WO2007094321A1 - 発光素子、発光素子の製造方法、および基板処理装置 - Google Patents

発光素子、発光素子の製造方法、および基板処理装置 Download PDF

Info

Publication number
WO2007094321A1
WO2007094321A1 PCT/JP2007/052520 JP2007052520W WO2007094321A1 WO 2007094321 A1 WO2007094321 A1 WO 2007094321A1 JP 2007052520 W JP2007052520 W JP 2007052520W WO 2007094321 A1 WO2007094321 A1 WO 2007094321A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
light
protective layer
light emitting
Prior art date
Application number
PCT/JP2007/052520
Other languages
English (en)
French (fr)
Inventor
Kazuki Moyama
Yasushi Yagi
Shingo Watanabe
Chuichi Kawamura
Kimihiko Yoshino
Tadahiro Ohmi
Original Assignee
Tokyo Electron Limited
National University Corporation Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, National University Corporation Tohoku University filed Critical Tokyo Electron Limited
Priority to US12/279,405 priority Critical patent/US20090051280A1/en
Publication of WO2007094321A1 publication Critical patent/WO2007094321A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]

Definitions

  • Light emitting element method for manufacturing light emitting element, and substrate processing apparatus
  • the present invention relates to a light emitting element in which an organic light emitting layer is formed between two electrodes, and a substrate processing apparatus for forming the light emitting element.
  • organic electroluminescence devices Is attracting attention as a next-generation display device because it has features such as self-luminous emission and high-speed response.
  • the organic EL element may be used as a surface light emitting element.
  • An organic EL element has a structure in which an organic layer including an organic EL layer (light emitting layer) is sandwiched between a positive electrode (positive electrode) and a negative electrode (negative electrode).
  • the positive electrode force also has a structure in which the light emitting layer emits light by injecting holes and electrons from the negative electrode to recombine them.
  • the organic layer may be provided between the anode and the light-emitting layer or between the cathode and the light-emitting layer as necessary, for example, for improving the light emission efficiency such as a hole transport layer or an electron transport layer. It is also possible to add layers.
  • the organic layer is formed by vapor deposition on a substrate on which a positive electrode made of ITO is patterned.
  • the vapor deposition method is a method of forming a thin film by evaporating, for example, vaporized or sublimated vapor deposition materials on a substrate to be processed.
  • A1 (aluminum) serving as a negative electrode is formed on the organic layer by a vapor deposition method.
  • Such a light emitting element is sometimes referred to as V, a so-called top force sword type light emitting element.
  • a light emitting device is formed, in which an organic layer is formed between a positive electrode and a negative electrode.
  • the substrate to be processed is particularly When it becomes larger, the uniformity of the film thickness of the negative electrode sometimes becomes a problem. As described above, when the thickness of the negative electrode is insufficiently uniform in the surface of the substrate to be processed, there is a concern that the quality of the light emitting element in the surface of the substrate to be processed becomes non-uniform.
  • a sputtering method is used in which the uniformity of the deposition rate within the surface of the substrate to be processed is better than that of the vapor deposition method. It is possible.
  • the sputtering method has a problem that the damage to the film formation target becomes larger than the vapor deposition method.
  • the negative electrode is formed on an organic layer having a relatively low mechanical strength. For this reason, for example, when hard or metal particles such as A1 collide with the organic layer at a high speed by sputtering or the like, the organic layer may be damaged and the quality of the light emitting element may be deteriorated. For this reason, it has been difficult to use the sputtering method with good film thickness uniformity for forming the negative electrode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-225058
  • a specific problem of the present invention is that a high-quality light-emitting element in which variation in electrode thickness is small and organic layer damage is small, a manufacturing method for manufacturing the light-emitting element, and the light-emitting element are provided. It is to provide a substrate processing apparatus to be manufactured.
  • the above-described problems are solved by the first electrode, the second electrode facing the first electrode, the first electrode, and the second electrode.
  • a light-emitting element including a conductive main electrode layer formed on the protective layer is solved by a light-emitting element including a conductive main electrode layer formed on the protective layer.
  • the above problem is solved by providing a light emitting layer between the first electrode and the second electrode.
  • the above problem is solved by a structure in which an organic layer including a light emitting layer is held between a first electrode and a second electrode formed on a substrate to be processed.
  • a substrate processing apparatus characterized by having a transport means for transporting to a substrate.
  • a high-quality light-emitting element with little variation in electrode thickness and less damage to an organic layer a manufacturing method for manufacturing the light-emitting element, and a substrate process for manufacturing the light-emitting element An apparatus can be provided.
  • FIG. 1 is a diagram schematically showing a light emitting device according to Example 1.
  • FIG. 1 is a diagram schematically showing a light emitting device according to Example 1.
  • FIG. 2A is a view (No. 1) showing a method for manufacturing the light-emitting element of FIG.
  • FIG. 2B is a view (No. 2) showing the method for manufacturing the light-emitting element of FIG. 1.
  • FIG. 2B is a view (No. 2) showing the method for manufacturing the light-emitting element of FIG. 1.
  • FIG. 2C is a view (No. 3) showing the method for manufacturing the light-emitting element of FIG. 1.
  • FIG. 2D is a view (No. 4) showing the method for manufacturing the light-emitting element shown in FIG. 1.
  • FIG. 2D is a view (No. 4) showing the method for manufacturing the light-emitting element shown in FIG. 1.
  • FIG. 3 is a configuration example of a substrate processing apparatus for manufacturing the light emitting element of FIG.
  • FIG. 4 is a configuration example (No. 1) of a film forming apparatus used in the substrate processing apparatus of FIG.
  • FIG. 5 is a configuration example (No. 2) of a film forming apparatus used in the substrate processing apparatus of FIG.
  • Electron injection layer 104B Main electrode layer 200 Deposition device 200A Internal space 201 Processing vessel 202 Vapor source 202A Raw material 203 Heater 204 Exhaust line 205 Substrate holder 206 Moving rail 207 Gate vano rev 300 Deposition system 300A Internal space 301 Processing vessel 302 Substrate holder 303 Target 304 High frequency power supply 306 Exhaust line 307 Gas supply means
  • FIG. 1 is a cross-sectional view schematically showing a light emitting device according to Example 1 of the present invention.
  • a light emitting device 100 according to the present embodiment includes a positive electrode 102 formed on a substrate 101, a negative electrode 104 facing the positive electrode 102, and a positive electrode 102 between the negative electrode 104 and the positive electrode 102. And an organic layer 103 including a light emitting layer (organic EL layer) 103A.
  • the light emitting device 100 may be called an organic EL device.
  • the light emitting layer 103A is exposed to the positive electrode 102 from the positive electrode 102.
  • the light-emitting layer 103A emits light by injecting electrons from the negative electrode 104 to recombine holes.
  • the light-emitting layer 103A can be formed using a material such as a polycyclic aromatic hydrocarbon, a heteroaromatic compound, an organometallic complex, and the like. It can be formed by the method.
  • the conventional light emitting device has the following technical problems when the negative electrode is formed.
  • the thickness uniformity of the negative electrode may be insufficient.
  • the thickness of the negative electrode Although the uniformity of was good, there was a concern that the organic layer would be damaged.
  • the negative electrode 104 is formed on the organic layer 103 so as to be in contact with the organic layer 103, and is a conductive material for protecting the organic layer 103.
  • the protective layer 104A is preferably formed by an evaporation method
  • the main electrode layer 104B is preferably formed by a sputtering method.
  • the negative electrode 104 when the negative electrode 104 is formed, first, the organic layer 103 is less damaged, for example, the protective layer 104A is formed by an evaporation method, and then the protective layer 104A is formed on the protective layer 104A.
  • the main electrode layer 104B is formed by sputtering, for example, with good uniformity within the substrate surface.
