WO2007091561A1 - フィンチューブ型熱交換器 - Google Patents

フィンチューブ型熱交換器 Download PDF

Info

Publication number
WO2007091561A1
WO2007091561A1 PCT/JP2007/052032 JP2007052032W WO2007091561A1 WO 2007091561 A1 WO2007091561 A1 WO 2007091561A1 JP 2007052032 W JP2007052032 W JP 2007052032W WO 2007091561 A1 WO2007091561 A1 WO 2007091561A1
Authority
WO
WIPO (PCT)
Prior art keywords
cut
raised
fin
flow direction
heat exchanger
Prior art date
Application number
PCT/JP2007/052032
Other languages
English (en)
French (fr)
Inventor
Kou Komori
Osamu Ogawa
Hiroki Hayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/278,360 priority Critical patent/US9086243B2/en
Priority to CN2007800046569A priority patent/CN101379361B/zh
Priority to EP20070713861 priority patent/EP1985958A4/en
Priority to JP2007525096A priority patent/JP4022250B2/ja
Publication of WO2007091561A1 publication Critical patent/WO2007091561A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Definitions

  • the present invention relates to a finned tube heat exchanger.
  • fin tube type heat exchange is often used in, for example, an air conditioner, a refrigerator / refrigerator, a dehumidifier, and the like.
  • the fin tube type heat exchange is constituted by a plurality of fins arranged at predetermined intervals and a heat transfer tube passing through the fins.
  • Fin tube heat exchangers are known in which fin shapes are devised for the purpose of promoting heat transfer. For example, heat exchange with many pins provided on the fin surface is known. In this heat exchange, the flow on the fin surface side is stirred by these pins, and heat exchange is promoted.
  • Japanese Laid-Open Patent Publication No. 2001-116488 discloses a fin tube type heat exchanger having a plurality of slit-like cuts (hereinafter referred to as slit portions) formed on a plate base surface.
  • slit portions a fin tube type heat exchanger having a plurality of slit-like cuts (hereinafter referred to as slit portions) formed on a plate base surface.
  • the slit portion is formed by press-molding the fin so that a part of the fin is cut and raised in a slit shape.
  • slit fins In fins having slit portions (hereinafter referred to as slit fins), heat transfer is promoted based on the following principle. That is, as shown in FIG. 12A, in the fin (smooth fin) 100 in which the slit portion is not provided, when air A is supplied from the front, the fin 100 has a continuous force from the front edge 100a toward the rear. A temperature boundary layer BL is generated. The temperature boundary layer BL is thin in the vicinity of the leading edge 100a, but becomes thicker toward the rear. On the other hand, as shown in FIG. 12B, in the slit fin 101, the temperature boundary layer BL is also generated from the front edge 102a of each slit portion 102 connected only by the front edge 101a of the fin 101.
  • the temperature boundary layer BL developed from the leading edge 101a of 101 can be divided, and the temperature boundary layer BL can be generated intermittently. Therefore, in the slit fin 101, the average thickness of the temperature boundary layer BL is thinner than that of the smooth fin 100. As a result, the heat transfer coefficient is improved.
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a fin tube that can improve the heat transfer coefficient more than the conventional one while maintaining the ease of manufacturing. To provide heat exchange.
  • a finned tube heat exchanger includes a plurality of fins arranged in parallel at intervals, and a plurality of heat transfer tubes that penetrate the fins, and flows on the surface side of the fins.
  • a fin-tube heat exchanger for exchanging heat between a first fluid and a second fluid flowing inside the heat transfer tube, wherein each fin includes a part of the first fluid.
  • a cut-and-raised part is formed which is cut and raised as if it was turned from the upstream side to the downstream side in the flow direction, and the cross-sectional shape is tapered toward the upstream side. It is something to be struck.
  • the cross-sectional shape of the cut and raised portion may be a semicircular shape.
  • the cut-and-raised portion may have a semi-elliptical cross-sectional shape.
  • the cross-sectional shape of the cut-and-raised portion may be a semi-elliptical shape that is elongated toward the upstream side.
  • the cross-sectional shape of the cut and raised portion may be a wedge shape.
  • a plurality of the cut-and-raised portions are provided along the flow direction of the first fluid, and the cut-and-raised portions adjacent to each other in the flow direction are cut and raised in directions opposite to each other with the fin as a boundary. Also good.
  • the cut and raised height of the cut and raised portion may be 1Z2 or less of the fin pitch.
  • the cut-and-raised portion is provided in a plurality along the flow direction of the first fluid.
  • the sum of the lengths of the cut-and-raised portions in the flow direction of the fluid may be 1Z2 to 2Z3 of the length of the fins in the flow direction of the first fluid.
  • a plurality of the raised portions are provided along the flow direction of the first fluid, and the number of the raised portions along the flow direction may be 3 or less per one heat transfer tube. Good
  • the cut-and-raised part is provided in plural along the flow direction of the first fluid, and the length of the cut-and-raised part located on the most upstream side in the flow direction is the flow of the other raised parts. It may be longer than the direction length.
  • the fin may be configured such that the upstream side in the flow direction of the first fluid is longer than the downstream side with respect to the center of the heat transfer tube.
  • a cut-and-raised portion is formed in the fin, and the cross-sectional shape of the cut-and-raised portion is tapered toward the upstream side in the flow direction. It is curved or bent to be. Therefore, the temperature boundary layer of the fluid in the cut and raised portion can be thinned. Therefore, it is possible to improve the heat transfer coefficient more than before while maintaining the ease of manufacture.
  • FIG. 1 Perspective view of finned tube heat exchanger
  • FIG. 3A is an enlarged view of the main part of the finned tube heat exchanger according to Embodiment 1.
  • FIG. 3B is an enlarged view of the main part of a finned tube heat exchanger according to a modification of Embodiment 1 (III III sectional view).
  • FIG. 3D Cross-sectional view of a variation of the cut-and-raised part
  • FIG. 5A Conceptual diagram showing heat transfer in slit fins
  • FIG. 5B is a conceptual diagram showing heat transfer in the fin according to the embodiment.
  • FIG. 7 is an enlarged view of the main part of the finned tube heat exchanger according to the second embodiment.
  • Figure 8A Illustration of ellipticity
  • FIG. 8B Diagram showing the relationship between ellipticity, average heat transfer coefficient and pressure loss
  • FIG. 9 is a cross-sectional view of the cut-and-raised part of the finned tube heat exchanger according to the third embodiment.
  • FIG. 11A is a partial elevation view of a finned tube heat exchanger according to another embodiment.
  • FIG. 11B Xlb—Xlb cross-sectional view of Fig. 11A
  • the finned tube heat exchanger 1 includes a plurality of fins 3 arranged in parallel at predetermined intervals, and a plurality of heat transfer tubes 2 penetrating these fins 3. ing.
  • the fluid flowing inside the heat transfer tube 2 and the surface side of the fin 3 (the outer surface of the heat transfer tube 2 is exposed, in this case, the surface of the fin 3 and the outer surface of the heat transfer tube 2 In the case where is exposed, the fluid flowing through the fin 3 and the surface of the heat transfer tube 2) exchanges heat.
  • air A flows on the surface side of the fin 3, and cooling medium B flows inside the heat transfer tube 2.
  • the fluid flowing inside the heat transfer tube 3 and the fluid flowing on the surface side of the fin 3 are not particularly limited. These fluids may be gas or liquid.
  • the fins 3 are formed in a rectangular flat plate shape, and are arranged along the Y direction shown in the figure. Note that in the present embodiment, the fins 3 are arranged at a constant interval, and the intervals may not necessarily be constant.
  • a punched aluminum plate having a thickness of 0.08-0.2 mm can be preferably used. From the viewpoint of improving the fin efficiency, the thickness of the fin 3 is particularly preferably 0.1 mm or more.
  • the surface of the fin 3 is subjected to a hydrophilic treatment such as boehmite treatment or application of a hydrophilic paint.
  • the heat transfer tubes 2 are arranged along the longitudinal direction of the fins 3 (hereinafter also referred to as the Z direction). Are lined up. However, the heat transfer tubes 2 do not necessarily need to be arranged in a line along the Z direction, and may be arranged in a staggered manner, for example.
  • the outer diameter D (see FIG. 2) of the heat transfer tube 2 is, for example, 1 to 20 mm, and may be 4 mm or less.
