WO2007077752A1 - 半導体素子搭載部材、その製造方法、及び半導体装置 - Google Patents

半導体素子搭載部材、その製造方法、及び半導体装置 Download PDF

Info

Publication number
WO2007077752A1
WO2007077752A1 PCT/JP2006/325523 JP2006325523W WO2007077752A1 WO 2007077752 A1 WO2007077752 A1 WO 2007077752A1 JP 2006325523 W JP2006325523 W JP 2006325523W WO 2007077752 A1 WO2007077752 A1 WO 2007077752A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor element
bonding layer
element mounting
lead terminal
Prior art date
Application number
PCT/JP2006/325523
Other languages
English (en)
French (fr)
Inventor
Shingo Nakajima
Jun Sugawara
Akira Mizoguchi
Daisuke Takagi
Kenjiro Higaki
Original Assignee
Sumitomo Electric Industries, Ltd.
A. L. M. T. Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., A. L. M. T. Corp. filed Critical Sumitomo Electric Industries, Ltd.
Priority to JP2007552910A priority Critical patent/JP5038156B2/ja
Publication of WO2007077752A1 publication Critical patent/WO2007077752A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the present invention relates to a semiconductor element mounting member having a semiconductor element mounting portion, a manufacturing method thereof, and a semiconductor device in which a semiconductor element is mounted on the semiconductor element mounting portion of the semiconductor element mounting member.
  • a semiconductor element mounting member for mounting a semiconductor element includes a substrate that also has ceramic force, a frame that also has ceramic shape that surrounds the outer periphery of the upper surface of the substrate, a bonding layer that airtightly bonds the frame to the upper surface of the substrate, and a bonding layer
  • the semiconductor device is mounted on a portion that is covered with a central portion (semiconductor element mounting portion), that is, a frame body, on the upper surface of the substrate.
  • low-melting glass has been used for forming a bonding layer of a semiconductor element mounting member.
  • heating of about 300 to 400 ° C is required for forming the bonding layer, and a tunnel type continuous furnace is used.
  • the lid body joined to the surface tends to be inclined. If the frame or lid is fixed while being tilted with respect to the substrate, a problem arises in that the projection image by the optical system cannot be favorably formed on the light receiving surface of the image sensor.
  • thermosetting resin composition instead of the low-melting glass. If a thermosetting resin composition is used, heating by a tunnel-type continuous furnace or the like is not required, and it becomes easy to obtain good parallelism, and a heat press can be employed.
  • JP 2005-159124 A proposes a method in which an epoxy resin composition is employed as a thermosetting resin composition.
  • JP-A-2005 79147 Patent Document 2 and the like describe a high-epoxy resin composition having a glass transition temperature of the cured product.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-159124
  • Patent Document 2 JP 2005-79147 A
  • the epoxy resin composition proposed in Patent Document 1 is sufficiently higher than the maximum temperature in the usage environment of a semiconductor element mounting member in which the cured product has a low glass transition temperature (Tg). Often not expensive. In addition, the thermal expansion coefficient of the resin composition etc. changes before and after the glass transition temperature. Therefore, when this epoxy resin composition is used, the interface between the cured resin and the metal that constitutes the lead terminal, substrate, and frame is repeated by repeatedly increasing and decreasing the operating temperature. Peeling occurs, or the cured resin itself cracks and airtightness breaks.
  • Tg glass transition temperature
  • the epoxy resin composition described in Patent Document 2 and the like is an epoxy resin composition having a high glass transition temperature of a cured product, and such a resin composition is generally used. Since the melt viscosity tends to be high, the metal lead terminal and the ceramic substrate and frame cannot be wetted as well, and as a result, the bonding force between the bonding layer and the lead terminal, substrate, and frame is poor. In this case, as in the case of the epoxy resin composition, the glass transition temperature is low and the glass resin has a low glass transition temperature.
  • the present invention includes a bonding layer formed from a cured product of a thermosetting resin composition (hereinafter sometimes referred to as a resin-cured resin), having excellent airtightness, and a use environment. Even if the temperature rises and falls repeatedly, peeling at the interface between the bonding layer and the substrate, frame, and lead terminal, and cracking of the cured resin that forms the bonding layer are unlikely to occur. It is an object to provide a member and a manufacturing method thereof. Another object of the present invention is to provide a semiconductor device in which a semiconductor element is mounted on the semiconductor element mounting member.
  • a resin-cured resin thermosetting resin composition
  • the present invention provides a substrate having a semiconductor element mounting portion at the center of the upper surface, a frame body having a shape surrounding the semiconductor element mounting portion, a bonding layer for airtightly bonding the frame body to the upper surface of the substrate, and a bonding layer
  • a semiconductor element mounting member including a lead terminal penetrating an intermediate position in the thickness direction
  • the bonding layer is a cured product of a thermosetting resin composition containing an epoxy resin, a curing agent and an inorganic filler, and the glass transition temperature of the cured product is 130 ° C or higher,
  • An end surface of the bonding layer between the lead terminal and the substrate on the outer peripheral side of the substrate has a contact angle ⁇ 1 with the lead terminal
  • End surface force of the bonding layer between the lead terminal and the substrate on the inner peripheral side of the lead terminal Contact angle ⁇ 3 with the substrate is less than 90 °
  • a semiconductor element mounting member (Claim 1), characterized in that
  • the semiconductor element mounting member of the present invention includes a substrate having a semiconductor element mounting portion at the center of the upper surface, a frame body having a shape surrounding the semiconductor element mounting portion, a bonding layer for airtightly bonding the frame body to the upper surface of the substrate, and A semiconductor element mounting member including a lead terminal that passes through an intermediate position in the thickness direction of the bonding layer, and has the structure shown in FIGS. 1 and 2. In these respects, conventional low melting point glass is used. This is basically the same as the semiconductor element mounting member manufactured in this way.
  • the bonding layer includes an epoxy resin, a curing agent, and an inorganic material.
  • One of the features is that it is made of a cured product (resin cured product) of a thermosetting resin composition containing a porous filler. That is, a cured product of the above thermosetting resin composition is used in place of the low melting point glass used in the production of the conventional semiconductor element mounting member.
  • the bonding layer is formed of a thermosetting resin composition
  • means for fixing the base plate and the frame body accurately and in parallel, such as a heat press, can be used for the production. Therefore, an imaging device with high accuracy can be obtained using this semiconductor element mounting member.
  • One of the features of the semiconductor element mounting member of the present invention is that the cured resin of the resin constituting the bonding layer has a glass transition temperature power of 130 ° C or higher.
  • the semiconductor mounting member When a semiconductor device is used, the semiconductor mounting member is heated by heat generated from the semiconductor itself or heat from the external environment, and the temperature becomes higher when the temperature of the bonding layer approaches 120 ° C. Sometimes. In general, such semiconductor element mounting members are often subjected to a reliability test (acceleration test) such as a temperature cycle test of -55 to 125 ° C. In applications that require higher reliability, a temperature cycle test of -65 to 150 ° C may be performed.
  • a reliability test acceleration test
  • the thermal expansion coefficient changes before and after the glass transition temperature since the thermal expansion coefficient changes before and after the glass transition temperature, cracks are likely to occur in the cured resin itself constituting the bonding layer, and the cured resin and lead terminals Problems such as peeling off at the interface with the substrate and the frame and breaking airtightness are likely to occur.
  • the glass transition temperature after curing of the resin used in the bonding layer is more preferably 150 ° C or higher.
  • the semiconductor element mounting member of the present invention further includes a contact angle ⁇ 1 between the end surface of the bonding layer between the lead terminal and the substrate on the outer peripheral side of the substrate and the lead terminal.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are more preferably in the range of 5 ° to 70 °. If it is 70 ° or less, stress concentration on the end face can be avoided more. If the angle is less than 5 °, the resin may protrude excessively on the lead terminal, which may adversely affect the electrical connection with the external electrode.
  • FIG. 3 is a schematic cross-sectional view showing a cross section perpendicular to the substrate surface of a part of the semiconductor element mounting member of the present invention (part corresponding to one side of the frame), and the contact angles ⁇ 1, ⁇ 2 And ⁇ 3 (Fig. 3b), c) and d) are enlarged views of ⁇ 1, ⁇ 2 and ⁇ 3, respectively, in Fig. 3a).
  • ⁇ 1 is the end surface of the bonding layer between the lead terminal and the substrate on the outer periphery side (right side in FIG. 3) of the substrate. This is the contact angle with the terminal. More specifically, the crossing line of the cross section shown in FIG.
  • Pi is the intersection of the end surface of the bonding layer on the outer peripheral side of the substrate and the intersection line ml of the cross section
  • p2 is the intersection of the line where the end surface of the bonding layer on the outer peripheral side of the substrate is in contact with the lead terminal
  • the angle formed by the straight line connecting pi and p2 and the intersection of the surface of the lead terminal and the cross section is defined as the contact angle ⁇ 1.
  • the center line parallel to the crossing line of the cross section shown in FIG. 3 and the surface of the frame body and the crossing line of the crossing line of the lead terminal surface and the cross section and equidistant from both crossing lines. 2 is the intersection of the end surface of the bonding layer on the outer peripheral side of the frame and the intersection line m2 of the cross section, and p3, and the intersection of the cross section and the line where the end surface of the bonding layer on the outer peripheral side of the frame contacts the lead terminal
  • p4 is the straight line connecting p3 and p4 and the lead
  • the angle formed by the intersection of the surface of the terminal and the cross section is defined as the contact angle ⁇ 2 (FIGS. 3a) and c).
  • the intersection of the center line 1, the end surface of the bonding layer on the inner peripheral side of the lead terminal and the intersection line m3 of the cross section is p5
  • the end surface of the bonding layer on the inner peripheral side of the lead terminal and the substrate are
  • the contact angle ⁇ 3 is defined as the angle formed by the straight line connecting p5 and p6 and the intersection of the surface of the substrate and the cross section when the intersection of the tangent line and the cross section is defined as p6. ( Figures 3a) and d) ).
  • 0 1, 0 2 and 0 3 may fluctuate in the width direction of the lead terminal (that is, when the cross section shown in FIG. 3 moves in the width direction of the lead terminal) Defines the maximum angle changing in the width direction as ⁇ 1, ⁇ 2, and ⁇ 3.
  • the bonding layer between the lead terminal and the substrate is further drawn from the end of the substrate, and the bonding layer between the lead terminal and the frame body.
  • the pulling force from the end of the frame is 0.6 mm or less. If at least one of the shrinkage is larger than 0.6 mm, airtightness is likely to occur.
  • the shrinkage is 0.5 mm or less, more preferably the shrinkage is 0.
  • the bonding layer between the lead terminal and the substrate protrudes from the end portion of the substrate, and the bonding layer between the lead terminal and the frame body.
  • the protruding force from the edge of the frame is preferably 0.3 mm or less (claim 2). If at least one of the protrusions exceeds 0.3 mm, the protruding grease tends to cause problems such as poor electrical connection. In other words, if the amount of protruding resin is large, the exposed metal part of the lead terminal becomes small, which causes problems such as poor wire bond connection to the lead terminal and poor solder connection to connect the lead terminal and external circuit. It tends to occur.
  • the protrusion is 0.2 mm or less.
  • FIG. 4 is a schematic cross section showing a cross section perpendicular to the substrate surface of a part of the semiconductor element mounting member of the present invention (part corresponding to one side of the frame).
  • “x” in FIG. 4 indicates an overhang
  • “y” indicates a close.
  • the elastic modulus of at least the substrate and the lead terminal of the bonding layer constituting the semiconductor element mounting member of the present invention is preferably 80 MPa or more at 150 ° C (Claim 3).
  • the bonding layer in contact with the lead terminal may be heated up to the process temperature close to 150 ° C.
  • the elastic modulus of the bonding layer between the lead terminal and the substrate that is, the portion of the bonding layer between the substrate and the lead terminal is 80 MPa or more at 150 ° C
  • the lead terminal is supported during connection.
  • the bonding layer is not greatly deformed. As a result, a sufficient pressure can be applied to the lead terminal during connection, and vibration of the lead terminal can be prevented, thus preventing the occurrence of poor bonding.
  • the elastic modulus of the bonding layer between the lead terminal and the frame that is, the portion of the bonding layer between the lead terminal and the frame is also 80 MPa or more at 150 ° C.
  • the bonding layer between the lead terminal and the frame is also difficult to deform, the parallelism between the substrate and the frame is impaired or the airtightness is broken when the terminal of the semiconductor element is connected to the lead terminal. This is preferable.
  • the structure and materials of the substrate, frame, and lead terminal constituting the semiconductor element mounting member of the present invention are basically the same as those of a conventional semiconductor element mounting member manufactured using low-melting glass. Therefore, it can be manufactured using a substrate, a frame (for example, ceramics), and a lead terminal similar to those used for manufacturing a conventional semiconductor element mounting member.
  • thermal expansion coefficient is preferable than 10 X 10 _6 Z ° C. If the thermal conductivity is more than lOWZmK, the heat dissipation of the substrate will be high, and it will be possible to cope with high output and high density semiconductor elements. Also, if the coefficient of thermal expansion is less than S 10 X 10 _6 Z ° C, the thermal expansion coefficient of the substrate approaches the range of general thermal expansion coefficients of semiconductor elements such as image sensors. The generation of thermal stress can be reduced, and it is possible to cope with an increase in the size of an image sensor or the like. For example, it can be suitably applied to a large semiconductor element mounting member having a substrate area of 500 mm 2 or more.
  • a material for forming a substrate that satisfies the above-mentioned characteristics regarding thermal conductivity and thermal expansion coefficient As the material, a ceramic containing at least one selected from the group consisting of A1N, Al 2 O and SiC force is also used.
  • the frame body preferably has a thermal expansion coefficient of 10 X 10 -6 Z ° C or less and a difference from the substrate thermal expansion coefficient of 3 X 10 -6 Z ° C or less.
  • the semiconductor element mounting member of the present invention comprises:
  • thermosetting resin composition containing an epoxy resin, a curing agent and an inorganic filler
  • the glass transition temperature of the cured product is 130 ° C or higher
  • thermosetting resin composition having a number average molecular weight index of 1200 or less is applied to at least one of the frame side surface of the substrate and the substrate side surface of the frame.
