分子電解質膜 1の第 1主面 F10に対して遠い部位力も第 1主面 F10に 近!、部位にかけて触媒濃度が低くなるように形成されて 、る」状態にっ 、て、図 9乃 至図 11を参照して説明する。
[0130] 図 9乃至図 11は、図 8に示す膜側触媒濃度低減領域 80における触媒濃度と高分 子電解質膜 1の主面 F10と接触する面からの距離との関係を示したグラフである。
[0131] 図 9にお ヽて直線 L1及び L2で示すように、変形例 1の膜側触媒濃度低減領域 80 は、膜側触媒濃度低減領域 80の高分子電解質膜 1の主面 F10当接する面力ゝら高分 子電解質膜 1の主面の略法線方向に向力つて距離が離れるにつれて、触媒の濃度 が単調に増加するように形成されていてもよい。換言すると、膜側触媒濃度低減領域
80は、膜側触媒濃度低減領域 80の上側の主面力も下側の主面(図 3参照)にかけ て、触媒濃度が単調に減少するように形成されて 、てもよ 、。
[0132] また、図 10において線 L3で示すように、変形例 1の膜側触媒濃度低減領域 80は、 膜側触媒濃度低減領域 80の上側の主面から下側の主面にかけて、触媒濃度が段 階的(階段状)に減少するように形成されていてもよぐ図 11において線 L4で示すよ うに、膜側触媒濃度低減領域 80の上側の主面から下側の主面にかけて、全体として 触媒濃度が減少していれば、その一部の触媒濃度が上側に位置する部位に対して 高くなるように形成されて ヽてもよ ヽ。
[0133] このように、「膜側触媒濃度低減領域 80は、高分子電解質膜 1の第 1主面 F10に対 して遠い部位力も第 1主面 F10に近い部位にかけて触媒濃度が低くなるように形成さ れて 、る」状態とは、膜側触媒濃度低減領域 80の上側の主面から下側の主面にか けて、全体として触媒濃度が減少するように、触媒が分布されていることをいう。
[0134] このような膜側触媒濃度低減領域 80は、上述した触媒層形成用インクと同様に調 整したインクを用いて形成する。具体的には、触媒を担持した無機粒子 (ここでは、力 一ボン粒子)と、高分子電解質と、分散媒と、を少なくとも含むインクを用意する。この とき、インク中に含まれる触媒の量を変えた複数のインクを用意しておく。そして、触 媒濃度が最も低 、 (もしくは、触媒が含まれて 、な 、)インクを高分子電解質膜 1の主 面 F10上に噴霧又は塗布し、触媒濃度が高!ヽインクを順次噴霧又は塗布して複数 の層を形成させて、第一の部分 8と第二の部分 81と (即ち、膜側触媒濃度低減領域 80)を形成する。
[0135] なお、図 9に示すように、膜側触媒濃度低減領域 80の触媒濃度を単調に増加させ るには、触媒濃度が異なるインクを多数用意し、該インクを噴霧又は塗布することによ り形成される層を薄ぐかつ、多段階に形成させることにより、巨視的に見て、触媒濃 度が単調増加する膜側触媒低減領域 80を形成することができる。
[0136] また、膜側触媒濃度低減領域 80の高分子電解質膜 1の一方の主面 F10に接触す る部分、即ち、第一の部分 8は、触媒濃度が残りの部分である第二の部分 81の触媒 濃度より低 、態様になるように形成されて ヽればよく、膜側触媒濃度低減領域 80に おける第一の部分 8の領域と第二の部分 81の領域との境界は任意に観念することが できる。
[0137] [第二実施形態]
次に、本発明の高分子電解質形燃料電池の第二実施形態について説明する。こ の第二実施形態の高分子電解質形燃料電池は、図 1に示した第一実施形態の高分 子電解質形燃料電池に搭載される単電池 11にお ヽて、膜電極接合体 10に搭載さ れる膜触媒層接合体 9を異なる構成に代えたものであり、膜触媒層接合体以外の構 成は第一実施形態の高分子電解質形燃料電池と同様である。
[0138] 以下、第二実施形態の単電池 11に搭載される膜触媒層接合体 9 (本発明の膜触 媒層接合体の第二実施形態)について説明する。
[0139] 図 4は、本実施形態の単電池 11に搭載される膜触媒層接合体 9の概略断面図で ある。図 4に示すように、本実施形態の膜触媒層接合体 9は、力ソード側の第一の触 媒層 22aの主面の面積力 アノード側の第二の触媒層 2bの主面の面積よりも小さい 。そして、力ソード側の第一の触媒層 2aの主面の外周である耐火性プロトン伝導層 8 の内縁(図 4において Rで示される部分)と外縁(図 4において Rで示される部分)との 間に、アノード側の第二の触媒層 2bの主面の外周(図 4において Qで示される部分) が位置するように配置されて 、る。
