WO2007083752A1 - 圧電素子及び超音波アクチュエータ - Google Patents

圧電素子及び超音波アクチュエータ Download PDF

Info

Publication number
WO2007083752A1
WO2007083752A1 PCT/JP2007/050812 JP2007050812W WO2007083752A1 WO 2007083752 A1 WO2007083752 A1 WO 2007083752A1 JP 2007050812 W JP2007050812 W JP 2007050812W WO 2007083752 A1 WO2007083752 A1 WO 2007083752A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric element
layer
piezoelectric
electrode layer
Prior art date
Application number
PCT/JP2007/050812
Other languages
English (en)
French (fr)
Inventor
Yusuke Adachi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007525099A priority Critical patent/JP4069160B2/ja
Priority to US11/886,097 priority patent/US7545085B2/en
Priority to CN2007800000495A priority patent/CN101213733B/zh
Publication of WO2007083752A1 publication Critical patent/WO2007083752A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2023Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having polygonal or rectangular shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes

Definitions

  • the present invention relates to a piezoelectric element and an ultrasonic actuator provided with the piezoelectric element.
  • Fig. 16 is a perspective view of the ultrasonic actuator
  • Fig. 17 (a) is a perspective view of a piezoelectric element used in the ultrasonic actuator
  • Fig. 17 (b) is an exploded perspective view of the piezoelectric element. It is a figure.
  • the piezoelectric element 100 is housed and supported in the case 103 by three support portions 104 A to 104 C provided in the case 103.
  • Driving elements 110 and 110 are provided on the end face of the piezoelectric element 100, and these driving elements 110 and 110 support a movable body 111.
  • the drivers 110 and 110 are pressed against the movable body 111 by the support portion 104B.
  • the piezoelectric element 100 is formed by alternately stacking piezoelectric bodies 101 and internal electrodes 102.
  • the internal electrode 102G is a common electrode (ground electrode) provided over almost the entire main surface of the piezoelectric body 101.
  • the piezoelectric body 101 is polarized in the direction of the arrow shown in FIG.
  • the internal electrodes 102A to 102D and 102G are connected to the respective external electrodes 103A to 103D and 103G.
  • Each of the external electrodes 103A to 103D, 103G is provided on the end face of the piezoelectric element 100.
  • wire 108A ⁇ 108D and 108G are connected via the solder 107. The voltages are supplied to the internal electrodes 102A to 102D and 102G through these wires 108A to 108D and 108G.
  • the resonance frequency of stretching vibration and the resonance frequency of bending vibration described later of the piezoelectric element 100 are determined by the material and shape of the piezoelectric element 100, respectively.
  • the material, shape, and the like of the piezoelectric element 100 are determined so that the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration are approximately the same.
  • 6 to 8 are conceptual diagrams for explaining the vibration modes of the piezoelectric elements.
  • the wire 108G is connected to the ground, and a reference voltage of a sine wave having a specific frequency is applied to the internal electrodes 102A and 102C arranged on one diagonal line of the main surface of the piezoelectric body 101 via the wires 108A and 108C. Then, a sine wave voltage having substantially the same magnitude and frequency as the reference voltage is applied to the internal electrodes 102B and 102D arranged on the other diagonal line via the wires 108B and 108D. As a result, voltages having the same phase are applied to the internal electrodes 102A and 102C, and voltages having the same phase are applied to the internal electrodes 102B and 102D.
  • phase difference between the reference voltage and the voltage applied to the internal electrodes 102B and 102D is 0 °
  • a primary mode stretching vibration is induced in the piezoelectric element 100 as shown in FIG.
  • the phase difference is 180 °
  • second-order bending vibration is induced in the piezoelectric element 100 as shown in FIG.
  • a reference voltage of a sine wave having a frequency near the resonance frequency substantially matched to the internal electrodes 102A and 102C is added, and the phase of the internal electrodes 102B and 102D is 90 ° or ⁇ 90 ° with respect to the reference voltage.
  • a sinusoidal voltage having a frequency substantially the same as that of the reference voltage is applied, the piezoelectric element 100 is induced harmonically in the first-order mode stretching vibration and second-order mode bending vibration.
  • the shape of the piezoelectric element 100 changes in the order as shown in FIGS.
  • the driver elements 110, 110 provided on the piezoelectric element 100 move substantially elliptically as viewed in the direction force penetrating the paper surface of FIG. That is, the driver elements 110 and 110 move elliptically by the combined vibration of the expansion and contraction vibration and the bending vibration of the piezoelectric element 100. Due to this elliptical movement, the movable body 111 supported by the drivers 110 and 110 moves relative to the piezoelectric element 100 and moves in the direction of arrow A or arrow B.
  • the piezoelectric element 100 vibrates, the wires 108A to 108D and 108G and the solder 107 as a conductive connecting member for connecting the wires 108A to 108D and 108G and the external electrodes 103A to 103D and 103G are burdened.
  • the vibration of the piezoelectric element 100 is hindered.
  • the efficiency of the ultrasonic actuator may be reduced.
  • the present invention has been made in view of the points to be applied, and an object of the present invention is to suppress vibration inhibition of the piezoelectric element.
  • the present invention provides a piezoelectric element in which a substantially rectangular piezoelectric layer and an internal electrode layer are alternately stacked, and the internal electrode layer is arranged in the stacking direction.
  • the common electrode layer and the feeding electrode layer are alternately arranged via the piezoelectric layer, the common electrode layer has a common electrode, and the feeding electrode layer is provided on the main surface of the piezoelectric layer.
  • a first feeding electrode layer and a second feeding electrode layer provided on a main surface of a piezoelectric layer different from the piezoelectric layer provided with the first feeding electrode layer on the main surface The feeding electrode layer includes two regions facing the first diagonal direction of the main surface of the piezoelectric layer out of four regions obtained by dividing the main surface of the piezoelectric layer into two in the longitudinal direction and the short direction. Each of the regions has a pair of first electrodes that are electrically connected to each other, and the second feeding electrode layer is formed of the four regions.
  • a pair of second electrodes that are electrically connected to each other are provided in two regions of the main surface of the piezoelectric layer facing each other in the second diagonal direction, the common electrode, the first electrode, and The second electrode is configured to be connected to each external electrode provided on the outer surface of the piezoelectric element.
  • the main surface of the piezoelectric layer is divided into two in the longitudinal direction and the short direction, respectively, and is opposed to the first diagonal direction of the main surface of the piezoelectric layer among four regions.
  • the pair of first electrodes of the first feeding electrode layer which are provided in each of the two regions, are electrically connected to each other, and the four regions out of the four regions are opposed to the second diagonal direction of the main surface of the piezoelectric layer.
  • connection man-hours such as a wire
  • manufacturing is facilitated.
  • the piezoelectric element has a low mechanical strength, when connecting a wire or the like to an external electrode, the force that may cause the piezoelectric element to break due to mechanical stress. The destruction of the piezoelectric element in this connection process can be reduced.
  • FIG. 1 is a perspective view of an ultrasonic actuator according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of a piezoelectric element.
  • FIG. 3 is an exploded perspective view of the piezoelectric element.
  • FIG. 4 is a plan view of a piezoelectric layer.
  • FIG. 5 (a) is a diagram showing the positional relationship between the first feeding electrode layer and the common electrode layer
  • FIG. 5 (b) is the positional relationship between the second feeding electrode layer and the common electrode layer.
  • FIG. 6 is a displacement diagram of first-order mode stretching vibration.
  • FIG. 7 is a displacement diagram of a second-order mode bending vibration.
  • FIG. 8 is a conceptual diagram showing the operation of the piezoelectric element.
  • Fig. 9 is a perspective view of a modification of the ultrasonic actuator.
  • FIG. 10 is an exploded perspective view of the piezoelectric element according to the second embodiment.
  • FIG. 11 (a) is a perspective view of a piezoelectric element according to Embodiment 3, and FIG. 11 (b) is an exploded perspective view of the piezoelectric element.
  • FIG. 12 is an exploded perspective view of the piezoelectric element.
  • FIG. 13 is a perspective view of a modified example of the ultrasonic actuator.
  • FIG. 14 (a) is a perspective view of the piezoelectric element
  • FIG. 14 (b) is an exploded perspective view of the piezoelectric element.
  • FIG. 15 is a perspective view of a modified example of the ultrasonic actuator.
  • FIG. 16 is a perspective view of an ultrasonic actuator. 17] FIG. 17 (a) is a perspective view of the piezoelectric element, and FIG. 17 (b) is an exploded perspective view of the piezoelectric element.
  • FIG. 1 is a perspective view of the ultrasonic actuator according to the first embodiment
  • FIG. 2 is a perspective view of a piezoelectric element 12 used in the ultrasonic actuator
  • FIG. 3 is a perspective view of the piezoelectric element 12.
  • 4 is an exploded perspective view
  • FIG. 4 is a plan view of the piezoelectric layer 1
  • FIG. 5 (a) is a diagram showing a positional relationship between the first power supply electrode layer 6a and the common electrode layer 3.
  • FIG. 5 (b) is a diagram showing the positional relationship between the second feeding electrode layer 6b and the common electrode layer 3.
  • the ultrasonic actuator includes a piezoelectric element 12.
  • the piezoelectric element 12 includes a pair of main surfaces facing each other, a pair of end surfaces facing each other orthogonal to the main surface and extending in the longitudinal direction of the main surface of the piezoelectric element 12, and both the main surfaces and the end surfaces. And a pair of side surfaces facing each other and extending in the short direction of the main surface of the piezoelectric element 12.
  • the main surface, the end surface, and the side surface constitute the outer surface of the piezoelectric element 12, and the end surface and the side surface constitute the peripheral surface of the piezoelectric element 12.
  • the main surface has the largest area among the main surface, the end surface, and the side surface.
  • the piezoelectric element 12 is housed and supported by the case 11 (support body) via three support portions 13a to 13c.
  • Driving elements 8 and 8 are provided on one end face of the piezoelectric element 12, and these driving elements 8 and 8 support a flat movable body 9.
  • the support 13b on the other end surface of the piezoelectric element 12 presses the driver elements 8 and 8 against the movable body 9.
  • the frictional force between the tip portions of the driver elements 8 and 8 and the movable body 9 is increased, and the vibration of the piezoelectric element 12 is reliably propagated to the movable body 9 via the driver elements 8 and 8.
  • the piezoelectric element 12 has a substantially rectangular parallelepiped shape in which substantially rectangular piezoelectric layers 1 and internal electrode layers 5 are alternately stacked.
  • the piezoelectric layer 1 is an insulator layer made of a ceramic material such as lead zirconate titanate.
  • the internal electrode layer 5 includes a common electrode layer 3 and a feeding electrode layer 6 that are alternately arranged via the piezoelectric layers 1 in the stacking direction (thickness direction of the piezoelectric element 12).
  • the common electrode layer 3 has a substantially rectangular common electrode 3 a provided over substantially the entire upper main surface of the piezoelectric layer 1.
  • the common electrode 3a is provided with extraction electrodes 3b and 3b respectively extending from the longitudinal central portion toward both end faces of the piezoelectric element 12.