  • both the protective layer 104A and the main electrode layer 104B are preferably made of a conductive material.
  • the film thickness variation was about ⁇ 10%. According to this method, the film thickness variation could be suppressed to ⁇ 5% or less.
  • the influence of damage to the organic layer 103 is suppressed, and the film thickness of the negative electrode 104 is excellent in the substrate plane. It has the characteristics of being a high-quality light-emitting element.
  • the protective layer 104A and the main electrode layer 104B may have the same material force, but the protective layer 104A and the main electrode layer 104B are different as necessary. You may make it consist of materials. In any of the above cases, the protective layer 104A is formed thinner than the main electrode layer 104B.
  • the negative electrode 104 is used as a reflective layer that emits as much light as the light emitting layer 103A. Therefore, the visible light reflectance of the protective layer 104A is preferably higher than the visible light reflectance of the main electrode layer 104B. In this case, the light emission efficiency of the light emitting element is improved.
  • the durability of the main electrode layer 104B is higher than the durability of the protective layer 104A. Since the main electrode layer 104B is formed outside the protective layer 104A and is exposed to heat and oxygen, it is preferable that the main electrode layer 104B has high durability against oxygen, for example.
  • the negative electrode 104 includes a plurality of layers, the protective layer 104A formed on the organic layer 103, and the conductive main electrode formed on the protective layer 104. Since the layer 104B is included, the visible light ray reflectivity of the negative electrode can be increased and durability can be increased.
  • the protective layer 104A is preferably made of Ag. Since Ag has a high visible light reflectance, it is preferable that Ag is used as a material constituting the protective layer 104A on the side facing the light emitting layer 103A.
  • the main electrode layer 104B may be configured, for example, by mixing an additive for durability with Ag.
  • an additive for durability For example, it is preferable to use a material in which 1% by weight of Pd is added to Ag for the main electrode layer 104B because the durability of the main electrode layer is improved as compared with the case where Ag is used.
  • the main electrode layer 104B may be made of A1. Although A1 has a visible light reflectance lower than that of Ag, it has a higher durability than Ag. The durability of the main electrode layer is improved as compared with the case where Ag is used.
  • the protective layer 104A and the main electrode layer 104B may be configured using the same material.
  • a combination of the protective layer 104AZ main electrode layer 104B may be A1 / AU or Ag (addition of 1% by weight of Pd) ZAg (addition of 1% by weight of Pd) may be used.
  • the protective layer 104B is formed so as to be in contact with the organic layer 103. Therefore, a substance for adjusting the work function of the protective layer 104 (in order to improve the light emission efficiency), for example, Li, LiF, CsCO, or the like may be added to the protective layer 104B. Also, the above
  • a layer (Li, LiF, CsCO) for adjusting the work function is formed on the organic layer 103 as an underlayer.
  • the protective layer 104B made of a highly conductive material such as Ag or A1 is formed on the underlayer.
  • the organic layer 103 includes, for example, a hole transport layer 103B, a positive electrode between the light emitting layer 103A and the positive electrode 102.
  • a hole injection layer 103C may be formed.
  • the hole transport layer 103B, the hole injection layer 103 c may be a structure in which either one or both are omitted.
  • the organic layer 103 includes, for example, an electron transport layer 103D, an electrode between the light emitting layer 103A and the negative electrode 104 so that the light emitting efficiency in the light emitting layer 103A is good.
  • a child injection layer 103E may be formed.
  • the electron transport layer 103D and the electron injection layer 103E may have a structure in which one or both of them are omitted.
  • the light emitting layer 103A can be formed using, for example, an aluminoquinolinol complex (Alq3) as a host material and rubrene as a doping material. It is possible to form.
  • Alq3 aluminoquinolinol complex
  • the substrate 101 made of, for example, glass and having the positive electrode 102 made of, for example, ITO formed in a pattern is prepared.
  • an active matrix driving circuit including a TFT (thin film transistor) connected to the positive electrode 101, for example, may be formed on the substrate 101.
  • the organic layer 103 is formed on the positive electrode 102 (on the substrate 101).
  • the organic layer 103 is formed by, for example, a vapor deposition method, and sequentially from the positive electrode 102 side, a hole injection layer 103C, a hole transport layer 103B, a light emitting layer (organic EL layer) 103A, an electron transport layer 103D, electron injection layer 103E force is formed to be laminated.
  • the hole transport layer 103B and the hole injection layer 103C may be omitted from forming one of them or both.
  • the electron transport layer 103D and the electron injection layer 103E may be omitted from forming either one or both of them.
  • the negative electrode 104 including a plurality of layers (the protective layer 104A and the main electrode layer 104B) is formed on the organic layer 103.
  • a conductive protective layer 104A made of, for example, Ag is provided on the organic layer 103 (the electron injection layer 103E) so as to be in contact with the organic layer 103. It is formed by vapor deposition. In this case, the protective layer 104A is formed by vapor deposition. Therefore, damage to the organic layer 103 (the electron injection layer 103E) can be reduced as compared with film formation using, for example, a sputtering method.
  • the material constituting the protective film 104A is not limited to Ag.
  • the protective layer 104A is made of an additive such as A1 or Ag that improves durability (for example, 1 You may form using the material which added the.
  • A1 or Ag improves durability
  • the material in which the additive for improving durability is added to these A1 and Ag is inferior in the visible light reflectance as compared with the material mainly composed of Ag. Therefore, in order to maintain a high reflectance for reflecting the light emitted from the light emitting layer 103A, the protective layer 104A is preferably made of Ag.
  • the protective film 104A is made of Ag
  • the protective film 104A is made of substantially pure Ag or the protective film 104A is made of a material containing at least Ag as a main component.
  • the above-mentioned “material with at least Ag as a main component” that constitutes the protective film 104A is approximately V ⁇ , at which the reflectance of light emission is substantially lower than that of substantially pure Ag. Shows materials that maintain high purity of Ag.
  • the main electrode layer 104B made of, for example, AU is formed on the protective layer 104A so as to be in contact with the protective layer 104A by, for example, a sputtering method.
  • the negative electrode 104 including the protective layer 104A and the main electrode layer 104B is formed.
  • the organic layer 103 (the electron injection layer 103E) is covered and protected by the protective layer 104A, the organic layer 103 is provided when the main electrode layer 104B is formed. Damage is suppressed. For this reason, in the method according to the present embodiment, the degree of freedom of the film forming method when forming the main electrode layer 104B is increased.
  • the main electrode layer 104B is formed by using a film formation method such as a sputtering method, for example, which has good in-plane uniformity of the substrate at the film formation rate but has a large damage to the film formation target. A film forming method can be selected. In this case, even when the main electrode layer 104B is formed by sputtering, damage to the organic layer 103 is suppressed because the organic layer 103 is protected.
  • the durability of the main electrode layer 104B is higher than the durability of the protective layer 104A.
  • the main electrode layer 104B is configured using a material mainly composed of A1 or A1, the reflectance of visible light is inferior to Ag, but the durability is higher than Ag. The durability of the main electrode layer is improved, which is preferable.
  • the protective layer 104B may be configured using a material in which an additive (for example, Pd) for durability is mixed with Ag.
  • an additive for example, Pd
  • the positive electrode 102 has a thickness of 100 m to 200 m
  • the organic layer 103 has a thickness of 50 ⁇ m to 200 ⁇ m
  • the negative electrode 104 has a thickness of 50 ⁇ m to 300 ⁇ m.
  • the protective layer 104A has a thickness of 10 m to 30 m. Further, the thickness of the protective layer 104A is preferably 1/10 or less of the thickness of the main electrode layer 104B! /.