[0140] 以上のような構成により、高分子電解質膜 1のうちのアノード側の第二の触媒層 2b が存在しな 、部分(図 4にお 、て Yで示される部分)から力ソード側の第一の触媒層 2 aにクロスリークする燃料ガスの量が増加しても、第二の触媒層 2bが存在しない部分 Yと対向する力ソード側の部分には、触媒を含まな ヽ耐火性プロトン伝導層 8が存在 するため、膜側触媒濃度低減領域 80の第二の部分 81で発生した過酸ィ匕水素等の 活性酸素種は高分子電解質膜 1まで到達しに《なり、また、燃料ガスと酸化剤ガスと が反応して水が生成されるときに発生する反応熱は高分子電解質膜 1へ伝わりにくく なる。このように過酸ィ匕水素及び反応熱をブロックすることにより、高分子電解質膜 1 の劣化を防ぐことができる。
[0141] また、膜側触媒濃度低減領域 80の第二の部分 81は、第一の触媒層 laと同様の構 成であるので、該第二の部分 81を触媒層として使用することができる。このため、本 発明の膜触媒層接合体を搭載した高分子電解質形燃料電池では、省スペースで効 率のよ!、発電を行うことができる。
[0142] 以上のような構成を有する本実施形態の膜触媒層接合体及び膜電極接合体は優 れた耐久性を有し、したがって、上記本実施形態の膜触媒層接合体又は膜電極接 合体を備える本実施形態の高分子電解質形燃料電池も優れた耐久性を有する。
[0143] なお、第二実施形態の膜触媒層接合体 9における膜側触媒濃度低減領域 80は、 第一実施形態の膜側触媒濃度低減領域 80と同様の構成にしたが、これに限定され ず、第一実施形態の触媒層接合体 9の変形例 1における膜側触媒濃度低減領域 80 のような構成としてもよい。
[0144] [第三実施形態]
次に、本発明の高分子電解質形燃料電池の第三実施形態について説明する。こ の第三実施形態の高分子電解質形燃料電池は、図 1に示した第一実施形態の高分 子電解質形燃料電池に搭載される単電池 11に搭載される膜電極接合体 10を異な る構成に代えたものであり、膜電極接合体以外の構成は第一実施形態の高分子電 解質形燃料電池と同様である。
[0145] 以下、第三実施形態の単電池 11に備えられる膜電極接合体 10 (本発明の膜電極 接合体の第三実施形態)について説明する。
[0146] 図 5は、本実施形態の単電池 11に搭載される膜電極接合体 10の概略断面図であ る。図 5に示すように、本実施形態の膜電極接合体 10においては、高分子電解質膜 1の他方の主面 F20に、力ソード側の第二の触媒層 2bの外側に該第二の触媒層 2b と重ならな 、ようにして配置された第一の空間充填部材 (サブガスケット) 32を更に有 している。具体的には、第一の空間充填部材 32は、環状で略矩形の形状を有してお り、高分子電解質膜 1の主面の略法線方向カゝら見た場合に、第二の触媒層 2bの外 側で、高分子電解質膜 1とガス拡散層 3bとの間に形成される空間を埋めるように配置 されている。
[0147] そして、第一の空間充填部材 32は、高分子電解質膜 1の主面の略法線方向から みた場合に、第一の空間充填部材 32の内周(図 5において Vで示される部分)が耐 火性プロトン伝導層 8の外縁(図 5において Pで示される部分)と内縁(図 5において R で示される部分)との間に位置し、第一の空間充填部材 32の外周は、ガス拡散層 2b の外周よりも外側に位置するように形成されて 、る。
[0148] 第一の空間充填部材 32は、高分子電解質膜 1とガス拡散層 3bとの間に形成される 空間を埋めることができれば、どのような材質を用いてもよぐ例えば、上記第一実施 形態で説明したガスケット 6a及び 6bと同様の材質のものを用いてもよい。また、第一 の空間充填部材 32は、膜電極接合体 10がセパレータ 4a及び 4bとともに締結される 際に高分子電解質膜 1の外周部がガス拡散層 3bのエッジにより破損することをより確 実に防止する観点、又は、膜触媒層接合体を製造する際に高分子電解質膜 1と第一 の空間充填部材 32との接合体を製造する場合において当該接合体の取扱い性を 向上させる観点から、適度な機械的強度と柔軟性を有している合成樹脂であることが 好ましぐこれらの観点から、ポリエチレンナフタレート、ポリテトラフルォロエチレン、 ポリエチレンテレフタレート、フルォロエチレン プロピレン共重合体、テトラフルォロ エチレン パーフルォロアルコキシエチレン共重合体、ポリエチレン、ポリプロピレン 、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテル スルフォン、ポリフエ-レンスルフイド、ポリアリレート、ポリスルフイド、ポリイミド、及び、 ポリイミドアミドからなる群より選択される少なくとも 1以上の榭脂から構成される合成 榭脂であることがより好まし 、。