  • the feeding electrode layer 6 includes a first feeding electrode layer 6a provided on the upper main surface of the piezoelectric layer 1, and a piezoelectric layer 1 provided with the first feeding electrode layer 6a on the upper main surface.
  • Upper side of different piezoelectric layers 1 It consists of a second feeding electrode layer 6b provided on the main surface. That is, on the main surface of the piezoelectric layer 1, any one of the common electrode layer 3, the first feeding electrode layer 6a, and the second feeding electrode layer 6b is printed. Further, as shown by the arrow in FIG. 3, the piezoelectric layer 1 is polarized toward the common electrode layer 3 side from the first feeding electrode layer 6a or the second feeding electrode layer 6b side.
  • the first feeding electrode layer 6a is composed of four regions A1 to A4 (see FIG. 4) obtained by dividing the upper main surface of the piezoelectric layer 1 into two in the longitudinal direction L and the short direction S, respectively.
  • the first diagonal direction of the upper main surface of the piezoelectric layer 1 (the direction in which the first diagonal line extends) A pair of first conductive layers that are formed in the two regions A2 and A4 facing the D1 through the conductive electrodes 2a. It has electrodes 2 and 2.
  • Each first electrode 2 is a substantially rectangular electrode and overlaps the common electrode layer 3 when viewed from the stacking direction (see FIG. 5 (a)).
  • each first electrode 2 is opposed to each other with the common electrode layer 3 and the piezoelectric layer 1 interposed therebetween.
  • the conductive electrode 2a also overlaps the common electrode layer 3 when viewed from the stacking direction (see FIG. 5 (a)).
  • Each first electrode 2 is provided with an extraction electrode 2b whose longitudinal central force extends toward the end face of the piezoelectric element 12.
  • Each extraction electrode 2b does not overlap with the common electrode layer 3 when viewed from the stack direction (see FIG. 5 (a)). That is, each extraction electrode 2b does not face the common electrode layer 3. For this reason, an electric field is not generated in the portion of the piezoelectric layer 1 facing each extraction electrode 2b. That is, this part becomes a piezoelectrically inactive part.
  • the second feeding electrode layer 6b is composed of four regions A1 to A4 formed by dividing the upper main surface of the piezoelectric layer 1 into two in the longitudinal direction L and the lateral direction S. Second diagonal direction on the upper main surface (direction in which the second diagonal extends) A pair of second electrodes 4 formed on the two regions A1 and A3 facing the D2, respectively, through the conductive electrode 4a. Has four.
  • Each of the second electrodes 4 is a substantially rectangular electrode and overlaps the common electrode layer 3 when viewed from the stacking direction (see FIG. 5B).
  • the conductive electrode 4a also overlaps the common electrode layer 3 when viewed from the stacking direction (see FIG. 5 (b)).
  • Each second electrode 4 is provided with an extraction electrode 4b extending from the central portion in the longitudinal direction toward the end face of the piezoelectric element 12.
  • Each extraction electrode 4b does not overlap with the common electrode layer 3 when viewed from the stack direction (see FIG. 5 (b)). For this reason, an electric field is not generated in the portion of the piezoelectric layer 1 facing each extraction electrode 4b.
  • Common electrodes 3a on different piezoelectric layers 1 are connected to each other by an external electrode 7g for a common electrode via an extraction electrode 3b.
  • the first electrodes 2 and 2 are connected to the first electrode via the extraction electrode 2b.
  • the second electrodes 4 and 4 are connected to the external electrode 7a for the second electrode through the extraction electrode 4b.
  • Each of the external electrodes 7a, 7b, 7g is provided over one end surface and one main surface of the piezoelectric element 12, and extends to the vicinity of the vibration node portion (node) of the piezoelectric element 12.
  • a wire 10 is connected to a portion of each external electrode 7a, 7b, 7g on the main surface of the piezoelectric element 12 via solder.
  • each external electrode 7a, 7b, 7g is formed over one end face and one main surface of the piezoelectric element 12, and is extended to the vicinity of the vibration node portion of the piezoelectric element 12.
  • the connection point between 12 and tire 10 is prevented from adversely affecting vibration.
  • the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration of the piezoelectric element 12 are determined by the material and shape of the piezoelectric element 12, respectively.
  • the material, shape, and the like of the piezoelectric element 12 are determined so that the resonance frequency of the stretching vibration and the resonance frequency of the bending vibration are approximately the same.
  • the material, shape, and the like of the piezoelectric element 12 are determined so that the resonance frequency of the primary mode stretching vibration and the resonance frequency of the secondary mode bending vibration are approximately the same.
  • the electrodes 2, 4 arranged in the diagonal directions Dl, D2 are connected to each other, the common electrodes 3a on the different piezoelectric layers 1 are connected to each other by the external electrodes 7g, and the piezoelectric layers
  • the first electrodes 2 and 2 on 1 are connected to the external electrode 7b, and the second electrodes 4 and 4 on the piezoelectric layer 1 are connected to the external electrode 7a.
  • the piezoelectric element 12 may be provided with a total of three external electrodes 7 including an external electrode 7g for the common electrode, an external electrode 7b for the first electrode, and an external electrode 7a for the second electrode.
  • the number of wires 10 to be connected to the external electrode 7 can be reduced to three.
  • vibration inhibition of the piezoelectric element 12 can be suppressed, and a decrease in the efficiency of the ultrasonic actuator can be suppressed.
  • the man-hours for connecting the wire 10 can be reduced, it is easy to manufacture the ultrasonic actuator.
  • the piezoelectric element 12 is weak in mechanical strength, there is a risk that the piezoelectric element 12 may be broken due to mechanical stress when the wire 10 is connected to the external electrode 7.
  • the number of connection points between the wire 10 and the external electrode 7 can be reduced. Thereby, the vibration inhibition by the solder provided at this connection point can be suppressed.
  • This connection point is an important part for driving the ultrasonic actuator, but it is easily affected by the external environment such as humidity and temperature change, so as described above, by reducing the number of connection points. The reliability of the ultrasonic actuator can be improved.
  • a small ultrasonic actuator for example, the length of the piezoelectric element 12 is 0.1 mm to 1 mm.
  • the common electrode 3a, the first electrode 2, and the second electrode 4 are connected to the external electrodes 7g, 7b, 7a via the extraction electrodes 3b, 2b, 4b, respectively.
  • the common electrode 3a, the first electrode 2 and the second electrode 4 can be drawn out at different positions on the peripheral surface of the piezoelectric element 12, respectively.
  • a sufficient insulation distance can be ensured among the common electrode 3a, the first electrode 2, and the second electrode 4.
  • the common electrode 3a, the first electrode 2, and the second electrode 4 are externally connected to each other via the extraction electrodes 3b, 2b, 4b disposed in the piezoelectrically inactive portions. Since the electrodes 7g, 7b and 7a are connected, no extra vibration is generated in the piezoelectric element 12. As a result, the piezoelectric element 12 vibrates with good balance, and the vibration efficiency is improved.
  • the shape formed by the first electrodes 2 and 2 and the conducting electrode 2a of the first feeding electrode layer 6a is point-symmetric with respect to the center point M (see Fig. 4) of the upper main surface of the piezoelectric layer 1. is there.
  • the shape formed by the second electrodes 4 and 4 and the conductive electrode 4a of the second feeding electrode layer 6b is also in the upper main surface of the piezoelectric layer 1. The shape is symmetrical with respect to the center point M.
  • the shape of the first feeding electrode layer 6a excluding (excluding) the extraction electrode 2b and the shape of the second feeding electrode layer 6b excluding the extraction electrode 4b are respectively the first diagonal line on the upper main surface of the piezoelectric layer 1 and The shape is point-symmetric with respect to the intersection of the second diagonal.
  • vibration of the piezoelectric element 12 particularly bending vibration of the secondary mode
  • the symmetry of is improved. As a result, excessive vibration does not occur in the piezoelectric element 12, and energy loss is greatly reduced. As a result, the feed power can be efficiently converted into vibration.
  • the shape formed by the first electrodes 2 and 2 and the conducting electrode 2a of the first feeding electrode layer 6a and the shape formed by the second electrodes 4 and 4 and the conducting electrode 4a of the second feeding electrode layer 6b are piezoelectric.
  • the shapes are inverted with respect to the center line C (see FIG. 4) extending in the longitudinal direction L of the upper main surface of the body layer 1.
  • the shape of the second feeding electrode layer 6b excluding the extraction electrode 4b is the shape obtained by inverting the shape of the first feeding electrode layer 6a excluding the extraction electrode 2b with respect to the center line C thereof.
  • the number of the first feeding electrode layers 6a and the number of the second feeding electrode layers 6b are the same. Thereby, the symmetry of vibration of the piezoelectric element 12 is improved. As a result, no extra vibration is generated in the piezoelectric element 12, and energy loss is greatly reduced. As a result, the supplied power can be efficiently converted into vibration.
  • the feeding electrode layer 6 includes first feeding electrode layers 6a and second feeding electrode layers 6b alternately arranged in the stacking direction. Thereby, the symmetry of vibration of the conductive electrode 2a, 4a arrangement portion of the piezoelectric element 12 is improved. As a result, no extra vibration is generated in the piezoelectric element 12, and energy loss is greatly reduced. As a result, the supplied power can be efficiently converted into vibration.
  • the outermost layer in the stacking direction of the piezoelectric elements 12 is the piezoelectric layer 1. This has the following effects: Fruit is obtained.
  • the outermost layer of the piezoelectric element 12 is the common electrode layer 3 or the feeding electrode.
  • the outermost electrode layer may be short-circuited when the metal part in the periphery contacts the main surface of piezoelectric element 12, and the characteristics of the ultrasonic actuator may be significantly degraded. .
  • the outermost layer in the stacking direction of the piezoelectric elements 12 is the piezoelectric layer 1 that is an insulator, so that a short circuit does not occur even if a metal part contacts the main surface of the piezoelectric element 12. As a result, the reliability of the ultrasonic actuator can be improved.
  • FIG. 6 is a displacement diagram of the first-order mode stretching vibration according to the present embodiment
  • FIG. 7 is a displacement diagram of the second-order mode bending vibration
  • FIG. 8 is a concept showing the operation of the piezoelectric element 12.
  • FIG. 6 to 8 the principal surface of the piezoelectric element 12 is in a positional relationship parallel to the paper surface.
  • a reference AC voltage having a frequency in the vicinity of the substantially matched resonance frequency is applied between the common electrode layer 3 and the first feeding electrode layer 6a via the wire 10, and is shared via the wire 10.
  • an AC voltage having the same phase as the reference AC voltage and having a phase different from the reference AC voltage by 90 ° or 90 ° is applied between the electrode layer 3 and the second feeding electrode layer 6b, the piezoelectric element 12 is In this case, the stretching vibration of the primary mode shown in Fig. 6 and the bending vibration of the secondary mode shown in Fig. 7 are induced harmonically.
  • the shape of the piezoelectric element 12 changes in the order as shown in Figs.
  • the driver elements 8 and 8 provided on the piezoelectric element 12 move in an elliptical shape as viewed from the direction penetrating the paper surface of FIG. That is, the drive elements 8 and 8 are elliptically moved by the combined vibration of the expansion / contraction vibration and the bending vibration of the piezoelectric element 12. Due to this elliptical motion, the movable body 9 supported by the driver elements 8 and 8 moves relative to the piezoelectric element 12 and moves in the direction of arrow A or arrow B shown in FIG.
