WO2007078012A1 - 連続x線画像スクリーニング検査装置、プログラム及び記録媒体 - Google Patents

連続x線画像スクリーニング検査装置、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2007078012A1
WO2007078012A1 PCT/JP2007/050367 JP2007050367W WO2007078012A1 WO 2007078012 A1 WO2007078012 A1 WO 2007078012A1 JP 2007050367 W JP2007050367 W JP 2007050367W WO 2007078012 A1 WO2007078012 A1 WO 2007078012A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
ray
electrocardiogram
continuous
image
Prior art date
Application number
PCT/JP2007/050367
Other languages
English (en)
French (fr)
Inventor
Shigeru Sanada
Rie Tanaka
Nobuo Okazaki
Original Assignee
National University Corporation Kanazawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kanazawa University filed Critical National University Corporation Kanazawa University
Priority to EP20070706709 priority Critical patent/EP1970009B1/en
Priority to US12/160,093 priority patent/US8300912B2/en
Priority to JP2007553014A priority patent/JP5093727B2/ja
Publication of WO2007078012A1 publication Critical patent/WO2007078012A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/415Evaluating particular organs or parts of the immune or lymphatic systems the glands, e.g. tonsils, adenoids or thymus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/418Evaluating particular organs or parts of the immune or lymphatic systems lymph vessels, ducts or nodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Definitions