[0149] 上記のような第一の空間充填部材 32を設置する方法としては、例えば第二の触媒 層 2bを塗布により形成する際に用いるゴム状のマスクとして、 2枚の薄いシートの積 層体を用いる。そして、耐火性プロトン伝導層 8、第一の触媒層 2a及び第二の触媒 層 2bを形成して乾燥させた後、上記積層体のうちの上部側のシートをはがし、下部 側のシートを第一の空間充填部材 32として利用してもよい。力かる方法によれば、第 二の触媒層 2bと第一の空間充填部材 32の間に形成される隙間 Zをより確実に狭く することができる力、又は、当該隙間 Zを可能な限りなくすことができる。
[0150] し力しながら、本実施形態においては、力ソード側の第二の触媒層 2bの外周部に 第一の空間充填部材 32を設けると、第二の触媒層 2bと第一の空間充填部材 32との 間にわずかに隙間 Zが形成される場合がある。このような場合であっても、隙間 から クロスリークする酸化剤ガスに対して、対極であるアノード側には耐火性プロトン伝導 層 8が存在するので、発生した過酸化水素が高分子電解質膜 1へ到達することもなく 、燃焼反応熱が高分子電解質膜 1へ伝わりにくくなり、高分子電解質膜 1の劣化を防 ぐことができる。
[0151] また、単電池 11を積層して締結するような場合に、第一の空間充填部材 32は、ガ ス拡散層 3bの端部が高分子電解質膜 1の主面に垂れ込むのを防止するとともに、ガ ス拡散層 3aの端部によって高分子電解質膜 1の主面が破損したような場合であって も、反応ガスがクロスリークするのを防止することができる。
[0152] このように、本実施形態では、第一の空間充填部材 32が高分子電解質膜 1とガス 拡散層 3bとの間に形成される空間を埋めるようにして配置されていることから、高分 子電解質膜 1を通過してクロスリークする酸化剤ガスの量を減少させることができると ともに、物理的に高分子電解質膜 1を保護することができる。
[0153] 即ち、以上のような構成により、第二の触媒層 2bが存在しない部分(図 5において Zで示される部分)から高分子電解質膜 1を通過してクロスリークする酸化剤ガスの量 が増加しても、対極であるアノード側には耐火性プロトン伝導層 8が存在するので、 発生した過酸化水素が高分子電解質膜 1へ到達することもなぐ燃焼反応熱が高分 子電解質膜 1へ伝わりに《なり、高分子電解質膜一の劣化を防ぐことができる。
[0154] 以上のような構成を有する本実施形態の膜触媒層接合体及び膜電極接合体は優 れた耐久性を有し、したがって、上記本実施形態の膜触媒層接合体又は膜電極接 合体を備える本実施形態の高分子電解質形燃料電池も優れた耐久性を有する。
[0155] なお、第三実施形態の膜触媒層接合体 9における膜側触媒濃度低減領域 80は、 第一実施形態の膜側触媒濃度低減領域 80と同様の構成にしたが、これに限定され ず、第一実施形態の触媒層接合体 9の変形例 1における膜側触媒濃度低減領域 80 のような構成としてもよい。
[0156] [第四実施形態]
次に、本発明の高分子電解質形燃料電池の第四実施形態について説明する。こ の第四実施形態の高分子電解質形燃料電池は、図 1に示した第一実施形態の高分 子電解質形燃料電池に搭載される単電池 11に搭載される膜電極接合体 10を異な る構成に代えたものであり、膜電極接合体以外の構成は第一実施形態の高分子電 解質形燃料電池と同様である。
[0157] 以下、第四実施形態の単電池 11に備えられる膜電極接合体 10 (本発明の膜電極 接合体の第四実施形態)について説明する。
[0158] 図 6は、本実施形態の単電池 11に搭載される膜電極接合体 10の概略断面図であ る。図 6に示すように、本実施形態の膜電極接合体 10は、上記第三実施形態の膜電 極接合体 10と同様に第一の空間充填部材 32を有し、更に高分子電解質膜 1の一方 の主面 F10に、膜側触媒濃度低減領域 80の外側に該膜側触媒濃度低減領域 80と 重ならな 、ようにして配置された第二の空間充填部材 (サブガスケット) 43を有して ヽ る。具体的には、第二の空間充填部材 42は、環状で略矩形の形状を有しており、高 分子電解質膜 1の主面の略法線方向から見た場合に、膜側触媒濃度低減領域 80の 外側で、高分子電解質膜 1とガス拡散層 3aとの間に形成される空間を埋めるように配 置されている。
[0159] そして、第二の空間充填部材 42は、高分子電解質膜 1の主面の略法線方向から みた場合に、ガス拡散層 3aの外周が第二の空間充填部材 42の内周と外周との間に 位置するように形成されて ヽる。
[0160] かかる第二の空間充填部材 43は、上記第三実施形態における第一の空間充填部 材 32と同様にして形成、設置することができる。
[0161] 以上のような構成により、上記第三実施形態と同様に過酸化水素及び反応熱をブ ロックすることにより高分子電解質膜 1の劣化を防ぐことができ、更に、両側にサブガ スケットを設けることにより、クロスリークガスの存在自体を抑制し、物理的に高分子電 解質膜を支持して物理的強度を増加させるという作用効果が得られる。