  • the light emitting element 100 can be applied to a display device (organic EL display device) and a surface light emitting device (lighting, light source, etc.), but is not limited thereto. It can be used for various electronic devices.
  • a display device organic EL display device
  • a surface light emitting device lighting, light source, etc.
  • FIG. 3 is a plan view schematically showing an example of the configuration of the substrate processing apparatus 1000 for manufacturing the light emitting element 100.
  • a plurality of film forming apparatuses or processing chambers are connected to one of transfer chambers 900A, 900B, and 900C in which a substrate to be processed is transferred.
  • Each of the transfer chambers 900A, 900B, and 900C has four connection surfaces for connecting a processing chamber or a film forming apparatus.
  • the transfer chambers 90 OA, 900B, and 900C have a structure in which transfer means (transfer arms) 900a, 900b, and 900c for transferring the substrate to be processed are installed therein.
  • the processing chamber connected to the transfer chambers 900A, 900B, and 900C, or the film forming apparatus may be, for example, a preprocessing chamber 500 that performs preprocessing (cleaning or the like) of a substrate to be processed, a substrate to be processed, Is a alignment processing chamber 600 for aligning a mask to be mounted on a substrate to be processed, and forming the organic layer 103 by vapor deposition (performing the process shown in FIG. 2B).
  • the layer 104A is formed by a vapor deposition method (the process shown in FIG. 2C is performed), and the main electrode layer 104B is formed by a notching method (the process shown in FIG. 2D is performed).
  • the load lock rooms are 400A and 400B.
  • the load lock chamber 400A, the pretreatment chamber 500, the alignment treatment chamber 600, and the film forming apparatus 700 are connected to the four connection surfaces of the transfer chamber 900A. Further, the opposite side of the film forming apparatus 700 to the side connected to the transfer chamber 900A is connected to the connection surface of the transfer chamber 900B, and the film formation device 700 is connected to the other connection surface of the transfer chamber 900B. Two apparatuses 200 are connected to the alignment processing chamber 600. Further, the opposite side of the alignment processing chamber 600 to the side connected to the transfer chamber 900B is connected to the connection surface of the transfer chamber 900C, and the other connection surface of the transfer chamber 900C is connected to the film forming apparatus. Two 300 are connected to the load lock chamber 400B.
  • the transfer chambers 900A, 900B, 900C, the load lock chambers 400A, 400B, the pretreatment chamber 500, the alignment treatment chamber 600, and the film forming apparatuses 200, 300, 700 are each decompressed.
  • An exhaust means such as a vacuum pump for connecting to a state (vacuum state) is connected, and the inside is maintained in a reduced pressure state as necessary.
  • a substrate to be processed W (corresponding to the substrate 101 on which the positive electrode 102 is formed shown in FIG. 2A) is put into the substrate processing apparatus 1000 from the load lock chamber 400A.
  • the substrate W to be processed put into the load lock chamber 400A is first transferred to the pretreatment chamber 500 by the transfer means 900a via the transfer chamber 900A, and preprocessing (cleaning, etc.) of the substrate to be processed is performed. Is called.
  • the substrate to be processed is transferred to the alignment processing chamber 600 by the transfer means 900a via the transfer chamber 900A, and a mask is set on the substrate to be processed.
  • the substrate to be processed is transferred by the transfer means 900a to the film forming apparatus 700 via the transfer chamber 900A, and the organic layer 103 of the light emitting element 100 is transferred to the film forming apparatus 700. It is formed by vapor deposition (the process shown in FIG. 2B is performed).
  • the substrate to be processed on which the organic layer 103 is formed is transferred to the alignment processing chamber 600 by the transfer means 900b via the transfer chamber 900B and subjected to alignment processing. Thereafter, the substrate to be processed is transferred to the film forming apparatus 200 (any one of the two film forming apparatuses 200 connected) by the transfer means 900b.
  • the protective layer 104A is formed by vapor deposition (the process shown in FIG. 2C is performed).
  • the substrate to be processed on which the protective layer 104A is formed is transferred again to the alignment processing chamber 600 and subjected to alignment processing, and then the film forming apparatus 300 is transferred by the transfer means 900c through the transfer chamber 900C. It is transferred to (the difference between the two deposition apparatuses 300 connected).
  • the main electrode layer 104B is formed by sputtering (the process shown in FIG. 2D is performed). In this way, the light emitting element 100 described in Example 1 is formed, and the light emitting element 100 is unloaded from the substrate processing apparatus 1000 via the load lock chamber 400B.
  • the substrate processing apparatus 1000 may be configured to further include a film forming apparatus that forms a protective layer made of, for example, an insulating layer on the light emitting element 100.
  • FIG. 4 is a diagram schematically showing an example of the configuration of a film forming apparatus (evaporation apparatus) 200 included in the substrate processing apparatus 1000 described above.
  • the film forming apparatus 200 includes a processing container 201 in which an internal space 200A is defined.
  • the internal space 200A includes a vapor deposition source 202, a substrate holder, and the like.
  • 205 has a structure in which it is installed.
  • the internal space 200A is exhausted from an exhaust line 204 to which an exhaust means (not shown) such as an exhaust pump is connected, and is structured to be kept in a predetermined reduced pressure state.
  • a heater 203 is installed in the vapor deposition source 202, and the raw material 202A held inside by the heater 203 can be heated and vaporized or sublimated to be used as a gaseous raw material.
  • the gaseous source is the substrate holding unit installed to face the vapor deposition source 202.
  • the protective layer 104A is formed by vapor deposition on the substrate W to be processed (the substrate 101 on which the positive electrode 102 and the organic layer 103 are formed) held on a holding base 205.
  • the substrate holder 205 is configured to be movable in parallel on a moving rail 206 installed on the upper surface of the processing container 201 (the side facing the vapor deposition source 202). In other words, the uniformity of the deposited film within the surface of the substrate to be processed is improved by moving the holding table 205 during film formation.
  • the substrate W to be processed can be transferred into the internal space 200A or Unloading from the internal space 200A becomes possible.
  • FIG. 5 is a diagram schematically showing an example of the configuration of a film forming apparatus (sputtering apparatus) 300 included in the substrate processing apparatus 1000.
  • the film forming apparatus 300 includes a processing container 301 in which an internal space 300A is defined, and the internal space 300A includes a target (cathode) 303, A substrate holder (positive electrode) 302 is installed.
  • the internal space 300A is structured such that it is exhausted from an exhaust line 306 to which exhaust means (not shown) such as an exhaust pump is connected, and is held in a predetermined reduced pressure state.
  • a gas for plasma excitation such as Ar is supplied from the gas supply means 307 to the internal space 300A.
  • high frequency power is applied from the high frequency power source 304 to the target 303
  • plasma is excited in the internal space 300A, and Ar ions are generated.
  • the target 303 is sputtered by the Ar ions generated in this manner, whereby the target substrate W (the positive electrode 102, the organic layer 103, and the protective layer) held on the substrate holder 302.
  • the main electrode layer 104B is formed on the substrate 101) on which 104A is formed.
  • the substrate W to be processed can be transferred to the internal space 300A. It is possible to enter or carry out from the internal space 300A.
  • the film forming apparatus (evaporation apparatus) 200 and the film forming apparatus (sputtering apparatus) 300 described above are examples of the configuration, and various modifications can be made.
  • the shape of the transfer chamber and the number of connection surfaces, and the configuration and number of processing chambers and film forming apparatuses to be connected can be variously modified and changed. It is clear that there is.
  • a high-quality light-emitting element with little variation in electrode thickness and less organic layer damage a manufacturing method for manufacturing the light-emitting layer element, and a substrate process for manufacturing the light-emitting element An apparatus can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