  • the heat transfer tube 2 is in close contact with the fin collar of the fin 3 (not shown. In FIG. 2 and the like, illustration of the fin collar is omitted) by expanding the tube. Is fitted.
  • the heat transfer tube 2 may be a smooth tube having a smooth inner surface or a grooved tube.
  • the heat exchanger 1 is installed in such a posture that the flow direction of the air A (the X direction in FIG. 1) is almost perpendicular to the Y direction and the Z direction. However, as long as a sufficient amount of heat exchange can be ensured, the airflow direction may be slightly inclined from the X direction!
  • the center line C2 of the heat transfer tube 2 is shifted from the center line C1 of the fin 3 to the downstream side (right side in FIG. 2) in the airflow direction. Therefore, when the center line C2 of the heat transfer tube 2 is used as a reference, the fin 3 is longer on the upstream side (left side in FIG. 2) than on the downstream side. As described above, the front edge of the fin 3 has a large local heat transfer coefficient. On the other hand, the rear of the heat transfer tube 2 is a dead water area, and the local heat transfer coefficient is small. Therefore, according to the present heat exchanger 1, the front edge of the fin 3 is extended forward, and the rear edge of the fin 3 is shortened. The area of the portion with a small heat transfer coefficient can be reduced.
  • the fin 3 has a first cut-and-raised portion 5a, a second cut-and-raised portion 5b, and a third cut in order from the upstream side to the downstream side of the airflow A.
  • a raised portion 5c is formed.
  • the first to third cut-and-raised portions 5a to 5c are respectively formed between the adjacent heat transfer tubes 2, and a plurality of sets are provided along the Z direction.
  • Each cut-and-raised portion 5a to 5c is a portion of the fin 3 that is cut and raised as if it is turned from the upstream side toward the downstream side.
  • the cross section of each cut-and-raised portion 5a to 5c (cross section orthogonal to the Z direction) is tapered toward the upstream side.
  • the cross-sectional shape of the cut and raised portions 5a to 5c is formed in a semicircular shape.
  • the diameter of the semicircle formed by the cross sections of the cut and raised portions 5a to 5c is, for example, 0.2 to 1. Omm.
  • the shapes of the cut-and-raised portions 5a to 5c can be specified as follows.
  • the direction in which the fins 3 are arranged (cut and raised, the thickness direction of the part) is the height direction HL, and the cross section parallel to the height direction HL and the flow direction AL (air flow direction) of air A is finned. It is defined as 3 cross section.
  • the cut-and-raised portion 5a (5b, 5c) is bent so that the cut-and-raised tip 5t is separated from the surface of the fin 3 and the cut-and-raised tip 5t is inverted downstream. Then, as shown by the dotted line region in FIG.
  • the height h of the space SH it is not necessary for the height h of the space SH to decrease monotonically as it goes upstream in the airflow direction AL. If it contains, it is enough. For example, as shown in FIG. 3D, the cut is made so that the space SH shows the maximum height hmax at a position advanced a predetermined distance from the position of the downstream end 5t (cutting tip 5t) to the upstream side in the airflow direction AL.
  • the shape of the raising part 5a (5b, 5c) may be adjusted.
  • a plurality of cut-and-raised portions 5a to 5c are provided along the flow direction of air A, and the plurality of cut-and-raised portions 5a to 5c are respectively long in the flow direction of air A.
  • the dimensions are adjusted so that the length in the arrangement direction of the plurality of heat transfer tubes 2 is larger. That is, the direction parallel to the in-plane direction of the fin 3 and the arrangement direction of the plurality of heat transfer tubes 3 can be defined as the longitudinal direction of the plurality of raised portions 5a to 5c.
  • the length UL2 in the longitudinal direction (Z direction) of the second cut and raised portion 5b is equal to the length in the longitudinal direction of the third cut and raised portion 5c.
  • the longitudinal length UL1 of the first cut-and-raised portion 5a is longer than the longitudinal length UL2 of the second cut-and-raised portion 5b.
  • the longitudinal length UL1 of the first cut and raised portion 5a is twice the longitudinal length UL2 of the second cut and raised portion 5b.
  • the longitudinal lengths of the first to third cut-and-raised portions 5a to 5c may be equal to each other or may be different from each other.
  • the longitudinal direction UL1 of the first cut-and-raised portion 5a is larger than the distance PG between the adjacent heat transfer tubes 2 and smaller than the center-to-center distance PP between the adjacent heat transfer tubes 2.
  • the length UL2 in the longitudinal direction of the second cut-and-raised portion 5b and the third cut-and-raised portion 5c is smaller than the above-mentioned interval PG which is larger than 1Z2 of the interval PG.
  • the first to third cut-and-raised portions 5a to 5c are formed so that the directions of the cut-and-raised are different from each other.
  • the first cut and raised portion 5a is cut and raised on the upper side of FIG. 3A
  • the second cut and raised portion 5b is cut and raised on the lower side
  • the third cut and raised portion 5c is cut and raised on the upper side.
  • the cut-and-raised portions adjacent to each other in the airflow direction are reversed in the direction of the cut-and-raised with respect to the fin 3 (specifically, the portion where the fin 3 is cut and raised).
  • the lengths (full lengths) UH in the airflow direction of the first to third cut-and-raised portions 5a to 5c are equal to each other.
  • the total length UH of the first to third cut and raised portions 5a to 5c may not necessarily be the same, but may be different from each other.
  • the total length UH of the first to third cut and raised portions 5a to 5c may be gradually shortened or gradually lengthened.
  • the cut and raised heights UW of the first to third cut and raised portions 5a to 5c are also equal to each other.
  • the cut-and-raised height UW is the distance from the center of the fin 3 in the thickness direction.
  • the cut and raised height UW is preferably 1Z2 or less of the fin pitch FP.
  • the cut-and-raised height UW is 1Z2 or less of the fin pitch FP, when the heat exchanger 1 is viewed from the upstream side to the downstream side of the airflow (as viewed in the X direction), the adjacent fins 3 are cut and raised. This is because the portions 5a to 5c do not overlap and increase in pressure loss can be suppressed.
  • the length UH force in the air flow direction of the first cut-and-raised part 5a which is the cut-and-raised part located on the most upstream side, is the second and third cut-and-raised parts that are the other raised parts.
  • the length of the strain sections 5b and 5c in the air flow direction is longer than Uh.
  • the cut and raised height UW of the first cut and raised portion 5a is higher than the cut and raised height Uw of the second and third cut and raised portions 5b and 5c.
  • the length UH of the cut-and-raised portions 5a to 5c in the flow direction of the air A is referred to as the airflow direction length UH of the cut-and-raised portions 5a to 5c.
  • the length UH of the cut-and-raised part 5a to 5c in the air flow direction corresponds to the upstream end force of the opening generated by forming the cut-and-raised parts 5a to 5c, as shown in FIG.
  • FIG. 4 shows the temperature boundary layer BL in the first cut and raised portion 5a.
  • the first cut-and-raised portion 5a has a tapered cross-sectional shape that is directed toward the upstream side, so that the air flows thinly along the surface of the first cut-and-raised portion 5a. The thickness of the temperature boundary layer BL is reduced.
  • the temperature boundary layer BL expands as it goes backward, but the first cut-and-raised part 5a is formed in a shape that expands backward as it goes. Therefore, the temperature boundary layer BL is kept thin not only at the front edge of the first cut and raised portion 5a but also at the rear side. Therefore, the heat transfer coefficient of the first cut-and-raised portion 5a is dramatically improved.
  • the shape (outer shape) of the plurality of raised portions 5a to 5c has a longitudinal shape (for example, a rectangular shape, Or the trapezoidal shape in which the long side and the short side are orthogonal to the airflow direction), and the directions of the plurality of raised portions 5a to 5c are aligned so that the longitudinal direction is orthogonal to the airflow direction.
  • a longitudinal shape for example, a rectangular shape, Or the trapezoidal shape in which the long side and the short side are orthogonal to the airflow direction