[0162] 以上のような構成を有する本実施形態の膜触媒層接合体及び膜電極接合体は優 れた耐久性を有し、したがって、上記本実施形態の膜触媒層接合体又は膜電極接 合体を備える本実施形態の高分子電解質形燃料電池も優れた耐久性を有する。
[0163] なお、第四実施形態の膜触媒層接合体 9における膜側触媒濃度低減領域 80は、 第一実施形態の膜側触媒濃度低減領域 80と同様の構成にしたが、これに限定され ず、第一実施形態の触媒層接合体 9の変形例 1における膜側触媒濃度低減領域 80 のような構成としてもよい。
[0164] 以上、本発明の好適な実施形態について説明したが、本発明はこれらのみに限定 されるものではない。
[0165] 例えば、ガスケットと第一の空間充填部材とが一体ィ匕されていてもよぐまた、ガスケ ットと第二の空間充填部材とが一体化されていてもよい。
[0166] また、上述の各実施形態においては、高分子電解質形燃料電池として単電池につ いて説明したが、単電池を複数個(例えば 10〜200個)積層してスタックを構成し、 当該スタックを集電板及び絶縁板を介して一対のエンドプレートで挟み、上記スタツ ク、集電板、絶縁板及びエンドプレートを締結用のボルト及びナットで固定して使用 することちでさる。
[0167] また、上述の各実施形態においては、アノード側及び力ソード側のセパレータの両 方に冷却流体流路を設けたが、 V、ずれか一方のセパレータに冷却流体流路を設け てもよく、更に上述のように積層体として使用する場合には、冷却流体流路を有しな いアノード側及び力ソード側のセパレータを含む単電池を使用することもできる。
[0168] また、冷却流体流路の有無にかかわらず、セパレータの膜電極接合体と接する面と は反対側の面に集電板を設置しても構わな 、。
[0169] また、例えば、各単電池間に冷却流体流路を設けず、例えば単電池 2個毎に冷却 流体流路を設けてもよい。そのような場合、一方の面に燃料ガス用のガス流路を有し 、他方の面に酸化剤ガス用のガス流路を有する、アノード側セパレータ板と力ソード 側セパレータ板とを兼ねる単一のセパレータを使用することも可能である。
[0170] また、上述の各実施形態にお!ヽては、膜側触媒濃度低減領域は、第一の触媒層 の外周の全周に亘つて形成されているとして説明した力 これに限定されず、本発明 の作用効果が得られる範囲で、その一部が省略されるように形成されていてもよい。
[0171] 更に、上述の各実施形態において、ガス拡散電極は、ガス拡散層と触媒層との間 に別の層を配置する構成 (例えば、撥水性及び電子伝導性を有しておりガス拡散層 と触媒層との密着性を向上させるための別の層を配置する構成)を有していてもよい
[0172] 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。
実施例
[0173] 以下、実施例および比較例を挙げて本発明についてさらに詳しく説明する力 本発 明はこれらの実施例に何ら限定されるものではない。
《実施例 1》
本実施例においては、上述した本発明の第一実施形態の高分子電解質形燃料電 池を作製した。
[0174] まず、アノード側の第一の触媒層 2aを力ソード側の第二の触媒層 2bよりも小さくし、 アノード側に耐火性プロトン伝導層 8を設けた、図 3に示す膜触媒層接合体 9を作製 し、ついで、ガス拡散層 3a及び 3bを設置して図 2に示す膜電極接合体 10を作製し た。得られた膜電極接合体 10用い、図 1に示す構造を有する高分子電解質形燃料 電池 (単電池)を作製した。
[0175] アノード側の第一の触媒層 2aの大きさを 60mm X 60mmとし、力ソード側の第二の 触媒層 2bの大きさを 58mm X 58mmとした。また、アノード側の耐火性プロトン伝導 層 8は、その幅(図 1に示した外縁と内縁との距離)が 3mmとなるように形成した。す なわち、耐火性プロトン伝導層 8は、図 1に示したように、高分子電解質膜 1の主面の 略法線方向からみた場合に、その内縁が第一の触媒層 2aの外周に一致し、当該外 縁と内縁との間に、第二の触媒層 2bの主面の外縁が位置するように形成した。
《比較例 1》
本比較例においては、耐火性プロトン伝導層 8を設けな力つたこと以外は、上述の 実施例 1の高分子電解質形燃料電池と同様の構成を有する高分子電解質形燃料電 池 (単電池)を作製した。
[0176] なお、本比較例においては、アノード側の第一の触媒層 2aの大きさを 140mm X 1 40mmとし、力ソード側の第二の触媒層 2bの大きさを 138mm X 138mmとした。 [耐 久性評価試験]