  • the expansion / contraction direction of the expansion / contraction vibration is the longitudinal direction of the main surface of the piezoelectric element 12, that is, the movement direction of the movable body 9. This is the direction to support.
  • the stacking direction of the piezoelectric elements 12 is a direction perpendicular to both the stretching direction of the stretching vibration and the vibration direction of the bending vibration.
  • the force that forms the external electrodes 7a, 7b, 7g across one end face and one main surface of the piezoelectric element 12 is shown in FIG. Form it only on the end face.
  • FIG. 10 is an exploded perspective view of the piezoelectric element 21 according to the second embodiment.
  • the first feeding electrode layer 6a is placed on one A1 of the two regions A1, A3 facing the second diagonal direction D2 in a pair with the first electrodes 2, 2.
  • a first side electrode 22 is provided.
  • the first side electrode 22 is a substantially rectangular electrode and overlaps the common electrode layer 3 when viewed from the stacking direction.
  • the first side electrode 22 is provided with an extraction electrode 22a extending from the central portion in the longitudinal direction toward the end face of the piezoelectric element 12.
  • the lead electrode 22a does not overlap the common electrode layer 3 in terms of the stacking direction force. For this reason, an electric field is not generated in the portion of the piezoelectric layer 1 facing the extraction electrode 22a.
  • the second feeding electrode layer 6b includes a second side electrode 24 provided in one A2 of the two regions A2 and A4 facing the first diagonal direction DI.
  • the second side electrode 24 is a substantially rectangular electrode and overlaps the common electrode layer 3 when viewed from the stacking direction.
  • the second side electrode 24 is provided with an extraction electrode 24 a whose longitudinal center force extends toward the end face of the piezoelectric element 12.
  • the extraction electrode 24a does not overlap the common electrode layer 3 when viewed from the stacking direction. For this reason, no electric field is generated in the portion of the piezoelectric layer 1 facing the extraction electrode 24a.
  • the first electrodes 2, 2 and the second side electrode 24 are connected to each other by the external electrode 7b for the first electrode through the extraction electrodes 2b, 24a, and the second electrodes 4, 4 are connected to the first side portion.
  • the electrode 22 is connected to an external electrode 7a for the second electrode through extraction electrodes 4b and 22a.
  • the external electrodes 7a and 7b are provided on both end faces of the piezoelectric element 12, respectively.
  • External electrodes 7g are also provided on both end faces of the piezoelectric element 12, respectively.
  • the electrode area can be increased by further providing the side electrodes 22 and 24 on the feeding electrode layer 6.
  • the displacement of the piezoelectric element 21 can be increased, and the efficiency of the ultrasonic actuator can be improved.
  • the first side electrode 22 and the second side electrode 24 are substantially bilaterally symmetric with respect to a center line C extending in the longitudinal direction L of the upper main surface of the piezoelectric layer 1. It may be arranged as follows.
  • the shape formed by the first electrodes 2 and 2 of the first feeding electrode layer 6a, the conducting electrode 2a and the first side electrode 22, and the second electrodes 4 and 4 of the second feeding electrode layer 6b, the conducting electrode 4a and the first electrode is reversed with respect to the center line C extending in the longitudinal direction L of the upper main surface of the piezoelectric layer 1.
  • the third embodiment is different from the first and second embodiments in the configuration of the feeding electrode layer 6.
  • 11 (a) is a perspective view of the piezoelectric element 23 according to the third embodiment
  • FIG. 11 (b) is an exploded perspective view of the piezoelectric element 23
  • FIG. 12 is an exploded perspective view of the piezoelectric element 33. It is.
  • the first feeding electrode layer 6a is provided on each of the two regions A1 and A3 facing the second diagonal direction D2 with the pair of first electrodes 2 and 2 facing each other. And a pair of first side electrodes 22 and 22.
  • the second feeding electrode layer 6b includes a pair of second side electrodes 24 and 24 provided respectively in the two regions A2 and A4 opposed to the first diagonal direction DI. 24.
  • the electrode area can be increased.
  • the displacement of the piezoelectric element 23 can be increased, and the efficiency of the ultrasonic actuator can be improved.
  • the pair of electrodes respectively disposed at the diagonal portions of the upper main surface of the piezoelectric layer 1 have the same potential U, . Therefore, as shown in FIG. 11, the second side electrodes 24 and 24 on the piezoelectric layer 1 different from the first electrodes 2 and 2 are the first electrodes provided on both end faces of the piezoelectric element 21, respectively.
  • the second electrodes 4 and 4 and the first side electrodes 22 and 22 on the different piezoelectric layers 1 are connected to each other by the external electrodes 7b and 7b for the second electrodes provided on both end faces of the piezoelectric element 21, respectively.
  • the external electrodes 7a and 7a for the electrodes are connected.
  • the electrodes 2a to 2d and 4a to 4d facing each other of the first feeding electrode layer 6a and the second feeding electrode layer 6b are connected to each other by the external electrodes 7a and 7b.
  • the first electrode 2 is electrically connected to the second side electrode 24 through the external electrode 7b and has the same potential
  • the second electrode 4 is electrically connected to the first side electrode 22 through the external electrode 7a and has the same potential.
  • all of the pair of electrodes respectively disposed on the diagonal portions of the upper main surface of the piezoelectric layer 1 can be set to the same potential.
  • the external electrodes 7a and 7b need to be formed at a total of four locations, two on each end face of the piezoelectric element 23.
  • the external electrodes 7a and 7b on one end face of the piezoelectric element 23 may be connected to the wire 10, so that the piezoelectric element 12 and the wire 10 are connected to the external electrodes 7a and 7b and the wire 10.
  • external electrodes 7g are formed on both end faces of the piezoelectric element 23, respectively. As a result, the directionality of the piezoelectric element 23 is lost, and when the driver elements 8 and 8 are mounted on the piezoelectric element 23, it is not necessary to align the positions. As a result, the mass productivity of the ultrasonic actuator is improved.
  • the external electrode 7g may be formed only on one end face of the piezoelectric element 23.
  • the shape formed by the conductive electrode 4a and the second side electrodes 24, 24 is point-symmetric with respect to the center point M of the upper main surface of the piezoelectric layer 1 provided with the respective feeding electrode layers 6a, 6b.
  • Shape. That is, the shape of the first feeding electrode layer 6a excluding the extraction electrode 2b and the shape of the second feeding electrode layer 6b excluding the extraction electrode 4b are respectively the first diagonal line and the second diagonal of the upper main surface of the piezoelectric layer 1.
  • the shape is point-symmetric with respect to the intersection of diagonal lines.
  • the shape and force formed by the conductive electrode 4a and the second side electrodes 24, 24 are shapes reversed with respect to the center line extending in the longitudinal direction L of the upper main surface of the piezoelectric layer 1. That is, the shape of the first feeding electrode layer 6a excluding the extraction electrode 2b and the shape of the second feeding electrode layer 6b excluding the extraction electrode 4b are reversed with respect to the center line C.
  • the feeding electrode layer 6 is formed by arranging the first feeding electrode layer 6a or the second feeding electrode layer 6b continuously in the stacking direction.
  • the first feeding electrode layer 6a and the second feeding electrode layer 6b may be randomly arranged.
  • the number of first feeding electrode layers 6a and the number of second feeding electrode layers 6b are the same, and feeding electrode layer 6 has first feeding electrode layer 6a and second feeding electrode layer 6b in the stacking direction. It is desirable to arrange them alternately!
  • the external electrode 7 is formed only on the peripheral surfaces of the piezoelectric elements 12, 21, 23, 33 and not formed on the main surfaces of the piezoelectric elements 12, 21, 23, 33. In this case, the external electrode 7 is not formed on the main surface having the largest area among the outer surfaces of the piezoelectric elements 12, 21, 23, and 33. Is less likely to occur. In addition, since no electric field is generated between the external electrode 7 and the common electrode layer 3, no excessive vibration is generated in the piezoelectric elements 12, 21, 23, 33, and a decrease in the efficiency of the ultrasonic actuator is suppressed. It is out.
  • the force that the first electrode 2, the second electrode 4, the first side electrode 22, and the second side electrode 24 are substantially rectangular electrodes is not limited thereto. These may be shaped according to the distribution of stress due to vibration.
  • connection by wire bonding connection by a conductive adhesive, connection by pressure bonding, connection by contact, etc.
  • the electrical connection method may be used. From these points, the same effect as in the above embodiment can be obtained.
  • each of the support portions 13a to 13c also has a conductive rubber force in which metal particles are mixed into silicone rubber.
  • the first electrode 2 in the region A4 (see FIG. 4) is provided with an extraction electrode 2c extending from the first electrode 2 toward the side surface of the piezoelectric element 43.
  • the second electrode 4 in the region A3 (see FIG. 4) is provided with an extraction electrode 4c in which the second electrode 4 force also extends toward the side surface of the piezoelectric element 43.
  • External electrodes 7c are provided on both side surfaces of the piezoelectric element 43, respectively.
  • the common electrode 3a is connected to the support portion 13b via the external electrode 7g.
  • the two side electrodes 24, 24 are connected to the support portion 13c via the extraction electrode 2c and the external electrode 7c.
  • the second electrodes 4 and 4 and the first side electrodes 22 and 22 are connected to the support portion 13a via the extraction electrode 4c and the external electrode 7c.
  • a voltage is applied to the internal electrode layer 5 through the support portions 13a to 13c and the like. The other points are almost the same as in the third embodiment. As described above, since it is not necessary to provide solder on the piezoelectric element 43, it is possible to suppress the stress due to vibration from being concentrated on the portion of the piezoelectric element 43 provided with solder and cracking of the piezoelectric element 43.
  • the movable body 9 driven by the driving force of the ultrasonic actuator is a flat plate, but the configuration of the movable body 9 is not limited to this, and is arbitrary.
  • a configuration can be employed.
  • the movable body is a disk body 9 that can rotate about a predetermined axis X, and the ultrasonic actuator driver elements 8 and 8 abut against the side peripheral surface 9a of the disk body 9. You may be comprised so that it may touch.
  • the disk body 9 is rotated about a predetermined axis X by the substantially elliptical motion of the driver elements 8 and 8.
  • the force described for the configuration in which the driver elements 8 and 8 are provided on one end face of the piezoelectric elements 12, 21, 23, 33 is one side surface of the piezoelectric elements 12, 21, 23, 33. May be formed.
  • the expansion / contraction direction of the primary mode expansion / contraction vibration is the direction in which the driver elements 8 and 8 support the movable body 9
  • the vibration mode of the secondary mode bending vibration is the movable direction of the movable body 9.
  • any force may be used as long as it has a support portion that supports the force piezoelectric elements 12, 21, 23, and 33 that constitute the support body with the case 11.
  • the present invention suppresses vibration inhibition of the piezoelectric element by devising the configuration of the feeding electrode layer, and is useful for ultrasonic actuators used in various electronic devices and the like. It is.