  • the production method of the present invention is a thermosetting resin composition that is applied onto a substrate or a frame and forms a bonding layer by curing thereof. What is 0 or less is used.
  • the lead terminals and ceramic which are metals, can be similarly wetted with the resin composition, and a good fillet can be formed.
  • the contact angles ⁇ 1, ⁇ 2, and ⁇ 3 are less than 90 °.
  • the average molecular weight index is more preferably 800 or less.
  • the lower limit of the number average molecular weight index is preferably 300 or more.
  • thermosetting resin composition If it is less than 300, the fluidity of the thermosetting resin composition becomes excessively high, and as a result, the protrusion as defined above tends to increase, and the constant force resin composition with a wide interval between lead terminals flows out. However, voids are likely to be generated, and there is a possibility that good airtightness cannot be maintained.
  • i represents the type of epoxy resin
  • epoxy resin 1 is represented by weight fraction El and number average molecular weight Mel
  • epoxy resin 2 is represented by weight fraction E2 and number average molecular weight Me2
  • ⁇ (Ei'Mei) is El X Mel + E2 X Me2.
  • j represents the type of curing agent.
  • the curing agent 1 is represented by a weight fraction Hl and a number average molecular weight Mhl.
  • the agent 2 is represented by a weight fraction H2 and a number average molecular weight Mh2, and ⁇ (Hj′Mhj) is H 1 X Mhl + H2 X Mh2.
  • thermosetting resin composition can be applied, for example, by printing.
  • the resin composition when the thermosetting resin composition is in a liquid state, the resin composition can be easily applied onto the joint portion of the substrate or the frame body by printing such as screen printing, transfer, or dispensing. It can be carried out.
  • the resin composition can be easily applied only to the necessary part, that is, only the part where the substrate and the frame are joined. There is no need for a necessary sheet removing process, for example, a process for punching out a resin sheet with a partial force of mounting a semiconductor element.
  • a necessary sheet removing process for example, a process for punching out a resin sheet with a partial force of mounting a semiconductor element.
  • the thermosetting resin composition is more preferably a liquid thermosetting resin composition that is liquid at 23 ° C in consideration of the environment during printing (claim 5). More preferably, the resin composition has a viscosity of 20 to 5 OOPa's at 23 ° C.
  • a liquid thermosetting resin composition having a viscosity in this range printing can be performed with excellent pattern accuracy. If it exceeds 500 Pa's or less than 20 Pa's, printing unevenness that causes a decrease in the airtightness of the bonding layer occurs. It tends to be easy.
  • a particularly preferred viscosity range for obtaining good printability is 50 to 300 Pa's.
  • the solid content is preferably 80% or more for reasons such as not causing voids when curing the thermosetting resin composition! That is, as the thermosetting resin composition, a liquid thermosetting resin composition having a solid content of 80% or more and a viscosity of 20 to 500 Pa's at 23 ° C is particularly preferred. (Claim 6).
  • a liquid thermosetting resin composition having a thixotropy index in the range of 1.01 to 3.00 is preferred. If the thixotropy index is less than 1.01, the pattern accuracy may be lowered because the resin composition may sag or flow after application of the resin composition. on the other hand
  • a more preferable range of the thixotropy index is 1.05-2.00.
  • the viscosity is a value measured at 23 ° C using an E-type viscometer (manufactured by Rheology, Inc., MR-300VII).
  • the thixotropy index is the ratio of the apparent viscosity of 7 to 1 at a rotational speed of lrpm and the apparent viscosity of 10 at a rotational speed of lOrpm, measured using the same E-type viscometer ( ⁇ ⁇ / ⁇ 10 ) Value.
  • thermosetting resin composition examples include the following methods.
  • the resin composition is applied to both the substrate and the frame joint by a method such as screen printing, and a lead terminal is sandwiched between the resin compositions (hereinafter, this method is referred to as a process). Seth 1).
  • the resin composition applied onto the substrate and the frame body forms a bonding layer between the substrate and the lead terminal and a bonding layer between the frame body and the lead terminal, respectively, by curing them.
  • thermosetting resin composition is applied to the joint portion of the substrate by a method such as screen printing, and then a lead terminal is placed at a predetermined position on the applied resin composition.
  • a method in which a rosin composition is applied thereon, and then a frame is placed thereon (this method is hereinafter referred to as process 2).
  • process 2 the resin composition applied on the substrate forms a bonding layer between the substrate and the lead terminals, and the resin composition applied on the lead terminals is bonded between the frame and the lead terminals. Form a layer.
  • thermosetting resin assembly The composition is first applied to the frame, and then the lead terminal is placed at a predetermined position on the applied resin composition, and further the resin composition is applied thereon, and then this is applied to the substrate.
  • a method of installing on the joint can also be employed.
  • thermosetting resin composition that forms a bonding layer between the substrate and the lead terminal, and a thermosetting film that forms a bonding layer between the frame and the lead terminal.
  • the thermosetting resin composition that forms the bonding layer between the frame body and the lead terminals which may be the same or different, has an elastic modulus of at least 80 MPa at 150 ° C. It does not have to be. However, this thermosetting resin composition also preferably has an elastic modulus of 150 MPa at 80 ° C or higher.
  • thermosetting resin composition After the thermosetting resin composition is applied and the lead terminals are installed, the substrate and the frame are pressed. In the process 1, the crimping is performed in a state where the lead terminal is sandwiched between the resin composition applied onto the substrate and the resin composition applied onto the frame. In the process 2, the frame is placed at a predetermined position on the resin composition applied on the lead terminal, and then the pressure bonding is performed.
  • preheating that is, lower than the curing temperature !, heating at a temperature (for example, about 100 ° C) to bring the thermosetting resin composition into a B-stage state
  • a method of joining the substrate, frame, and lead terminals is also adopted. That is, after application of the liquid thermosetting resin composition, the resin composition is set to a B stage state by preheating, and the substrate or Z and the frame body and the lead terminal are joined, and then the resin composition is cured.
  • the B stage state refers to a state that does not impair the bondability (adhesiveness) after force hardening, which is a tack free state, without surface tack.
  • the thermosetting resin composition is cured at a higher temperature to form a bonding layer.
  • thermosetting resin composition layer in the joining process is in a tack-free state with no surface tack, handling is facilitated, and lead terminals can be sandwiched and position correction can be easily performed. And the productivity can be further increased.
  • the flowability of the resin composition at the bonding temperature is sufficiently high, the resin composition will flow well during the compression by hot pressing, and the corner will Therefore, the substrate and the frame can be joined in an airtight manner, and the lead terminals can be penetrated in a state in which the airtightness is maintained better.
  • the fluidity of the resin composition at the crimping temperature must be within a range where the resin composition does not flow out and voids occur, such as where the lead terminals are widely spaced! /.
  • the thickness of application of the thermosetting resin composition is the thickness of the lead terminal. 1. It is preferably 10 times or more and 3.00 times or less (claim 8). If it exceeds 3.0, the amount of protrusion exceeds 0.3 mm due to excessive amount of the resin, and problems such as poor electrical connection are likely to occur due to the protruding resin. On the other hand, if it is less than 1.10, the shrinkage exceeds 0.6 mm due to the insufficient amount of grease, and airtight defects due to the insufficient amount of grease are likely to occur. More preferably, it is 1.50-2.50.
  • the thickness of the lead frame is desirably 0.10 mm or more and 0.25 mm or less. If it exceeds 0.2mm, the void ratio between the lead terminals becomes too large, which may cause air bubbles and airtightness. On the other hand, if it is less than 0.10 mm, the lead terminal is not strong enough to cause problems such as bending force! / ,.
  • the pressing temperature in the case of hot pressing is preferably 60 ° C or higher and 140 ° C or lower. If the temperature exceeds 140 ° C, the resin hardens and thickens, making it difficult for the resin to reach every corner. On the other hand, if the temperature is lower than 60 ° C, the softness of the resin is insufficient, the fluidity is poor, and the resin does not spread all over. Easy to get rid of. More preferably, it is 80 ° C to 120 ° C.
  • the pressing pressure is preferably 0.1 OMPa or more and 1. OMPa or less. 1. If it exceeds OMPa, the pressure is too strong and the above protrusion exceeds 0.3 mm, and the protruding grease tends to cause problems such as poor electrical connection. On the other hand, if it is less than 0.1 lOMPa, the resin does not easily reach every corner due to insufficient pressure. More preferably, it is 0.20 MPa to 0.60 MPa.
  • the pressing time is preferably 1 second or more and 300 seconds or less. If it exceeds 300 seconds, the pressing time is too long and the above protrusion exceeds 0.3 mm, and problems such as poor electrical connection are likely to occur due to the protruding grease. On the other hand, if it is less than 1 second, the press time is too short, and it is difficult for the grease to reach every corner.
  • the thickness of the resin layer in the finished product is equal to the thickness of the lead terminal.
  • the semiconductor element mounting member can be obtained in a range of from 05 to 3.00, excellent in airtightness, and having a protrusion and shrinkage of the resin within the above preferable range.
  • the thickness of the resin layer in the finished product is out of the range of 1.05 to 3.00 of the thickness of the lead terminal, there is a high possibility that airtightness or protrusion will be poor.
  • the present invention further provides a semiconductor device (particularly an imaging device) using the semiconductor element mounting member of the present invention. That is, a semiconductor device manufactured by mounting a semiconductor element on the semiconductor element mounting portion of the semiconductor element mounting member of the present invention and then sealingly sealing the lid on the frame. (Claim 9) is provided.
  • the semiconductor element mounting member of the present invention is manufactured by the manufacturing method as described above, the semiconductor element is mounted on the semiconductor element mounting portion, and then the terminal of the element and the lead It can be obtained by connecting terminals, and then sealing the semiconductor element by sealing an external environmental force by sealingly sealing a lid made of a translucent material from above the frame.
  • the semiconductor device of the present invention is manufactured using a process that can easily maintain good parallelism such as hot pressing, and even if the use environment temperature rises and falls repeatedly, the bonding layer, the substrate, the frame, and the lead Peeling at the interface with the terminal and cracking of the cured resin that forms the bonding layer are unlikely to occur!
  • the semiconductor element mounting member is used, the parallelism between the light receiving surface and the lid In addition, it has excellent reliability and durability, and is suitably used for an imaging device or the like. Note that the same lids and elements constituting the semiconductor device of the present invention can be used as those used in the conventional semiconductor device.
  • the semiconductor element mounting member of the present invention has a bonding layer that bonds the lead terminal, the substrate, and the frame body while maintaining airtightness, and is excellent in airtightness. Even if the ambient temperature rises and falls repeatedly, peeling at the interface between the bonding layer and the substrate, frame or lead terminal, and cracking of the cured resin constituting the bonding layer are difficult to occur. Accordingly, poor airtightness is unlikely to occur. Therefore, for example, the airtightness after a reliability test such as a temperature cycle test is good. And according to the manufacturing method of the semiconductor element mounting member of this invention, the said semiconductor element mounting member of this invention can be manufactured stably.
  • the semiconductor device of the present invention using such a semiconductor element mounting member is less likely to cause a hermetic defect even when used for a long time, and thus has excellent reliability and durability, and is preferable for an imaging device or the like. Appropriately used.
  • FIG. 1 is a schematic plan view showing a semiconductor element mounting member of the present invention.
  • FIG. 2 is a cross-sectional view taken along line ii in FIG.
  • FIG. 3 is a schematic cross-sectional view showing a partial cross section of a semiconductor element mounting member of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a partial cross section of a semiconductor element mounting member of the present invention.
  • thermosetting resin composition for forming a bonding layer of the semiconductor element mounting member of the present invention is prepared.
  • the composition will be explained.
  • epoxy resin known epoxy resins such as bisphenol nore A type, bisphenol nore F type, bisphenol nore S type, phenol novolac type, and cresol novolac type can be used. These epoxy resins are used alone or in combination of two or more types. Epoxy resins containing bisphenol A type epoxy and cresol novolac type epoxy resin are heat resistant, moisture resistant, electric It is preferable in terms of characteristics and the like.
  • the blending capacity of the cresol novolac type epoxy resin is more preferably 10% by weight or more and less than 40% by weight in the total epoxy resin.
  • the blending amount of cresol novolac is less than 10% by weight, heat resistance, moisture resistance, and electrical characteristics may not be sufficiently obtained.
  • the viscosity of the resin increases and workability is increased. May get worse.
  • Particularly preferred is a case where the blending amount of the cresol novolac type epoxy resin is 20 to 30% by weight. In this case, sufficient heat resistance, moisture resistance and electrical characteristics are obtained, and the viscosity of the resin is high. It becomes appropriate and workability is further improved.
  • the curing agent known curing agents such as amines, acid anhydrides and polyhydric phenols can be used.
  • the range of the content of the curing agent is not particularly limited, and preferably contains an amount that gives a good cured product at the curing temperature in the production of the semiconductor element mounting member.
  • These curing agents can be used singly or in combination of two or more, but it is preferable to use a phenol resin-based curing agent such as heat resistance and electrical characteristics.
  • the elastic modulus of the cured product can be made 80 MPa or higher at 150 ° C.
  • the inorganic filler known inorganic fillers such as silica, precipitated barium sulfate, talc, calcium carbonate, silicon nitride, and aluminum nitride can be used, and depending on the required properties, they can be used alone. Or in combination of two or more.
  • the shape of the inorganic filler there are a spherical shape, a crushed shape, a flake shape, and the like.
  • a spherical inorganic filler is preferable in order to achieve a high elastic modulus of the cured product by increasing the filling of the inorganic filler.
  • the elastic modulus of the cured product can be 80 MPa or more at 150 ° C.
  • the blending ratio of the inorganic filler is preferably 1 to 95% by weight of the total amount of the composition. If it is less than 1% by weight, the resulting cured product may exhibit a sufficiently high elastic modulus. difficult. On the other hand, if it exceeds 95% by weight, the viscosity becomes too high and the fluidity is lowered, so that good printability may not be obtained. In addition, the fluidity at the time of crimping may decrease, and the resin may not spread all the way at the time of crimping, resulting in a decrease in airtightness.