上記実施例 1及び比較例 1で作製した単電池について、以下の発電試験を行った [0177] 即ち、実施例 1の単電池については、アノードガスの加湿温度 50°C、セル温 90°C、 力ソードガスの加湿温度 50°Cの温度条件で、アノードガスに水素を用い、力ソードガ スに酸素を用い、水素利用率 70%、酸素利用率 55%、電流密度 0. 16AZcm2で、 1500時間運転して発電させた。なお、この実施例 1の単電池の加湿条件は、後述の 比較例 1の単電池の加湿条件よりも過酷な条件である。
[0178] また、比較例 1の単電池につ!、ては、加湿条件を、アノードガスの加湿温度 60°C、 力ソードガスの加湿温度 60°Cとしたこと以外は、実施例 1の単電池と同一の条件で、 発電させた。
[0179] 上述の条件で実施例 1の単電池及び比較例 1の単電池を連続的に発電させ、出力 される電池電圧が 0Vになったときの発電時間を比較した。結果を表 1に示す。
[0180] [表 1]
Figure imgf000036_0001
表 1から明らかなように、本発明の高分子電解質形燃料電池に含まれる実施例 1の 高分子電解質形燃料電池は、比較例 1の高分子電解質形燃料電池よりも過酷な作 動条件 (加湿条件)にもかかわらず優れた耐久性を有して ヽることが確認された。 産業上の利用可能性
[0181] 本発明は、高耐久な燃料電池を高い生産性を持って製造する手段として有用であ り、高分子型固体電解質膜を用いた燃料電池、特に定置型コジェネレーションシステ ムゃ電気自動車等に応用することができる。

Claims

請求の範囲
[1] 互いに対向して配置された第一の触媒層及び第二の触媒層と、
前記第一の触媒層と前記第二の触媒層との間に配置されており、互いに対向する 第 1主面及び第 2主面を有しており、前記第 1主面が前記第一の触媒層の一方の主 面と接触するように配置され、前記第 2主面が前記第二の触媒層の一方の主面と接 触するように配置された高分子電解質膜と、
前記第一の触媒層の外周と前記高分子電解質膜の前記第 1主面とに接触するよう に形成された水素イオン伝導性と耐火性とを有する膜側触媒濃度低減領域と、 を少なくとも有しており、
前記膜側触媒濃度低減領域の前記第一の触媒層と接触する縁と該接触する縁と 対向する縁の間に、前記第二の触媒層の主面の外周が位置し、
前記膜側触媒濃度低減領域は、前記高分子電解質膜の前記第 1主面に接触し水 素イオン伝導性と耐火性とを有する第一の部分と、前記第一の部分以外の残りの部 分であり水素イオン伝導性と耐火性とを有し更に触媒を含む第二の部分とを含んで いる、
膜触媒層接合体。
[2] 前記第一の部分には、当該第一の部分に流入する反応ガスの反応を触媒作用す ることがない、又は、反応ガスの反応を触媒作用しても反応によって生成される反応 熱で高分子電解質膜を劣化させることがない量の触媒が含まれており、
前記第一の部分の触媒濃度が、前記第二の部分の触媒濃度及び前記第一の触 媒層の触媒濃度より低くなるように形成されている、請求項 1に膜触媒層接合体。
[3] 前記膜側触媒濃度低減領域は、前記高分子電解質膜の前記第 1主面に対して遠 い部位力 前記第 1主面に近い部位にかけて触媒濃度が低くなるように形成されて いる、請求項 1に膜触媒層接合体。
[4] 前記第一の部分が、前記高分子電解質膜の前記一方の主面に接触して延在する 耐火性プロトン伝導層で構成されており、
前記第二の部分が、前記第一の触媒層に含まれる構成材料と同一の構成材料を 少なくとも含んでおり、かつ、該第一の触媒層に連続し、かつ、前記耐火性プロトン伝 導層を覆うように層状に延在する第一の触媒層への付加部分で構成されている、請 求項 2に記載の膜触媒層接合体。
[5] 前記膜側触媒濃度低減領域が、水素イオン伝導性を有する高分子電解質と、耐火 性を有する無機粒子と、を構成材料として含む、請求項 1に記載の膜触媒層接合体
[6] 前記無機粒子は、カーボン及びシリカ力もなる群より選択される少なくとも 1種の無 機質固体材料を構成材料として含む粒子である、請求項 5に記載の膜触媒層接合 体。
[7] 前記高分子電解質膜の前記第 2主面に、前記第二の触媒層の外側に該第二の触 媒層と重ならないようにして配置された第一の空間充填部材を更に有しており、 前記高分子電解質膜の主面の略法線方向力 みた場合に、前記第一の空間充填 部材の内縁が前記膜側触媒濃度低減領域の前記第一の触媒層と接触する縁と該 接触する縁と対向する縁との間に位置している、請求項 1に記載の膜触媒層接合体
[8] 前記第一の空間充填部材は、エンジニアリングプラスチックを構成材料として含む
、請求項 7に記載の膜触媒層接合体。
[9] 前記高分子電解質膜の前記第 1主面に、前記膜側触媒濃度低減領域の外側に該 膜側触媒濃度低減領域と重ならな ヽようにして配置された第二の空間充填部材を更 に有している、請求項 1又は請求項 7に記載の膜触媒層接合体。
[10] 前記第二の空間充填部材は、エンジニアリングプラスチックを構成材料として含む