  • the present invention relates to a continuous X-ray image screening technique for performing computer analysis using an X-ray moving image and an electrocardiogram and generating information for evaluating blood flow such as pulmonary blood flow and cardiac blood flow.
  • pulmonary embolism refers to a pulmonary circulatory disorder that obstructs the pulmonary artery (the blood vessel that is sent to the lungs for oxygenation of venous blood) when the embolus is carried in the venous bloodstream.
  • pulmonary embolism economy syndrome is to keep sitting in the same posture in the seat for a long time, making it difficult for venous blood to flow around the back of the knee, an embolus that is a lump of blood It is a disease that leads to pulmonary embolism.
  • Such pulmonary embolism causes abnormalities in pulmonary blood flow because the embolus blocks the pulmonary artery.
  • Diagnosis of this pulmonary embolism includes electrocardiogram, blood test, chest X-ray or cardiac ultrasonography, and these tests are useful as a differential diagnosis and supporting evidence. However, these tests are not sufficient to determine pulmonary embolism. Therefore, pulmonary blood flow scintigraphy or pulmonary angiography is performed.
  • the pulmonary blood flow scintigraphy test detects the X-rays released from the drug by utilizing the property that the drug injected into the vein is collected in the lungs. To image the state of pulmonary blood flow. Specifically, the distribution of pulmonary blood flow is obtained by taking advantage of the property that drug particles remain temporarily embolized in the pulmonary capillaries and the particles are lost when there is no blood flow.
  • the right atrium and left ventricle' are injected with a contrast medium in the pulmonary artery, and the pulmonary blood flow is imaged with X-rays to image the state of fl blood flow.
  • Patent Document 1 it is necessary to supply a stable xenon or the like that absorbs X-rays to the subject, so that it is not easy to realize the imaging of the affected area and the like. There was a problem that the burden on the examiner was heavy. In addition, since the technique of Patent Document 2 only uses an ultrasonic echo sensor, it has not been possible to obtain sufficient information for diagnosis of pulmonary artery thrombus and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-2 7 9 2 6 8
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 3— 2 3 5 8 4 6
  • the present invention has been made in view of such a situation, and its purpose is such as pulmonary embolism and heart disease that cause abnormalities in blood flow such as pulmonary blood flow and cardiac blood flow.
  • Continuous X-ray image screening test that can easily generate information that can be effectively used for diagnosis of these diseases without imposing a heavy burden on the subject in the examination It is to provide an apparatus, a program, and a recording medium.
  • a continuous X-ray image screening examination apparatus inputs an X-ray moving image of a subject, and generates information for evaluating blood flow using the X-ray moving image.
  • An image storage unit storing a plurality of frames constituting the X-ray moving image, and reading out frames from the image storage unit, and calculating a pixel value within a predetermined range for each of the read frames
  • an analysis unit that generates a temporal change amount of the calculated pixel value as blood flow information.
  • the continuous X-ray image screening examination apparatus further includes an electrocardiogram storage unit that stores the electrocardiogram of the subject, and the analysis unit receives a frame from the image storage unit and an electrocardiogram from the electrocardiogram storage unit. Each is read out, and blood flow information having a temporal relationship with the electrocardiogram is generated based on the read out frame.
  • the analysis unit reads a plurality of frames from the image storage unit and an electrocardiogram from the electrocardiogram storage unit, and is designated by the operator for each read frame, the lung field region, the region obtained by dividing the lung field region, and the operator.
  • a local pulmonary blood flow analysis that calculates an average pixel value of any one of the regions of interest and generates the average pixel value for each region and the read electrocardiogram as information synchronized in time series It is preferable to have a means.
  • the analysis unit reads a plurality of frames from the image storage unit and an electrocardiogram from the electrocardiogram storage unit, and a predetermined area in the mediastinum for each read frame. 2007/050367
  • the local cardiac blood flow analysis means for calculating the average pixel value.
  • the local pulmonary blood flow analyzing means further recognizes one heartbeat from the electrocardiogram, calculates a pixel change rate from an average pixel value of each frame of one heartbeat, and calculates the calculated pixel change rate in the region. It is preferable to compare every time.
  • the local pulmonary blood flow analyzing means further includes a delay time from the generation of the R wave of the electrocardiogram to a time when the average pixel value becomes minimum, a rising angle after the time when the average pixel value becomes minimum, and It is preferable to calculate information on at least one of the differences between the maximum value and the minimum value of the average pixel value.
  • the analysis unit further detects, for each frame, a boundary portion between the lung field region and the heart based on the pixel value, and calculates a fluctuation amount of the boundary portion as a heart wall movement amount. It is preferable to have an analysis means.
  • the analysis unit further reads a plurality of frames from the image storage unit, reads an electrocardiogram from the electrocardiogram storage unit, specifies the timing at which the R wave is generated from the electrocardiogram, specifies the frame corresponding to the R wave, It has a pulmonary hemodynamic analysis means for calculating a pixel value difference between the identified frame and another frame in one heartbeat and generating a pulmonary hemodynamic image using the pixel value difference. Is preferred.
  • the analysis unit further reads a plurality of frames from the image storage unit and an electrocardiogram from the electrocardiogram storage unit, calculates a difference in pixel values between temporally adjacent frames, and calculates the difference in pixel values. It is preferable to have a pulmonary blood flow state analyzing means for generating a pulmonary blood flow dynamic image.
  • the analysis unit further reads out a plurality of frames from the image storage unit and an electrocardiogram from the electrocardiogram storage unit, and based on the electrocardiogram, from the maximum value and the minimum value of the pixel values for each frame in one heartbeat.
  • a pulmonary blood flow dynamics analysis unit that calculates an average value for each pixel, calculates a difference between the pixel value and the calculated average value, and generates a pulmonary blood flow dynamic image using the difference from the pixel value is provided. It is characterized by that.
  • the analysis unit further includes a plurality of frames from the image storage unit, and an electrocardiogram.
  • Read the ECG from the storage unit identify the timing of the R wave from the ECG, identify the frame corresponding to the R wave, generate a MIP image for one heartbeat, and the MIP image and the image of the identified frame It is preferable to have a pulmonary blood flow distribution analyzing means for calculating a difference in pixel values between the two and generating a pulmonary blood flow distribution image using the difference in pixel values.
  • the continuous X-ray image screening examination apparatus further includes a pulse waveform storage unit that stores an X-ray pulse waveform indicating X-ray detection timing, and the pulmonary blood flow dynamics analysis unit includes the pulse waveform storage unit.
  • the X-ray pulse waveform is read out from the frame, and the frame corresponding to the R wave is specified based on the X-ray pulse waveform.
  • the analysis unit preferably calculates a pixel value of a lung region of the read frame, determines a frame corresponding to an R wave in a heartbeat phase based on the pixel value, and generates lung blood flow information. It is.
  • the analysis unit calculates a cardiac wall movement amount from the read frame, determines a frame corresponding to the R wave in the heartbeat phase based on the cardiac wall movement amount, and generates pulmonary blood flow information. It is preferable to do.
  • the analysis unit further reads a plurality of frames from the image storage unit, reads an electrocardiogram from the electrocardiogram storage unit, specifies the timing at which the R wave is generated from the electrocardiogram, specifies the frame corresponding to the R wave, Calculating a difference in pixel value between the identified frame and another frame in one heartbeat, and generating a cardiac hemodynamic image using the difference in pixel value;
  • Have The local cardiac blood flow analyzing means further recognizes one cardiac beat from the ECG, and calculates the pixel change rate from the average pixel values of each frame of one heart beat, The calculated pixel change rate is compared for each region.
  • the continuous X-ray image screening inspection program uses the X-ray moving image by an apparatus including an image storage unit in which a plurality of frames constituting the X-ray moving image of the subject is stored.
  • a continuous X-ray image screening test program for generating information for evaluating pulmonary blood flow, wherein the computer constituting the apparatus reads a frame from the image storage unit (1), and the read frame And a process (2) for calculating a pixel value within a predetermined range every time and a process (3) for generating a temporal change amount of the calculated pixel value as pulmonary blood flow information. .
  • a process (2) ′ for estimating a heartbeat phase based on the read frame, and a pulmonary blood flow from the estimated heartbeat phase and the read frame is preferable to execute the process (3) ′ for generating information.
  • a process (4) for reading the electrocardiogram from the electrocardiogram storage unit, and a heartbeat phase based on the read electrocardiogram It is preferable to execute an estimation process (5) and a process (6) for generating pulmonary blood flow information from the estimated heartbeat phase and the read frame.
  • FIG. 1 is a schematic diagram showing a configuration of an entire system including a continuous: X-ray image screening inspection apparatus 1 according to an embodiment of the present invention.
  • Fig. 2 is a block diagram showing the functional configuration of the continuous X-ray image screening inspection device 1 It is.
  • FIG. 3 is a block diagram showing a functional configuration of the analysis unit 40.
  • FIG. 4 is a flowchart showing the processing of the analysis unit 40.
  • FIG. 5 is a diagram showing an example of analysis results by the local pulmonary blood flow analysis means 41.
  • FIG. 6 is a diagram showing local pulmonary blood flow information analyzed by the local pulmonary blood flow analyzing means 41.
  • FIG. 7 is a diagram showing the heart wall movement amount analyzed by the heart wall movement amount analyzing means 42.
  • FIG. 8 is a diagram showing the local pulmonary blood flow information analyzed by the local pulmonary blood flow analysis means 41 and the heart wall movement amount analyzed by the heart wall movement amount analysis means 42.
  • FIG. 9 is a diagram showing processing of step 4 07 in the flowchart shown in FIG.
  • FIG. 10 shows a computer algorithm for creating a pulmonary blood flow dynamic image by the pulmonary blood flow dynamic analysis means 43.
  • FIG. 11 is a diagram showing a pulmonary blood flow dynamic image analyzed by the pulmonary blood flow dynamic analysis means 43.
  • Fig. 12 shows a combined overnight algorithm that creates a pulmonary blood flow distribution image by means of pulmonary blood flow distribution analysis means 44.
  • FIG. 13 is a first diagram showing a pulmonary blood flow distribution image analyzed by the pulmonary blood flow distribution analyzing means 44.
  • FIG. 14 is a second diagram showing a pulmonary blood flow distribution image analyzed by the pulmonary blood flow distribution analyzing means 44.
  • FIG. 14 is a second diagram showing a pulmonary blood flow distribution image analyzed by the pulmonary blood flow distribution analyzing means 44.
  • FIG. 15 is a diagram for explaining an electrocardiogram.
  • FIG. 16 is a diagram showing a method for determining the reference frame based on the average pixel value of the lung.
  • FIG. 17 is a diagram showing a method for determining a reference frame based on the amount of movement of the heart wall.
  • FIG. 18 is a diagram showing the mediastinum analyzed by the local cardiac blood flow analysis means.
  • FIG. 19 is a diagram showing blood flow dynamics information of the mediastinum analyzed by the local cardiac blood flow analysis means.
  • FIG. 20 shows another computer algorithm for creating a pulmonary blood flow dynamic image by the pulmonary blood flow dynamic analysis means 43.
  • Fig. 21 shows another computer algorithm that creates a pulmonary blood flow dynamic image using the pulmonary blood flow dynamic analysis means 43.
  • the present invention utilizes the property that the pixel values (pixel values) in the lung and mediastinum in a chest X-ray motion image change due to heartbeat.
  • this pixel value change information is combined with information on blood flow such as pulmonary blood flow and cardiac blood flow. Therefore, they are effectively used for diagnosing pulmonary embolism and heart disease.
  • Chest X-ray motion images can be obtained from an X-ray detector, and heartbeat phase information can be obtained from an electrocardiograph.
  • the electrocardiogram recognizes the cardiac dynamics during the ventricular systole and ventricular diastole, the increase in blood flow from the heart to the lungs during the ventricular systole (increase in blood flow such as pulmonary blood flow and cardiac blood flow)
  • Information such as changes in pixel values of chest X-ray motion images accompanying increased blood flow such as pulmonary blood flow and cardiac blood flow can be obtained with high accuracy.
  • FIG. 15 is a diagram for explaining an electrocardiogram.
  • the vertical axis represents heartbeat current
  • the horizontal axis represents time.
  • This electrocardiogram is a curve in which changes in weak activity current (heart current) that occur when the muscles of the heart are activated are recorded at specific parts of the body surface. Is to track.
  • a waveform part (R wave) protruding upward appears periodically, and this period corresponds to the heartbeat.
  • One heartbeat consists of R wave, S wave, T wave, P wave and Q wave
  • the electrocardiogram is a curve in which these are repeated in time.
  • Ventricular systole is the period from R wave, S wave and T wave, and blood flows from heart to lung.
  • the ventricular diastole is the period from the T wave to the P and Q waves, and blood flows from the lungs to the heart.
  • the present invention pays attention to such a property, and the feature thereof is that by quantifying the pixel value of the chest X-ray moving image reflecting the heartbeat change, the lung blood flow and the mediastinum in the lung region are quantified.
  • the purpose is to evaluate local blood flow such as cardiac blood flow and to effectively use the quantified information for the diagnosis of pulmonary embolism and heart disease.
  • it is possible to determine a region where the increase in pixel value is small compared to other lung regions or mediastinal regions, and it can be used as useful information for diagnosis of pulmonary embolism or the like.
  • FIG. 1 is a schematic diagram showing a configuration of an entire system including a continuous X-ray image screening inspection apparatus 1 according to an embodiment of the present invention.
  • This system includes a continuous X-ray image screening inspection apparatus 1, an X-ray detector 2, an X-ray generation apparatus 3, an X-ray tube 4, and an electrocardiogram recording apparatus 5.
  • the internal configuration of the continuous X-ray image screening apparatus 1 represents hardware resources.
  • the continuous X-ray image screening inspection device 1 has a CPU 10 that executes each process according to a program, Programs and data, chest X-ray video, X-ray pulse waveform and ECG are stored HD 11, OS and other system programs and system data are stored R ⁇ M12, programs and data are temporarily stored I / F 14 that relays input / output of information to / from RAMI 3, X-ray detector 2 and X-ray generator 3 IZF 15 that relays input / output of information to / from ECG recording device 5 Equipped with a display 17 that displays chest X-ray images, X-ray pulse waveforms, electrocardiograms, analysis results, etc. on the screen, a mouse 18 that inputs operator operations, a keyboard 19, and an IZF 16 that relays the display 17 etc. ing.
  • the CPU 10 outputs a timing signal for the X-ray tube 4 to irradiate X-rays to the X-ray generator 3 through I 14, and from the X-ray detector 2 to the chest X-rays through IZF 14. Enter a video and store it in HD 11.
  • the I / F 14 inputs X-ray information from the X-ray detector 2 to generate an X-ray pulse waveform
  • the CPU 10 inputs the X-ray pulse waveform and stores it in the HD 11.
  • the CPU 10 inputs an electrocardiogram from the electrocardiogram recording device 5 via the IZF 15 and stores it in the HD 11.
  • the CPU 10 reads a program and data for executing each process from the HD 11 or the ROM 12 and stores them in the RAMI 3.
  • the X-ray detector 2 and the X-ray generator 3 are controlled via the IZF 14 by the operation of the mouse 18 and the keyboard 19 by the operator. Also, the chest X-ray moving image and the like are read from the HD 11, each analysis process is executed, and the chest X-ray moving image and its analysis result are displayed on the display unit 17 through the I / F 16.
  • the X-ray detector 2 detects X-rays to generate a chest X-ray moving image and X-ray information, and outputs the chest X-ray moving image and X-ray information to the continuous X-ray image screening inspection apparatus 1. .
  • the X-ray detector 2 when a test is performed on a subject for 5 seconds, the X-ray detector 2 generates a 30-frame chest X-ray moving image in 5 seconds, and the continuous X $ spring image screening inspection apparatus 1 X-ray information is generated so that an I / F 14 generates an X-ray pulse waveform consisting of 30 pulses.
  • This X-ray detector 2 It is a device that obtains an image by converting it into an air signal, and an imaging device that uses a flat panel detector that directly digitizes the image.
  • FPD Full Panel Detector
  • This X-ray detector 2 It is a device that obtains an image by converting it into an air signal, and an imaging device that uses a flat panel detector that directly digitizes the image.
  • FPD Full Panel Detector
  • This X-ray detector 2 It is a device that obtains an image by converting it into an air signal, and an imaging device that uses a flat panel detector that directly digitizes the image.
  • FPD Full Panel Detector
  • the subject is inspected for 4 seconds, and X-ray detector 2 generates 24 frames of chest X-ray motion image in 4 seconds, and I / O of continuous X-ray image screening inspection apparatus 1
  • the necessary X-ray information may be generated so that an X-ray pulse waveform composed of 24 pulses is generated by F 14.
  • F 14 an oscilloscope that displays a waveform for 4 seconds on one screen
  • it is advantageous in that the X-ray pulse waveform can be displayed on one screen.
  • the X-ray generator 3 inputs a timing signal from the continuous X-ray image screening inspection apparatus 1 and exposes the X-ray tube 4 to X-rays at the timing.
  • a chest X-ray moving image is generated in the X-ray detector 2 by X-ray exposure using this timing signal.
  • the electrocardiogram recording device 5 records the electrocardiogram during the above-described 5-second examination and outputs the electrocardiogram to the continuous X-ray image screening examination device 1.
  • the chest X-ray moving image generated by the X-ray detector 2, the X-ray pulse waveform generated by the I ZF 14 of the continuous X-ray image screening inspection device 1, and the X-ray generation device 3 The output timing signal and the electrocardiogram generated by the electrocardiogram recording device 5 are synchronized with each other. Therefore, chest X-ray video, X-ray pulse waveform and ECG are stored in HD 11 along with synchronized time information.
  • FIG. 2 is a block diagram showing a functional configuration of the continuous X-ray image screening inspection apparatus 1 shown in FIG.
  • the continuous X-ray image screening examination apparatus 1 includes a chest X-ray moving image storage unit 21, an X-ray pulse waveform storage unit 2 2, an electrocardiogram storage unit 2 3, a control unit 30, and an analysis unit 40. .
  • the chest X-ray moving image storage unit 21 stores a chest X-ray moving image generated by the X-ray detector 2 described above. Chest X-ray video It is assumed that 30 frames of images for 5 seconds are set as one set and stored for each subject.
  • the chest X-ray moving image does not necessarily need to be a set of Z 30 frames for 5 seconds, and may be a time-series image generated at fine time intervals.
  • the X-ray pulse waveform storage unit 2 2 also stores the X-ray pulse waveform generated by the I ZF 14 described above. It is assumed that the X-ray pulse waveform has 30 pulses in a 5-second examination and is stored for each subject.
  • the electrocardiogram storage unit 23 stores the electrocardiogram recorded by the electrocardiogram recording device 5 described above. An electrocardiogram is a cardiac dynamic waveform in a 5-second examination, and is stored for each subject.
  • the chest X-ray moving image storage unit 2 1 stores the chest X-ray moving image
  • the X-ray pulse waveform storage unit 2 2 stores the X-ray pulse waveform
  • the electrocardiogram storage unit 2 3 stores the electrocardiogram. Is synchronized information as described above.
  • the chest X-ray moving image storage unit 21, the X-ray pulse waveform storage unit 22, and the electrocardiogram storage unit 23 correspond to the HD 11 shown in FIG. ⁇
  • the control unit 30 starts the examination of the subject by the operation of the operator. Specifically, a chest X-ray moving image is generated for the X-ray detector 2, an X-ray pulse waveform is generated for the I ZF 14, and an electrocardiogram is recorded by the electrocardiogram recording device 5. In this case, the control unit 30 outputs a timing signal for exposing the X-ray tube 4 to the X-ray tube 4 to the X-ray generation device 3.
  • a timing signal is output every 16 6 msec.
  • the control unit 30 inputs the chest X-ray moving image as the inspection result from the X-ray detector 2 and stores it in the chest X-ray moving image storage unit 21.
  • the X-ray pulse waveform is input from I ZF 1 4 and stored in the X-ray pulse waveform storage unit 2 2.
  • the control unit 30 inputs the electrocardiogram from the electrocardiogram recording device 5 and stores it in the electrocardiogram storage unit 23.
  • control unit 30 for each subject the chest X-ray motion image, X-ray pulse waveform, and ECG are stored in the chest X-ray motion image storage unit 21, the X-ray pulse waveform storage unit 2 2, and the ECG storage unit 2 3, respectively. Pay.
  • the analysis unit 40 operates, for each designated subject, the chest X-ray moving image storage unit 21 from the chest X-ray moving image and the X-ray pulse waveform storage unit 22 from the X-ray pulse for each designated subject.
  • Waveforms are read out from the ECG storage unit 23, respectively, and based on the synchronized information, the pixel values of the chest X-ray motion image reflecting the heartbeat change are quantified and displayed on the screen.
  • the pulmonary blood flow in the local region of the lung is evaluated and used effectively for diagnosis of pulmonary embolism or heart disease.
  • FIG. 3 is a block diagram showing a functional configuration of the analysis unit 40 shown in FIG.
  • the analysis unit 40 includes local pulmonary blood flow analysis means 4.1, cardiac wall movement analysis means 42, pulmonary blood flow dynamic analysis means 43, and pulmonary blood flow distribution analysis means 44.
  • FIG. 4 ′ is a flowchart showing the processing of each means of the analysis unit 40 shown in FIG. Hereinafter, the operation of these means will be described in detail.
  • the local pulmonary blood flow analysis means 4 1 recognizes the lung field region (step 4 0 1) and analyzes the change in pixel value (increase or decrease in J! City blood flow) for a series of heartbeats (step 4 0 2, 4 0 3).
  • the first average pixel value calculation method by the local pulmonary blood flow analysis means 41 is a process of calculating an average pixel value for each lung in each frame of the chest X-ray moving image.
  • the local pulmonary blood flow analysis means 4 1 reads out the chest X-ray moving image from the chest X-ray moving image storage unit 21 according to the operation of the operator, and the boundary where the pixel value greatly changes for the read chest X-ray moving image. Is detected and the lung region is recognized. Then, for each lung (for the right and left lungs), the average pixel value within that lung field is calculated. This is repeated for each frame, and the average pixel value for each lung is calculated.
  • the second average pixel value calculation method by the local pulmonary blood flow analysis means 4 1 the average pixel value is calculated for each area (divided area) obtained by dividing the lung field area.
  • the local pulmonary blood flow analysis means 41 reads out the chest X-ray motion image from the chest X-ray motion image storage unit 21 according to the operation of the operator, and the pixel value greatly changes for the read chest X-ray motion image. Detect boundaries and recognize lung field regions. Then, according to the operation of the operator, the recognized left and right lung field regions are divided into a plurality of regions, and an average pixel value is calculated for each of the divided regions. This is repeated for each frame, and the average pixel value for each divided area is calculated.
