JP4884140B2 - フィンチューブ型熱交換器およびヒートポンプ装置 - Google Patents

フィンチューブ型熱交換器およびヒートポンプ装置 Download PDF

Info

Publication number
JP4884140B2
JP4884140B2 JP2006239075A JP2006239075A JP4884140B2 JP 4884140 B2 JP4884140 B2 JP 4884140B2 JP 2006239075 A JP2006239075 A JP 2006239075A JP 2006239075 A JP2006239075 A JP 2006239075A JP 4884140 B2 JP4884140 B2 JP 4884140B2
Authority
JP
Japan
Prior art keywords
heat transfer
raised portion
fin
tube
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006239075A
Other languages
English (en)
Other versions
JP2008057944A (ja
Inventor
修 小川
晃 小森
宏樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006239075A priority Critical patent/JP4884140B2/ja
Publication of JP2008057944A publication Critical patent/JP2008057944A/ja
Application granted granted Critical
Publication of JP4884140B2 publication Critical patent/JP4884140B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、フィンチューブ型熱交換器、熱交換器用フィンおよびヒートポンプ装置に関する。
従来から、家庭用または自動車用の空気調和装置、冷凍・冷蔵装置、除湿機、給湯機等において、フィンチューブ型熱交換器が用いられている。フィンチューブ型熱交換器は、所定のフィンピッチで並べられた複数の伝熱フィンと、これらのフィンを貫通する伝熱管とによって構成されている。
このような熱交換器では、フィン表面を流れる流体の速度を増加させると、フィンの熱伝達率が大きくなる。ところが、フィン表面を流れる流体の速度が大きくなると、流体が熱交換器を通過する際の圧力損失が増加する。このように、熱交換器において、熱伝達率と圧力損失とは、トレードオフの関係にある。そこで、熱交換器の性能向上のために、圧力損失の増加を抑えつつ、熱伝達率を向上させることが望まれている。
従来から、熱伝達率の向上や圧力損失の低減を目的として、形状に工夫を施したフィンが知られている。例えば、特許文献1には、板状フィンを波状に折り曲げたコルゲートフィンが開示されている。特許文献2には、フィンの表面に微小なディンプルを多数設けたフィンチューブ型熱交換器が開示されている。特許文献3には、フィンの表面に三角錐状の突起を設けたフィンチューブ型熱交換器が開示されている。特許文献4には、フィンの表面に四角錐状の突部を設けたフィンチューブ型熱交換器が開示されている。
特開昭64−90995号公報 特開平7−239196号公報 特開昭63−294494号公報 特開平6−300474号公報
近年、熱交換器の更なる性能向上が望まれており、従来のフィンチューブ型熱交換器の仕様の最適化を図ったとしても、必ずしも満足のいく性能が得られるとは限らなかった。そこで、全く新規な形状のフィンを有するフィンチューブ型熱交換器が待ち望まれていた。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、優れた伝熱性能を有しながらも圧力損失が小さいフィンチューブ型熱交換器を提供することにある。また、本発明は、フィンチューブ型熱交換器に好適に採用できる熱交換器用フィンを提供することを目的とする。また、本発明は、上記フィンチューブ型熱交換器を備えたヒートポンプ装置を提供することを目的とする。
すなわち、本発明は、
第1流体と第2流体とを熱交換させるフィンチューブ型熱交換器であって、
第1流体の流路を形成するために、互いに間隔を空けて平行に並べられた複数のフィンと、
複数のフィンを貫通する、第2流体を流通させるべき複数の伝熱管とを備え、
複数の伝熱管は、第1流体の流れ方向と交差する所定の列方向に並んで配置された第1伝熱管と、第1伝熱管と並び方向が平行であるとともに第1流体の流れ方向に関して第1伝熱管よりも下流側に並んで配置された第2伝熱管とを含み、第2伝熱管の横断面積が第1伝熱管の横断面積よりも小であり、第2伝熱管は、列方向に関して、隣り合う2つの第1伝熱管の中間を通り、かつ2つの第1伝熱管より等距離の第1の基準線と、第1伝熱管の中心を通り、かつ第1の基準線と並行な第2の基準線とから外れるように配置され、
複数のフィンは、それぞれ、複数の伝熱管を配置するための複数の貫通孔が形成されているフィン基部と、隣り合う2つの第1伝熱管の間にフィン基部から突出するように設けられた隆起部とを含み、
隆起部の上流部分とフィン基部との境界に沿って、フィンを貫通する切り込みが平面視で弓形を示すように形成され、
隆起部の上流部分とフィン基部との間に切り込みに基づく隙間が形成され、その隙間を通じて第1流体がフィンの第1主面側から第2主面側へと流通可能となっており、
隆起部の上流部分は、平面視で半円形または半楕円形の形状を有し、
隆起部は、上流部分に連なる部分であって、隣り合う2つの第2伝熱管に挟まれた領域に達するまで列方向に関する幅を狭めながら延びている下流部分を含み、全体として涙滴の形状を有しており、
第1流体の流れ方向および列方向に直交する方向を高さ方向と定義したとき、高さ方向に関する隆起部の上流部分の頂点は、第1伝熱管の中心よりも第1流体の流れ方向の下流側に位置し、
隆起部の上流端は、第1伝熱管の中心よりも第1流体の流れ方向の上流側に位置している、フィンチューブ型熱交換器を提供する。
もちろん、全ての隆起部に切り込みが形成されていなければならないわけではなく、例えば、列方向の1つおきに切り込みが形成されていてもよい。
また、本発明は、
第1流体と第2流体とを熱交換させるフィンチューブ型熱交換器に用いられる板状のフィンであって、