  • the flow characteristics of the thermosetting resin composition largely depend on the particle size distribution of the inorganic filler.
  • the inorganic filler having a wider distribution and larger particle diameter has a lower viscosity of the resin composition. Good fluidity.
  • the inorganic filler having a large particle size may settle during the curing to generate voids, thereby reducing the airtightness. Further, the distribution becomes non-uniform due to sedimentation, and the thermal expansion coefficient becomes non-uniform, which is not preferable from the viewpoint of reliability.
  • the inorganic filler is preferably an inorganic filler having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m and a maximum particle diameter of 200 ⁇ m or less.
  • the solvent is not particularly limited as long as it is added to make the thermosetting resin composition liquid and dissolves the resin component to lower the viscosity of the resin composition.
  • Solvents include those derived from the raw material of the resin composition (for example, solvents that dissolve the raw epoxy resin), and those that are added to adjust the viscosity in the process of adjusting the resin composition, etc. Is also included.
  • the content of the solvent is adjusted and blended so that the viscosity, the thixotropy index, and the elastic modulus after curing are in a preferable range as the thermosetting resin composition. It is possible that no solvent is used.
  • thermosetting resin composition may contain other components as necessary within a range not impairing the gist of the present invention.
  • a thixotropic agent or the like may be blended.
  • the liquid thermosetting resin composition is preferably one that reaches the B stage state by preheating at 100 ° C for less than 90 minutes and then reaches the B stage state during the curing process.
  • the increase in viscosity is suppressed, the flowability is good, and the bonding can be performed while keeping airtightness.
  • the pre-heating at 100 ° C for less than 90 minutes will result in the B stage state when pre-heating at 100 ° C means that the B stage state will be reached in less than 90 minutes.
  • the temperature is not limited to 100 ° C.
  • the liquid thermosetting resin composition is applied (printed) on at least one surface of the substrate or frame. It is. It is preferably applied so that the thickness is 30 / zm or more on each side, and the total thickness on both sides is in the range of 100 to 500 ⁇ m. If the total thickness is less than 100 ⁇ m, it is difficult to keep hermetic, while if it exceeds 500 m, the resin protrudes from between the substrate and the frame at the time of joining, and leads and The electrical connection with the device or external electrode may be adversely affected. More preferably, it is 200-400 m.
  • FIG. 1 and 2 show a semiconductor element mounting member of the present invention
  • FIG. 1 is a schematic plan view.
  • 1 is a substrate having ceramic force
  • 2 is a frame body having ceramic force
  • 3 is a semiconductor element mounting portion
  • a semiconductor element is mounted on a portion A indicated by a broken line above.
  • lead terminals 4 are disposed on the long side of the frame body 2.
  • FIG. 2 is a cross-sectional view taken along line ii in FIG.
  • a bonding layer 5 is formed between the substrate 1 and the frame body 2, and a lead terminal 4 is disposed so as to penetrate an intermediate position in the thickness direction.
  • the portion of the bonding layer 5 between the lead terminal 4 and the substrate 1 is the bonding layer 51
  • the portion of the bonding layer 5 between the lead terminal 4 and the frame 2 is the bonding layer 52.
  • the thermosetting resin composition is applied to the surfaces to be joined of the substrate 1 and the frame body 2 by screen printing or the like so as to have a predetermined planar shape. A layer of a thermosetting resin composition is formed on this, and this is preheated to form a B-stage layer.
  • a lead frame in which a large number of lead terminals 4 are integrally formed with the frame is divided into a substrate 1 on which a resin composition layer is formed, and a frame body 2 on which a resin composition layer is formed.
  • the layers of the resin composition are integrated, and by curing the resin composition, the substrate 1 and the frame body 2 are joined in an airtight manner, and at the same time, the airtightness is maintained.
  • a bonding layer 5 penetrating the lead terminal 4 is formed.
  • the semiconductor element mounting member is manufactured by separating the lead terminal from the frame force.
  • the layer of the resin composition formed on the substrate 1 becomes the bonding layer 51, and the layer of the resin composition formed on the frame 2 becomes the bonding layer 52.
  • thermosetting resin composition (Preparation of thermosetting resin composition)
  • thermosetting resin compositions of Examples 1 to 15 and Comparative Examples 1 to 4 were obtained.
  • epoxy resin A the following resin was used.
  • Bisphenol A-type liquid epoxy resin (trade name: Epiclone 850—CRP, manufactured by Dainippon Ink & Chemicals, Inc .: “CRP” in the table)
  • Bisphenol A type liquid epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resins Co., Ltd .: In the table, it is represented as “828”.)
  • epoxy resin B the following resin was used.
  • Cresol-novolak-type solid epoxy resin (trade name: Epiclone N-665, manufactured by Dainippon Ink & Chemicals, Inc .: “N665” in the table)
  • Cresol-novolak-type solid epoxy resin (trade name: Epiclone N-695, manufactured by Dainippon Ink & Chemicals, Inc .: “N695” in the table)
  • Naphthalene-type liquid epoxy resin (trade name: Epiclon HP-4032D, manufactured by Dainippon Ink & Chemicals, Inc .: “4032” in the table)
  • Bisphenol A-type solid epoxy resin (trade name: Epicoat 1002, manufactured by Japan Epoxy Resin Co., Ltd .: In the table, "1002")
  • Novolac phenol resin (trade name: Phenolite TD-2090, manufactured by Dainippon Ink & Chemicals, Inc .: In the table, "TD-2090")
  • Novolac phenol resin (trade name: Phenolite TD-2131, manufactured by Dainippon Ink & Chemicals, Inc .: “TD-2131” in the table)
  • Amine-based epoxy resin hardener (trade name: SEIKACURE—S, manufactured by Wakayama Seiki Kogyo Co., Ltd .: In the table, "SEIKA”) Imidazole-based epoxy resin hardener (trade name: Curesol CI 1Z, manufactured by Shikoku Kasei Kogyo Co., Ltd .: In the table, it is expressed as “C11Z”.)
  • Imidazole-based epoxy resin hardener (trade name: Curesol 2PZL, manufactured by Shikoku Kasei Kogyo Co., Ltd .: In the table, "2PZL" is indicated.)
  • spherical silica (trade name: DENKA high-fluidity spherical silica FB-910, manufactured by Denki Kagaku Kogyo Co., Ltd.) was used.
  • methyl carbitol was used as a solvent.
  • the obtained liquid thermosetting resin composition was cured, and the elastic modulus at 150 ° C after curing was measured.
  • This elastic modulus is a value measured according to JIS K 7244-4 using a tensile dynamic viscoelasticity measuring device (Seiko Instruments Co., Ltd., DMS6100).
  • Printing was performed in a specific pattern, and the occurrence of non-turned chips and continuous printability were checked and evaluated.
  • the evaluation criteria are as follows.
  • the glass transition temperature (Tg) after curing of the obtained liquid thermosetting resin composition was measured. Specifically, tan ⁇ was measured using a tensile dynamic viscoelasticity measurement device (Seiko Instruments Co., Ltd., DMS6100), and the temperature at the maximum value of tan ⁇ was defined as the glass transition temperature (Tg). [0089] (Preparation of substrate frame)
  • a slurry was prepared by mixing with a plasticizer and a dispersant, and the slurry was granulated by a spray drying method. Thereafter, the granules were press-molded, fired at 1500 ° C., and the surface was lapped to obtain a substrate and a frame.
  • the liquid thermosetting resin composition thus obtained was applied to predetermined positions on the surfaces of the substrate and the frame thus obtained in a thickness of 140 m on the frame side and 90 m on the substrate side.
  • the substrate had a length of 40 mm on the side on which the lead terminal was disposed, a length of 30 mm on the short side intersecting the long side, and a thickness of 1.4 mm.
  • the frame has a long side force of S40mm, a short side length of 30mm, a long side frame width of 3mm, a short side frame width of 5.5mm, and a thickness of 0mm. It was 9mm.
  • thermosetting resin composition After the thermosetting resin composition is applied to the substrate and the frame, a hot press bonding device is used in a state where the lead terminal portion of the lead frame having a thickness of 100 m is sandwiched between the application surfaces.
  • the resin composition was used for pressure bonding to cure the resin composition and bonded together. Thereafter, the lead terminals were separated from the frame force, and a semiconductor element mounting member was produced.
  • Hot press conditions 120 ° C X 0.6 MPa X 15 seconds
  • the fabricated semiconductor element mounting member was cut at the position indicated by line ii in FIG. 1, and a micrograph of the cross section was taken with a 400 ⁇ optical microscope. From the micrograph, 0 1, 0 2 and ⁇ 3 was measured.
  • the prepared semiconductor element mounting member was cut at the position shown by line ii in Fig. 1 and observed at 400x using an optical microscope with a length measurement function. Measure the distance to the edge of each and protrude from the frame or from the board respectively. The larger of the two values was taken as the overhang value. In addition, the distance from the edge of the frame or the substrate to the location where the sebum of the resin was the largest was measured, and the distance from the frame or the substrate was the difference, respectively.
  • the wire pull strength was measured in accordance with MIL-STD-883E METHOD 2011.7. If the wire pull strength was 6g or more, it was evaluated that the Au wire was connected well and indicated by “ ⁇ ” in the table. Otherwise, it is indicated by “X” in the table.
  • the semiconductor element mounting member of the example which is an example of the present invention has a small number of airtight defects before TCT and is excellent in airtightness.
  • airtight defects are not likely to occur even if the operating environment temperature rises and falls with a small number of airtight defects.
  • Comparative Example 1 where the shrinkage exceeds 0.6 mm the number of airtight defects before TCT is large and the airtightness is poor.
  • the solid content of the resin composition of Comparative Example 1 is less than 80% (75%), and as a result, it is considered that the shrinkage exceeded 0.6 mm.
  • Example 10 where the elastic modulus at 150 ° C of the cured product of the thermosetting resin composition is less than 80 MPa, the wire pull strength is low. Further, the viscosity at the time of application of the thermosetting resin composition is larger than 5 OOPa's, and in Example 11, the printability is poor.
  • epoxy resin A bisphenol A type liquid epoxy resin (trade name: Epiclone 850-CRP, indicated as “CRP” in the table), and epoxy resin B as cresol novolac type solid epoxy resin ( Product name: Epiclon N-665, represented as “N665” in the table), Novolac phenol resin as a hardener (Product name: Phenolite TD-2131, represented as “TD-2131” in the table) ), Spherical silica (trade name: DENKA high-fluidity spherical silica FB-910) is used as the inorganic filler, methyl carbitol is used as the solvent, liquid heat with a solid content of 93% and a viscosity of 250 Pa's.
  • a curable rosin composition was obtained. With respect to the obtained liquid thermosetting resin composition, the glass transition temperature (Tg) after curing was measured in the same manner as described above, and it was 158 ° C.
  • a substrate / frame was produced in the same manner as in Example 1.
  • thermosetting resin composition After the thermosetting resin composition is applied to the substrate and the frame, it is heated to 100 ° C to form a B stage, and then leads having the thicknesses shown in Tables 5 to 9 between the respective application surfaces flame
  • the lead terminal portion was sandwiched and crimped by using a hot press type joining device to cure the resin composition and to join them together. After that, the lead terminals were separated from the frame force to produce a semiconductor element mounting member.
  • Hot press conditions 120 ° C X 0.6 MPa X 15 seconds
  • the glass transition temperature (Tg) of the liquid thermosetting resin composition after curing is 130 ° C or higher (158 ° In Examples 16 to 35, in which all of contact angles 01, 02, and ⁇ 3 are less than 90 ° and the shrinkage is 0.6 mm or less, the number of airtight defects before TCT is small and airtight. Is excellent. It has also been shown that even after TCT, airtight defects are unlikely to occur even if the operating environment temperature rises and falls with a small number of airtight defects.
  • protrusions of 0.3 mm or less had no defects due to protrusions of Examples 16 to 31, but protrusions of Examples 32 to 35 had protrusions exceeding 0.3 mm. Defects due to protruding oil have occurred.
  • the coating thickness force in the B-stage state of the thermosetting resin composition was 3.00 times or less the thickness of the lead terminal, and the result was a protrusion of 0.3 mm or less. it is conceivable that.
  • the coating thickness of the thermosetting resin composition in the B stage state exceeded 3.00 times the thickness of the lead terminal, and as a result, the protrusion exceeded 0.3 mm. It is probable that a defect occurred due to the protrusion.
  • liquid thermosetting resin compositions of Reference Examples 1 to 8 were obtained.
  • resin 1-3 is epoxy resin
  • resin 1 is bisphenol A type liquid epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.)
  • Resin 2 is bisphenol A type solid epoxy resin (trade name: Epicoat 1002, manufactured by Japan Epoxy Resin Co., Ltd.)
  • resin 3 is Cresolen novolac type epoxy resin (trade name: Epiclon N— 695, manufactured by Dainippon Ink & Chemicals, Inc.).
  • the curing agent is a novolac-type phenol resin (trade name: Phenolite TD-2131, manufactured by Dainippon Ink & Chemicals, Inc.). Moreover, fused silica (trade name: FB-910, manufactured by Denki Kagaku Kogyo Co., Ltd.), Aerosil ((trade name: RY-200, manufactured by Nippon Aerosil Co., Ltd.), etc. were used as inorganic fillers. As a staging agent, acrylic core shell resin (trade name: Zeon F351, manufactured by Nippon Zeon Co., Ltd.) was used.
  • Solids, viscosity, and thixotropy of the liquid thermosetting resin composition obtained in Reference Examples 1-8 The index (TI value) was measured, and at the same time, printability (applicability) was evaluated, the glass transition temperature (Tg) of the cured product, and the elastic modulus at 150 ° C were measured.
  • the solid content, viscosity, printability, glass transition temperature (Tg), and elastic modulus at 150 ° C. were measured based on the method described in Example 1 and the like.
  • the thixotropy coefficient is a ratio of the apparent viscosity of 7 to 1 at a rotational speed of lrpm measured using an E-type viscometer to the apparent viscosity of ⁇ 10 at a rotational speed of lOrpm. ( ⁇ / ⁇ 10).
  • the resin composition was preheated at 100 ° C for 30 minutes, and whether or not it showed a B stage state was checked by the presence or absence of surface tack and evaluated.
  • the evaluation criteria are as follows.
  • Example 2 Under the same conditions as in Example 1, a substrate frame was prepared, and the liquid thermosetting obtained in Reference Examples 1 to 8 was applied to predetermined positions on each surface of the obtained substrate and frame.
  • the resin composition was applied on the substrate with a thickness of 90 m and on the frame with a thickness of 140 m.
  • the length of the long side of the substrate on the side where the lead terminal was disposed was 40 mm
  • the length of the short side intersecting the long side was 30 mm
  • the thickness was 1.4 mm.
  • JIS B-0022 “Datum for geometrical tolerances” it was confirmed that both were 30 / zm or less and were in a highly accurate parallel state. .
  • the frame has a long side length of 40 mm, a short side length of 30 mm, a long side frame width of 3 mm, and a short side frame width of 5.5 mm, and a thickness.
  • the parallelism of the front and back sides of the frame is 10 m or less, and the parallelism on the diagonal of the short side is 10 mZ40 mm or less o
  • the substrate and frame body coated with the resin composition were heated at 100 ° C for 30 minutes, and then the lead frame portion of the lead frame was sandwiched between the coated surfaces using a hot press type bonding device. Then, after crimping the resin composition, the resin composition was cured and joined together. After that, the lead terminal was also separated from the frame force to produce a semiconductor element mounting member.
  • Resin 3 20 30 20 20 Curing agent (parts by weight) 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
  • T I value 1. 3 1. 3 1. 3