Abstract

 内部電極層(5)は、積層方向に圧電体層(1)を介して交互に配された共通電極層(3)及び給電電極層(6)からなる。共通電極層(3)は、共通電極(3a)を有する。給電電極層(6)は、第一給電電極層(6a)と第二給電電極層(6b)とからなる。第一給電電極層(6)は、圧電体層(1)の主面をその長手方向(L)及び短手方向(S)にそれぞれ2分割してなる4つの領域(A1~A4)のうち圧電体層(1)の主面の第一対角線方向(D1)に対向する2つの領域(A2,A4)にそれぞれ設けられた、互いに導通する一対の第一電極(2,2)を有する。第二給電電極層(6)は、4つの領域(A1~A4)のうち圧電体層(1)の主面の第二対角線方向(D2)に対向する2つの領域(A1,A3)にそれぞれ設けられた、互いに導通する一対の第二電極(4,4)を有する。共通電極(3a)、第一電極(2,2)、及び第二電極(4,4)は、それぞれの外部電極(7g,7b,7a)に接続されている。

Description

明 細 書
圧電素子及び超音波ァクチユエータ
技術分野
[0001] 本発明は、圧電素子及びそれを備えた超音波ァクチユエータに関するものである。
背景技術
[0002] 従来から、各種電気機器等に用いられる、圧電素子 (電気機械変換素子)を備えた 超音波ァクチユエータが知られている(例えば、特許文献 1参照)。この圧電素子は、 圧電体と電極とを交互に積層してなる。そして、上記超音波ァクチユエータでは、電 極に電圧を印加することにより圧電素子を振動させ、これにより、可動体を運動させる 特許文献 1:特表 2003 - 501988号公報
発明の開示
発明が解決しょうとする課題
[0003] ここで、本発明者は、超音波ァクチユエータとして以下に示すものを考案した。図 1 6は、その超音波ァクチユエータの斜視図であり、図 17 (a)は、超音波ァクチユエータ に用いられている圧電素子の斜視図であり、図 17 (b)は、圧電素子の分解斜視図で ある。
[0004] 図 16、図 17に示すように、圧電素子 100は、ケース 103に設けられた 3つの支持部 104A〜104Cにてこのケース 103に収容支持されている。圧電素子 100の端面に は駆動子 110, 110が設けられており、これらの駆動子 110, 110は可動体 111を支 持している。駆動子 110, 110は支持部 104Bにより可動体 111に押圧されている。
[0005] 圧電素子 100は、圧電体 101と内部電極 102とを交互に積層してなる。内部電極 1 02Gは、圧電体 101の主面のほぼ全面に亘つて設けられた共通電極(グラウンド電 極)である。また、圧電体 101は、図 17で示す矢印の方向に分極されている。
[0006] 内部電極 102A〜102D, 102Gは、それぞれの外部電極 103A〜103D, 103G に接続されている。この各外部電極 103A〜103D, 103Gは、圧電素子 100の端面 に設けられている。各外部電極 103A〜103D, 103Gには、例えば、ワイヤー 108A 〜108D, 108Gがはんだ 107を介して接続されている。そして、これらのワイヤー 10 8A〜108D, 108Gを通じて、各内部電極 102A〜102D, 102Gには電圧が供給さ れる。
[0007] ところで、圧電素子 100の、後述する伸縮振動の共振周波数及び屈曲振動の共振 周波数は、それぞれ圧電素子 100の材料や形状等により決定される。そして、圧電 素子 100の材料や形状等は、伸縮振動の共振周波数及び屈曲振動の共振周波数 が略一致するように決められて 、る。
[0008] 以下、超音波ァクチユエータの動作について説明する。図 6〜図 8は、それぞれ圧 電素子の振動形態を説明する概念図である。
[0009] ワイヤー 108Gをグラウンドに接続するとともに、ワイヤー 108A, 108Cを介して圧 電体 101の主面の一方の対角線上に配した内部電極 102A, 102Cに特定周波数 の正弦波の基準電圧を印加し、ワイヤー 108B, 108Dを介して他方の対角線上に 配した内部電極 102B, 102Dに基準電圧とほぼ同じ大きさ'周波数の正弦波の電圧 を印加する。これにより、内部電極 102A, 102Cに同位相の電圧が加わり、内部電 極 102B, 102Dに同位相の電圧が加わる。基準電圧と内部電極 102B, 102Dに印 加した電圧との位相差が 0° の場合、図 6に示すように、圧電素子 100には 1次モー ドの伸縮振動が誘起される。一方、その位相差が 180° の場合、図 7に示すように、 圧電素子 100には 2次モードの屈曲振動が誘起される。
[0010] また、内部電極 102A, 102Cに前記略一致させた共振周波数近傍の周波数の正 弦波の基準電圧を加え、内部電極 102B, 102Dに、位相が基準電圧と 90° 又は— 90° だけ異なる、基準電圧とほぼ同じ大きさ'周波数の正弦波の電圧を加えると、圧 電素子 100には 1次モードの伸縮振動と 2次モードの屈曲振動とが調和的に誘起さ れる。これにより、圧電素子 100の形状が、図 8 (a)〜(d)に示すような順で変化する 。その結果、圧電素子 100に設けられた駆動子 110, 110が、図 8の紙面を貫く方向 力 見て略楕円運動する。つまり、圧電素子 100の伸縮振動及び屈曲振動の合成振 動により駆動子 110, 110が楕円運動する。この楕円運動により駆動子 110, 110に 支持された可動体 111が圧電素子 100との間で相対運動して、矢印 A又は矢印 Bの 方向に動く。 [0011] ところで、上記超音波ァクチユエータでは、少なくとも 5本のワイヤー 108A〜108D , 108Gを圧電素子 100上の外部電極 103A〜103D, 103Gに接続する必要があ る。このため、圧電素子 100の振動時に、ワイヤー 108A〜108D, 108Gや、ワイヤ 一 108A〜108D, 108Gと外部電極 103A〜103D, 103Gとを接続する導電性接 続部材としてのはんだ 107が負担となって、圧電素子 100の振動が阻害されてしまう 。その結果、超音波ァクチユエータの効率が低下するおそれがあった。
[0012] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、圧電素 子の振動阻害を抑制することにある。
課題を解決するための手段
[0013] その目的を達成するために、本発明は、略矩形状の圧電体層と内部電極層とを交 互に積層してなる圧電素子であって、前記内部電極層は、積層方向に前記圧電体 層を介して交互に配された共通電極層及び給電電極層からなり、前記共通電極層 は、共通電極を有し、前記給電電極層は、前記圧電体層の主面に設けられた第一 給電電極層と、主面に該第一給電電極層が設けられた圧電体層とは異なる圧電体 層の主面に設けられた第二給電電極層とを有し、前記第一給電電極層は、前記圧 電体層の主面をその長手方向及び短手方向にそれぞれ 2分割してなる 4つの領域 のうち前記圧電体層の主面の第一対角線方向に対向する 2つの領域にそれぞれ設 けられた、互いに導通する一対の第一電極を有し、前記第二給電電極層は、前記 4 つの領域のうち前記圧電体層の主面の第二対角線方向に対向する 2つの領域にそ れぞれ設けられた、互いに導通する一対の第二電極を有し、前記共通電極、前記第 一電極、及び前記第二電極は、前記圧電素子の外面に設けられた、それぞれの外 部電極に接続されて ヽる構成としたものである。
発明の効果
[0014] 本発明によれば、圧電体層の主面をその長手方向及び短手方向にそれぞれ 2分 割してなる 4つの領域のうち圧電体層の主面の第一対角線方向に対向する 2つの領 域にそれぞれ設けられた、第一給電電極層の一対の第一電極を互いに導通させ、 4 つの領域のうち圧電体層の主面の第二対角線方向に対向する 2つの領域にそれぞ れ設けられた、第二給電電極層の一対の第二電極を互いに導通させることにより、ヮ ィャ一等の数を減らすことができる。その結果、圧電素子の振動阻害を抑制すること ができる。
[0015] また、ワイヤー等の接続工数を減らすことができるので、製造が容易になる。特に、 圧電素子は機械的強度が弱いため、ワイヤー等を外部電極に接続する際、機械的 ストレスにより圧電素子が壊れるおそれがある力 上述のように、ワイヤー等の接続ェ 数が減ることにより、この接続工程における圧電素子の破壊を低減することができる。
[0016] さらに、ワイヤー等と外部電極との接続点も減らすことができるので、信頼性も向上 する。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の実施形態 1に係る超音波ァクチユエータの斜視図である。
[図 2]図 2は、圧電素子の斜視図である。
[図 3]図 3は、圧電素子の分解斜視図である。
[図 4]図 4は、圧電体層の平面図である。
[図 5]図 5 (a)は、第一給電電極層と共通電極層との位置関係を示す図であり、図 5 ( b)は、第二給電電極層と共通電極層との位置関係を示す図である。
[図 6]図 6は、 1次モードの伸縮振動の変位図である。
[図 7]図 7は、 2次モードの屈曲振動の変位図である。
[図 8]図 8は、圧電素子の動作を示す概念図である。
[図 9]図 9は、超音波ァクチユエータの変形例の斜視図である。
[図 10]図 10は、実施形態 2に係る圧電素子の分解斜視図である。
[図 11]図 11 (a)は、実施形態 3に係る圧電素子の斜視図であり、図 11 (b)は、圧電素 子の分解斜視図である。