第1流体の流れ方向と交差する所定の列方向に並んで配置される、第2流体を流通させるべき第1伝熱管のための複数の第1貫通孔と、第1伝熱管と並び方向が平行かつ第1流体の流れ方向に関して第1伝熱管よりも下流側に並んで配置される、第2流体を流通させるべき第2伝熱管のための複数の第2貫通孔とを有するフィン基部と、隣り合う2つの第1貫通孔の間にフィン基部よりも第1主面側に突出するように設けられた隆起部とを含み、
第2貫通孔の開口面積が第1貫通孔の開口面積よりも小であり、第2貫通孔は、列方向に関して、隣り合う2つの第1貫通孔の中間を通り、かつ2つの第1伝熱管より等距離の第1の基準線と、第1貫通孔の中心を通り、かつ第1の基準線と並行な第2の基準線とから外れるように形成され、
隆起部の上流部分とフィン基部との境界に沿って、当該フィンを貫通する切り込みが平面視で弓形を示すように形成され、
隆起部の上流部分とフィン基部との間に切り込みに基づく隙間が形成され、その隙間を通じて第1流体が当該フィンの第1主面側から第2主面側へと流通可能となっている、熱交換器用フィンを提供する。
また、本発明は、
冷媒を圧縮する圧縮機と、
圧縮機で圧縮された冷媒を放熱させる放熱器と、
放熱器で放熱した冷媒を膨張させる膨張機構と、
膨張機構で膨張した冷媒を蒸発させる蒸発器とを備え、
放熱器および蒸発器の少なくとも一方が、上記したフィンチューブ型熱交換器を含む、ヒートポンプ装置を提供する。
上記のフィンチューブ型熱交換器によれば、隣り合う2つの第1伝熱管(前列の伝熱管)の一方と他方との中間を通る基準線と、第1伝熱管の中心を通る基準線とから外れるように、横断面積の小さい第2伝熱管(後列の伝熱管)が配置されている。そのため、隆起部の大きさを稼いでフィンの伝熱面積の拡大を図ることができる。また、隆起部の上流部分とフィン基部との間に隙間が形成されており、その隙間により、第1流体が第1主面側から第2主面側へと流通することが可能となっている。そのため、隆起部を設けることによる圧力損失の増大を抑制することができる。そして、これらの効果が相俟って、圧力損失の増大が抑制されるとともにフィンの伝熱性能が向上し、ひいては、より高性能なフィンチューブ型熱交換器を実現することが可能となる。
また、そのフィンチューブ型熱交換器を採用することで、ヒートポンプ装置のCOP(coefficient of performance)を改善することができる。
(第1実施形態)
以下、添付の図面を参照しつつ本発明の実施形態について説明する。
図1は、本発明に係るフィンチューブ型熱交換器の全体斜視図である。フィンチューブ型熱交換器1(以下、単に「熱交換器1」ともいう)は、第1流体の流路を形成するために、所定間隔で平行に並べられた複数のフィン30と、これらのフィン30を貫通する複数の伝熱管2,3とを備えている。熱交換器1は、フィン30の主面に沿って流れる第1流体と、伝熱管2,3の内部を流れる第2流体とを熱交換させる。本実施形態では、フィン30の主面に沿って空気Aが流れ、伝熱管2,3の内部には冷媒Bが流れる。伝熱管2,3の内部を流れる流体およびフィン30の主面に沿って流れる流体の種類や状態は、特に限定されるわけではない。それら流体は、気体であってもよく、液体であってもよい。
図1に示すごとく、複数の伝熱管2,3は、空気Aの流れ方向と交差する所定の列方向に1列に並んで配置された複数の第1伝熱管2と、第1伝熱管2と並び方向が平行であるとともに空気Aの流れ方向に関して第1伝熱管2よりも下流側に1列に並んで配置された複数の第2伝熱管3とからなる。第1伝熱管2は、冷媒Bが順番に流れるように1本につながっている。同様に、第2伝熱管3は、冷媒Bが順番に流れるように1本につながっている。ただし、これらの伝熱管2,3は、必ずしも1本につながっていなくてもよい。また、第1伝熱管2と第2伝熱管3とが1本につながっていてもよい。
熱交換器1は、空気Aの流れ方向(X方向)がフィン30の積層方向(Y方向)および伝熱管2,3の列方向(Z方向)とほぼ直交するような姿勢で使用される。ただし、十分な熱交換量を確保できる限り、気流方向はX方向から若干傾斜していてもよい。なお、本明細書中では、空気Aの流れ方向をX方向、伝熱管2,3が配列している方向であるフィン30の長手方向をZ方向、フィン30の主面に垂直な方向である積層方向(Y方向)を高さ方向と定義する。
フィン30は、長方形かつ平板状の形状を有し、図1中に示すY方向に沿って並べられている。本実施形態では、フィン30は一定の間隔(フィンピッチ)で並べられている。フィンピッチは、例えば1.0mm〜1.5mmである。ただし、フィンピッチは必ずしも一定である必要はなく、異なっていてもよい。フィン30は、例えば、打ち抜き加工された肉厚0.08〜0.2mmの金属板で構成することができる。金属板は、例えば、アルミニウム製の平板である。また、フィン30の表面には、ベーマイト処理または親水性塗料の塗布などの親水性処理、あるいは撥水性処理が施されていることが好ましい。
図2は、図1に示す熱交換器に用いられているフィンの平面図である。図3は、そのフィンの部分拡大平面図である。図4は、そのフィンの斜視図である。図5は、図2に示すフィンのV−V断面図である。図6は、図2に示すフィンのVI−VI断面図である。図2,3は、フィンの平面図であるが、伝熱管2,3の横断面も併記している。
図2に示すごとく、フィン30は、フィン基部4と、第1隆起部5と、第2隆起部6とからなる。フィン基部4は、伝熱管2,3を配置するための複数の貫通孔7k,7jが形成されている平坦な部分である。複数の貫通孔7k,7jは、当該フィン30の第1主面4pと第2主面4q(図5参照)とを貫くように、空気Aの流れ方向と直交する列方向(Z方向)に等間隔で形成された複数の第1貫通孔7kと、同じくZ方向に等間隔で形成された複数の第2貫通孔7jとからなる。フィン30の前縁30pから近い前列の第1貫通孔7kに第1伝熱管2が配置され、後列の第2貫通孔7jに第2伝熱管3が配置される。図2の平面図において、隣り合う2つの第1貫通孔7k,7kの中心同士を結ぶ直線は、フィン30の前縁30pに平行である。同様に、第2貫通孔7j,7jの中心同士を結ぶ直線も、フィン30の前縁30pに平行である。
伝熱管2,3は、銅や銅合金等の良導性金属で構成された、内面が平滑な平滑管または内面に溝が形成された溝付き管である。伝熱管2,3が貫通孔7k,7jの周囲に形成されたフィンカラー12,13(図4参照)に密着することにより、伝熱管2,3とフィン30との間の熱移動が促進される。
第1貫通孔7kに配置された第1伝熱管2の横断面積は、第2貫通孔7jに配置された第2伝熱管3の横断面積よりも大である。つまり、第1伝熱管2の直径(外径D1)が大であり、第2伝熱管3の直径(外径D2)が小である。本実施形態では、第1伝熱管2の外径D1が第2伝熱管3の外径D2の約2倍となっている。第2伝熱管3は、細径化による伝熱性能の低下を抑制するために、第1伝熱管2よりも多数本が使用されている。具体的には、1つのフィン30に対し、第1伝熱管2の2倍の数の第2伝熱管3が配置されている。そのため、第2伝熱管3の配置間隔は、第1伝熱管2の配置間隔の1/2に設定されている。このように伝熱管2,3の総表面積を維持しつつ、後列の第2伝熱管3を細径化することにより、隆起部5,6の寸法拡大、つまり、フィン30の伝熱面積の拡大を図ることが可能である。