明 細 書
発光素子、発光素子の製造方法、および基板処理装置
技術分野
[0001] 本発明は、 2つの電極の間に有機発光層が形成されてなる発光素子および当該発 光素子を形成するための基板処理装置に関する。
背景技術
[0002] 近年、従来用いられてきた CRT (Cathode Ray Tube)に換わって、薄型にする ことが可能な平面型表示装置の実用化が進んでおり、例えば有機エレクト口ルミネッ センス素子 (有機 EL素子)は自発光、高速応答などの特徴を有するために、次世代 の表示装置として着目されている。また、有機 EL素子は、表示装置のほかに、面発 光素子としても用いられる場合がある。
[0003] 有機 EL素子は、陽電極 (正電極)と陰電極 (負電極)の間に有機 EL層(発光層)を 含む有機層が狭持された構造となっており、当該発光層に正極力も正孔を、負極か ら電子を注入してそれらの再結合をさせることによって、当該発光層を発光させる構 造になっている。
[0004] また、前記有機層には、必要に応じて陽極と発光層の間、または陰極と発光層の間 に、例えば正孔輸送層、または電子輸送層など発光効率を良好とするための層を付 加することも可能である。
[0005] 上記の発光素子を形成する方法の一例としては、以下の方法を取ることが一般的 であった。まず、 ITOよりなる陽電極がパターユングされた基板上に、前記有機層を 蒸着法により形成する。蒸着法とは、例えば蒸発あるいは昇華された蒸着原料を、被 処理基板上に蒸着させることで薄膜を形成する方法である。次に、当該有機層上に 、陰電極となる A1 (アルミニウム)を、蒸着法により形成する。このような発光素子を、 V、わゆるトップ力ソード型発光素子と呼ぶ場合がある。
[0006] 例えばこのようにして、陽電極と陰電極の間に有機層が形成されてなる、発光素子 が形成される。
[0007] しかし、上記のように、蒸着法を用いて陰電極を形成する場合、特に被処理基板が 大きくなつた場合には陰電極の膜厚の均一性が問題となる場合があった。このように 、被処理基板面内で陰電極の膜厚の均一性が不十分となると、被処理基板面内で の発光素子の品質が不均一となってしまう懸念がある。
[0008] このような問題を解決するため、陰電極を形成する場合に、例えば蒸着法に比べて 、被処理基板の面内での成膜速度の均一性が良好である、スパッタリング法を用いる ことが考えられる。しかし、スパッタリング法は、蒸着法に比べて成膜対象に対するダ メージが大きくなつてしまう問題があった。
[0009] 例えば上記の発光素子を形成する場合、陰電極は、比較的機械的な強度が小さ い有機層上に形成されることになる。このため、例えばスパッタリング法などによって A1などの硬 、金属の粒子が高速度で有機層に衝突した場合、有機層がダメージを 受け、発光素子の品質が低下してしまう場合がある。このため、膜厚の均一性が良好 であるスパッタリング法を陰電極の形成に用いることは困難となっていた。
特許文献 1:特開 2004— 225058号公報
発明の開示
発明が解決しょうとする課題
[0010] そこで、本発明では、上記の問題を解決した、新規で有用な発光素子、発光素子 の製造方法、および当該発光素子を製造するための基板処理装置を提供することを 統括的目的としている。
[0011] 本発明の具体的な課題は、電極の厚さのばらつきが少ないとともに有機層のダメー ジが少なぐ高品質な発光素子と、当該発光素子を製造する製造方法、および当該 発光素子を製造する基板処理装置を提供することである。
課題を解決するための手段
[0012] 本発明の第 1の観点では、上記の課題を、第 1の電極と、前記第 1の電極に対向す る第 2の電極と、前記第 1の電極と前記第 2の電極の間に形成された発光層を含む 有機層と、を有する発光素子であって、前記第 2の電極は、前記有機層上に形成さ れた該有機層を保護する導電性の保護層と、該保護層上に形成された導電性の主 電極層とを含むことを特徴とする発光素子により、解決する。
[0013] 本発明の第 2の観点では、上記の課題を、第 1の電極と第 2の電極の間に発光層を 含む有機層が形成されてなる発光素子の製造方法であって、前記第 1の電極上に 前記有機層を形成する有機層形成工程と、前記有機層上に、複数の層を含む第 2 の電極を形成する電極形成工程と、を有し、前記電極形成工程は、前記有機層上に 、該有機層にダメージを与えないで成膜することによって導電性の保護層を形成す る工程と、前記保護層上に均一に成膜することによって主電極層を形成する工程と、 を含むことを特徴とする発光素子の製造方法により、解決する。
[0014] 本発明の第 3の観点では、上記の課題を、被処理基板上に形成された、第 1の電 極と第 2の電極の間に発光層を含む有機層が保持された構造の発光素子を製造す る基板処理装置であって、前記有機層上に、該有機層を保護するとともに前記第 2 の電極を構成する導電性の保護層を形成する第 1の成膜装置と、前記保護層上に、 前記第 2の電極を構成する主電極層を形成する第 2の成膜装置と、前記被処理基板 を、前記第 1の成膜装置から前記第 2の成膜装置に搬送する搬送手段と、を有するこ とを特徴とする基板処理装置により、解決する。
発明の効果
[0015] 本発明によれば、電極の厚さのばらつきが少ないとともに有機層のダメージが少な ぐ高品質な発光素子と、当該発光素子を製造する製造方法、および当該発光素子 を製造する基板処理装置を提供することが可能となる。
図面の簡単な説明
[0016] [図 1]実施例 1による発光素子を模式的に示す図である。
[図 2A]図 1の発光素子の製造方法を示す図(その 1)である。
[図 2B]図 1の発光素子の製造方法を示す図(その 2)である。
[図 2C]図 1の発光素子の製造方法を示す図(その 3)である。
[図 2D]図 1の発光素子の製造方法を示す図(その 4)である。
[図 3]図 1の発光素子を製造する基板処理装置の構成例である。
[図 4]図 1の基板処理装置に用いる成膜装置の構成例 (その 1)である。
[図 5]図 1の基板処理装置に用いる成膜装置の構成例 (その 2)である。
符号の説明
[0017] 100 発光素子 101 基板
102 陽電極 103 有機層 103A 発光層 103B 正孔輸送層 103C 正孔注入層 103D 電子輸送層 103E 電子注入層 104 陰電極 104A 保護層 104B 主電極層 200 成膜装置 200A 内部空間 201 処理容器 202 蒸着源 202A 原料 203 ヒータ 204 排気ライン 205 基板保持台 206 移動レール 207 ゲートバノレブ 300 成膜装置 300A 内部空間 301 処理容器 302 基板保持台 303 ターゲット 304 高周波電源 306 排気ライン 307 ガス供給手段
308 ゲートバノレブ
400A, 400B ロードロック室
500 前処理室
600 ァライメント処理室
700 成膜装置
900A, 900B, 900C 搬送室
900a, 900b, 900c 搬送手段
発明を実施するための最良の形態
[0018] 次に、本発明の実施の形態に関して図面に基づき、説明する。
実施例 1
[0019] 図 1は、本発明の実施例 1による発光素子を模式的に示した断面図である。図 1を 参照するに、本実施例による発光素子 100は、基板 101上に形成された陽電極 102 と、該陽電極 102に対向する陰電極 104と、該陽電極 102該陰電極 104の間に形成 された発光層(有機 EL層) 103Aを含む有機層 103と、を有している。