[図 12]図 12は、圧電素子の分解斜視図である。
[図 13]図 13は、超音波ァクチユエータの変形例の斜視図である。
[図 14]図 14 (a)は、圧電素子の斜視図であり、図 14 (b)は、圧電素子の分解斜視図 である。
[図 15]図 15は、超音波ァクチユエータの変形例の斜視図である。
[図 16]図 16は、超音波ァクチユエータの斜視図である。 圆 17]図 17 (a)は、圧電素子の斜視図であり、図 17 (b)は、圧電素子の分解斜視図 である。
符号の説明
1 圧電体層
2 第一電極
3 共通電極層
3a 共通電極
4 第二電極
5 内部電極
6 給電電極層
6a 第一給電電極層
6b 第二給電電極層
7 外部電極
7a 第二電極用の外部電極
7b 第一電極用の外部電極
7g 共通電極用の外部電極
8 駆動子
9 可動体
10 ワイヤー
11 ケース (支持体)
12, 21, 23, 33, 43 圧電素子
13a〜13c 支持咅
22 第一側部電極
24 第二側部電極
発明を実施するための最良の形態
[0019] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0020] (実施形態 1)
超音波ァクチユエータの構成 図 1は、本実施形態 1に係る超音波ァクチユエータの斜視図であり、図 2は、その超 音波ァクチユエータに用いられている圧電素子 12の斜視図であり、図 3は、圧電素 子 12の分解斜視図であり、図 4は、圧電体層 1の平面図であり、図 5 (a)は、第一給 電電極層 6aと共通電極層 3との位置関係を示す図であり、図 5 (b)は、第二給電電極 層 6bと共通電極層 3との位置関係を示す図である。
[0021] 図 1〜図 3に示すように、超音波ァクチユエータは、圧電素子 12を備えている。この 圧電素子 12は、互いに対向する一対の主面と、この主面と直交して圧電素子 12の 主面の長手方向に延びる、互いに対向する一対の端面と、これらの主面及び端面の 両方と直交して圧電素子 12の主面の短手方向に延びる、互いに対向する一対の側 面とを有している。主面、端面及び側面が圧電素子 12の外面を構成し、端面及び側 面が圧電素子 12の周囲面を構成している。本実施形態では、主面、端面及び側面 のうち主面が最大の面積を有して 、る。
[0022] 圧電素子 12は、 3つの支持部 13a〜13cを介してケース 11 (支持体)に収容支持さ れている。圧電素子 12の一方の端面には駆動子 8, 8が設けられており、これらの駆 動子 8, 8は平板状の可動体 9を支持している。圧電素子 12の他方の端面 (駆動子 8 , 8が設けられた端面とは反対側の端面)の支持体 13bは、駆動子 8, 8を可動体 9に 押圧している。これにより、駆動子 8, 8の先端部と可動体 9との摩擦力が高められ、 圧電素子 12の振動が駆動子 8, 8を介して確実に可動体 9に伝搬される。
[0023] 圧電素子 12は、略矩形状の圧電体層 1と内部電極層 5とを交互に積層してなる略 直方体状のものである。この圧電体層 1は、例えばチタン酸ジルコン酸鉛などのセラミ ック材料カゝらなる絶縁体層である。内部電極層 5は、積層方向(圧電素子 12の厚み 方向)に圧電体層 1を介して交互に配された共通電極層 3及び給電電極層 6からなる 。この共通電極層 3は、圧電体層 1の上側主面のほぼ全面に亘つて設けられた略矩 形状の共通電極 3aを有している。この共通電極 3aには、その長手方向中央部から 圧電素子 12の両端面に向かってそれぞれ延びる引出電極 3b, 3bが設けられている
[0024] 給電電極層 6は、圧電体層 1の上側主面に設けられた第一給電電極層 6aと、上側 主面にこの第一給電電極層 6aが設けられた圧電体層 1とは異なる圧電体層 1の上側 主面に設けられた第二給電電極層 6bとからなる。つまり、圧電体層 1の主面上には、 共通電極層 3、第一給電電極層 6a、及び第二給電電極層 6bのうちいずれ力 1つが 印刷されている。また、圧電体層 1は、図 3の矢印で示すように、第一給電電極層 6a 又は第二給電電極層 6b側カゝら共通電極層 3側へと分極されている。
[0025] 第一給電電極層 6aは、圧電体層 1の上側主面をその長手方向 L及び短手方向 S にそれぞれ 2等分してなる 4つの領域 A1〜A4 (図 4参照)のうち圧電体層 1の上側主 面の第一対角線方向(第一対角線の延びる方向) D1に対向する 2つの領域 A2, A4 にそれぞれ形成された、導通電極 2aを介して互いに導通する一対の第一電極 2, 2 を有している。この各第一電極 2は略矩形状の電極であり、積層方向から見て共通電 極層 3と重なっている(図 5 (a)参照)。つまり、各第一電極 2は、共通電極層 3と圧電 体層 1を挟んで対向している。導通電極 2aも、積層方向から見て共通電極層 3と重な つている(図 5 (a)参照)。各第一電極 2には、その長手方向中央部力も圧電素子 12 の端面に向かって延びる引出電極 2bが設けられている。この各引出電極 2bは、積 層方向から見て共通電極層 3と重なっていない(図 5 (a)参照)。つまり、各引出電極 2bは、共通電極層 3と対向していない。このため、圧電体層 1の各引出電極 2bに対 向する部分には電界が生じない。つまり、この部分は圧電的に不活性な部分となる。
[0026] 第二給電電極層 6bは、圧電体層 1の上側主面をその長手方向 L及び短手方向 S にそれぞれ 2等分してなる 4つの領域 A1〜A4のうち圧電体層 1の上側主面の第二 対角線方向(第二対角線の延びる方向) D2に対向する 2つの領域 A1, A3にそれぞ れ形成された、導通電極 4aを介して互いに導通する一対の第二電極 4, 4を有して いる。この各第二電極 4は略矩形状の電極であり、積層方向から見て共通電極層 3と 重なっている(図 5 (b)参照)。導通電極 4aも、積層方向から見て共通電極層 3と重な つている(図 5 (b)参照)。各第二電極 4には、その長手方向中央部から圧電素子 12 の端面に向かって延びる引出電極 4bが設けられている。この各引出電極 4bは、積 層方向から見て共通電極層 3と重なっていない(図 5 (b)参照)。このため、圧電体層 1の各引出電極 4bに対向する部分には電界が生じない。
[0027] 異なる圧電体層 1上の共通電極 3a同士は、引出電極 3bを介して共通電極用の外 部電極 7gで接続されている。第一電極 2, 2は、引出電極 2bを介して第一電極用の 外部電極 7bに接続されている。第二電極 4, 4は、引出電極 4bを介して第二電極用 の外部電極 7aに接続されている。この各外部電極 7a, 7b, 7gは、圧電素子 12の一 方の端面及び一方の主面に亘つて設けられていて、圧電素子 12の振動のノード部( 節)近傍まで延びている。各外部電極 7a, 7b, 7gの、圧電素子 12の主面上の部分 には、ワイヤー 10がはんだを介して接続されている。そして、このワイヤー 10を通じ て、内部電極層 5には圧電素子 12を振動させるための電圧が印加される。このように 、各外部電極 7a, 7b, 7gを圧電素子 12の一方の端面及び一方の主面に亘つて形 成して、圧電素子 12の振動のノード部付近まで延伸することにより、圧電素子 12とヮ ィヤー 10との接続点が振動に悪影響を及ぼすことを抑制している。
[0028] ところで、圧電素子 12の伸縮振動の共振周波数及び屈曲振動の共振周波数は、 それぞれ圧電素子 12の材料や形状等により決定される。そして、圧電素子 12の材 料や形状等は、伸縮振動の共振周波数及び屈曲振動の共振周波数が略一致する ように決められている。本実施形態では、圧電素子 12の材料や形状等は、 1次モー ドの伸縮振動の共振周波数及び 2次モードの屈曲振動の共振周波数が略一致する ように決定されている。
[0029] 以上のように、対角線方向 Dl, D2に並べて配置された電極 2, 4を互いに導通さ せ、異なる圧電体層 1上の共通電極 3a同士を外部電極 7gで接続し、圧電体層 1上 の第一電極 2, 2を外部電極 7bに接続し、圧電体層 1上の第二電極 4, 4を外部電極 7aに接続している。つまり、圧電素子 12には共通電極用の外部電極 7g、第一電極 用の外部電極 7b、及び第二電極用の外部電極 7aの、計 3つの外部電極 7を設けれ ばよい。これにより、外部電極 7に接続すべきワイヤー 10の数を 3つに減らすことがで きる。その結果、圧電素子 12の振動阻害を抑制することができ、超音波ァクチユエ一 タの効率低下を抑制することができる。
[0030] また、ワイヤー 10の接続工数を減らすことができるので、超音波ァクチユエ一タの製 造が容易になる。特に、圧電素子 12は機械的強度が弱いため、ワイヤー 10を外部 電極 7に接続する際、機械的ストレスにより圧電素子 12が壊れるおそれがあるが、上 述のように、ワイヤー 10の接続工数が減ることにより、この接続工程における圧電素 子 12の破壊を低減することができる。 [0031] さらに、ワイヤー 10と外部電極 7との接続点も減らすことができる。これにより、この 接続点に設けられたはんだによる振動阻害を抑制することができる。また、この接続 点は超音波ァクチユエータを駆動させる上で重要な箇所であるが、湿度や温度変化 などの外部環境の影響を受けやすいので、上述のように、その接続点を少なくするこ とにより、超音波ァクチユエータの信頼性を向上させることができる。