、請求項 9に記載の膜触媒層接合体。
[11] 前記第一の触媒層がアノード用触媒層であり、前記第二の触媒層が力ソード用触 媒層である、請求項 1に記載の膜触媒層接合体。
[12] 前記第一の触媒層が力ソード用触媒層であり、前記第二の触媒層がアノード用触 媒層である、請求項 1に記載の膜触媒層接合体。
[13] 互いに対向配置される一対のガス拡散層と、
前記一対のガス拡散層の間に配置された請求項 1に記載の膜触媒層接合体と、を 備える、膜電極接合体。 [14] 請求項 13に記載の膜電極接合体を備える、高分子電解質形燃料電池。
PCT/JP2007/052862 2006-02-16 2007-02-16 膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池 WO2007094459A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/162,768 US20090011322A1 (en) 2006-02-16 2007-02-16 Catalyst-Coated Membrane, Membrane-Electrode Assembly and Polymer Electrolyte Fuel Cell
CN2007800055981A CN101385174B (zh) 2006-02-16 2007-02-16 膜催化剂层组件、膜电极组件以及高分子电解质型燃料电池
JP2008500566A JP5095601B2 (ja) 2006-02-16 2007-02-16 膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池
EP07714392.3A EP1986258B1 (en) 2006-02-16 2007-02-16 Film-catalyst layer assembly, film-electrode assembly, and polymer electrolyte type fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006039429 2006-02-16
JP2006-039429 2006-02-16

Publications (1)

Publication Number Publication Date
WO2007094459A1 true WO2007094459A1 (ja) 2007-08-23

Family

ID=38371635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052862 WO2007094459A1 (ja) 2006-02-16 2007-02-16 膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池

Country Status (5)

Country Link
US (1) US20090011322A1 (ja)
EP (1) EP1986258B1 (ja)
JP (1) JP5095601B2 (ja)
CN (1) CN101385174B (ja)
WO (1) WO2007094459A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266799A (ja) * 2008-03-31 2009-11-12 Sanyo Electric Co Ltd 膜電極接合体および燃料電池
JP2013161741A (ja) * 2012-02-08 2013-08-19 Honda Motor Co Ltd 燃料電池用電解質膜・電極構造体
JP2014120368A (ja) * 2012-12-18 2014-06-30 Toyota Motor Corp 燃料電池とその製造方法
KR20180071618A (ko) * 2016-12-20 2018-06-28 현대자동차주식회사 연료전지용 막전극 접합체 및 그 제조방법
JP2021068596A (ja) * 2019-10-24 2021-04-30 日本碍子株式会社 燃料電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100602A1 (en) * 2010-02-12 2011-08-18 Revolt Technology Ltd. Manufacturing methods for air electrode
CN101853852B (zh) * 2010-04-29 2011-08-17 苏州硅能半导体科技股份有限公司 单胞中集成肖特基二极管的沟槽mos器件及制造方法