  • the directions of the plurality of raised portions 5a to 5c are aligned so that the longitudinal direction is orthogonal to the airflow direction.
  • the heat is supplied to the slit portion 102 through the root 102 c of the slit portion 102.
  • the root 102c extends in a direction orthogonal to the longitudinal direction of the slit portion 102, the width SW of the root 102c is small. Therefore, in the slit fin 101, the heat supply path to the slit portion 102, which is the heat transfer promoting portion, is narrow. Therefore, although the slit portion 102 has a high local heat transfer coefficient, it is difficult to say that the heat supply is necessarily sufficient.
  • this heat exchange l (fin 3) as shown in FIG.
  • the root 10 of the cut-and-raised part 5 extends in the longitudinal direction of the cut-and-raised part 5 (vertical direction in FIG. 5B). 10 width UL is wide. Therefore, a sufficient amount of heat is supplied to the cut and raised portion 5. Therefore, according to the present heat exchanger 1 (fin 3), the heat exchange performance can be improved also in terms of the amount of heat supplied to the heat transfer promoting part.
  • the cut-and-raised portions 5a to 5c are formed in a semicircular cross-sectional shape, and the airflow in the cut-and-raised portions 5a to 5c is shown in FIG.
  • the width in the direction perpendicular to the direction increases from the upstream side to the downstream side, and is maximum at the downstream ends of the cut-and-raised portions 5a to 5c.
  • the downstream end of the cut-and-raised portion refers to the tip of the cut-and-raised portion (see reference numeral 5t in FIG. 3A).
  • the downstream portion becomes a dead water area, and the heat transfer coefficient of the downstream portion becomes low.
  • the cut-and-raised portions 5a to 5c of the present embodiment since the cross section is semicircular, the dead water area can be reduced. Accordingly, the heat transfer coefficient can be effectively improved.
  • cut-and-raised portions 5a to 5c may be tapered toward the upstream side, but in particular in the present embodiment, the cut-and-raised portions 5a to 5c are formed in a semicircular shape. . Therefore, the development of the boundary layer can be further suppressed, and the heat transfer coefficient can be further improved.
  • the cut-and-raised portions adjacent to each other in the airflow direction are opposite to each other. Therefore, the second cut and raised portion 5b is not easily affected by the temperature boundary layer of the first cut and raised portion 5a, and the third cut and raised portion 5c is not easily affected by the temperature boundary layer of the second cut and raised portion 5b. . Therefore, the heat transfer coefficient of the second cut and raised portion 5b and the third cut and raised portion 5c can be further improved.
  • the cut-and-raised height UW of the cut-and-raised portions 5a to 5c is set to 1Z2 or less of the fin pitch FP. Therefore, it is possible to prevent the pressure loss from increasing significantly. However, depending on the application of heat exchange, etc., an increase in pressure loss may be allowed. In such a case, the cut and raised height UW is H It may be larger than 1Z2 of FP.
  • the lower limit of the cut-and-raised height UW of the cut-and-raised portions 5a to 5c is not particularly limited. For example, it should be 1Z5 or more of the fin pitch FP (however, the thickness of the fin 3 is more than twice the thickness FT). it can.
  • the heat transfer rate increases as the number of cut-and-raised portions increases, but the rate of increase gradually decreases.
  • the larger the number of raised parts the more complicated the production and the greater the pressure loss.
  • the number of the cut-and-raised portions 5a to 5c along the airflow direction is three (a plurality).
  • the ratio of the airflow direction length UH of the cut-and-raised portions 5a to 5c to the airflow direction length L of the fin 3 can be varied depending on the number of rows of the heat transfer tubes 2.
  • the ratio described above is a ratio when the heat transfer tubes 2 penetrating the fins 3 are in one row.
  • the number of cut-and-raised portions 5a to 5c is also the number when the heat transfer tubes 2 penetrating the fins 3 are in one row.
  • the first cut and raised portion 5a located on the most upstream side has a relatively high heat transfer coefficient.
  • the length in the longitudinal direction of the first cut-and-raised portion 5a is larger than the length in the longitudinal direction of the other cut-and-raised portions 5b and 5c. For this reason, the area of the portion having a large heat transfer coefficient is increased, so that the heat transfer coefficient can be effectively improved.
  • the speed boundary layer of the cut-and-raised portions 5a to 5c becomes thin, so even if condensation occurs on the surface of the fin 3, the water film tends to be thin. For this reason, even if condensation occurs, the effect of promoting heat transfer is unlikely to decrease, and pressure loss is unlikely to increase.
  • the cut-and-raised portions 5a to 5c are formed in a semicircular cross-sectional shape.
  • the cross-sectional shape of the cut-and-raised portions 5a to 5c is not limited to a semicircular shape.
  • the cross-sectional shapes of the cut-and-raised portions 5a to 5c are semi-elliptical.
  • the fin 3 of the heat exchanger 1 according to the second embodiment has the cut-and-raised portion 5a that is cut and raised so that a part of the fin 3 is turned from the upstream side toward the downstream side.
  • ⁇ 5c are formed, and the cut-and-raised portions 5a to 5c are formed in a semi-elliptical shape so that the cross-sectional shape is curved toward the upstream side and becomes tapered. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the ellipticities of the cut and raised portions 5a to 5c may be different from each other.
  • Fig. 8B shows the simulation results of surface average heat transfer coefficient and pressure loss versus ellipticity.
  • the cross-sectional shape of the cut-and-raised portions 5a to 5c is tapered toward the upstream side. Therefore, as in Embodiment 1, the temperature boundary layer in the cut-and-raised portions 5a to 5c can be made thin, so that the heat transfer coefficient can be improved. Furthermore, in this embodiment, the cross-sectional shape of the cut-and-raised portions 5a to 5c is formed in a semi-elliptical shape. Therefore, pressure loss can be reduced as compared with the first embodiment.
  • the cut-and-raised portions 5a to 5c are formed such that the major axis direction of the transverse section is parallel to the airflow direction. Therefore, the pressure loss can be further reduced.
  • the ellipticity of the cut-and-raised portions 5a to 5c is set to be greater than 0.33 and less than 1, the cross-section of the cut-and-raised portions 5a to 5c is larger than that of a semicircular shape.
  • the pressure loss can be reduced while keeping the heat transfer coefficient equal to or higher.
  • the cross-sectional shapes of the cut-and-raised portions 5a to 5c are formed in a wedge shape.
  • the fin 3 of the heat exchanger 1 according to Embodiment 3 has a cut-and-raised portion 5a that is cut and raised so that a part of the fin 3 is turned from the upstream side to the downstream side. ⁇ 5c are formed, and the cut-and-raised portions 5a to 5c are curved and formed in a wedge shape so that the cross-sectional shape is tapered toward the upstream side.
  • the wedge shape is a shape that continues to spread from the front end to the rear end. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the temperature in the cut-and-raised portions 5a to 5c is the same as in the first embodiment.
  • the boundary layer can be thinned. Therefore, the heat transfer rate can be improved.
  • the cut-and-raised portions 5a to 5c continue to expand to the rear end of the front end force, so that the temperature boundary layer can also be thinned at the rear ends of the cut-and-raised portions 5a to 5c. Therefore, the heat transfer rate can be further improved.
  • the front ends of the cut and raised portions 5a to 5c are rounded.
  • the front ends of the cut and raised portions 5a to 5c are not necessarily rounded. As shown in FIG. It may be sharp.
  • the cross sections of the cut and raised portions 5a to 5c may be formed in a bent shape.
  • the cross section of the front edge portion of the fin 3 is formed in a semi-rectangular shape.
  • the front edge portion of the fin 3 may have a semicircular shape, a semi-elliptical shape, or a wedge shape as in the cut-and-raised portions 5a to 5c.
  • the number of rows of the heat transfer tubes 2 may be two or more.
  • the fins 3 may be a single unit common to each row or may be a fin divided for each row.
  • the first row fins and the second row fins may be separated.
  • the fins in the first row and the fins in the second row may be shifted and the fins 3 in the second row may be positioned between the fins 3 in the first row.
  • the present invention is useful for a finned tube heat exchanger.