[0020] 上記の発光素子 100は、有機 EL素子と呼ばれる場合があり、前記陽電極 102と前 記陰電極 104の間に電圧を印加することで、当該発光層 103Aに前記陽電極 102か ら正孔を、前記陰電極 104から電子を注入してそれらの再結合をさせることによって 、当該発光層 103Aを発光させる構造になっている。
[0021] 当該発光層 103Aは、例えば、多環芳香族炭化水素、ヘテロ芳香族化合物、有機 金属錯体ィ匕合物等の材料を用いて形成することが可能であり、上記の材料は例えば 蒸着法により、形成することが可能である。
[0022] 従来の発光素子では、陰電極を形成する場合に以下のような技術的な問題があつ た。例えば、陰電極を蒸着法で形成する場合には、陰電極の厚さの均一性が不十分 となる場合があり、一方で陰電極をスパッタリング法で形成する場合には、陰電極の 厚さの均一性は良好であるものの、有機層にダメージが入る懸念が生じていた。
[0023] そこで、本実施例による上記の発光素子 100では、前記陰電極 104が、前記有機 層 103上に該有機層 103に接するように形成された、該有機層 103を保護する導電 性の保護層 104Aと、該保護層 104A上に該保護層 104Aに接するように形成され た、導電性の主電極層 104Bと、を含むように構成されている。
[0024] この場合、例えば、前記保護層 104Aは蒸着法により、前記主電極層 104Bはスパ ッタリング法により形成されることが好ましい。例えば、前記陰電極 104を形成する場 合においては、まず前記有機層 103へのダメージが少ない、例えば蒸着法により前 記保護層 104Aを形成し、次に該保護層 104A上に、成膜の基板面内での均一性 が良好である、例えばスパッタリング法により、前記主電極層 104Bを形成する。この 場合、前記保護層 104Aおよび前記主電極層 104Bは、ともに導電性材料よりなるこ とが好ましい。従来の蒸着法による成膜では、膜厚のばらつきは ± 10%程度であつ た力 本実施による方法によれば、膜厚のばらつきを ± 5%以下に抑えることができ た。
[0025] このため、上記の発光素子 100は、前記有機層 103へのダメージの影響が抑制さ れているとともに、前記陰電極 104の膜厚の、基板面内での均一性が良好であり、高 品質な発光素子である特徴を有して 、る。
[0026] また、前記保護層 104Aと、前記主電極層 104Bとは、同じ材料力も構成されるよう にしてもよいが、必要に応じて前記保護層 104Aと、前記主電極層 104Bとが異なる 材料より構成されるようにしてもよい。また、上記のいずれの場合であっても、前記保 護層 104Aは、前記主電極層 104Bより薄く形成される。
[0027] 例えば、上記の発光素子 100のように、いわゆるトップ力ソード型発光素子の場合、 前記陰電極 104は、前記発光層 103A力もの発光の反射層として用いられる。このた め、前記保護層 104Aの可視光線の反射率が、前記主電極層 104Bの可視光線の 反射率より高いことが好ましい。この場合に、発光素子の発光の効率が良好となる。
[0028] また、一方で、前記主電極層 104Bの耐久性が、前記保護層 104Aの耐久性より高 いことが好ましい。前記主電極層 104Bは、前記保護層 104Aの外側に形成され、熱 や酸素に曝されるため、例えば酸素に対する耐久性が高いことが好ましい。
[0029] なお、この場合、耐久性とは、酸素や水素などの活性なガスまたは励起された当該 ガスによる腐食に対する耐性 (耐腐食性)、結晶粒粗大化に対する耐性、凝集に対 する耐性などの総称を意味する (以下文中同様)。 [0030] 従来の発光素子の陰電極では、可視光線の反射率を高くすると共に、耐久性を高 くすることが困難であった。一方、本実施例による前記陰電極 104が、複数の層を含 み、前記有機層 103上に形成された前記保護層 104Aと、該保護層 104上に形成さ れた、導電性の主電極層 104Bとを含むように構成されているため、陰電極の可視光 線の反射率を高くすると共に、耐久性を高くすることが可能となっている。
[0031] 例えば、前記保護層 104Aは、 Agよりなることが好ましい。 Agは、可視光線の反射 率が高!、ため、前記発光層 103Aに面する側である前記保護層 104Aを構成する材 料として用いられることが好ま 、。
[0032] また、前記主電極層 104Bは、例えば、 Agに耐久性を有するための添加物が混合 されて構成されてもよい。例えば、 Agに対して Pdを 1重量%添加した材料を前記主 電極層 104Bに用いると、 Agを用 ヽた場合に比べて該主電極層の耐久性が向上し、 好ましい。
[0033] また、前記主電極層 104Bは A1により構成されてもょ 、。 A1は、可視光線の反射率 は Agに劣るものの、耐久性は Agより高ぐ Agを用いた場合に比べて該主電極層の 耐久性が向上し、好ましい。
[0034] また、先に説明したように、前記保護層 104Aと前記主電極層 104Bを、同じ材料を 用いて構成してもよぐ例えば、保護層 104AZ主電極層 104Bの組み合わせを、 A gZAg、 A1/AUまたは Ag (1重量%の Pd添加) ZAg (1重量%の Pd添加)としても よい。
[0035] また、前記保護層 104Bは、前記有機層 103に接するように形成される。このため、 前記保護層 104Bには、該保護層 104の仕事関数を調整するため (発光効率を良好 とするため)の物質、例えば、 Li、 LiF、 CsCOなどが添加されてもよい。また、前記
3
有機層 103上に仕事関数を調整するための層(Li、 LiF、 CsCO )を下地層として形
3
成し、当該下地層上に Agや A1のような高導電性材料よりなる前記保護層 104Bが形 成されるようにしてちょい。
[0036] また、前記発光層 103Aでの発光効率が良好となるように、前記有機層 103には、 当該発光層 103Aと前記陽電極 102との間に、例えば、正孔輸送層 103B,正孔注 入層 103Cが形成されていてもよい。また、当該正孔輸送層 103B,正孔注入層 103 cは、そのいずれかが、またはその双方が省略される構造であってもよい。
[0037] 同様に、前記発光層 103Aでの発光効率が良好となるように、前記有機層 103に は、当該発光層 103Aと前記陰電極 104との間に、例えば、電子輸送層 103D,電 子注入層 103Eが形成されていてもよい。また、当該電子輸送層 103D,電子注入層 103Eは、そのいずれかが、またはその双方が省略される構造であってもよい。
[0038] また、前記発光層 103Aは、例えば、ホスト材料にアルミノキノリノール錯体 (Alq3) 、ドーピング材にはルブレンを用いて形成することができる力 これに限定されず、様 々な材料を用いて形成することが可能である。
[0039] 次に、上記の発光素子 100を製造する製造方法について、図 2A〜図 2Dに基づき 、手順を追って説明する。ただし、以降の図中では、先に説明した部分には同一の 参照符号を付し、説明を省略する場合がある。
[0040] まず、図 2Aに示す工程において、パターンユングされた、例えば ITOよりなる前記 陽電極 102が形成された、例えばガラスよりなる前記基板 101を用意する。この場合 、前記基板 101には、前記陽電極 101に接続される、例えば TFT (薄膜トランジスタ) を含む、アクティブマトリクス駆動回路などが形成されて 、てもよ 、。