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

基板、半導体素子搭載部を取り囲む形状からなる枠体、基板上面に枠体を接合する接合層、および接合層を貫通するリード端子を含み、接合層が、エポキシ樹脂、硬化剤及び無機質充填剤を含有する熱硬化性樹脂組成物の硬化物からなり、該硬化物のガラス転移温度が130°C以上であり、接合層の端面とリード端子となす接触角θ1、θ2、及び接合層の端面と基板となす接触角θ3、のいずれもが90°未満であることを特徴とする半導体素子搭載部材、その製造方法、およびこの半導体素子搭載部材に半導体素子を搭載した半導体装置。

Description

明 細 書
半導体素子搭載部材、その製造方法、及び半導体装置
技術分野
[0001] 本発明は、半導体素子搭載部を有する半導体素子搭載部材、その製造方法、及 び前記半導体素子搭載部材の半導体素子搭載部に半導体素子を搭載した半導体 装置に関する。
背景技術
[0002] デジタルカメラやカメラ付き携帯電話等に使用される CCD撮像素子や CMOS撮像 素子等の半導体素子は、通常、半導体素子搭載部材に搭載され、デジタルカメラ等 に組込まれる。半導体素子を搭載するための半導体素子搭載部材は、セラミックス等 力もなる基板、基板の上面外周を取り囲む形状のセラミックス等力もなる枠体、基板 上面に枠体を気密に接合する接合層、および接合層の厚み方向の中間位置を貫通 するリード端子より構成され、基板の上面中央部 (半導体素子搭載部)、すなわち枠 体により覆われて 、な 、部分に半導体素子が搭載される。
[0003] 半導体素子搭載部材の接合層の形成には、従来、低融点ガラスが用いられて 、た 。しかし、低融点ガラスを用いる方法では、接合層の形成に 300〜400°C程度の加 熱が必要であり、トンネル型の連続炉が使用されるので、基板に対する、枠体や枠体 の上に接合される蓋体の傾きを生じやすいとの問題があった。枠体や蓋体が基板に 対して傾いた状態で固定されると、光学系による投影像を、撮像素子の受光面に良 好に結像させることができな 、と 、う問題を生じる。
[0004] そこで、低融点ガラスの代りに、熱硬化性榭脂組成物を使用する方法も考えられて いる。熱硬化性榭脂組成物を使用すれば、トンネル型の連続炉等による加熱を必要 とせず、良好な平行度を出しやす 、熱プレスの採用が可能となる。
[0005] 例えば、特開 2005— 159124号公報 (特許文献 1)においては、熱硬化性榭脂組 成物としてエポキシ榭脂組成物を採用した方法が提案されている。また、特開 2005 79147号公報 (特許文献 2)等には、その硬化物のガラス転移温度の高 ヽェポキ シ榭脂組成物が記載されて 、る。 特許文献 1:特開 2005— 159124号公報
特許文献 2:特開 2005 - 79147号公報
発明の開示
発明が解決しょうとする課題
[0006] しかし、特許文献 1で提案されて!ヽるエポキシ榭脂組成物は、その硬化物のガラス 転移温度 (Tg)が低ぐ半導体素子搭載部材の使用環境の最高温度と比べて十分 に高くない場合が多い。また、榭脂組成物等の熱膨張係数はガラス転移温度の前後 で変化する。そこで、このエポキシ榭脂組成物を使用した場合は、使用環境温度の 上昇、低下が繰り返されることにより、榭脂硬化物と、金属であるリード端子や基板、 枠体を構成するセラミックとの界面で剥離が発生する、あるいは、榭脂硬化物自身に クラックが入り気密が破れる、 t 、う問題が生じやす!/、。
[0007] 一方、特許文献 2等に記載されて 、るエポキシ榭脂組成物は、その硬化物のガラス 転移温度の高いエポキシ榭脂組成物であるが、このような榭脂組成物は、一般に溶 融粘度が高い傾向にあるため、金属であるリード端子とセラミックである基板および枠 体を同様に濡らすことができず、その結果、接合層とリード端子や基板、枠体との密 着力が低くなり、ガラス転移温度の低 、前記のエポキシ榭脂組成物と同様にこの場 合も、剥離が発生しあるいは榭脂硬化物自身にクラックが入り、気密が破れる等の問 題が生じやすい。
[0008] 本発明は、熱硬化性榭脂組成物の硬化物(以後、榭脂硬化物と言うことがある。)よ り形成され、気密性に優れる接合層を有し、かつ、使用環境温度の上昇、低下が繰り 返されても、接合層と、基板、枠体やリード端子との界面での剥離や、接合層を構成 する榭脂硬化物のクラックが生じにく 、半導体素子搭載部材、およびその製造方法 を提供することを課題とする。本発明は、また、該半導体素子搭載部材に半導体素 子を搭載した半導体装置を提供することを課題とする。
課題を解決するための手段
[0009] 本発明者等は、鋭意検討の結果、接合層を形成する熱硬化性榭脂組成物の硬化 物のガラス転移温度を 130°C以上とするとともに、枠体側及び基板側にある接合層 の端面とリード端子がなす接触角並びに基板側にある接合層の端面と基板がなす接 触角が所定の範囲内であり、かついわゆる引けが所定の範囲内である接合層を形成 することにより、接合層の気密性に優れ、かつ、使用環境温度の上昇、低下が繰り返 されても、接合層と、基板、枠体やリード端子との界面での剥離や、接合層を構成す る榭脂硬化物のクラックが生じにく 、半導体素子搭載部材が得られることを見 、だし 、本発明を完成するに至った。
[0010] すなわち本発明は、上面中央部に半導体素子搭載部を有する基板、半導体素子 搭載部を取り囲む形状からなる枠体、基板上面に枠体を気密に接合する接合層、お よび接合層の厚み方向の中間位置を貫通するリード端子を含む半導体素子搭載部 材であって、
接合層が、エポキシ榭脂、硬化剤及び無機質充填剤を含有する熱硬化性榭脂組 成物の硬化物力 なり、該硬化物のガラス転移温度が 130°C以上であり、
前記リード端子と前記基板間にある接合層の、前記基板の外周側にある端面が、 前記リード端子となす接触角 Θ 1、
前記リード端子と前記枠体間にある接合層の、前記枠体の外周側にある端面が、 前記リード端子となす接触角 Θ 2、及び
前記リード端子と前記基板間にある接合層の、前記リード端子の内周側にある端面 力 前記基板となす接触角 Θ 3、のいずれもが 90° 未満であり、並びに
前記リード端子と前記基板間にある接合層の前記基板の端部よりの引け、及び前 記リード端子と前記枠体間にある接合層の前記枠体の端部よりの引け力 0. 6mm 以下であることを特徴とする半導体素子搭載部材 (請求項 1)、を提供するものである
[0011] 本発明の半導体素子搭載部材は、上面中央部に半導体素子搭載部を有する基板 、半導体素子搭載部を取り囲む形状からなる枠体、基板上面に枠体を気密に接合 する接合層、および接合層の厚み方向の中間位置を貫通するリード端子を含む半導 体素子搭載部材であり、図 1〜2で示される構造を有するものであり、これらの点では 、従来の低融点ガラスを用いて製造される半導体素子搭載部材と基本的に同じであ る。
[0012] 本発明の半導体素子搭載部材は、接合層が、エポキシ榭脂、硬化剤、および無機 質充填剤を含有する熱硬化性榭脂組成物の硬化物 (榭脂硬化物)からなることを特 徴の一つとする。すなわち、従来の半導体素子搭載部材の製造に用いられる低融点 ガラスの代りに、前記の熱硬化性榭脂組成物の硬化物を用いるものである。
[0013] 接合層が熱硬化性榭脂組成物により形成されるので、その製造に、熱プレス等、基 板と枠体を精度よく平行に固定することができる手段を用いることができる。従って、 この半導体素子搭載部材を用いて、精度の高い撮像装置を得ることができる。
[0014] 本発明の半導体素子搭載部材は、接合層を構成する榭脂硬化物のガラス転移温 度力 130°C以上であることも、その特徴の一つとする。
[0015] 半導体装置を使用する際、半導体自身から発生する熱や外部環境からの熱によつ て、半導体搭載部材が熱せられ、接合層の温度が 120°C近ぐ場合によりそれ以上 になることがある。また、このような半導体素子搭載部材では、一般に— 55〜125°C 温度サイクル試験のような信頼性試験 (加速試験)が実施されることが多 ヽ。さらに高 信頼性を要求される用途では、— 65〜150°C温度サイクル試験が実施される場合が ある。
[0016] このような場合、ガラス転移温度の前後で熱膨張係数が変化するので、接合層を構 成する榭脂硬化物自身にクラックが発生しやすくなり、また、榭脂硬化物とリード端子 、基板、枠体との界面で剥離が生じて気密が破れる、等の問題が生じやすい。接合 層に用いられる榭脂の硬化後のガラス転移温度を 130°C以上とすることにより、この ような問題の発生を低減できる。接合層に用いられる榭脂の硬化後のガラス転移温 度は、より好ましくは 150°C以上である。
[0017] 本発明の半導体素子搭載部材は、さらに、前記リード端子と前記基板間にある接 合層の、前記基板の外周側にある端面が、前記リード端子となす接触角 Θ 1、前記リ ード端子と前記枠体間にある接合層の、前記枠体の外周側にある端面が、前記リー ド端子となす接触角 Θ 2、及び前記リード端子と前記基板間にある接合層の、前記リ ード端子の内周側にある端面が、前記基板となす接触角 Θ 3、のいずれもが 90° 未 満であることをその特徴とする。
[0018] 前記のように、接合層を形成する榭脂硬化物のガラス転移温度を 130°C以上とする ことにより、剥離やクラック発生の問題を低減できるが、本発明者は、前記の 0 1、 0 2 及び θ 3を 90° 未満とすることにより、接合層と、基板、枠体やリード端子との界面で の剥離や、榭脂硬化物のクラックの発生をさらに低減でき、使用環境温度の上昇、低 下が繰り返されても、半導体素子を長く安定して動作させることができる半導体素子 搭載部材が得られることを見出したのである。その結果、前記のような条件で行われ る温度サイクル試験などの信頼性試験後の気密性を保つことも可能となる。
[0019] ガラス転移温度が 130°C以上であっても、 0 1、 0 2及び 0 3の中の少なくとも一つ 力 S90° 以上であると、接合層と、基板、枠体やリード端子との界面に応力が集中しや すくなるため、そこから剥離が生じ、温度サイクル試験のような信頼性試験後の気密 が破れる等の不良を発生しやすくなると考えられる。
[0020] θ 1, Θ 2及び Θ 3の値としてより好ましくは、 5° 以上、 70° 以下の範囲である。 70 ° 以下であれば、端面への応力集中をより避けることができる。 5° 未満であると、榭 脂がリード端子上にはみ出しすぎて、外部電極との電気的接続に悪影響を及ぼす可 能性が生じる。
[0021] 図 3は、本発明の半導体素子搭載部材の一部 (枠体の一辺に相当する部分)の基 板面に垂直な断面を表す模式断面図であり、接触角 Θ 1、 Θ 2および Θ 3を示す(図 3b)、 c)及び d)は、それぞれ、図 3a)における Θ 1、 Θ 2および Θ 3の部分の拡大図 である。 ) o図 3a)、 b)に示されるように、 θ 1は、前記リード端子と前記基板間にある 接合層の、前記基板の外周側(図 3中の右側)にある端面が、前記リード端子となす 接触角である。より具体的には、基板表面と図 3で表される断面の交線及びリード端 子表面と該断面の交線の両交線に平行で、両交線から等距離にある中線 1と、基板 の外周側にある接合層の端面と該断面の交線 ml、との交点を piとし、基板の外周 側にある接合層の端面とリード端子が接する線と該断面の交点を p2としたとき、 piと p2を結ぶ直線と、リード端子の表面と該断面の交線が形成する角度を、本明細書に おいては、接触角 Θ 1と定義する。
[0022] 同様に、枠体表面と図 3で表される断面の交線及びリード端子表面と該断面の交 線の両交線に平行で、両交線カゝら等距離にある中線 2と、枠体の外周側にある接合 層の端面と該断面の交線 m2との交点を p3とし、枠体の外周側にある接合層の端面 とリード端子が接する線と該断面の交点を p4としたとき、 p3と p4を結ぶ直線と、リード 端子の表面と該断面の交線が形成する角度を、本明細書においては、接触角 Θ 2と 定義する(図 3a)、 c)に図示する。 )0また、中線 1と、リード端子の内周側にある接合 層の端面と該断面の交線 m3との交点を p5とし、リード端子の内周側にある接合層の 端面と基板が接する線と該断面の交点を p6としたとき、 p5と p6を結ぶ直線と、基板の 表面と該断面の交線が形成する角度を、本明細書においては、接触角 Θ 3と定義す る(図 3a)、d)に図示する。)。
[0023] なお、リード端子の幅方向で (すなわち図 3で表される断面が、リード端子の幅方向 に移動したとき)、 0 1、 0 2及び 0 3が変動することがある力 その場合は、幅方向で 変化する角度の最大値を、 Θ 1、 Θ 2及び Θ 3と定義する。
[0024] 本発明の半導体素子搭載部材は、さらに、前記リード端子と前記基板間にある接 合層の、前記基板の端部よりの引け、及び前記リード端子と前記枠体間にある接合 層の、前記枠体の端部よりの引け力 ともに 0. 6mm以下であることをその特徴とする 。少なくともいずれかの引けが 0. 6mmより大きいと気密不良が生じやすくなる。好ま しくは、引けは 0. 5mm以下であり、より好ましくは、引けは 0である。
[0025] 本発明の半導体素子搭載部材では、前記リード端子と前記基板間にある接合層の 、前記基板の端部よりのはみ出し、及び前記リード端子と前記枠体間にある接合層 の、前記枠体の端部よりのはみ出し力 ともに 0. 3mm以下であることが好ましい(請 求項 2)。少なくともいずれかのはみ出しが 0. 3mmを超えると、はみ出した榭脂により 電気的な接続不良等の問題が発生しやすくなる。すなわち、榭脂のはみ出し量が大 きいとリード端子の金属露出部分が小さくなるため、リード端子へのワイヤーボンド接 続の不良や、リード端子と外部回路を接続する半田接続の不良等の問題が発生しや すくなる。好ましくは、はみ出しは 0. 2mm以下である。
[0026] なお、引け及びはみ出しとは、接合層の端部と基板の端部又は接合層の端部と枠 体の端部との位置関係を表すもので、接合層の端部であって基板又は枠体側に最 も内側となる部分と、基板又は枠体の端部との距離を引けと言い、接合層の端部であ つて基板又は枠体の外周より最も外側となる部分と、基板又は枠体の端部との距離 をはみ出しと言い、それぞれ図 4に示されている。図 4は、本発明の半導体素子搭載 部材の一部 (枠体の一辺に相当する部分)の基板面に垂直な断面を表す模式断面 図であるが、図 4中の xがはみ出しを示し、 yが引けを示す。
[0027] 本発明の半導体素子搭載部材を構成する接合層の、少なくとも基板とリード端子と の間の弾性率は、 150°Cで 80MPa以上であることが好ましい(請求項 3)。ワイヤボン デイング等によって半導体素子の端子をリード端子と接続する際、そのプロセス温度 である 150°C近くまで、リード端子と接する接合層が加熱されることがある。しかし、リ ード端子と基板との間の接合層、すなわち接合層の基板とリード端子との間の部分の 弾性率が、 150°Cで 80MPa以上であれば、接続時にリード端子を下支えする接合 層が大きく変形することがない。その結果、接続時の圧力をリード端子に十分加える ことができ、またリード端子の振動を防ぐことができるので、接合不良の発生を防ぐこ とがでさる。
[0028] 好ましくは、リード端子と枠体との間の接合層、すなわち接合層のリード端子と枠体 との間の部分の弾性率も、 150°Cで 80MPa以上である。この場合は、リード端子と枠 体との間の接合層も変形しにくいので、半導体素子の端子をリード端子と接続する際 に、基板と枠体の平行度が損なわれたり、気密が破られたりすることを防止できるの で、好ましい。
[0029] 本発明の半導体素子搭載部材を構成する基板、枠体、リード端子の構造や材質に ついては、従来の低融点ガラスを用いて製造される半導体素子搭載部材と基本的に 同じである。従って、従来の半導体素子搭載部材の製造に使用されているものと同 様な、基板、枠体 (例えばセラミックス)、リード端子を用いて製造することができる。