Abstract

 フィンチューブ型熱交換器は、互いに間隔を空けて平行に並べられた複数のフィン3と、フィン3を貫通する複数の伝熱管2とを備えている。各フィン3には、当該フィン3の一部が上流側から下流側に向かってめくりとられたように切り起こされてなる第1切り起こし部5a、第2切り起こし部5b、および第3切り起こし部5cが形成されている。第1切り起こし部5a、第2切り起こし部5b、および第3切り起こし部5cのそれぞれの横断面形状は、上流側に向かって先細り状になるように湾曲し、半円状に形成されている。

Description

明 細 書
フィンチューブ型熱交換器
技術分野
[0001] 本発明は、フィンチューブ型熱交換器に関するものである。
背景技術
[0002] 従来から、例えば空気調和装置、冷凍'冷蔵装置、除湿機等において、フィンチュ 一ブ型熱交 がよく用いられている。フィンチューブ型熱交 は、所定間隔ごと に並べられた複数のフィンと、これらフィンを貫通する伝熱管とによって構成されて!ヽ る。
[0003] また、フィンチューブ型熱交換器には、伝熱促進を目的として、フィン形状に工夫を 施したものが知られている。例えば、フィン表面に多数のピンが設けられた熱交^^ が知られている。この熱交^^では、これらのピンによってフィン表面側の流れが撹 拌され、熱交換が促進される。
[0004] し力しながら、フィンとは別部材であるピンをフィンに別途設けることは、製造の複雑 化を招くことになる。そこで、フィンの一部を切り起こすことによって、フィン形状にェ 夫を施した熱交翻がよく用いられている。例えば、特開 2001— 116488号公報に は、プレート基面に複数のスリット状の切り起こし (以下、スリット部という)が形成され たフィンチューブ型熱交^^が開示されている。この熱交^^では、フィンの一部が スリット状に切り起こされるようにフィンをプレス成形することにより、スリット部が形成さ れている。
[0005] スリット部を有するフィン(以下、スリットフィンと 、う)では、以下のような原理に基づ いて伝熱促進が図られている。すなわち、図 12Aに示すように、スリット部が設けられ ていないフィン(平滑フィン) 100では、前方から空気 Aが供給されると、フィン 100の 前縁 100aから後方に向力つて、連続的な温度境界層 BLが生成される。温度境界層 BLは、前縁 100aの近傍では薄いが、後方にいくにしたがって厚くなつていく。一方、 図 12Bに示すように、スリットフィン 101では、フィン 101の前縁 101aだけでなぐ各ス リット部 102の前縁 102aからも温度境界層 BLが生成される。そのため、いわばフィン 101の前縁 101aから発達した温度境界層 BLを分断することができ、温度境界層 BL を断続的に生成することができる。したがって、スリットフィン 101では、平滑フィン 10 0と比べて、温度境界層 BLの平均的な厚みが薄くなる。その結果、熱伝達率が向上 する。
発明の開示
[0006] し力しながら、スリットフィン 101では、スリット部 102の断面形状が矩形状であるた め、前縁 101aから発達する温度境界層 BLを分断させる効果は得ることができるもの の、それ以上の効果を望むことはできな力つた。したがって、スリット部 102の寸法等 の最適化を図ったとしても、熱伝達率の向上に関して一定の限界があった。
[0007] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、製造の 容易性を維持しつつ、従来以上の熱伝達率の向上を図ることのできるフィンチューブ 熱交翻を提供することにある。
[0008] 本発明に係るフィンチューブ型熱交換器は、互いに間隔を空けて平行に並べられ た複数のフィンと、前記フィンを貫通する複数の伝熱管とを備え、前記フィンの表面 側を流れる第 1の流体と前記伝熱管の内部を流れる第 2の流体とを熱交換させるフィ ンチューブ型熱交換器であって、前記各フィンには、当該フィンの一部が前記第 1の 流体の流れ方向の上流側から下流側に向力つてめくりとられたように切り起こされて なり、横断面形状が上流側に向力つて先細り状となるように湾曲または屈曲した切り 起こし部が形成されて ヽるものである。
[0009] 前記切り起こし部の横断面形状は半円状であってよい。また、前記切り起こし部の 横断面形状は半楕円状であってもよい。また、前記切り起こし部の横断面形状は、上 流側に向力つて細長い半楕円状であってもよい。さらに、前記切り起こし部の横断面 形状はくさび形であってもよ 、。
[0010] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、前記流 れ方向に隣り合う切り起こし部は、前記フィンを境として互いに逆向きに切り起こされ ていてもよい。
[0011] 前記切り起こし部の切り起こし高さは、フィンピッチの 1Z2以下であってもよい。
[0012] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、前記第 1 の流体の流れ方向に関する前記切り起こし部の長さの合計は、前記第 1の流体の流 れ方向に関する前記フィンの長さの 1Z2〜2Z3とすることができる。
[0013] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、前記切り 起こし部の前記流れ方向に沿った個数は、伝熱管 1列あたり 3個以下であってもよい
[0014] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、最も上流 側に位置する切り起こし部の前記流れ方向の長さは、他の切り起こし部の前記流れ 方向長さよりも長くてもよい。
[0015] 前記フィンは、前記伝熱管の中心を基準として、前記第 1の流体の流れ方向の上 流側の方が下流側よりも長くなつて 、てもよ 、。
[0016] 本発明に係るフィンチューブ型熱交^^によれば、フィンに切り起こし部が形成さ れ、この切り起こし部の横断面形状は、流れ方向の上流側に向力つて先細り状となる ように湾曲または屈曲している。そのため、切り起こし部における流体の温度境界層 を薄くすることができる。したがって、製造の容易性を維持しつつ熱伝達率を従来以 上に向上させることが可能となる。
図面の簡単な説明
[0017] [図 1]フィンチューブ型熱交換器の斜視図
[図 2]フィンの部分立面図
[図 3A]実施形態 1に係るフィンチューブ型熱交換器の要部拡大図
[図 3B]実施形態 1の変形例に係るフィンチューブ型熱交換器の要部拡大図(III III 断面図)
[図 3C]切り起こし部の横断面形状の説明図
[図 3D]切り起こし部の変形例の横断面図
[図 4]切り起こし部の横断面図
[図 5A]スリットフィンにおける熱の移動を表す概念図
[図 5B]実施形態に係るフィンにおける熱の移動を表す概念図
[図 6]切り起こし部の個数と平均熱伝達率との関係を表す図
[図 7]実施形態 2に係るフィンチューブ型熱交換器の要部拡大図 [図 8A]楕円率の説明図
[図 8B]楕円率と平均熱伝達率および圧力損失との関係を示す図
[図 9]実施形態 3に係るフィンチューブ型熱交換器の切り起こし部の横断面図
[図 10]変形例に係る切り起こし部の横断面図
[図 11A]他の実施形態に係るフィンチューブ型熱交換器の部分立面図
[図 11B]図 11Aの Xlb— Xlb線断面図
[図 12A]平滑フィンの横断面図
[図 12B]スリットフィンの横断面図
発明を実施するための最良の形態
[0018] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0019] (実施形態 1)
図 1に示すように、実施形態に係るフィンチューブ型熱交換器 1は、所定間隔ごとに 平行に並べられた複数のフィン 3と、これらのフィン 3を貫通する複数の伝熱管 2とを 備えている。熱交換器 1は、伝熱管 2の内部を流れる流体と、フィン 3の表面側 (伝熱 管 2の外表面が露出して 、な 、場合にはフィン 3の表面、伝熱管 2の外表面が露出し て 、る場合にはフィン 3および伝熱管 2の表面)を流れる流体とを熱交換させるもので ある。本実施形態では、フィン 3の表面側には空気 Aが流れ、伝熱管 2の内部には冷 媒 Bが流れる。ただし、伝熱管 3の内部を流れる流体およびフィン 3の表面側を流れる 流体は、特に限定される訳ではない。それら流体は、気体であってもよぐ液体であつ てもよい。
[0020] フィン 3は長方形状の平板状に形成されており、図示の Y方向に沿って並べられて いる。なお、本実施形態ではフィン 3は一定の間隔で並べられている力 それらの間 隔は必ずしも一定である必要はなぐ異なっていてもよい。フィン 3には、例えば、打 ち抜き加工された肉厚 0. 08-0. 2mmのアルミニウム製の平板を好適に用いること ができる。フィン効率を向上させる観点等からは、フィン 3の肉厚が 0. 1mm以上であ ることが特に好ましい。フィン 3の表面には、ベーマイト処理または親水性塗料の塗布 などの親水性処理が施されて 、る。
[0021] 本実施形態では、伝熱管 2はフィン 3の長手方向(以下、 Z方向ともいう)に沿って配 列されている。ただし、伝熱管 2は必ずしも Z方向に沿って一列に配置されている必 要はなぐ例えば千鳥状に配置されていてもよい。伝熱管 2の外径 D (図 2参照)は、 例えば l〜20mmであり、 4mm以下であってもよい。伝熱管 2は、拡管されることによ つてフィン 3のフィンカラー(図示せず。なお、図 2等においても、フィンカラーの図示 は省略している。)と密着しており、上記フィンカラーに嵌合されている。なお、伝熱管 2は、内面が平滑な平滑管であってもよぐ溝付き管であってもよい。