第1伝熱管2の外径D1および第2伝熱管3の外径D2は、それぞれ、例えば1mm〜20mmの範囲内で調整することができる。各伝熱管2,3の外径D1,D2は、フィン30に形成されている貫通孔7k,7jの開口径に一致する。したがって、第2貫通孔7jの開口面積は、第1貫通孔7kの開口面積よりも小さい。
図3の拡大図に示すように、全ての第2伝熱管3は、列方向(Z方向)に関して、隣り合う2つの第1伝熱管2,2の中間および第1伝熱管2の中心から外れるように配置されている。つまり、図3に1点鎖線で示される基準線P1,P2のいずれとも重複しない位置に第2伝熱管3が配置されている。基準線P1(第2の基準線)は、フィン30の平面図において、第1貫通孔7kの中心C11を通りZ方向と直交する直線である。基準線P2(第1の基準線)は、隣り合う2つの第1貫通孔7k,7kの中間に位置して上記基準線P1に平行な直線、言いかえれば、隣り合う2つの第1貫通孔7k,7kの中心C11,C11同士を結ぶ線分の垂直2等分線である。また、基準線P1は、隣り合う2つの第2貫通孔7j,7jの中心C21,C21(第2伝熱管3の中心)同士を結ぶ直線の垂直2等分線でもある。
従来のフィンチューブ型熱交換器では、先に例示した文献1〜4に開示されているように、外径の等しい伝熱管が前後2列かつ千鳥状に配置されている。千鳥状の配置は、圧力損失と伝熱性能のバランスに優れるものの、伝熱面積を稼ぐための隆起部の大きさが制約を受ける。これに対し、外径が異なる2種類の伝熱管2,3を本実施形態のように配置すれば、第1伝熱管2が配置されている上流領域から第2伝熱管3が配置されている下流領域に達する縦長の第1隆起部5を設けることが可能となる。また、第1伝熱管2の真後ろを避けるように第2伝熱管3を配置しているので、第1伝熱管2の後ろに形成されやすい死水域の影響が第2伝熱管3に及ぶおそれもない。
隆起部5,6について詳しく説明する。第1隆起部5および第2隆起部6は、それぞれ、フィン基部4よりも突出するように成形加工されている丘状の部分であり、フィン30の伝熱面積の拡大に寄与する。図3に示すごとく、空気Aの流れ方向における第1隆起部5の上流部分35は、平面視で半楕円形の形状を有している。半楕円形に代えて、半円形の形状を採用してもよい。そして、この半楕円形の上流部分35とフィン基部4との境界に沿って、フィン30を厚さ方向に貫通する切り込み9が平面視で弓形を示すように形成されている。そして、第1隆起部5の上流部分35とフィン基部4との間に、切り込み9に基づく第1隙間SH1が形成され、その第1隙間SH1を通じて空気Aがフィン30の第1主面4p側から第2主面4q側(図5参照)へと流通可能となっている。図4の斜視図は、第1隙間SH1の様子を最も的確に表している。
本実施形態のフィン30においては、第1隆起部5の上流側にのみ空気Aが流通可能な隙間(第1隙間SH1)を形成している。その隙間を通過して第1主面4p側から第2主面4q側に移動した空気Aが、再び第1主面4p側に戻ってくることがない。これにより、空気Aのスムーズな流れを形成でき、圧力損失の増大抑制に効果がある。この点は、後述する第2隙間SH2についても同じことがいえる。
なお、平面視で半円形または半楕円形とは、フィン30の主面4p,4qに平行な平面に第1隆起部5を正射影したときに現れる像の形状(像の輪郭)が半円形または半楕円形という意味である。また、本実施形態において、隆起部5,6はいずれも丘状であるが、円錐や楕円錐といった尖塔状の形状を採用してもよい。この点については、後述する第2実施形態も同様である。
第1隆起部5は、隣り合う2つの第1伝熱管2,2の間に1つのみ設けられている。図3に示すごとく、第1隆起部5のZ方向に関する最大長さR1は、第1伝熱管2の外径D1以上である。また、フィン30の平面図における第1隆起部5の等価直径(面積が等しい円の直径)は、第1伝熱管2の外径D1よりも大である。本実施形態では、第1隆起部5の上流部分35に隣接して形成されている切り込み9の一端9aと他端9bとを最短距離で結ぶ線分の長さが、第1隆起部5のZ方向に関する最大長さR1に一致することとなる。切り込み9の一端9aと他端9bとを結ぶ線分は、半楕円形の上流部分35の短軸に一致する。第1隆起部5の上流部分35を平面視で半円形とする場合には、上記線分が円の直径に一致する。
例えば、従来のように、隣り合う2つの伝熱管の間に多数の小さい隆起部を形成する場合、加工上の問題から隆起部の高さを稼ぐことが困難である。そして、そのような小さい隆起部は、空気Aを誘導する作用が弱い。また、高さが不十分な隆起部は、未加工の平板に対する伝熱面積の増加率も低く、境界層の発達を抑制する作用もあまり期待できない。これに対し、本実施形態のフィン30に設けられた第1隆起部5によれば、Z方向の最大長さR1を第1伝熱管2の外径D1以上とすることにより、高さH1(図5参照)を十分に稼ぐことができるので、空気Aを伝熱管2,3に向けて誘導する作用が強い。また、未加工の平板に対する伝熱面積の増加率を最大限に高めることが可能であるとともに、境界層の発達を抑制する作用も強く、フィン30の伝熱性能の向上を十分に期待できる。
さらに、図3に示すごとく、本実施形態のフィン30に設けられた第1隆起部5は、隣り合う2つの第2伝熱管3,3に挟まれた領域(下流領域)に達するまで、上流部分35に連なる下流部分36が列方向(Z方向)に関する幅を狭めながら延び、全体として涙滴の形状を有するものとして構成されている。図5の断面図に示すごとく、第1隆起部5は、X方向に関して上流端5tから下流端5sまで段差がなく、高さが連続的に変化している。第1隆起部5の上流端5tは、第1伝熱管2よりもフィン30の前縁30pの近くに位置し、第1隆起部5の下流端5sは、第2伝熱管3よりも空気Aの流れ方向における下流側に位置している。第1隆起部5のX方向の長さR2は、第1伝熱管2の外径D1よりも大きく、かつZ方向に関する最大長さR1よりも大きい。
図5に示すごとく、第1隆起部5の上流部分35の頂点C12は、第1伝熱管2の中心C11よりも下流側に位置している。第1隆起部5の上流端5tは、第1伝熱管2の中心C11よりも上流側に位置している。第1隆起部5の高さH1は、フィン基部4における第1主面4pから当該第1隆起部5の頂点C12までの高さで表され、フィンピッチFPよりも小さい。ただし、第1隆起部5の高さH1は特に限定されず、例えば、フィンピッチFPの1/3〜2/3の範囲内で調整することができる。本実施形態では、第1隆起部5の高さH1が、フィンピッチFPの略1/2に設定されている。このような範囲内に第1隆起部5の高さH1を調整することにより、伝熱面積を拡大することと、圧力損失の増大を抑制することとのバランスをとることができる。