FR3053840B1 (fr) * 2016-07-06 2018-08-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Pile a combustible comprenant un assemblage membrane/electrodes incluant une couche capacitive
JP7456373B2 (ja) * 2020-12-25 2024-03-27 トヨタ自動車株式会社 燃料電池セルおよびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521077A (ja) * 1991-07-17 1993-01-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のシ−ル構造
JPH07220742A (ja) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池及び該燃料電池の電極−イオン交換膜接合体の製造方法
JPH10154521A (ja) * 1996-09-24 1998-06-09 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JPH10172587A (ja) * 1996-12-06 1998-06-26 Toshiba Corp 固体高分子型燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270132A (en) * 1991-12-26 1993-12-14 International Fuel Cells Corporation Minimized corrosion fuel cell device and a method of making the same
JP3271410B2 (ja) * 1993-12-29 2002-04-02 トヨタ自動車株式会社 燃料電池とその固体高分子電解質膜および電極
JPH07210346A (ja) * 1994-01-26 1995-08-11 Sekisui Chem Co Ltd ワイヤレス・プリンタ・バッファ
CN1122322C (zh) * 1998-04-17 2003-09-24 松下电器产业株式会社 固体高分子电解质型燃料电池及其制造方法
US7087339B2 (en) * 2002-05-10 2006-08-08 3M Innovative Properties Company Fuel cell membrane electrode assembly with sealing surfaces
US7132191B2 (en) * 2003-09-17 2006-11-07 General Motors Corporation Addressing one MEA failure mode by controlling MEA catalyst layer overlap
JP4917737B2 (ja) * 2003-11-12 2012-04-18 日産自動車株式会社 燃料電池用電解質膜および燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521077A (ja) * 1991-07-17 1993-01-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のシ−ル構造
JPH07220742A (ja) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池及び該燃料電池の電極−イオン交換膜接合体の製造方法
JPH10154521A (ja) * 1996-09-24 1998-06-09 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JPH10172587A (ja) * 1996-12-06 1998-06-26 Toshiba Corp 固体高分子型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1986258A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266799A (ja) * 2008-03-31 2009-11-12 Sanyo Electric Co Ltd 膜電極接合体および燃料電池
JP2013161741A (ja) * 2012-02-08 2013-08-19 Honda Motor Co Ltd 燃料電池用電解質膜・電極構造体
JP2014120368A (ja) * 2012-12-18 2014-06-30 Toyota Motor Corp 燃料電池とその製造方法