[0022] 熱交換器 1は、空気 Aの流れの方向(図 1の X方向)が Y方向および Z方向とほぼ直 交するような姿勢で設置される。ただし、十分な熱交換量を確保できる限り、気流方 向は X方向から若干傾斜して 、てもよ!/、。
[0023] 図 2に示すように、伝熱管 2の中心線 C2は、フィン 3の中心線 C1よりも気流方向の 下流側(図 2の右側)にずれている。そのため、伝熱管 2の中心線 C2を基準にすると 、フィン 3は上流側(図 2の左側)の方が下流側よりも長くなつている。前述したように、 フィン 3の前縁部は局所的な熱伝達率が大きい。一方、伝熱管 2の後方は死水域と なり、局所的な熱伝達率が小さい。そのため、本熱交換器 1によれば、フィン 3の前縁 部が前方に延長され、フィン 3の後縁部が短くなつているので、熱伝達率の大きな部 分の面積を拡大するとともに、熱伝達率の小さな部分の面積を低減させることができ る。
[0024] 図 2および図 3Aに示すように、フィン 3には、気流 Aの上流側から下流側に向かつ て順に、第 1切り起こし部 5a、第 2切り起こし部 5b、および第 3切り起こし部 5cが形成 されている。また、第 1〜第 3切り起こし部 5a〜5cは、隣り合う伝熱管 2の間にそれぞ れ形成され、 Z方向に沿って複数組設けられて 、る。
[0025] 各切り起こし部 5a〜5cは、フィン 3の一部であって、上流側から下流側に向かって めくりとられたように切り起こされている部分である。図 3Aに示すように、各切り起こし 部 5a〜5cの横断面 (Z方向と直交する断面)の形状は、上流側に向かって先細り状 になっている。具体的には、本実施形態では、切り起こし部 5a〜5cの横断面形状は 、半円状に形成されている。切り起こし部 5a〜5cの横断面が形成する半円の直径は 、例えば 0. 2〜1. Ommである。
[0026] 他の側面から、切り起こし部 5a〜5cの形状を以下のように特定することができる。ま ず、フィン 3の並び方向(切り起こされて 、な 、部分の厚さ方向)を高さ方向 HLとし、 その高さ方向 HLおよび空気 Aの流れ方向 AL (気流方向)に平行な断面をフィン 3の 横断面と定義する。切り起こし部 5a (5b, 5c)は、切り起こしの先端 5tがフィン 3の面 内から離間するとともに、その切り起こしの先端 5tを下流側に反転させる形に曲げら れている。そして、切り起こし部 5a (5b, 5c)が形成されている位置におけるフィン 3の 横断面である図 3C中の点線領域で示すように、切り起こし部 5a (5b, 5c)の下流側 に反転している部分とそれ以外の部分との間に、半円状の空間 SHが形成されてい る。さらに、この空間 SHの高さ hが、気流方向 ALの上流側に進むにつれて次第に小 さくなるように、切り起こし部 5a (5b, 5c)の形状調整が行われている。
[0027] ただし、空間 SHの高さ hが気流方向 ALの上流側に進むにつれて単調減少してい る必要はなぐ上流側に進むにつれて空間 SHの高さ hが小さくなる部分を切り起こし 部 5aが含んでいれば足りる。例えば、図 3Dに示すように、下流端 5t (切り起こしの先 端 5t)の位置から気流方向 ALの上流側に所定距離進んだ位置で、空間 SHが最大 高さ hmaxを示すように、切り起こし部 5a (5b, 5c)の形状調整が行われていてもよい。
[0028] 図 2に示すように、切り起こし部 5a〜5cは、空気 Aの流れ方向に沿って複数設けら れ、複数の切り起こし部 5a〜5cは、それぞれ、空気 Aの流れ方向に関する長さよりも 、複数の伝熱管 2の並び方向に関する長さの方が大きくなるように寸法が調整されて いる。つまり、フィン 3の面内方向および複数の伝熱管 3の並び方向に平行な方向を 、複数の切り起こし部 5a〜5cの長手方向と定義することができる。この場合、第 2切り 起こし部 5bの長手方向(Z方向)の長さ UL2は、第 3切り起こし部 5cの長手方向長さ に等しい。一方、第 1切り起こし部 5aの長手方向長さ UL1は、第 2切り起こし部 5bの 長手方向長さ UL2よりも長い。ここでは、第 1切り起こし部 5aの長手方向長さ UL1は 、第 2切り起こし部 5bの長手方向長さ UL2の 2倍である。ただし、第 1〜第 3切り起こ し部 5a〜5cの長手方向長さは互いに等しくてもよぐすべて異なっていてもよい。
[0029] また、第 1切り起こし部 5aの長手方向 UL1は、隣り合う伝熱管 2の間隔 PGよりも大 きぐ隣り合う伝熱管 2の中心間距離 PPよりも小さい。一方、第 2切り起こし部 5bおよ び第 3切り起こし部 5cの長手方向長さ UL2は、上記間隔 PGの 1Z2よりも大きぐ上 記間隔 PGよりも小さい。 [0030] 図 3Aに示すように、第 1〜第 3切り起こし部 5a〜5cは、切り起こしの向きが互い違 いになるように形成されている。具体的には、第 1切り起こし部 5aは図 3Aの上側に切 り起こされ、第 2切り起こし部 5bは下側に切り起こされ、第 3切り起こし部 5cは上側に 切り起こされている。すなわち、本実施形態では、気流方向に隣り合う切り起こし部は 、切り起こしの向きがフィン 3 (詳しくはフィン 3の切り起こされて 、な 、部分)を境にし て逆向きになっている。
[0031] 図 3Aに示すように、第 1〜第 3切り起こし部 5a〜5cの気流方向に関する長さ(全長 ) UHは、互いに等しい。ただし、第 1〜第 3切り起こし部 5a〜5cの全長 UHは、必ず しも同一でなくてもよぐ互いに異なっていてもよい。例えば、第 1〜第 3切り起こし部 5 a〜5cの全長 UHは、徐々に短くなつていてもよぐ徐々に長くなつていてもよい。
[0032] 第 1〜第 3切り起こし部 5a〜5cの切り起こし高さ UWも、互いに等しくなつている。な お、ここでは、切り起こし高さ UWは、フィン 3の板厚方向の中心からの距離をいうもの とする。切り起こし高さ UWは、フィンピッチ FPの 1Z2以下であることが好ましい。切り 起こし高さ UWがフィンピッチ FPの 1Z2以下の場合、熱交換器 1を気流の上流側か ら下流側に向力つて見たとき (X方向視)に、隣り合うフィン 3同士の切り起こし部 5a〜 5cが重ならず、圧力損失の増大を抑制することができるからである。
[0033] 図 3Bに示す変形例では、最も上流側に位置する切り起こし部である第 1切り起こし 部 5aの気流方向に関する長さ UH力 他の切り起こし部である第 2および第 3切り起 こし部 5b, 5cの気流方向に関する長さ Uhよりも長くなつている。また、第 1切り起こし 部 5aの切り起こし高さ UWが、第 2および第 3切り起こし部 5b, 5cの切り起こし高さ U wよりも高くなつている。
[0034] なお、本明細書では、空気 Aの流れ方向に関する切り起こし部 5a〜5cの長さ UH を、切り起こし部 5a〜5cの気流方向長さ UHという。切り起こし部 5a〜5cの気流方向 長さ UHは、図 3A等に示すように、当該切り起こし部 5a〜5cを形成することによって 生ずる開口の上流端力 下流端までの長さに一致するものとする。
[0035] 次に、本熱交換器 1における伝熱促進の原理について説明する。
[0036] 熱交換器 1では、前方から空気 A (図 3A参照)が供給されると、フィン 3の前縁から 後方に向力つて温度境界層が形成されるとともに、第 1〜第 3切り起こし部 5a〜5cに おいても温度境界層が形成される。図 4は、第 1切り起こし部 5aにおける温度境界層 BLを表している。図 4に示すように、第 1切り起こし部 5aは上流側に向力つて先細り 状の横断面形状を有しているので、空気は第 1切り起こし部 5aの表面上を薄く沿うよ うに流れ、温度境界層 BLの厚みは薄くなる。すなわち、温度境界層 BLは後方にいく に従って広がって 、くが、第 1切り起こし部 5aも後方に 、くに従って広がる形状に形 成されている。そのため、第 1切り起こし部 5aの前縁だけでなく後側においても、温度 境界層 BLは薄く保たれる。したがって、第 1切り起こし部 5aの熱伝達率は飛躍的に 向上する。
[0037] 図示は省略する力 第 2切り起こし部 5bおよび第 3切り起こし部 5cにおいても、ほぼ 同様の温度境界層が形成される。したがって、上述と同様の理由により、第 2切り起こ し部 5bおよび第 3切り起こし部 5cにおいても熱伝達率は飛躍的に向上する。
[0038] また、図 2に示すように、フィン 3を厚さ方向に平面視した場合における複数の切り 起こし部 5a〜5cの形状 (外形)が長手方向を有する方形状 (例えば、矩形状、または 気流方向に長辺と短辺が直交する台形状)であるとともに、長手方向が気流方向に 直交するように、複数の切り起こし部 5a〜5cの向きが揃っている。切り起こし部 5a〜 5cの形状および位置関係がこのようになって 、る場合、次のような効果を得ることが できる。
[0039] 図 5Aに示すように、従来のスリットフィン 101では、スリット部 102に対する熱の供給 は、スリット部 102の根元 102cを通じて行われる。しかしながら、根元 102cはスリット 部 102の長手方向と直交する方向に延びているので、根元 102cの幅 SWは小さい。 そのため、スリットフィン 101では、伝熱促進部であるスリット部 102に対する熱の供給 路が狭力つた。したがって、スリット部 102は局所的な熱伝達率が高いものの、熱の 供給が必ずしも十分とは言い難力つた。これに対し本熱交 l (フィン 3)では、図 5 Bに示すように、切り起こし部 5の根元 10は、切り起こし部 5の長手方向(図 5Bの上下 方向)に延びており、根元 10の幅 ULは広い。そのため、切り起こし部 5には十分な 量の熱が供給される。したがって、本熱交換器 1 (フィン 3)によれば、伝熱促進部に 対する熱の供給量という点においても、熱交換性能の向上を図ることができる。