  • the third average pixel value calculation method by the local pulmonary blood flow analysis means 41 is a process of calculating an average pixel value for each measurement region (region of interest (ROI)) arbitrarily specified in each frame.
  • the local pulmonary blood flow analysis means 41, 1 reads out the chest X-ray moving image from the chest X-ray moving image storage unit 21 by the operation of the operator. Then, an average pixel value is calculated for each region of interest designated by the operator's mouse click or other operation. This is repeated for each frame, and the average pixel value for each region of interest is calculated.
  • the local pulmonary blood flow analysis means 41 calculates the third average pixel for each lung field (per lung) in the first average pixel calculation method and for each divided region in the second average pixel calculation method.
  • the amount of change in the average pixel value for each heartbeat is calculated for each region of interest, and the pixel change rate is calculated using the amount of change and the number of gradations.
  • This pixel change amount indicates the relative value of the pulmonary blood flow, and the pixel change rate is calculated by the following equation (2).
  • the local J f blood flow analysis means 41 in step 40 03 receives the X-ray pulse waveform from the X-ray pulse waveform storage unit 2 2 and the electrocardiogram storage unit 2 3 according to the operator's operation.
  • the ECG is read from each.
  • the average pixel value, X-ray pulse waveform, and electrocardiogram calculated by the method described above the fluctuation of the average pixel value indicating pulmonary blood flow is analyzed, and the time between the average pixel value and the electrocardiogram is analyzed. Analyze the relationship.
  • FIG. 5 is a diagram showing the result of the temporal relationship between the average pixel value analyzed by the local pulmonary blood flow analysis means 41 and the electrocardiogram.
  • the upper part shows a graph of average pixel values, and the lower part shows an electrocardiogram.
  • the local pulmonary blood flow analysis means 41 calculates the time difference (the delay time from the R wave) between the R wave point in the electrocardiogram and the minimum point of the average pixel value.
  • the circulation speed of the pulmonary blood flow can be recognized by the delay time from the R wave.
  • the rising angle from the time point of the minimum average pixel value is calculated.
  • the rising speed of the pulmonary blood flow can be recognized from this rising angle.
  • the difference (change) between the minimum and maximum average pixel values is calculated.
  • the local pulmonary blood flow analysis means 41 is provided for each lung, for each divided region, and for each region of interest, for the delay time from the R wave, the rising angle, and the difference between the minimum value and the maximum value of the average pixel value. (Change) is calculated (not shown). This makes it possible to compare this information between regions.
  • the local pulmonary blood flow analysis means 41 displays the local pulmonary blood flow information obtained by the analysis on the screen.
  • FIG. 6 is a screen image diagram showing local pulmonary blood flow information analyzed by the local blood flow analysis means 41.
  • the horizontal axis of the graph is the time axis
  • the vertical axis at the top of the screen is the average pixel value.
  • the average pixel value of the region of interest specified by the operator's operation is displayed as a graph for each frame, and at the bottom, an electrocardiogram and an X-ray pulse waveform that match the time axis are displayed. .
  • each average pixel value of the region of interest is the X-ray pulse wave
  • the mean pixel value rises and the pulmonary blood flow decreases during the ventricular systole when the pulmonary blood flow flowing from the heart to the lung increases. It can be seen that the average pixel value decreases during ventricular diastole.
  • the local pulmonary blood flow analysis means 41 displays a graph of average pixel values for each lung or a graph of average pixel values for each divided region. Further, the local pulmonary blood flow analysis means 41 displays the diagram shown in FIG. 5 on the screen as the local pulmonary blood flow information obtained by the analysis.
  • the cardiac wall movement analysis means 42 calculates a cardiac wall site as a boundary of the lung field region based on the chest X-ray moving image, and analyzes the cardiac wall movement (step 40 4). Specifically, the cardiac wall movement amount analysis means 42, in the region near the left ventricle and the right ventricle designated by the operation of the evening operation, the region where the pixel value changes greatly at the boundary with the lung field region.
  • FIG. 7 is a screen image diagram showing the heart wall movement amount analyzed by the heart wall movement amount analyzing means 42. As shown in FIG. 7, the cardiac wall movement amount may be displayed together with the average pixel value for each region of interest, or only the cardiac wall movement amount may be displayed. In Fig. 7, the horizontal axis of the graph is the time axis, and the vertical axis at the top of the screen is the average pixel value.
  • the amount of cardiac wall movement at the site specified by the operator's operation is displayed as a graph for each frame.
  • the electrocardiogram shown in Fig. 15 it can be seen that the amount of cardiac wall movement changes in the contraction direction during the ventricular systole and in the expansion direction during the ventricular diastole.
  • the analysis unit 40 displays the local pulmonary blood flow information analyzed by the local pulmonary blood flow analysis means 4 1 and the cardiac wall movement amount analyzed by the cardiac wall movement analysis means 4 2 on the same screen. You may make it do.
  • FIG. 8 is a screen image showing local pulmonary blood flow information and cardiac wall movement. Since this figure shows the case where FIGS. 6 and 7 are displayed on the same screen, a detailed description thereof will be omitted.
  • the pulmonary hemodynamic analysis means 4 3 determines the frame immediately before the R wave occurs (immediately before the ventricle expands) from the frame of one heartbeat of the chest X-ray motion image, and the pixel between that frame and the other frame.
  • a pulmonary blood flow dynamic image is created from the difference in values.
  • the pulmonary blood flow dynamics analysis means 4 3 reads the X-ray pulse waveform from the X-ray pulse waveform storage unit 2 2 and the electrocardiogram from the electrocardiogram storage unit 2 3 according to the operation of the operator. For the pulse waveform, determine the time (value on the horizontal axis) when the X-rays were exposed (step 4 0 5). Also, for the read ECG, the time (value on the horizontal axis) when the R wave occurred is determined (Step 4 0 6). Then, the frame number immediately before the R wave occurs is determined (step 4 0 7). Here, the frame immediately before the R wave occurs is called the reference frame.
  • FIG. 9 is a diagram for explaining the processing in step 4 07 in the flowchart shown in FIG.
  • the right figure in Fig. 9 is an enlarged version of the ECG and X-ray pulse waveform shown in the left figure.
  • the upper part shows the ECG and the lower part shows the X-ray pulse waveform.
  • the portion where the waveform protrudes upward is the R wave
  • the portion where the waveform protrudes upward is the timing when the X-ray was exposed.
  • R waves are R 1 and R 2, respectively
  • pulses of the X-ray pulse waveform are a, b, c, d, e and f, respectively.
  • the frame numbers of the chest X-ray moving images taken at the timing of the pulses a to f of the X-ray pulse waveform are F a, F b, F c, F d, F e, and F f (not shown). . From Fig.
  • the pulse just before the R 1 wave occurs is b
  • the pulse just before the R 2 wave occurs is f
  • the pulmonary hemodynamic analysis means 4 3 uses the frame number of the ventricular diastole as Frame numbers F b and F f are determined. Note that the pulmonary hemodynamic analysis means 4 3 indicates that the X-ray pulse waveform is downward in Step 4 0 5.
  • Determine the timing of the exposure timing that protrudes (timing times for pulses a to f, etc.).
  • the time of the R wave (Rl, R2, etc.) during which the ECG waveform protrudes upward is determined.
  • the pulmonary hemodynamic analysis means 43 calculates the difference in pixel values between the image of the reference frame in the read chest X-ray motion image and the image of the other frame in one heartbeat as follows.
  • the pulmonary blood flow dynamics image is created by calculating the pixel unit according to Eq. (3) (Steps 408 and 409).
  • PV f 1 ow (n) f (n)-f ( ⁇ ') ⁇ ⁇ ⁇ ⁇ (3)
  • PV f 1 ow is a function for creating a pulmonary hemodynamic image
  • n is a frame number ( 0 ⁇ n ⁇ 30)
  • f (n) is the chest X-ray video at frame number n
  • n is the reference frame number at that heart rate
  • f ( ⁇ ') is the chest X-ray video at frame number ⁇ ' .
  • the pulmonary hemodynamic image is created based on the difference in pixel values between the frame number Fb image, which is the reference frame, and the frame number Fc, F d, Fe, F f images. Is done.
  • the pulmonary hemodynamic image is displayed in shades according to the magnitude of the difference, together with the pulmonary hemodynamic image, an electrocardiogram and an X-ray Display the pulse waveform on the screen (step 409).
  • FIG. 10 shows a computer algorithm that creates a pulmonary hemodynamic image by the pulmonary hemodynamic analysis means 43.
  • the horizontal axis of the graph shows the time axis. From the top, an electrocardiogram, an X-ray pulse waveform, a chest X-ray motion image, and a pulmonary hemodynamic image showing the difference in pixel values in shades of color are displayed. ing. Pulmonary hemodynamic images are created based on the difference in pixel values between the reference frame and frames a, b, c, d, e and the next heartbeat reference frame, respectively, and the reference frame is updated. , Respectively, based on the difference in pixel values between the updated reference frame and frames a ', b', etc.
  • the pixel change amount of the pulmonary blood flow dynamic image at each period that is, the degree of increase or decrease in pulmonary blood flow is recognized in pixel units be able to.
  • FIG. 11 is a screen image diagram showing a pulmonary blood flow dynamic image analyzed by the pulmonary blood flow dynamic analysis means 43.
  • an electrocardiogram is displayed on the right side, and a chest X-ray motion image and a pulmonary blood flow dynamic image are displayed on the left side.
  • a vertical scroll bar (not shown) on the electrocardiogram along the time axis, the pulmonary hemodynamic image display area has a reference frame and a position where the scroll bar crosses the time axis.
  • a pulmonary hemodynamic image created from the difference in pixel values between the two frames is displayed.
  • the pulmonary blood flow distribution analysis means 4 4 creates a maximum projection (MIP) image from each frame of the chest X-ray motion image at one heartbeat, and calculates the pixel value 'difference between the MIP image and the reference frame image. Create a pulmonary blood flow distribution image.
  • the pulmonary blood flow distribution analysis means 44 first performs the same processing as the steps 4 0 5, 4 0 6, 4 0 7 in the pulmonary blood flow dynamics analysis means 4 3. That is, by the operator's operation, the X-ray pulse waveform is read from the X-ray pulse waveform storage unit 2 2 and the electrocardiogram is read from the ECG storage unit 2 3, and the X-ray exposure time is determined for the X-ray pulse waveform. (Step 4 0 5). For the ECG, the time when the R wave occurred is determined (step 4 06), and the reference frame number is determined (step 4 0 7).
  • fl Blood flow distribution analysis means 4 4 is based on each frame of the chest X-ray moving image read from the chest X-ray moving image storage unit 21 and the reference frame determined in steps 4 0 to 4 0 7.
  • Create a MIP image for each heartbeat (Step 4 10). Specifically, in each frame for each heartbeat, the maximum value is projected in the time axis direction for each pixel to create one MIP image.
  • the reference frame numbers are F b and F f
  • the MIP image at the heart rate including the reference frame of F b is the frame number immediately before the next reference frame number F f from the reference frame number F b.
  • Frames up to F e Images of chest X-rays with frame numbers Fb, Fc, Fd, and Fe).
  • the pulmonary blood flow distribution analysis means 44 calculates the pixel value difference between the MIP image created in step 410 and the reference frame image for each pixel by the following equation (4) for each heartbeat.
  • 1 heartbeat means from the reference frame to the next reference frame.
  • PVd is a function for creating a pulmonary blood flow distribution image
  • n and are ventricular diastole ⁇ ⁇ is the function for creating the MI ⁇ image
  • is the reference frame number for that heartbeat
  • f (n”) is the n ”th chest
  • An X-ray moving image is shown.
  • the pulmonary blood flow distribution image in frames Fb, Fc, Fd, and Fe is shown between the MIP image at that heartbeat and the reference frame at that heartbeat (the chest X-ray motion image of frame number Fb). Created based on the difference in pixel values.
  • the pulmonary blood flow difference distribution analyzing means 44 creates a still image in which the pulmonary blood flow is displayed in color with respect to the pulmonary blood flow distribution image created in step 411 (step 41 2).
  • color shades are added according to the calculated difference, and when the difference is large, it is dark, and when the difference is small, it is displayed light.
  • FIG. 12 shows a composite overnight algorithm in which a pulmonary blood flow distribution image is created by the pulmonary blood flow distribution analysis means 44.
  • the horizontal axis of the graph shows the time axis. From the top, ECG, X-ray pulse waveform, chest X-ray motion image, MIP image, and pulmonary blood flow distribution showing the difference in pixel values in shades of color An image is displayed.
  • the MIP image is created from the reference frame and frames ae.
  • a pulmonary blood flow distribution image is created based on the difference in pixel values between the MIP image and the reference frame image.
  • the reference frame is updated, the MIP image is created from the updated reference frame and frames a, e, e, and the pulmonary blood flow distribution image is displayed as the MIP image and the reference frame. Created from the program.
  • FIG. 13 is a screen image diagram showing the first pulmonary blood flow distribution image analyzed by the pulmonary blood flow distribution analyzing means 44.
  • the time axis of the graph shown in Fig. 12 is expanded and pulmonary blood flow distribution images for each heartbeat are displayed in time series.
  • FIG. 14 is a screen image diagram showing a second pulmonary blood flow distribution image analyzed by the pulmonary blood flow distribution analyzing means 44. This figure shows the pulmonary blood flow distribution images from the first heart beat to the fifth heart beat in addition to the screen image shown in FIG.
  • the total blood flow can be recognized from the pulmonary blood flow distribution image, which corresponds to pulmonary blood flow scintigraphy. Thereby, the total blood flow for every heartbeat can be evaluated.
  • pulmonary blood flow distribution analysis means 44 can obtain information that can be effectively used for diagnosis of pulmonary embolism.
  • the continuous X-ray image screening inspection apparatus 1 shown in FIGS. 1 and 2 is configured by a single computer, but may be configured by a plurality of computers.
  • the control unit 30 inputs an electrocardiogram from the electrocardiogram recording apparatus 5, stores it in the electrocardiogram storage unit 23, and analyzes it. 40 reads out the ECG from the ECG storage unit 23, determines the time when the R wave occurred, and determines the reference frame.
  • the continuous X-ray image screening apparatus 1 does not need to use an electrocardiogram to determine the reference frame.
  • the continuous X-ray image screening inspection device 1 may determine the reference frame by determining the time at which the R wave occurred based on the average pixel value of the lung, or by moving the heart wall. The reference frame may be determined by determining the time when the R wave occurred based on the quantity.
  • FIG. 16 is a diagram showing a method for determining a reference frame based on the average pixel value of the lung.
  • the heart rate phase can be estimated and the time when the R wave occurred can be determined.
  • the period during which the average pixel value of the lung changes from the minimum value to the maximum value corresponds to the ventricular systole, and the period from the maximum value to the minimum value corresponds to the ventricular diastole.
  • the continuous X-ray image screening inspection apparatus 1 determines the frame immediately before the time when the minimum value of the average pixel value is reached. It can be determined as a reference frame.
  • FIG. 17 is a diagram showing a method for determining a reference frame based on the amount of movement of the heart wall.
  • the heartbeat phase can be estimated from the amount of movement of the heart wall, and the time when the R wave occurred can be determined.
  • the period during which the cardiac wall movement changes from the maximum value to the minimum value corresponds to the ventricular systole.
  • the period from the minimum value to the maximum value corresponds to the ventricular diastole.
  • the continuous X-ray image screening inspection apparatus 1 uses the frame immediately before the time when the heart wall movement amount becomes the maximum value.
  • a frame can be determined as a reference frame.
  • the local pulmonary blood flow analysis unit 4 1, the pulmonary blood flow dynamics analysis unit 4 3 and the pulmonary blood flow distribution analysis of the analysis unit 40 Although the unit 44 analyzes the pulmonary blood flow as an object, the analysis may be performed on the cardiac blood flow.
  • the local pulmonary blood flow analysis unit 41, the blood flow dynamics analysis unit 4 3 and the pulmonary blood flow distribution analysis unit 4 4 It becomes an analysis part and a cardiac blood flow distribution analysis part.
  • the local cardiac blood flow analysis means analyzes the change in the pixel value in the mediastinum.
  • the mediastinum part is located in the middle of the left and right lungs, and is the part surrounded by ribs, thorax, etc., like the lungs. Specifically, it refers to the ventricle, atrium, myocardium, and heart septum that make up the heart, the connected large vasculature such as the superior vena cava, inferior vena cava and aorta, and lymph nodes.
  • FIG. 18 is a diagram showing the mediastinum analyzed by the local cardiac blood flow analysis means.
  • FIG. 18 (1) is a diagram showing the structure of the heart
  • FIG. 18 (2) is a diagram showing the position of each part in one frame of the chest X-ray moving image.
  • the atrioventricular valve, aortic valve, and pulmonary valve open and close, and the left ventricular pressure, left atrial pressure, right ventricular pressure, and right atrial pressure change. It is possible to obtain blood flow dynamic information of the heart.
  • FIG. 19 is a diagram showing blood flow dynamics information of the mediastinum analyzed by the local cardiac blood flow analysis means.
  • (1) is the pressure of the aorta, left ventricle, and left atrium
  • (2) is the blood flow rate of the aorta
  • (3) is the volume of the left ventricle
  • (4) is the heart sound
  • (5) is the electrocardiogram
  • (6) shows the average pixel values at various points in the heart.
  • the horizontal axis indicates time.
  • the calculation method of the average pixel value at each location in the heart by the local pulmonary blood flow analysis means 41 is the measurement site of the major arterial arch, pulmonary artery, left ventricle, etc.
  • the local pulmonary blood flow analyzing means 41 reads the chest X-ray moving image from the chest X-ray moving image storage unit 21 by the operation of the operator. Then, in the first frame, an average pixel value is calculated for each region of interest such as the aortic arch designated by the operator's mouse click or other operation. After the second frame, the average pixel value is calculated in the same region of interest as the first frame, and the pixel value graph shown in Fig. 19 (6) is displayed on the screen.
  • the operation of one heartbeat of the heart will be described with reference to FIGS. 19 (1) to (5).
  • the heart sound (4) becomes the waveform of S 1 and the electrocardiogram (5) produces an R wave.
  • the ventricular systole the ventricle begins to contract, the left ventricular pressure (1) increases rapidly, and the aortic valve opens. During this time, the ventricular volume (3) remains constant.
  • the aortic valve opens the ventricular volume (3) decreases and the aortic blood flow velocity (2) increases.
  • the pixel value (6) of the aortic arch 'pulmonary artery increases, and the pixel value (6) of the ventricle decreases.
  • the left ventricular pressure (1) When the aortic blood flow velocity (2) begins to drop, the left ventricular pressure (1) also drops and the aortic valve closes. In the ventricular diastole, the ventricle begins to dilate, and the left ventricular pressure (1) drops rapidly, and the heart sound (4) becomes the waveform of S 2. During this time, the ventricular volume (3) remains constant. When the atrioventricular valve opens, the ventricular volume (3) increases rapidly. Along with this, the pixel value (6) of the ventricle increases and the pixel value (6) of the atrium / pulmonary vein decreases.
  • the pixel values at various locations of the heart shown in (6) appear as changes reflecting the motion of one heart beat of (1) to (5).
  • the change in pixel value can be determined as the part where the blood flow is low or there is no blood flow. It can be used as useful information for diagnosis of diseases. It can also be used as useful information for management during and after surgery.
  • the pulmonary blood flow dynamics analysis means 43 of the control unit 30 uses the frame immediately before the occurrence of the R wave as a reference frame. A pulmonary hemodynamic image was created from the difference in pixel values between a frame and another frame, but a pulmonary hemodynamic image was created from the difference in pixel values between adjacent frames. Also good.
  • the cardiovascular dynamic analysis method may create a cardiovascular dynamic image from the difference in pixel values between adjacent frames.
  • Figure 20 shows another computer that creates a pulmonary hemodynamic image using the pulmonary hemodynamic analysis means 43. It is a pewter algorithm.
  • the horizontal axis of the graph shows the time axis. From the top, an electrocardiogram, an X-ray pulse waveform, a chest X-ray motion image, and a pulmonary hemodynamic image showing the difference in pixel values in shades of color are displayed. ing.
  • the pulmonary hemodynamic image is created based on the difference in pixel values between adjacent frames a and b, frames b and c, frames c and d, frames d and e, and frames e and f. As shown in Fig.
  • the amount of change in the pulmonary blood flow image at each stage is recognized in units of pixels. be able to.
  • the pulmonary blood flow dynamics analysis means 4 3 of the control unit 30 calculates the pixel value at one heart rate calculated for each pixel.
  • An ffl! Blood flow dynamic image may be created from the difference between the average value and the pixel values of other frames in one heartbeat calculated for each pixel. The same applies to the cardiovascular flow analysis means.
  • Figure 21 shows another computer algorithm that creates a pulmonary hemodynamic image using the pulmonary hemodynamic analysis means 43.
  • the horizontal axis of the graph shows the time axis. From the top, the electrocardiogram, the X-ray pulse waveform, and the change of the pixel value in one pixel are shown.
  • the pulmonary hemodynamic analysis means 43 extracts the maximum and minimum pixel values for each pixel in one heartbeat, and calculates the average value from the maximum and minimum values. Then, the difference between the average value and the pixel value of other frames is calculated, and a B hemoptysis flow state image is created using the difference. Such processing is performed for each heartbeat.
  • the continuous X-ray image screening inspection apparatus 1 includes a volatile storage medium such as a CPU 10 and a RAM I 3, a non-volatile storage medium such as a ROM 1 2 and a mouse 1 8. And keyboard 19, communication device such as pointing device, display 17 that displays images, and external X-ray detector 2, X-ray generator 3 and electrocardiograph 5 It is composed of a computer equipped with the interface I ZF 14 and 15 for this purpose.
  • a volatile storage medium such as a CPU 10 and a RAM I 3
  • a non-volatile storage medium such as a ROM 1 2 and a mouse 1 8.
  • keyboard 19 communication device such as pointing device, display 17 that displays images, and external X-ray detector 2, X-ray generator 3 and electrocardiograph 5 It is composed of a computer equipped with the interface I ZF 14 and 15 for this purpose.
  • a computer equipped with the interface I ZF 14 and 15 for this purpose.
  • Each function of the control unit 30 and the analysis unit 40 is realized by causing the CPU 10 to execute
  • Such a continuous X-ray image screening inspection apparatus 1 is used in fields such as screening inspections such as medical examinations, follow-up inspections for patients with heart disease, and alternative inspections for precise inspections such as nuclear medicine inspections. It can also be set up at an airport clinic for, for example, testing for economy syndrome.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Cardiology (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Quality & Reliability (AREA)
  • Endocrinology (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 胸部X線動画像における肺内のピクセル値(画素値)が心拍動性により変化する性質を利用し、ピクセル値の変化情報を肺血流の情報とみなして、肺塞栓症や心臓疾患等の診断のために有効利用する。連続X線画像スクリーニング検査装置1は、胸部X線動画像をX線検出器2から入力し、心拍動性変化の元情報となる心電図を心電図記録装置5から入力する。また、心電図または胸部X線動画像上で計測した心壁動態により心室収縮期及び心室拡張期の心臓動態を認識し、心室収縮期における心臓から肺への血流増加(肺血流の増加)に伴う胸部X線動画像のピクセル値の変化等の情報を生成する。