第1隆起部5は、X方向に関し、上流端5tから頂点C12まで高さが一定であり、その頂点C12から下流端5sに進むにつれて高さが単調減少している。このようにすれば、第1隆起部5の上流部分35を空気Aがスムーズに流れるので、圧力損失の低減に効果がある。ただし、第1隆起部5の形状はこれに限定されない。例えば、頂点C12から上流端5tに向かって、第1隆起部5の上流部分35の高さが単調減少していてもよいし(図8参照)、上流端5tから下流端5sに向かって、第1隆起部5の高さが単調減少していてもよい(図9参照)。前者によれば、上流部分35の上方を流れる空気Aの流速が大きくなり、熱伝達率が向上する。後者によれば、上流部分35の下方を流れる空気Aの流速が大きくなり、熱伝達率が向上する。
さらに、図10Aに示すごとく、第1隆起部5の上流端5tおよび下流端5sを含み、Z方向に直交する断面において、外形5f(輪郭)がKを定数としてy=Kcos(x)で表される余弦曲線を描くように、当該第1隆起部5の形状を設定することができる。ここで、xは−180°≦x≦180°(または−90°≦x≦90°)であり、第1隙間SH1が形成されている部分にも第1隆起部5が存在すると仮定して上記xを定めるものとする。また、余弦曲線に代えて、外形5fが円弧を描くように、第1隆起部5の形状を設定してもよい。さらに、X方向に直交する断面に現れる外形(輪郭)が、図10Bに示すような余弦曲線や円弧を描くように、第1隆起部5の形状を設定することができる。
図3および図5に示すごとく、第1隆起部5の上流部分35とフィン基部4との間に形成された第1隙間SH1は、切り込み9に沿って第1隆起部5の上流部分35が部分的に帯状に切り取られることによって形成されうる。第1隆起部5の上流部分35に代えて、またはこれとともに、フィン基部4側を切り取るようにしてもよい。フィン30の一部を切り取ることにより、第1隆起部5の高さH1をあまり大きくしない場合でも、十分な広さの第1隙間SH1を形成できるようになる。ただし、フィン基部4と第1隆起部5との境界に沿って切り込み9を形成し、その第1隆起部5の上流部分35をY方向に持ち上げるように変形させれば、フィン30の一部を切り取り加工しなくてもよい。なお、第1隆起部5の上流部分35の前縁は、本実施形態のような曲線に限定されるわけではなく、例えば、直線状や多角形状であってもよい。例えば、図7に示すごとく、第1隆起部5の上流部分35が、上流側に向かって先細である三角形となるようにフィン30の一部を切り取り加工することができる。
一方、図2に示すごとく、第2隆起部6は、隣り合う2つの第2伝熱管3,3に挟まれた領域のうち、第1隆起部5が設けられていない領域に、フィン基部4から第1隆起部5と同じ側に突出するように設けられた部分である。図3の平面図において、第1伝熱管2の中心C11を通る基準線P1は、第2隆起部6の上流端6tと下流端6sとを通る。第1伝熱管2と第2隆起部6とは、Z方向に関する配置位置が互いに揃っている。そして、Z方向に関する第1伝熱管2の配置間隔と、同じくZ方向に関する第2隆起部6の配置間隔とが一致している。このような第2隆起部6を設けることにより、第2伝熱管3を第1伝熱管2よりも細径化および多数化したことによって生じた領域を、伝熱面積の拡大に有効利用することができる。
第2隆起部6は、隣り合う2つの第2伝熱管3,3の間に1つのみ設けられている。図3に示すごとく、第2隆起部6は、平面視で楕円形(円形も可)の形状を有する。本実施形態では、楕円の長軸がX方向に平行となっているので、圧力損失の増大を抑制しつつ空気Aを左右の第2伝熱管3に向けて効果的に誘導することが可能である。また、第2隆起部6の上流部分37とフィン基部4との境界に沿って、フィン30を厚さ方向に貫通する切り込み11が形成されている。そして、その切り込み11に基づく第2隙間SH2が形成されている。こうした点は、第1隆起部5と共通し、同様の効果を期待できる。
図6に示すごとく、第2隆起部6の高さH2は、フィン基部4における第1主面4pから第2隆起部6の頂点C23までの高さで表され、フィンピッチFPよりも小さい。具体的には、第1隆起部5と同様、フィンピッチFPの1/3〜2/3の範囲内で調整することができる(本実施形態ではH2≒FP/2)。また、第2隆起部6の頂点C23は、第2伝熱管3の中心C21よりも上流側に位置している。
図3に示すごとく、Z方向に関する第2隆起部6の最大長さR3、つまり、フィン30の平面図における第2隆起部6の短軸は、第2伝熱管3の外径D2以上に設定されている。また、X方向に関する第2隆起部6の最大長さR4、つまり、第2隆起部6の長軸は、第2伝熱管3の外径D2よりも大きい。したがって、当該平面図における第2隆起部6の等価直径は、第2伝熱管3の外径D2よりも大である。
図3および図6に示すごとく、第2隆起部6の上流部分37とフィン基部4との間に形成された第2隙間SH2は、第1隆起部5とフィン基部4との間に形成された第2隙間SH2と同様、切り込み11に沿って第2隆起部6の上流部分37が部分的に帯状に切り取られることによって形成されうる。もちろん、切り取りを行わず、切り込み11のみを形成し、上流部分37をY方向に持ち上げて第2隙間SH2を形成するようにしてもよい。こうした点も、第1隆起部5と共通である。
第2隆起部6のより具体的な形状は、次のように設定することができる。例えば、第1隆起部5の場合と同様に、Z方向に直交する図6の断面(長軸を含む断面)に現れる外形が、余弦曲線や円弧を描くように、第2隆起部6の形状を設定することができる。さらに、X方向に直交する断面に現れる外形が、余弦曲線や円弧を描くように、第2隆起部6の形状を設定することができる。このようにすれば、第2隆起部6を形成することに起因する圧力損失の増大を効果的に抑制することができる。
次に、フィン30の作用について説明する。
図4に示すように、フィン30の前方からの気流A1は、まず、第1隆起部5の上流部分35に衝突する。この際、いわゆる前縁効果によって上流部分35の表面に薄い温度境界層が形成され、熱伝達率の向上が図られる。一方、上流部分35に隣接する第1隙間SH1に気流A1の一部が入ることにより、圧力損失の低減が図られる。上流部分35に乗り上げた気流A2の一部は、第1伝熱管2に向けて左右に誘導され、当該第1伝熱管2の後方に回り込む。このような空気の回り込みにより、第1伝熱管2の後方における死水域の生成が抑制され、熱伝達率が向上する。