[0040] このように、本熱交翻 1では、スリット状の切り起こし部を設ける場合に比べて、切 り起こし部 5a〜5cの熱伝達率を大きく向上させることができる。したがって、熱交^^ 1の平均熱伝達率を大きくすることができる。また、切り起こし部 5a〜5cに十分な熱 量を供給することができる。さらに、フィン 3の一部を切り起こすだけで伝熱促進部を 形成することができるので、従来と比較して製造が著しく困難になるおそれはない。し たがって、製造の容易性を維持しつつ従来以上の熱伝達率の向上を図ることができ る。
[0041] また、図 3Aに示すように、本実施形態では、各切り起こし部 5a〜5cの横断面形状 は半円状に形成されており、各切り起こし部 5a〜5cの横断面における気流方向と直 交する方向(図示 Y方向)の幅は、上流側から下流側にいくにしたがって大きくなり、 各切り起こし部 5a〜5cの下流端において最大となっている。なお、ここで、「切り起こ し部の下流端」とは、切り起こされた部分の先端(図 3Aの符号 5t参照)のことである。 従来のピンフィン等のように、横断面が円柱状の伝熱促進体では、下流側部分は死 水域となり、下流側部分の熱伝達率は低くなる。これに対し、本実施形態の切り起こ し部 5a〜5cによれば、横断面が半円状であるので、死水域を低減することができる。 したがって、熱伝達率を効果的に向上させることができる。
[0042] なお、切り起こし部 5a〜5cは上流側に向力つて先細り状になっていればよいが、特 に本実施形態では、切り起こし部 5a〜5cは半円状に形成されている。そのため、境 界層の発達をより一層抑制することができ、熱伝達率をさらに向上させることができる
[0043] また、本実施形態では、気流方向に隣り合う切り起こし部は、切り起こしの向きが互 いに逆になつている。そのため、第 2切り起こし部 5bは第 1切り起こし部 5aの温度境 界層の影響を受けにくぐまた、第 3切り起こし部 5cは第 2切り起こし部 5bの温度境界 層の影響を受けにくい。したがって、第 2切り起こし部 5bおよび第 3切り起こし部 5cの 熱伝達率を更に向上させることができる。
[0044] また、本実施形態では、切り起こし部 5a〜5cの切り起こし高さ UWは、フィンピッチ FPの 1Z2以下に設定されている。そのため、圧力損失が著しく増加することを防止 することができる。ただし、熱交 の用途等によっては、圧力損失の増加がある程 度許容される場合もある。そのような場合には、上記切り起こし高さ UWがフィンピッ チ FPの 1Z2よりも大きくてもよい。なお、切り起こし部 5a〜5cの切り起こし高さ UWの 下限については特に限定されず、例えば、フィンピッチ FPの 1Z5以上 (ただし、フィ ン 3の厚み FTの 2倍を超える)とすることができる。
[0045] ところで、図 6に概念的に示すように、一般的に、切り起こし部の個数が多いほど熱 伝達率は増加するが、その増加率は徐々に小さくなつていく。一方、切り起こし部の 個数が多いほど、製造は複雑となり、また、圧力損失は大きくなる。し力しながら、本 実施形態では、気流方向に沿った切り起こし部 5a〜5cの個数は 3個(複数個)である 。図 3Aに示すように、これら複数の切り起こし部 5a〜5cの気流方向長さ UHの合計 は、フィン 3の気流方向長さ L ( =フィン 3の短辺の長さ)の 1Z2〜2Z3に設定されて いる。つまり、 1Z2≤3 'UHZL≤2Z3となる。そのため、製造の複雑化や圧力損失 の著しい増加を招くことなぐ熱伝達率を向上させることができる。
[0046] なお、フィン 3の気流方向長さ Lに対する切り起こし部 5a〜5cの気流方向長さ UH の割合は、伝熱管 2の列数に応じて異ならせることができる。上述した割合は、フィン 3を貫通する伝熱管 2が 1列の場合の割合である。同様に、切り起こし部 5a〜5cの個 数も、フィン 3を貫通する伝熱管 2が 1列の場合の個数である。
[0047] 最も上流側に位置する第 1切り起こし部 5aは、熱伝達率が比較的大きい。本実施 形態では、第 1切り起こし部 5aの長手方向の長さは、他の切り起こし部 5b, 5cの長手 方向の長さよりも大きくなつている。そのため、熱伝達率の大きな部分の面積が大きく なって ヽるので、熱伝達率を効果的に向上させることができる。
[0048] また、本熱交換器 1では、切り起こし部 5a〜5cの速度境界層が薄くなるので、フィン 3の表面で結露が生じた場合であっても、水膜は薄くなりやすい。そのため、結露が 生じた場合であっても、伝熱促進効果は低下しにくぐまた、圧力損失も増加しにくい
[0049] (実施形態 2)
実施形態 1では、切り起こし部 5a〜5cは、横断面形状が半円状に形成されていた 。し力しながら、切り起こし部 5a〜5cの横断面形状は、半円状に限定される訳ではな い。図 7に示すように、実施形態 2に係るフィンチューブ熱交換器 1は、切り起こし部 5 a〜5cの横断面形状が半楕円状のものである。 [0050] すなわち、実施形態 2に係る熱交換器 1のフィン 3には、当該フィン 3の一部が上流 側から下流側に向力つてめくりとられたように切り起こされた切り起こし部 5a〜5cが形 成され、それら切り起こし部 5a〜5cは、横断面形状が上流側に向力つて先細り状に なるように湾曲し、半楕円状に形成されている。その他の構成は実施形態 1と同様で あるので、それらの説明は省略する。
[0051] 本実施形態では、切り起こし部 5a〜5c同士では、図 8Aに示す楕円率 (短径 aと長 径 bとの比率 = aZb)は互いに等しい。し力しながら、切り起こし部 5a〜5cの楕円率 は、互いに異なっていてもよい。図 8Bに、楕円率に対する表面平均熱伝達率および 圧力損失のシミュレーション結果を示す。図 8Bの表は、楕円率 = 1 (半円状)のときの 表面平均熱伝達率および圧力損失を基準( = 1)として表して 、る。この表から分かる ように、楕円率が 0. 33よりも大きくかつ 1未満の場合には、切り起こし部 5a〜5cの横 断面が半円状のもの(実施形態 1)に比べて、圧力損失を低減させつつ熱伝達率を 同等以上に保つことができる。なお、シミュレーションは、 3 -UH/L=0. 6の条件で 行った。
[0052] 本実施形態においても、切り起こし部 5a〜5cの横断面形状は、上流側に向かって 先細り状に形成されている。そのため、実施形態 1と同様、切り起こし部 5a〜5cにお ける温度境界層を薄くすることができるので、熱伝達率を向上させることができる。さ らに、本実施形態では、切り起こし部 5a〜5cの横断面形状は、半楕円状に形成され ている。そのため、実施形態 1よりも圧力損失を低減させることができる。
[0053] 特に本実施形態では、切り起こし部 5a〜5cは、横断面の長径方向が気流方向と平 行となるように形成されている。したがって、圧力損失をより一層低減させることが可 能となる。
[0054] また、切り起こし部 5a〜5cの楕円率を 0. 33よりも大きくかつ 1未満に設定することと すれば、切り起こし部 5a〜5cの横断面が半円状のものに比べて、熱伝達率を同等 以上に保ちつつ圧力損失の低減を図ることができる。
[0055] (実施形態 3)
図 9に示すように、実施形態 3に係るフィンチューブ型熱交換器 1は、切り起こし部 5 a〜5cの横断面形状がくさび形に形成されているものである。 [0056] すなわち、実施形態 3に係る熱交換器 1のフィン 3には、当該フィン 3の一部が上流 側から下流側に向力つてめくりとられたように切り起こされた切り起こし部 5a〜5cが形 成され、それら切り起こし部 5a〜5cは、横断面形状が上流側に向力つて先細り状に なるように湾曲し、くさび形に形成されている。なお、ここでくさび形とは、前端から後 端に至るまで広がり続けるような形状をいう。その他の構成は実施形態 1と同様である ので、それらの説明は省略する。
[0057] 本実施形態においても、切り起こし部 5a〜5cの横断面形状が上流側に向力つて先 細り状に形成されているので、実施形態 1と同様、切り起こし部 5a〜5cにおける温度 境界層を薄くすることができる。したがって、熱伝達率を向上させることができる。また 、本実施形態では、切り起こし部 5a〜5cは、前端力 後端に至るまで広がり続けてい るので、切り起こし部 5a〜5cの後端においても温度境界層を薄くすることができる。 したがって、熱伝達率をより一層向上させることができる。
[0058] なお、本実施形態では、切り起こし部 5a〜5cの前端は丸まっていた力 切り起こし 部 5a〜5cの前端は必ずしも丸まっている必要はなぐ図 10に示すように、それらの 前端は尖っていてもよい。切り起こし部 5a〜5cの横断面は、屈曲した形状に形成さ れていてもよい。
[0059] (その他の実施形態)
前記各実施形態では、フィン 3の前縁部の横断面は、半矩形状に形成されていた。 しかし、フィン 3の前縁部も切り起こし部 5a〜5cと同様に、横断面形状が半円状、半 楕円状、またはくさび形等であってもよい。
[0060] 前記各実施形態のフィンチューブ型熱交換器 1では、伝熱管 2の列数が 1列であつ た力 伝熱管 2の列数は 2列以上であってもよい。伝熱管 2の列数が 2列以上の場合 、フィン 3は各列に共通の一体ものであってもよぐ列毎に分割されたフィンであって もよい。例えば、伝熱管 2の列数が 2列の場合に、 1列目のフィンと 2列目のフィンとが 分離されていてもよい。図 11に示すように、 1列目のフィンと 2列目のフィンとがずらし て配置され、 1列目のフィン 3の間に 2列目のフィン 3が位置していてもよい。
産業上の利用可能性
[0061] 以上説明したように、本発明は、フィンチューブ型熱交換器について有用である。