Description

連続 X線画像スクリーニング検査装置、 プログラム及び記録媒体 関連出願のクロスリファレンス
本出願は、 日本国特許出願 2 0 0 6— 5 8 7号 (2 0 0 6年 1月 5日出願) 及 び日本国特許出願 2 0 0 6— 1 7 2 7 6 0号 (2 0 0 6年 6月 2 2日) の優先権 を要求し、 参照によってこれらの出願を本明細書に合体させるものである。 技術分野
本発明は、 X線動画像及び心電図を用いてコンピュータ解析を行い、 肺血流や 心血流等の血流を評価するための情報を生成する連続 X線画像スクリ一ニング検 查技術に関する。
背景技術
一般に、 肺塞栓症とは、 塞栓子が静脈血流に乗って運ばれことにより、 肺動脈 (静脈血の酸素化のために肺に送る血管) を閉塞する肺循環障害をいう。 例えば 、 肺塞栓症の一つであるエコノミー症候群は、 座席に同じ姿勢で座った状態を長 時間維持することにより、 膝の裏周辺の静脈血が流れ難くなり、 血の固まりであ る塞栓子ができて、 肺塞栓症に至る疾患である。 このような肺塞栓症は、 塞栓子 が肺動脈を閉塞することから、 肺血流に異常を来してしまう。
この肺塞栓症を診断するには、 心電図、 血液検査、 胸部レントゲンまたは心臓 超音波検査等が行われ、 これらの検査は、 鑑別診断及び診断の傍証として有用で ある。 しかしながら、 これらの検査では肺塞栓症の診断の決め手としては十分で はない。 そこで、 肺血流シンチグラフィー検査または肺血管造影検査が行われる 肺血流シンチグラフィ一検査は、 静脈血管注射した薬が肺に集まる性質を利用 し、 薬から放出される X線を検出することにより、 肺血流の状態を画像化する。 具体的には、 薬の粒子が肺毛細血管に一時的に塞栓となって留まり、 血流がない 場合はその粒子が欠損するという性質を利用して、 肺血流の分布を得る。'また、 肺血管造影検査は、 カテーテルを挿入後、 右房 ·左心室'肺動脈で造影剤を注入 し、 肺血流を X線で撮影することにより、 fl 血流の状態を画像化する。
しかしながら、 肺血流シンチグラフィー検査及び肺血管造影検査では、 静脈血 管注射をしたり、 カテーテルを用いて造影剤を注入したりする必要があるため、 被検者は、 検査のために多大な体力が必要になるという負担があった。 このため 、 被検者に検査のための負担を強いることなく、 肺血流の状態を画像化する手法 が望まれている。
ところで、 肺血流等を画像化すると共に定量的に測定するための、 X線による コンピュータ化放射線技術の研究開発が行われている。 この X線によるコンビュ 一夕化放射線技術は、 X線を吸収する働きのある安定キセノン、 酸素及びへリウ ムを被検者へ供給し、 患部を X線で撮影することに'より患部の画像化及び定量化 を実現するものである (特許文献 1を参照)。 また、常に肺動脈を観察できる超音 波エコーセンサーを用いて、 肺動脈血速度を持続的に測定し、 当該速度の低下を 感知することにより、 肺動脈の血栓または塞栓の存在を警告する技術も開示され ている (特許文献 2を参照)。
しかしながら、 特許文献 1の技術では、 X線を吸収する働きのある安定キセノ ン等を被検者へ供給する必要があるため、 患部の画像化等を実現するには簡便で はなく、 しかも被検者への負担が大きいという問題があった。 また、 特許文献 2 の技術では、 超音波エコーセンサーを用いているに過ぎないため、 肺動脈の血栓 等の診断のために十分な情報を得ることができなかった。
特許文献 1 特開平 5— 2 7 9 2 6 8号公報
特許文献 2 特開 2 0 0 3— 2 3 5 8 4 6号公報
発明の開示
発明が解決しょうとする課題 そこで、本発明は、このような状況を鑑みてなされたものであり、その目的は、 肺血流や心血流等の血流に異常を来す原因である肺塞栓症や心臓疾患等の検査に おいて、 被検者に多大な負担を与えることなく、 かつ、 これらの疾患の診断のた めに有効利用できる情報を簡便に生成することが可能な連続 X線画像スクリ一二 ング検査装置、 プログラム及び記録媒体を提供することにある。
課題を解決するための手段
本発明による連続 X線画像スクリーニング検査装置は、 被検者の X線動画像を 入力し、 該 X線動画像を用いて血流を評価するための情報を生成する連続 X線画 像スクリ一二ング検査装置であって、 前記 X線動画像を構成する複数のフレーム が格納される画像格納部と、 該画像格納部からフレームを読み出し、 該読み出し たフレーム毎に所定範囲内のピクセル値を算出し、 該算出したピクセル値の時間 的変化量を血流情報として生成する解析部とを備えたことを特徴とする。
また、 前記解析部は、 画像格納部からフレームを読み出し、 該読み出したフレ ームに基づいて心拍位相との時間的関係の血流情報を生成することが好適である。 また、 本発明による連続 X線画像スクリーニング検査装置は、 さらに、 前記被 検者の心電図が格納される心電図格納部を備え、 前記解析部は、 画像格納部から フレームを、 心電図格納部から心電図をそれぞれ読み出し、 前記読み出したフレ ームに基づいて心電図との時間的関係の血流情報を生成することを特徴とする。 この場合、 前記解析部は、 画像格納部から複数のフレームを、 心電図格納部か ら心電図をそれぞれ読み出し、 読み出したフレーム毎に、 肺野領域、 肺野領域を 分割した領域、 及びオペレータにより指定された関心領域のうちのいずれかの領 域の平均ピクセル値を算出し、 該領域毎の平均ピクセル値及び前記読み出した心 電図を、 時系列に同期させた情報として生成する局所肺血流解析手段を有するこ とが好適である。
また、 前記解析部は、 画像格納部から複数のフレームを、 心電図格納部から心 電図をそれぞれ読み出し、 読み出したフレーム毎に、 縦隔部内における所定領域 2007/050367
の平均ピクセル値を算出する局所心血流解析手段を有することが好適である。 また、 前記局所肺血流解析手段は、 さらに、 前記心電図から 1心拍を認識し、 1心拍の各フレームの平均ピクセル値からピクセル変ィ匕率を算出し、 該算出した ピクセル変化率を前記領域毎に比較することが好適である。
また、 前記局所肺血流解析手段は、 さらに、 前記心電図の R波が発生してから 平均ピクセル値が最小となる時点までの遅延時間、 平均ピクセル値が最小となる 時点以降の立ち上がり角度、 及び平均ピクセル値の最大値と最小値との間の差の うちの少なくとも一つの情報を算出することが好適である。
また、 前記解析部は、 さらに、 フレーム毎に、 ピクセル値 基づいて肺野領域 と心臓との間の境界部位を検出し、 該境界部位の変動量を心壁移動量として算出 する心壁移動量解析手段を有することが好適である。
また、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図 格納部から心電図をそれぞれ読み出し、 心電図から R波が発生したタイミングを 特定し、 R波に対応するフレームを特定し、 該特定したフレームと 1心拍におけ る他のフレームとの間のピクセル値の差を算出し、 該ピクセル値の差を用いて肺 血流動態画像を生成する肺血流動態解析手段を有することが好適である。
また、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図 格納部から心電図をそれぞれ読み出し、 時間的に隣り合うフレーム間のピクセル 値の差を算出し、 該ピクセル値の差を用いて肺血流動態画像を生成する肺血流動 態解析手段を有することが好適である。
また、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図 格納部から心電図をそれぞれ読み出し、 該心電図に基づいて、 1心拍におけるフ レーム毎のピクセル値の最大値及び最小値から平均値を画素毎に算出し、 前記ピ クセル値と算出した平均値との差を算出し、 該ピクセル値との差を用いて肺血流 動態画像を生成する肺血流動態解析手段を有することを特徴とする。
また、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図 格納部から心電図をそれぞれ読み出し、 心電図から R波が発生したタイミングを 特定し、 R波に対応するフレームを特定し、 1心拍における M I P画像を生成し、 該 M I P画像と前記特定したフレームの画像との間のピクセル値の差を算出し、 該ピクセル値の差を用いて肺血流分布画像を生成する肺血流分布解析手段を有す ることが好適である。
また、 連続 X線画像スクリーニング検査装置は、 さらに、 X線の検出タイミン グを示す X線パルス波形が格納されるパルス波形格納部を備え、 前記肺血流動態 解析手段は、 前記パルス波形格納部から X線パルス波形を読み出し、 R波に対応 するフレームを、 X線パルス波形に基づいて特定することを特徴とする。
また、 前記解析部は、 読み出したフレームの肺領域のピクセル値を算出し、 該 ピクセル値に基づいて、 心拍位相における R波に対応するフレームを決定し、 肺 血流情報を生成することが好適である。
また、 前記解析部は、 読み出したフレームから心壁移動量を算出し、 該心壁移 動量に基づいて、 心拍位相における R波に対応するフレ一ムを決定し、 肺血流情 報を生成することが好適である。
また、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図 格納部から心電図をそれぞれ読み出し、 心電図から R波が発生したタイミングを 特定し、 R波に対応するフレームを特定し、 該特定したフレームと 1心拍におけ る他のフレームとの間のピクセル値の差を算出し、 該ピクセル値の差を用いて心 血流動態画像を生成する心血流動態解析手段と、 前記画像格納部から複数のフレ ームを、 心電図格納部から心電図をそれぞれ読み出し、 心電図から R波が発生し たタイミングを特定し、 R波に対応するフレームを特定し、 1心拍における M l P画像を生成し、 該 M I P画像と前記特定したフレームの画像との間のピクセル 値の差を算出し、 該ピクセル値の差を用いて心血流分布画像を生成する心血流分 布解析手段とを有し、 前記局所心血流解析手段は、 さらに、 前記心電図から 1心 拍を認識し、 1心拍の各フレームの平均ピクセル値からピクセル変化率を算出し、 該算出したピクセル変化率を前記領域毎に比較することを特徴とする。
また、 本発明による連続 X線画像スクリーニング検査プログラムは、 被検者の X線動画像を構成する複数のフレームが格納された画像格納部を備えた装置によ り、 前記 X線動画像を用いて肺血流を評価するための情報を生成する連続 X線画 像スクリーニング検査プログラムであって、前記装置を構成するコンピュータに、 前記画像格納部からフレームを読み出す処理 (1 ) と、 該読み出したフレーム毎 に所定範囲内のピクセル値を算出する処理 (2 ) と、 該算出したピクセル値の時 間的変化量を肺血流情報として生成する処理 ( 3 ) .とを実行させることを特徴と する。
また、 前記 (2 ) 及び (3 ) の処理の代わりに、 前記読み出したフレームに基 づいて心拍位相を推定する処理(2 ) ' と、該推定した心拍位相及び前記読み出し たフレームから肺血流情報を生成する処理(3 ) 'とを実行させることが好適であ る。
また、 被検者の心電図が格納された心電図格納部を備えた装置を構成するコン ピュー夕に、 前記心電図格納部から心電図を読み出す処理 (4 ) と、 該読み出し た心電図に基づいて心拍位相を推定する処理 (5 ) と、 該推定した心拍位相及び 前記読み出したフレームから肺血流情報を生成する処理 (6 ) とを実行させるこ とが好適である。
発明の効果 .
本発明によれば、 肺血流や心血流等の血流に異常を来す原因である肺塞栓症や 心臓疾患等の検査において、 被検者に多大な負担を与えることなく、 かつ、 これ らの疾患の診断のために有効利用できる情報を簡便に生成することが可能となる。 図面の簡単な説明
第 1図は、 本発明の実施の形態による連続: X線画像スクリーニング検査装置 1を 含む全体システムの構成を示す概略図である。
第 2図は、 連続 X線画像スクリ一二ング検査装置 1の機能構成を示すプロック図 である。
第 3図は、 解析部 4 0の機能構成を示すブロック図である。
第 4図は、 解析部 4 0の処理を示すフローチャート図である。
第 5図は、 局所肺血流解析手段 4 1による解析結果例を示す図である。
第 6図は、 局所肺血流解析手段 4 1により解析された局所肺血流情報を示す図で ある。
第 7図は、心壁移動量解析手段 4 2により解析された心壁移動量を示す図である。 第 8図は、 局所肺血流解析手段 4 1により解析された局所肺血流情報、 及び心壁 移動量解析手段 4 2により解析された心壁移動量を示す図である。
第 9図は、 図 4に示したフローチャート図のステップ 4 0 7の処理を示す図であ る。
第 1 0図は、 肺血流動態解析手段 4 3により肺血流動態画像を作成ザるコンビュ —タアルゴリズムである。
第 1 1図は、 肺血流動態解析手段 4 3により解析された肺血流動態画像を示す図 である。
第 1 2図は、 肺血流分布解析手段 4 4により肺血流分布画像を作成するコンビュ 一夕アルゴリズムである。
第 1 3図は、 肺血流分布解析手段 4 4により解析された肺血流分布画像を示す第 1の図である。
第 1 4図は、 肺血流分布解析手段 4 4により解析された肺血流分布画像を示す第 2の図である。
第 1 5図は、 心電図を説明するための図である。
第 1 6図は、 肺の平均ピクセル値に基づいて基準フレームを決定する手法を示す 図である。
第 1 7図は、心壁移動量に基づいて基準フレームを決定する手法を示す図である。 第 1 8図は、 局所心血流解析手段により解析される縦隔部を示す図である。 第 1 9図は、 局所心血流解析手段により解析された縦隔部の血流動態情報を示す 図である。
第 2 0図は、 肺血流動態解析手段 4 3により肺血流動態画像を作成する他のコン ピュー夕アルゴリズムである。
第 2 1図は、 肺血流動態解析手段 4 3により肺血流動態画像を作成する他のコン ピュー夕アルゴリズムである。
発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて詳細に説明する。
〔本発明の概要〕
まず、 本発明の概要について説明する。'本発明は、 胸部 X線動画像における肺 内及び縦隔部のピクセル値 (画素値). が、 心拍動により変化する性質を利用した ものである。 つまり、 ピクセル値が心拍動による肺血流や心血流等の血流に応じ て増減することに着目し、 このピクセル値の変化情報を肺血流や心血流等の血流 の情報とみなして、 肺塞栓症や心臓疾患等の診断のために有効利用するものであ る。 胸部 X線動画像は X線検出器から得ることができ、 心拍の位相情報は心電図 記録装置から得ることができる。 また、 心電図により心室収縮期及び心室拡張期 の心臓動態が認識されるから、 心室収縮期における心臓から肺への血流増加 (肺 血流や心血流等の血流の増加) により、 当該肺血流や心血流等の血流の増加に伴 う胸部 X線動画像のピクセル値の変化等の情報を精度良く得ることができる。 ま た、 ピクセル値または心壁動態から心拍位相を推定することが可能である。 した がって、 ピクセル値または心壁動態から推定した心拍位相情報を心電図の代わり に用いても、 目的とする肺血流や心血流等の血流情報を得ることができる。 詳細 については後述する。
図 1 5は、 心電図を説明するための図である。 図中、 縦軸は心拍電流、 横軸は 時間を示す。この心電図は、心臓の筋肉が活動した際に生じる微弱な活動電流(心 拍電流) の変化を、 体表面の特定部位において記録した曲線であり、 心臓の動態 を追跡するものである。 図中、 上部に突出した波形部分 (R波) が周期的に現れ ており、 この周期が心拍に相当する。 1心拍は、 R波、 S波、 T波、 P波及び Q 波から成り、 心電図は、 これらが時間的に連続して繰り返される曲線となる。 心 室収縮期は、 R波、 S波及び T波までの期間をいい、血液は心臓から肺へ流れる。 また、 心室拡張期は、 T波の後から P波及び Q波までの期間をいい、 血液は肺か ら心臓へ流れる。
ここで、 図 1 5に示した心室収縮期において血液が心臓から肺へ流れると (肺 血流が増加すると)、胸部 X線動画像における肺野内のピクセル値が増加する。 こ れは、 肺血流の存在により、 X線が透過し難くなり、 その透過率が低下するから である。 ここで、 ピクセル値を P、 X線検出器に.より検出される X線量 (X線検 出器への入射線量) を Nとすると、 以下の関係となる。 これは、 心血流の場合も 同様である。
P∞l / \ o g N - - · ( 1 )
本発明はこのような性質に着目したものであり、 その特徴は、 心拍動性変化を反 映した胸部 X線動画像のピクセル値を定量化することにより、 肺局所における肺 血流や縦隔局所における心血流等の血流を評価し、 当該定量化した情報を肺塞栓 症や心臓疾患等の診断のために有効利用することにある。 これにより、 例えば、 ピクセル値の増加が他の肺局所または縦隔局所に比べて少ない局所を判断するこ とができ、 肺塞栓症等の診断のための有用な情報として利用することができる。 〔構成〕
図 1は、 本発明の実施の形態による連続 X線画像スクリーニング検査装置 1を 含む全体システムの構成を示す概略図である。 このシステムは、 連続 X線画像ス クリーニング検査装置 1、 X線検出器 2、 X線発生装置 3、 X線管球 4、 及び心 電図記録装置 5により構成される。 連続 X線画像スクリ一ユング検査装置 1の内 部構成はハードウェア資源を表している。 連続 X線画像スクリーニング検査装置 1は、 プログラムに従って各処理を実行する C P U 1 0、 各処理を実行するため のプログラムやデータ、 胸部 X線動画像、 X線パルス波形及び心電図が格納され る HD 11、 OS等のシステムプログラムやシステムデータが格納されている R 〇M12、 プログラムやデータ等を一時的に格納する RAMI 3、 X線検出器 2 及び X線発生装置 3との間の情報の入出力を中継する I /F 14、 心電図記録装 置 5との間の情報の入出力を中継する IZF 15、 胸部 X線動画像、 X線パルス 波形、 心電図及び解析結果等を画面に表示する表示器 17、 オペレータの操作を 入力するマウス 18、 キーボード 19、 並びに、 表示器 17等を中継する IZF 16を備えている。