[0041] 次に、図 2Bに示す工程において、前記陽電極 102上 (前記基板 101上)に、前記 有機層 103を形成する。この場合、前記有機層 103は、例えば蒸着法により形成さ れ、前記陽電極 102の側から順に、正孔注入層 103C,正孔輸送層 103B,発光層( 有機 EL層) 103A,電子輸送層 103D,電子注入層 103E力 積層されるようにして 形成される。また、先に説明したように、必要に応じて前記正孔輸送層 103B,および 前記正孔注入層 103Cは、そのいずれかの成膜を、またはその双方の成膜を省略し てもよい。同様に、前記電子輸送層 103D,電子注入層 103Eは、そのいずれかの成 膜を、またはその双方の成膜を省略してもよい。
[0042] 次に、図 2C〜図 2Dに示す工程において、前記有機層 103上に、複数の層(前記 保護層 104A、前記主電極層 104B)を含む前記陰電極 104を形成する。
[0043] まず、図 2Cに示す工程において、前記有機層 103 (前記電子注入層 103E)上に 、該有機層 103に接するように、導電性の、例えば Agよりなる保護層 104Aを、例え ば蒸着法により形成する。この場合、前記保護層 104Aが蒸着法により形成されるた め、前記有機層 103 (前記電子注入層 103E)に与えるダメージを、例えばスパッタリ ング法などを用いた成膜に比べて低減することができる。
[0044] また、この場合、前記保護膜 104Aを構成する材料は、 Agに限定されるものではな い。例えば前記保護層 104Aは、 A1や、 Agに耐久性を向上させる添加物(例えば 1
Figure imgf000011_0001
を添カ卩した材料を用いて形成してもよい。但し、これらの A1や Agに耐 久性を向上させる添加物を添加した材料は、 Agを主成分とした材料に比べて、可視 光線の反射率が劣る。このことから、前記発光層 103Aからの発光を反射する反射率 を高く維持するためには、前記保護層 104Aが Agよりなることが好ま 、。
[0045] この場合、「前記保護膜 104Aが Agよりなる」とは、当該保護膜 104Aが、実質的な 純 Agよりなるか、または当該保護膜 104Aが少なくとも Agを主成分とする材料よりな ることを意味する。また上記の、当該保護膜 104Aを構成する、「少なくとも Agを主成 分とする材料」とは、実質的な純 Agと比較して発光の反射率が実質的に低くならな Vヽ程度に Agの純度が高く維持された材料を示して 、る。
[0046] 次に、図 2Dに示す工程において、前記保護層 104A上に、該保護層 104Aに接 するように、例えば、 AUりなる前記主電極層 104Bを、例えばスパッタリング法により 形成する。その結果、前記保護層 104Aと前記主電極層 104Bを含む前記陰電極 1 04が形成される。
[0047] この場合、前記有機層 103 (前記電子注入層 103E)が、前記保護層 104Aにより 覆われて保護されているため、前記主電極層 104Bを形成する場合に、前記有機層 103に与えるダメージが抑制される。このため、本実施例による方法では、前記主電 極層 104Bを成膜する場合の成膜方法の自由度が高くなる。例えば、上記のように、 成膜速度の基板の面内均一性が良好である一方で、成膜対象に与えるダメージが 大きい、例えばスパッタリング法などの成膜方法を、前記主電極層 104Bを成膜する 成膜方法として選択することができる。この場合、前記主電極層 104Bをスパッタリン グ法で成膜した場合であっても、前記有機層 103が保護されているため、該有機層 1 03へのダメージが抑制される。
[0048] すなわち、本実施例による発光素子の製造方法を用いれば、陰電極の厚さのばら つきが少なぐかつ有機層のダメージが少ない高品質な発光素子を製造することが 可能となる。
[0049] また、先に説明したように、前記主電極層 104Bの耐久性力 前記保護層 104Aの 耐久性より高くなるように構成されることが好ましい。
[0050] 例えば、 Aほたは A1を主成分とする材料を用いて前記主電極層 104Bを構成した 場合には、可視光線の反射率は Agに劣るものの、耐久性は Agより高ぐ該主電極 層の耐久性が向上し、好ましい。また、前記保護層 104Bを、 Agに耐久性を有するた めの添加物(例えば Pd)を混合した材料を用いて構成してもよ ヽ。このようにして、本 実施例による発光素子 100を製造することができる。
[0051] 例えば、前記陽電極 102の厚さは 100 m乃至 200 m、前記有機層 103の厚さ は 50 μ m乃至 200 μ m、前記陰電極 104の厚さは 50 μ m乃至 300 μ m、前記保護 層 104Aの厚さが 10 m乃至 30 mに形成される。また、前記保護層 104Aの厚さ は、前記主電極層 104Bの厚さの 10分の 1以下とされることが好まし!/、。
[0052] また、例えば、前記発光素子 100は、表示装置 (有機 EL表示装置)や、面発光素 子 (照明 ·光源など)に適用することができるが、これらに限定されるものではなぐ様 々な電子機器に用いることが可能である。
実施例 2
[0053] 次に、実施例 1に記載した発光素子 100を製造する基板処理装置の構成の一例に ついて、図 3〜図 5に基づき、説明する。
[0054] まず、図 3は、前記発光素子 100を製造する基板処理装置 1000の構成の一例を 模式的に示した平面図である。
[0055] 図 3を参照するに、本実施例による基板処理装置 1000は、複数の成膜装置または 処理室が、被処理基板が搬送される搬送室 900A, 900B, 900Cのいずれかに接 続された構造を有している。前記搬送室 900A, 900B, 900Cは、処理室または成 膜装置を接続するための 4つの接続面をそれぞれ有している。また、前記搬送室 90 OA, 900B, 900Cは、被処理基板を搬送する搬送手段 (搬送アーム) 900a, 900b , 900cが、それぞれ内部に設置された構造を有している。
[0056] 前記搬送室 900A, 900B, 900Cに接続される処理室、または成膜装置は、例え ば、被処理基板の前処理 (クリーニングなど)を行う前処理室 500、被処理基板また は被処理基板に装着するマスクのァライメント (位置決め)を行うァライメント処理室 60 0、前記有機層 103を蒸着法により形成する(図 2Bに示した工程を実施する)成膜装 置 700、前記保護層 104Aを蒸着法で形成する(図 2Cに示した工程を実施する)成 膜装置 200、前記主電極層 104Bをスノッタリング法で形成する(図 2Dに示した工程 を実施する)成膜装置 300、ロードロック室 400A、 400Bである。
[0057] 前記搬送室 900Aの 4つの接続面には、前記ロードロック室 400A、前記前処理室 500、前記ァライメント処理室 600、および前記成膜装置 700が接続されている。ま た、前記成膜装置 700の、前記搬送室 900Aに接続された側の反対側は、前記搬送 室 900Bの接続面に接続され、当該搬送室 900Bの他の接続面には、前記成膜装置 200が 2つと、前記ァライメント処理室 600が接続されている。さらに、前記ァライメント 処理室 600の、前記搬送室 900Bに接続された側の反対側は、前記搬送室 900Cの 接続面に接続され、当該搬送室 900Cの他の接続面には、前記成膜装置 300が 2つ と、前記ロードロック室 400Bとが接続されている。
[0058] また、前記搬送室 900A、 900B、 900C、前記ロードロック室 400A、 400B、前記 前処理室 500、前記ァライメント処理室 600、前記成膜装置 200、 300、 700には、 それぞれ内部を減圧状態 (真空状態)にするための、真空ポンプなどの排気手段(図 示せず)が接続されて、必要に応じて内部が減圧状態に維持されている。
[0059] 次に、前記基板処理装置 1000により、実施例 1に記載した前記発光素子 100を製 造する場合の手順の概略について説明する。まず、被処理基板 W (図 2Aに示した、 陽電極 102が形成された基板 101に相当)は、前記ロードロック室 400Aから前記基 板処理装置 1000に投入される。前記ロードロック室 400Aに投入された被処理基板 Wは、前記搬送手段 900aにより、まず前記搬送室 900Aを介して前記前処理室 500 に搬送され、被処理基板の前処理 (クリーニングなど)が行われる。
[0060] 次に、当該被処理基板は、前記搬送手段 900aにより、前記搬送室 900Aを介して 前記ァライメント処理室 600に搬送され、被処理基板上にマスクが設置される。次に 、当該被処理基板は、前記搬送手段 900aにより、前記搬送室 900Aを介して前記成 膜装置 700に搬送され、当該成膜装置 700において、前記発光素子 100の、前記 有機層 103が、蒸着法により形成される(図 2Bに示した工程が実施される)。 [0061] 次に、前記有機層 103が形成された被処理基板は、前記搬送手段 900bにより、前 記搬送室 900Bを介して前記ァライメント処理室 600に搬送され、ァライメント処理が される。その後、被処理基板は、前記搬送手段 900bによって前記成膜装置 200 (2 台接続された成膜装置 200のうちのいずれか)に搬送される。
[0062] 前記成膜装置 200に搬送された被処理基板には、当該成膜装置 200において、 前記保護層 104Aが、蒸着法により形成される(図 2Cに示した工程が実施される)。 当該保護層 104Aが形成された被処理基板は、再び前記ァライメント処理室 600〖こ 搬送されてァライメント処理をされた後、前記搬送手段 900cによって、前記搬送室 9 00Cを介して前記成膜装置 300 (2台接続された成膜装置 300のうちの 、ずれか)に 搬送される。
[0063] 前記成膜装置 300においては、前記主電極層 104Bが、スパッタリング法により形 成される(図 2Dに示した工程が実施される)。このようにして実施例 1に記載した発光 素子 100が形成され、当該発光素子 100は、前記ロードロック室 400Bを介して、基 板処理装置 1000より搬出される。なお、前記基板処理装置 1000が、例えば絶縁層 よりなる保護層を前記発光素子 100上に形成する成膜装置を、さらに有するように構 成してちょい。
[0064] 次に、上記に示した成膜装置 200、成膜装置 300の構成の一例について、それぞ れ図 4および図 5に基づき説明する。
[0065] 図 4は、上記の基板処理装置 1000に含まれる成膜装置 (蒸着装置) 200の構成の 一例を模式的に示した図である。
[0066] 図 4を参照するに、前記成膜装置 200は、内部に内部空間 200Aが画成される処 理容器 201を有し、当該内部空間 200Aには、蒸着源 202と、基板保持台 205が設 置された構造を有している。前記内部空間 200Aは、排気ポンプなどの排気手段(図 示せず)が接続された排気ライン 204より排気され、所定の減圧状態に保持される構 造になっている。
[0067] 前記蒸着源 202にはヒータ 203が設置され、該ヒータ 203によって内部に保持され た原料 202Aを加熱し、気化または昇華させて気体原料とすることが可能に構成され ている。当該気体原料は、前記蒸着源 202に対向するように設置された前記基板保 持台 205に保持された被処理基板 W (前記陽電極 102、前記有機層 103が形成さ れた前記基板 101)に蒸着されて、前記保護層 104Aが形成される。
[0068] 前記基板保持台 205は、前記処理容器 201の上面 (前記蒸着源 202に対向する 側)に設置された、移動レール 206上を、平行に移動可能に構成されている。すなわ ち、成膜時に前記保持台 205が移動されることによって、被処理基板の面内での蒸 着膜の均一性が良好になるように構成されて 、る。
[0069] また、前記処理容器 201の、前記搬送室 900Bに接続される側に形成されたゲート バルブ 207を開放することにより、前記被処理基板 Wの前記内部空間 200Aへの搬 入 ·または前記内部空間 200Aからの搬出が可能になる。
[0070] 上記の成膜装置 200を用いて、実施例 1に記載した図 2Cに相当する工程を実施 することにより、前記有機層 103へ与えるダメージを抑制して、前記保護層 104Aを 形成することが可能となる。
[0071] また、図 5は、上記の基板処理装置 1000に含まれる成膜装置 (スパッタリング装置 ) 300の構成の一例を模式的に示した図である。
[0072] 図 5を参照するに、前記成膜装置 300は、内部に内部空間 300Aが画成される処 理容器 301を有し、当該内部空間 300Aには、ターゲット(陰電極) 303と、基板保持 台(陽電極) 302が設置された構造を有している。前記内部空間 300Aは、排気ボン プなどの排気手段(図示せず)が接続された排気ライン 306より排気され、所定の減 圧状態に保持される構造になっている。
[0073] 前記内部空間 300Aには、ガス供給手段 307より例えば Arなどのプラズマ励起の ためのガスが供給される。ここで、前記ターゲット 303に高周波電源 304より高周波電 力が印加されることで当該内部空間 300Aにプラズマが励起され、 Arイオンが生成さ れる。このようにして生成された Arイオンにより、前記ターゲット 303がスパッタリングさ れることで、前記基板保持台 302に保持された被処理基板 W (前記陽電極 102、前 記有機層 103、および前記保護層 104Aが形成された前記基板 101)上に、前記主 電極層 104Bが形成される。
[0074] また、前記処理容器 301の、前記搬送室 900Cに接続される側に形成されたゲート バルブ 308を開放することにより、前記被処理基板 Wの前記内部空間 300Aへの搬 入 ·または前記内部空間 300Aからの搬出が可能になる。
[0075] また、上記の成膜装置 (蒸着装置) 200、成膜装置 (スパッタリング装置) 300は、そ の構成の一例であり、様々に変形'変更が可能である。
[0076] また、上記の基板処理装置 1000は、例えば搬送室の形状や接続面の数、また、 接続される処理室、成膜装置の構成や数などは、様々に変形'変更が可能であるこ とは明らかである。
[0077] 以上、本発明を好ましい実施例について説明したが、本発明は上記の特定の実施 例に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々な変 形 ·変更が可能である。
産業上の利用可能性
[0078] 本発明によれば、電極の厚さのばらつきが少ないとともに有機層のダメージが少な ぐ高品質な発光素子と、当該発光層素子製造する製造方法、および当該発光素子 を製造する基板処理装置を提供することが可能となる。
[0079] 本国際出願は、 2006年 2月 14日に出願した日本国特許出願 2006— 36916号に 基づく優先権を主張するものであり、 2006— 36916号の全内容を本国際出願に援 用する。