[0032] その上、小型の超音波ァクチユエータ(例えば、圧電素子 12の長さが 0. lmm〜l
Omm程度のもの)では、各給電電極層 6a, 6bに異なる電位の電極を形成すると、そ の異なる電位の電極間の距離が充分にとれず、高い電圧を印加したとき、その異な る電位の電極間でリーク電流が発生することがある。リーク電流が発生すると、給電 電力のロスが生じ、超音波ァクチユエータの効率が低下する。しかし、各給電電極層 6a, 6bを上述のような構成にすることにより、各給電電極層 6a, 6bには同電位の電 極だけが形成される。その結果、リーク電流が発生しにくくなり、小型で効率が高い超 音波ァクチユエータを実現することができる。
[0033] それにカ卩えて、共通電極 3a、第一電極 2、及び第二電極 4は、それぞれ引出電極 3 b, 2b, 4bを介して外部電極 7g, 7b, 7aに接続されているので、圧電素子 12の周囲 面の異なる位置に、共通電極 3a、第一電極 2、及び第二電極 4をそれぞれ引き出す ことができる。その結果、共通電極 3a、第一電極 2、及び第二電極 4の間に充分な絶 縁距離を確保することができる。このように、充分な絶縁距離を取るためには、異なる 電位の電極 3a, 2, 4の引出電極 3b, 2b, 4bを圧電体層 1の厚み以上の間隔を開け て形成することが望ましい。
[0034] また、上述のように、共通電極 3a、第一電極 2、及び第二電極 4は、それぞれ、圧電 的に不活性な部分に配置された引出電極 3b, 2b, 4bを介して外部電極 7g, 7b, 7a に接続されているので、圧電素子 12に余分な振動が発生しない。その結果、圧電素 子 12がバランスよく振動し、その振動効率が向上する。
[0035] 以下、給電電極層 6等についてさらに説明する。
[0036] 第一給電電極層 6aの第一電極 2, 2及び導通電極 2aのなす形状が、圧電体層 1の 上側主面の中心点 M (図 4参照)に対して点対称の形状である。また、第二給電電極 層 6bの第二電極 4, 4及び導通電極 4aのなす形状も、圧電体層 1の上側主面の中 心点 Mに対して点対称の形状である。つまり、引出電極 2bを除く(以外の)第一給電 電極層 6aの形状及び引出電極 4bを除く第二給電電極層 6bの形状が、それぞれ圧 電体層 1の上側主面の第一対角線及び第二対角線の交点に対して点対称の形状 である。このように、給電電極層 6の形状を圧電体層 1の上側主面の中心点 Mに対し て略点対称の形状にすることにより、圧電素子 12の振動、特に 2次モードの屈曲振 動の対称性が向上する。このことにより、圧電素子 12に余分な振動が発生せず、ェ ネルギーロスが大幅に低減される。その結果、給電電力を効率よく振動に変換するこ とがでさる。
[0037] また、第一給電電極層 6aの第一電極 2, 2及び導通電極 2aのなす形状と第二給電 電極層 6bの第二電極 4, 4及び導通電極 4aのなす形状とが、圧電体層 1の上側主面 の長手方向 Lに延びる中心線 C (図 4参照)に対して互いに反転した形状である。つ まり、引出電極 2bを除く第一給電電極層 6aの形状をその中心線 Cに対して反転した 形状が、引出電極 4bを除く第二給電電極層 6bの形状である。このように、第一給電 電極層 6aの形状及び第二給電電極層 6bの形状を、その中心線 Cに対して互 、に略 反転した形状にすることにより、圧電素子 12の振動、特に 2次モードの屈曲振動の対 称性が向上する。このことにより、圧電素子 12に余分な振動が発生せず、エネルギ 一ロスが大幅に低減される。その結果、給電電力を効率よく振動に変換することがで きる。
[0038] また、第一給電電極層 6aの数及び第二給電電極層 6bの数が同数である。これに より、圧電素子 12の振動の対称性が向上する。このことにより、圧電素子 12に余分な 振動が発生せず、エネルギーロスが大幅に低減される。その結果、給電電力を効率 よく振動に変換することができる。
[0039] また、給電電極層 6は、第一給電電極層 6a及び第二給電電極層 6bが積層方向に 交互に配されてなる。これにより、圧電素子 12の導通電極 2a, 4a配置部分の振動の 対称性が向上する。このことにより、圧電素子 12に余分な振動が発生せず、ェネル ギーロスが大幅に低減される。その結果、給電電力を効率よく振動に変換することが できる。
[0040] また、圧電素子 12の積層方向の最外層が圧電体層 1である。これにより、以下の効 果が得られる。つまり、電子機器内部の非常に小さい空間に小型の超音波ァクチュ エータ (例えば、長さが lmn!〜 20mm程度のもの)を実装する場合、圧電素子 12の 最外層が共通電極層 3又は給電電極層 6であると、圧電素子 12の主面にその周辺 にある金属部品が接触したときに、その最外層の電極層がショートして、超音波ァク チユエータの特性が著しく低下することがある。そこで、上述のように、圧電素子 12の 積層方向の最外層を絶縁体である圧電体層 1とすること〖こより、圧電素子 12の主面 に金属部品が接触してもショートが発生しない。その結果、超音波ァクチユエータの 信頼性を向上させることができる。
[0041] 超音波ァクチユエータの動作
以下、超音波ァクチユエータの動作について説明する。図 6は、本実施形態に係る 1次モードの伸縮振動の変位図であり、図 7は、 2次モードの屈曲振動の変位図であ り、図 8は、圧電素子 12の動作を示す概念図である。なお、図 6〜図 8においては、 圧電素子 12の主面はその紙面と平行な位置関係にある。
[0042] 例えば、ワイヤー 10を介して共通電極層 3と第一給電電極層 6aとの間に、前記略 一致させた共振周波数近傍の周波数の基準交流電圧を印加し、ワイヤー 10を介し て共通電極層 3と第二給電電極層 6bとの間に、位相が基準交流電圧と 90° 又は 90° だけ異なる、基準交流電圧とほぼ同じ大きさ'周波数の交流電圧を印加すると、 圧電素子 12には、図 6に示す 1次モードの伸縮振動と図 7に示す 2次モードの屈曲 振動とが調和的に誘起される。
[0043] そして、圧電素子 12の形状が、図 8 (a)〜 (d)に示すような順で変化する。その結 果、圧電素子 12に設けられた駆動子 8, 8が、図 8の紙面を貫く方向から見て略楕円 運動する。つまり、圧電素子 12の伸縮振動及び屈曲振動の合成振動により駆動子 8 , 8が楕円運動する。この楕円運動により駆動子 8, 8に支持された可動体 9が圧電素 子 12との間で相対運動して、図 1に示す矢印 A又は矢印 Bの方向に動く。
[0044] ここで、伸縮振動の伸縮方向は、圧電素子 12の主面の長手方向、つまり、可動体 9 の可動方向であり、屈曲振動の振動方向は、駆動子 8, 8が可動体 9を支持する方向 である。圧電素子 12の積層方向は、伸縮振動の伸縮方向及び屈曲振動の振動方 向の両方と垂直な方向である。 [0045] なお、本実施形態では、外部電極 7a, 7b, 7gを圧電素子 12の一方の端面及び一 方の主面に亘つて形成している力 図 9に示すように、圧電素子 12の端面にのみ形 成してちょい。
[0046] (実施形態 2)
本実施形態 2は、給電電極層 6の構成が実施形態 1と異なるものである。図 10は、 本実施形態 2に係る圧電素子 21の分解斜視図である。
[0047] 図 10に示すように、第一給電電極層 6aは、一対の第一電極 2, 2にカ卩え、前記第 二対角線方向 D2に対向する 2つの領域 A1, A3の一方 A1に設けられた第一側部 電極 22を有している。この第一側部電極 22は略矩形状の電極であり、積層方向から 見て共通電極層 3と重なっている。第一側部電極 22には、その長手方向中央部から 圧電素子 12の端面に向かって延びる引出電極 22aが設けられている。この引出電 極 22aは、積層方向力 見て共通電極層 3と重なっていない。このため、圧電体層 1 の引出電極 22aに対向する部分には電界が生じない。
[0048] 第二給電電極層 6bは、一対の第二電極 4, 4に加え、前記第一対角線方向 DI 対向する 2つの領域 A2, A4の一方 A2に設けられた第二側部電極 24を有している。 この第二側部電極 24は略矩形状の電極であり、積層方向から見て共通電極層 3と重 なっている。第二側部電極 24には、その長手方向中央部力も圧電素子 12の端面に 向かって延びる引出電極 24aが設けられている。この引出電極 24aは、積層方向か ら見て共通電極層 3と重なっていない。このため、圧電体層 1の引出電極 24aに対向 する部分には電界が生じない。
[0049] 第一電極 2, 2と第二側部電極 24とは、引出電極 2b, 24aを介して第一電極用の 外部電極 7bで接続され、第二電極 4, 4と第一側部電極 22とは、引出電極 4b, 22a を介して第二電極用の外部電極 7aで接続されている。この各外部電極 7a, 7bは、 圧電素子 12の両端面にそれぞれ設けられている。外部電極 7gも、圧電素子 12の両 端面にそれぞれ設けられている。
[0050] 以上のように、給電電極層 6に側部電極 22, 24をさらに設けることにより、電極面積 を大きくすることができる。これにより、圧電素子 21の変位を大きくすることができ、超 音波ァクチユエータの効率を向上させることができる。 [0051] なお、本実施形態では、第一側部電極 22及び第二側部電極 24を圧電体層 1の上 側主面の長手方向 Lに延びる中心線 Cに対して略左右対称となるように配置してもよ い。この場合、第一給電電極層 6aの第一電極 2, 2、導通電極 2a及び第一側部電極 22のなす形状と第二給電電極層 6bの第二電極 4, 4、導通電極 4a及び第二側部電 極 24のなす形状とが、圧電体層 1の上側主面の長手方向 Lに延びる中心線 Cに対し て互いに反転した形状となる。
[0052] (実施形態 3)
本実施形態 3は、給電電極層 6の構成が実施形態 1、 2と異なるものである。図 11 ( a)は、本実施形態 3に係る圧電素子 23の斜視図であり、図 11 (b)は、圧電素子 23 の分解斜視図であり、図 12は、圧電素子 33の分解斜視図である。
[0053] 図 11に示すように、第一給電電極層 6aは、一対の第一電極 2, 2にカ卩え、前記第 二対角線方向 D2に対向する 2つの領域 A1, A3にそれぞれ設けられた一対の第一 側部電極 22, 22を有している。
[0054] 第二給電電極層 6bは、一対の第二電極 4, 4に加え、前記第一対角線方向 DI 対向する 2つの領域 A2, A4にそれぞれ設けられた一対の第二側部電極 24, 24を 有している。
[0055] このように、給電電極層 6に側部電極 22, 24をさらに設けることにより、電極面積を 大きくすることができる。これにより、圧電素子 23の変位を大きくすることができ、超音 波ァクチユエータの効率を向上させることができる。
[0056] また、 2次モードの屈曲振動を効率よく誘起させるためには、圧電体層 1の上側主 面の対角部にそれぞれ配置された一対の電極が同電位となることが望ま U、。そこで 、図 11に示すように、第一電極 2, 2と異なる圧電体層 1上の第二側部電極 24, 24同 士とは、圧電素子 21の両端面にそれぞれ設けられた第一電極用の外部電極 7b, 7b で接続され、異なる圧電体層 1上の第二電極 4, 4同士と第一側部電極 22, 22とは、 圧電素子 21の両端面にそれぞれ設けられた第二電極用の外部電極 7a, 7aで接続 されている。つまり、第一給電電極層 6a及び第二給電電極層 6bの互いに対向する 電極 2a〜2d, 4a〜4d同士は、それぞれ外部電極 7a, 7bで接続されている。これに より、第一電極 2は、外部電極 7bを通じて第二側部電極 24と導通して同電位となり、 第二電極 4は、外部電極 7aを通じて第一側部電極 22と導通して同電位となる。その 結果、圧電体層 1の上側主面の対角部にそれぞれ配置された一対の電極をすベて 同電位とすることができる。この場合、外部電極 7a, 7bは、上述のように、圧電素子 2 3の各端面に 2箇所ずつ、計 4箇所形成する必要がある。しかし、ワイヤー 10と接続 するのは、圧電素子 23の一方の端面上の外部電極 7a, 7bだけで構わないので、圧 電素子 12とワイヤー 10との接続箇所は、外部電極 7a, 7bとワイヤー 10との接続、各 1つずつ、計 2つと、共通電極用の外部電極 7gとワイヤー 10との接続、 1つの、合計 3つとなる。
[0057] また、外部電極 7gが圧電素子 23の両端面にそれぞれ形成されている。これにより 、圧電素子 23の方向性がなくなり、圧電素子 23に駆動子 8, 8を実装するとき、その 位置をそろえる必要がなくなる。その結果、超音波ァクチユエータの量産性が向上す る。なお、外部電極 7gを圧電素子 23の一方の端面にのみ形成してもよい。
[0058] また、第一給電電極層 6aの第一電極 2, 2、導通電極 2a及び第一側部電極 22, 2 2のなす形状と第二給電電極層 6bの第二電極 4, 4、導通電極 4a及び第二側部電 極 24, 24のなす形状とが、それぞれ、各給電電極層 6a, 6bが設けられた圧電体層 1の上側主面の中心点 Mに対して点対称の形状である。つまり、引出電極 2bを除く 第一給電電極層 6aの形状及び引出電極 4bを除く第二給電電極層 6bの形状が、そ れぞれ圧電体層 1の上側主面の第一対角線及び第二対角線の交点に対して点対 称の形状である。
[0059] また、第一給電電極層 6aの第一電極 2, 2、導通電極 2a及び第一側部電極 22, 2 2のなす形状と第二給電電極層 6bの第二電極 4, 4、導通電極 4a及び第二側部電 極 24, 24のなす形状と力 圧電体層 1の上側主面の長手方向 Lに延びる中心線じに 対して互いに反転した形状である。つまり、引出電極 2bを除く第一給電電極層 6aの 形状及び引出電極 4bを除く第二給電電極層 6bの形状が、その中心線 Cに対して互 いに反転した形状である。
[0060] また、図 11 (b)に示すように、給電電極層 6は、第一給電電極層 6a又は第二給電 電極層 6bが積層方向に何層カゝ連続して配されてなつていてもよぐあるいは、第一 給電電極層 6a及び第二給電電極層 6bがランダムに配されてなつていてもよいが、図 12に示すように、第一給電電極層 6aの数及び第二給電電極層 6bの数が同数で、 給電電極層 6が、第一給電電極層 6a及び第二給電電極層 6bが積層方向に交互に 配されてなることが望まし!/、。
[0061] (その他の実施形態)
前記実施形態では、外部電極 7を圧電素子 12, 21, 23, 33の周囲面にのみ形成 し、圧電素子 12, 21, 23, 33の主面に形成しないことが望ましい。この場合、圧電素 子 12, 21, 23, 33の外面のうち、面積が最も大きい主面に外部電極 7が形成されな いことになるため、その周辺にある金属部品と接触してもショートが起こりにくくなる。 さらに、外部電極 7と共通電極層 3との間には電界が発生しないので、圧電素子 12, 21 , 23, 33に余分な振動が発生せず、超音波ァクチユエータの効率低下を抑制す ることがでさる。
[0062] また、前記実施形態では、第一電極 2、第二電極 4、第一側部電極 22、及び第二 側部電極 24を略矩形状の電極とした力 これに限らず、例えば、これらを振動による 応力の分布に応じた形状のものとしてもよい。
[0063] また、前記実施形態では、外部電極 7にはんだによりワイヤー 10を接続する構成に ついて説明したが、ワイヤボンディングによる接続、導電性接着剤による接続、圧着 による接続、接触による接続など、他の電気的接続方法を用いてもよい。これら〖こより 、前記実施形態と同様の効果が得られる。
[0064] また、前記実施形態では、ワイヤー 10による給電にっ 、て説明した力 導電性ゴム による給電、フレキシブル基板による給電や、コンタクトピンによる給電など、他の給 電方法を用いてもよい。これらにより、前記実施形態と同様の効果が得られる。
[0065] 以下、導電性ゴムによる給電の一例について説明する。図 13、図 14に示すように、 各支持部 13a〜 13cは、シリコーンゴムに金属粒子を混入した導電性ゴム力もなる。 領域 A4 (図 4参照)の第一電極 2には、この第一電極 2から圧電素子 43の側面に向 力つて延びる引出電極 2cが設けられて 、る。領域 A3 (図 4参照)の第二電極 4には、 この第二電極 4力も圧電素子 43の側面に向かって延びる引出電極 4cが設けられて いる。圧電素子 43の両側面には、外部電極 7cがそれぞれ設けられている。共通電 極 3aは、外部電極 7gを介して支持部 13bに接続されている。第一電極 2, 2及び第 二側部電極 24, 24は、引出電極 2c及び外部電極 7cを介して支持部 13cに接続さ れている。第二電極 4, 4及び第一側部電極 22, 22は、引出電極 4c及び外部電極 7 cを介して支持部 13aに接続されている。そして、これらの支持部 13a〜 13c等を通じ て、内部電極層 5には電圧が印加される。その他の点に関しては、実施形態 3とほぼ 同様である。以上により、圧電素子 43にはんだを設ける必要がなくなるため、はんだ を設けた圧電素子 43の部位に振動による応力が集中して圧電素子 43が割れてしま うことを抑制することができる。
[0066] また、前記実施形態では、超音波ァクチユエータの駆動力が付与されて駆動される 可動体 9は平板状であるが、これに限られるものではなぐ可動体 9の構成としては任 意の構成を採用することができる。例えば、図 15に示すように、可動体は所定の軸 X 回りに回動可能な円板体 9であり、超音波ァクチユエータの駆動子 8, 8が円板体 9の 側周面 9aに当接するように構成されていてもよい。力かる構成の場合、超音波ァクチ ユエータを駆動すると、駆動子 8, 8の略楕円運動によって、円板体 9が所定の軸 X回 りに回動させられる。
[0067] また、前記実施形態では、駆動子 8, 8を圧電素子 12, 21, 23, 33の一方の端面 に設けた構成について説明した力 圧電素子 12, 21, 23, 33の一方の側面に形成 してもよい。この場合、 1次モードの伸縮振動の伸縮方向は、駆動子 8, 8が可動体 9 を支持する方向となり、 2次モードの屈曲振動の振動方向は、可動体 9の可動方向と なる。
[0068] また、前記実施形態では、支持体をケース 11で構成している力 圧電素子 12, 21 , 23, 33を支持する支持部を有する限り、如何なるもので構成してもよい。
産業上の利用可能性
[0069] 以上説明したように、本発明は、給電電極層の構成を工夫することにより圧電素子 の振動阻害を抑制するものであり、各種電子機器等に用いられる超音波ァクチユエ ータ等に有用である。

Claims

請求の範囲
[1] 略矩形状の圧電体層と内部電極層とを交互に積層してなる圧電素子であって、 前記内部電極層は、積層方向に前記圧電体層を介して交互に配された共通電極 層及び給電電極層からなり、
前記共通電極層は、共通電極を有し、
前記給電電極層は、前記圧電体層の主面に設けられた第一給電電極層と、主面 に該第一給電電極層が設けられた圧電体層とは異なる圧電体層の主面に設けられ た第二給電電極層とを有し、
前記第一給電電極層は、前記圧電体層の主面をその長手方向及び短手方向にそ れぞれ 2分割してなる 4つの領域のうち前記圧電体層の主面の第一対角線方向に対 向する 2つの領域にそれぞれ設けられた、互いに導通する一対の第一電極を有し、 前記第二給電電極層は、前記 4つの領域のうち前記圧電体層の主面の第二対角 線方向に対向する 2つの領域にそれぞれ設けられた、互いに導通する一対の第二 電極を有し、
前記共通電極、前記第一電極、及び前記第二電極は、前記圧電素子の外面に設 けられた、それぞれの外部電極に接続されて!ヽる圧電素子。
[2] 第一給電電極層は、前記一対の第一電極に加え、前記第二対角線方向に対向す る 2つの領域の一方に設けられた第一側部電極を有し、
第二給電電極層は、前記一対の第二電極に加え、前記第一対角線方向に対向す る 2つの領域の一方に設けられた第二側部電極を有し、
前記第一電極と前記第二側部電極とは、前記外部電極で接続され、
前記第二電極と前記第一側部電極とは、前記外部電極で接続されて!ヽる請求項 1 記載の圧電素子。
[3] 第一給電電極層は、前記一対の第一電極に加え、前記第二対角線方向に対向す る 2つの領域にそれぞれ設けられた一対の第一側部電極を有し、
第二給電電極層は、前記一対の第二電極に加え、前記第一対角線方向に対向す る 2つの領域にそれぞれ設けられた一対の第二側部電極を有し、
前記第一電極と前記第二側部電極とは、前記外部電極で接続され、 前記第二電極と前記第一側部電極とは、前記外部電極で接続されて!ヽる請求項 1 記載の圧電素子。
[4] 給電電極層の形状が、前記圧電体層の主面の中心点に対して略点対称の形状で ある請求項 1記載の圧電素子。
[5] 第一給電電極層の形状及び第二給電電極層の形状が、前記圧電体層の主面の 長手方向に延びる中心線に対して互いに略反転した形状である請求項 1記載の圧 電素子。
[6] 第一給電電極層の数及び第二給電電極層の数が同数である請求項 1記載の超音 波ァクチユエータ。
[7] 給電電極層は、前記第一給電電極層及び前記第二給電電極層が積層方向に交 互に配されてなる請求項 1記載の圧電素子。
[8] 圧電素子の積層方向の最外層が前記圧電体層である請求項 1記載の圧電素子。
[9] 外部電極は、前記圧電素子の端面及び側面力 なる周囲面にのみ設けられている 請求項 1記載の圧電素子。
[10] 請求項 1記載の圧電素子と、
前記圧電素子の端面又は側面に設けられた駆動子と、
前記駆動子に支持された可動体とを備え、
前記内部電極層に給電することにより前記圧電素子を 1次モードの伸縮振動と 2次 モードの屈曲振動とが合成された振動をさせ、該振動により前記駆動子を略楕円運 動させて前記可動体を前記圧電素子との間で相対運動させる超音波ァクチユエータ
[11] 圧電素子を支持する支持部を有する支持体をさらに備え、
前記支持部は、導電性ゴム力もなる請求項 10記載の超音波ァクチユエータ。
PCT/JP2007/050812 2006-01-23 2007-01-19 圧電素子及び超音波アクチュエータ WO2007083752A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007525099A JP4069160B2 (ja) 2006-01-23 2007-01-19 超音波アクチュエータ
US11/886,097 US7545085B2 (en) 2006-01-23 2007-01-19 Piezoelectric element and ultrasonic actuator
CN2007800000495A CN101213733B (zh) 2006-01-23 2007-01-19 压电元件与超声波执行机构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-013391 2006-01-23
JP2006013391 2006-01-23

Publications (1)

Publication Number Publication Date
WO2007083752A1 true WO2007083752A1 (ja) 2007-07-26

Family

ID=38287702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050812 WO2007083752A1 (ja) 2006-01-23 2007-01-19 圧電素子及び超音波アクチュエータ

Country Status (4)

Country Link
US (1) US7545085B2 (ja)
JP (1) JP4069160B2 (ja)
CN (1) CN101213733B (ja)
WO (1) WO2007083752A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391161B2 (en) * 1995-06-26 2008-06-24 Jlj, Inc. Series wired light string with unidirectional shunts
WO2007091443A1 (ja) * 2006-02-07 2007-08-16 Matsushita Electric Industrial Co., Ltd. 圧電素子及び超音波アクチュエータ
WO2008026552A1 (fr) * 2006-08-28 2008-03-06 Panasonic Corporation Appareil d'entraînement
WO2008093799A1 (ja) * 2007-02-02 2008-08-07 Panasonic Corporation 超音波アクチュエータ
WO2008102553A1 (ja) * 2007-02-21 2008-08-28 Panasonic Corporation 駆動装置
US7701115B2 (en) * 2007-05-01 2010-04-20 Panasonic Corporation Drive unit
US7646136B2 (en) * 2007-05-07 2010-01-12 Panasonic Corporation Piezoelectric element, vibratory actuator and drive unit
JP4954814B2 (ja) * 2007-07-11 2012-06-20 パナソニック株式会社 振動型アクチュエータ及びそれを備えた駆動装置
WO2009072302A1 (ja) * 2007-12-06 2009-06-11 Panasonic Corporation 超音波アクチュエータ
JP5467821B2 (ja) * 2009-09-07 2014-04-09 パナソニック株式会社 振動型アクチュエータ
JP5235856B2 (ja) 2009-12-25 2013-07-10 パナソニック株式会社 振動型アクチュエータ
CN103392244B (zh) * 2011-03-01 2016-01-20 株式会社村田制作所 压电元件以及使用该压电元件的压电装置
CN102185096B (zh) * 2011-04-02 2013-11-06 北京大学 压电驱动器及直线压电马达
DE102014209419B3 (de) 2014-05-19 2015-05-07 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallaktor
CN110350079A (zh) * 2019-07-15 2019-10-18 京东方科技集团股份有限公司 一种压电元件及其制备方法和超声传感器
CN113161475A (zh) * 2021-03-30 2021-07-23 广东奥迪威传感科技股份有限公司 一种微小的阵列压电传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308376A (ja) * 1999-04-16 2000-11-02 Seiko Instruments Inc 超音波モータおよび超音波モータ付電子機器
JP2004320980A (ja) * 2003-04-03 2004-11-11 Seiko Epson Corp 稼働装置および電気機器
JP2006187112A (ja) * 2004-12-27 2006-07-13 Tdk Corp 積層型圧電素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378704A (en) * 1966-01-05 1968-04-16 Bourns Inc Piezoelectric multilayer device
JPH053688A (ja) 1991-06-21 1993-01-08 Omron Corp 超音波モータ
US6327120B1 (en) * 1997-04-17 2001-12-04 Fujitsu Limited Actuator using piezoelectric element and head-positioning mechanism using the actuator
JP3137063B2 (ja) * 1997-12-16 2001-02-19 日本電気株式会社 圧電トランス素子とその製造方法
CN2372684Y (zh) * 1999-01-26 2000-04-05 重庆大学 超声波液体密度传感器
JP4406952B2 (ja) 1999-04-08 2010-02-03 株式会社ニコン 振動アクチュエータ
US7075211B1 (en) 1999-05-31 2006-07-11 Nanomotion Ltd. Multilayer piezoelectric motor
JP4454930B2 (ja) 2002-11-29 2010-04-21 セイコーインスツル株式会社 超音波モータ及び超音波モータ付き電子機器
JP4343552B2 (ja) * 2003-02-27 2009-10-14 Tdk株式会社 積層圧電素子
JP2004297951A (ja) * 2003-03-27 2004-10-21 Olympus Corp 超音波振動子及び超音波モータ
TWI270332B (en) * 2004-04-20 2007-01-01 Murata Manufacturing Co Multilayer ceramic board, manufacturing method thereof and piezoelectric resonant component
JP4576185B2 (ja) * 2004-09-22 2010-11-04 オリンパス株式会社 超音波振動子
KR100759521B1 (ko) * 2006-04-06 2007-09-18 삼성전기주식회사 압전 진동자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308376A (ja) * 1999-04-16 2000-11-02 Seiko Instruments Inc 超音波モータおよび超音波モータ付電子機器
JP2004320980A (ja) * 2003-04-03 2004-11-11 Seiko Epson Corp 稼働装置および電気機器
JP2006187112A (ja) * 2004-12-27 2006-07-13 Tdk Corp 積層型圧電素子

Also Published As

Publication number Publication date
US7545085B2 (en) 2009-06-09
JP4069160B2 (ja) 2008-04-02
CN101213733A (zh) 2008-07-02
CN101213733B (zh) 2011-03-02
US20080179996A1 (en) 2008-07-31
JPWO2007083752A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4069160B2 (ja) 超音波アクチュエータ
JP4069161B2 (ja) 圧電素子及び超音波アクチュエータ
US8421308B2 (en) Vibratory actuator
KR100759521B1 (ko) 압전 진동자
US7960895B2 (en) Drive unit
US20080278033A1 (en) Piezoelectric element, vibratory actuator and drive unit
US8410671B2 (en) Vibratory actuator
US8159113B2 (en) Ultrasonic actuator with power supply electrode arrangement
JP4954784B2 (ja) 駆動装置
JP4954783B2 (ja) 圧電素子及び振動型アクチュエータ
JP2007312600A (ja) 圧電素子及び超音波アクチュエータ
US9252711B2 (en) Oscillator and electronic device
JP2007300798A (ja) 圧電素子及び超音波アクチュエータ
US8008840B2 (en) Drive unit
JP5315434B2 (ja) 駆動装置
JP4818858B2 (ja) 超音波モータ素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000049.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007525099

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11886097

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707100

Country of ref document: EP

Kind code of ref document: A1