C P U 10は、 X線管球 4が X線を曝射するためのタイミング信号を I 1 4を介して X線発生装置 3へ出力し、 X線検出器 2から IZF 14を介して胸部 X線動画像を入力し、 HD 11に格納する。 また、 I/F 14が X線情報を X線 検出器 2から入力して X線パルス波形を生成すると、 CPU 10は、 当該 X線パ ルス波形を入力し、 HD 11に格納する。 また、 CPU 10は、 IZF 15を介 して心電図記録装置 5から心電図を入力し、 HD 11に格納する。 また、 CPU 10は、 各処理を実行するためのプログラム及びデータを HD 11または ROM 12から読み出し、 RAMI 3に格納する。 そして、 RAMI 3に格納されたプ ログラムに従って、 オペレータによるマウス 18及びキーボード 19の操作によ り、 IZF 14を介して X線検出器 2及び X線発生装置 3を制御する。 また、 H D 11から胸部 X線動画像等を読み出し、 各解析処理を実行し、 胸部 X線動画像 及びその解析結果等を I /F 16を介して表示器 17に表示する。
X線検出器 2は、 X線を検出することにより胸部 X線動画像及び X線情報を生 成し、 当該胸部 X線動画像及び X線情報を連続 X線画像スクリーニング検査装置 1へ出力する。 例えば、 被検者に対し 5秒間の検査が行われると、 X線検出器 2 は、 5秒間で 30フレームの胸部 X線動画像を生成すると共に、 連続 X$泉画像ス クリーニング検査装置 1の I/F 14により 30個のパルスから成る X線パルス 波形が生成されるように、 X線情報を生成する。 この X線検出器 2は、 X線を電 気信号に変換して画像を得る機器であり、 画像を直接デジタル化する平面検出器 を使用した撮像機器である。 例えば F P D (F l a t P a n e l D e t e c t o r ) が用いられ、 従来の I . I . —X線 TVシステムのような透視装置に比 ベ、 X線に対する感度が高く、 撮像視野が広く、 かつ画像に歪みがないため、 鮮 明で安定した動画像を得ることができる。
尚、 被検者に対し 4秒間の検査を行い、 X線検出器 2が、 4秒間で 2 4フレー ムの胸部 X線動画像を生成すると共に、 連続 X線画像スクリーニング検査装置 1 の I /F 1 4により 2 4個のパルスから成る X線パルス波形が生成されるように、 必要な X線情報を生成するようにしてもよい。 この場合、 1画面に 4秒間の波形 を表示するオシロスコープを用いたときには、 前記 X線パルス波形を 1画面に表 示することができる点で好都合である。
X線発生装置 3は、 タイミング信号を連続 X線画像スクリ一二ング検査装置 1 から入力し、 当該タイミングで X線管球 4に X線を曝射させる。 このタイミング 信号による X線の曝射により、 X線検出器 2において、 胸部 X線動画像が生成さ れる。 また、 心電図記録装置 5は、 前述の 5秒間の検査中における心電図を記録 し、 当該心電図を連続 X線画像スクリ一二ング検査装置 1へ出力する。
ここで、 X線検出器 2により生成される胸部 X線動画像、 連続 X線画像スクリ 一二ング検査装置 1の I ZF 1 4により生成される X線パルス波形、 X線発生装 置 3へ出力されるタイミング信号、 及び、 心電図記録装置 5により生成される心 電図は、 それぞれ同期している。 したがって、. 胸部 X線動画像、 X線パルス波形 及び心電図は、 同期した時間情報と共に HD 1 1に格納される。
図 2は、 図 1に示した連続 X線画像スクリ一二ング検査装置 1の機能構成を示 すブロック図である。 この連続 X線画像スクリーニング検査装置 1は、 胸部 X線 動画像格納部 2 1、 X線パルス波形格納部 2 2、心電図格納部 2 3、制御部 3 0、 及び解析部 4 0を備えている。 胸部 X線動画像格納部 2 1には、 前述した X線検 出器 2により生成された胸部 X線動画像が格納されている。 胸部 X線動画像は、 5秒間の検査における 3 0フレームの画像を 1セットとし、 被検者毎に格納され ているものとする。 ここで、 胸部 X線動画像は、 必ずしも 5秒間 Z 3 0フレーム を 1セットとする必要はなく、 細かな時間間隔で生成された時系列画像であれば よい。 また、 X線パルス波形格納部 2 2には、 前述した I ZF 1 4により生成さ れた X線パルス波形も格納されている。 X線パルス波形は、 5秒間の検査におけ る 3 0のパルスを有し、 被検者毎に格納されているものとする。 また、 心電図格 納部 2 3には、 前述した心電図記録装置 5により記録された心電図が格納されて いる。 心電図は、 5秒間の検査における心臓動態波形であり、 被検者毎に格納さ れているものとする。
ここで、 胸部 X線動画像格納部 2 1に格納された胸部 X線動画像、 X線パルス 波形格納部 2 2に格納された X線パルス波形、 及び心電図格納部 2 3に格納され た心電図は、 前述したように同期した情報である。 また、 胸部 X線動画像格納部 2 1、 X線パルス波形格納部 2 2及び心電図格納部 2 3は、 図 1に示した HD 1 1に相当する。 ·
制御部 3 0は、 オペレータの操作により、 被検者の検査を開始する。 具体的に は、 X線検出器 2に対し胸部 X線動画像を、 I ZF 1 4に対し X線パルス波形を それぞれ生成させ、 心電図記録装置 5に対し心電図を記録させる。 この場合、 制 御部 3 0は、 X線管球 4に X線を曝射させるためのタイミング信号を X線発生装 置 3へ出力する。 ここで、 5秒間の検査において 3 0フレームの胸部 X線動画像 を生成する場合には、 1 6 6 m s e c毎にタイミング信号を出力する。 制御部 3 0は、 被検者の検査が終了すると、 検査結果である胸部 X線動画像を X線検出器 2から入力し、 胸部 X線動画像格納部 2 1に格納する。 また、 X線パルス波形を I ZF 1 4から入力し、 X線パルス波形格納部 2 2に格納する。 ここで、 5秒間 の検査において 3 0フレームの胸部 X線動画像が生成された場合には、 X線パル ス波形は 1 6 6 m s e c毎のパルスとなる。 さらに、 制御部 3 0は、 心電図を心 電図記録装置 5から入力し、 心電図格納部 2 3に格納する。 このように、 制御部 3 0は、 被検者毎に、 胸部 X線動画像、 X線パルス波形及び心電図を胸部 X線動 画像格納部 2 1、 X線パルス波形格納部 2 2及び心電図格納部 2 3にそれぞれ格 納する。
解析部 4 0は、 オペレータの操作により、 指定された被検者毎に、 胸部 X線動 画像格納部 2 1から胸部 X線動画像を、 X線パルス波形格納部 2 2から X線パル ス波形を、 心電図格納部 2 3から心電図をそれぞれ読み出し、 これらの同期した 情報に基づいて、 心拍動性変化を反映した胸部 X線動画像のピクセル値を定量化 し、 画面に表示する。 これにより、 肺局所における肺血流が評価され、 肺塞栓症 や心臓疾患等の診断のために有効利用されることになる。
図 3は、 図 2に示した解析部 4 0の機能構成を示すブ ϋック図である。 この解 析部 4 0は、 局所肺血流解析手段 4.1、 心壁移動量解析手段 4 2、 肺血流動態解 析手段 4 3、 及び肺血流分布解析手段 4 4を備えている。 また、 図 4'は、 図 3に 示す解析部 4 0の各手段の処理を示すフロ一チャート図である。 以下、 これらの 手段の動作について詳細に説明する。
瞧〕
まず、 局所肺血流解析手段 4 1の動作について説明する。 局所肺血流解析手段 4 1は、肺野領域を認識し (ステップ 4 0 1 )、一連の心拍に対するピクセル値の 変化 (J!市血流の増減) を解析する (ステップ 4 0 2 , 4 0 3 )。 以下、 具体的に説 明する。 局所肺血流解析手段 4 1による第 1の平均ピクセル値算出手法は、 胸部 X線動画像の各フレームにおいて、肺毎に平均ピクセル値を算出する処理である。 局所肺血流解析手段 4 1は、 オペレータの操作により、 胸部 X線動画像格納部 2 1から胸部 X線動画像を読み出し、 読み出した胸部 X線動画像について、 ピクセ ル値が大きく変化する境界を検出し、 肺野領域を認識する。 そして、 肺毎に (右 肺及び左肺について)、その肺野領域内の平均ピクセル値を算出する。 これをフレ —ム毎に繰り返し、 肺毎の平均ピクセル値を算出する。
局所肺血流解析手段 4 1による第 2の平均ピクセル値算出手法は、 各フレーム において、 肺野領域を分割した領域 (分割領域) 毎に平均ピクセル値を算出する 処理である。 局所肺血流解析手段 4 1は、 オペレータの操作により、 胸部 X線動 画像格納部 2 1から胸部 X線動画像を読み出し、 読み出した胸部 X線動画像につ いて、ピクセル値が大きく変化する境界を検出し、肺野領域を認識する。そして、 オペレータの操作に従って、前記認識した左右の肺野領域を複数の領域に分割し、 当該分割領域毎に平均ピクセル値を算出する。 これをフレ一ム毎に繰り返し、 分 割領域毎の平均ピクセル値を算出する。
局所肺血流解析手段 4 1による第 3の平均ピクセル値算出手法は、 各フレーム において、 任意に指定された測定部位 (関心領域 (R O I ) )毎に平均ピクセル値 を算出する処理である。 局所肺血流解析手段 4 1,は、 オペレータの操作により、 胸部 X線動画像格納部 2 1から胸部 X線動画像を読み出す。 そして、 オペレータ のマウスクリック等の操作により指定された関心領域毎に平均ピクセル値を算出 する。 これをフレーム毎に繰り返し、 関心領域毎の平均ピクセル値を算出する。 また、 局所肺血流解析手段 4 1は、 第 1の平均ピクセル算出手法では肺野領域 毎 (肺毎) に、 第 2の平均ピクセル算出手法では分割領域毎に、 第 3の平均ピッ クセル算出手法では関心領域毎に、 それぞれ 1心拍における平均ピクセル値の変 化量を算出し、 当該変化量及び階調数を用いてピクセル変化率を算出する。 この ピクセル変化量は、 肺血流量の相対値を示し、 ピクセル変化率は、 以下の (2 ) 式により算出される。
変化率(%) - (平均ピクセル値の変化量/階調数) X 1 0 0 · · · ( 2 ) これにより、 肺血流量を領域毎に比較することができる。 この場合、 肺塞栓の箇 所には肺血流がないため、 肺血流量を示す平均ピクセル値の変化量及び変化率は 低下することが予想される。 したがって、 肺塞栓症の診断のために有効利用でき る情報を得ることができる。
また、 局所 J f血流解析手段 4 1は、 ステップ 4 0 3において、 オペレータの操 作により、 X線パルス波形格納部 2 2から X線パルス波形を、 心電図格納部 2 3 から心電図をそれぞれ読み出す。 そして、 前述した手法によりそれぞれ算出した 平均ピクセル値、 X線パルス波形及び心電図を用いて、 肺血流を示す平均ピクセ ル値の変動を解析すると共に、 当該平均ピクセル値と心電図との間の時間的関係 を解析する。
図 5は、 局所肺血流解析手段 4 1により解析された平均ピクセル値と心電図と の間の時間的関係の結果を示す図である。 上部は平均ピクセル値のグラフを、 下 部は心電図を示す。 局所肺血流解析手段 4 1は、 心電図における R波の時点と、 平均ピクセル値の最小値の時点との間の時間差 (R波からの遅延時間) を算出す る。この R波からの遅延時間により、肺血流の巡り速度を'認識することができる。 また、 平均ピクセル値の最小値の時点からの立ち上がり角度を算出する。 この立 ち上がり角度により、 肺血流の増加速度を認識することができる。 また、 平均ピ クセル値の最小値と最大値との間の差 (変化量) を算出する。 さらに、 局所肺血 流解析手段 4 1は、 肺毎、 分割領域毎及び関心領域毎に、 前述した R波からの遅 延時間、立ち上がり角度、及び平均ピクセル値の最小値と最大値との差(変化量) を算出する (図示せず)。 これにより、 これらの情報を領域間で比較することがで きる。
局所肺血流解析手段 4 1は、解析により得た局所肺血流情報を画面に表示する。 図 6は、 局所 血流解析手段 4 1により解析された局所肺血流情報を示す画面ィ メ一ジ図である。 図 6において、 グラフの横軸は時間軸を、 画面上部の縦軸は平 均ピクセル値を示す。 画面右上部には、 オペレータの操作により指定された関心 領域の平均ピクセル値がフレーム毎にグラフとして表示され、 その下部には、 時 間軸に合わせた心電図及び X線パルス波形が表示されている。 また、 画面左上部 には、 胸部 X線動画像における関心領域が黒丸で表示され、 その下部には、 関心 領域における平均ピクセル値の比較結果が表示されている。 左肺動脈の変動が最 も大きい関心領域のピクセル変動量が 9 0であり、 変化率が 2 . 2 %であること 等が表示されている。 図 6から、 関心領域の各平均ピクセル値は、 X線パルス波 形のパルスを生じた時間に対応しており、 図 1 5に示した心電図において、 心臓 から肺へ流れる肺血流が増加する心室収縮期には平均ピクセル値が上昇し、 肺血 流が減少する心室拡張期には平均ピクセル値が下降していることがわかる。 同様 に、 局所肺血流解析手段 4 1は、 肺毎の平均ピクセル値のグラフ、 または分割領 域毎の平均ピクセル値のグラフを表示する。 また、 局所肺血流解析手段 4 1は、 解析により得た局所肺血流情報として、 図 5に示した図を画面 表示する。 次に、 心壁移動量解析手段 4 2の動作について説明する。 心壁移動量解析手段 4 2は、 胸部 X線動画像に基づいて肺野領域の境界となる心壁の部位を求め、 心 壁移動量を解析する(ステップ 4 0 4)。具体的には、心壁移動量解析手段 4 2は、 オペレー夕の操作により指定された左心室及び右心室付近の部位において、 肺野 領域との境界であつてピクセル値が大きく変化する部位を自動検出し、 その部位 の変化量を心壁移動量として算出する。 これをフレーム毎に算出する'。 そして、 心壁移動量解析手段 4 2は、指定領域毎に、フレーム毎の心壁移動量を表示する。 図 7は、 心壁移動量解析手段 4 2により解析された心壁移動量を示す画面ィメ ージ図である。 尚、 図 7に示すように、 心壁移動量を、 関心領域毎の平均ピクセ ル値と共に表示するようにしてもよいし、 心壁移動量のみを表示するようにして もよい。 図 7において、 グラフの横軸は時間軸を、 画面上部の縦軸は平均ピクセ ル値を示す。 画面右下部には、 オペレータの操作により指定された部位の心壁移 動量がフレーム毎のグラフとして表示されている。 心壁移動量は、 図 1 5に示し た心電図において、 心室収縮期には収縮方向に、 心室拡張期には拡張方向にそれ ぞれ変化していることがわかる。
尚、 解析部 4 0は、 局所肺血流解析手段 4 1により解析された局所肺血流情報 と、 心壁移動量解析手段 4 2により解析された心壁移動量とを同一画面に表示す るようにしてもよい。 図 8は、 局所肺血流情報及び心壁移動量を示す画面ィメー ジ図である。 この図は、 図 6及び図 7を同一画面に表示した場合を示しているの で、 詳細な説明は省略する。 次に、 肺血流動態解析手段 4 3の動作について説明する。 肺血流動態解析手段 4 3は、 胸部 X線動画像の 1心拍のフレームから R波が起きる直前 (心室が拡張 する直前) のフレームを決定し、 当該フレームと他のフレームとの間のピクセル 値の差から、 肺血流動態画像を作成する。 具体的には、 肺血流動態解析手段 4 3 は、オペレータの操作により、 X線パルス波形格納部 2 2から X線パルス波形を、 心電図格納部 2 3から心電図をそれぞれ読み出し、 読み出した X線パルス波形に ついて、 X線が曝射された時間(横軸の値)を決定する(ステップ 4 0 5 )。また、 読み出した心電図について、 R波が起きた時間 (横軸の値) を決定する (ステツ プ 4 0 6 )。そして、 R波が起きる直前のフレーム番号を決定する (ステップ 4 0 7 )。 ここで、 R波が起きる直前のフレームを基準フレームという。 尚、 以下の説 明では、 R波が起きる直前のフレームを基準フレームとするが、 必ずしも直前の フレームである必要はなく、 心電図における R波のタイミングのフレームまたは そのタイミングに近いフレームであればよい。 つまり、 心電図におけて R波が発 生した時の状況が反映されたフレーム(R波に対応するフレーム)であればよい。 図 9は、 図 4に示したフローチャート図のステップ 4 0 7の処理を説明するた めの図である。 図 9の右図は、 左図に示す心電図及び X線パルス波形の一部を拡 大したものであり、 その上部は心電図を、 下部は X線パルス波形を示す。 この心 電図において、 波形が上方向に突出する箇所が R波であり、 X線パルス波形にお いて、 波形が上方向に突出する箇所が、 X線が曝射されたタイミングである。 こ こで、 R波をそれぞれ R l , R 2とし、 X線パルス波形のパルスをそれぞれ a, b, c , d , e , f とする。 また、 X線パルス波形のパルス a〜 fのタイミング で撮影した胸部 X線動画像のフレーム番号をそれぞれ F a , F b , F c , F d, F e , F f とする (図示せず)。 図 9より、 R 1波が起きる直前のパルスは bであ り、 R 2波が起きる直前のパルスは fであるから、 肺血流動態解析手段 4 3は、 心室拡張期のフレーム番号として、 フレーム番号 F b , F fを決定する。 尚、 肺 血流動態解析手段 4 3は、 ステップ 4 0 5において、 X線パルス波形が下方向に 突出する曝射タイミングの時間 (パルス a〜 f等のタイミング時間)を決定する。 また、 ステップ 406において、 心電図の波形が上方向に突出する R波 (Rl, R2等) の時間を決定する。