Claims

請求の範囲
[1] 互いに間隔を空けて平行に並べられた複数のフィンと、前記フィンを貫通する複数 の伝熱管とを備え、前記フィンの表面側を流れる第 1の流体と前記伝熱管の内部を 流れる第 2の流体とを熱交換させるフィンチューブ型熱交^^であって、
前記各フィンには、当該フィンの一部が前記第 1の流体の流れ方向の上流側から 下流側に向かってめくりとられたように切り起こされてなり、横断面形状が上流側に向 力つて先細り状となるように湾曲または屈曲した切り起こし部が形成されて 、る、フィ ンチューブ型熱交換器。
[2] 前記切り起こし部の横断面形状は半円状である、請求項 1に記載のフィンチューブ 型熱交換器。
[3] 前記切り起こし部の横断面形状は半楕円状である、請求項 1に記載のフィンチュー ブ型熱交換器。
[4] 前記切り起こし部の横断面形状は、上流側に向力つて細長い半楕円状である、請 求項 1に記載のフィンチューブ型熱交換器。
[5] 前記切り起こし部の横断面形状はくさび形である、請求項 1に記載のフィンチュー ブ型熱交換器。
[6] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、
前記流れ方向に隣り合う切り起こし部は、前記フィンを境として互いに逆向きに切り 起こされて 、る、請求項 1に記載のフィンチューブ型熱交^^。
[7] 前記切り起こし部の切り起こし高さは、フィンピッチの 1Z2以下である、請求項 1に 記載のフィンチューブ型熱交換器。
[8] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、
前記第 1の流体の流れ方向に関する前記切り起こし部の長さの合計は、前記第 1の 流体の流れ方向に関する前記フィンの長さの 1Z2〜2Z3である、請求項 1に記載 のフィンチューブ型熱交換器。
[9] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、
前記切り起こし部の前記流れ方向に沿った個数は、伝熱管 1列あたり 3個以下であ る、請求項 1に記載のフィンチューブ型熱交^^。
[10] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、 最も上流側に位置する切り起こし部の前記流れ方向に関する長さは、他の切り起こ し部の前記流れ方向に関する長さよりも長!、、請求項 1に記載のフィンチューブ型熱 交概
[11] 前記フィンは、前記伝熱管の中心を基準として、前記第 1の流体の流れ方向の上 流側の方が下流側よりも長くなつている、請求項 1に記載のフィンチューブ型熱交換
[12] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、
前記複数の切り起こし部は、それぞれ、前記流れ方向に関する長さよりも前記複数 の伝熱管の並び方向に関する長さの方が大きくなるように寸法が調整される一方、 前記フィンの面内方向および前記複数の伝熱管の並び方向に平行な方向を、前 記複数の切り起こし部の長手方向と定義したとき、
最も上流側に位置する切り起こし部の前記長手方向の長さは、他の切り起こし部の 前記長手方向の長さよりも大である、請求項 1に記載のフィンチューブ型熱交換器。
[13] 前記フィンを厚さ方向に平面視した場合における前記複数の切り起こし部の形状が 方形状であるとともに、前記長手方向が前記第 1の流体の流れ方向に直交するように
、前記複数の切り起こし部の向きが揃っている、請求項 12に記載のフィンチューブ型 熱交換器。
[14] 前記切り起こし部は、前記第 1の流体の流れ方向に沿って複数設けられ、
前記第 1の流れ方向に関する前記複数の切り起こし部の長さが互いに等 、、請 求項 1に記載のフィンチューブ型熱交換器。
PCT/JP2007/052032 2006-02-06 2007-02-06 フィンチューブ型熱交換器 WO2007091561A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/278,360 US9086243B2 (en) 2006-02-06 2007-02-06 Fin-tube heat exchanger
CN2007800046569A CN101379361B (zh) 2006-02-06 2007-02-06 翅片管式换热器
EP20070713861 EP1985958A4 (en) 2006-02-06 2007-02-06 RIB TUBE HEAT EXCHANGERS
JP2007525096A JP4022250B2 (ja) 2006-02-06 2007-02-06 フィンチューブ型熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006028062 2006-02-06
JP2006-028062 2006-02-06

Publications (1)

Publication Number Publication Date
WO2007091561A1 true WO2007091561A1 (ja) 2007-08-16

Family

ID=38345157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052032 WO2007091561A1 (ja) 2006-02-06 2007-02-06 フィンチューブ型熱交換器

Country Status (5)

Country Link
US (1) US9086243B2 (ja)
EP (1) EP1985958A4 (ja)
JP (1) JP4022250B2 (ja)
CN (1) CN101379361B (ja)
WO (1) WO2007091561A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017776A (ja) * 2013-07-12 2015-01-29 株式会社デンソー 熱交換器用フィン

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303882B2 (en) 2009-06-26 2016-04-05 Trane International Inc. Blow through air handler
US10103089B2 (en) 2010-03-26 2018-10-16 Hamilton Sundstrand Corporation Heat transfer device with fins defining air flow channels
KR101882020B1 (ko) * 2012-08-01 2018-07-25 엘지전자 주식회사 열교환기
KR20140017835A (ko) * 2012-08-01 2014-02-12 엘지전자 주식회사 열교환기
JP6710205B2 (ja) * 2015-05-29 2020-06-17 三菱電機株式会社 熱交換器及び冷凍サイクル装置
CN107614998A (zh) * 2015-05-29 2018-01-19 三菱电机株式会社 换热器
DE102016006914B4 (de) * 2016-06-01 2019-01-24 Wieland-Werke Ag Wärmeübertragerrohr
US11781812B2 (en) * 2016-08-31 2023-10-10 Brazeway, Inc. Fin enhancements for low Reynolds number airflow
CN107289807A (zh) * 2017-07-06 2017-10-24 贺迈新能源科技(上海)有限公司 改变翅片穿管换热器翅片间距的装置及翅片穿管换热器
JP7209487B2 (ja) * 2017-11-24 2023-01-20 Maアルミニウム株式会社 ろう付け処理後の親水性に優れるアルミニウムフィン及び熱交換器とその製造方法
KR102137462B1 (ko) * 2018-06-20 2020-07-24 엘지전자 주식회사 공기조화기의 실외기
JP7357207B2 (ja) * 2019-11-26 2023-10-06 株式会社ノーリツ 熱交換器およびこれを備えた温水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952363U (ja) * 1982-09-30 1984-04-06 株式会社東芝 熱交換器
JPH11108575A (ja) * 1997-10-03 1999-04-23 Hitachi Ltd ウイングレット付き熱交換器
JP2001116488A (ja) 1999-10-15 2001-04-27 Toyo Radiator Co Ltd 空調用熱交換器のプレートフィン
JP2004263881A (ja) * 2003-01-23 2004-09-24 Showa Denko Kk 伝熱フィン、熱交換器、カーエアコン用エバポレータ及びコンデンサ
JP2005121348A (ja) * 2003-03-19 2005-05-12 Denso Corp 熱交換器および伝熱部材

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR406841A (fr) * 1909-09-07 1910-02-12 Ch Et G Grimmeisen Soc Refroidisseur
US2271538A (en) * 1938-04-25 1942-02-03 Hoover Co Heat exchange and method of making the same
US3437134A (en) * 1965-10-24 1969-04-08 Borg Warner Heat exchanger
GB1313973A (en) * 1971-05-07 1973-04-18 Hutogepgyar Tubular heat exchanger and a method for the production thereof
US3850236A (en) * 1973-03-26 1974-11-26 Peerless Of America Heat exchangers
US3886639A (en) * 1975-02-01 1975-06-03 Peerless Of America Method of making a finned heat exchanger
JPS5228452A (en) * 1975-08-29 1977-03-03 Hitachi Ltd Mechanism for and method of producing slit fin for heat exchanger
JPS55105194A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Heat-exchanger
JPS5795595A (en) * 1980-12-03 1982-06-14 Hitachi Ltd Fin for heat exchanger unit
JPS59103075A (ja) 1982-12-03 1984-06-14 Toshiba Corp ピストンガイド軸受
JPH0610591B2 (ja) * 1983-07-29 1994-02-09 三菱電機株式会社 熱交換器
KR890002903B1 (ko) * 1984-09-04 1989-08-08 마쯔시다덴기산교 가부시기가이샤 열교환기
JPS6219692A (ja) 1985-07-18 1987-01-28 Matsushita Refrig Co 熱交換器
US5111876A (en) * 1991-10-31 1992-05-12 Carrier Corporation Heat exchanger plate fin
US5168923A (en) * 1991-11-07 1992-12-08 Carrier Corporation Method of manufacturing a heat exchanger plate fin and fin so manufactured
US5647433A (en) * 1993-12-09 1997-07-15 Sanden Corporation Heat exchanger
US5509469A (en) * 1994-04-19 1996-04-23 Inter-City Products Corporation (Usa) Interrupted fin for heat exchanger
KR100202061B1 (ko) * 1995-12-28 1999-06-15 전주범 공기조화기용 열교환핀구조
JPH09264697A (ja) * 1996-03-28 1997-10-07 Matsushita Electric Works Ltd 熱交換器
KR100197718B1 (ko) * 1996-12-30 1999-06-15 윤종용 공기조화기의 열교환기
EP1599698A4 (en) 2003-01-23 2009-01-07 Showa Denko Kk HEAT TRANSFER LAMPS, HEAT EXCHANGERS, EVAPORATORS AND CONDENSERS FOR AUTOMATIC AIR CONDITIONING
DE102004012796A1 (de) * 2003-03-19 2004-11-11 Denso Corp., Kariya Wärmetauscher und Wärmeübertragungselement mit symmetrischen Winkelabschnitten
WO2005017436A2 (en) * 2003-07-10 2005-02-24 Midwest Research Institute Tabbed transfer fins for air-cooled heat exchanger
KR20050105335A (ko) * 2004-04-28 2005-11-04 삼성전자주식회사 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952363U (ja) * 1982-09-30 1984-04-06 株式会社東芝 熱交換器
JPH11108575A (ja) * 1997-10-03 1999-04-23 Hitachi Ltd ウイングレット付き熱交換器
JP2001116488A (ja) 1999-10-15 2001-04-27 Toyo Radiator Co Ltd 空調用熱交換器のプレートフィン
JP2004263881A (ja) * 2003-01-23 2004-09-24 Showa Denko Kk 伝熱フィン、熱交換器、カーエアコン用エバポレータ及びコンデンサ
JP2005121348A (ja) * 2003-03-19 2005-05-12 Denso Corp 熱交換器および伝熱部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1985958A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017776A (ja) * 2013-07-12 2015-01-29 株式会社デンソー 熱交換器用フィン

Also Published As

Publication number Publication date
JP4022250B2 (ja) 2007-12-12
EP1985958A1 (en) 2008-10-29
JPWO2007091561A1 (ja) 2009-07-02
US9086243B2 (en) 2015-07-21
CN101379361B (zh) 2010-07-21
US20090050303A1 (en) 2009-02-26
CN101379361A (zh) 2009-03-04
EP1985958A4 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2007091561A1 (ja) フィンチューブ型熱交換器
JP4028591B2 (ja) 伝熱フィンおよびフィンチューブ型熱交換器
JP3110196U (ja) 細径管型熱交換器
WO2009144909A1 (ja) フィンチューブ型熱交換器
WO2013001744A1 (ja) フィンチューブ型熱交換器
JP4073850B2 (ja) 熱交換器
JP4884140B2 (ja) フィンチューブ型熱交換器およびヒートポンプ装置
JP6636110B1 (ja) 熱交換器、拡管部材、および熱交換器を備えた空気調和機
JP4626422B2 (ja) フィンチューブ型熱交換器
JP2007292453A (ja) 熱交換器用ルーバ付きフィン
JP2013092306A (ja) フィンチューブ熱交換器
JP5958917B2 (ja) フィンチューブ型熱交換器
JP6818601B2 (ja) 熱交換器及び熱交換器の製造方法
JP2010255864A (ja) 扁平管および熱交換器
JP2008170035A (ja) フィンチューブ型熱交換器、熱交換器用フィンおよびヒートポンプ装置
JP2005121348A (ja) 熱交換器および伝熱部材
JP2008209025A (ja) 伝熱部材およびそれを用いた熱交換器
JP2008064457A (ja) 熱交換器
WO2022149413A1 (ja) 熱交換器及びその製造方法
JP2008185307A (ja) 熱交換器用フィン
JP2008101907A (ja) 熱交換器
JP2006317117A (ja) 熱交換器
JPS5849503Y2 (ja) 熱交換器
JP5162929B2 (ja) フィンチューブ型熱交換器
JPS6126786Y2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007525096

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780004656.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007713861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007713861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12278360

Country of ref document: US