Claims

請求の範囲
[1] 第 1の電極と、
前記第 1の電極に対向する第 2の電極と、
前記第 1の電極と前記第 2の電極の間に形成された発光層を含む有機層と、を有 する発光素子であって、
前記第 2の電極は、前記有機層上に形成された該有機層を保護する導電性の保 護層と、該保護層上に形成された導電性の主電極層とを含むことを特徴とする発光 素子。
[2] 前記保護層は、蒸着法により形成されることを特徴とする請求項 1記載の発光素子
[3] 前記主電極層は、スパッタリング法により形成されることを特徴とする請求項 2記載 の発光素子。
[4] 前記保護層の可視光線の反射率が、前記主電極層の可視光線の反射率より高く なるよう構成されていることを特徴とする請求項 1記載の発光素子。
[5] 前記主電極層の耐久性が、前記保護層の耐久性より高くなるよう構成されているこ とを特徴とする請求項 1記載の発光素子。
[6] 前記保護層は Agよりなり、前記主電極層は Agに耐久性を有するための添加物が 混合されて構成されることを特徴とする請求項 1記載の発光素子。
[7] 前記保護層は Agよりなり、前記主電極層は A1を主成分として構成されていることを 特徴とする請求項 1記載の発光素子。
[8] 第 1の電極と第 2の電極の間に発光層を含む有機層が形成されてなる発光素子の 製造方法であって、
前記第 1の電極上に前記有機層を形成する有機層形成工程と、
前記有機層上に、複数の層を含む第 2の電極を形成する電極形成工程と、を有し 前記電極形成工程は、
前記有機層上に、該有機層にダメージを与えな 、で成膜することによって導電性の 保護層を形成する工程と、 前記保護層上に均一に成膜することによって主電極層を形成する工程と、を含むこ とを特徴とする発光素子の製造方法。
[9] 前記保護層は、蒸着法により形成されることを特徴とする請求項 8記載の発光素子 の製造方法。
[10] 前記主電極層は、スパッタリング法により形成されることを特徴とする請求項 9記載 の発光素子の製造方法。
[11] 前記保護層の可視光線の反射率が、前記主電極層の可視光線の反射率より高く なるよう構成されることを特徴とする請求項 8記載の発光素子の製造方法。
[12] 前記主電極層の耐久性が、前記保護層の耐久性より高くなるよう構成されることを 特徴とする請求項 8記載の発光素子の製造方法。
[13] 前記保護層は Agよりなり、前記主電極層は Agに耐久性を有するための添加物が 混合されて構成されることを特徴とする請求項 8記載の発光素子の製造方法。
[14] 前記保護層は Agよりなり、前記主電極層は A1を主成分として構成されていることを 特徴とする請求項 8記載の発光素子の製造方法。
[15] 被処理基板上に形成された、第 1の電極と第 2の電極の間に発光層を含む有機層 が保持された構造の発光素子を製造する基板処理装置であって、
前記有機層上に、該有機層を保護するとともに前記第 2の電極を構成する導電性 の保護層を形成する第 1の成膜装置と、
前記保護層上に、前記第 2の電極を構成する主電極層を形成する第 2の成膜装置 と、
前記被処理基板を、前記第 1の成膜装置力 前記第 2の成膜装置に搬送する搬送 手段と、を有することを特徴とする基板処理装置。
[16] 前記第 1の成膜装置は蒸着装置であることを特徴とする請求項 15記載の基板処理 装置。
[17] 前記第 2の成膜装置は、スパッタリング装置であることを特徴とする請求項 16記載 の基板処理装置。
PCT/JP2007/052520 2006-02-14 2007-02-13 発光素子、発光素子の製造方法、および基板処理装置 WO2007094321A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/279,405 US20090051280A1 (en) 2006-02-14 2007-02-13 Light-emitting device, method for manufacturing light-emitting device, and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-036916 2006-02-14
JP2006036916A JP2007220359A (ja) 2006-02-14 2006-02-14 発光素子、発光素子の製造方法、および基板処理装置

Publications (1)

Publication Number Publication Date
WO2007094321A1 true WO2007094321A1 (ja) 2007-08-23

Family

ID=38371501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052520 WO2007094321A1 (ja) 2006-02-14 2007-02-13 発光素子、発光素子の製造方法、および基板処理装置

Country Status (6)

Country Link
US (1) US20090051280A1 (ja)
JP (1) JP2007220359A (ja)
KR (1) KR20080083360A (ja)
CN (1) CN101385396A (ja)
TW (1) TW200803597A (ja)
WO (1) WO2007094321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040193A1 (ja) * 2009-09-30 2011-04-07 株式会社アルバック 有機el及び有機elの電極形成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046977B2 (ja) * 2008-01-30 2012-10-10 帝人デュポンフィルム株式会社 導電性フィルムおよびその製造方法
KR20110039062A (ko) 2009-10-09 2011-04-15 삼성모바일디스플레이주식회사 유기 발광 표시 장치
CN109950422B (zh) * 2019-03-29 2020-11-17 京东方科技集团股份有限公司 一种显示面板的阴极的制作方法、显示面板及显示装置
CN110165067A (zh) * 2019-07-01 2019-08-23 南方科技大学 一种全透明倒置量子点发光器件、其制备方法及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162652A (ja) * 1997-12-02 1999-06-18 Idemitsu Kosan Co Ltd 有機el素子およびその製造方法
JP2000517469A (ja) * 1996-09-04 2000-12-26 ケンブリッジ ディスプレイ テクノロジー リミテッド 有機発光デバイスのための電極付着
JP2006228573A (ja) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd エレクトロルミネッセンス素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114646A (ja) * 2001-08-03 2003-04-18 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法。
JP4345278B2 (ja) * 2001-09-14 2009-10-14 セイコーエプソン株式会社 パターニング方法、膜形成方法、パターニング装置、有機エレクトロルミネッセンス素子の製造方法、カラーフィルタの製造方法、電気光学装置の製造方法、及び電子装置の製造方法
JP4050972B2 (ja) * 2002-10-16 2008-02-20 株式会社 日立ディスプレイズ 表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517469A (ja) * 1996-09-04 2000-12-26 ケンブリッジ ディスプレイ テクノロジー リミテッド 有機発光デバイスのための電極付着
JPH11162652A (ja) * 1997-12-02 1999-06-18 Idemitsu Kosan Co Ltd 有機el素子およびその製造方法
JP2006228573A (ja) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd エレクトロルミネッセンス素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040193A1 (ja) * 2009-09-30 2011-04-07 株式会社アルバック 有機el及び有機elの電極形成方法
JPWO2011040193A1 (ja) * 2009-09-30 2013-02-28 株式会社アルバック 有機el及び有機elの電極形成方法

Also Published As

Publication number Publication date
CN101385396A (zh) 2009-03-11
US20090051280A1 (en) 2009-02-26
TW200803597A (en) 2008-01-01
KR20080083360A (ko) 2008-09-17
JP2007220359A (ja) 2007-08-30

Similar Documents

Publication Publication Date Title
KR101057915B1 (ko) 성막 장치 및 발광 소자의 제조 방법
KR101004060B1 (ko) 제조 시스템, 발광 장치, 및 유기 화합물 함유 층의 제조방법
US7141924B2 (en) Multi-layer cathode in organic light-emitting devices
KR100995219B1 (ko) 발광 소자, 발광 소자의 제조 방법 및 기판 처리 장치
WO2006132226A1 (ja) 有機el素子、有機el表示装置、および有機el素子の製造方法
EP1422765A2 (en) Highly efficient organic electroluminescent device
US8263174B2 (en) Light emitting device and method for manufacturing light emitting device
JP4871901B2 (ja) 透明伝導性酸化膜のカソードを備える有機電界発光素子及びその製造方法
WO2007094321A1 (ja) 発光素子、発光素子の製造方法、および基板処理装置
WO2017000326A1 (zh) 一种制作柔性oled显示器件的方法
WO2007074563A1 (ja) 成膜装置および発光素子の製造方法
JP4439827B2 (ja) 製造装置および発光装置の作製方法
JP4515060B2 (ja) 製造装置および有機化合物を含む層の作製方法
WO2008018500A1 (fr) Dispositif de formation de film, système de formation de film et procédé de formation de film
JP4337567B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2010121215A (ja) 蒸着装置および蒸着方法
JP2007220358A (ja) 基板処理装置および発光素子の製造方法
JP2004022398A (ja) 有機エレクトロルミネッセンスの製造方法
JP2009146774A (ja) ハーフミラーの保護層を有する、マイクロキャビティー共振効果を利用した有機発光デバイス
KR20050070834A (ko) 유기 전계 발광 소자 및 그의 제조방법
JP2007328999A (ja) 発光素子の製造装置および発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087019880

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780005507.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12279405

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07714102

Country of ref document: EP

Kind code of ref document: A1