次に、第1伝熱管2の後方に回り込んだ気流A3は、第2隆起部6に衝突する。そして、第1隆起部5の場合と同様に、その上流部分37において、前縁効果による熱伝達率の向上と、圧力損失の低減とが図られる。また、第2隆起部6に乗り上げて下流に向かう気流A3の一部は、後列の第2伝熱管3に向けて左右に誘導され、当該第2伝熱管3の後方に回り込む。このような空気の回り込みにより、第2伝熱管3の後方における死水域の生成が抑制され、熱伝達率が向上する。
一方、第1隙間SH1を通過した気流は、一段下に配置されているフィン30の第1隆起部5の上で、上流部分35に乗り上げた気流と合流し、第1隆起部5の上に下流に向かう気流A4を形成する。その気流A4の一部は、上述したように、第2伝熱管3の後方に回り込む。
また、本実施形態のフィン30によれば、第1隆起部5と第1伝熱管2とで挟まれた領域において、空気の流速が大きくなる傾向がある。そのため、第1伝熱管2の側面(フィンカラー12の側面)において、熱伝達率が向上する。加速した空気は、下流側の第2隆起部6に衝突する。これにより、第2隆起部6の上流部分37において温度境界層が薄くなり、熱伝達率の向上が図られる。
ところで、フィン30の厚さが小さい場合や隆起部5,6が大きい場合、プレス加工によって隆起部5,6を形成する際に、フィン基部4に捩れが生じたり、意図しない凹凸が生じたりするおそれがある。そこで、図11に示すごとく、フィン基部4にスリット21を形成し、このスリット21に隆起部5,6を形成する際の捩れや凹凸を吸収させるようにするとよい。このようなスリット21によれば、プレス加工用の金型をフィン30に押し当てたときにフィン30に無理な応力が生じにくくなり、適正な形状および大きさの隆起部5,6を形成できるようになる。スリット21を形成する位置は、特に限定されないが、図11に示すごとく、第1隆起部5と第2隆起部6との間に形成すれば、捩れや凹凸を吸収する高い効果が得られる。また、このようなスリット21を、第2実施形態で説明するフィン31(図12参照)に形成してもよい。
なお、フィン基部4との境界に切り込み9が形成されている第1隆起部5と、切り込み9は形成されていないが形状は第1隆起部5と同一の隆起部とを、フィン30の前列に交互に設けるようにしてもよい。また、第2隆起部6に関していえば、切り込み11は必須でなく、例えば、フィン基部4との境界に切り込み11が形成された第2隆起部6に代えて、フィン基部4との境界に切り込み11は形成されていないが形状は第2隆起部6と同一の隆起部をフィン30の後列に設けるようにしてもよい。もちろん、切り込み11が形成された第2隆起部6と、切り込み11が形成されていない隆起部とを混在させる(例えば交互に設ける)ようにしてもよい。
(第2実施形態)
図12は、図1に示すフィンチューブ型熱交換器に好適に採用できるフィンの別例の平面図である。フィン31の長手方向(Z方向)に前後2列で第1伝熱管2および第2伝熱管3が配置されている点やそれら伝熱管2,3の位置関係については、第1実施形態のフィン30と共通である。
図12に示すごとく、フィン31は、フィン基部4と、隣り合う2つの第1伝熱管2,2の間に設けられた第1隆起部15と、隣り合う2つの第2伝熱管3,3の間に、フィン基部4から第1隆起部15と同じ側に突出するように設けられた第2隆起部6および第3隆起部16とからなる。第2隆起部6および第3隆起部16は、いずれも、第1隆起部5から離れて設けられ、表面積が第1隆起部15よりも小さい隆起部である。
第1隆起部15は、楕円丘(円丘も可)の形状を有し、その上流部分35とフィン基部4との境界に切り込み9が形成され、その切り込み9に基づき、第1隆起部15の上流部分35とフィン基部4との間に第1隙間SH1が形成されている。第1隆起部15の上流部分35、切り込み9および第1隙間SH1は、同符号を用いていることから分かるように、第1実施形態で説明したものと同一である。第1実施形態との相違点は、第1隆起部15の下流部分である。第1隆起部15の下流端15sは、前列の第1伝熱管2と後列の第2伝熱管3との間に位置している。
平面視で外形が略楕円形の第1隆起部15は、その楕円の短軸がZ方向に平行となるように向きが定められている。つまり、空気Aの流れ方向と楕円の長軸とが平行である。このようにすれば、第1隆起部15の左右に空気Aをよりスムーズに誘導することができ、第1隆起部15を形成したことによる圧力損失の増大の程度を小さくすることができる。もちろん、楕円の長軸が列方向に平行となる向きとすることも可能である。
また、第1隆起部15は、隣り合う2つの第1伝熱管2,2の中間に設けられている。こうした点は、第1実施形態で説明した第1隆起部5と共通であり、こうすることにより、第1隆起部15の左右に均一に空気Aを流すことができる。つまり、第1隆起部15に隣接する2つの第1伝熱管2,2の双方を等しく熱伝達に寄与させることが可能となり、ひいてはフィンチューブ型熱交換器1の伝熱性能を最大化することができる。
一方、第2および第3隆起部6,16は、隣り合う2つの第2伝熱管3,3に挟まれた領域のうち、第1隆起部15と千鳥配列を形成することになる領域に1つのみ設けられた第2隆起部6と、空気Aの流れ方向に関して第1隆起部15の下流側に位置することになる領域に1つのみ設けられた第3隆起部16とからなる。それら第2隆起部6および第3隆起部16は、列方向に交互に並んでいる。第2隆起部6および第3隆起部16によれば、第2伝熱管3を第1伝熱管2よりも細径化および多数化したことによって生じた領域を、伝熱面積の拡大に有効利用することができる。
第2隆起部6は、第1実施形態で説明した第2隆起部6(図2参照)と同一のものである。つまり、図13の拡大平面図に示すごとく、上流部分37とフィン基部4との境界に沿って、フィン31を厚さ方向に貫通する切り込み11が形成されており、その切り込み11に基づく第2隙間SH2が、第2隆起部6の上流部分37とフィン基部4との間に形成されている。空気Aは、この第2隙間SH2を通じて、フィン31の第1主面4p側から第2主面4q側へと流通可能である。
一方、第3隆起部16は、第2隆起部6と同様の楕円丘の形状を有している点では、第1隆起部15や第2隆起部6と一致している。また、第3隆起部16の上流部分39とフィン基部4との境界に沿って切り込み29が形成され、その切り込み29に基づいて、第3隆起部16の上流部分39とフィン基部4との間に第3隙間SH3が形成されている。空気Aは、この第3隙間SH3を通じて、フィン31の第1主面4p側から第2主面4q側へと流通可能である。