[0030] 基板としては、熱伝導率が lOWZmK以上、熱膨張係数が 10 X 10_6Z°C以下で あるものが好ましい。熱伝導率が lOWZmK以上であると、基板の放熱性が高くなる ので、高出力、高密度の半導体素子に対応することが可能となる。また、熱膨張係数 力 S 10 X 10_6Z°C以下であると、基板の熱膨張係数が、撮像素子等の半導体素子の 一般的な熱膨張係数の範囲に近づくので、熱履歴による素子への熱応力の発生を 低減でき、撮像素子等の大型化に対応することが可能となる。例えば基板の面積が 500mm2以上であるような大型の半導体素子搭載部材に好適に適用することが可能 となる。
[0031] 熱伝導率および熱膨張係数についての上記の特性を満足する基板を形成する材 料としては、 A1N、 Al Oおよび SiC力もなる群より選ばれる少なくとも 1種を含むセラ
2 3
ミックが好ましく例示される。
[0032] 枠体としては、熱膨張係数が、 10 X 10_6Z°C以下で、基板の熱膨張係数との差が 3 X 10_6Z°C以下であるものが好ましい。枠体の熱膨張係数を、基板の熱膨張係数 に近づけることによって、両者の接合時に反り等の変形が発生するのを防止できると ともに、熱履歴による素子への熱応力の発生を低減でき、撮像素子等の大型化に対 応することが可能となる。例えば基板の面積が 500mm2以上であるような大型の半導 体素子搭載部材に好適に適用することが可能となる。
[0033] 本発明の半導体素子搭載部材は、
エポキシ榭脂、硬化剤及び無機質充填剤を含有する熱硬化性榭脂組成物であつ て、
その硬化物のガラス転移温度が 130°C以上であり、
かつ式∑ (Ei-Mei) +∑ (Hj -Mhj) (式中、 Eiはエポキシ榭脂の各成分の、ェポキ シ榭脂及び硬化剤の全重量に対する重量分率を表し、 Meiは、それぞれのエポキシ 榭脂の成分の数平均分子量を表し、 Hjは硬化剤の各成分の、エポキシ榭脂及び硬 ィ匕剤の全重量に対する重量分率を表し、 Mhjは、それぞれの硬化剤の成分の数平 均分子量を表す。)で表される数平均分子量指数が、 1200以下である熱硬化性榭 脂組成物を、基板の枠体側表面、及び枠体の基板側表面の少なくとも一方に塗布 する工程、及び、
塗布された熱硬化性榭脂組成物を硬化し接合層を形成する工程
を含むことを特徴とする製造方法により製造することができる。本発明は、前記の半 導体素子搭載部材に加えて、この製造方法も提供するものである(請求項 4)。
[0034] 本発明の製造方法は、基板や枠体の上に塗布され、その硬化により接合層を形成 する熱硬化性榭脂組成物として、前記のように定義される数平均分子量指数が 120 0以下であるものを用いることを特徴とする。この特徴を有する熱硬化性榭脂組成物 を、基板や枠体の上に塗布すると、金属であるリード端子とセラミックを同様に榭脂組 成物で濡らすことができ、良好なフィレット形成ができ、その硬化により得られた半導 体素子搭載部材において、前記の接触角 Θ 1、 Θ 2及び Θ 3が 90° 未満となる。数 平均分子量指数は、 800以下であると、より好ましい。一方、数平均分子量指数の下 限は 300以上が好ましい。 300未満になると、熱硬化性榭脂組成物の流動性が過度 に大きくなり、その結果、前記定義のはみ出しが大きくなりやすくなり、又リード端子の 間隔の広い部分等力 榭脂組成物が流出し空孔が発生しやすくなり、良好な気密を 保つことができなくなる可能性がある。
[0035] 前記の数平均分子量指数を表す式にお!、て、 iはエポキシ榭脂の種類を表し、例 えば 2種のエポキシ榭脂 1、 2の混合物が用いられる場合は、エポキシ榭脂 1につい ては、重量分率 El、数平均分子量 Melで表され、エポキシ榭脂 2については、重量 分率 E2、数平均分子量 Me2で表され、∑ (Ei'Mei)は、 El X Mel +E2 X Me2で ある。同様に、 jは硬化剤の種類を表し、例えば 2種の硬化剤 1、 2の混合物が用いら れる場合は、硬化剤 1については、重量分率 Hl、数平均分子量 Mhlで表され、硬 化剤 2については、重量分率 H2、数平均分子量 Mh2で表され、∑ (Hj 'Mhj)は、 H 1 X Mhl +H2 X Mh2である。
[0036] 熱硬化性榭脂組成物の塗布は、例えば印刷により行うことができる。特に熱硬化性 榭脂組成物が液状の場合、その塗布は、スクリーン印刷等の印刷や、転写、ディスぺ ンサ一等により、榭脂組成物を基板または枠体の接合部上に、容易に行うことができ る。
[0037] 印刷等の塗布方法を用いれば、必要な部分のみ、すなわち基板と枠体が接合する 部分のみに容易に榭脂組成物を塗布することができ、榭脂のシートを使用する場合 に必要なシートの除去工程、例えば半導体素子搭載部分力 の榭脂のシートの打抜 き工程は不要である。またスクリーン印刷等により塗布する場合は、塗布ムラを生ぜ ず、かつパターン精度に優れるとともに、リード端子を、気密を維持しつつ接合する 接合層を容易に形成することができる。
[0038] 熱硬化性榭脂組成物としては、印刷時の環境を考慮すると、 23°Cで液状の熱硬化 性榭脂組成物がより好ましい(請求項 5)。さらに好ましくは、 23°Cでの粘度が 20〜5 OOPa' sの榭脂組成物が好ましい。粘度が、この範囲にある液状熱硬化性榭脂組成 物を用いることにより、優れたパターン精度で印刷することができる。 500Pa' sを超え る場合や 20Pa' s未満の場合は、接合層の気密性低下の原因となる印刷ムラを生じ やすい傾向にある。良好な印刷性が得るための特に好ましい粘度範囲は、 50〜300 Pa' sである。
[0039] また、熱硬化性榭脂組成物を硬化する際のボイドの発生を招かな!/ヽなどの理由に より、固形分が 80%以上であることが好ましい。すなわち、熱硬化性榭脂組成物とし ては、固形分が 80%以上であり、 23°Cでの粘度力 20〜500Pa' sである液状の熱 硬化性榭脂組成物が特に好ま Uヽ (請求項 6)。
[0040] 良好な印刷性を得るためには、さらにチキソトロピー指数が 1. 01〜3. 00の範囲に ある液状熱硬化性榭脂組成物が好ましい。チキソトロピー指数が 1. 01未満では、榭 脂組成物の塗布後、だれたり流れたりする場合がありパターン精度が低下する。一方
、 3. 00を超えると、印刷等の際に版離れが悪くなり良好な印刷性が得られなくなる。 より好ましいチキソトロピー指数の範囲は、 1. 05-2. 00である。
[0041] なお、ここで 、う粘度とは、 E型粘度計( (株)レオロジ製、 MR- 300VII型)を用い て 23°Cで測定した値である。また、チキソトロピー指数は、同じ E型粘度計を用いて 測定した、回転数 lrpmにおけるペーストのみかけ粘度 7? 1と、回転数 lOrpmにおけ るペーストのみかけ粘度 10との比 ( η ΐ/ η 10)の値を言う。
[0042] 熱硬化性榭脂組成物の塗布およびリード端子の設置の方法としては、次に述べる 方法が例示される。
[0043] 例えば、スクリーン印刷等の方法により、基板および枠体の接合部の両方に、榭脂 組成物を塗布し、この榭脂組成物間にリード端子を挟持する(以後、この方法をプロ セス 1と言う。)方法が挙げられる。基板および枠体上に塗布された榭脂組成物は、そ れらの硬化により、それぞれ基板とリード端子間の接合層及び枠体とリード端子間の 接合層を形成する。
[0044] または、熱硬化性榭脂組成物を、スクリーン印刷等の方法により基板の接合部に塗 布し、次にリード端子を塗布された榭脂組成物上の所定の位置に置き、さらにその上 に榭脂組成物を塗布し、その後その上に枠体を設置する(以後、この方法をプロセス 2と言う。)方法も挙げられる。プロセス 2では、基板上に塗布された榭脂組成物が、基 板とリード端子間の接合層を形成し、リード端子上に塗布された榭脂組成物が、枠体 とリード端子間の接合層を形成する。なお、プロセス 2の代わりに、熱硬化性榭脂組 成物を、先ず枠体に塗布し、次にリード端子を、塗布された榭脂組成物上の所定の 位置に置き、さらにその上に榭脂組成物を塗布し、その後これを、基板の接合部上 に設置する方法も採用することができる。
[0045] V、ずれの方法にお 、ても、基板とリード端子間の接合層を形成する熱硬化性榭脂 組成物と、枠体とリード端子間の接合層を形成する熱硬化性榭脂組成物は、同じで あっても異なっていてもよぐ枠体とリード端子間の接合層を形成する熱硬化性榭脂 組成物は、その硬化物の弾性率が 150°Cで 80MPa以上でなくてもよい。ただし、こ の熱硬化性榭脂組成物も、その硬化物の弾性率が 150°Cで 80MPa以上のものが 好ましい。
[0046] 熱硬化性榭脂組成物の塗布およびリード端子の設置がされた後、基板と枠体の圧 着が行われる。この圧着は、プロセス 1においては、基板上に塗布した榭脂組成物と 枠体上に塗布した榭脂組成物の間にリード端子を挟んだ状態で行われる。プロセス 2にお ヽては、リード端子上に塗布した榭脂組成物上の所定の位置に枠体を置!、た 後、この圧着が行われる。
[0047] 前記の工程の中で、予備加熱、すなわち硬化の温度よりも低!、温度 (例えば 100°C 程度)での加熱を行うことにより熱硬化性榭脂組成物を Bステージ状態にし、基板、枠 体、リード端子の接合を行う方法も採用される。すなわち、液状熱硬化性榭脂組成物 の塗布後、予備加熱により前記榭脂組成物を Bステージ状態として、基板または Zお よび枠体とリード端子を接合した後、前記榭脂組成物を硬化する工程を含むことを特 徴とする前記の半導体素子搭載部材の製造方法である (請求項 7)。
[0048] Bステージ状態とは、表面タックのな 、タックフリー状態である力 硬化後の接合性 ( 接着性)を損なわない状態を言う。 Bステージ状態での圧着後、より高温で熱硬化性 榭脂組成物を硬化して接合層を形成する。
[0049] Bステージ状態で接合を行うことにより、液状熱硬化性榭脂組成物のダレ等を防止 できる。また、接合工程での熱硬化性榭脂組成物の層は表面タックのないタツタフリ 一状態であるので、ハンドリングが良好になってリード端子の挟み込みや接合の際の 位置修正を容易に行うことができ生産性をさらに上げることができる等の効果が得ら れる。 [0050] Bステージ状態を経由して接合した場合でも、圧着温度での榭脂組成物の流動性 が十分に大きければ、熱プレスによる圧着の際、榭脂組成物が良好に流動して隅々 まで行きわたるので、基板と枠体とを気密良く接合できるとともに、リード端子をさらに 良好に気密を維持した状態で貫通させることができる。ただし、圧着温度での榭脂組 成物の流動性は、リード端子の間隔の広い部分など力 榭脂組成物が流出して空孔 が発生しな 、範囲でなければならな!/、。
[0051] 榭脂のはみ出しや引けを前記の範囲にするために、接合の工程における榭脂厚や 各種接合条件の調整が望まれる場合がある。特に、榭脂組成物とリード端子との濡 れ性が良い場合は、榭脂のはみ出しが生じやすいので、榭脂厚や各種接合条件の 調整が望まれる。
[0052] 例えば、前記 Bステージ状態にお 、て、前記熱硬化性榭脂組成物の塗布の厚み( リード端子がある部分では、リード端子の厚みも含む。)が、前記リード端子の厚みの 1. 10倍以上で、 3. 00倍以下であることが好ましい (請求項 8)。 3. 00を超えると、榭 脂量過多により上記はみ出し量が 0. 3mmを超え、はみ出した榭脂により電気的な 接続不良などの問題が発生しやすくなる。一方、 1. 10未満であると、榭脂量不足に より引けが 0. 6mmを超え、榭脂量不足のための気密不良が発生しやすくなる。より 好ましくは、 1. 50〜2. 50である。
[0053] リードフレームの厚みは 0. 10mm以上、 0. 25mm以下が望ましい。 0. 25mmを超 えると、リード端子間の空隙率が大きくなりすぎて、気泡巻き込みの原因となり気密不 良を起こしやすい。一方、 0. 10mm未満であると、リード端子の強度が足りず折れ曲 力 などの不具合が発生しやす!/、。
[0054] 榭脂糸且成物の硬化は、プロセス 1、プロセス 2のいずれにおいても、圧着後、圧力を 解放し、恒温槽等を用いて行うことができる。榭脂組成物の硬化により、基板と枠体と を気密に接合するとともに、リード端子を、気密を維持しつつ貫通する接合層が形成 され、半導体素子搭載部材を得ることができる。
[0055] 熱プレスによる場合のプレス温度は、 60°C以上 140°C以下が好ましい。 140°Cを超 えると、榭脂の硬化が進み増粘し樹脂が隅々まで行き渡らなくなりやすい。一方、 60 °C未満であると、榭脂の軟ィ匕が不十分で流動性が悪ィ匕し樹脂が隅々まで行き渡らな くなりやすい。より好ましくは、 80°C〜120°Cである。
[0056] プレス圧力は、 0. lOMPa以上、 1. OMPa以下が好ましい。 1. OMPaを超えると、 圧力が強すぎて上記はみ出しが 0. 3mmを超え、はみ出した榭脂により電気的な接 続不良などの問題が発生しやすい。一方、 0. lOMPa未満であると、圧力不足により 榭脂が隅々まで行き渡らなくなりやすい。より好ましくは、 0. 20MPa〜0. 60MPaで ある。
[0057] プレス時間は、 1秒以上 300秒以下が好ましい。 300秒を超えると、プレス時間が長 すぎて上記はみ出しが 0. 3mmを超え、はみ出した榭脂により電気的な接続不良な どの問題が発生しやすい。一方、 1秒未満であると、プレス時間が短すぎて、榭脂が 隅々まで行き渡らなくなりやす 、。
[0058] 以上述べたリード端子の厚みや各プレス条件の好ましい範囲内で、本発明の半導 体素子搭載部材を作成すると、完成品における榭脂層の厚みが、前記リード端子の 厚みの 1. 05以上 3. 00以下となり、又、気密性も良好で、榭脂のはみ出しや引けも 、上記の好ましい範囲内にある半導体素子搭載部材を得ることができる。完成品に おける榭脂層の厚みが、前記リード端子の厚みの 1. 05以上 3. 00以下の範囲から 外れて 、る場合は、気密不良やはみ出し不良になる可能性が高 、。
[0059] 本発明は、さらに、前記の本発明の半導体素子搭載部材を用いた半導体装置 (特 に撮像装置)を提供する。すなわち、前記の本発明の半導体素子搭載部材の半導 体素子搭載部に半導体素子を搭載し、その後、枠体上に蓋体を気密に接合して製 造されたことを特徴とする半導体装置 (請求項 9)を提供する。
[0060] このような本発明の半導体装置は、前記のような製造方法で本発明の半導体素子 搭載部材を製造した後、その半導体素子搭載部に半導体素子を搭載した後、素子 の端子とリード端子を接続し、さらにその後、枠体の上から、透光性素材よりなる蓋体 を気密に接合して、半導体素子を外部環境力 遮断して封止することにより得ること ができる。本発明の半導体装置は、熱プレス等の良好な平行度を保ちやすい工程を 用いて製造されるとともに、使用環境温度の上昇、低下が繰り返されても、接合層と、 基板、枠体やリード端子との界面での剥離や、接合層を構成する榭脂硬化物のクラ ックが生じにく!、半導体素子搭載部材を用いて 、るので、受光面と蓋体との平行度 を良好に保つとともに、優れた信頼性、耐久性を有し、撮像装置等に好適に用いら れる。なお、本発明の半導体装置を構成する蓋体や素子等は、従来の半導体装置 で使用されているものと同じものを使用することができる。
発明の効果
[0061] 本発明の半導体素子搭載部材は、気密性を維持しつつリード端子、基板、枠体を 接合する接合層を有し、気密性に優れる。また、使用環境温度の上昇、低下が繰り 返されても、接合層と、基板、枠体やリード端子との界面での剥離や、接合層を構成 する榭脂硬化物のクラックが生じにくぐ従って気密不良が生じにくい。従って、例え ば、温度サイクル試験のような信頼性試験後の気密性が良好である。そして、本発明 の半導体素子搭載部材の製造方法によれば、前記の本発明の半導体素子搭載部 材を安定的に製造することができる。
[0062] このような半導体素子搭載部材を用いた本発明の半導体装置は、長時間の使用に よっても気密不良が生じにくいので、優れた信頼性、耐久性を有し、撮像装置等に好 適に用いられる。
図面の簡単な説明
[0063] [図 1]本発明の半導体素子搭載部材を示す平面模式図である。
[図 2]図 1における i—i線断面図である。
[図 3]本発明の半導体素子搭載部材の一部の断面を表す模式断面図である。
[図 4]本発明の半導体素子搭載部材の一部の断面を表す模式断面図である。
符号の説明
[0064] 1. 基板
2. 枠体
3. 半導体素子搭載部
4. リード端子
5. 51、 52 接合層
発明を実施するための最良の形態
[0065] 先ず、本発明の半導体素子搭載部材の接合層を形成する熱硬化性榭脂組成物を 構成する組成にっ ヽて説明する。
[0066] エポキシ榭脂としては、ビスフエノーノレ A型、ビスフエノーノレ F型、ビスフエノーノレ S型 、フエノールノボラック型、クレゾ一ルノボラック型等、公知のエポキシ榭脂を使用でき る。これらのエポキシ榭脂は、単独で、あるいは 2種以上を組み合わせて使用される 力 ビスフエノール A型エポキシにクレゾ一ルノボラック型エポキシ榭脂を配合したェ ポキシ榭脂が、耐熱性、耐湿性、電気特性などの点カゝら好ましい。
[0067] 中でも、クレゾ一ルノボラック型エポキシ榭脂の配合量力 全エポキシ榭脂中の 10 重量%以上、 40重量%未満の場合がより好ましい。クレゾ一ルノボラックの配合量が 10重量%より少ない場合は、耐熱性、耐湿性、電気特性が十分に得られない場合が あり、 40重量%以上の場合は榭脂の粘度が高くなり、作業性が悪くなる場合がある。 特に好ましくは、クレゾ一ルノボラック型エポキシ榭脂の配合量が 20〜30重量%であ る場合であり、この場合は、十分な耐熱性、耐湿性、電気特性が得られ、かつ樹脂の 粘度が適当となり作業性もさらに良好となる。
[0068] 硬化剤としては、アミン類、酸無水物類、多価フエノール類等、公知の硬化剤を用 いることができる。硬化剤の含有割合の範囲は特に限定されず、好ましくは、半導体 素子搭載部材の製造の際の硬化温度で、良好な硬化物を与える量が含有される。こ れらの硬化剤は、単独で、あるいは 2種以上を組み合わせて使用することができるが 、耐熱性、電気特性などの点カゝらフエノール榭脂系硬化剤を用いるのが好ましい。ェ ポキシ榭脂ゃ硬化剤の種類を調整することにより、硬化物の弾性率を 150°Cで 80M Pa以上とすることができる。
[0069] 無機質充填剤としては、シリカ、沈降性硫酸バリウム、タルク、炭酸カルシウム、窒化 ケィ素、窒化アルミニウム等、公知の無機質充填剤を用いることができ、要求される特 性に応じて、単独で、あるいは 2種以上を組み合わせて使用される。無機質充填剤 の形状としては、球状、破砕状、フレーク状などがあるが、無機質充填剤の高充填化 により硬化物の高弾性率ィ匕を図るため、球状の無機質充填剤が好ましい。無機質充 填剤の配合割合を調整することにより、硬化物の弾性率を 150°Cで 80MPa以上とす ることができる。無機質充填剤の配合割合は、組成物全体量の 1〜95重量%である ことが好ましい。 1重量%未満では、得られる硬化物が充分な高弾性率を示すことが 難しい。一方、 95重量%を超えると、粘度が高くなりすぎて流動性が低下するため、 良好な印刷性が得られなくなる場合がある。また、圧着時の流動性が低下して、圧着 時に樹脂が隅々まで行き渡らず、気密性が低下する場合がある。
[0070] 熱硬化性榭脂組成物の流動特性は、無機質充填剤の粒度分布にも大きく依存し ており、一般に分布が広く粒径の大きい無機質充填剤ほど、榭脂組成物の粘度が低 くなり流動性がよい。しかし、粘度の低下のみを目的に大きな粒径を含む無機質充填 剤を用いると、硬化中に粒径の大きな無機質充填剤が沈降してボイドを発生させ、気 密性を低下させる場合があり、また、沈降により分布が不均一になり、熱膨張係数も 不均一となり、信頼性の面からも好ましくない。以上の観点から、無機質充填剤として は、平均粒径が 0. 1 μ m〜100 μ mで、かつ最大粒径が 200 μ m以下の無機質充 填剤が好ましい。
[0071] 溶媒は、前記熱硬化性榭脂組成物を液状とするために添加され、榭脂成分を溶解 し榭脂組成物の粘度を下げるものであれば特に限定されない。溶媒には、榭脂組成 物の原料由来のもの(例えば、原料のエポキシ榭脂を溶解する溶媒)も含まれるし、 榭脂組成物の調整の過程で粘度調整のために添加されるもの等も含まれる。溶媒の 含有量は、熱硬化性榭脂組成物としての粘度やチキソトロピー指数、硬化後の弾性 率が好ましい範囲となるように調整、配合される。溶媒が使用されない場合もあり得る
[0072] 前記熱硬化性榭脂組成物には、以上の配合組成に加えて、本発明の趣旨を損な わない範囲で、必要に応じて他の成分を含有することができる。例えば、良好な印刷 性を得るために、チクソ性調整剤等を配合してもよ ヽ。
[0073] また、液状熱硬化性榭脂組成物は、その硬化の過程にぉ 、て、 100°Cで 90分未 満の予備加熱により Bステージ状態となった後に硬化に至るものが好ましい。 Bステ ージ状態の接合材の内部は、粘度の上昇が抑えられ、流れ性が良好で、気密を保つ た接合ができる。なお、 100°Cで 90分未満の予備加熱により Bステージ状態となるも のとは、 100°Cで予備加熱した場合は、 90分未満で Bステージ状態となるとの意味で あり、 Bステージ状態とするための温度が 100°Cに限定されるものではない。
[0074] 液状熱硬化性榭脂組成物は、基板または枠体上の少なくとも 1面に塗布 (印刷)さ れる。厚みが、各面で 30 /z m以上となるように、かつ両面での総厚みが 100〜500 μ mの範囲となるように、塗布されることが好ましい。総厚みが 100 μ m未満では、気 密を保つことが難しぐ一方、 500 mを超える場合は、接合の際の樹脂の、基板お よび枠体間よりのはみ出しが大きくなり、リード端子と、素子または外部電極との電気 的接続に悪影響を及ぼすおそれがある。より好ましくは、 200〜400 mである。
[0075] 次に、本発明の半導体素子搭載部材およびその製造方法の一例を図により説明 する。図 1〜2は、本発明の半導体素子搭載部材を示し、図 1は平面模式図である。
[0076] 図 1において、 1はセラミックス力も成る基板、 2はセラミックス力も成る枠体、 3は半 導体素子搭載部であり、この上の破線で示される部分 Aに半導体素子が搭載される 。枠体 2の長辺側には、リード端子 4が配設されている。
[0077] 図 2は図 1における i—i線断面図である。図 2に示されるように、基板 1と枠体 2間に は、接合層 5が形成されており、その厚み方向の中間位置を貫通するようにリード端 子 4が配設されている。リード端子 4と基板 1間にある接合層 5の部分が接合層 51で あり、リード端子 4と枠体 2間にある接合層 5の部分が接合層 52である。本発明にお いては、基板 1および枠体 2それぞれの接合する側の面に、熱硬化性榭脂組成物を スクリーン印刷等の方法で所定の平面形状となるよう塗布して、それぞれの面に熱硬 化性榭脂組成物の層を形成し、これを予備加熱することにより Bステージ状態の層と する。
[0078] 次に、多数のリード端子 4がフレームと一体成形されたリードフレームを、榭脂組成 物の層が形成された基板 1、および榭脂組成物の層が形成された枠体 2で挟み込み 、熱プレス等で圧着すると、榭脂組成物の層が一体化し、この榭脂組成物を硬化さ せることにより基板 1と枠体 2とが気密に接合され、同時に、気密を維持しつつリード 端子 4を貫通させた接合層 5が形成される。その後、リード端子をフレーム力 切り離 すことで、半導体素子搭載部材が作製される。基板 1上に形成された榭脂組成物の 層が接合層 51となり、枠体2上に形成された榭脂組成物の層が接合層 52となる。 実施例
[0079] 次に実施例を示して、本発明をより具体的に説明する。実施例は、本発明の範囲を 限定するものではない。 [0080] 実施例 1〜15、比較例 1〜4
(熱硬化性榭脂組成物の作製)
表 1〜4に示す配合に基づき、実施例 1〜15、比較例 1〜4の液状熱硬化性榭脂 組成物を得た。
[0081] エポキシ榭脂 Aとしては、以下に示す榭脂を用いた。
ビスフエノール A型液状エポキシ榭脂(商品名:ェピクロン 850— CRP、大日本イン キ化学 (株)製:表中では「CRP」と表す。 )
ビスフエノール A型液状エポキシ榭脂(商品名:ェピコート 828、ジャパンエポキシレ ジン (株)製:表中では「828」と表す。 )
[0082] 表中に示されるこれらの榭脂の数平均分子量は、東ソー株式会社製 HLC— 8220
GPCを用い、 GPC法にて測定した値である。以下に示す他の榭脂等の数平均分 子量についても同様にして測定した値である。
[0083] エポキシ榭脂 Bとしては、以下に示す榭脂を用いた。
クレゾ一ルノボラック型固形エポキシ榭脂(商品名:ェピクロン N— 665、大日本イン キ化学 (株)製:表中では「N665」と表す。 )
クレゾ一ルノボラック型固形エポキシ榭脂(商品名:ェピクロン N— 695、大日本イン キ化学 (株)製:表中では「N695」と表す。 )
ナフタレン型液状エポキシ榭脂(商品名:ェピクロン HP— 4032D、大日本インキ化 学 (株)製:表中では「4032」と表す。 )
ビスフエノール A型固形エポキシ榭脂(商品名:ェピコート 1002、ジャパンエポキシ レジン (株)製:表中では「1002」と表す。 )
[0084] 硬化剤としては、以下に示すものを用いた。
ノボラック系フエノール榭脂(商品名:フエノライト TD— 2090、大日本インキ化学( 株)製:表中では、「TD— 2090」と表す。)
ノボラック系フエノール榭脂(商品名:フエノライト TD— 2131、大日本インキ化学( 株)製:表中では、「TD— 2131」と表す。)
アミン系エポキシ榭脂硬化剤(商品名: SEIKACURE— S、和歌山精ィ匕工業 (株) 製:表中では、「SEIKA」と表す。 ) イミダゾール系エポキシ榭脂硬化剤(商品名:キュアゾール CI 1Z、四国化成工業( 株)製:表中では、「C11Z」と表す。 )
イミダゾール系エポキシ榭脂硬化剤(商品名:キュアゾール 2PZL、四国化成工業( 株)製:表中では、「2PZL」と表す。 )
[0085] 無機フイラ一としては、球状シリカ(商品名: DENKA高流動性球状シリカ FB— 91 0、電気化学工業 (株)製)を使用した。
固形分や粘度を調整するため、溶媒としてメチルカルビトールを使用した。
[0086] (液状熱硬化性榭脂組成物の物性測定)
弾性率
得られた液状熱硬化性榭脂組成物を硬化して、硬化後の 150°Cでの弾性率を測 定した。この弾性率は、引張り動的粘弾性測定装置 (セイコーインスツル (株)製、 D MS6100)を用いて、 JIS K 7244— 4に準拠して測定した値である。
粘度
E型粘度計( (株)レオロジ製、 MR- 300VII型)を用いて 23°Cで測定した。 固形分
JIS-K-6833「接着剤の一般試験方法」に規定される「不揮発分測定」に準拠し て測定した。
[0087] 印刷性 (塗布性)
特定パターンで印刷を行い、ノターンの欠けの発生、並びに連続印刷性につきチ エックし、評価した。評価基準は、以下の通りである。
〇:欠けを生じることなぐ連続印刷が可能
△:連続印刷が可能であるが、若干の欠けを生じる
X:常に欠けが生じる、あるいは、連続印刷が不可能
[0088] ガラス転移温度 (Tg)
得られた液状熱硬化性榭脂組成物の硬化後のガラス転移温度 (Tg)を測定した。 具体的には、引張り動的粘弾性測定装置 (セイコーインスツル (株)製、 DMS6100) を用いて tan δを測定し、 tan δの最大値における温度をガラス転移温度 (Tg)とした [0089] (基板'枠体の作製)
Al O , SiO、 MgO、 CaO、 Cr O、 MnO及び TiOを、有機バインダ、溶剤、可
2 3 2 2 3 2 2
塑剤、および分散剤と混合してスラリーを調整し、このスラリーをスプレイドライ法によ り顆粒ィ匕した。その後、この顆粒をプレス成形し、 1500°Cで焼成した後、表面をラッ プ研磨して基板および枠体を得た。
[0090] (試験体の作製)
このようにして得られた基板および枠体の各表面の所定箇所に、得られた液状熱 硬化性榭脂組成物を、枠体側に 140 m、基板側に 90 mの厚みで塗布した。この とき、基板は、リード端子が配設される側の長辺の長さが 40mm、長辺と交差する短 辺の長さが 30mmの大きさで、厚みは 1. 4mmであった。また、枠体は、長辺の長さ 力 S40mm、短辺の長さが 30mm、長辺側の枠の幅が 3mm、短辺側の枠の幅が 5. 5 mmで、厚みは 0. 9mmであった。
[0091] 前記の熱硬化性榭脂組成物を基板並びに枠体に塗布した後、各塗布面間に厚み 100 mのリードフレームのリード端子部分を挟んだ状態で、熱プレス式の接合装置 を用いて圧着して榭脂組成物を硬化させるとともに一体に接合した。その後、リード 端子をフレーム力 切り離し、半導体素子搭載部材を作製した。
熱プレス条件: 120°C X 0. 6MPa X 15秒
作製した半導体素子搭載部材の基板の片面と、枠体の上面との間の平行度を測 定したところ、いずれも 以下で、基板と枠体とは、高精度の平行状態に位置 合わせされて!/ヽることが確認された。
[0092] ( 0 1、 Θ 2及び Θ 3の測定)
作製した半導体素子搭載部材を、図 1の i-i線で示されるような位置で切断し、 400 倍の光学顕微鏡でその断面の顕微鏡写真を撮り、その顕微鏡写真から 0 1、 0 2及 び Θ 3を測定した。
[0093] (はみ出し、引けの測定)
作製した半導体素子搭載部材を、図 1の i i線で示されるような位置で切断し、長さ 測定機能付の光学顕微鏡を用い 400倍で観察し、枠又は基板の端から、はみ出した 榭脂の端までの距離を測定し、それぞれ枠よりのはみ出し、又は基板よりのはみ出し とし、両者の中で大きい方をはみ出しの値とした。又、枠又は基板の端から、榭脂の 最も引けの大きい箇所までの距離を測定し、それぞれ枠よりの引け、又は基板よりの 引けとし、両者の中で大きい方を引けの値とした。
[0094] (ワイヤプル強度の測定)
半導体素子搭載領域に露出したリード端子の先端部に、直径 30 mの Auワイヤ をワイヤボンディングした後、 MIL— STD— 883E METHOD 2011. 7に準拠し てワイヤプル強度を測定した。ワイヤプル強度が 6g以上であれば、 Auワイヤが良好 に接続されていると評価し、表中に「〇」で示した。そうでないときは表中に「X」で示 した。
[0095] (気密性の測定と評価)
さらに、 MIL— STD— 883E METHOD 1010. 7に準拠して、 一 55。CZl25 。C、及び—65°CZ150°Cで 10サイクルの温度サイクル試験 (TCT)を行い、その前 後において、 MIL— STD— 883E METHOD 1014. 9に準拠して、基板と枠体 との間の Heリークレートを測定し気密性を評価した。 Heリークレートが 5 X 10_9Pa' m3Zsecを超える場合は気密性不良と評価し、全数(100個)に対する気密性不良 のサンプル数を表中に示した。
[0096] 以下の表における * 1、 * 2、 * 3、 * 4は次の意味を示す。
* 1 エポキシ榭脂 A、エポキシ榭脂 B及び硬化剤の全量に対する重量%を表す。 ( )内は、エポキシ榭脂 A及びエポキシ榭脂 Bの全量に対するそれぞれの重量%を 表す。
* 2 榭脂組成物中の固形成分全量に対するフィラーの添加割合を、重量%で表わ したものである。
* 3 TCT:— 55°C〜125°C
* 4 TCT:— 65°C〜150°C
[0097] [表 1]
Figure imgf000024_0001
2]
Figure imgf000025_0001
3]
Figure imgf000026_0001
4]
t麵 1 卿 J2 腳 1:瞧 4 翻 CRP 828 828 828
360 380 380 380
A 翁量 (SS¾) * 1 56 (80) 27 (40) 98 (100) 80 (100)
觀 N665 N695 ― 一
シ赚 1100 2100 一 ― B -s m%) * ι 14 (20) 41 (60)
丽 M 麵 TD-2131 TD-2090 CI 1Z 2PZL 数平 通 500 1200 230 150
铺量 * 1 30 32 2 20
フイラ 職 S i02 職 S i02 一
鋤慮(21%) * 2 47 47 一
数平 Η»擞 506 1348 377 334 1» (150Ό (MP a) 1500 4000 220 230 (Pa'S) 85 650 80 80
隠 > (%) 75 94 90 90 ワイヤカ O 〇 o o 胜 〇 X o o
Tg (C) 158 195 107 129 ) Θ 1 52 95 59 60
Θ2 55 97 62 64 .
Θ3 50 65 50 53
12/100 2/100 0/100 0/100
Figure imgf000027_0001
*3 12/100 14/100 12/100 7/100
12/100 30/100 25/100 15/100
Β¾Βし(+) /¾1け(一) mm 一 0. 7 0. 2 0. 2 0. 2 なお、 比較例 2及び比較例 3における硬化後樹脂総厚みは 242 /zm (従って、 硬化後 榭脂総厚み/リードフレーム厚み =2. 42) であり、 樹脂はみ出しによる不良はなかつ た (後述の評価基準で◎) 。
[0101] 表 1〜4より明らかなように、本発明例である実施例の半導体素子搭載部材では、 T CT前の気密不良数が少なく気密性に優れている。又、 TCT後であっても気密不良 数が少なぐ使用環境温度の上昇、低下が繰り返されても、気密不良が生じにくいこ とが示されている。一方、引けが 0. 6mmを超える比較例 1では、 TCT前の気密不良 数が多ぐ気密性が劣る。比較例 1の榭脂組成物の固形分は 80%未満(75%)であ り、その結果引けが 0. 6mmを超えたと考えられる。
[0102] 又、数平均分子量指数や Θの値が本発明の範囲外である比較例 2、及び榭脂硬 化物のガラス転移温度が本発明の範囲外である比較例 3、 4では、 TCT後の気密不 良数が多ぐ気密不良が発生しやすいことが示されている。比較例 2においては、数 平均分子量指数が 1200を超えたことにより、 Θの値が本発明の範囲外となったと考 えられる。
[0103] なお、熱硬化性榭脂組成物の硬化物の 150°Cでの弾性率が 80MPaより小さい実 施例 10では、ワイヤプル強度が低い。又、熱硬化性榭脂組成物の塗布時の粘度が 5 OOPa' sより大き 、実施例 11では印刷性が劣る。
[0104] 実施例 16〜35、比較例 5〜8
エポキシ榭脂 Aとして、ビスフエノール A型液状エポキシ榭脂(商品名:ェピクロン 8 50— CRP、表中では「CRP」と表す。)、エポキシ榭脂 Bとして、クレゾ一ルノボラック 型固形エポキシ榭脂(商品名:ェピクロン N— 665、表中では「N665」と表す。)、硬 ィ匕剤として、ノボラック系フエノール榭脂(商品名:フエノライト TD— 2131、表中では 、「TD— 2131」と表す。)、無機フィラーとして、球状シリカ(商品名: DENKA高流動 性球状シリカ FB— 910)を使用し、溶媒としてメチルカルビトールを使用し、固形分 力 93%で粘度が 250Pa' sの液状熱硬化性榭脂組成物を得た。得られた液状熱硬 化性榭脂組成物について、硬化後のガラス転移温度 (Tg)を前記と同様にして測定 したところ、 158°Cであった。
[0105] 実施例 1と同様にして基板 ·枠体を作製した。
[0106] (試験体の作製)
作製された基板および枠体の各表面の所定箇所に、得られた液状熱硬化性榭脂 組成物を、後述する Bステージ状態における平均榭脂塗布厚みが、表 5〜9に示され る値となるように枠体側及び基板側に塗布した。このとき、基板は、リード端子が配設 される側の長辺の長さが 40mm、長辺と交差する短辺の長さが 30mmの大きさで、 厚みは 1. 4mmであった。また、枠体は、長辺の長さが 40mm、短辺の長さが 30mm 、長辺側の枠の幅が 3mm、短辺側の枠の幅が 5. 5mmで、厚みは 0. 9mmであった
[0107] 前記の熱硬化性榭脂組成物を基板並びに枠体に塗布した後、 100°Cに加熱して B ステージ状態とし、その後各塗布面間に表 5〜9に示す厚みを有するリードフレーム のリード端子部分を挟み、熱プレス式の接合装置を用いて圧着を行い、榭脂組成物 を硬化させるとともに一体に接合した。その後、リード端子をフレーム力 切り離し、半 導体素子搭載部材を作製した。
熱プレス条件: 120°C X 0. 6MPa X 15秒
[0108] 作製された半導体素子搭載部材について、実施例 1と同様にして、 Θ 1、 Θ 2及び
Θ 3の測定、並びに、はみ出し、引け及び気密性の測定、評価を行った。その結果、 実施 f列 16〜35、 it較 f列 5〜8【こつ!ヽて、 0 1、 0 2及び 0 3ίま、 45〜55° の範囲【こ あることを確認した。又、はみ出し、引け及び気密性の測定結果を表 5〜9に示す。は み出しは、実施例 1と同様に長さ機能付の光学顕微鏡で測定し、 0. 3mm以下を良 好、 0. 2mm以下をさらに良好と判断した。
[0109] [表 5]
Figure imgf000030_0001
6]
Figure imgf000031_0001
7]
¾5®¾26 ¾¾^!)27 ¾ J28 娜】29
觀 CRP CRP CRP CRP CRP シ嫌 360 360 360 360 360 A 铺量 m%) * l 56 (80) 56 (80) 56 (80) 56 (80) 56 (80)
«s Ν665 N665 N665 N665 N665 旨 1100 1100 1100 1100 1100 Β 含有量觀%) * 1 14 (20) 14 (20) 14 (20) 14 (20) 14 (20) 繊 TD— 2131 TD— 2131 TD-2131 TD-2131 TD 2131 数平 t¾ 500 500 500 500 500 m (重量%) * 1 30 30 30 30 30 フイラ 麵 職 S i〇2 職 S Ϊ02 職 S i02 職 S i02 職 S i02 励瞳醒%) *2 47 47 47 47 47
506 506 506 506 506 平職 議 ija 200 320 260 260 200
[Bス ジ] 翻 ijb 40 200 130 100 100 リードフト ΛΙ¾· (/im) c 200 200 250 250 250
(a + b) /c 1. 20 2. 60 1. 56 1. 44 1. 20 mu m^ Oxm) d 335 335 385 385 385 d/c 1. 68 1. 68 1. 54 1. 54 1. 54
«¾Hし(+) 51け (-) mm 一 0. 6 0. 3 0. 2 一 0. 45 -0. 6
0/100 0/100 0/100 0/100 0/100
*3 2/100 0/100 0/100 0/100 1/100
*4 2/100 0/100 0/100 3/100 3/100 8]
Figure imgf000033_0001
9]
1WJ5 腳 J6
Figure imgf000034_0001
腳 J8 離 CRP CRP CRP CRP シ赚 360 360 360 360
A 含有量廳%) * 1 56 (80) 56 (80) 56 (80) 56 (80) 翻 N665 N665 N665 N665 シ樾旨 1100 1100 1100 1100 B 铺量 β%) * 1 14 (20) 14 (20) 14 (20) 14 (20) 猶 J 觀 TD-2131 TD-2131 TD-213 TD-2131
500 500 500 500 铺量驢%) * 1 30 30 30 30 フイラ 纖 職 S i02 職 S i〇2 職 S i〇2 職 S i02
M%) *2 47 47 47 47
506 506 506 506 平環 議 ija 65 120 120 140
(urn)
SWJb 40 40 90 130 リードフ ΛΙΙ^ ( ΠΤ) c 100 150 200 250
(a+b) /c 1. 05 1. 07 1. 05 1. 08 麵綱 膨 ( m) d 242 290 335 385 d/c 2. 42 1. 93 1. 68 1. 54 湖し(+) 1け(一) mm 一 0. 8 -0. 7 一 0. 7 -0. 7
5/100 7/100 7/100 10/100
Figure imgf000034_0002
氺 3 8/100 10/100 10/100 12/100
氺 4 12/100 12/100 15/100 15/100 表 5〜9より明らかなように、液状熱硬化性榭脂組成物の硬化後のガラス転移温度 ( Tg)が 130°C以上(158°C)であり、接触角 01、 02、 Θ 3のいずれもが 90° 未満で あり、かつ引けが 0. 6mm以下である実施例 16〜35は、 TCT前の気密不良数が少 なく気密性に優れている。又、 TCT後であっても気密不良数が少なぐ使用環境温 度の上昇、低下が繰り返されても、気密不良が生じにくいことが示されている。一方、 引けが 0. 6mmを超える比較例 5〜8では、 TCT前、 TCT後いずれも気密不良数が 多ぐ気密性が劣る。 [0115] 実施例 16〜35は、リード端子の厚みは 100〜250 μ mの範囲で変動しているが、 いずれも、熱硬化性榭脂組成物の Bステージ状態における塗布厚みが、リード端子 の厚みの 1. 10倍以上であり、その結果引けが 0. 6mm以下となったものと考えられ る。一方、比較例 5〜8では、熱硬化性榭脂組成物の Bステージ状態における塗布厚 み力 リード端子の厚みの 1. 10倍未満であり、その結果引けが 0. 6mmを超え、気 密性が低下したと考えられる。
[0116] 実施例 16〜35の中では、はみ出しが 0. 3mm以下の実施例 16〜31では榭脂は み出しによる不良がないが、はみ出しが 0. 3mmを超える実施例 32〜35では榭脂 はみ出しによる不良が生じている。実施例 16〜31は、いずれも、熱硬化性榭脂組成 物の Bステージ状態における塗布厚み力 リード端子の厚みの 3. 00倍以下であり、 その結果はみ出しが 0. 3mm以下となったものと考えられる。一方、実施例 32〜35 では、熱硬化性榭脂組成物の Bステージ状態における塗布厚みが、リード端子の厚 みの 3. 00倍を超え、その結果はみ出しが 0. 3mmを超え、榭脂はみ出しによる不良 が生じたと考えられる。
[0117] 参考例
表 10および表 11に示す配合に基づき、参考例 1〜8の液状熱硬化性榭脂組成物 を得た。表 10および表 11において、榭脂 1〜3は、エポキシ榭脂であって、それぞれ 、榭脂 1は、ビスフエノール A型液状エポキシ榭脂(商品名:ェピコート 828、ジャパン エポキシレジン (株)製)、榭脂 2は、ビスフエノール A型固形エポキシ榭脂(商品名: ェピコート 1002、ジャパンエポキシレジン (株)製)、榭脂 3は、クレゾ一ルノボラック型 エポキシ榭脂(商品名:ェピクロン N— 695、大日本インキ化学 (株)製)である。
[0118] 硬化剤は、ノボラック型フエノール榭脂(商品名:フエノライト TD— 2131、大日本ィ ンキ化学 (株)製)である。また、無機フィラーとして、溶融シリカ(商品名: FB— 910、 電気化学工業 (株)製)、ァエロジル((商品名: RY— 200、 日本ァェロジル (株)製) 他を使用した。さらに、 Bステージ化剤として、アクリル系コアシェル榭脂(商品名:ゼ オン F351、 日本ゼオン (株)製)を使用した。
[0119] (液状熱硬化性榭脂組成物の物性測定と評価)
参考例 1〜8で得られた液状熱硬化性榭脂組成物の固形分、粘度、チキソトロピー 指数 (TI値)を測定し、併せて、印刷性 (塗布性)の評価、硬化物のガラス転移温度( Tg)および 150°Cでの弾性率の測定を行った。固形分、粘度、印刷性、ガラス転移 温度 (Tg)及び 150°Cでの弾性率の測定は、実施例 1等で示した方法に基づ 、て行 つた。また、チキソトロピー係数は、 E型粘度計を用いて測定した、回転数 lrpmにお ける榭脂組成物のみかけ粘度 7? 1と、回転数 lOrpmにおける榭脂組成物のみかけ 粘度 η 10との比 ( η ΐ/ η 10)を示す。
[0120] 又、榭脂組成物を 100°Cで 30分予備加熱して、 Bステージ状態を示すカゝ否かを、 表面タックの有無でチェックし、評価した。評価基準は、以下の通りである。
〇:表面タック無し
X:表面タック有り
[0121] 実施例 1と同様な条件にて、基板'枠体の作製を行い、得られた基板および枠体の 各表面の所定箇所に、参考例 1〜8で得られた液状熱硬化性榭脂組成物を、基板上 に厚さ 90 m、枠体上に厚さ 140 mで塗布した。このとき、基板は、リード端子が 配設される側の長辺の長さが 40mm、長辺と交差する短辺の長さが 30mmの大きさ で、厚みは 1. 4mmであった。基板の表裏両面の平行度を、 JIS B— 0022「幾何公 差のためのデータム」に準拠して測定したところ、いずれも 30 /z m以下で、高精度の 平行状態にあることが確認された。
[0122] また、枠体は、長辺の長さが 40mm、短辺の長さが 30mm、長辺側の枠の幅が 3m m、短辺側の枠の幅が 5. 5mmで、厚みは 0. 9mmであった。枠体の表裏両面の平 行度は 10 m以下、短辺の対角線上における平行度は 10 mZ40mm以下であ つた o
[0123] 榭脂組成物を塗布した基板並びに枠体を、 100°Cで 30分加熱した後、各塗布面 でリードフレームのリード端子部分を挟んだ状態で、熱プレス式の接合装置を用いて 、榭脂組成物を圧着した後、榭脂組成物を硬化させるとともに一体に接合した。その 後、リード端子をフレーム力も切り離し、半導体素子搭載部材を作製した。
[0124] その後、ワイヤプル強度の測定を実施例 1と同じ条件、評価基準にて行った。その 結果を表 10及び表 11に示す。気密性の測定を実施例 1の場合と同様に行い、 Heリ ークレートが 5 X 10_9Pa'm3Zsec以下であれば、気密性良好と評価し表中に「〇」 △」、 1 X 10_6Pa 'm3Zsecを超える場合は表中に「 X」で示した。
[0125] [表 10]
Figure imgf000037_0001
[0126] [表 11]
参考例 5 参考例 6 参考例 7 参考例 8 エポキシ樹脂 樹脂 1 80 70 80 80 (重量部) 樹脂 2 0 0 0 0
樹脂 3 20 30 20 20 硬化剤 (重量部) 45 45 45 45 無機フイラ一 (重量部) 150 150 350 150
15 OVr&M^ CMP a) 1500 1800 2500 1500
Tg C) 158 160 159 160 ワイヤプル強度 〇 〇 〇 〇 印刷性 〇 〇 〇 〇 固形分 (wt%) 93 93 93 93 粘度 (P a · s) 240 240 250 200
T I値 1. 3 1. 3 1. 3 1. 3
Bス ジ侧 (^m 15 15 15 0
Bステージ性 〇 〇 〇 〇
TCT前の気密性 〇 〇 〇 〇
TCT後の気密性 〇 〇 〇 〇 表 10及び表 11より明らかなように、参考例 1〜8では、優れたワイヤプル強度、印 刷性、 Bステージ性および気密性が得られて 、る。

Claims

請求の範囲
[1] 上面中央部に半導体素子搭載部を有する基板、半導体素子搭載部を取り囲む形 状からなる枠体、基板上面に枠体を気密に接合する接合層、および接合層の厚み 方向の中間位置を貫通するリード端子を含む半導体素子搭載部材であって、 接合層が、エポキシ榭脂、硬化剤及び無機質充填剤を含有する熱硬化性榭脂組 成物の硬化物力 なり、該硬化物のガラス転移温度が 130°C以上であり、
前記リード端子と前記基板間にある接合層の、前記基板の外周側にある端面が、 前記リード端子となす接触角 Θ 1、
前記リード端子と前記枠体間にある接合層の、前記枠体の外周側にある端面が、 前記リード端子となす接触角 Θ 2、及び
前記リード端子と前記基板間にある接合層の、前記リード端子の内周側にある端面 力 前記基板となす接触角 Θ 3、のいずれもが 90° 未満であり、並びに
前記リード端子と前記基板間にある接合層の前記基板の端部よりの引け、及び前 記リード端子と前記枠体間にある接合層の前記枠体の端部よりの引け力 0. 6mm 以下であることを特徴とする半導体素子搭載部材。
[2] 前記リード端子と前記基板間にある接合層の前記基板の端部よりのはみ出し、及 び前記リード端子と前記枠体間にある接合層の前記枠体の端部よりのはみ出しが、 0 . 3mm以下であることを特徴とする請求項 1に記載の半導体素子搭載部材。
[3] 前記接合層の、基板とリード端子との間の弾性率力 150°Cで 80MPa以上である ことを特徴とする請求項 1又は請求項 2に記載の半導体素子搭載部材。
[4] 上面中央部に半導体素子搭載部を有する基板、半導体素子搭載部を取り囲む形 状からなる枠体、基板上面に枠体を気密に接合する接合層、及び接合層の厚み方 向の中間位置を貫通するリード端子を含む半導体素子搭載部材の製造方法であつ て、
エポキシ榭脂、硬化剤及び無機質充填剤を含有する熱硬化性榭脂組成物であつ て、
その硬化物のガラス転移温度が 130°C以上であり、
かつ式∑ (Ei-Mei) +∑ (Hj -Mhj) (式中、 Eiはエポキシ榭脂の各成分の、ェポキ シ榭脂及び硬化剤の全重量に対する重量分率を表し、 Meiは、それぞれのエポキシ 榭脂の成分の数平均分子量を表し、 Hjは硬化剤の各成分の、エポキシ榭脂及び硬 ィ匕剤の全重量に対する重量分率を表し、 Mhjは、それぞれの硬化剤の成分の数平 均分子量を表す。)で表される数平均分子量指数が、 1200以下である熱硬化性榭 脂組成物を、基板の枠体側表面、及び枠体の基板側表面の少なくとも一方に塗布 する工程、及び、
塗布された熱硬化性榭脂組成物を硬化し接合層を形成する工程
を含むことを特徴とする半導体素子搭載部材の製造方法。
[5] 前記熱硬化性榭脂組成物が、 23°Cで液状であることを特徴とする請求項 4に記載 の半導体素子搭載部材の製造方法。
[6] 前記液状熱硬化性榭脂組成物の固形分が、 80%以上であり、 23°Cでの粘度が、 20〜500Pa' sであることを特徴とする請求項 5に記載の半導体素子搭載部材の製 造方法。
[7] 前記液状熱硬化性榭脂組成物の塗布後、予備加熱により前記榭脂組成物を Bステ ージ状態として、基板または Zおよび枠体とリード端子を接合した後、前記榭脂組成 物を硬化する工程を含むことを特徴とする請求項 4な ヽし請求項 6の ヽずれかに記 載の半導体素子搭載部材の製造方法。
[8] 前記 Bステージ状態にお 、て、前記熱硬化性榭脂組成物の塗布の厚みが、前記リ ード端子の厚みの 1. 10倍以上で、かつ 3. 00倍以下であることを特徴とする請求項
7に記載の半導体素子搭載部材の製造方法。
[9] 請求項 1な!、し請求項 3の 、ずれかに記載の半導体素子搭載部材の前記半導体 素子搭載部に、半導体素子を搭載し、その後、枠体上に蓋体を気密に接合して製造 されたことを特徴とする半導体装置。
PCT/JP2006/325523 2005-12-27 2006-12-21 半導体素子搭載部材、その製造方法、及び半導体装置 WO2007077752A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007552910A JP5038156B2 (ja) 2005-12-27 2006-12-21 半導体素子搭載部材、その製造方法、及び半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005373953 2005-12-27
JP2005-373953 2005-12-27
JP2006040334 2006-02-17
JP2006-040334 2006-02-17

Publications (1)

Publication Number Publication Date
WO2007077752A1 true WO2007077752A1 (ja) 2007-07-12

Family

ID=38228107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325523 WO2007077752A1 (ja) 2005-12-27 2006-12-21 半導体素子搭載部材、その製造方法、及び半導体装置

Country Status (2)

Country Link
JP (1) JP5038156B2 (ja)
WO (1) WO2007077752A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130650A (ja) * 2016-01-19 2017-07-27 ミネベアミツミ株式会社 希土類ボンド磁石
EP4447472A1 (en) * 2023-04-11 2024-10-16 STMicroelectronics International N.V. Stacked filter assembly for optical integrated circuit package with an optical filter mounted to an optical integrated circuit device by a discrete semiconductor spacer block

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228349A (ja) * 1988-07-18 1990-01-30 Mitsubishi Electric Corp 窒化アルミニウムパッケージおよびその製造方法
JP2005079147A (ja) * 2003-08-28 2005-03-24 Kyocera Corp 撮像素子収納用パッケージ
JP2005281422A (ja) * 2004-03-29 2005-10-13 Kyocera Corp 樹脂接着剤および電子部品収納用パッケージ
WO2006090684A1 (ja) * 2005-02-23 2006-08-31 A. L. M. T. Corp. 半導体素子搭載部材とそれを用いた半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228349A (ja) * 1988-07-18 1990-01-30 Mitsubishi Electric Corp 窒化アルミニウムパッケージおよびその製造方法
JP2005079147A (ja) * 2003-08-28 2005-03-24 Kyocera Corp 撮像素子収納用パッケージ
JP2005281422A (ja) * 2004-03-29 2005-10-13 Kyocera Corp 樹脂接着剤および電子部品収納用パッケージ
WO2006090684A1 (ja) * 2005-02-23 2006-08-31 A. L. M. T. Corp. 半導体素子搭載部材とそれを用いた半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130650A (ja) * 2016-01-19 2017-07-27 ミネベアミツミ株式会社 希土類ボンド磁石
EP4447472A1 (en) * 2023-04-11 2024-10-16 STMicroelectronics International N.V. Stacked filter assembly for optical integrated circuit package with an optical filter mounted to an optical integrated circuit device by a discrete semiconductor spacer block

Also Published As

Publication number Publication date
JPWO2007077752A1 (ja) 2009-06-11
JP5038156B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
US7326369B2 (en) Low stress conductive adhesive
JP4802246B2 (ja) 半導体装置
JP5660272B2 (ja) フリップチップ半導体パッケージ用の接続構造、ビルドアップ層材料、封止樹脂組成物および回路基板
US8110066B2 (en) Adhesive composition suitable to be applied by screen printing
KR20090045319A (ko) 반도체 패키지와 그 제조 방법 및 봉지 수지
KR20090092786A (ko) 반도체 패키지, 코어층 재료, 빌드업층 재료 및 시일링 수지 조성물
US20190267416A1 (en) Image sensor mounting base, imaging device, and imaging module
KR100685273B1 (ko) 절연재료, 필름, 회로기판 및 이들의 제조방법
JP2008133354A (ja) 半導体用接着シート及びこれを用いた電子部品接合体
JP2007197647A (ja) 液状熱硬化性樹脂組成物、および接合材
US20180254251A1 (en) Electronic component mounting board and electronic device
JP2007329162A (ja) 電子部品装置の製造方法、封止用熱硬化型樹脂シート及び電子部品装置
WO2007077752A1 (ja) 半導体素子搭載部材、その製造方法、及び半導体装置
TW201708487A (zh) 密封樹脂片材
JP2008177432A (ja) 封止用熱硬化型樹脂シート、電子部品装置及び電子部品装置の製造方法
TW201843777A (zh) 中空密封結構體
KR101595696B1 (ko) 비전도성 접착필름용 조성물 및 이를 포함하는 비전도성 접착필름
JPH1117075A (ja) 半導体装置
KR20110008412A (ko) 핫멜트형 접착제 조성물, 접착 필름, 반도체칩 탑재용 기판, 반도체 장치 및 그 제조 방법
JP4829877B2 (ja) 半導体素子搭載部材とそれを用いた半導体装置
JP2008004751A (ja) 半導体装置の製造方法
CN108450036B (zh) 摄像元件安装用基板及摄像装置
JP4984564B2 (ja) エポキシ樹脂組成物及びその製造方法、並びに半導体装置
JP6567934B2 (ja) 撮像装置
JP2002222833A (ja) 導電性接着剤、電子部品実装体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007552910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06835089

Country of ref document: EP

Kind code of ref document: A1