図 4に戻って、 肺血流動態解析手段 43は、 読み出した胸部 X線動画像のうち の基準フレームの画像と、 1心拍における他のフレームの画像との間のピクセル 値の差を、 以下の (3) 式により画素単位に計算し、 肺血流動態画像を作成する (ステップ 408, 409)。
PV f 1 ow (n) = f (n) - f (η') · · · (3) ここで、 PV f 1 owは肺血流動態画像を作成するための関数、 nはフレーム番 号 (0<n<30)、 f (n) はフレーム番号 nにおける胸部 X線動画像、 n, は その心拍における基準フレーム番号、 f (η') はフレーム番号 η' における胸部 X線動画像を示す。 図 9において、 肺血流動態画像は、 基準フレームであるフレ ーム番号 Fbの画像と、 フレーム番号 Fc, F d, Fe, F f の画像との間のピ クセル値の差に基づいて作成される。 そして、 ピクセル値の差がプラス (平均ピ クセル値が増加 =X線透過性が減少-肺血流が増加) の場合は暖色で、 ピクセル 値の差がマイナス (平均ピクセル値が減少 = X線透過性が増加 =肺血流が減少) の場合は寒色で表し、 かつその差の大きさに合わせた濃淡で肺血流動態画像を表 し、当該肺血流動態画像と共に、心電図及び X線パルス波形を画面に表示する(ス テツプ 409),。
図 10は、 肺血流動態解析手段 43により肺血流動態画像を作成するコンピュ 一夕アルゴリズムである。 図 10において、 グラフの横軸は時間軸を示し、 上か ら心電図、 X線パルス波形、 胸部 X線動画像、 及び、 ピクセル値の差を濃淡色で 表した肺血流動態画像が表示されている。 肺血流動態画像は、 基準フレームとフ レーム a, b, c, d, e及び次の心拍の基準フレームとの間のピクセル値の差 に基づいてそれぞれ作成され、 基準フレームが更新されると、 更新後の基準フレ ームとフレーム a ', b'等との間のピクセル値の差に基づいてそれぞれ作成され る。 図 1 5に示したように心電図から心室収縮期及び心室拡張期を認識できるか ら、 各時期における肺血流動態画像のピクセル変化量、 すなわち肺血流の増減度 合いを画素単位で認識することができる。
また、 図 1 1は、 肺血流動態解析手段 4 3により解析された肺血流動態画像を 示す画面イメージ図である。 図 1 1において、 右側には心電図が表示され、 左側 には胸部 X線動画像及び肺血流動態画像が表示されている。 心電図上の縦のスク ロールバー (図示せず) を時間軸に沿って移動させることにより、 肺血流動態画 像表示部には、 基準フレームと、 スクロ一ルバ一が時間軸に交差する箇所のフレ ームとの間のピクセル値の差から作成された肺血流動態画像が表示される。 次に、 肺血流分布解析手段 4 4の動作について説明する。 肺血流分布解析手段 4 4は、 1心拍における胸部 X線動画像の各フレームから最大値投影 (M I P ) 画像を作成し、 M I P画像と基準フレームの画像との間のピクセル値'の差から、 肺血流分布画像を作成する。 具体的には、 肺血流分布解析手段 4 4は、 まず、 肺 血流動態解析手段 4 3におけるステップ 4 0 5 , 4 0 6 , 4 0 7と同様の処理を 行う。 すなわち、 オペレータの操作により、 X線パルス波形格納部 2 2から X線 パルス波形を、 心電図格納部 2 3から心電図をそれぞれ読み出し、 X線パルス波 形について、 X線が曝射された時間を決定し(ステップ 4 0 5 )。心電図について、 R波が起きた時間を決定し(ステップ 4 0 6 )、そして、基準フレームの番号を決 定する (ステップ 4 0 7 )。
fl 血流分布解析手段 4 4は、 胸部 X線動画像格納部 2 1から読み出した胸部 X 線動画像の各フレーム、 及びステップ 4 0 5〜4 0 7において決定した基準フレ ームに基づいて、 1心拍毎の M I P画像を作成する (ステップ 4 1 0 )。具体的に は、 1心拍毎の各フレームにおいて、 画素毎に時間軸方向に最大値を投影し、 1 枚の M I P画像を作成する。 図 9においては、 基準フレーム番号は F b , F fだ から、 F bの基準フレームを含む心拍における M I P画像は、 基準フレーム番号 F bから次の基準フレーム番号 F fの一つ前のフレーム番号 F eまでのフレーム の画像 (フレーム番号 Fb, F c, Fd, Feの胸部 X線動画像) に基づいて作 成される。
次に、 肺血流分布解析手段 44は、 1心拍毎に、 ステップ 410において作成 した MI P画像と基準フレームの画像との間のピクセル値の差を、 以下の (4) 式により、 画素毎に算出する (ステップ 41 Do ここで、 1心拍は、 基準フレー ムから次の基準フレームまでをいうものとする。
PVd i s (η') =Μ I Ρ (η') - f (η") · · · (4) ここで、 PVd i sは肺血流分布画像を作成するための関数、 n, は心室拡張期 の通し番号 (0<η'く心室拡張期の回数)、. M I Ρは M I Ρ画像を作成するため の関数、 η"はその心拍における基準フレーム番号、 f (n") は n"番目の胸部 X線動画像を示す。 図 9においては、 フレーム Fb, Fc, Fd, Feにおける 肺血流分布画像は、 その心拍における MI P画像と、 その心拍における基準フレ ーム (フレーム番号 Fbの胸部 X線動画像) との間のピクセル値の差に基づいて 作成される。
そして、 肺血流差分布解析手段 44は、 ステップ 411において作成した肺血 流分布画像に対し、 肺血流をカラー表示した静止画像を作成する (ステップ 41 2)。この場合、算出した差に応じてカラーの濃淡を付け、差が大きい場合は濃く、 差が小さい場合は淡く表示する。
図 12は、 肺血流分布解析手段 44により肺血流分布画像を作成するコンビュ 一夕アルゴリズムである。 図 12において、 グラフの横軸は時間軸を示し、 上か ら心電図、 X線パルス波形、 胸部 X線動画像、 MI P画像、 及び、 ピクセル値の 差を濃淡色で表した肺血流分布画像が表示されている。 M I P画像は、 基準フレ ーム及びフレーム a〜eから作成される。 また、 肺血流分布画像は、 MI P画像 と基準フレームの画像との間のピクセル値の差に基づいてそれぞれ作成される。 また、 基準フレームが更新されると、 MI P画像が更新後の基準フレーム及びフ レーム a, 〜 e, から作成され、 肺血流分布画像がその M I P画像及び基準フレ ームから作成される。
図 1 3は、 肺血流分布解析手段 4 4により解析された第 1の肺血流分布画像を 示す画面ィメージ図である。この図は、図 1 2に示したグラフの時間軸を拡張し、 心拍毎の肺血流分布画像を時系列に表示したものである。 また、 図 1 4は、 肺血 流分布解析手段 4 4により解析された第 2の肺血流分布画像を示す画面イメージ 図である。 この図は、 図 1 1に示した画面イメージ図に加えて、 1心拍目から 5 心拍目までの肺血流分布画像を表示したものである。 図 1 2〜1 4によれば、 肺 血流分布画像から総血流を認識することができ、 これは肺血流シンチグラフィに 相当する。 これにより、 1心拍毎の総血流を評価することができる。 例えば、 肺 血流が少ない箇所は、 ピクセル値の差分の値が小.さいため淡く表示され、 肺血流 が少ない箇所は、 カラー表示が欠損することが予想される。 したがって、 肺血流 分布解析手段 4 4により、 肺塞栓症の診断のために有効利用できる情報を得るこ とができる。
以上、 実施の形態を挙げて本発明を説明したが、 本発明は上記実施の形態に限 定されるものではなく、 本発明の精神及び意図を逸脱しない限り、 種々変形が可 能である。 例えば、 図 1及び図 2に示した連続 X線画像スクリーニング検査装置 1は、 1台のコンピュータにより構成されるが、 複数のコンピュータにより構成 されるようにしてもよい。 例えば、 胸部 X線動画像格納部 2 1、 X線パルス波形 格納部 2 2及び心電図格納部 2 3の各種情報を備えた情報格納用機器、 制御部 3 0を備えた制御用機器、並びに、解析部 4 0を備えた解析用機器により構成され、 それぞれネットワークにより接続されるようにしてもよい。
また、図 1及び図 2に示した連続 X線画像スクリ一二ング検査装置 1において、 制御部 3 0が、 心電図記録装置 5から心電図を入力して心電図格納部 2 3に格納 し、 解析部 4 0が、 心電図格納部 2 3から心電図を読み出して R波が起きた時間 を決定し、 基準フレームを決定するようにした。 この場合、 連続 X線画像スクリ 一二ング検査装置 1は、 基準フレームを決定するために、 心電図を用いなくても よい。 具体的には、 連続 X線画像スクリーニング検査装置 1は、 肺の平均ピクセ ル値に基づいて R波が起きた時間を決定し、 基準フレームを決定するよう.にして もよいし、 心壁移動量に基づいて R波が起きた時間を決定し、 基準フレームを決 定するようにしてもよい。
図 1 6は、 肺の平均ピクセル値に基づいて基準フレームを決定する手法を示す 図である。 肺のピクセル値と心拍位相との間には高い相関性があり、 この性質を 利用することにより心拍位相を推定し、 ' R波が起きた時間を決定することができ る。 図 1 6に示すように、 肺の平均ピクセル値が最小値から最大値へ変化する期 間が心室収縮期に相当し、 最大値から最小値へ変化する期間が心室拡張期に相当 する。 したがって、 肺の平均ピクセル値の最小値.となる時間が R波が起きる時間 であることから、 連続 X線画像スクリーニング検査装置 1は、 平均ピクセル値の 最小値となる時間の直前のフレームを、 基準フレームとして決定することができ る。
図 1 7は、心壁移動量に基づいて基準フレームを決定する手法を示す図である。 心壁移動量から心拍位相を推定し、 R波が起きた時間を決定することができる。 図 1 7に示すように、 心壁移動量において、 心臓が拡張する方向を十、 収縮する 方向を一とすると、 心壁移動量が最大値から最小値へ変化する期間が心室収縮期 に相当し、 最小値から最大値へ変化する期間が心室拡張期に相当する。 したがつ て、 心壁移動量が最大値となる時間が R波が起きる時間であることから、 連続 X 線画像スクリーニング検査装置 1は、 心壁移動量の最大値となる時間の直前のフ レームを、 基準フレームとして決定することができる。
また、図 1及び図 2に示した連続 X線画像スクリ一ニング検査装置 1において、 解析部 4 0の局所肺血流解析部 4 1、 肺血流動態解析部 4 3及び肺血流分布解析 部 4 4は、 肺血流を対象にして解析処理を行うようにしたが、 心血流を対象にし て解析を行うようにしてもよい。 ここで、 局所肺血流解析部 4 1、 血流動態解 析部 4 3及び肺血流分布解析部 4 4は、 それぞれ局所心血流解析部、 心血流動態 解析部及び心血流分布解析部となる。
この場合、 局所心血流解析手段は、 縦隔部におけるピクセル値の変化を解析す る。 ここで、 縦隔部とは、 左右の肺の中間に位置し、 肺と同様に肋骨や胸郭等に よって囲まれた部分をいう。 具体的には、 心臓を構成する心室、 心房、 心筋及び 心隔、並びに、接続のある上大静脈、下大静脈及び大動脈等の大血管系、さらに、 リンパ節等をいう。
図 18は、 局所心血流解析手段により解析される縦隔部を示す図である。 図 1 8 (1) は、 心臓の構成を示す図であり、 図 18 (2) は、 胸部 X線動画像の 1 フレームにおいて、 各部の位置を示す図である。 心室拡張及び収縮に伴い、 房室 弁、 大動脈弁及び肺動脈弁が開閉し、 左心室圧、 左心房圧、 右心室圧及び右心房 圧が変化することにより、 後述のように、 心拍出量等の心臓の血流動態情報を得 ることができる。
図 19は、 局所心血流解析手段により解析された縦隔部の血流動態情報を示す 図である。 図 19において、 (1) は大動脈、 左心室、 左心房の各圧力、 (2) は 大動脈の血流速、 (3) は左心室の容積、 (4) は心音、 (5) は心電図、 (6) は 心臓における各所の平均ピクセル値をそれぞれ示している。 横軸は時間を示す。 局所肺血流解析手段 41による心臓における各所の平均ピクセル値算出手法は、 胸部 X線動画像の各フレームにおいて、 オペレータの操作により指定された大動 脈弓、 肺動脈、.左心室等の測定部位(関心領域(R〇I)) 毎に平均ピクセル値を 算出する処理である。 具体的には、'局所肺血流解析手段 41は、 オペレータの操 作により胸部 X線動画像格納部 21から胸部 X線動画像を読み出す。 そして、 第 1のフレームにおいて、 オペレータのマウスクリック等の操作により指定された 大動脈弓等の関心領域毎に平均ピクセル値を算出する。 第 2のフレーム以降にお いては、 第 1フレームと同じ関心領域で平均ピクセル値を算出し、 図 19 (6) に示すピクセル値のグラフを画面に表示する。
次に、 図 19 (1) 〜 (5) により、 心臓の 1心拍の動作について説明する。 まず、 房室弁が閉になると、 心音 (4) は S 1の波形となり、 心電図 (5) は R 波が生じる。そして、心室収縮期に入ると、心室は収縮し始めて左心室の圧力( 1 ) が急激に上昇し、 大動脈弁が開になる。 この間、 心室容積 (3) は一定を維持す る。 大動脈弁が開になると、 心室容積 (3) が小さくなり、 大動脈血流速 (2) が大きくなる。 これに伴い、 大動脈弓 '肺動脈のピクセル値 (6) が上昇し、 心 室のピクセル値 (6) が下降する。 そして、 大動脈血流速 (2) が下がり始める と、 左心室圧 (1) も下がり、 大動脈弁が閉になる。 そして、 心室拡張期に入る と、 心室は拡張し始めて左心室の圧力 (1) が急激に低下し、 心音 (4) は S 2 の波形となる。 この間、 心室容積 (3) は一定を維持する。 そして、 房室弁が開 となると、心室容積(3)は急激に増加する。 これに伴い、心室のピクセル値(6) が上昇し、 心房 ·肺静脈のピクセル値 (6) が下降する。
このように、 (6) に示した心臓の各所におけるピクセル値は、 (1) 〜 (5) の心臓の 1心拍の動作を反映した変化として現れる。 このピクセル値の変化と血 流の変化との間には高い関連がある。例えば、 (6) に示したピクセル値の変ィ匕量 が低下している部分は血流が低下しているまたは血流がない部分であると判断す ることができ、 肺塞栓症や心臓疾患等の診断のための有用な情報として利用する ことができる。 また、 その術中及び術後の管理のための有用な情報として利用す ることもできる。
また、図 1及び図 2に示した連続 X線画像スクリ一エング検査装置 1において、 制御部 30の肺血流動態解析手段 43は、 R波が起きる直前のフレームを基準フ レームとして、 当該基準フレームと他のフレームとの間のピクセル値の差から、 肺血流動態画像を作成するようにしたが、 隣り合うフレーム間のピクセル値の差 から、 肺血流動態画像を作成するようにしてもよい。 同様に、 心血流動態解析手 段が、 隣り合うフレーム間のピクセル値の差から、 心血流動態画像を作成するよ うにしてもよい。
図 20は、 肺血流動態解析手段 43により肺血流動態画像を作成する他のコン ピュータァルゴリズムである。 図 2 0において、 グラフの横軸は時間軸を示し、 上から心電図、 X線パルス波形、 胸部 X線動画像、 及び、 ピクセル値の差を濃淡 色で表した肺血流動態画像が表示されている。 肺血流動態画像は、 隣り合うフレ ーム a , b、 フレーム b , c、 フレーム c , d、 フレーム d , e、 フレーム e, f間のピクセル値の差に基づいてそれぞれ作成される。 図 1 5に示したように心 電図から心室収縮期及び心室拡張期を認識できるから、 各時期における肺血流動 態画像のピクセル変化量、 すなわち肺血流の増減度合いを画素単位で認識するこ とができる。
また、図 1及び図 2に示した連続 X線画像スクリ一二ング検査装置 1において、 制御部 3 0の肺血流動態解析手段 4 3は、 画素毎に算出した 1心拍におけるピク セル値の平均値と、 画素毎に算出した 1心拍における他のフレームのピクセル値 との差から、 ffl!血流動態画像を作成するようにしてもよい。 心血流動態解析手段 においても同様である。
図 2 1は、 肺血流動態解析手段 4 3により肺血流動態画像を作成する他のコン ピュー夕アルゴリズムである。 図 2 1において、 グラフの横軸は時間軸を示し、 上から心電図、 X線パルス波形、 ある 1画素におけるピクセル値の変化が示され ている。 肺血流動態解析手段 4 3は、 1心拍において、 画素毎にピクセル値の最 大値及び最小値を抽出し、 最大値及び最小値から平均値を算出する。 そして、 そ の平均値と他のフレームのピクセル値との差を算出し、 その差を用いて B巿血流動 態画像を作成する。 このような処理を心拍単位に行う。
尚、 連続 X線画像スクリーニング検査装置 1は、 図 1に示したように、 C P U 1 0、 RAM I 3等の揮発性の記憶媒体、 R OM 1 2等の不揮発性の記憶媒体、 マウス 1 8やキーボード 1 9、 ポインティングデパイス等の入力装置、 画像ゃデ 一夕を表示する表示器 1 7、 及び外部の X線検出器 2、 X線発生装置 3及び心電 図記録装置 5と通信をするためのインタフェース I ZF 1 4, 1 5を備えたコン ピュータによつて構成される。 連続 X線画像スクリーニング検査装置 1に備えた 制御部 3 0及び解析部 4 0の各機能は、 これらの機能を記述したプログラムを C P U 1 0に実行させることによりそれぞれ実現される。 また、 これらのプロダラ ムは、磁気ディスク (フロッピィ一ディスク、ハードディスク HD 1 1等)、光デ イスク (C D— R OM、 D VD等)、半導体メモリ等の記憶媒体に格納して頒布す ることもできる。
また、 このような連続 X線画像スクリーニング検査装置 1は、 健康診断等のス クリーニング検査、 心疾患患者のフォローアップ検査、 核医学検査等における精 密検査の代替検査等の分野で利用される。 また、 例えばエコノミー症候群の検査 のために、 空港の診療所に設置することもできる。