KR20180071618A (ko) * 2016-12-20 2018-06-28 현대자동차주식회사 연료전지용 막전극 접합체 및 그 제조방법
KR102507003B1 (ko) 2016-12-20 2023-03-06 현대자동차주식회사 연료전지용 막전극 접합체 및 그 제조방법
JP2021068596A (ja) * 2019-10-24 2021-04-30 日本碍子株式会社 燃料電池

Also Published As

Publication number Publication date
US20090011322A1 (en) 2009-01-08
JP5095601B2 (ja) 2012-12-12
CN101385174A (zh) 2009-03-11
JPWO2007094459A1 (ja) 2009-07-09
EP1986258A1 (en) 2008-10-29
EP1986258B1 (en) 2013-08-07
CN101385174B (zh) 2010-08-25
EP1986258A4 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
EP2131429B1 (en) Membrane-electrode assembly, polymer electrolyte fuel cell, and process for producing a membrane-electrode assembly
JP5095601B2 (ja) 膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池
JP5326189B2 (ja) 電解質膜−電極接合体およびその製造方法
US8105732B2 (en) Direct oxidation fuel cell
KR20030094001A (ko) 촉매 피복된 막을 사용한 막-전극-어셈블리의 제조방법
JP5214602B2 (ja) 燃料電池、膜−電極接合体、及び膜−触媒層接合体
US8192895B2 (en) Membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2006338943A (ja) 電解質膜−電極接合体
WO2005088750A1 (ja) 高分子電解質型燃料電池
US8663872B2 (en) Method for manufacturing membrane-membrane reinforcing member assembly, membrane-catalyst layer assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2003178780A (ja) 高分子電解質型燃料電池システム、および高分子電解質型燃料電池の運転方法
JP4493954B2 (ja) 高分子電解質膜−電極接合体およびこれを用いた高分子電解質型燃料電池
JP2008159320A (ja) 膜電極接合体
JP2010170892A (ja) 燃料電池
EP2337127A1 (en) Direct oxidation fuel cell
JP2007335163A (ja) 膜触媒層接合体、膜電極接合体および高分子電解質形燃料電池
JP2013225398A (ja) 燃料電池スタック
JP2005302709A (ja) 高分子電解質型燃料電池
JP5204382B2 (ja) カソード触媒層、およびそれを用いた膜触媒接合体、カソードガス拡散電極、膜電極接合体ならびに高分子電解質形燃料電池
WO2010032439A1 (ja) 燃料電池及びこれを備える燃料電池スタック
JP2007335162A (ja) 膜触媒層接合体、膜電極接合体および高分子電解質形燃料電池
JP5339262B2 (ja) 燃料電池
JP2007157453A (ja) 膜触媒層接合体、これを用いた膜電極接合体および高分子電解質形燃料電池
JP5405783B2 (ja) 燃料電池用触媒層、燃料電池用触媒層転写シート、燃料電池用ガス拡散電極、燃料電池用膜電極接合体、および燃料電池
JP3877703B2 (ja) 燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500566

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007714392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12162768

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780005598.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE