WO2007090688A1 - Vorrichtung und verfahren zur steuerung wenigstens einer glühkerze eines kraftfahrzeugs - Google Patents

Vorrichtung und verfahren zur steuerung wenigstens einer glühkerze eines kraftfahrzeugs Download PDF

Info

Publication number
WO2007090688A1
WO2007090688A1 PCT/EP2007/050011 EP2007050011W WO2007090688A1 WO 2007090688 A1 WO2007090688 A1 WO 2007090688A1 EP 2007050011 W EP2007050011 W EP 2007050011W WO 2007090688 A1 WO2007090688 A1 WO 2007090688A1
Authority
WO
WIPO (PCT)
Prior art keywords
glow plug
control
exhaust gas
glow
internal combustion
Prior art date
Application number
PCT/EP2007/050011
Other languages
English (en)
French (fr)
Inventor
Rainer Moritz
Wolfgang Dressler
Eberhard Janzen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US12/223,232 priority Critical patent/US8360024B2/en
Priority to ES07703587T priority patent/ES2425394T3/es
Priority to JP2008553698A priority patent/JP4956555B2/ja
Priority to EP07703587.1A priority patent/EP1984612B1/de
Priority to KR1020087019344A priority patent/KR101160428B1/ko
Priority to CN2007800049923A priority patent/CN101379281B/zh
Publication of WO2007090688A1 publication Critical patent/WO2007090688A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/026Glow plug actuation during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1411Introducing closed-loop corrections characterised by the control or regulation method using a finite or infinite state machine, automaton or state graph for controlling or modelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off

Definitions

  • the invention relates to a method and a device for controlling at least one glow plug of a motor vehicle.
  • the glow plugs are used at the start of the internal combustion engine for heating the combustion chambers.
  • the control of the at least one glow plug is dependent on the operating state of the internal combustion engine.
  • the exhaust gas emissions can be significantly reduced if the control of the glow plugs is dependent on a variable that depends on the exhaust gas temperature and / or depends on the fulfillment of a fuel condition.
  • the smoke emissions can be significantly reduced.
  • the white smoke and / or black smoke can be significantly reduced in the transition from overrun to normal driving.
  • the combustion chambers cool down during longer overrun operation or during prolonged downhill driving, in which, in particular, a small amount of fuel or no fuel is injected at all. Is then followed by an injection with high fuel quantity, so these are associated with increased smoke emissions.
  • this cooling is counteracted by the fact that the glow plugs are driven accordingly.
  • the glow plugs are energized in the presence of certain conditions such that they are preheated.
  • the aim of the preheating is to achieve the operating temperature of the glow plug in a very short time (eg ⁇ 0.55) during the thrust change, especially if a sudden increase injection quantity occurs.
  • the preheating in height and gradient is designed so moderate that the service life of the glow plugs is impaired as little as possible.
  • the exhaust gas temperature and / or the amount of fuel over time is preferably considered. If this exhaust gas temperature falls below a certain threshold, the annealing process is initialized. Accordingly, the annealing process is initialized when the amount of fuel for a certain period of time is below a threshold. The annealing process is preferably initialized when the fuel quantity assumes the value zero for a certain period of time. Alternatively, it can also be provided that both conditions are combined. This can for example be realized in such a way that both conditions are checked for their presence and that the annealing process is initialized if one of the two conditions is fulfilled.
  • the control of the glow plug is dependent on the operating parameters of the internal combustion engine such as in particular the engine speed, the amount of fuel, the outside temperature and / or the exhaust gas temperature. This can be achieved that the glow plug sufficient energy is supplied to achieve sufficient thermal support of the burning process. Furthermore, however, it is prevented that unnecessary energy is supplied to the glow plug, which leads to overheating of the glow plugs or even could damage the glow plug.
  • Figure 2 is a state diagram and Figures 3 and 5 each one
  • a glow plug 100 is connected in series with a current measuring means 120 and a switching means 110 between the two terminals of a supply voltage.
  • a current measuring means 120 and a switching means 110 is provided for each glow plug.
  • An embodiment of the device according to the invention can also be designed such that a common switching means and / or a common current measuring means is provided for a plurality of glow plugs of an internal combustion engine or all glow plugs of an internal combustion engine.
  • each glow plug is associated with a current measuring means 120 and a switching means 110 offers the advantage that the glow plug can be controlled individually and the current flowing through the glow plug can be evaluated. If several glow plugs are combined to form a group, or if all the glow plugs are actuated together via a switching means or the current is evaluated jointly, this offers the advantage that expensive elements such as the switching means can be saved, resulting in considerable cost savings. However, this has the disadvantage that only a common control or a joint evaluation of the power of several or all glow plugs is possible.
  • a control unit 130 which, in addition to other components not shown, includes an evaluation 133 and a control 135.
  • the driver 135 controls the switching means 110 to supply a desired energy to the glow plug.
  • the evaluation 133 evaluates the voltage drop across the current measuring means 120 in order to determine the current flowing through the glow plug.
  • the current measuring means 120 is preferably designed as an ohmic resistor. - A -
  • the glow plugs are driven to prevent cooling of the combustion chambers, according to the invention it was recognized that the longer Pushing operation, in which no fuel is injected, the internal combustion engine cools.
  • the internal combustion engine cools.
  • d. H. between 2 and 3 minutes in overrun, occurs when accelerating, d. H. when injecting fuel an increased smoke emission. This occurs, for example, when the vehicle is traveling downhill for a long time and injected no fuel and then the driver accelerates to accelerate the vehicle on a flat road or uphill or to keep the speed constant.
  • this effect is based essentially on a cooling of the piston walls. This is preferably done in a time range of 2 to 3 minutes after completion of the injection. The cooling of the complete engine block including the cooling water takes place only after a later time, d. H. about 15 minutes instead.
  • This cooling is now counteracted according to the invention as follows: As soon as a corresponding operating state is detected, the glow plugs arenutristromt to bring them to a low temperature level to bring by applying an increased operating voltage, these preheated glow plugs within a very short time to the required annealing temperature. The pre-tempering is such that the glow plugs can be brought to the maximum annealing temperature within a period of significantly less than half a second.
  • the internal combustion engine in particular the piston walls, heats up within a period of 2 to 3 seconds. After this period, the cylinder inner walls are tempered accordingly by the combustion and there are no more smoke emissions. After this period of time, the annealing process can then be stopped or reduced to a distinct low current level.
  • FIG. 2 shows the various states of such a course.
  • the program sequence is initialized.
  • a second state 2 it is determined whether an annealing process is initiated. This condition 2 is shown in detail in FIG.
  • the exhaust gas temperature TA is determined.
  • a parameter P is determined based on the exhaust gas temperature TA.
  • Subsequent query 120 checks if this parameter P is greater than a threshold SP. If this is not the case, step 100 is repeated. If this is the case, then state 3 is entered.
  • a parameter P is determined, which represents a measure of how much the cylinder walls are cooled. If this parameter P exceeds a certain threshold value SP, state 3 is entered.
  • a first step 150 it is checked whether the amount of fuel QK injected into the internal combustion engine assumes the value zero. If this is the case, then in step 160, a time counter Zl is set to zero. The subsequent query 170 checks whether the time counter Zl is greater than a time threshold SZl. If this is the case, then in step 180, state 3 is entered. Ie. If it is detected in state 2 that no fuel is being metered for longer than the time period SZ1, then state 3 is entered. As an alternative to querying whether the metered fuel quantity assumes the value zero, it can also be provided that it is checked whether an amount of fuel which is below a minimum value is metered.
  • condition 3 the preconditioning of the glow plug takes place, ie it is charged with a low current so that it reaches a certain temperature. Starting from this temperature, the glow plug can be heated very quickly to the final temperature. Usually, the glow plug is heated to a temperature of about 600 ° to 700 °. State 3 is shown in more detail in FIG.
  • a time counter Z3 is set to zero.
  • step 310 the current is determined, with which the glow plug must be energized for preconditioning.
  • This current value with which the conditioning takes place is specified depending on various operating parameters.
  • Such an operating parameter is, for example, the rotational speed of the internal combustion engine, the outside temperature and / or the exhaust gas temperature TA.
  • Subsequent query 320 checks if the value of counter Z3 is greater than one Threshold is SZ3. If this is the case, then in step 330, state 2 is returned. If this is not the case, the query 330 checks whether the fuel quantity QK is greater than zero. If the query 330 recognizes that the fuel quantity is greater than zero, ie neither fuel is metered, then in step 340, the status 4 is entered. If the amount of fuel continues to be less than zero. or less than a minimum value, so again step 310.
  • the glow plug is pre-energized with a certain current value, which is so dimensioned that the glow plug heats up to about 600 ° to 700 °.
  • This current value is predetermined depending on the operating state of the internal combustion engine such as in particular the engine speed, the outside temperature and / or the exhaust gas temperature. If this condition lasts longer on a time threshold SZ3, then state 2 is entered. As soon as it is detected that fuel is being metered, state 4 is proceeded.
  • state 4 which is also referred to as pushing, the glow plug is supplied with so much energy that it reaches its maximum temperature as quickly as possible. This also takes place only for a certain period of time SZ4.
  • the corresponding procedure is shown in detail in FIG.
  • a time counter SZ4 is set to zero.
  • step 410 the current 14 flowing in this state is given depending on the state of the internal combustion engine and / or the state of the glow plugs. Among other things, the already supplied to the glow plug energy is taken into account.
  • step 420 it is checked whether the time counter Z4 has exceeded a threshold value SZ4. If this is not the case, step 410 is repeated. Otherwise, in step 430, state 5 is entered.
  • step 5 the glow plug is operated with nominal voltage. This is done for a certain period of time SZ5.
  • the corresponding procedure is shown in FIG.
  • a time counter Z5 is set to zero.
  • step 510 the current value 15 is specified.
  • the subsequent query 520 checks whether the time period SZ5 has been exceeded. If this is not the case, step 510 occurs again. Otherwise, the transition to state 2 takes place in step 530.
  • the glow plugs are energized according to a predetermined scheme.
  • the glow plugs are preconditioned to reach a certain temperature, from which the final temperature of the glow plugs is rapidly achieved. If the overrun mode ends, ie fuel is injected again, the glow plugs are energized in such a way that they reach their maximum temperature as quickly as possible, so that the combustion chambers are rapidly heated. After a certain time, the glow plugs are operated for a further period of time with nominal voltage. Ie. they are operated in this time phase so that they maintain their temperature.
  • a similar annealing process takes place, as at the start of the internal combustion engine.
  • a relatively long Vorglühphase in which the glow plugs preconditioned, and as soon as the shear phase ends, the actual annealing process is initiated.
  • the actual annealing process is designed similar to a conventional annealing process.
  • the glow plugs at the beginning of a high energy and then a lower energy is supplied so that they quickly reach their temperature and the temperature is then maintained.
  • the longer Vorglühvorgang is possible because the internal combustion engine and the generator is operated and thus sufficient energy is available.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Es werden eine Vorrichtung und ein Verfahren zur Steuerung wenigstens einer Glühkerze eines Kraftfahrzeugs beschrieben. Die Steuerung der wenigstens einen Glühkerze erfolgt abhängig vom Betriebszustand der Brennkraftmaschine. Dabei erfolgt die Steuerung abhängig von einer Größe, die von der Abgastemperatur abhängt und/oder abhängig vom Erfülltsein einer Kraftstoffmengenbedin- gung und/oder einer Zeitbedingung.

Description

Beschreibung
Titel
Vorrichtung und Verfahren zur Steuerung wenigstens einer Glühkerze eines Kraftfahrzeugs
Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung wenigstens einer Glühkerze eines Kraftfahrzeugs.
Üblicher Weise werden die Glühkerzen beim Start der Brennkraftmaschine zur Erwärmung der Brennräume eingesetzt. Die die Ansteuerung der wenigstens einen Glühkerze erfolgt abhängig vom Betriebszustand der Brennkraftmaschine.
Offenbarung der Erfindung
Vorteile der Erfindung
Erfindungsgemäß wurde erkannt, dass in bestimmten Betriebszuständen die Ab- gasemissionen deutlich reduziert werden kann, wenn die Steuerung der Glühkerzen abhängig von einer Größe erfolgt, die von der Abgastemperatur abhängt und/oder die vom Erfülltsein einer Kraftstoff bedingung abhängt.
So können insbesondere beim Schubwechsel beim ausgekühlten Motor die Rauchemissionen deutlich reduziert werden. Insbesondere kann der Weißrauch und/oder der Schwarzrauch beim Übergang vom Schubbetrieb in den normalen Fahrbetrieb deutlich reduziert werden. Erfindungsgemäß wurde erkannt, dass im längeren Schubbetrieb oder bei längerer Bergabfahrt, bei der insbesondere eine kleine Kraftstoffmenge oder gar kein Kraftstoff eingespritzt wird, die Brennräume auskühlen. Erfolgt anschließend eine Einspritzung mit hoher Kraftstoffmenge, so sind diese mit erhöhten Rauchemissionen verbunden. Erfindungsgemäß wird diesem Auskühlen dadurch entgegengewirkt, dass die Glühkerzen entsprechend angesteuert werden. Vorzugsweise ist vorgesehen, dass die Glühkerzen bei Vorliegen bestimmter Bedingungen derart bestromt werden, dass diese vorgewärmt werden. Ziel der Vorwärmung ist es, beim Schubwechsel, insbesondere wenn eine sprunghafter Anstieg Einspritzmenge auftritt, die Betriebstemperatur der Glühkerze in sehr kurzer Zeit (z. B. < 0,55) zu erreichen. Vorzugsweise wird die Vorwärmung in Höhe und Gradient so moderat ausgelegt, dass die Lebensdauer der Glühkerzen so wenig wie möglich beeinträchtigt wird. Als Bedingungen wird vorzugsweise die Abgastemperatur und/oder die Kraftstoffmenge über der Zeit betrachtet. Fällt diese Abgastemperatur unter einen bestimmten Schwellenwert so wird der Glühvorgang initialisiert. Entsprechend wird der Glühvorgang initialisiert, wenn die Kraftstoff menge für eine bestimmte Zeitdauer unter einem Schwellenwert liegt. Vorzugsweise wird der Glühvorgang initialisiert, wenn die Kraftstoffmenge für eine gewisse Zeitdauer den Wert Null annimmt. Alternativ kann auch vorgesehen sein, dass beide Bedingungen kombiniert werden. Dies kann beispielsweise derart realisiert sein, dass beide Bedingungen auf ihr Vorliegen geprüft werden und dass der Glühvorgang initialisiert wird, wenn eine der beiden Bedingungen erfüllt ist.
Während des Glühens erfolgt die Ansteuerung der Glühkerze abhängig vom Betriebsparametern der Brennkraftmaschine wie insbesondere der Motordrehzahl, der Kraftstoffmenge, der Außentemperatur und/oder der Abgastemperatur. Dadurch kann erreicht werden, dass der Glühkerze ausreichend Energie zugeführt wird um eine ausreichende thermische Unterstützung des Brennvorgangs zu erzielen. Des weiteren wird aber verhindert, dass unnötig Energie der Glühkerze zugeführt wird was zu einem zu einem Überhitzen der Glühkerzen führt bzw. sogar eine Beschädigung der Glühkerze zur Folge haben könnte.
Zeichnung
Die Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen: Figur 1 wesentliche Elemente einer Vorrichtung zur Steuerung wenigstens einer Glühkerze,
Figur 2 ein Zustandsdiagramm und die Figuren 3 und 5 jeweils ein
Flussdiagramm der erfindungsgemäßen Vorgehensweise.
Beschreibung der Ausführungsbeispiele
In Figur 1 sind die im wesentlichen Elemente der erfindungsgemäßen Vorrichtung dargestellt. Eine Glühkerze 100 ist in Reihe mit einem Strommessmittel 120 und einem Schaltmittel 110 zwischen den beiden Anschlüssen einer Versorgungsspannung geschaltet. In dem dargestellten Ausführungsbeispiel ist für jede Glühkerze ein Strommessmittel 120 und ein Schaltmittel 110 vorgesehen. Eine Ausgestaltung der erfindungsgemäßen Vorrichtung kann auch derart ausgebildet sein, dass für mehrere Glühkerzen einer Brennkraftmaschine oder alle Glühkerzen einer Brennkraftmaschine ein gemeinsames Schaltmittel und/oder ein gemeinsames Strommessmittel vorgesehen ist.
Die dargestellte Ausführungsform, bei dem jeder Glühkerze ein Strommessmittel 120 und einem Schaltmittel 110 zugeordnet ist bietet den Vorteil, dass die Glühkerze einzeln angesteuert und der durch die Glühkerze fließende Strom ausgewertet werden kann. Sind mehrere Glühkerzen zu einer Gruppe zusammenge- fasst bzw. werden alle Glühkerzen gemeinsam über ein Schaltmittel angesteuert oder der Strom gemeinsam ausgewertet, so bietet dies den Vorteil, dass teure Elemente wie beispielsweise die Schaltmittel eingespart werden können und sich damit eine erheblich Kostenersparnis ergibt. Dies hat jedoch den Nachteil, dass nur eine gemeinsame Ansteuerung oder eine gemeinsame Auswertung des Stroms mehrerer oder aller Glühkerzen möglich ist.
Des weiteren ist eine Steuereinheit 130 vorgesehen, die neben weiteren nicht dargestellten Bauelementen eine Auswertung 133 und eine Ansteuerung 135 umfasst. Die Ansteuerung 135 steuert das Schaltmittel 110 an, um der Glühkerze eine gewünschte Energie zuzuführen. Die Auswertung 133 wertet den am Strommessmittel 120 abfallende Spannung aus um den Strom, der durch die Glühkerze fließt, zu ermitteln. Das Strommessmittel 120 ist vorzugsweise als ohmscher Widerstand ausgebildet. - A -
Neben dem im normalen Betrieb der Glühkerze vorgesehene Ansteuerung der Glühkerze um die den Zündverzug bei Start der Brennkraftmaschine zu verkürzen ist vorgesehen, dass in bestimmten Betriebszuständen der Brennkraftmaschine die Glühkerzen angesteuert werden, um ein Abkühlen der Brennräume zu vermeiden, erfindungsgemäß wurde erkannt, dass beim längeren Schubbetrieb, bei dem kein Kraftstoff eingespritzt wird, die Brennkraftmaschine auskühlt. Sobald sich die Brennkraftmaschine längere Zeit, d. h. zwischen 2 und 3 Minuten im Schubbetrieb befindet, tritt beim Gasgeben, d. h. beim Einspritzen von Kraftstoff eine erhöhte Rauchemission auf. Dies tritt beispielsweise auf, wenn das Fahrzeug längere Zeit bergab fährt und kein Kraftstoff eingespritzt und anschließend der Fahrer Gas gibt um das Fahrzeug auf ebener Strecke oder bergauf wieder zu beschleunigen oder die Geschwindigkeit konstant zu halten. Dabei wurde erkannt, dass dieser Effekt im wesentlichen auf eine Auskühlung der Kolbenwände beruht. Dies erfolgt vorzugsweise in einem Zeitbereich von 2 bis 3 Minuten nach Beendigung der Einspritzung. Die Auskühlung des kompletten Motorblocks incl. dem Kühlwasser findet erst nach einem späteren Zeitpunkt, d. h. ca. nach 15 Minuten statt. Dieser Auskühlung wird nun wie folgt erfindungsgemäß entgegengewirkt: Sobald ein entsprechender Betriebszustand erkannt wird, so werden die Glühkerzen vorbestromt um sie auf einen geringen Temperaturniveau zu bringen um durch anlegen einer erhöhten Betriebsspannung diese vortemperierten Glühkerzen innerhalb sehr kurzer Zeit auf die erforderliche Glühtemperatur zu bringen. Die Vortemperierung ist so bemessen, dass die Glühkerzen innerhalb eines Zeitraums von deutlich geringer als einer halben Sekunde auf die maximale Glühtemperatur gebracht werden können. Üblicher Weise erwärmt sich die Brennkraftmaschine, insbesondere die Kolbenwände innerhalb eines Zeitraumes von 2 bis 3 Sekunden. Nach diesem Zeitraum sind die Zylinderinnenwände durch die Verbrennung entsprechend temperiert und es treten keine Rauchemissionen mehr auf. Nach dieser Zeitdauer kann dann der Glühvorgang abgebrochen bzw. auf ein deutliches niederes Stromniveau reduziert werden.
In Figur 2 sind die verschiedenen Zustände eines solchen Verlaufes dargestellt. In einem ersten Schritt wird der Programmablauf initialisiert. In einem zweiten Zustand 2 wird ermittelt, ob eine Glühvorgang eingeleitet wird. Dieser Zustand 2 ist in Figur 3 detailliert dargestellt. In einem ersten Schritt 100 wird die Abgastemperatur TA ermittelt. In einem zweiten Schritt 110 wird ausgehend von der Abgastemperatur TA ein Parameter P ermittelt. Die sich anschließende Abfrage 120 überprüft, ob dieser Parameter P größer als ein Schwellenwert SP ist. Ist dies nicht der Fall, so erfolgt erneut Schritt 100. Ist dies der Fall, so wird zum Zustand 3 übergegangen. Bei dieser Ausführungsform wird ausgehend von der Abgastemperatur und ggf. weiteren Größen ein Parameter P bestimmt, der ein Maß darstellt, wie stark die Zylinderwände abgekühlt sind. Überschreitet dieser Parameter P einen bestimmten Schwellenwert SP, so wird in den Zustand 3 übergegangen.
Dieser Übergang in den dritten Zustand kann auch gemäß der in Figur 3b dargestellten Ausführungsform erfolgen. In einem ersten Schritt 150 wird überprüft, ob die Kraftstoffmenge QK, die in die Brennkraftmaschine eingespritzt wird, den Wert Null annimmt. Ist dies der Fall, so wird in Schritt 160 ein Zeitzähler Zl auf Null gesetzt. Die anschließende Abfrage 170 überprüft, ob der Zeitzähler Zl größer als eine Zeitschwelle SZl ist. Ist dies der Fall, so wird in Schritt 180 in den Zustand 3 übergegangen. D. h. wird im Zustand 2 erkannt, dass länger als die Zeitdauer SZl kein Kraftstoff zugemessen wird, so wird in den Zustand 3 übergegangen. Alternativ zur Abfrage, ob die zugemessene Kraftstoffmenge den Wert Null annimmt, kann auch vorgesehen sein, dass überprüft wird, ob eine Kraftstoffmenge zugemessen wird, die unter einem Minimalwert liegt.
Im Zustand 3 erfolgt das Vorkonditionieren der Glühkerze, d. h. sie wird mit einem geringen Strom beaufschlagt, dass sie eine bestimmte Temperatur erreicht. Ausgehend von dieser Temperatur kann die Glühkerze sehr schnell auf die Endtemperatur aufgeheizt werden. Üblicher Weise wird die Glühkerze auf eine Temperatur von ca. 600° bis 700° aufgeheizt. Der Zustand 3 ist in Figur 4 detaillierter dargestellt. In einem ersten Schritt 300 wird ein Zeitzähler Z3 auf Null gesetzt. Anschließend in Schritt 310 wird der Strom bestimmt, mit dem die Glühkerze zur Vorkonditionierung bestromt werden muss. Dieser Stromwert mit dem die Konditionierung erfolgt, wird abhängig von verschiedenen Betriebsparametern vorgegeben. Ein solcher Betriebsparameter ist beispielsweise die Drehzahl der Brennkraftmaschine, die Außentemperatur und/oder die Abgastemperatur TA. Die anschließende Abfrage 320 überprüft, ob der Wert des Zählers Z3 größer als ein Schwellwert SZ3 ist. Ist dies der Fall, so wird in Schritt 330 in Zustand 2 zurückgegangen. Ist dies nicht der Fall, so überprüft die Abfrage 330, ob die Kraftstoffmenge QK größer Null ist. Erkennt die Abfrage 330, dass die Kraftstoffmenge größer Null ist, d. h. es wird weder Kraftstoff zugemessen, so wird in Schritt 340 in den Zustand 4 übergegangen. Ist die Kraftstoffmenge weiterhin kleiner als Null. bzw. kleiner als ein Minimalwert, so erfolgt erneut Schritt 310.
Während der Vorkonditionierung im Zustand 3 wird die Glühkerze mit einem bestimmten Stromwert vorbestromt, der so bemessen ist, dass sich die Glühkerze auf ca. 600° bis 700° aufheizt. Dieser Stromwert wird abhängig vom Betriebszustand der Brennkraftmaschine wie insbesondere der Motordrehzahl, der Außentemperatur und/oder der Abgastemperatur vorgegeben. Dauert dieser Zustand länger auf eine Zeitschwelle SZ3 an, so wird in Zustand 2 übergegangen. Sobald erkannt wird, dass Kraftstoff zugemessen wird, wird in den Zustand 4 vorgegangen.
Im Zustand 4, der auch als Pushen bezeichnet wird, wird der Glühkerze so viel Energie zugeführt, dass diese ihre maximale Temperatur schnellstmöglich erreicht. Dies erfolgt ebenfalls nur für eine bestimmte Zeitdauer SZ4. Die entsprechende Vorgehensweise ist in Figur 5 detailliert dargestellt. In einem ersten Schritt 400 wird ein Zeitzähler SZ4 auf Null gesetzt. Anschließend in Schritt 410 wird der Strom 14, der in diesem Zustand fließt, abhängig vom Zustand der Brennkraftmaschine und/oder vom Zustand der Glühkerzen vorgegeben. Dabei wird unter anderem die der Glühkerze bereits zugeführte Energie berücksichtigt. Anschließend in Schritt 420 wird überprüft, ob der Zeitzähler Z4 einen Schwellenwert SZ4 überschritten hat. Ist dies nicht der Fall, so erfolgt erneut Schritt 410. andernfalls wird in Schritt 430 in den Zustand 5 übergegangen.
Im Zustand 5 wird die Glühkerze mit Nominalspannung betrieben. Dies erfolgt für eine bestimmte Zeitdauer SZ5. Die entsprechende Vorgehensweise ist in Figur 6 dargestellt. In einem ersten Schritt 500 wird ein Zeitzähler Z5 auf Null gesetzt. Anschließend in Schritt 510 wird der Stromwert 15 vorgegeben. Die anschließende Abfrage 520 überprüft, ob die Zeitdauer SZ5 überschritten ist. Ist dies nicht der Fall, so erfolgt erneut Schritt 510. andernfalls erfolgt in Schritt 530 der Übergang in den Zustand 2. Erfindungsgemäß ist vorgesehen, dass in einem Zustand der Brennkraftmaschine, bei dem die Gefahr besteht, dass der Brennraum auskühlt, die Glühkerzen gemäß eines vorgegebenen Schemas bestromt werden. In einer ersten Phase werden die Glühkerzen vorkonditioniert damit diese eine bestimmte Temperatur erreichen, ausgehend von der schnell die Endtemperatur der Glühkerzen erzielt wird. Endet der Schubbetrieb, d. h. es wird wieder Kraftstoff eingespritzt, werden die Glühkerzen derart bestromt, dass sie schnellstmöglich ihre Maximaltemperatur erreichen, damit die Brennräume zügig erwärmt werden. Nach Ablauf einer bestimmten Zeit werden die Glühkerzen für eine weitere Zeitdauer mit Nominalspannung betrieben. D. h. die werden in dieser Zeitphase derart betrieben, dass sie ihre Temperatur beibehalten.
Erfindungsgemäß ist also vorgesehen, dass im Schubbetrieb ein ähnlicher Glühvorgang abläuft, wie beim Start der Brennkraftmaschine. Im Unterschied zum Start der Brennkraftmaschine erfolgt eine relativ lange Vorglühphase, in der die Glühkerzen vorkonditioniert, wobei sobald die Schubphase endet, wird der eigentliche Glühvorgang eingeleitet. Der eigentliche Glühvorgang ist ähnlich ausgestaltet wie ein üblicher Glühvorgang. Dort wird den Glühkerzen zu Beginn eine hohe Energie und anschließend eine geringere Energie zugeführt, damit diese schnell ihre Temperatur erreichen und die Temperatur dann beibehalten wird. Der längere Vorglühvorgang ist möglich, da die Brennkraftmaschine und der Generator betrieben wird und damit ausreichend Energie zur Verfügung steht.

Claims

Ansprüche
1. Verfahren zur Steuerung wenigstens einer Glühkerze eines Kraftfahrzeugs, wobei die Steuerung der wenigstens einen Glühkerze abhängig vom Betriebszustand der Brennkraftmaschine erfolgt, dass die Steuerung abhängig von einer Größe erfolgt, die von der Abgastemperatur abhängt und/oder das die Steuerung vom Erfülltsein einer Kraftstoffmengenbedingung und/oder einer Zeitbedingung abhängt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Glühvorgang begonnen wird, wenn die Größen einen Schwellenwert erreicht.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Größe den Schwellenwert erreicht, wenn die Abgastemperatur unter einen Schwellenwert abfällt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Größe den Schwellenwert erreicht, wenn die eingespritzte Kraftstoffmenge unter einen Schwellenwert absinkt und eine Zeitbedingung erfüllt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerung der Glühkerze abhängig von wenigstens einer der Betriebsparameter, Motordrehzahl, Außentemperatur, und/oder Abgastemperatur erfolgt.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerung abhängig von der der Glühkerze zugeführten Energie erfolgt.
7. Vorrichtung zur Steuerung wenigstens einer Glühkerze eines Kraftfahrzeugs, mit Mitteln, die wenigstens einen Glühkerze abhängig vom Betriebszustand der Brennkraftmaschine steuern, dass die Mittel die Glühkerzen abhängig von einer Größe steuern, die von der Abgastemperatur abhängt und/oder die vom Erfülltsein einer Kraftstoffmengenbedingung und/oder einer Zeitbedingung abhängt.
PCT/EP2007/050011 2006-02-08 2007-01-02 Vorrichtung und verfahren zur steuerung wenigstens einer glühkerze eines kraftfahrzeugs WO2007090688A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/223,232 US8360024B2 (en) 2006-02-08 2007-01-02 Method and device for controlling at least one glow plug of a motor vehicle
ES07703587T ES2425394T3 (es) 2006-02-08 2007-01-02 Dispositivo y procedimiento para el control de al menos una bujía de encendido de un automóvil
JP2008553698A JP4956555B2 (ja) 2006-02-08 2007-01-02 自動車の少なくとも1つのグロープラグを制御するための装置および方法
EP07703587.1A EP1984612B1 (de) 2006-02-08 2007-01-02 Vorrichtung und verfahren zur steuerung wenigstens einer glühkerze eines kraftfahrzeugs
KR1020087019344A KR101160428B1 (ko) 2006-02-08 2007-01-02 차량의 적어도 하나의 글로우 플러그를 제어하기 위한 장치및 방법
CN2007800049923A CN101379281B (zh) 2006-02-08 2007-01-02 用于控制汽车的至少一个加热塞的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006005710A DE102006005710A1 (de) 2006-02-08 2006-02-08 Vorrichtung und Verfahren zur Steuerung wenigstens einer Glühkerze eines Kraftfahrzeugs
DE102006005710.4 2006-02-08

Publications (1)

Publication Number Publication Date
WO2007090688A1 true WO2007090688A1 (de) 2007-08-16

Family

ID=38282256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050011 WO2007090688A1 (de) 2006-02-08 2007-01-02 Vorrichtung und verfahren zur steuerung wenigstens einer glühkerze eines kraftfahrzeugs

Country Status (8)

Country Link
US (1) US8360024B2 (de)
EP (1) EP1984612B1 (de)
JP (1) JP4956555B2 (de)
KR (1) KR101160428B1 (de)
CN (1) CN101379281B (de)
DE (1) DE102006005710A1 (de)
ES (1) ES2425394T3 (de)
WO (1) WO2007090688A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043801A2 (de) * 2006-10-11 2008-04-17 Continental Automotive Gmbh Verfahren zur verbesserung des abgasverhaltens einer brennkraftmaschine
FR2960031A1 (fr) * 2010-05-12 2011-11-18 Peugeot Citroen Automobiles Sa Procede de commande des bougies de prechauffage d'un moteur

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001888A1 (ja) * 2008-07-03 2010-01-07 ボッシュ株式会社 グロープラグの駆動制御方法
DE102010025335A1 (de) * 2009-07-27 2011-02-03 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Steuern eines Hybridfahrzeugs
GB2472813B (en) * 2009-08-19 2014-02-05 Gm Global Tech Operations Inc Glowplug temperature control method and device for the reduction of emissions from a diesel engine
US8281772B2 (en) 2011-10-11 2012-10-09 Ford Global Technologies, Llc Glow plug heater control
US9175661B2 (en) 2011-10-11 2015-11-03 Ford Global Technologies, Llc Glow plug heater control
US20130152894A1 (en) * 2011-12-14 2013-06-20 Ford Global Technologies, Llc Stop/start engine glow plug heater control
US9388787B2 (en) * 2013-02-19 2016-07-12 Southwest Research Institute Methods, devices and systems for glow plug operation of a combustion engine
US9683536B2 (en) 2013-05-16 2017-06-20 Ford Global Technologies, Llc Enhanced glow plug control
JP6075247B2 (ja) * 2013-08-29 2017-02-08 マツダ株式会社 グロープラグ制御装置及びグロープラグの温度推定方法
CN111946525A (zh) * 2020-07-29 2020-11-17 蔡梦圆 用于二冲程汽油发动机热火头的转速变压式供电器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2743788A1 (de) * 1977-09-29 1979-04-12 Volkswagenwerk Ag Anordnung zur ansteuerung von gluehkerzen einer brennkraftmaschine
JPS58200080A (ja) * 1982-05-18 1983-11-21 Nissan Motor Co Ltd デイ−ゼルエンジンのグロ−プラグ作動装置
GB2159578A (en) * 1984-06-01 1985-12-04 Bosch Gmbh Robert Controlling the temperature of a glow plug in an internal combustion engine
US4639871A (en) 1983-02-03 1987-01-27 Nippondenso Co., Ltd. Glow plug heating control apparatus for a diesel engine
JPH03105043A (ja) 1989-09-14 1991-05-01 Mazda Motor Corp ディーゼルエンジンのグロープラグ通電制御装置
JPH10274144A (ja) * 1997-03-31 1998-10-13 Nissan Diesel Motor Co Ltd ディーゼル車
EP0894976A2 (de) * 1997-07-30 1999-02-03 Toyota Jidosha Kabushiki Kaisha Erfassung des Verbrennungszustandes für ein Brennkraftmaschine
WO2001020229A1 (de) * 1999-09-15 2001-03-22 Robert Bosch Gmbh Glühstiftkerze