Claims

請 求 の 範 囲
1 . 被検者の X線動画像を入力し、 該 X線動画像を用いて血流を評価するため の情報を生成する連続 X線画像スクリーニング検査装置であって、
前記 X線動画像を構成する複数のフレームが格納される画像格納部と、 該画像格納部からフレームを読み出し、 該読み出したフレーム毎に所定範囲内 のピクセル値を算出し、 該算出したピクセル値の時間的変化量を血流情報として 生成する解析部とを備えたことを特徴とする連続 X線画像スクリ一ニング検査装 置。
2 . 請求項 1に記載の連続 X線画像スクリーニング検査装置において、 前記解析部は、 画像格納部からフレームを読み出し、 該読み出したフレームに 基づいて心拍位相との時間的関係の血流情報を生成することを特徴とする連続 X 線画像スクリ一ニング検査装置。
3 . 請求項 1に記載の連続 X線画像スクリ一二ング検査装置において、 さらに、 前記被検者の心電図が格納される心電図格納部を備え、
前記解析部は、 画像格納部からフレームを、 心電図格納部から心電図をそれぞ れ読み出し、 前記読み出したフレームに基づいて心電図との時間的関係の血流情 報を生成することを特徴とする連続 X線画像スクリーニング検査装置。
4. 請求項 3に記載の連続 X線画像スクリーニング検査装置において、 前記解析部は、 画像格納部から複数のフレームを、 心電図格納部から心電図を それぞれ読み出し、 読み出したフレーム毎に、 肺野領域、 肺野領域を分割した領 域、 及びオペレータにより指定された関心領域のうちのいずれかの領域の平均ピ クセル値を算出し、 該領域毎の平均ピクセル値及び前記読み出した心電図を、 時 系列に同期させた情報として生成する局所肺血流解析手段を有することを特徴と する連続 X線画像スクリ一二ング検査装置。
5 . 請求項 3に記載の連続 X線画像スクリ一二ング検査装置において、 前記解析部は、 画像格納部から複数のフレームを、 心電図格納部から心電図を それぞれ読み出し、 読み出したフレーム毎に、 縦隔部内における所定領域の平均 ピクセル値を算出する局所心血流解析手段を有することを特徴とする連続 X線画 像スクリーニング検査装置。
6. 請求項 4に記載の連続 X線画像スクリーニング検査装置において、 前記局所肺血流解析手段は、 さらに、 前記心電図から 1心拍を認識し、 1心拍 の各フレームの平均ピクセル値からピクセル変ィ匕率を算出し、 該算出したピクセ ル変化率を前記領域毎に比較することを特徴とする連続 X線画像スクリーニング 検査装置。
7 . 請求項 4に記載の連続 X線画像スタリ一ニング検査装置において、 前記局所肺血流解析手段は、 さらに、 前記心電図の R波が発生してから平均ピ クセル値が最小となる時点までの遅延時間、 平均ピクセル値が最小となる時点以 降の立ち上がり角度、 及び平均ピクセル値の最大値と最小値との間の差のうちの 少なくとも一つの情報を算出することを特徴とする連続 X線画像スクリ一二ング 検査装置。
8 . 請求項 4に記載の連続 X線画像スクリ一二ング検査装置において、 前記解析部は、 さらに、 フレーム毎に、 ピクセル値に基づいて肺野領域と心臓 との間の境界部位を検出し、 該境界部位の変動量を心壁移動量として算出する心 壁移動量解析手段を有することを特徵とする連続 X線画像スクリ一二ング検査装 置。 ' .
9 . 請求項 4に記載の連続 X線画像スクリーニング検査装置において、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図格納部 から心電図をそれぞれ読み出し、心電図から R波が発生したタイミングを特定し、 R波に対応するフレームを特定し、 該特定したフレームと 1心拍における他のフ レームとの間のピクセル値の差を算出し、 該ピクセル値の差を用いて肺血流動態 画像を生成する肺血流動態解析手段を有することを特徴とする連続 X線画像スク リ一ニング検査装置。
1 0 . 請求項 4に記載の連続 X線画像スクリ一二ング検査装置において、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図格納部 から心電図をそれぞれ読み出し、 時間的に隣り合うフレーム間のピクセル値の差 を算出し、 該ピクセル値の差を用いて肺血流動態画像を生成する肺血流動態解析 手段を有することを特徴とする連続 X線画像スクリ一二ング検査装置。
1 1 . 請求項 4に記載の連続 X線画像スクリ一二ング検査装置において、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図格納部 から心電図をそれぞれ読み出し、 該心電図に基づいて、 1心拍におけるフレーム 毎のピクセル値の最大値及び最小値から平均値を] a素毎に算出し、 前記ピクセル 値と算出した平均値との差を算出し、 該ピクセル値との差を用いて肺血流動態画 像を生成する肺血流動態解析手段を有することを特徴とする連続 X線画像スクリ 一二ング検査装置。
1 2 . 請求項 4に記載の連続 X線画像スクリーニング検査装置において、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図格納部 から心電図をそれぞれ読み出し、心電図から R波が発生したタイミングを特定し、 R波に対応するフレームを特定し、 1心拍における M I P画像を生成し、 該 M l P画像と前記特定したフレームの画像との間のピクセル値の差を算出し、 該ピク セル値の差を用いて肺血流分布画像を生成する肺血流分布解析手段を有すること を特徴とする連続 X線画像スクリーニング検査装置。
1 3 . 請求項 9に記載の連続 X線画像スクリ一二ング検査装置において、 さらに、 X線の検出タイミングを示す X線パルス波形が格納されるパルス波形 格納部を備え、
前記肺血流分布解析手段は、 前記パルス波形格納部から X線パルス波形を読み 出し、 R波に対応するフレームを、 X線パルス波形に基づいて特定することを特 徴とする連続 X線画像スクリ一二ング検査装置。
1 4. 請求項 1に記載の連続 X線画像スクリーニング検査装置において、 前記解析部は、 読み出したフレームの肺領域のピクセル値を算出し、 該ピクセ ル値に基づいて、 心拍位相における R波に対応するフレームを決定し、 肺血流情 報を生成することを特徴とする連続 X線画像スクリ一二ング検査装置。
1 5 . 請求項 1に記載の連続 X線画像スクリ一二ング検査装置において、 前記解析部は、 読み出したフレームから心壁移動量を算出し、 該心壁移動量に 基づいて、 心拍位相における R波に対応するフレームを決定し、 肺血流情報を生 成することを特徴とする連続 X線画像スクリーニング検査装置。
1 6 . 請求項 5に記載の連続 X線画像スクリーニング検査装置において、 前記解析部は、 さらに、 前記画像格納部から複数のフレームを、 心電図格納部 から心電図をそれぞれ読み出し、心電囟から R波が発生したタイミングを特定し、 R波に対応するフレームを特定し、 該特定したフレームと 1心拍における他のフ レ一ムとの間のピクセル値の差を算出し、 該ピクセル値の差を用いて心血流動態 画像を生成する心血流動態解析手段と、
前記画像格納部から複数のフレームを、 心電図格納部から心電図をそれぞれ読 み出し、 心電図から R波が発生したタイミングを特定し、 R波に対応するフレ一 ムを特定し、 1心拍における M I P画像を生成し、 該 M I P画像と前記特定した フレームの画像との間のピクセル値の差を算出し、 該ピクセル値の差を用いて心 血流分布画像を生成する心血流分布解析手段とを有し、
前記局所心血流解析手段は、 さらに、 前記心電図から 1心拍を認識し、 1心拍 の各フレームの平均ピクセル値からピクセル変化率を算出し、 該算出したピクセ ル変化率を前記領域毎に比較することを特徴とする連続 X線画像スクリ一二ング 検査装置。
1 7 . 被検者の X線動画像を構成する複数のフレームが格納された画像格納部 を備えた装置により、 前記 X線動画像を用いて血流を評価するための情報を生成 する連続 X線画像スクリーニング検査プログラムであって、 前記装置を構成する コンピュータに、
前記画像格納部からフレームを読み出す処理 (1) と、
該読み出したフレーム毎に所定範囲内のピクセル値を算出する処理 (2) と、 該算出したピクセル値の時間的変化量を血流情報として生成する処理 (3) と を実行させる連続 X線画像スクリ一二ング検査プログラム。
18. 請求項 17に記載の連続 X線画像スクリ一二ング検査プログラムにおい て、 前記コンピュータに、
前記 (2) 及び (3) の処理の代わりに、
前記読み出したフレームに基づいて心拍位相を推定する処理 (2)' と、 該推定した心拍位相及び前記読み出したフレームから血流情報を生成する処理 (3)' とを実行させる連続 X線画像スクリ一二ング検査プログラム。
19. 請求項 17に記載の連続 X線画像スクリーニング検査プログラムにおい て、
被検者の心電図が格納された心電図格納部を備えた装置を構成するコンピュー 夕に、
前記心電図格納部から心電図を読み出す処理 (4) と、
該読み出した心電図に基づいて心拍位相を推定する処理 (5) と、
該推定した心拍位相及び前記読み出したフレームから血流情報を生成する処理 (6) とを実行させる連続 X線画像スクリーニング検査プログラム。
20. 請求項 17に記載の連続 X線画像スクリーニング検査プログラムを記録 した記録媒体。
PCT/JP2007/050367 2006-01-05 2007-01-05 連続x線画像スクリーニング検査装置、プログラム及び記録媒体 WO2007078012A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20070706709 EP1970009B1 (en) 2006-01-05 2007-01-05 Continuous x-ray image screening examination device, program, and recording medium
US12/160,093 US8300912B2 (en) 2006-01-05 2007-01-05 Continuous X-ray image screening examination device, program, and recording medium
JP2007553014A JP5093727B2 (ja) 2006-01-05 2007-01-05 連続x線画像スクリーニング検査装置、プログラム及び記録媒体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006000587 2006-01-05
JP2006-000587 2006-01-05
JP2006-172760 2006-06-22
JP2006172760 2006-06-22