切り込み11,29および隙間SH2,SH3により、第2および第3隆起部6,16を形成したことによる圧力損失の増大を抑制することができる。もちろん、全ての第2隆起部6に切り込み11と第2隙間SH2を形成されていなくてもよく、例えば、1つおきに形成されていてもよい。この点については、第3隆起部16についても同様である。場合によっては、第2および第3隆起部6,16については、切り込み11,29を形成しなくてもよい。
また、本実施形態では、第3隆起部16の表面積が第2隆起部6の表面積よりも小であるが、表面積の大小関係がこれに限定されるわけではなく、上記の逆であってもよい。また、第3隆起部16と第2隆起部6とを同一寸法および同一形状とする、つまり、両者を全く同一のものとしてフィン31に設けるようにしてもよい。
図13の拡大平面図に示すごとく、第1隆起部15の長軸の延長線上に第3隆起部16の長軸がある。Z方向に関する第1隆起部15の最大長さR5(楕円の短軸)は、第1伝熱管2の外径D1以上であり、X方向に関する第1隆起部15の最大長さR6(楕円の長軸)は、第1伝熱管2の外径D1よりも大である。つまり、図13の平面図において、第1隆起部15の等価直径は、第1伝熱管2の外径D1よりも大であり、第1隆起部15の占める面積は、第1伝熱管2の断面積よりも大きい。また、Z方向に関する第3隆起部16の最大長さR7(楕円の短軸)は、第2伝熱管3の外径D2以上であり、X方向に関する第3隆起部16の最大長さR8(楕円の長軸)は、第2伝熱管3の外径D2よりも大である。つまり、図13の平面図において、第3隆起部16の等価直径は、第2伝熱管3の外径D2よりも大であり、第3隆起部16の占める面積は、第2伝熱管3の断面積よりも大きい。
図14は、図12のG−G断面図、つまり、第1隆起部15および第3隆起部16の長軸を含む断面図である。第1隆起部15の高さH1は、フィン基部4における第1主面4pから第1隆起部15の頂点C31までの高さで表され、第1実施形態と同様に、フィンピッチFPの1/3〜2/3の範囲内で調整することができる。第3隆起部16の高さも上記範囲内で調整することができ、例えば、第1隆起部15の高さH1に一致させることができる。
図14に示すごとく、第1隆起部15の上流端15tは、第1伝熱管2よりも上流側に位置し、下流端15sは、第1伝熱管2よりも下流側かつ第2伝熱管3よりも上流側に位置する。第1隆起部15の頂点C31は、第1伝熱管2の中心C11よりも下流側に位置している。また、第3隆起部16の上流端16tは、第2伝熱管3よりも上流側に位置し、下流端16sは、第2伝熱管3よりも下流側に位置している。第3隆起部16の頂点C32は、第2伝熱管2の中心C21よりも下流側に位置している。
要するに、第1隆起部15と第3隆起部16とを一体的に形成したのが、第1実施形態のフィン30の第1隆起部5と捉えることができる。したがって、第1実施形態のフィン30で説明した作用および効果は、本実施形態のフィン31でも同様に得ることができる。
以上に説明したフィンチューブ型熱交換器1は、空気や水等の対象を加熱または冷却するヒートポンプ装置に適用することができる。図15に示すように、ヒートポンプ装置70は、冷媒を圧縮する圧縮機71と、圧縮機71で圧縮された冷媒を放熱させる放熱器72と、放熱器72で放熱した冷媒を膨張させる膨張弁73と、膨張弁73で膨張した冷媒を蒸発させる蒸発器74とを備えている。圧縮機71、放熱器72、膨張弁73および蒸発器74が配管75によって接続され、冷媒回路が形成されている。膨張弁73に代えて、膨張機を採用してもよい。放熱器72および蒸発器74は、本発明のフィンチューブ型熱交換器1を含むものとして構成することができる。
本発明にかかるフィンチューブ型熱交換器の特性を計算機シミュレーションで調べた。具体的には、図2および図12に示すフィン30,31を用いたフィンチューブ型熱交換器について、計算機シミュレーションを行った。実施例1がフィン30を用いた例、実施例2がフィン31を用いた例である。比較例として、コルゲートフィンを用いた従来のフィンチューブ型熱交換器についても同様の計算機シミュレーションを行った。計算機シミュレーションによって調べた特性は、熱伝達率および圧力損失である。なお、計算機シミュレーションは、フルーエント・アジアパシフィック社製“Fluent Ver.6”を用い、下記条件にて実施した。
<実施例1,2および比較例1に共通の条件>
フィンサイズ:27mm(X方向)
フィン厚み:0.1mm
フィンピッチ:1.49mm
前面風速Vair:1m/sec
<実施例1,2に共通の条件>
第1伝熱管の外径D1:7mm
第1伝熱管の管ピッチ:21mm(Z方向)
第2伝熱管の外径D2:3mm
第2伝熱管の管ピッチ:10.5mm(Z方向)
Z方向に関する第2隆起部の最大長さR3:3.5mm
X方向に関する第2隆起部の最大長さR4:13mm
第2隆起部の高さH2:0.765mm
<実施例1の条件>
Z方向に関する第1隆起部の最大長さR1:10mm
X方向に関する第1隆起部の最大長さR2:24.25mm
第1隆起部の高さH1:0.765mm
第1隙間SH1の幅:0.5mm
第2隙間SH2の幅:0.5mm
<実施例2の条件>
Z方向に関する第1隆起部の最大長さR5:10mm
X方向に関する第1隆起部の最大長さR6:13mm
第1隆起部および第3隆起部の高さH1:0.765mm
Z方向に関する第3隆起部の最大長さR7:3.5mm
X方向に関する第3隆起部の最大長さR8:8.875mm
第1隙間SH1の幅:0.5mm
第2隙間SH2の幅:0.5mm
第3隙間SH3の幅:0.4375mm
<比較例1の条件>
形状:コルゲート
伝熱管の配置:千鳥
管ピッチ:21mm(Z方向)
伝熱管の外径:7.0mm
稜と谷の高低差:1.49mm
実施例1,2および比較例1の計算機シミュレーションの結果を表1に示す。
Figure 0004884140
表1から分かるように、本実施形態のフィンチューブ型熱交換器によれば、コルゲートフィンを備えた従来のフィンチューブ型熱交換器に比べて、熱伝達率を概ね等しく保ちつつ(実施例1で0.3%、実施例2で1.3%の低下)、圧力損失が大幅に低減した(実施例1で16.0%、実施例2で18.7%の向上)。
本発明に係るフィンチューブ型熱交換器の斜視図 図1に示すフィンチューブ型熱交換器のフィンの平面図 図2に示すフィンの部分拡大平面図 図2に示すフィンの斜視図 図2に示すフィンのV−V断面図 図2に示すフィンのVI−VI断面図 第1隆起部とフィン基部との間の第1隙間の別形態を示す平面図 第1隆起部の形状の他の例を示す断面図 同じく第1隆起部の形状の別例を示す断面図 第1隆起部の形状を示す模式図 図10Aと同様の模式図 フィン基部に形成されたスリットの位置を示す平面図 図1に示すフィンチューブ型熱交換器に好適に採用できるフィンの別例の平面図 図12に示すフィンの部分拡大平面図 図12に示すフィンのG−G断面図 ヒートポンプ装置の構成図