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3210810C2 (de) * 1982-03-24 1984-11-08 Mataro Co. Ltd., Georgetown, Grand Cayman Islands Regelsystem zur Beeinflussung der Zusammensetzung der in einer fremdgezündeten Brennkraftmaschine zu verbrennenden Ladungen
JPS60135647A (ja) * 1983-12-22 1985-07-19 Toyota Motor Corp デイ−ゼルエンジンの燃料噴射装置
JP3582135B2 (ja) * 1995-02-28 2004-10-27 いすゞ自動車株式会社 グロープラグ通電制御装置
JPH08241736A (ja) 1995-03-03 1996-09-17 Toshiba Corp 組電池構造及び組電池の着脱機構をもつ電子機器
JP3134712B2 (ja) * 1995-05-22 2001-02-13 三菱自動車工業株式会社 メタノールエンジン用グロープラグの制御装置
US7122764B1 (en) * 2000-08-12 2006-10-17 Robert Bosch Gmbh Sheathed element glow plug
JP2002276524A (ja) 2001-03-16 2002-09-25 Ngk Spark Plug Co Ltd 故障検出回路
JP2004060555A (ja) 2002-07-30 2004-02-26 Keihin Corp 内燃エンジンの始動時空気量制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2743788A1 (de) * 1977-09-29 1979-04-12 Volkswagenwerk Ag Anordnung zur ansteuerung von gluehkerzen einer brennkraftmaschine
JPS58200080A (ja) * 1982-05-18 1983-11-21 Nissan Motor Co Ltd デイ−ゼルエンジンのグロ−プラグ作動装置
US4639871A (en) 1983-02-03 1987-01-27 Nippondenso Co., Ltd. Glow plug heating control apparatus for a diesel engine
GB2159578A (en) * 1984-06-01 1985-12-04 Bosch Gmbh Robert Controlling the temperature of a glow plug in an internal combustion engine
JPH03105043A (ja) 1989-09-14 1991-05-01 Mazda Motor Corp ディーゼルエンジンのグロープラグ通電制御装置
JPH10274144A (ja) * 1997-03-31 1998-10-13 Nissan Diesel Motor Co Ltd ディーゼル車
EP0894976A2 (de) * 1997-07-30 1999-02-03 Toyota Jidosha Kabushiki Kaisha Erfassung des Verbrennungszustandes für ein Brennkraftmaschine
WO2001020229A1 (de) * 1999-09-15 2001-03-22 Robert Bosch Gmbh Glühstiftkerze

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1983 *
PATENT ABSTRACTS OF JAPAN vol. 1998 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043801A2 (de) * 2006-10-11 2008-04-17 Continental Automotive Gmbh Verfahren zur verbesserung des abgasverhaltens einer brennkraftmaschine
WO2008043801A3 (de) * 2006-10-11 2008-07-10 Continental Automotive Gmbh Verfahren zur verbesserung des abgasverhaltens einer brennkraftmaschine
FR2960031A1 (fr) * 2010-05-12 2011-11-18 Peugeot Citroen Automobiles Sa Procede de commande des bougies de prechauffage d'un moteur

Also Published As

Publication number Publication date
CN101379281B (zh) 2013-01-02
EP1984612B1 (de) 2013-07-17
KR101160428B1 (ko) 2012-06-28
US20100280735A1 (en) 2010-11-04
KR20080092426A (ko) 2008-10-15
US8360024B2 (en) 2013-01-29
ES2425394T3 (es) 2013-10-15
EP1984612A1 (de) 2008-10-29
DE102006005710A1 (de) 2007-08-09
JP2009526161A (ja) 2009-07-16
JP4956555B2 (ja) 2012-06-20
CN101379281A (zh) 2009-03-04

Similar Documents

Publication Publication Date Title
EP1984612B1 (de) Vorrichtung und verfahren zur steuerung wenigstens einer glühkerze eines kraftfahrzeugs
DE102006021285B4 (de) Verfahren zum Betreiben von Glühkerzen in Dieselmotoren
DE60307939T2 (de) Hybridfahrzeug und Verfahren zum Erwärmen einer Brennkraftmaschine vor dem Startvorgang
EP0771943B1 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftfahrzeug-Dieselmotors
DE102008015283B3 (de) Verfahren und Steuervorrichtung zum Starten einer Brennkraftmaschine, welche eine Heizeinrichtung zum Erhitzen einer Kühlflüssigkeit aufweist
DE10322481A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine
WO2006013167A1 (de) Vorrichtung und verfahren zur steuerung einer brennkraftmaschine
EP1455077B1 (de) Verfahren zum Betreiben einer Kraftstoffanlage für einen LPG-Motor
EP1625293B1 (de) Verfahren zum abstellen einer brennkraftmaschine
EP2678552B1 (de) Verfahren und steuergerät zur einstellung einer temperatur einer glühstiftkerze
DE19924329A1 (de) Heizgerät für ein Kraftfahrzeug
DE102018212925A1 (de) Verfahren zum Betreiben einer Hybridantriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Hybridantriebseinrichtung
DE10150510B4 (de) Verfahren und Systeme zur Verringerung der Abgasemission von Verbrennungsmotoren
DE69402532T2 (de) Verfahren und vorrichtung zur verminderung der schädlichen abgase einer kraftfahrzeug-brennkraftmaschine
DE19801187B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10064653A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4041630C2 (de)
DE10043695A1 (de) Verfahren zum Bestimmen einer Heißstartsituation bei einer Brennkraftmaschine
DE60120324T2 (de) Brennstoffheizvorrichtung und Steurerung
WO2013023833A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102004039311B4 (de) Verfahren und Steuergerät zur Steuerung eines Enspritzdruckaufbaus bei einem Start eines Verbrennungsmotors
DE102005052879A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
DE102018102636B4 (de) VERFAHREN ZUM BETREIBEN EINES SELBSTZÜNDUNGSMOTORS MIT ElNER BRENNKAMMER
DE102004033008B4 (de) Verfahren zum Einspritzen von Kraftstoff beim Start
DE19858014A1 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007703587

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780004992.3

Country of ref document: CN

Ref document number: 2008553698

Country of ref document: JP

Ref document number: 1020087019344

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12223232

Country of ref document: US