Publications (1)

Publication Number Publication Date
WO2007078012A1 true WO2007078012A1 (ja) 2007-07-12

Family

ID=38228347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050367 WO2007078012A1 (ja) 2006-01-05 2007-01-05 連続x線画像スクリーニング検査装置、プログラム及び記録媒体

Country Status (4)

Country Link
US (1) US8300912B2 (ja)
EP (1) EP1970009B1 (ja)
JP (1) JP5093727B2 (ja)
WO (1) WO2007078012A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090894A1 (ja) * 2008-01-15 2009-07-23 Konica Minolta Medical & Graphic, Inc. 動態画像診断支援システム
JP2009240559A (ja) * 2008-03-31 2009-10-22 Toshiba Corp X線診断装置、画像データ処理装置及び画像データ処理方法
JP2010057795A (ja) * 2008-09-05 2010-03-18 Konica Minolta Holdings Inc 画像表示装置およびプログラム
JP2010158275A (ja) * 2009-01-06 2010-07-22 Konica Minolta Holdings Inc 動画像表示装置およびプログラム
JP2010268979A (ja) * 2009-05-22 2010-12-02 Konica Minolta Medical & Graphic Inc 動画像処理装置及びプログラム
WO2011092982A1 (ja) * 2010-02-01 2011-08-04 コニカミノルタエムジー株式会社 動態画像処理システム及びプログラム
JP2012245395A (ja) * 2012-09-19 2012-12-13 Konica Minolta Medical & Graphic Inc 動態撮影システム及び診断支援情報生成方法
JP2013169400A (ja) * 2012-02-22 2013-09-02 Konica Minolta Inc 動態診断支援情報生成システム、動態診断支援情報生成方法及び動態解析装置
JP2014128687A (ja) * 2014-01-27 2014-07-10 Konica Minolta Inc 動態画像診断支援システム
JP2015177856A (ja) * 2014-03-19 2015-10-08 コニカミノルタ株式会社 画像解析装置、画像撮影システム及び画像解析プログラム
JP2016047294A (ja) * 2015-11-30 2016-04-07 コニカミノルタ株式会社 動態画像解析装置
US9639952B2 (en) 2012-12-12 2017-05-02 Konica Minolta, Inc. Image-processing apparatus and storage medium
JP2017176202A (ja) * 2016-03-28 2017-10-05 コニカミノルタ株式会社 動態解析システム
JP2018007801A (ja) * 2016-07-13 2018-01-18 コニカミノルタ株式会社 動態解析装置
JP2018043068A (ja) * 2017-12-21 2018-03-22 コニカミノルタ株式会社 動態画像解析装置
JP2018110762A (ja) * 2017-01-13 2018-07-19 コニカミノルタ株式会社 動態画像処理システム
JP2018531721A (ja) * 2015-10-28 2018-11-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 大動脈弁状態の情報伝達
JP2019010391A (ja) * 2017-06-30 2019-01-24 キヤノンメディカルシステムズ株式会社 医用画像処理装置及びx線診断装置
JP2020014562A (ja) * 2018-07-24 2020-01-30 コニカミノルタ株式会社 動態画像解析装置、動態画像解析方法及びプログラム
JP2020175227A (ja) * 2020-07-30 2020-10-29 コニカミノルタ株式会社 動態画像処理システム

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972279B1 (en) * 2007-03-20 2012-09-12 Cefla Societa' Cooperativa Method for synchronisation between an emitter and a detector of a computed tomography scanner
US8411919B2 (en) * 2008-07-07 2013-04-02 Siemens Aktiengesellschaft Fluid dynamics approach to image segmentation
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
WO2011128792A2 (en) * 2010-04-16 2011-10-20 Koninklijke Philips Electronics N.V. Image data reformatting
US8731262B2 (en) * 2010-06-03 2014-05-20 Siemens Medical Solutions Usa, Inc. Medical image and vessel characteristic data processing system
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
JP2012110400A (ja) 2010-11-22 2012-06-14 Konica Minolta Medical & Graphic Inc 動態診断支援情報生成システム
US8737713B2 (en) * 2010-11-30 2014-05-27 Siemens Medical Solutions Usa, Inc. System for frame selection for optimal registration of a multi-frame dataset
US9107639B2 (en) * 2011-03-15 2015-08-18 Medicinsk Bildteknik Sverige Ab System for synchronously visualizing a representation of first and second input data
JP5672147B2 (ja) * 2011-05-24 2015-02-18 コニカミノルタ株式会社 胸部診断支援情報生成システム
WO2013141067A1 (ja) * 2012-03-23 2013-09-26 コニカミノルタ株式会社 画像生成装置
AT512393B1 (de) * 2012-06-29 2013-08-15 Ludwig Boltzmann Ges Gmbh Verfahren zum Verarbeiten von Bildern des Lungenkreislaufs und Vorrichtung zur Durchführung dieses Verfahrens
GB2503662A (en) * 2012-07-02 2014-01-08 Rue De Int Ltd Identifying a security document using capacitive sensing
KR102104534B1 (ko) 2013-06-12 2020-04-27 삼성전자주식회사 엑스선 촬영 장치 및 그 제어 방법
JP6217241B2 (ja) * 2013-08-28 2017-10-25 コニカミノルタ株式会社 胸部診断支援システム
JP2017074123A (ja) 2015-10-13 2017-04-20 東芝メディカルシステムズ株式会社 医用画像処理装置及びx線診断装置
JP6701880B2 (ja) 2016-03-30 2020-05-27 コニカミノルタ株式会社 動態解析装置、動態解析システム、動態解析方法及びプログラム
US9947093B2 (en) 2016-05-03 2018-04-17 Konica Minolta, Inc. Dynamic analysis apparatus and dynamic analysis system
JP6686733B2 (ja) * 2016-06-23 2020-04-22 コニカミノルタ株式会社 動態解析システム
CN116269261A (zh) * 2016-12-01 2023-06-23 松下知识产权经营株式会社 生物体信息处理方法及生物体信息处理系统
JP2018110637A (ja) * 2017-01-10 2018-07-19 コニカミノルタ株式会社 動態画像処理装置
KR102305179B1 (ko) * 2019-10-16 2021-09-27 주식회사 바이랩 전기 임피던스 단층촬영을 이용한 심폐기능 모니터링 방법 및 시스템
CN112790777A (zh) * 2019-11-14 2021-05-14 巫湘沂 以动态影像判断血流量变化及血管阻塞区域的方法
KR102421884B1 (ko) * 2020-06-25 2022-07-19 주식회사 바이랩 전기 임피던스 단층촬영을 이용한 혈류역학 변수 산출 방법 및 장치
CN113576487B (zh) * 2021-06-18 2023-06-13 深圳技术大学 特征的确定、心电预测方法及装置、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165035A (ja) * 1992-11-24 1994-06-10 Toshiba Corp X線診断装置
JPH06237924A (ja) * 1993-02-17 1994-08-30 Toshiba Corp X線診断装置
WO2005073915A2 (en) 2004-01-29 2005-08-11 Koninklijke Philips Electronics, N.V. Automatic segmentation of tissues by dynamic change characterization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214431A (ja) * 1983-05-20 1984-12-04 株式会社東芝 放射線診断装置
JPS6458243A (en) 1987-08-28 1989-03-06 Toshiba Corp X-ray image processing apparatus
JPH0321228A (ja) 1989-06-20 1991-01-30 Hitachi Medical Corp 心筋潅流解析画像の表示方法及びその装置
FI104042B (fi) 1998-09-29 1999-11-15 Aaro Kiuru Menetelmä keuhkojen perfuusion mittaamiseksi
JP4614548B2 (ja) * 2001-01-31 2011-01-19 パナソニック株式会社 超音波診断装置
JP2006524087A (ja) * 2003-04-22 2006-10-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血管造影x線写真撮影用の機器
DE102005036564A1 (de) * 2005-08-03 2007-02-22 Siemens Ag Betriebsverfahren für eine bildgebende medizintechnische Anlage und hiermit korrespondierende Gegenstände

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165035A (ja) * 1992-11-24 1994-06-10 Toshiba Corp X線診断装置
JPH06237924A (ja) * 1993-02-17 1994-08-30 Toshiba Corp X線診断装置
WO2005073915A2 (en) 2004-01-29 2005-08-11 Koninklijke Philips Electronics, N.V. Automatic segmentation of tissues by dynamic change characterization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1970009A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226852A (ja) * 2008-01-15 2015-12-17 コニカミノルタ株式会社 動態画像解析装置
WO2009090894A1 (ja) * 2008-01-15 2009-07-23 Konica Minolta Medical & Graphic, Inc. 動態画像診断支援システム
JP5136562B2 (ja) * 2008-01-15 2013-02-06 コニカミノルタエムジー株式会社 動態画像診断支援システム
JP2014050756A (ja) * 2008-01-15 2014-03-20 Konica Minolta Inc 動態画像診断支援システム
JP2009240559A (ja) * 2008-03-31 2009-10-22 Toshiba Corp X線診断装置、画像データ処理装置及び画像データ処理方法
JP2010057795A (ja) * 2008-09-05 2010-03-18 Konica Minolta Holdings Inc 画像表示装置およびプログラム
JP2010158275A (ja) * 2009-01-06 2010-07-22 Konica Minolta Holdings Inc 動画像表示装置およびプログラム
JP2010268979A (ja) * 2009-05-22 2010-12-02 Konica Minolta Medical & Graphic Inc 動画像処理装置及びプログラム
WO2011092982A1 (ja) * 2010-02-01 2011-08-04 コニカミノルタエムジー株式会社 動態画像処理システム及びプログラム
JP2013169400A (ja) * 2012-02-22 2013-09-02 Konica Minolta Inc 動態診断支援情報生成システム、動態診断支援情報生成方法及び動態解析装置
JP2012245395A (ja) * 2012-09-19 2012-12-13 Konica Minolta Medical & Graphic Inc 動態撮影システム及び診断支援情報生成方法
US9639952B2 (en) 2012-12-12 2017-05-02 Konica Minolta, Inc. Image-processing apparatus and storage medium
JP2014128687A (ja) * 2014-01-27 2014-07-10 Konica Minolta Inc 動態画像診断支援システム
JP2015177856A (ja) * 2014-03-19 2015-10-08 コニカミノルタ株式会社 画像解析装置、画像撮影システム及び画像解析プログラム
US9569687B2 (en) 2014-03-19 2017-02-14 Konica Minolta, Inc. Image analysis device, imaging system and non-transitory recording medium generating an index indicating a cardiac status with respect to frame images
JP2018531721A (ja) * 2015-10-28 2018-11-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 大動脈弁状態の情報伝達
JP2016047294A (ja) * 2015-11-30 2016-04-07 コニカミノルタ株式会社 動態画像解析装置
JP2017176202A (ja) * 2016-03-28 2017-10-05 コニカミノルタ株式会社 動態解析システム
JP2018007801A (ja) * 2016-07-13 2018-01-18 コニカミノルタ株式会社 動態解析装置
JP2018110762A (ja) * 2017-01-13 2018-07-19 コニカミノルタ株式会社 動態画像処理システム
JP2019010391A (ja) * 2017-06-30 2019-01-24 キヤノンメディカルシステムズ株式会社 医用画像処理装置及びx線診断装置
JP2018043068A (ja) * 2017-12-21 2018-03-22 コニカミノルタ株式会社 動態画像解析装置
JP2020014562A (ja) * 2018-07-24 2020-01-30 コニカミノルタ株式会社 動態画像解析装置、動態画像解析方法及びプログラム
JP7073961B2 (ja) 2018-07-24 2022-05-24 コニカミノルタ株式会社 動態画像解析装置、動態画像解析方法及びプログラム
JP2020175227A (ja) * 2020-07-30 2020-10-29 コニカミノルタ株式会社 動態画像処理システム

Also Published As

Publication number Publication date
EP1970009A4 (en) 2010-06-02
EP1970009A1 (en) 2008-09-17
JP5093727B2 (ja) 2012-12-12
US20090097731A1 (en) 2009-04-16
US8300912B2 (en) 2012-10-30
EP1970009B1 (en) 2013-02-13
JPWO2007078012A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5093727B2 (ja) 連続x線画像スクリーニング検査装置、プログラム及び記録媒体
JP6196309B2 (ja) 弁を通る動くオブジェクトへの逆流フローを評価するデータを提供する方法と装置
US11694339B2 (en) Method and apparatus for determining blood velocity in X-ray angiography images
Valente et al. Multimodality imaging guidelines for patients with repaired tetralogy of Fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology
Freed et al. MR and CT imaging for the evaluation of pulmonary hypertension
Husmann et al. Coronary artery motion and cardiac phases: dependency on heart rate—implications for CT image reconstruction
Greupner et al. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2-and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging as the reference standard
EP2946319B1 (en) Calculating a fractional flow reserve
KR102402628B1 (ko) 인간의 심장 및 심방을 모델링하는 방법 및 시스템
WO2021141135A1 (ja) 冠動脈ct4dフローイメージによる機能的虚血検出技術
JP7479572B2 (ja) 病変壁剪断応力記述子に基づいて、心筋梗塞の尤度を計算する方法およびシステム
CN101663691B (zh) 不同预采集医学图像的时空扭曲
Chowdhury et al. Speckle-tracking echocardiographic measures of right ventricular function correlate with improvement in exercise function after percutaneous pulmonary valve implantation
JP2014079312A (ja) 画像処理装置及びプログラム
Higgins Cardiac imaging
Kosiborod et al. Assessment of right ventricular morphology and function
US20220125398A1 (en) Method and system for characterizing valvular regurgitation/insufficiency from sequences of images
Kato et al. Automated 3-dimensional single-beat real-time volume colour flow doppler echocardiography in children: a validation study of right and left heart flows
JP7236747B2 (ja) コンピュータプログラム、画像処理装置、および画像処理方法
US20240169540A1 (en) Method and system for quantitative microvascular dysfunction on sequences of angiographic images
Krishnamurthy et al. Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the American Society of Echocardiography
Yamaguchi et al. Accurate estimation of regional and global cardiac function in old myocardial infarction patients by multidetector-row computed tomography
US20230346330A1 (en) Blood flow imaging
Rybicki NASCI AHA Young Investigator finalists 2012
Akatsuka et al. Cardiac image analysis corresponding to physical parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007553014

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007706709

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12160093

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)