符号の説明
1 フィンチューブ型熱交換器
2 第1伝熱管
3 第2伝熱管
4 フィン基部
4p 第1主面
4q 第2主面
5 第1隆起部
6 第2隆起部
16 第3隆起部
7k 第1貫通孔
7j 第2貫通孔
9,11 切り込み
30,31 フィン
35 第1隆起部の上流部分
36 第1隆起部の下流部分
37 第2隆起部の上流部分
70 ヒートポンプ装置
71 圧縮機
72 放熱器
73 膨張機構
74 蒸発器
P1,P2 基準線
SH1 第1隙間
SH2 第2隙間
SH3 第3隙間
A 空気

Claims (9)

  1. 第1流体と第2流体とを熱交換させるフィンチューブ型熱交換器であって、
    前記第1流体の流路を形成するために、互いに間隔を空けて平行に並べられた複数のフィンと、
    前記複数のフィンを貫通する、前記第2流体を流通させるべき複数の伝熱管とを備え、
    前記複数の伝熱管は、前記第1流体の流れ方向と交差する所定の列方向に並んで配置された第1伝熱管と、前記第1伝熱管と並び方向が平行であるとともに前記第1流体の流れ方向に関して前記第1伝熱管よりも下流側に並んで配置された第2伝熱管とを含み、前記第2伝熱管の横断面積が前記第1伝熱管の横断面積よりも小であり、前記第2伝熱管は、前記列方向に関して、隣り合う2つの前記第1伝熱管の中間を通り、かつ2つの前記第1伝熱管より等距離の第1の基準線と、前記第1伝熱管の中心を通り、かつ前記第1の基準線と並行な第2の基準線とから外れるように配置され、
    前記複数のフィンは、それぞれ、前記複数の伝熱管を配置するための複数の貫通孔が形成されているフィン基部と、隣り合う2つの前記第1伝熱管の間に前記フィン基部から突出するように設けられた隆起部とを含み、
    前記隆起部の上流部分と前記フィン基部との境界に沿って、前記フィンを貫通する切り込みが平面視で弓形を示すように形成され、
    前記隆起部の上流部分と前記フィン基部との間に前記切り込みに基づく隙間が形成され、その隙間を通じて前記第1流体が前記フィンの第1主面側から第2主面側へと流通可能となっており、
    前記隆起部の上流部分は、平面視で半円形または半楕円形の形状を有し、
    前記隆起部は、前記上流部分に連なる部分であって、隣り合う2つの前記第2伝熱管に挟まれた領域に達するまで前記列方向に関する幅を狭めながら延びている下流部分を含み、全体として涙滴の形状を有しており、
    前記第1流体の流れ方向および前記列方向に直交する方向を高さ方向と定義したとき、前記高さ方向に関する前記隆起部の上流部分の頂点は、前記第1伝熱管の中心よりも前記第1流体の流れ方向の下流側に位置し、
    前記隆起部の上流端は、前記第1伝熱管の中心よりも前記第1流体の流れ方向の上流側に位置している、フィンチューブ型熱交換器。
  2. 前記隙間は、前記切り込みに沿って前記フィン基部および/または前記隆起部が部分的に切り取られることによって形成されている、請求項1記載のフィンチューブ型熱交換器。
  3. 前記隆起部は、隣り合う2つの前記第1伝熱管の間に1つのみ設けられるとともに、前記列方向に関する最大幅が前記第1伝熱管の外径よりも大である、請求項1記載のフィンチューブ型熱交換器。
  4. 前記第2伝熱管の配置間隔が、前記第1伝熱管の配置間隔の1/2に設定され、
    前記複数のフィンは、隣り合う2つの前記第2伝熱管に挟まれた領域のうち、第1隆起部としての前記隆起部が設けられていない領域において、前記フィン基部から前記第1隆起部と同じ側に突出するように設けられた第2隆起部をさらに含む、請求項記載のフィンチューブ型熱交換器。
  5. 前記第2隆起部は、平面視で円形または楕円形の形状を有するとともに、その第2隆起部の上流部分と前記フィン基部との境界に沿って、前記フィンを厚さ方向に貫通する切り込みが形成されている、請求項記載のフィンチューブ型熱交換器。
  6. 第1流体と第2流体とを熱交換させるフィンチューブ型熱交換器であって、
    前記第1流体の流路を形成するために、互いに間隔を空けて平行に並べられた複数のフィンと、
    前記複数のフィンを貫通する、前記第2流体を流通させるべき複数の伝熱管とを備え、
    前記複数の伝熱管は、前記第1流体の流れ方向と交差する所定の列方向に並んで配置された第1伝熱管と、前記第1伝熱管と並び方向が平行であるとともに前記第1流体の流れ方向に関して前記第1伝熱管よりも下流側に並んで配置された第2伝熱管とを含み、前記第2伝熱管の横断面積が前記第1伝熱管の横断面積よりも小であり、前記第2伝熱管は、前記列方向に関して、隣り合う2つの前記第1伝熱管の中間を通り、かつ2つの前記第1伝熱管より等距離の第1の基準線と、前記第1伝熱管の中心を通り、かつ前記第1の基準線と並行な第2の基準線とから外れるように配置され、
    前記複数のフィンは、それぞれ、前記複数の伝熱管を配置するための複数の貫通孔が形成されているフィン基部と、隣り合う2つの前記第1伝熱管の間に前記フィン基部から突出するように設けられた隆起部とを含み、
    前記隆起部の上流部分と前記フィン基部との境界に沿って、前記フィンを貫通する切り込みが平面視で弓形を示すように形成され、
    前記隆起部の上流部分と前記フィン基部との間に前記切り込みに基づく隙間が形成され、その隙間を通じて前記第1流体が前記フィンの第1主面側から第2主面側へと流通可能となっており、
    前記隆起部は、楕円丘または円丘の形状を有し、
    前記第2伝熱管の配置間隔が、前記第1伝熱管の配置間隔の1/2に設定され、
    前記複数のフィンは、第1隆起部としての前記隆起部と同じ側に突出し、かつその第1隆起部よりも表面積が小さくなるように、隣り合う2つの前記第2伝熱管の間に設けられた他の隆起部をさらに含み、
    前記第1流体の流れ方向および前記列方向に直交する方向を高さ方向と定義したとき、前記高さ方向に関する前記第1隆起部の頂点は、前記第1伝熱管の中心よりも前記第1流体の流れ方向の下流側に位置し、
    前記第1隆起部の上流端は、前記第1伝熱管の中心よりも前記第1流体の流れ方向の上流側に位置している、フィンチューブ型熱交換器。
  7. 前記他の隆起部は、隣り合う2つの前記第2伝熱管で挟まれた領域のうち、前記第1隆起部と千鳥配列を形成することになる領域に1つのみ設けられた第2隆起部と、前記第1流体の流れ方向に関して前記第1隆起部の下流側に位置することになる領域に1つのみ設けられた第3隆起部とからなり、それら第2隆起部および第3隆起部が前記列方向に交互に並んでいる、請求項記載のフィンチューブ型熱交換器。
  8. 前記第1隆起部、前記第2隆起部および前記第3隆起部は、それぞれ、平面視で円形または楕円形の形状を有し、
    前記第2隆起部および/または前記第3隆起部は、その第2隆起部の上流部分および/または第3隆起部の上流部分と前記フィン基部との境界に沿って、前記フィンを厚さ方向に貫通する切り込みが形成されている、請求項記載のフィンチューブ型熱交換器。
  9. 冷媒を圧縮する圧縮機と、
    前記圧縮機で圧縮された冷媒を放熱させる放熱器と、
    前記放熱器で放熱した冷媒を膨張させる膨張機構と、
    前記膨張機構で膨張した冷媒を蒸発させる蒸発器とを備え、
    前記蒸発器および前記放熱器の少なくとも一方が、請求項1または請求項6記載のフィンチューブ型熱交換器を含む、ヒートポンプ装置。
JP2006239075A 2006-09-04 2006-09-04 フィンチューブ型熱交換器およびヒートポンプ装置 Expired - Fee Related JP4884140B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239075A JP4884140B2 (ja) 2006-09-04 2006-09-04 フィンチューブ型熱交換器およびヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239075A JP4884140B2 (ja) 2006-09-04 2006-09-04 フィンチューブ型熱交換器およびヒートポンプ装置

Publications (2)

Publication Number Publication Date
JP2008057944A JP2008057944A (ja) 2008-03-13
JP4884140B2 true JP4884140B2 (ja) 2012-02-29

Family

ID=39240892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239075A Expired - Fee Related JP4884140B2 (ja) 2006-09-04 2006-09-04 フィンチューブ型熱交換器およびヒートポンプ装置

Country Status (1)

Country Link
JP (1) JP4884140B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2459954B1 (en) * 2009-07-29 2017-11-15 Thermax Limited A heat exchanger tube
WO2015015545A1 (ja) * 2013-07-29 2015-02-05 株式会社日立製作所 熱交換器及び空気調和機
CN107965948B (zh) * 2017-11-21 2020-09-25 广东美的制冷设备有限公司 换热装置及空调设备
CN107763833B (zh) * 2017-11-22 2024-06-25 广东美的制冷设备有限公司 室内换热器、空调室内机及空调器
CN115003978A (zh) 2020-08-24 2022-09-02 富士电机株式会社 翅片管换热器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS432682Y1 (ja) * 1964-12-28 1968-02-03
JPS5550848B2 (ja) * 1973-07-20 1980-12-20
JPS5575190A (en) * 1978-12-04 1980-06-06 Matsushita Refrig Co Heat-exchanger
JPH11281278A (ja) * 1998-03-26 1999-10-15 Kimura Kohki Co Ltd 空気調和機用熱交換コイル
JP2001317890A (ja) * 2000-05-01 2001-11-16 Matsushita Electric Ind Co Ltd フィン付き熱交換器
JP2004077021A (ja) * 2002-08-19 2004-03-11 Matsushita Electric Ind Co Ltd ガスクーラー

Also Published As

Publication number Publication date
JP2008057944A (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4028591B2 (ja) 伝熱フィンおよびフィンチューブ型熱交換器
US10072898B2 (en) Fin tube heat exchanger
JP4117429B2 (ja) 熱交換器用フィン
JP6186430B2 (ja) フィンチューブ熱交換器、及び、冷凍サイクル装置
WO2007108386A1 (ja) フィンチューブ型熱交換器、熱交換器用フィンおよびヒートポンプ装置
JP4022250B2 (ja) フィンチューブ型熱交換器
US20090308585A1 (en) Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby
JP4884140B2 (ja) フィンチューブ型熱交換器およびヒートポンプ装置
JP6011481B2 (ja) 熱交換器用フィン
JP2006200788A (ja) 熱交換器
WO2006028253A1 (ja) 熱交換装置
WO2013001744A1 (ja) フィンチューブ型熱交換器
JP2018025373A (ja) 冷蔵庫用熱交換器及び冷蔵庫
JP5958771B2 (ja) フィンチューブ熱交換器
JP2008170035A (ja) フィンチューブ型熱交換器、熱交換器用フィンおよびヒートポンプ装置
JPWO2012102053A1 (ja) フィンチューブ型熱交換器
JP2008215670A (ja) 伝熱フィン、フィンチューブ型熱交換器および冷凍サイクル装置
JP2007278571A (ja) 伝熱部材およびそれを用いた熱交換器
US20060266503A1 (en) Heat transfer fin, heat exchanger, evaporator and condenser for use in car air-conditioner
JP2006349208A (ja) 熱交換器
JP4196857B2 (ja) 熱交換器および伝熱部材
JP5863463B2 (ja) 熱交換器
KR20110083020A (ko) 열 교환기
JPWO2013018270A1 (ja) フィンチューブ型熱交換器
JP6599023B2 (ja) 熱交換器、熱交換器の製造方法及びフィン組立品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees