WO2007074853A1 - 光拡散性フィルムの製造方法および光拡散性フィルム - Google Patents

光拡散性フィルムの製造方法および光拡散性フィルム Download PDF

Info

Publication number
WO2007074853A1
WO2007074853A1 PCT/JP2006/326013 JP2006326013W WO2007074853A1 WO 2007074853 A1 WO2007074853 A1 WO 2007074853A1 JP 2006326013 W JP2006326013 W JP 2006326013W WO 2007074853 A1 WO2007074853 A1 WO 2007074853A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
mass
light diffusing
resin
Prior art date
Application number
PCT/JP2006/326013
Other languages
English (en)
French (fr)
Inventor
Yasushi Sasaki
Shunichiro Baba
Mutsuo Nishi
Yoshitomo Ikehata
Katsufumi Kumano
Jun Inagaki
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005378312A external-priority patent/JP4715510B2/ja
Priority claimed from JP2005378313A external-priority patent/JP4715511B2/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2007074853A1 publication Critical patent/WO2007074853A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to a method for producing a light diffusing film used in a knocklight unit of a liquid crystal display, a lighting device, and the like, and a light diffusing film obtained therefrom.
  • liquid crystal displays have been widely used as display devices for wake-up personal computers, televisions, mobile phones, and the like. Since these liquid crystal displays do not have a light emitting function by themselves, they can be displayed by installing a backlight unit on the back.
  • knock light units There are various types of knock light units.
  • the most common method is an internal illumination method or a direct type, in which the light source is inside the illumination surface.
  • the other method is called an edge light type, where the light source is arranged outside the illumination surface, and is a side of a powerful light guide plate such as a transparent acrylic resin plate that is the illumination surface.
  • a substantially linear light-emitting body such as a cold cathode discharge tube
  • a lamp cover made of a reflector is provided to introduce light into the light guide plate.
  • Edge light type backlight units are widely used when a small display such as a notebook personal computer or the like is particularly required to be thin and light.
  • Necessary functions required for the light guide plate of the edge light type backlight unit are a function of sending light incident from the end portion forward and a function of emitting the transmitted light to the liquid crystal display element side.
  • the former function depends on the material used and the interface reflection characteristics.
  • the latter function depends on the shape of the light guide plate surface.
  • a method of forming the shape of the light guide plate surface a method of forming a white diffusing material on the surface of the light guide plate and a method of forming a Fresnel shape of a lenticular or prism on the surface of the light guide plate are known.
  • the light emitted from the light guide plate in which these shapes are formed has a nonuniform light distribution due to the shapes.
  • a light diffusing film is installed on the light guide plate, and the light passing through the light diffusing layer is diffused and scattered, so that the luminance of the light exit surface is made uniform. Attempts are being made.
  • a condensing sheet is used so as to collect the light emitted through the light diffusing film in the front direction as much as possible.
  • This condensing sheet is a transparent sheet with a large number of minute irregularities such as prisms, waves, pyramids, etc. arranged on the surface. The brightness is improved.
  • Such a light condensing sheet is used by being arranged one or two on the surface side of the light diffusing film.
  • each member (light guide plate, light diffusing film, light collecting sheet, etc.) through which the light of the backlight unit is transmitted has light transmittance. Ingenious measures have been taken to reduce light loss and improve light utilization efficiency, such as using high materials.
  • Examples of the light diffusing film used in the backlight unit as described above include (1) forming a transparent thermoplastic resin into a sheet shape, and then performing a process of physically making irregularities on the surface. (2) obtained by coating a light diffusing layer made of transparent resin containing fine particles on a transparent material film such as polyester resin (for example, see Patent Document 1) For example, refer to Patent Document 2), (3) What is obtained by melting and mixing beads in transparent resin and extruding this (for example, refer to Patent Document 3) is generally used. .
  • Patent Document 1 Japanese Patent Laid-Open No. 4-275501
  • Patent Document 2 JP-A-6-59108
  • Patent Document 3 Japanese Patent Laid-Open No. 6-123802
  • the backlight unit can be downsized by combining the light diffusive film with another optical functional film, the structure of the knock light unit, and the manufacturing process.
  • As a base film for light diffusive film with the aim of simplifying and reducing costs Many attempts have been made to impart light diffusibility to the biaxially stretched film that is widely used.
  • a film containing voids inside obtained by melting and mixing a polyester resin and a resin incompatible with the resin and biaxially stretching
  • a film containing substantially spherical voids obtained by mixing spherical silica particles with low-crystallinity copolymer polyester resin and biaxially stretching (see, for example, Patent Documents 5 and 6)
  • a film substantially free of voids obtained by melt-mixing a low crystalline copolymer polyester resin and a resin incompatible with the resin and biaxially stretching for example, Patent Documents 7 and 8)
  • a film containing voids in the inside for example, patent
  • Patent Document 4 Japanese Patent Laid-Open No. 11-268211
  • Patent Document 5 JP 2001-272508 A
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-324606
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-162508
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2002-182013
  • Patent Document 9 Japanese Patent Laid-Open No. 2002-196113
  • Patent Document 10 Japanese Patent Laid-Open No. 2002-372606
  • Patent Document 11 Japanese Patent Application Laid-Open No. 2004-354558
  • the light is applied to the transparent substrate film in terms of both heat resistance and light transmittance.
  • the method has not been put to practical use as the methods (1) and (2) for adding a diffusion layer later.
  • An object of the present invention is to provide a method for producing a light diffusive film having excellent heat resistance and mechanical strength inherent in a biaxially stretched film, and having excellent light transmittance and light diffusibility, and the same. It is to provide a light diffusive film obtained.
  • the first invention of the present invention is a light diffusion obtained by biaxially stretching an unstretched sheet comprising a mixture containing 50 to 99 parts by weight of a crystalline polyester and 1 to 50 parts by weight of a light diffusing additive.
  • a method for producing a light diffusing film having a layer, wherein the biaxial stretching is performed in a longitudinal direction and a transverse direction at a stretching ratio of 2.5 times or more and a stretching speed of less than 300% Z seconds, respectively. Is a method for producing a light diffusing film.
  • the second invention is the method for producing a light diffusing film according to the first invention, wherein the biaxial stretching is performed using a simultaneous biaxial stretching machine.
  • a third invention is the method for producing a light diffusing film according to the first invention, wherein the light diffusing additive is a thermoplastic resin incompatible with the crystalline polyester. .
  • a fourth invention is the method for producing a light diffusing film according to the first invention, wherein the light diffusing additive is inorganic particles.
  • a fifth invention is the method for producing a light diffusing film according to the first invention, wherein the light diffusing additive is non-meltable polymer particles.
  • a sixth invention is the process for producing a light diffusing film according to the third invention, wherein the thermoplastic resin is an amorphous transparent polymer.
  • the seventh invention relates to amorphous transparent polymer strength polystyrene resin, acrylonitrile styrene copolymer, methyl methacrylate styrene copolymer such as styrene copolymer, cyclic polyolefin resin, methacrylic resin,
  • An eighth invention is the method for producing a light-diffusing film according to the first invention, wherein the crystalline polyester has a melting point of 250 ° C or higher.
  • a ninth invention is the process for producing a light diffusing film according to the first invention, characterized in that the crystalline polyester is made of polyethylene terephthalate or a polyethylene terephthalate copolymer.
  • the tenth invention is a light diffusing film produced by the method described in any one of the first to ninth inventions, wherein the total light transmittance is 85% or more and the haze is 50%.
  • the light diffusive film is characterized in that the dimensional change rate at 150 ° C. is 3% or less in both the longitudinal direction and the transverse direction, and the tensile strength is 1 OOMPa or more in both the longitudinal and transverse directions.
  • the biaxially stretched film inherently has excellent heat resistance and mechanical strength.
  • the biaxial stretching of the film can Since the stretching is performed at a stretching ratio of 2.5 times or more in both directions, and the stretching in both directions is performed at a stretching speed of less than 300% Z seconds, the void that appears around the light diffusing additive during stretching. Is suppressed, and both excellent light transmittance and light diffusibility can be achieved.
  • FIG. 1 is an explanatory diagram showing the relationship between the elapsed time from the start of film stretching and the stretching ratio during film production in Example 1.
  • FIG. 2 is an explanatory diagram showing the relationship between the elapsed time from the start of film stretching and the stretching speed during film production in Example 1.
  • FIG. 3 is an explanatory view showing the relationship between the elapsed time from the start of stretching of the film during production of the film of Example 8 and the stretching ratio.
  • FIG. 4 is an explanatory diagram showing the relationship between the elapsed time from the start of stretching of the film and the stretching speed during film production in Example 8.
  • FIG. 5 is an explanatory view showing the relationship between the elapsed time of stretching start force and the stretching ratio during film production in Example 10.
  • FIG. 6 is an explanatory diagram showing the relationship between the elapsed time of stretching start force and the stretching speed during film production in Example 10.
  • the method for producing a light diffusing film of the present invention is obtained by biaxially stretching an unstretched sheet comprising a mixture containing 50 to 99 parts by mass of crystalline polyester and 1 to 50 parts by mass of a light diffusing additive.
  • the crystalline polyester that can be used as a raw material for the light diffusion layer in the present invention has a heat of crystal melting of lOmjZmg or more.
  • the heat of crystal melting is lOmjZmg If it is less than 1, the heat resistance of the biaxially stretched film will be reduced, and curling may occur due to heat treatment in the post-processing step or the usage environment (temperature) of the liquid crystal display, or the mechanical strength may be insufficient. . In either case, it is difficult to achieve both the excellent heat resistance inherent in the biaxially stretched film and the mechanical strength.
  • a more preferable lower limit of the heat of crystal fusion is 15 mjZmg, a further preferable lower limit is 20 mjZmg, and a most preferable lower limit is 30 miZmg.
  • the preferred upper limit of the heat of crystal fusion is 50 mjZmg.
  • the melting point of the crystalline polyester of the present invention is not particularly limited, but is preferably 200 ° C or higher, more preferably 220 ° C or higher, particularly preferably 230 ° C or higher. Most preferably, the temperature is 240 ° C or higher. On the other hand, the preferable upper limit of the melting point is 300 ° C.
  • polyester means aromatic dicarboxylic acid or its ester such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, and ethylene glycol, diethylene glycol, 1,3 propanediol, 1,4 butanediol, neopentyl.
  • these polyesters have a transesterification method in which an alkyl ester of an aromatic dicarboxylic acid and a glycol are transesterified and then polycondensed.
  • the crystalline polyester include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene 2,6 naphthalate.
  • the polyester may be a homopolymer or a copolymerized third component.
  • a polyester having an ethylene terephthalate unit or an ethylene 2,6 naphthalate unit of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more is preferable.
  • the polyester does not substantially contain particles used to improve slipperiness by generally forming irregularities on the surface of the stretched film.
  • substantially free of particles means, for example, in the case of inorganic particles, when inorganic elements are quantified by key X-ray analysis, 50 ppm or less, preferably 10 ppm or less, most preferably detected. It means the content that is below the limit. This is because even if particles are not actively added to the polyester, contaminants derived from foreign substances, raw material grease, or dirt adhering to the lines and equipment in the film manufacturing process can be peeled off and This is because it may be mixed.
  • the light diffusing additive is not particularly limited as long as it is a material incompatible with the above crystalline polyester, but the following materials are preferably used.
  • the light diffusing additive used in the present invention is most preferably a thermoplastic resin incompatible with polyester.
  • thermoplastic resin incompatible with polyester.
  • it is incompatible with the polyester in the matrix that also has crystalline polyester strength in the production process of the biaxially stretched film (melting and extrusion process). This is a technology in which a domain made of thermoplastic resin is dispersed and formed and used as a light diffusing substance.
  • Atactic polystyrene Atactic polystyrene, syndiotactic polystyrene, and isotactic Polystyrene resin such as polystyrene
  • Copolymers comprising (a) to (k) as main components, or a mixture of these resins
  • an amorphous transparent polymer in order to produce a light diffusing film having high light transmittance.
  • the crystalline polymer may become cloudy, resulting in an increase in the amount of haze inside the film and a decrease in light transmittance.
  • Examples of the amorphous transparent polymer that can be used in the present invention include polystyrene resins, acrylonitrile 'styrene copolymers, styrene copolymers such as methyl methacrylate' styrene copolymers, and cyclic olefin fins.
  • Examples thereof include acrylic resin typified by fat and methacrylic resin, and polycarbonate resin.
  • the non-melting polymer particles that can be used as the light diffusing additive of the present invention are 10 ° CZ min from 30 ° C to 350 ° C using a melting point measuring device (MPA100, manufactured by Stanford Research Systems).
  • the composition of the particles is not limited as long as the particles do not undergo flow deformation due to melting when the temperature is raised.
  • acrylic resin, polystyrene resin, polyolefin resin, polyester resin, polyamide resin, polyimide resin, fluorine resin, urea resin, melamine resin, and organic silicone examples thereof include system fats.
  • the shape of the particles is preferably spherical, particularly preferably spherical. Further, the particles may or may not have pores. Furthermore, you may use both together.
  • non-melting polymer particles are made of a polymer having a melting point of 350 ° C or higher, Bridge polymer particles may be used, but from the viewpoint of heat resistance, it is preferable to use crosslinked polymer particles made of a polymer having a crosslinked structure.
  • the average particle size of the non-melting polymer particles is preferably 0.5 to 50 ⁇ m U.
  • the lower limit of the average particle size of the above non-melting polymer particles is 1.
  • O / z m is more preferable, particularly preferably 2. ⁇ m.
  • the average particle size of the non-melting polymer particles is less than 0.5 m, it is difficult to obtain a good light diffusion effect.
  • the upper limit of the average particle size of the non-melting polymer particles is more preferably 30 ⁇ m, and particularly preferably 20 ⁇ m.
  • the non-melting polymer particles are preferably particles having a sharp particle size distribution as much as possible.
  • the non-melting polymer particles may be one type or two or more types. Using a plurality of non-melting polymer particles with a sharp particle size distribution (meaning that the particle size is uniform) and different average particle sizes can cause coarse particles, which are disadvantages of the film. Since mixing can be suppressed, this is a preferred embodiment.
  • inorganic particles that can be used as the light diffusing additive include silica, calcium carbonate, barium sulfate, calcium sulfate, alumina, kaolinite, and talc.
  • the average particle size of the inorganic particles is usually preferably from 0.1 to 50 ⁇ m. 0.5-30 ⁇ m is more preferable 1-20 / ⁇ ⁇ is more preferable. If the average particle size is less than 0 .: L m, good light diffusion effect cannot be obtained. Conversely, if it exceeds 50 m, it will lead to a decrease in film strength, etc.
  • the particle size distribution of the inorganic particles is preferably as sharp as possible. If it is necessary to broaden the particle size distribution, it is preferable to combine multiple particles with a sharp particle size distribution. Coarse particle size particles that cause film defects Can be prevented.
  • the average particle diameter of the particles is measured by the following method.
  • the shape of the inorganic particles is not limited, but is preferably substantially spherical or spherical.
  • the particles may be non-porous or porous. Sarako, you may use both
  • the light diffusing additive one of the above three kinds may be used, or two or more kinds may be used in combination.
  • the mixing ratio of the crystalline polyester and the thermoplastic resin incompatible with the polyester is 99Zl to 5 in mass ratio.
  • a preferable lower limit of the mixing ratio of the thermoplastic resin incompatible with the polyester is 3 parts by mass, and a more preferable lower limit is 5 parts by mass. Further, the mixing ratio of the thermoplastic resin that is incompatible with polyester is preferably U, the upper limit is 30 parts by mass, and more preferably, the upper limit is 20 parts by mass.
  • the mixing ratio of the inorganic particles is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the crystalline polyester. More preferably, it is 4-40 mass parts, Most preferably, it is 8-30 mass parts.
  • the mixing ratio is less than 1 part by mass, the light diffusion performance is insufficient.
  • the mixing ratio exceeds 50 parts by mass, it is preferable because the inorganic particles fall off or cause foreign matters when the film is biaxially stretched. It ’s not good.
  • the mixing ratio of the non-melting polymer particles is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the crystalline polyester.
  • the lower limit of the mixing ratio is more preferably 4 parts by weight, particularly preferably 8 parts by weight.
  • the upper limit of the mixing ratio is preferably 40 parts by mass, particularly preferably 30 parts by mass.
  • the total amount of these is 1 to 50 per 100 parts by mass of crystalline polyester.
  • a mass part is preferred. More preferably, it is 4-40 mass parts, Most preferably, it is 8-30 mass parts.
  • the method for producing a light diffusing film of the present invention is characterized in that the biaxial stretching of the film is carried out at a specific stretching condition, particularly at a slow stretching speed in both the longitudinal and transverse directions.
  • PET polyethylene terephthalate
  • the above pellets are transported by air using a predetermined pipe.
  • HEPA filter used at this time is preferably a filter that has a performance of cutting 95% or more of dust with a nominal filtration accuracy of 0.5 / zm or more.
  • polyester and a thermoplastic resin incompatible with the polyester are each dried by vacuum drying or hot air drying so that the moisture content is less than lOOppm.
  • each raw material is weighed and mixed, supplied to an extruder, and melt extruded into a sheet. Further, the molten sheet is brought into close contact with a rotating metal roll (casting roll) using an electrostatic application method, and is cooled and solidified to obtain an unstretched PET sheet.
  • the melted part, kneading part, polymer tube, gear pump, and filter of the extruder It is preferable to control the oil temperature to 280 to 290 ° C, and then to the resin temperature to 270 to 295 ° C until the polymer tube and the flat die in order to suppress the generation of foreign substances such as deteriorated products.
  • high-precision filtration is performed at any place where the molten resin is maintained at 280 ° C in order to remove foreign substances contained in the resin.
  • the filter medium used for high-precision filtration of molten resin is not particularly limited, but in the case of a stainless steel sintered filter medium, removal of aggregates and high-melting-point organic substances mainly composed of Si, Ti, Sb, Ge, and Cu. Excellent performance and suitable.
  • the filtration pressure will increase, and measures such as lowering the discharge rate of the raw material resin will be required, reducing productivity.
  • the filter particle size (initial filtration efficiency 95%) of the filter medium is preferably 20 ⁇ m or less, particularly preferably 15 m or less. If the filter particle size of the filter medium (initial filtration efficiency 95%) exceeds 20 m, foreign matter with a size of 20 m or more cannot be removed sufficiently.
  • a thermoplastic resin that is incompatible with polyester is used as the light diffusive substance, and organic or inorganic particles are used. Therefore, the above-described high-precision filtration is possible. Become.
  • a foreign object with a size of 20 m may be optically recognized as a size of 50 / z m or more, and may be recognized as an optical defect with a size of 100 m or more.
  • the base film should not contain inorganic particles for imparting slidability, or should not be contained in a small amount to the extent that transparency is not hindered. Desirably, however, the smaller the particle content and the higher the transparency of the film, the clearer the optical defects due to minute foreign matter. In addition, as the film becomes thicker, the content of foreign matter per unit area of the film tends to be higher than that of a thin film, and this problem is further increased.
  • the layer structure of the light diffusive film of the present invention may be a single layer or a multilayer structure as long as it has the light diffusion layer (A).
  • a multilayer structure is preferable.
  • a polyester layer (B) that does not substantially contain a polyester resin incompatible with polyester may be laminated on one side or both sides of the light diffusion layer (A) using a coextrusion method.
  • the raw materials of each layer are extruded using two or more extruders, and a multi-layer feed block (for example, a square merge block) is used.
  • a multi-layer feed block for example, a square merge block
  • the two layers are joined together using a joining block having a portion, extruded into a slit-like die force sheet, and cooled and solidified on a casting roll to produce an unstretched film.
  • a multi-hold die may be used instead of a multilayer feed block.
  • the ratio to the total thickness of the light diffusion layer (A) is preferably 3 to 50%, and more preferably 10 to 30%. If the ratio of the light diffusion layer (A) is less than 3%, only non-uniform light diffusion performance can be obtained. On the other hand, when the ratio to the total thickness of the light diffusion layer (A) exceeds 50%, the surface smoothness of the polyester layer (B) decreases, and post-processing on the surface of the polyester layer (B), for example, prism sheet force It becomes difficult.
  • an easy-adhesion layer having a coating amount of 0.005 to 0.20 gZm 2 is provided on at least the surface of the polyester layer (B). I like it.
  • an easy-adhesion layer is provided on the unstretched film obtained by the above method, and then simultaneous biaxial stretching is performed. Further, when the sequential stretching method is used, an easy-adhesion layer is provided on a film uniaxially stretched in the vertical or horizontal direction, and then stretched in the orthogonal direction and biaxially stretched.
  • the method for applying the coating solution for forming an easy adhesion layer to an unstretched film or a uniaxially stretched film can be selected from any known method force, such as a reverse roll coating method, a gravure coating method, Examples include kiss coat method, die coater method, roll brush method, spray coat method, air knife coat method, wire bar coat method, pipe doctor method, impregnation coat method, curtain coat method, etc. These methods can be used alone or in combination. Apply.
  • the resin constituting the easy-adhesion layer is a copolymer polyester resin, a polyurethane-based resin, and a polyurethane-based resin, from the viewpoint of ensuring better adhesion with other members in light diffusive film applications.
  • the main component is one or more selected from the group power consisting of acrylic resin.
  • the “main component” in the easy-adhesion layer means that at least one of the above listed fats is 50% by weight or more in 100% by weight of the fats constituting the layer.
  • the polyester layer (B) does not contain particles, or contains only a small amount so as not to impair the transparency, the slipperiness of the film is insufficient. And handling becomes bad. Therefore, it is preferable to add particles for the purpose of imparting slipperiness to the easy adhesion layer. In order to ensure transparency, it is important to use particles having an extremely small average particle diameter equal to or smaller than the wavelength of visible light.
  • the particles include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfate; Particles: Organic particles such as calcium oxalate.
  • Silica is particularly preferred when the easy-adhesion layer is formed mainly from the above-mentioned copolymerized polyester resin. Since silica has a relatively close refractive index to that of polyester, it is most preferable in that it can secure a light diffusive film having better transparency.
  • the particles contained in the easy-adhesion layer have an average particle size (SEM) of 0.005-1.05 ⁇ m, indicating that the light diffusing film has transparency, no-rolling property, and scratch resistance. It is preferable from the viewpoint of securing.
  • the upper limit of the average particle diameter of the particles is more preferably 0.5 m from the viewpoint of transparency, and particularly preferably 0.2 ⁇ m.
  • the lower limit of the average particle diameter of the particles is more preferably 0.03 m, particularly preferably 0.01 Ol / zm, from the viewpoint of handling properties and scratch resistance.
  • the average particle diameter of the particles is measured by the following method.
  • the content of the particles in the easy-adhesion layer is 0.1 to 60% by mass with respect to the total amount of the constituent components of the easy-adhesion layer.
  • the point of securing the resistance and scratch resistance is also preferable.
  • the upper limit of the content of the particles is more preferably 50% by mass, particularly preferably 40% by mass, in terms of the point of transparency and adhesion.
  • the lower limit of the content of particles is particularly preferably 0.5% by mass, more preferably 1% by mass from the viewpoint of handling properties and scratch resistance.
  • the above-mentioned particles may be used in combination of two or more of the same kind of particles having different particle diameters, but in any case, the average particle diameter of the whole particles and the total content Preferably satisfies the above range.
  • the unstretched film obtained by the above method is subjected to simultaneous biaxial stretching or sequential biaxial stretching, and then subjected to heat treatment.
  • the biaxial stretching is performed at a stretching ratio of 2.5 times or more in both the longitudinal, lateral, and both directions.
  • the lower limit of the preferred draw ratio in the present invention is 2.8 times, and the more preferred lower limit is 3.0 times.
  • the preferable upper limit of the draw ratio is 6.0 times.
  • the biaxial stretching in the present invention is particularly important for the ability to perform stretching in both the longitudinal and transverse directions at a stretching speed of less than 300% Z seconds using a biaxial stretching machine.
  • the stretching speed is the ratio of film deformation per unit time expressed on the basis of the dimensions of the unstretched film.
  • the stretching speed in the machine and transverse directions (unit:% Z seconds). ) Is defined by the following equation.
  • Transverse stretching speed (% Z seconds) width change rate per second (mZ seconds) ⁇ Unstretched film width (m) X 100
  • the stretching speed exceeds 300% Z seconds, it is difficult to suppress voids generated during stretching, resulting in poor light transmittance.
  • the upper limit of the preferred stretching speed in the present invention is 200% Z seconds, and the more preferred upper limit is 100% Z seconds.
  • the lower limit of the stretching speed is not limited, but if the stretching speed is made slower than necessary, film productivity is reduced or excessive capital investment is required in the production of films on an industrial scale. This is not preferable. Therefore, in the present invention, the maximum stretching speed between the start of stretching and the end of stretching is preferably 5% Z seconds or more, and more preferably 10% Z seconds or more.
  • the film is guided to the tenter while gripping both ends of the film, and the width between the clips and the clip.
  • a tenter-type biaxial stretching machine equipped with a mechanism capable of continuous stretching in both the longitudinal and lateral directions by controlling the transport speed is suitable.
  • the clip transport mechanism is optional and is not particularly limited, but a linear motor system, a pantograph system, or a screw system can be adopted.
  • the stretching method may be a longitudinal bilateral or lateral / longitudinal biaxial stretching method, or a so-called simultaneous biaxial stretching method in which stretching is performed simultaneously in the longitudinal direction and the transverse direction. Good. Furthermore, even if the stretching is performed in multiple stages in the longitudinal direction or the transverse direction, no force is applied.
  • the simultaneous biaxial stretching method has the advantage that it can be performed with relatively compact equipment because biaxial stretching can be performed simultaneously.
  • the detailed conditions such as the stretching temperature, heat treatment temperature, and time are the characteristics of the matrix polymer and the characteristics required for the film, for example, optical characteristics such as refractive index, mechanical properties, etc. It can be appropriately selected according to the characteristics, thermal characteristics such as dimensional change rate, desired crystallinity, etc., and is not particularly limited.
  • U is preferably stretched at a temperature of 80 ° C. to 110 ° C., preferably at a heat treatment temperature of 180 to 250 ° C., and a preferred heat treatment time of 10 to LOO seconds.
  • relaxation treatment in the longitudinal direction and Z or transverse direction may be performed simultaneously with or after the heat treatment.
  • the characteristics of the light diffusing film obtained by the above-mentioned method are as follows: total light transmittance is 85% or more, haze is 50% or more, dimensional change rate at 150 ° C is 3% or less in both length and width, tensile strength If it is more than lOOMPa both vertically and horizontally, it has the characteristics! /
  • the preferable lower limit of the total light transmittance in the light diffusing film of the present invention is 88%, the more preferable lower limit is 89%, and the more preferable lower limit is 90%.
  • the lower limit of haze in the light diffusing film of the present invention is preferably 60%, and the preferable upper limit is 100%.
  • the preferable upper limit of the dimensional change rate at 150 ° C is 2%, and the more preferable upper limit is 1.0.
  • a more preferred upper limit is 0.5%, and a most preferred upper limit is 0.3%.
  • the preferable lower limit of the tensile strength is 110 MPa
  • the more preferable lower limit is 140 MPa
  • the particularly preferable lower limit is 150 MPa.
  • the melt viscosity at a resin temperature of 285 ° C and a shear rate of 100Z seconds was measured using a flow tester (Shimadzu Corporation, CFT-500). Note that measurement of melt viscosity at a shear rate of 100 Zsec is difficult to perform with the shear rate fixed at 100 Zsec.
  • the melt viscosity was measured at an arbitrary large shear rate, the melt viscosity was plotted on the vertical axis, and the shear rate was plotted on the horizontal axis, and plotted on a log-log graph. The two points were connected by a straight line, and the melt viscosity (unit: boise) at a shear rate of 100 Zsec was determined by interpolation.
  • the temperature was raised to 260 ° C. over 15 minutes, and 0.012 parts by mass of trimethyl phosphate and then 0.0003 parts by mass of sodium acetate were added. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C to 280 ° C under reduced pressure, and subjected to polycondensation reaction at 285 ° C.
  • PET resin (Ml) has a crystal melting heat of 35 mjZmg, a melting point of 257 ° C, an intrinsic viscosity of 0.616 dl / g, an Sb content of 144 ppm, a Mg strength of S58 ppm, a P3 ⁇ 4 strength of S40 ppm, and a color.
  • the straight force was 56.2, the color b straight force was 1.6, and inert particles and internally precipitated particles were substantially contained.
  • a blend of 30 parts by mass of polystyrene resin (PS) with melt viscosity of 3900poise (G797N, manufactured by Nippon Polystyrene Co., Ltd.) and 70 parts by mass of the above-mentioned PET (A) is supplied to a vented twin-screw extruder. The resulting strand was kneaded and melt-extruded, and the resulting strand was cooled and cut to prepare a polystyrene master batch (M2).
  • a reaction vessel was charged with 95 parts by weight of dimethyl terephthalate, 95 parts by weight of dimethyl isophthalate, 35 parts by weight of ethylene glycol, 145 parts by weight of neopentyldaricol, 0.1 part by weight of zinc acetate and 0.1 part by weight of antimony trioxide.
  • the transesterification was carried out at 180 ° C for 3 hours.
  • 6.0 parts by mass of 5-sodium sulfoisophthalic acid was added, and 24 After the esterification reaction at 0 ° C for 1 hour, the polycondensation reaction was carried out at 250 ° C under reduced pressure (10 to 0.2 mmHg) for 2 hours.
  • the number average molecular weight was 19,500, and the softening point was 60. Copolymerization at a temperature of polyester was obtained.
  • colloidal silica manufactured by Nissan Kagaku Kogyo Co., Ltd.
  • colloidal silica manufactured by Nissan Kagaku Kogyo Co., Ltd.
  • a fluorine-based non-ionic surfactant manufactured by Dainippon Ink and Chemicals, Megafac F1 42D.
  • Snowtex OL 2.3 mass parts of 20% aqueous dispersion of average particle size 40nm
  • dry-process silica as particles B manufactured by Nippon Aerosil, Aerosil OX50; average particle size 200nm, average primary particle size 40nm
  • 0.5 parts by mass of a 3.5% by mass aqueous dispersion was added.
  • the thickness ratio between the A layer and the B layer was controlled using the gear pump of each layer so that the thickness ratio was 25:75.
  • stainless steel filter media nominal filtration accuracy: 95 ⁇ m cut of 10 ⁇ m particles
  • the temperature of the die was controlled so that the temperature of the extruded resin was 275 ° C.
  • the extruded resin is then cast on a cooling drum having a surface temperature of 30 ° C to electrostatically Using an application method, it was brought into close contact with the surface of the cooling drum and solidified by cooling, and an unstretched film having a thickness of 1.3 mm was prepared. At this time, the layer B surface was a surface in contact with the cooling drum.
  • the coating solution As the coating solution, the above-described coating solution (M3) was subjected to microfiltration with a felt-type polypropylene filter medium having a filtration particle size of 5 ⁇ m (initial filtration efficiency of 95%). In addition, the reverse roll method was adopted as the coating method, and the wet coating amount was 20 g / m 2 . Then, in a drying furnace divided into two zones, the coated surface was dried at a first zone temperature of 100 ° C, a wind speed of 20 mZ seconds, for 10 seconds, a second zone temperature of 70 ° C, a wind speed of 20 mZ seconds, for 10 seconds.
  • the unstretched film having the coating layer was preheated with hot air at 105 ° C for 40 seconds using a pantograph simultaneous biaxial stretching machine, and then 20 seconds in length and width. Simultaneous biaxial stretching by 3.7 times in the direction. At this time, the draw ratios in the longitudinal and transverse directions were as shown in FIG. 1, and the draw speed was as shown in FIG.
  • Table 1 shows the characteristics of the light diffusing film obtained in Example 1.
  • the light diffusive film obtained by the method of the present invention has excellent heat resistance and mechanical strength inherent to a biaxially stretched film, and has excellent light transmittance and light. It can be seen that it has diffusivity.
  • An unstretched film obtained in exactly the same manner as in Example 1 was biaxially stretched by a conventionally known method.
  • the film was preheated with a group of rolls heated to 75 ° C., and then a non-contact infrared heater was used. Was heated to 96 ° C and stretched 3.4 times between rolls with different peripheral speeds.
  • the distance between the contact points of the film was 200 mm, and the peripheral speed of the low-speed roll was 12 mZ. If the film speed between rolls is represented by the intermediate value between the low-speed roll peripheral speed and the high-speed roll peripheral speed, the film speed between rolls is 26.4 mZ, which is The interval is 0.45 seconds. Therefore, it is 3.4 times or 0.4% stretched in 0.45 seconds, and the stretching speed is 530% Z seconds.
  • both ends of the above-mentioned longitudinally stretched film were gripped with clips, and transversely stretched.
  • the transverse stretching temperature was 135 ° C
  • the transverse stretching ratio was 3.7 times
  • the transverse stretching speed was constant at 25% Z seconds.
  • heat treatment was performed at 230 ° C for 15 seconds, and 2.5% relaxation treatment was applied in the width direction in the process of cooling to 60 ° C.
  • the film obtained in Comparative Example 1 has a high haze and good light diffusivity, while the light diffusivity and light transmittance balun required for a light diffusive film with low light transmittance. The quality was not good. Also, the dimensional change rate was inferior to that of the light diffusing film obtained in Example 1.
  • a biaxially stretched film was prepared in the same manner as in Comparative Example 1 except that 83 parts by mass of PET (M1) and 17 parts by mass of polystyrene masterbatch (M2) were used as raw materials for the light diffusion layer (A). Ilm was manufactured.
  • the film obtained in Comparative Example 2 has the light diffusibility required for the light diffusive film having a low haze and light transmittance as compared with the light diffusive film obtained in Example 1.
  • the light transmittance was insufficient and the quality was low. Further, the dimensional change rate was inferior to that of the light diffusing film obtained in Example 1.
  • the raw material of the light diffusion layer (A) was 97 parts by mass of PET (M1) and a cyclic olefin copolymer having a glass transition temperature of 160 ° C (TOPAS6015, manufactured by Topas Advanced Polymers) 3
  • the mixture was changed to parts by weight.
  • the thickness ratio between layer A and layer B was changed to 15:85. Further, the coating layer was provided with no effort. Otherwise, a biaxially stretched film was produced in the same manner as in Example 1.
  • Example 1 the raw material of the light diffusion layer (A), 92 parts by mass of PET (M1), 6 parts by weight of a cyclic olefin copolymer having a glass transition temperature of 160 ° C (Topas Advanced Polymers, TOPAS6015) and 2 parts by weight of polystyrene resin (PS) having a melt viscosity of 3900poise (G797N, manufactured by Nippon Polystyrene) Changed to a mixture.
  • the thickness ratio of layer A and layer B was changed to 10:90. Further, the coating layer was provided with no effort. Otherwise, a biaxially stretched film was produced in the same manner as in Example 1.
  • An unstretched film obtained in exactly the same manner as in Example 2 was biaxially stretched in the same manner as in Comparative Example 1 to produce a biaxially stretched film.
  • Example 2 An unstretched film obtained in exactly the same manner as in Example 1 was subjected to simultaneous biaxial stretching and heat treatment under the conditions shown in Table 2 using a pantograph simultaneous biaxial stretching machine to obtain a biaxially stretched film. Manufactured. The stretching speed was a constant value from the start of stretching to the end of stretching in both the longitudinal and transverse directions. The properties of the resulting film are also shown in Table 2.
  • Horizontal direction MPa 170 170 170 170 150 Dimensions Vertical direction% 2.0 2.0 2.0 2.0 1.5 Special rate of change
  • Sarakuko was heated to 260 ° C over 15 minutes, and 0.012 parts by mass of trimethyl phosphate and then 0.0036 parts by mass of sodium acetate were added. After 15 minutes, the resulting esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C to 280 ° C under reduced pressure, and subjected to a polycondensation reaction at 285 ° C. After the polycondensation reaction, use a NASRON filter with a 95% cut diameter of 5 m.
  • Filtration treatment was performed, the nozzle force was extruded into a strand shape, and the mixture was cooled and solidified using cooling water that had been subjected to filtration treatment (pore diameter: 1 ⁇ m or less) in advance, and cut into pellets.
  • the obtained PET resin (Ml) has a heat of crystal fusion of 35miZmg, a melting point of 257 ° C, an intrinsic viscosity of O. 616dl / g, Sb strength of Sl44ppm, Mg strength of S58ppm, P3 ⁇ 4 force of S40ppm, color 1 L value was 56.2, color b value was 1.6, and inert particles and internal precipitation particles were virtually absent.
  • Vent type with 30 parts by mass of monodisperse and spherical silica particles (refractive index 1.46) with an average particle size of 5 ⁇ m and 70 parts by mass of the above PET (refractive index 1.60) (Ml)
  • M2 silica particle master batch
  • a reaction vessel was charged with 95 parts by weight of dimethyl terephthalate, 95 parts by weight of dimethyl isophthalate, 35 parts by weight of ethylene glycol, 145 parts by weight of neopentyldaricol, 0.1 part by weight of zinc acetate and 0.1 part by weight of antimony trioxide.
  • the transesterification was carried out at 180 ° C for 3 hours.
  • colloidal silica manufactured by Nissan Chemical Industries, Ltd.
  • colloidal silica as 0.6 parts by mass of a 10% by mass aqueous solution of a fluorine-based non-ionic surfactant (manufactured by Dainippon Ink and Chemicals, Megafac F1 42D).
  • SNOWTEX OL 2.3 parts by mass of a 20% by mass aqueous dispersion of average particle size 40 nm
  • dry-process silica as particles B manufactured by Nippon Aerosil, Aerosil OX50; average particle size 200 nm, 0.5 parts by mass of a 3.5% by mass aqueous dispersion having an average primary particle size of 40 nm
  • PET (Ml) and 30 parts by mass of silica particle batch (M2) as raw materials for the light diffusion layer (A) were each dried under reduced pressure (lTorr) at 135 ° C for 6 hours, then mixed and extruded Supplied to machine 2.
  • PET (Ml) as a raw material for the B layer was dried under reduced pressure (lTorr) at 135 ° C. for 6 hours and then fed to the extruder 1.
  • the raw material supplied to Extruder 2 and Extruder 1 is 280 ° C in the melting temperature, kneading section, polymer pipe, gear pump and filter of the extruder, and 275 for the subsequent polymer pipe.
  • the mixture was laminated using a two-layer merge block at a temperature of ° C, and melt extruded from the die into a sheet.
  • the thickness ratio between the A layer and the B layer was controlled using a gear pump of each layer so that the ratio was 25:75.
  • the temperature of the die was controlled so that the temperature of the extruded resin was 275 ° C.
  • the extruded resin is cast on a cooling drum having a surface temperature of 30 ° C and brought into close contact with the surface of the cooling drum using an electrostatic application method to be cooled and solidified, and is unstretched with a thickness of 1.3 mm. Created a film. At this time, the layer B surface was a surface in contact with the cooling drum.
  • the coating solution As the coating solution, the above-described coating solution (M3) was subjected to microfiltration with a felt-type polypropylene filter medium having a filtration particle size of 5 ⁇ m (initial filtration efficiency of 95%). In addition, the reverse roll method was adopted as the coating method, and the wet coating amount was 20 g / m 2 . Then, in a drying furnace divided into two zones, the coated surface was dried at a first zone temperature of 100 ° C, a wind speed of 20 mZ seconds, for 10 seconds, a second zone temperature of 70 ° C, a wind speed of 20 mZ seconds, for 10 seconds.
  • the unstretched film having the coating layer was preheated with hot air of 105 ° C for 40 seconds using a pantograph simultaneous biaxial stretching machine, and then 20 seconds in length and width. Simultaneous biaxial stretching by 3.7 times in the direction. At this time, the draw ratios in the longitudinal and transverse directions were as shown in FIG. 3, and the drawing speed was as shown in FIG. [0141] Next, with the film dimensions fixed, heat treatment was performed at 230 ° C for 30 seconds, and in the process of cooling to room temperature, 3% relaxation treatment was performed in the vertical and horizontal directions to obtain a thickness of 100 m. A biaxially stretched film was produced. The properties of the obtained film are shown in Table 3.
  • the light diffusive film obtained in Example 8 has excellent heat resistance and mechanical strength inherent to the biaxially stretched film, and has excellent light transmittance and light diffusibility. It had high quality.
  • An unstretched film obtained in exactly the same manner as in Example 8 was biaxially stretched by a conventionally known method.
  • the film was preheated with a group of rolls heated to 75 ° C, and then a film was formed using a non-contact infrared heater. Was heated to 96 ° C and stretched 3.4 times between rolls with different peripheral speeds.
  • the distance between the contact points of the film was 200 mm, and the peripheral speed of the low-speed roll was 12 mZ. If the film speed between rolls is represented by the intermediate value between the low-speed roll speed and the high-speed roll speed, the film speed between rolls is 26.4 mZ and the passing time between rolls is 0.45 seconds. Therefore, it is 3.4 times or 0.4% stretched in 0.45 seconds, and the stretching speed is 530% Z seconds.
  • both ends of the above-mentioned longitudinally stretched film were held with clips, and transversely stretched.
  • the transverse stretching temperature was 135 ° C
  • the transverse stretching ratio was 3.7 times
  • the transverse stretching speed was constant at 25% Z seconds.
  • heat treatment was performed at 230 ° C for 15 seconds, and 2.5% relaxation treatment was applied in the width direction in the process of cooling to 60 ° C.
  • the light diffusive film obtained in Comparative Example 5 has high haze and good light diffusibility, but has low light diffusivity and low light transmittance and low light transmittance. It was quality. Also, the dimensional change rate was inferior to that of the light diffusing film obtained in Example 8.
  • the light diffusive film obtained in Comparative Example 6 has a high light transmittance, but has a low haze value and insufficient light diffusivity, and the light diffusivity and light transmittance can be balanced. The quality was low. Also, the dimensional change rate was inferior to that of the light diffusing film obtained in Example 8.
  • Example 8 a light-diffusing film was obtained in the same manner as in Example 8, except that calcium carbonate (refractive index: 1.58) having an average particle diameter of 5 m was used instead of silica particles. .
  • the properties of the obtained film are shown in Table 3.
  • the light diffusive film obtained in Example 9 had a balance of properties and high quality.
  • Sarakuko was heated to 260 ° C over 15 minutes, and 0.012 parts by mass of trimethyl phosphate and then 0.0003 parts by mass of sodium acetate were added. After 15 minutes, the resulting esterification reaction product was transferred to a polycondensation reaction can, gradually heated from 260 ° C to 280 ° C under reduced pressure, and subjected to a polycondensation reaction at 285 ° C. After completion of the polycondensation reaction, it is filtered with a NASRON filter with a 95% cut diameter of 5 m, extruded with a nozzle force strand, and cooled with cooling water that has been filtered (pore size: 1 ⁇ m or less) in advance. , Solidified and cut into pellets.
  • the obtained PET resin (Ml) has a crystal melting heat of 35miZmg, a melting point of 257 ° C, an intrinsic viscosity of ⁇ 0.616dl / g, Sb strength of Sl44ppm, Mg strength of S58ppm, P3 ⁇ 4 strength of S40ppm, The color L value was 56.2, the color b value was 1.6, and the inert particles and the internally precipitated particles were virtually absent.
  • a reaction vessel was charged with 95 parts by weight of dimethyl terephthalate, 95 parts by weight of dimethyl isophthalate, 35 parts by weight of ethylene glycol, 145 parts by weight of neopentyldaricol, 0.1 part by weight of zinc acetate and 0.1 part by weight of antimony trioxide.
  • the transesterification was carried out at 180 ° C for 3 hours.
  • colloidal silica manufactured by Nissan Chemical Industries, Ltd.
  • colloidal silica as 0.6 parts by mass of a 10% by mass aqueous solution of a fluorine-based non-ionic surfactant (manufactured by Dainippon Ink and Chemicals, Megafac F1 42D).
  • Snowtex OL 2.3 mass parts of 20% aqueous dispersion of average particle size 40nm
  • dry-process silica as particles B manufactured by Nippon Aerosil, Aerosil OX50; average particle size 200nm, average primary particle size 40nm
  • 0.5 parts by mass of a 3.5% by mass aqueous dispersion was added.
  • PET (Ml) As a raw material for the light diffusion layer (A), 72 parts by mass of PET (Ml) and 28 parts by mass of PET (M2) containing crosslinked polystyrene particles were each dried at 135 ° C for 6 hours under reduced pressure (lTorr). Mix and feed to Extruder 2. Further, PET (Ml) as a raw material for the B layer was subjected to reduced pressure drying (lTorr) at 135 ° C. for 6 hours and then supplied to the extruder 1. Each raw material supplied to Extruder 2 and Extruder 1 has a resin temperature of 280 ° C up to the melting section, kneading section, polymer pipe and gear pump of the extruder, and 275 ° C in the subsequent polymer pipe. These were laminated using a two-layer merge block and melt extruded into a sheet form from the die.
  • the thickness ratio between the A layer and the B layer was controlled using the gear pump of each layer so that the ratio was 25:75.
  • the temperature of the die was controlled so that the temperature of the extruded resin was 275 ° C.
  • the extruded resin is cast on a cooling drum having a surface temperature of 30 ° C, and is brought into close contact with the surface of the cooling drum using an electrostatic application method, and is cooled and solidified. Created a film.
  • the layer B surface was a surface in contact with the cooling drum.
  • an easy-adhesion layer was applied to one side (B layer side) of the obtained unstretched film.
  • the coating solution the above-described coating solution (M3) was subjected to microfiltration with a felt-type polypropylene filter medium having a filtration particle size of 5 ⁇ m (initial filtration efficiency of 95%).
  • a reverse roll method was adopted as a coating method, and the wet coating amount was 20 g / m 2 .
  • the first zone temperature 100 ° C, the wind speed 20mZ seconds, 10 seconds, the second zone The coated surface was dried at an oven temperature of 70 ° C. and a wind speed of 20 mZ seconds for 10 seconds.
  • the unstretched film having the coating layer was preheated with hot air at 105 ° C for 40 seconds using a pantograph simultaneous biaxial stretching machine, and then 20 seconds in length and width. Simultaneous biaxial stretching by 3.7 times in the direction. At this time, the draw ratio in the longitudinal and transverse directions is
  • the stretching speed was as shown in FIG.
  • the light diffusing film obtained in Example 10 has excellent heat resistance and mechanical strength inherent to the biaxially stretched film, and has excellent light transmittance and light diffusibility. It had high quality.
  • An unstretched film obtained by the same method as in Example 10 was biaxially stretched by a conventionally known method.
  • the film was heated to 96 ° C using a non-contact infrared heater, and stretched 3.4 times between rolls with different peripheral speeds. gave.
  • the distance between the contact points of the film was 200 mm
  • the peripheral speed of the low-speed roll was 12 mZ. If the film speed between rolls is represented by the intermediate value between the low-speed roll speed and the high-speed roll speed, the film speed between rolls is 26.4 mZ and the passing time between rolls is 0.45 seconds. Therefore, it is 3.4 times or 0.4% stretched in 0.45 seconds, and the stretching speed is 530% Z seconds.
  • both ends of the above-mentioned longitudinally stretched film were held with clips, and transversely stretched.
  • the transverse stretching temperature was 135 ° C
  • the transverse stretching ratio was 3.7 times
  • the transverse stretching speed was constant at 25% Z seconds.
  • heat treatment was performed at 230 ° C for 15 seconds, and 2.5% relaxation treatment was applied in the width direction in the process of cooling to 60 ° C.
  • the light diffusive film obtained in Comparative Example 7 has a high haze and good light diffusivity, but has low light diffusivity and low light transmittance, and low light transmittance. It was quality. Also, the dimensional change rate was inferior to that of the light diffusing film obtained in Example 10.
  • the light diffusive film obtained in Comparative Example 8 has a high light transmittance, but has a low haze value and insufficient light diffusivity, and the light diffusivity and light transmittance can be balanced. The quality was low. Further, the dimensional change rate was also inferior to the light diffusing film obtained in Example 10.
  • Example 10 a light diffusing film was prepared in the same manner as in Example 10 except that, instead of the crosslinked polystyrene particles, average monodisperse spherical crosslinked acrylic particles having an average particle size of 8 / zm were used. Obtained. Table 1 shows the properties of the film.
  • the light diffusible film obtained in Example 11 had a high balance of properties and high quality.
  • the light diffusive film obtained by the production method of the present invention has excellent heat resistance and mechanical strength inherent to a biaxially stretched film, and has both excellent light transmittance and light diffusibility! / Therefore, it can be integrated with other optical functional films to reduce the size of the knocklight unit, and to make the knocklight unit configuration simpler and less expensive. It can be useful.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

【課題】二軸延伸フィルム本来の優れた耐熱性と機械的強度を有し、かつ優れた光線透過率と光拡散性を有する光拡散性フィルムの製造方法及びそれから得られた光拡散性フィルムを提供する。 【解決手段】結晶性ポリエステル50~99質量部と、光拡散性添加剤1~50質量部を含む混合物からなる未延伸シートを二軸延伸して得られる光拡散層を有する光拡散性フィルムの製造方法であって、前記二軸延伸を縦方向及び横方向にそれぞれ、2.5倍以上の延伸倍率で、かつ300%/秒未満の延伸速度で行うことを特徴とする光拡散性フィルムの製造方法。前記方法で製造された、全光線透過率が85%以上、ヘーズが50%以上、150°Cにおける寸法変化率が縦方向及び横方向とも3%以下、引張強さが縦方向及び横方向とも100MPa以上であることを特徴とする光拡散性フィルム。

Description

明 細 書
光拡散性フィルムの製造方法および光拡散性フィルム
技術分野
[0001] 本発明は、液晶ディスプレイのノ ックライトユニット、照明装置等に用いられる光拡 散性フィルムの製造方法、及びそれから得られた光拡散性フィルムに関する。
背景技術
[0002] 近年、液晶ディスプレイの技術進歩は目覚しぐパソコンやテレビ、携帯電話等の表 示装置として広く用いられている。これらの液晶ディスプレイは、液晶表示ユニット単 独では発光機能を有していないため、その裏面にバックライトユニットを設置して表示 が可能になっている。
[0003] ノ ックライトユニットには種々の方式がある力 2種に大別される。一般的に最も多い 方式は、内部照光方式あるいは直下型といわれる方式で、光源が照光面の内側にあ る方式である。もう一方の方式は、エッジライト型といわれる方式で、光源が照光面の 外に配置され、照光面である透明なアクリル榭脂板など力 なる導光板の一辺ある 、 は二辺に蛍光ランプ (多くは冷陰極放電管)等の例えば略線状発光体を密着させ、 反射体からなるランプカバーを設けて導光板内に光を導入する方式である。そして、 ノート型パソコン等の小型ディスプレイ等、特に薄型化、軽量ィ匕が要求される場合に は、エッジライト型バックライトユニットが広く用いられて 、る。
[0004] エッジライト型バックライトユニットの導光板に求められる必要な機能は、端部より入 射した光を前方に送る機能と、送られた光を液晶表示素子側に出射する機能である 。前者の機能は、使用する材料および界面反射特性に応じて決まる。また、後者の 機能は、導光板表面の形状に応じて決まる。この導光板表面の形状の形成方法とし て、導光板表面に白色の拡散材を形成する方法と導光板表面にレンチキュラーある いはプリズムのフレネル形状を形成する方法が知られている。しかしながら、これらの 形状が形成された導光板から出射された光は、その形状に起因する不均一な光の 分布を有している。従って、高品位の画像を得るために、導光板上に光拡散性フィル ムを設置し、光拡散層を通過する光を拡散、散乱させ、光出射面の輝度を均一にす るよう試みられている。
[0005] さらに、ノ ックライトユニットの正面輝度を向上させるため、光拡散性フィルムを透過 して出射する光をできるだけ正面方向に集めるように、集光シートが用いられる。この 集光シートは、表面にプリズム状やウェーブ状、ピラミッド状等の微小な凹凸が多数 並んだ透明シートであり、光拡散性フィルムを透過した出射光を屈折させて正面に集 め、照射面の輝度を向上させるようになつている。この様な集光シートは、上記光拡 散性フィルムの表面側に、 1枚もしくは 2枚重ねで配設され使用される。
[0006] また、表示画面の高輝度化と低消費電力化のため、バックライトユニットの光が透過 する各部材 (導光板、光拡散性フィルム、集光シート等)には、光線透過率の高い材 料が採用される等、光の損失を抑えて光利用効率を向上させる工夫がなされている
[0007] 上記のようなバックライトユニットに用いられる光拡散性フィルムとしては、例えば、( 1)透明熱可塑性榭脂をシート状に成形後、表面に物理的に凹凸を付ける加工を施 して得られたもの(例えば、特許文献 1を参照)、(2)ポリエステル榭脂などの透明基 材フィルム上に、微粒子を含有した透明榭脂からなる光拡散層をコーティングして得 られたもの (例えば、特許文献 2を参照)、(3)透明榭脂中にビーズを溶融混合し、こ れを押出し成形して得られたもの(例えば、特許文献 3を参照)が、一般に用いられて いる。
特許文献 1 :特開平 4— 275501号公報
特許文献 2:特開平 6— 59108号公報
特許文献 3:特開平 6 - 123802号公報
[0008] 上記(1)および(2)で開示されている方法は、光線透過率と光拡散性のバランスが とれたフィルムが得られることより広く採用されている。しかしながら、後加工により光 拡散層が形成されており、コストの点で不利である。一方、上記(3)で開示されている 方法で得られたフィルムやシートは耐熱性ゃ耐溶剤性が劣ると ヽぅ問題がある。
[0009] また、上記の一般的な光拡散性フィルムに対し、光拡散性フィルムと他の光学機能 性フィルムとの一体ィ匕によるバックライトユニットの小型化や、ノ ックライトユニット構成 •製造工程の簡略化、低コストィ匕を目的として、光拡散性フィルムの基材フィルムとし て広く用いられている二軸延伸フィルム自体に光拡散性を持たせる試みも多く提案さ れている。
[0010] 例えば、(4)ポリエステル榭脂と該榭脂に非相溶な榭脂を溶融混合して二軸延伸し た、内部に気泡(ボイド)を含有するフィルム (例えば、特許文献 4を参照)、(5)低結 晶性の共重合ポリエステル榭脂に真球状シリカ粒子を混合して二軸延伸した、実質 的にボイドを含有しないフィルム (例えば、特許文献 5及び 6を参照)、(6)低結晶性 の共重合ポリエステル榭脂と該榭脂に非相溶な榭脂を溶融混合して二軸延伸した実 質的にボイドを含有しないフィルム (例えば、特許文献 7及び 8を参照)、(7)低結晶 性の共重合ポリエステル榭脂と該榭脂に非相溶な榭脂を溶融混合して二軸延伸した 、内部に気泡(ボイド)を含有するフィルム(例えば、特許文献 9を参照)、(8)非晶性 の共重合ポリエステル榭脂と該榭脂に非相溶な榭脂を溶融混合した層と、結晶性ポ リエステル力 なる層とを共押出しして得た、二軸延伸積層フィルム(例えば、特許文 献 10及び 11を参照)、等が開示されている。
特許文献 4:特開平 11― 268211号公報
特許文献 5:特開 2001— 272508号公報
特許文献 6:特開 2001— 324606号公報
特許文献 7:特開 2002— 162508号公報
特許文献 8 :特開 2002— 182013号公報
特許文献 9:特開 2002— 196113号公報
特許文献 10:特開 2002— 372606号公報
特許文献 11:特開 2004— 354558号公報
[0011] し力しながら、上記の二軸延伸フィルム自体に光拡散性を持たせる方法 (4)〜(8) では、耐熱性と光線透過率の両立という点で、透明基材フィルムに光拡散層を後加 ェする方法(1)及び(2)に及ばず、実用化には至っていない。
[0012] なぜなら、二軸延伸フィルム自体に光拡散性を持たせる方法にぉ 、て、光拡散性 能と光線透過率の両立をは力るためには、フィルムの二軸延伸工程におけるボイド( 気泡)の発生を抑制する必要がある。し力しながら、マトリックスポリマーとして結晶性 のポリエステル榭脂を用いる方法 (4)では、優れた耐熱性は得られるものの、マトリツ タスポリマーと非相溶榭脂あるいは粒子との界面に、ボイドが多発する。このようにし て生じたボイドは、フィルム表面に対して平行な平板状の形態を有しているため、この ようなボイドを有するフィルムを光拡散性フィルムとしてバックライトユニットに用いた場 合には、導光板力 出射した光を後方散乱させて光線透過率が低下する。
[0013] 一方、マトリックスポリマーとして、低結晶性の共重合ポリエステル榭脂を用いる方 法 (5)〜(7)では、その非晶性の程度により、ボイドの発生は抑制され、優れた光線 透過率が得られる。し力しながら、結晶性二軸延伸ポリエステルフィルムの特徴であ る耐熱性は得られず、高温での加工や高温環境での使用において、著しい寸法変 化や平面性の悪ィ匕を生じ、バックライトユニットにおける光出射面の輝度を均一にす るという、光拡散性フィルムの本来目的が達成できない。
[0014] また、非晶性の共重合ポリエステル榭脂と該榭脂に非相溶な榭脂を溶融混合した 層と、結晶性ポリエステル力 なる層とを共押出しして得た、二軸延伸積層フィルム( 8)では、一定の耐熱性向上効果は得られるものの、本質的な耐熱性の改善効果は 得られない。なぜなら、結晶性の異なる層を積層した場合には、線膨張率や加熱収 縮率の異なるフィルムが積層された、いわゆる、バイメタル状の構造となる。そのため 、後加工工程での熱処理によりカールが生じる場合や、液晶ディスプレイの使用環境 (温度)によってカールが生じる場合があり、ノ ックライトユニットにおける光出射面の 輝度が不均一になってしてしまうからである。
発明の開示
発明が解決しょうとする課題
[0015] 本発明の目的は、二軸延伸フィルム本来の優れた耐熱性と機械的強度を有し、か つ優れた光線透過率と光拡散性とを有する光拡散性フィルムの製造方法及びそれ 力 得られた光拡散性フィルムを提供することにある。
課題を解決するための手段
[0016] 本発明の第 1の発明は、結晶性ポリエステル 50〜99質量部と、光拡散性添加剤 1 〜50質量部を含む混合物からなる未延伸シートを二軸延伸して得られる光拡散層を 有する光拡散性フィルムの製造方法であって、前記二軸延伸を縦方向及び横方向 にそれぞれ、 2. 5倍以上の延伸倍率で、かつ 300%Z秒未満の延伸速度で行うこと を特徴とする光拡散性フィルムの製造方法である。
[0017] また、第 2の発明は、前記の二軸延伸を、同時二軸延伸機を用いて行うことを特徴 とする第 1の発明に記載の光拡散性フィルムの製造方法である。
[0018] 第 3の発明は、光拡散性添加剤が結晶性ポリエステルに非相溶性の熱可塑性榭脂 であることを特徴とする第 1の発明に記載の光拡散性フィルムの製造方法である。
[0019] 第 4の発明は、光拡散性添加剤が無機粒子であることを特徴とする第 1の発明に記 載の光拡散性フィルムの製造方法である。
[0020] 第 5の発明は、光拡散性添加剤が非溶融性ポリマー粒子であることを特徴とする第 1の発明に記載の光拡散性フィルムの製造方法である。
[0021] 第 6の発明は、熱可塑性榭脂が非晶性の透明ポリマーであることを特徴とする第 3 の発明に記載の光拡散性フィルムの製造方法である。
[0022] 第 7の発明は、非晶性の透明ポリマー力 ポリスチレン榭脂、アクリロニトリル'スチレ ン共重合体、メタクリル酸メチル 'スチレン共重合体等のスチレン系榭脂、環状ォレフ イン榭脂、メタクリル酸樹脂に代表されるアクリル系榭脂、またはポリカーボネート榭脂 であることを特徴とする第 6の発明に記載の光拡散性フィルムの製造方法である。
[0023] 第 8の発明は、結晶性ポリエステルの融点が 250°C以上であることを特徴とする第 1 の発明に記載の光拡散性フィルムの製造方法である。
[0024] 第 9の発明は、結晶性ポリエステルがポリエチレンテレフタレートまたはポリエチレン テレフタレート系共重合体よりなることを特徴とする第 1の発明に記載の光拡散性フィ ルムの製造方法である。
[0025] さらに、第 10の発明は、第 1〜9のいずれかの発明に記載された方法で製造された 光拡散性フィルムであって、全光線透過率が 85%以上、ヘーズが 50%以上、 150 °Cにおける寸法変化率が縦方向及び横方向とも 3%以下、引張強さが縦方向及び 横方向とも 1 OOMPa以上であることを特徴とする光拡散性フィルムである。
発明の効果
[0026] 本発明の製造方法によって得られる光拡散性フィルムは、光拡散層のマトリックスポ リマーとして結晶性ポリエステルを用いて 、るので、二軸延伸フィルム本来の優れた 耐熱性と機械的強度を有している。さらに、フィルムの二軸延伸を、縦方向及び横方 向に 2. 5倍以上の延伸倍率で行い、かつ両方向の延伸をいずれも 300%Z秒未満 の延伸速度で行っているため、延伸に伴い、光拡散性添加剤の周囲に発現するボイ ドが抑制され、優れた光線透過率と光拡散性とを両立させることができる。
図面の簡単な説明
[0027] [図 1]実施例 1のフィルム製造時におけるフィルムの延伸開始からの経過時間と延伸 倍率との関係を示す説明図である。
[図 2]実施例 1のフィルム製造時におけるフィルムの延伸開始からの経過時間と延伸 速度との関係を示す説明図である。
[図 3]実施例 8のフィルム製造時におけるフィルムの延伸開始からの経過時間と延伸 倍率との関係を示す説明図である。
[図 4]実施例 8のフィルム製造時におけるフィルムの延伸開始からの経過時間と延伸 速度との関係を示す説明図である。
[図 5]実施例 10のフィルム製造時における延伸開始力もの経過時間と延伸倍率との 関係を示す説明図である。
[図 6]実施例 10のフィルム製造時における延伸開始力もの経過時間と延伸速度との 関係を示す説明図である。
発明を実施するための最良の形態
[0028] 本発明の光拡散性フィルムの製造方法は、結晶性ポリエステル 50〜99質量部と、 光拡散性添加剤 1〜50質量部を含む混合物からなる未延伸シートを二軸延伸して 得られる光拡散層を有する光拡散性フィルムの製造方法であって、前記二軸延伸を 縦方向及び横方向にそれぞれ、 2. 5倍以上の延伸倍率で、かつ 300%Z秒未満の 延伸速度で行うことを特徴とする。
[0029] まず、本発明の光拡散性フィルムを製造する際に用いる原料について、次いでフィ ルムの製造条件及び製造方法について詳細に説明する。
[0030] (原料)
(1)結晶性ポリエステル
本発明で光拡散層の原料として用いることができる結晶性ポリエステルとは、その 結晶融解熱が lOmjZmg以上であることが重要である。結晶融解熱が lOmjZmg 未満の場合には、二軸延伸フィルムの耐熱性が低下し、後加工工程での熱処理や 液晶ディスプレイの使用環境 (温度)によってカールが生じる場合や、機械的強度が 不十分となる場合がある。どちらの場合であっても、二軸延伸フィルム本来の優れた 耐熱性と機械的強度を両立させることが困難となる。なお、より好ましい結晶融解熱 の下限値は 15mjZmgであり、さらに好ましい下限値は 20mjZmgであり、最も好ま しい下限値は 30miZmgである。一方、結晶融解熱量の好ましい上限は 50mjZmg である。
[0031] また、本発明の結晶性ポリエステルの融点は特に制約されるものではないが、 200 °C以上であることが好ましぐさらに好ましくは 220°C以上、特に好ましくは 230°C以 上、最も好ましくは 240°C以上である。一方、融点の好ましい上限は 300°Cである。
[0032] ここで、ポリエステルとは、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸など の芳香族ジカルボン酸又はそのエステルとエチレングリコール、ジエチレングリコー ル、 1, 3 プロパンジオール、 1, 4 ブタンジオール、ネオペンチルグリコールなど のグリコールとを重縮合させて製造されるポリエステルである。これらのポリエステル は芳香族ジカルボン酸とダリコールとを直接反応させる直重法のほか、芳香族ジカル ボン酸のアルキルエステルとグリコールとをエステル交換反応させた後、重縮合させ るエステル交換法力、、ある 、は芳香族ジカルボン酸のジグリコールエステルを重縮合 させるなどの方法によって製造することができる。
[0033] 前記の結晶性ポリエステルの代表例として、ポリエチレンテレフタレート、ポリトリメチ レンテレフタレート、ポリブチレンテレフタレートあるいはポリエチレン 2, 6 ナフタ レートが挙げられる。前記のポリエステルはホモポリマーであってもよぐ第三成分を 共重合したものであってもよい。これらのポリエステルの中でも、エチレンテレフタレー ト単位、あるいはエチレン 2, 6 ナフタレート単位が 70モル%以上、好ましくは 80 モル%以上、さらに好ましくは 90モル%以上であるポリエステルが好ましい。
[0034] また、前記のポリエステルには、一般に延伸フィルムの表面に凹凸を形成させて、 滑り性を改善するために用いられる粒子を実質的に含有させな 、ことが好ま 、。前 記の「粒子を実質的に含有させず」とは、例えば無機粒子の場合、ケィ光 X線分析で 無機元素を定量した場合に 50ppm以下、好ましくは lOppm以下、最も好ましくは検 出限界以下となる含有量を意味する。これは積極的に粒子を前記ポリエステル中に 添加させなくても、外来異物由来のコンタミ成分や、原料榭脂あるいはフィルムの製 造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場 合があるためである。
[0035] (2)光拡散性添加剤
本発明において、光拡散性添加剤は、上記の結晶性ポリエステルに非相溶性の材 料であれば何ら制限されるものではなく任意であるが、下記のような材料を使用する ことが好ましい。
[0036] (2- 1)ポリエステルに非相溶性の熱可塑性榭脂
本発明で用いる光拡散性添加剤としては、ポリエステルに非相溶性の熱可塑性榭 脂が最も好ましい。すなわち、結晶性ポリエステルと熱可塑性榭脂との非相溶性を活 用して、二軸延伸フィルムの製造工程 (溶融'押し出し工程)において結晶性ポリエス テル力もなるマトリックス中に該ポリエステルに非相溶性の熱可塑性榭脂からなるドメ インを分散形成させ、光拡散性物質として活用する技術である。
[0037] この技術を用いることにより、フィルムの溶融 '押し出し工程において高精度のフィ ルターで異物を濾過し、液晶ディスプレイ用の光拡散性フィルムに必要なクリーン度 を達成することができる。
[0038] これに対し、後述する非溶融性のポリマー粒子や無機粒子を光拡散性添加剤とし て用いる場合、異物を除去するためにフィルターの孔径を細力べすると、これらの粒 子がフィルターで補足され、光拡散性が低下するだけでなぐフィルター詰まりにより 工業的に生産することが困難になる。一方、フィルター詰まりを避けるために、フィル ターの孔径を粗くすると、液晶ディスプレイの光学欠点となる異物が増加する。
[0039] 本発明の光拡散性添加剤として用いることができるポリエステルに非相溶性の熱可 塑性榭脂としては、例えば以下の材料が挙げられる。
(a)ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状ォレフィン等のポリオレ フィン榭脂
(b)ポリカーボネート榭脂
(c)ァタクティックポリスチレン、シンジォタクティックポリスチレン、ァイソタクティック ポリスチレン等のポリスチレン榭脂
(d)ポリアミド榭脂
(e)ポリエーテル榭脂
(f)ポリエステルアミド榭脂
(g)ポリフエ-レンスルフイド榭脂
(h)ポリフエ二レンエーテル榭脂
(i)ポリエーテルエステル榭脂
(j)ポリ塩ィ匕ビュル榭脂
(k)ポリメタクリル酸エステルを代表例とするアクリル榭脂
(1) (a)〜(k)を主たる成分とする共重合体、またはこれらの榭脂の混合物
[0040] それらの中でも特に、非晶性の透明ポリマーを用いることが、高い光線透過率を有 する光拡散性フィルムを製造するために好ましい。これに対し、結晶性ポリマーを光 拡散性添加剤として用いた場合には、結晶性ポリマーが白濁してフィルムの内部へ ーズが大きくなり、光線透過率が低下する恐れがある。
[0041] 本発明に用いることができる非晶性の透明ポリマーとしては、例えばポリスチレン榭 脂、アクリロニトリル 'スチレン共重合体、メタクリル酸メチル 'スチレン共重合体等のス チレン系榭脂、環状ォレフィン榭脂、メタクリル酸樹脂に代表されるアクリル系榭脂お よびポリカーボネート榭脂などが挙げられる。
[0042] (2— 2)非溶融性ポリマー粒子
本発明の光拡散性添加剤として用いることができる非溶融性ポリマー粒子は、融点 測定装置(Stanford Research Systems社製、 MPA100型)を用いて、 30°Cか ら 350°Cまで 10°CZ分で昇温した際に、融解による流動変形が起こらな 、粒子であ れば、その組成は限定されない。例えば、アクリル系榭脂、ポリスチレン系榭脂、ポリ ォレフィン系榭脂、ポリエステル系榭脂、ポリアミド系榭脂、ポリイミド系榭脂、フッ素系 榭脂、尿素系榭脂、メラミン系榭脂および有機シリコーン系榭脂等が挙げられる。粒 子の形状は、球状が好ましぐ特に好ましくは真球状である。また、該粒子は細孔を 有していてもよいし、無くてもよい。さらに、両者を併用してもよい。
[0043] 非溶融性ポリマー粒子が 350°C以上の融点を有するポリマーよりなる場合は、非架 橋ポリマー粒子を用いてもよいが、耐熱性の点から、架橋構造を有するポリマーより なる架橋ポリマー粒子を用いることが好まし 、。
[0044] 非溶融性ポリマー粒子の平均粒径は、 0. 5〜50 μ mが好ま U、。上記の非溶融性 ポリマー粒子の平均粒径の下限は、 1. O /z mがより好ましぐ特に好ましくは 2. Ο μ mである。上記の非溶融性ポリマー粒子の平均粒径が 0. 5 m未満の場合、良好な 光拡散効果を得ることが困難となる。
[0045] 一方、非溶融性ポリマー粒子の平均粒径の上限は、 30 μ mがより好ましぐ特に好 ましくは 20 μ mである。上記の非溶融性ポリマー粒子の平均粒径が 50 μ mを超える 場合、フィルム強度や全光線透過率が低下しやすくなる。該非溶融性ポリマー粒子 は、できる限りシャープな粒度分布を有する粒子を用いることが好ま 、。
[0046] 非溶融性ポリマー粒子は、 1種類でもよ 、し、 2種類以上使用してもよ 、。シャープ な粒度分布を有し (粒子の粒径が均一であることを意味する)、かつ平均粒径の異な る複数の非溶融性ポリマー粒子を併用することは、フィルムの欠点となる粗大粒子の 混入が抑制できるので、好ましい実施形態である。
[0047] なお、上記の粒子の平均粒径の測定は下記方法により行う。
粒子を走査型電子顕微鏡 (SEM)で写真を撮り、最も小さい粒子 1個の大きさが 2 〜5mmとなるような倍率で、 300〜500個の粒子の最大径を測定し、その平均値を 平均粒径とする。また、フィルム中に含有する粒子が単独の場合は、個々の粒子の 最大径を測定し、その平均値を平均粒径とする。
[0048] (2— 3)無機粒子
光拡散性添加剤として用いることができる無機粒子としては、シリカ、炭酸カルシゥ ム、硫酸バリウム、硫酸カルシウム、アルミナ、カオリナイト、タルク等が挙げられる。
[0049] 無機粒子の平均粒子径は、通常 0. 1〜50 μ mが好ましい。 0. 5〜30 μ mがより好 ましぐ 1〜20 /ζ πιがさらに好ましい。平均粒径が 0.: L m未満では良好な光拡散効 果が得られない。逆に、 50 mを超えた場合はフィルム強度の低下等に繋がるので 好ましくな 、。該無機粒子の粒度分布はできる限りシャープなものを用いるが好まし い。粒度分布を広げる必要が生じた場合は、シャープな粒度分布の粒子を複数数配 合して対応するのが好ま 、。該対応によりフィルムの欠点となる粗大粒子径の粒子 の混入を抑制することができる。
[0050] なお、粒子の平均粒径の測定は下記方法により行う。
粒子を走査型電子顕微鏡 (SEM)で写真を撮り、最も小さい粒子 1個の大きさが 2 〜5mmとなるような倍率で、 300〜500個の粒子の最大径を測定し、その平均値を 平均粒径とする。また、フィルム中に含有する粒子の最大径を測定し、その平均値を 平均粒径とする。
[0051] 無機粒子の形状は限定されないが、実質的に球状あるいは真球状が好ましい。ま た、該粒子は無孔または多孔タイプのいずれでもよい。さら〖こ、両者を併用してもよい
[0052] 光拡散性添加剤は、上記の 3種の中の 1種を用いてもよいし、 2種以上を併用しても よい。
[0053] (3)光拡散性添加剤の混合比率
本発明の光拡散性フィルムにおける光拡散層において、結晶性ポリエステルと当 該ポリエステルに非相溶性の熱可塑性榭脂との混合比率は、質量比で、 99Zl〜5
OZ50の範囲内とすることが重要である。ポリエステルに非相溶性の熱可塑性榭脂 の混合比率が 1質量部未満の場合には、光拡散性能が不十分となる。一方、ポリエ ステルに非相溶性の熱可塑性榭脂の混合比率が 50質量部を超える場合には、フィ ルムの二軸延伸時に非相溶性の熱可塑性榭脂が脱落しやすくなり、脱落物が異物 の原因となるので好ましくない。
[0054] なお、ポリエステルに非相溶性の熱可塑性榭脂の混合比率の好ましい下限は 3質 量部であり、さらに好ましい下限は 5質量部である。また、ポリエステルに非相溶性の 熱可塑性榭脂の混合比率の好ま U、上限は 30質量部であり、さらに好まし 、上限は 20質量部である。
[0055] また、光拡散性添加剤として無機粒子を用いる場合、前記の無機粒子の混合比率 は、結晶性ポリエステル 100質量部に対して 1〜50質量部が好ましい。より好ましく は 4〜40質量部であり、特に好ましくは 8〜30質量部である。混合比率が 1質量部未 満の場合には、光拡散性能が不足する。一方、混合比率が 50質量部を超える場合 には、フィルムの二軸延伸時に無機粒子が脱落しやすぐ異物の原因となるので好ま しくない。
[0056] また、光拡散性添加剤として非溶融性ポリマー粒子を用いる場合、前記の非溶融 性ポリマー粒子の混合比率は、結晶性ポリエステル 100質量部に対して 1〜50質量 部が好ましい。前記の混合比率の下限は、 4質量部がより好ましぐ特に好ましくは 8 質量部である。混合比率が 1質量部未満の場合には、光拡散性能が不足する。一方 、前記の混合比率の上限は、 40質量部が好ましぐ特に好ましくは 30質量部である 。混合比率が 50質量部を超える場合には、フィルムの二軸延伸時に非溶融性ポリマ 一粒子が脱落しやすぐ異物の原因となるので好ましくない。
[0057] また、本発明にお ヽて、光拡散性添加剤として、複数の光拡散性添加剤を併用す る場合には、それらの総量力 結晶性ポリエステル 100質量部に対して 1〜50質量 部であることが好ましい。より好ましくは 4〜40質量部であり、特に好ましくは 8〜30質 量部である。
[0058] (二軸延伸フィルムの製造)
本発明の光拡散性フィルムの製造方法では、フィルムの二軸延伸を特定の延伸条 件、特に縦方向及び横方向ともにゆっくりとした延伸速度で行うことに特徴がある。
[0059] 以下、本発明の光拡散性フィルムの好適な製造方法について、光拡散層の原料で ある結晶ポリエステルとして、ポリエチレンテレフタレート(以下、 PETと記す)のペレツ トを用いた代表例について詳しく説明するが、当然これに限定されるものではない。
[0060] 前記のペレットを移送するには通常、所定の配管を用いて空送で行うがこの際の空 気は埃混入防止のため、 HEPAフィルターを用い、清浄ィ匕された空気を用いることが 好ましい。この際に用いる HEPAフィルタ一は公称濾過精度 0. 5 /z m以上の埃を 95 %以上カットの性能を有するフィルターを用いることが好ま 、。
[0061] まず、フィルム原料として、ポリエステルと、ポリエステルに非相溶性の熱可塑性榭 脂をそれぞれ、真空乾燥あるいは熱風乾燥によって、水分率が lOOppm未満となる ように乾燥する。次いで、各原料を計量、混合して押し出し機に供給し、シート状に溶 融押出を行う。さらに、溶融状態のシートを、静電印加法を用いて回転金属ロール( キャスティングロール)に密着させて冷却固化し、未延伸 PETシートを得る。
[0062] この際、押出機の溶融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの榭 脂温度を 280〜290°C、その後のポリマー管、フラットダイまでの榭脂温度を 270〜2 95°Cに制御すること力 劣化物等の異物の発生を抑制するために好ましい。
[0063] また、溶融樹脂が 280°Cに保たれた任意の場所で、榭脂中に含まれる異物を除去 するために高精度濾過を行う。溶融樹脂の高精度濾過に用いられる濾材は、特に限 定はされないが、ステンレス焼結体の濾材の場合、 Si、 Ti、 Sb、 Ge、 Cuを主成分と する凝集物及び高融点有機物の除去性能に優れ好適である。高精度濾過を行う上 で、溶融樹脂の温度が 280°Cより低い場合、濾圧が上昇するため、原料樹脂の吐出 量を低くするなどの対応が必要となり、生産性が低下する。
[0064] さらに、濾材の濾過粒子サイズ (初期濾過効率 95%)は、 20 μ m以下、特に 15 m以下が好ましい。濾材の濾過粒子サイズ (初期濾過効率 95%)が 20 mを超える と、 20 m以上の大きさの異物が十分除去できない。濾材の濾過粒子サイズ (初期 濾過効率 95%)が 20 m以下の濾材を用いて溶融樹脂の高精度濾過を行うことに より、生産性が低下する場合がある力 粗大粒子による突起の少ないフィルムを得る 上で重要な工程である。なお、本発明では、光拡散性発現物質としてポリエステルに 非相溶性の熱可塑性榭脂を用いており、有機あるいは無機の粒子を用いて 、な ヽ ので、上記のような高精度濾過が可能となる。
[0065] 原料ポリマー中に存在する異物がフィルム内部に存在すると、製膜時の延伸工程 でこの異物の周囲でポリエステル分子の配向が乱れ、光学的歪みが発生する。この 光学的歪みのため、実際の異物の大きさよりも力なり大きな欠点として認識されるた め、著しく品位を損なう。例えば、大きさ 20 mの異物でも、光学的には 50 /z m以上 の大きさとして認識され、さらには 100 m以上の大きさの光学欠点として認識される 場合もある。
[0066] 高透明なフィルムを得るためには、基材フィルム中に易滑性を付与するための無機 粒子を含有させな 、か、透明性を阻害しな 、程度に少量し力含有させな 、ことが望 ましいが、粒子含有量が少なくフィルムの透明性が高くなるほど、微小な異物による 光学欠点はより鮮明となる傾向にある。また、フィルムが厚手になるほど、フィルム単 位面積当たりの異物の含有量が薄手のフィルムより多くなる傾向にあり、一層この問 題は大きくなる。 [0067] 本発明の光拡散性フィルムの層構成は、光拡散層(A)を有しておれば、単層であ つてもよく、複層構成であっても良いが、得られた光拡散性フィルムに後加工を施し、 他の光学機能性、例えばプリズムシートとしての機能を併せ持たせるためには、複層 構成とすることが好ましい。その場合、ポリエステルに非相溶性の熱可塑性榭脂を実 質的に含まないポリエステル層 (B)を、光拡散層(A)の片面または両面に、共押出し 法を用いて積層すればよい。
[0068] 光拡散層(A)とポリエステル層 (B)とを共押出し積層するためには、 2台以上の押 出し機を用いて、各層の原料を押出し、多層フィードブロック (例えば角型合流部を 有する合流ブロック)を用いて両層を合流させ、スリット状のダイ力 シート状に押出し 、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。あるいは多層フ イードブロックを用いる代わりにマルチマ-ホールドダイを用いても良 、。
[0069] この場合の積層比率にっ 、て、光拡散層(A)の全厚みに対する比率は 3〜50% が好ましぐさらには 10〜30%がより好ましい。光拡散層(A)の比率が 3%より小さい 場合は、不均一な光拡散性能しか得られない。一方、光拡散層 (A)の全厚みに対す る比率が 50%を超えると、ポリエステル層(B)の表面平滑性が低下し、ポリエステル 層(B)表面への後加工、例えばプリズムシート力卩ェが困難となる。
[0070] また、本発明の光拡散性フィルムを複層構成とする場合には、少なくともポリエステ ル層(B)の表面に、塗布量が 0. 005〜0. 20gZm2の易接着層を設けることが好ま しい。
[0071] この場合、前記の方法によって得られた未延伸フィルムに易接着層を設けた後、同 時二軸延伸を行う。また、逐次延伸法で行う場合、縦または横方向に一軸延伸したフ イルムに易接着層を設けた後、直交方向に延伸し、二軸延伸を行う。
[0072] 易接着層形成用塗布液を未延伸フィルムまたは一軸延伸フィルムに塗布するため の方法は、公知の任意の方法力 選択することが出来、例えば、リバースロールコー ト法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレー コート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート 法、カーテンコート法、などが挙げられ、これらの方法を単独で、あるいは組み合わせ て塗工する。 [0073] 易接着層を構成する榭脂は、光拡散性フィルム用途において、他の部材などとのよ り優れた接着性を確保する観点から、共重合ポリエステル榭脂、ポリウレタン系榭脂、 およびアクリル系榭脂よりなる群力 選択される 1種以上を主成分とするものであるこ とが好ましい。なお、易接着層における上記「主成分」とは、該層を構成する榭脂 100 質量%中、上に列挙した榭脂の少なくとも 1種が 50質量%以上であることを意味する
[0074] なお、フィルムの透明性を高くするために、ポリエステル層 (B)中に粒子を含有させ ないか、透明性を阻害しない程度に少量しか含有させないと、フィルムの易滑性が不 十分となりハンドリング性が悪ィ匕する。そのため、前記の易接着層には、易滑性付与 を目的とした粒子を添加することが好ましい。これらの粒子には、透明性を確保する ために可視光線の波長以下の極めて平均粒径が小さい粒子を用いることが重要で ある。
[0075] 前記の粒子としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、 二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼォライト 、硫ィ匕モリブデンなどの無機粒子;架橋高分子粒子;シユウ酸カルシウムなどの有機 粒子などが挙げられる。易接着層を、上記共重合ポリエステル榭脂を主体として形成 する場合には、シリカが特に好ましい。シリカは、ポリエステルと屈折率が比較的近い ため、より透明性に優れた光拡散性フィルムを確保し得る点で最も好適である。
[0076] 易接着層に含有させる上記粒子は、平均粒径(SEM)が 0. 005-1. 0 μ mである ことが、光拡散性フィルムの透明性、ノ、ンドリング性、耐スクラッチ性確保の点から好 ましい。粒子の平均粒径の上限は、透明性の点から、 0. 5 mであることがさらに好 ましぐ特に好ましくは 0. 2 μ mである。また、粒子の平均粒径の下限は、ハンドリング 性と耐スクラッチ性の点から、 0. 03 mであることがさらに好ましぐ特に好ましくは 0 . Ol /z mである。
[0077] なお、前記の粒子の平均粒径の測定は下記方法により行う。
粒子を走査型電子顕微鏡 (SEM)で写真を撮り、最も小さい粒子 1個の大きさが 2 〜5mmとなるような倍率で、 300〜500個の粒子の最大径を測定し、その平均値を 平均粒径とする。また、易接着層に含有する粒子の平均粒径を求める場合は、透過 型電子顕微鏡 (TEM)を用いて、最も小さ ヽ粒子 1個の大きさが 2〜5mmとなるよう な倍率で塗布フィルムの断面を撮影し、塗布層の断面に存在する粒子の最大径を求 める。凝集体力ゝらなる粒子の平均粒径は、塗布フィルムの塗布層の断面を、光学顕 微鏡を用いて倍率 200倍で 300〜500個撮影し、その最大径を測定する。
[0078] 易接着層の粒子の含有量は、易接着層の構成成分全量に対して、 0. 1〜60質量 %であることが、光学用積層フィルムの透明性、密着性、ノ、ンドリング性、耐スクラッチ 性確保の点力も好ましい。粒子の含有量の上限は、透明性と密着性の点力も 50質 量%であることがさらに好ましぐ特に好ましくは 40質量%である。また、粒子の含有 量の下限は、ハンドリング性と耐スクラッチ性の点から 1質量%がさらに好ましぐ特に 好ましくは 0. 5質量%である。
[0079] 上記粒子は 2種類以上を併用してもよぐ同種の粒子で粒径の異なるものを配合し てもよいが、いずれにしても、粒子全体の平均粒径、および合計の含有量が上記範 囲を満足することが好ましい。
[0080] 次に、前記の方法で得られた未延伸フィルムを同時二軸延伸または逐次二軸延伸 し、次いで熱処理を行う。
[0081] 前記の二軸延伸は、縦、横、両方向に 2. 5倍以上の延伸倍率で行うことが重要で ある。縦方向または横方向のいずれかの延伸倍率が 2. 5倍未満の場合は、ニ軸延 伸フィルム本来の優れた耐熱性と機械的強度が得られず、また、フィルムの厚み均一 性が不十分になる。本発明における好ましい延伸倍率の下限は 2. 8倍、より好ましい 下限は 3. 0倍である。また、延伸倍率の好ましい上限は 6. 0倍である。
[0082] また、本発明における二軸延伸は、二軸延伸機を用いて、縦、横両方向の延伸を いずれも 300%Z秒未満の延伸速度で行うこと力 特に重要である。本発明におけ る延伸速度とは、単位時間当たりのフィルムの変形率を、未延伸フィルムの寸法を基 準として表したものであり、縦方向、及び横方向の延伸速度 (単位:%Z秒)は、それ ぞれ下記式によって定義される。
[0083] 縦方向延伸速度(%Z秒) =フィルム走行時の加速度 (mZ秒 Z秒)
÷未延伸フィルムの速度(mZ秒) X 100
[0084] 横方向延伸速度 (%Z秒) = 1秒間当たりの幅変化率 (mZ秒) ÷未延伸フィルムの幅(m) X 100
[0085] そして、縦方向、及び横方向の、延伸開始力も延伸終了までの全ての延伸を、 300 %Z秒未満の延伸速度で完了させる。この延伸速度の条件は、本発明の最も重要 な要件であり、これによつて初めて、結晶性ポリエステルをマトリックスポリマーとして 用いつつ、延伸ボイドの発生を抑制し、優れた光線透過率と、二軸延伸ポリエステル フィルム本来の耐熱性、機械的強度とを両立した光拡散性二軸延伸フィルムを得るこ とが可能となる。
[0086] 一方、縦、横、何れかの方向において、 300%Z秒を超える延伸速度では、延伸 時に発生するボイドを抑制することが困難となり、光線透過率が不良となる。本発明 における好ましい延伸速度の上限は 200%Z秒、さらに好ましい上限は 100%Z秒 である。
[0087] 一方、延伸速度の下限は制限されないが、延伸速度を必要以上に遅くすると、ェ 業的規模でのフィルムの生産において、フィルムの生産性が低下する、あるいは過 剰な設備投資が必要となるため好ましくない。したがって、本発明においては、延伸 開始から延伸終了の間の最高延伸速度を、 5%Z秒以上とすることが好ましぐさら には、 10%Z秒以上とすることが好ましい。
[0088] 一般的に行われる逐次二軸延伸法において、縦方向の延伸はロール方式の延伸 機が用いられる。し力しながら、ロール方式の延伸は極めて延伸速度が早ぐ本発明 の効果を得ることが困難である。
[0089] 前記のような縦方向及び横方向の延伸速度に制御することが可能な二軸延伸機と しては、クリップによってフィルム両端を把持した状態でテンターに導き、クリップ間の 幅およびクリップの搬送速度を制御することにより、縦'横両方向に連続延伸可能な 機構を備えたテンター方式の二軸延伸機が好適である。当該機能を有する設備であ れば、そのクリップ搬送機構は任意であり、特に制約されるものではないが、リニアモ 一ター方式やパンタグラフ方式、或 、はスクリュー方式を採用することができる。
[0090] また、テンター方式の二軸延伸において、延伸方法は縦'横、あるいは横 ·縦の逐 次二軸延伸法でも、縦方向と横方向に同時に延伸する、いわゆる同時二軸延伸法 でもよい。さらに、縦方向または横方向に多段階に延伸を行っても力まわない。ただ、 同時二軸延伸法のほうが、二軸延伸を同時に行えるため、比較的コンパクトな設備で 行えるという利点がある。
[0091] なお、フィルムの二軸延伸に際し、その延伸温度や熱処理温度、時間等の細部条 件は、マトリックスポリマーの特性やフィルムに要求される特性、例えば屈折率等の光 学特性、力学的特性、寸法変化率等の熱的特性、所望の結晶化度、等に応じて適 宜選択することが可能であり、特に制約されるものではない。 PETをマトリックスポリマ 一として用いる場合の好ま U、延伸温度は 80°C〜110°Cであり、好まし 、熱処理温 度は 180〜250°C、好ましい熱処理時間は 10〜: LOO秒である。また、熱処理と同時 または熱処理後に、縦方向および Zまたは横方向の緩和処理を施してもかまわない
[0092] (光拡散性フィルムの特性)
前述の方法で得られる光拡散性フィルムの特性は、全光線透過率が 85%以上、へ ーズが 50%以上、 150°Cにおける寸法変化率が縦、横ともに 3%以下、引張強さが 縦、横ともに lOOMPa以上であると 、う特徴を有して!/、る。
[0093] なお、本発明の光拡散性フィルムにおける全光線透過率の好ましい下限は 88%、 より好ましい下限は 89%、さらに好ましい下限は 90%である。
[0094] また、本発明の光拡散性フィルムにおけるヘーズの、好まし 、下限は 60%、好まし い上限は 100%である。
[0095] また、 150°Cにおける寸法変化率の好ましい上限は 2%、より好ましい上限は 1. 0
%、さらに好ましい上限は 0. 5%、最も好ましい上限は 0. 3%である。
[0096] また、引張強さの好ましい下限は 110MPa、さらに好ましい下限は 140MPa、特に 好まし 、下限は 150MPaである。
実施例
[0097] 次に、本発明の効果を実施例および比較例を用いて説明する。まず、本発明で使 用した特性値の評価方法を下記に示す。
[0098] [評価方法]
(1)ポリエステル榭脂の固有粘度
JIS K 7367— 5に準拠し、溶媒としてフエノーノレ(60質量0 /0)と 1, 1, 2, 2—テト ラクロロェタン (40質量%)の混合溶媒を用い、 30°Cで測定した。
[0099] (2)結晶融解熱量および融点
エスアイアイ'ナノテクノロジ一社製 DSC6220型示差走査型熱量計を用いて求め る。窒素雰囲気下、サンプルを 300°Cで 5分間加熱溶融した後、液体窒素で急冷し、 その 10mgを 20°CZ分の速度で昇温させてゆき、結晶の融解に伴なう吸熱ピークの 面積カゝら融解熱を求め、これをサンプルの質量で割って結晶融解熱量を算出した。 また、該吸熱ピークの頂点を融点とした。
[0100] (3)溶融粘度
榭脂温度 285°C、剪断速度 100Z秒における溶融粘度を、フローテスター(島津製 作所製、 CFT— 500)を用いて測定した。なお、剪断速度 100Z秒での溶融粘度の 測定は、剪断速度を 100Z秒に固定して行うことが困難であるため、適当な荷重を用 いて、 100Z秒未満の任意の剪断速度および当該速度よりも大きい任意の剪断速度 で溶融粘度を測定し、縦軸に溶融粘度、横軸に剪断速度をとり、両対数グラフにプロ ットした。前記の 2点を直線で結び、内挿により剪断速度 100Z秒での溶融粘度(単 位:ボイズ)を求めた。
[0101] (4)フィルムの厚み
JIS K 7130「プラスチック—フィルム及びシート—厚さ測定方法」機械的走査に よる測定方法 (A法)に準拠して測定した。測定器は電子マイクロメーター(マール社 製、ミリトロン 1240)を用いた。
[0102] (5)ヘーズ、全光線透過率
JIS K 7105「プラスチックの光学的特性試験方法」ヘーズ (曇価)に準拠して測 定した。測定器には、日本電色工業社製 NDH— 300A型濁度計を用いた。
[0103] (6)引張強さ
JIS C 2318- 1997 5. 3. 3 (引張強さ及び伸び率)に準拠して測定した。
[0104] (7)寸法変化率
JIS C 2318- 1997 5. 3. 4 (寸法変ィ匕)に準拠して測定した。
[0105] (8)カール
前記寸法変化率を測定した後のサンプルを目視で評価した。 [0106] 実施例 1
(1) PET榭脂 (Ml)の製造
エステル化反応缶を昇温し、 200°Cに到達した時点で、テレフタル酸を 86. 4質 量部及びエチレングリコールを 64. 4質量部力 なるスラリーを仕込み、攪拌しながら 触媒として三酸ィ匕アンチモンを 0. 017質量部及びトリェチルァミンを 0. 16質量部添 加した。次いで、加圧昇温を行いゲージ圧 3. 5kgfZcm2、 240°Cの条件で、加圧ェ ステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシゥ ム 4水和物 0. 071質量部、次いでリン酸トリメチル 0. 014質量部を添カ卩した。さらに、 15分かけて 260°Cに昇温し、リン酸トリメチル 0. 012質量部、次いで酢酸ナトリウム 0 . 0036質量部を添加した。 15分後、得られたエステル化反応生成物を重縮合反応 缶に移送し、減圧下 260°Cから 280°Cへ徐々に昇温し、 285°Cで重縮合反応を行つ た。
[0107] 重縮合反応終了後、 95%カット径が 5 μ mのナスロン製フィルターで濾過処理を行 い、ノズルからストランド状に押出し、予め濾過処理 (孔径: 1 μ m以下)を行った冷却 水を用いて冷却、固化させ、ペレット状にカットした。得られた PET榭脂(Ml)は、結 晶融解熱が 35mjZmg、融点が 257°C、固有粘度が 0. 616dl/g, Sb含有量が 14 4ppm、 Mgき 力 S58ppm、 P¾力 S40ppm、カラー 直力 56. 2、カラー b直力 1. 6 であり、不活性粒子及び内部析出粒子は実質上含有して 、なかった。
[0108] (2)ポリスチレンマスターバッチ(M2)の製造
溶融粘度が 3900poiseのポリスチレン榭脂(PS) (日本ポリスチ社製 G797N) 30質 量部と、前記の PET(A) 70質量部とをペレット混合したものを、ベント式二軸押出機 に供給、混練して溶融押出し、得られたストランドを冷却、切断して、ポリスチレンマス ターバッチ (M2)を調製した。
[0109] (3)塗布液(M3)の調製
ジメチルテレフタレート 95質量部、ジメチルイソフタレート 95質量部、エチレングリコ ール 35質量部、ネオペンチルダリコール 145質量部、酢酸亜鉛 0. 1質量部および 三酸化アンチモン 0. 1質量部を反応容器に仕込み、 180°Cで 3時間かけてエステル 交換反応を行った。次に、 5—ナトリウムスルホイソフタル酸 6. 0質量部を添加し、 24 0°Cで 1時間かけてエステル化反応を行った後、 250°Cで減圧下(10〜0. 2mmHg )、 2時間かけて重縮合反応を行い、数平均分子量 19, 500、軟化点 60°Cの共重合 ポリエステル系榭脂を得た。
[0110] 得られた共重合ポリエステル系榭脂 (A)の 30質量%水分散液を 7. 5質量部、重亜 硫酸ソーダでブロックしたイソシァネート基を含有する自己架橋型ポリウレタン系榭脂 (B)の 20質量%水溶液 (第一工業製薬製、エラストロン H— 3)を 11. 3質量部、エラ ストロン用触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 39. 8質量部および イソプロピルアルコールを 37. 4質量部、それぞれ混合した。
[0111] さらに、フッ素系ノ-オン型界面活性剤(大日本インキ化学工業製、メガファック F1 42D)の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ(日産化学ェ 業製、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒 子 Bとして乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、 平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加した。次いで、 5質 量%の重曹水溶液で塗布液の PHを 6. 2に調整し、濾過粒子サイズ (初期濾過効率 : 95%)が 10 μ mのフェルト型ポリプロピレン製フィルターで精密濾過し、塗布液(M 3)を調整した。
[0112] (4)光拡散性フィルムの製造
光拡散層(A)の原料として、 PET(M1) 67質量部と、ポリスチレンマスターバッチ( M2) 33質量部とを、それぞれ 135°Cで 6時間減圧乾燥(lTorr)した後、混合し、押 出機 2に供給した。また、 B層の原料として PET(Ml)を 135°Cで 6時間減圧乾燥(1 Torr)した後、押出機 1に供給した。押出機 2、及び押出機 1に供給された各原料を、 押出機の溶融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの榭脂温度は 2 80°C、その後のポリマー管では 275°Cとし、 2層合流ブロックを用いて積層し、口金よ りシート状に溶融押し出した。なお、 A層と B層との厚み比率は、 25対 75となるように 、各層のギアポンプを用いて制御した。また、前記のフィルターには、いずれもステン レス焼結体の濾材 (公称濾過精度: 10 μ m粒子を 95%カット)を用いた。また、口金 の温度は、押出された榭脂温度が 275°Cになるように制御した。
[0113] そして、押し出した榭脂を、表面温度 30°Cの冷却ドラム上にキャスティングして静電 印加法を用いて冷却ドラム表面に密着させて冷却固化し、厚さ 1. 3mmの未延伸フィ ルムを作成した。このとき、 B層面を冷却ドラムに接する面とした。
[0114] 次 、で、得られた未延伸フィルムの片面 (B層面)に易接着層を塗布した。塗布液 には、前記塗布液 (M3)を濾過粒子サイズ 5 μ m (初期濾過効率 95%)のフェルト型 ポリプロピレン製濾材で精密濾過を行ったものを用いた。また、塗布方法にはリバ一 スロール法を採用し、 Wet塗布量が 20g/m2となるように塗布した。その後、 2ゾーン に分かれた乾燥炉にて、第 1ゾーン温度 100°C、風速 20mZ秒、 10秒間、第 2ゾー ン温度 70°C、風速 20mZ秒、 10秒間にて塗布面を乾燥した。
[0115] 次いで、塗布層を有する未延伸フィルムを、パンタグラフ方式の同時二軸延伸機を 用いて、 105°Cの熱風で 40秒間の予熱を行った後、 20秒間をかけて、縦および横 方向に 3. 7倍ずつ同時二軸延伸した。このとき、縦および横方向の延伸倍率は、図 1に示した通りとし、その延伸速度は図 2に示した通りとした。
[0116] 次いで、フィルムの寸法を固定した状態で、 230°Cで 30秒間の熱処理を施し、室温 まで冷却する過程で、縦および横方向に 3%の緩和処理を行い、厚さ 100 mの二 軸延伸フィルムを製造した。
[0117] (5)光拡散性フィルムの特性
本実施例 1で得られた光拡散性フィルムの特性を表 1に示す。表 1から分力ゝる通り、 本発明の方法で得られる光拡散性フィルムは、二軸延伸フィルム本来の優れた耐熱 性と機械的強度を有しており、かつ優れた光線透過率と光拡散性とを有していること が分かる。
[0118] 比較例 1
実施例 1と全く同じ方法で得た未延伸フィルムを、従来公知の方法で二軸延伸した まず、 75°Cに加熱したロール群でフィルムを予熱した後、非接触の赤外線ヒータを 用いてフィルムを 96°Cまで加熱して、周速が異なるロール間で 3. 4倍に縦延伸を施 した。このとき、フィルムの接点間の距離は 200mmであり、低速ロールの周速は 12 mZ分とした。ロール間のフィルム速度を、低速ロール周速と高速ロール周速の中間 値で代表させると、ロール間のフィルム速度は 26. 4mZ分となり、ロール間の通過時 間は 0. 45秒となる。したがって、 0. 45秒間に 3. 4倍、即ち 240%の延伸を施したこ とになり、その延伸速度は 530%Z秒となる。
[0119] 次 、で上記の縦延伸フィルムの両端をクリップで把持し、横延伸を行った。横延伸 温度は 135°C、横延伸倍率は 3. 7倍、横延伸速度は 25%Z秒で一定とした。次い で、 230°Cで 15秒間の熱処理を行い、 60°Cまで冷却する過程で幅方向に 2. 5%の 緩和処理を施した。
次いで、フィルムの両端を把持していたクリップを開放し、フィルムの両端をトリミング してロール状に巻き取り、二軸延伸フィルムを製造した。
[0120] 本比較例 1で得られたフィルムは、ヘーズが高く光拡散性は良好である力 一方、 光線透過率が低ぐ光拡散性フィルムに要求される光拡散性と光線透過率のバラン スが取れておらず低品質であった。また、寸法変化率も実施例 1で得られた光拡散 性フィルムより劣っていた。
[0121] 比較例 2
光拡散層(A)の原料として、 PET (M1) 83質量部と、ポリスチレンマスターバッチ( M2) 17質量部とを混合して用いること以外は、比較例 1と同様の方法で二軸延伸フ イルムを製造した。
[0122] 本比較例 2で得られたフィルムは、実施例 1で得られた光拡散性フィルムと比べ、へ ーズも光線透過率も低ぐ光拡散性フィルムに要求される光拡散性と光線透過率の ノ《ランスが不十分であり、低品質であった。また、寸法変化率も実施例 1で得られた 光拡散性フィルムより劣って 、た。
[0123] 実施例 2
実施例 1の製造方法において、光拡散層 (A)の原料を、 PET (M1) 97質量部と、 ガラス転移温度が 160°Cの環状ォレフィンコポリマー(Topas Advanced Polyme rs社製、 TOPAS6015) 3重量部の混合物に変更した。また、 A層と B層との厚み比 率を、 15対 85となるように変更した。また、塗布層を設けな力つた。それ以外は実施 例 1と同じ方法により、二軸延伸フィルムを製造した。
[0124] 実施例 3
実施例 1の製造方法において、光拡散層 (A)の原料を、 PET (M1) 92質量部と、 ガラス転移温度が 160°Cの環状ォレフィンコポリマー(Topas Advanced Polyme rs社製、 TOPAS6015) 6重量部、及び溶融粘度が 3900poiseのポリスチレン榭脂( PS) (日本ポリスチ社製 G797N) 2質量部との混合物に変更した。また、 A層と B層と の厚み比率を、 10対 90となるように変更した。また、塗布層を設けな力つた。それ以 外は実施例 1と同じ方法により、二軸延伸フィルムを製造した。
[0125] 比較例 3
実施例 2と全く同じ方法で得た未延伸フィルムを、比較例 1と同じ方法で二軸延伸し 、二軸延伸フィルムを製造した。
[0126] 実施例 4〜7、比較例 4
実施例 1と全く同じ方法で得た未延伸フィルムを、パンタグラフ方式の同時ニ軸延 伸機を用いて、表 2に示した条件にて同時 2軸延伸、熱処理して、二軸延伸フィルム を製造した。なお、延伸速度は縦方向、横方向ともに、延伸開始から延伸終了まで一 定値とした。得られたフィルムの特性についても、表 2に示した.
[0127] [表 1]
Figure imgf000026_0001
[0128] [表 2] 実施例 実施例 実施例 比較例 実施例
4 5 6 4 7
/皿 。c 100 100 100 100 100 予熱
時間 秒 40 40 40 40 40
製 /皿 °c 100 100 105 105 100 造 速度 。/。/秒 50 100 200 400 50 延伸
条 倍率 3.5 3.5 3.5 3.5 3.0 件 ―
(縦 X横) x3.5 3.5 3.5 x3.5 x3.0
。c 220 220 220 220 220
熱処理
時間 秒 10 10 10 10 10
厚み μ m 108 110 106 101 150
ヘーズ % 68 63 58 67 69 フ 光線透過率 % 89.1 88.2 87.3 84.1 89.0 ィ
引張 縦方向 MPa 170 170 170 170 150
強さ
ム 横方向 MPa 170 170 170 170 150 の 寸法 縦方向 % 2.0 2.0 2.0 2.0 1.5 特 変化率
性 (150°C) 横方向 % 2.0 2.0 2.0 2.0 1.5
全く 全く 全く 全く 全く カール
なし なし なし なし なし
[0129] 実施例 8
(1) PET榭脂 (Ml)の製造
エステル化反応缶を昇温し、 200°Cに到達した時点で、テレフタル酸を 86.4質 量部及びエチレングリコールを 64.4質量部力 なるスラリーを仕込み、攪拌しながら 触媒として三酸ィ匕アンチモンを 0.017質量部及びトリェチルァミンを 0.16質量部添 加した。次いで、加圧昇温を行いゲージ圧 3.5kgZcm2、 240°Cの条件で、加圧ェ ステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシゥ ム 4水和物 0.071質量部、次いでリン酸トリメチル 0.014質量部を添カ卩した。
[0130] さら〖こ、 15分かけて 260°Cに昇温し、リン酸トリメチル 0.012質量部、次いで酢酸 ナトリウム 0.0036質量部を添加した。 15分後、得られたエステル化反応生成物を重 縮合反応缶に移送し、減圧下 260°Cから 280°Cへ徐々に昇温し、 285°Cで重縮合 反応を行った。重縮合反応終了後、 95%カット径が 5 mのナスロン製フィルターで 濾過処理を行い、ノズル力 ストランド状に押出し、予め濾過処理 (孔径: 1 μ m以下) を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。
[0131] 得られた PET榭脂(Ml)は、結晶融解熱が 35miZmg、融点が 257°C、固有粘度 力 O. 616dl/g、 Sbき 力 Sl44ppm、 Mgき 力 S58ppm、 P¾力 S40ppm、カラ 一 L値が 56. 2、カラー b値が 1. 6であり、不活性粒子及び内部析出粒子は実質上 含有していな力つた。
[0132] (2)シリカ粒子マスターバッチ(M2)の製造
平均粒子径が 5 μ mでほぼ単分散で球状のシリカ粒子 (屈折率 1. 46) 30質量部と 、上記の PET (屈折率 1. 60) (Ml) 70質量部を混合し、ベント式二軸押出機に供給 、混練して溶融押出し、得られたストランドを冷却、切断して、シリカ粒子マスターバッ チ (M2)を調製した。
[0133] (3)塗布液 (M3)の調製
ジメチルテレフタレート 95質量部、ジメチルイソフタレート 95質量部、エチレングリコ ール 35質量部、ネオペンチルダリコール 145質量部、酢酸亜鉛 0. 1質量部および 三酸化アンチモン 0. 1質量部を反応容器に仕込み、 180°Cで 3時間かけてエステル 交換反応を行った。次に、 5—ナトリウムスルホイソフタル酸 6. 0質量部を添加し、 24 0°Cで 1時間かけてエステル化反応を行った後、 250°Cで減圧下(10〜0. 2mmHg )、 2時間かけて重縮合反応を行い、数平均分子量 19, 500、軟化点 60°Cの共重合 ポリエステル系榭脂を得た。
[0134] 得られた共重合ポリエステル系榭脂 (A)の 30質量%水分散液を 7. 5質量部、重亜 硫酸ソーダでブロックしたイソシァネート基を含有する自己架橋型ポリウレタン系榭脂 (B)の 20質量%水溶液 (第一工業製薬製、エラストロン H— 3)を 11. 3質量部、エラ ストロン用触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 39. 8質量部および イソプロピルアルコールを 37. 4質量部、それぞれ混合した。
[0135] さらに、フッ素系ノ-オン型界面活性剤(大日本インキ化学工業製、メガファック F1 42D)の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ(日産化学ェ 業製、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒 子 Bとして乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、 平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加した。次いで、 5質 量%の重曹水溶液で塗布液の PHを 6. 2に調整し、濾過粒子サイズ (初期濾過効率 : 95%)が 10 μ mのフェルト型ポリプロピレン製フィルターで精密濾過し、塗布液(M 3)を調整した。
[0136] (4)光拡散性フィルムの製造
光拡散層(A)の原料として PET (Ml) 70質量部と、シリカ粒子バッチ (M2) 30質 量部とを、それぞれ 135°Cで 6時間減圧乾燥(lTorr)した後、混合し、押出機 2に供 給した。また、 B層の原料として PET(Ml)を 135°Cで 6時間減圧乾燥(lTorr)した 後、押出機 1に供給した。押出機 2、及び押出機 1に供給された各原料を、押出機の 溶融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの榭脂温度は 280°C、そ の後のポリマー管では 275°Cとし、 2層合流ブロックを用いて積層し、口金よりシート 状に溶融押出した。
[0137] なお、 A層と B層との厚み比率は、 25対 75となるように、各層のギアポンプを用いて 制御した。また、口金の温度は、押出された榭脂温度が 275°Cになるように制御した
[0138] そして、押し出した榭脂を、表面温度 30°Cの冷却ドラム上にキャスティングして静電 印加法を用いて冷却ドラム表面に密着させて冷却固化し、厚さ 1. 3mmの未延伸フィ ルムを作成した。このとき、 B層面を冷却ドラムに接する面とした。
[0139] 次 、で、得られた未延伸フィルムの片面 (B層面)に易接着層を塗布した。塗布液 には、前記塗布液 (M3)を濾過粒子サイズ 5 μ m (初期濾過効率 95%)のフェルト型 ポリプロピレン製濾材で精密濾過を行ったものを用いた。また、塗布方法にはリバ一 スロール法を採用し、 Wet塗布量が 20g/m2となるように塗布した。その後、 2ゾーン に分かれた乾燥炉にて、第 1ゾーン温度 100°C、風速 20mZ秒、 10秒間、第 2ゾー ン温度 70°C、風速 20mZ秒、 10秒間にて塗布面を乾燥した。
[0140] 次いで、塗布層を有する未延伸フィルムを、パンタグラフ方式の同時二軸延伸機を 用いて、 105°Cの熱風で 40秒間の予熱を行った後、 20秒間をかけて、縦および横 方向に 3. 7倍ずつ同時二軸延伸した。このとき、縦および横方向の延伸倍率は、図 3に示した通りとし、その延伸速度は図 4に示した通りとした。 [0141] 次いで、フィルムの寸法を固定した状態で、 230°Cで 30秒間の熱処理を施し、室温 まで冷却する過程で、縦および横方向に 3%の緩和処理を行い、厚さ 100 mの二 軸延伸フィルムを製造した。得られたフィルムの特性を表 3に示す。
[0142] 本実施例 8で得られた光拡散性フィルムは、二軸延伸フィルム本来の優れた耐熱 性と機械的な強度を有しており、かつ優れた光線透過率と光拡散性とを有しており高 品質であった。
[0143] 比較例 5
実施例 8と全く同じ方法で得た未延伸フィルムを、従来公知の方法で二軸延伸した まず、 75°Cに加熱したロール群でフィルムを予熱した後、非接触の赤外線ヒータを 用いてフィルムを 96°Cまで加熱して、周速が異なるロール間で 3. 4倍に縦延伸を施 した。このとき、フィルムの接点間の距離は 200mmであり、低速ロールの周速は 12 mZ分とした。ロール間のフィルム速度を、低速ロール周速と高速ロール周速の中間 値で代表させると、ロール間のフィルム速度は 26. 4mZ分となり、ロール間の通過時 間は 0. 45秒となる。したがって、 0. 45秒間に 3. 4倍、即ち 240%の延伸を施したこ とになり、その延伸速度は 530%Z秒となる。
[0144] 次 、で上記の縦延伸フィルムの両端をクリップで把持し、横延伸を行った。横延伸 温度は 135°C、横延伸倍率は 3. 7倍、横延伸速度は 25%Z秒で一定とした。次い で、 230°Cで 15秒間の熱処理を行い、 60°Cまで冷却する過程で幅方向に 2. 5%の 緩和処理を施した。
[0145] 次 、で、フィルムの両端を把持して 、たクリップを開放し、フィルムの両端をトリミング してロール状に巻き取り、二軸延伸フィルムを製造した。得られたフィルムの特性を表 3に示す。
[0146] 本比較例 5で得られた光拡散性フィルムは、ヘーズが高く光拡散性は良好であるが 光線透過率が低ぐ光拡散性と光線透過率のノ ランスが取れておらず低品質であつ た。また、寸法変化率も実施例 8で得られた光拡散性フィルムより劣っていた。
[0147] 比較例 6
光拡散性層 (A)の原料として、 PET (Ml) 94質量部と、架橋ポリスチレン粒子マス ターバッチ (M2) 6質量部とを混合して用いること以外は、比較例 5と同様の方法で 二軸延伸フィルムを製造した。得られたフィルムの特性を表 3に示す。
[0148] 本比較例 6で得られた光拡散性フィルムは、光線透過率は高!ヽが、ヘーズ値が低く 光拡散性が不足しており、光拡散性と光線透過率のバランスが取れておらず低品質 であった。また、寸法変化率も実施例 8で得られた光拡散性フィルムより劣っていた。
[0149] 実施例 9
実施例 8の方法において、シリカ粒子の代わりに、平均粒子径が 5 mの炭酸カル シゥム (屈折率 1. 58)を用いる以外は、実施例 8と同様の方法で光拡散性フィルムを 得た。得られたフィルムの特性を表 3に示す。
[0150] 本実施例 9で得られた光拡散性フィルムは、実施例 8で得られた光拡散性フィルム と同様に、各特性力バランスしており高品質であった。
[0151] [表 3]
Figure imgf000031_0001
実施例 10
(1) PET榭脂 (Ml)の製造
エステル化反応缶を昇温し、 200°Cに到達した時点で、テレフタル酸を 86. 4質 量部及びエチレングリコールを 64. 4質量部力 なるスラリーを仕込み、攪拌しながら 触媒として三酸ィ匕アンチモンを 0. 017質量部及びトリェチルァミンを 0. 16質量部添 加した。次いで、加圧昇温を行いゲージ圧 3. 5kgZcm2、 240°Cの条件で、加圧ェ ステル化反応を行った。その後、エステル化反応缶内を常圧に戻し、酢酸マグネシゥ ム 4水和物 0. 071質量部、次いでリン酸トリメチル 0. 014質量部を添カ卩した。
[0153] さら〖こ、 15分かけて 260°Cに昇温し、リン酸トリメチル 0. 012質量部、次いで酢酸 ナトリウム 0. 0036質量部を添加した。 15分後、得られたエステル化反応生成物を重 縮合反応缶に移送し、減圧下 260°Cから 280°Cへ徐々に昇温し、 285°Cで重縮合 反応を行った。重縮合反応終了後、 95%カット径が 5 mのナスロン製フィルターで 濾過処理を行い、ノズル力 ストランド状に押出し、予め濾過処理 (孔径: 1 μ m以下) を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。
[0154] 得られた PET榭脂(Ml)は、結晶融解熱が 35miZmg、融点が 257°C、固有粘度 力 ^0. 616dl/g、 Sbき 力 Sl44ppm、 Mgき 力 S58ppm、 P¾力 S40ppm、カラ 一 L値が 56. 2、カラー b値が 1. 6であり、不活性粒子及び内部析出粒子は実質上 含有していな力つた。
[0155] (2)架橋ポリスチレン粒子含有 PET (M2)の製造
平均粒子径が 12 mでほぼ単分散で球状の架橋ポリスチレン粒子 30質量部と、 上記の PET (Ml) 70質量部を混合し、ベント式二軸押出機に供給、混練して溶融 押出し、得られたストランドを冷却、切断して、架橋ポリスチレン粒子含有 PET (M2) のペレットを得た。
[0156] (3)塗布液 (M3)の調製
ジメチルテレフタレート 95質量部、ジメチルイソフタレート 95質量部、エチレングリコ ール 35質量部、ネオペンチルダリコール 145質量部、酢酸亜鉛 0. 1質量部および 三酸化アンチモン 0. 1質量部を反応容器に仕込み、 180°Cで 3時間かけてエステル 交換反応を行った。次に、 5—ナトリウムスルホイソフタル酸 6. 0質量部を添加し、 24 0°Cで 1時間かけてエステル化反応を行った後、 250°Cで減圧下(10〜0. 2mmHg )、 2時間かけて重縮合反応を行い、数平均分子量 19, 500、軟化点 60°Cの共重合 ポリエステル系榭脂を得た。
[0157] 得られた共重合ポリエステル系榭脂 (A)の 30質量%水分散液を 7. 5質量部、重亜 硫酸ソーダでブロックしたイソシァネート基を含有する自己架橋型ポリウレタン系榭脂 (B)の 20質量%水溶液 (第一工業製薬製、エラストロン H— 3)を 11. 3質量部、エラ ストロン用触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 39. 8質量部および イソプロピルアルコールを 37. 4質量部、それぞれ混合した。
[0158] さらに、フッ素系ノ-オン型界面活性剤(大日本インキ化学工業製、メガファック F1 42D)の 10質量%水溶液を 0. 6質量部、粒子 Aとしてコロイダルシリカ(日産化学ェ 業製、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒 子 Bとして乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、 平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加した。次いで、 5質 量%の重曹水溶液で塗布液の PHを 6. 2に調整し、濾過粒子サイズ (初期濾過効率 : 95%)が 10 μ mのフェルト型ポリプロピレン製フィルターで精密濾過し、塗布液(M 3)を調整した。
[0159] (4)光拡散性フィルムの製造
光拡散層(A)の原料として、 PET (Ml) 72質量部と、架橋ポリスチレン粒子を含有 する PET(M2) 28質量部とを、それぞれ 135°Cで 6時間減圧乾燥(lTorr)した後、 混合し、押出機 2に供給した。また、 B層の原料として PET(Ml)を 135°Cで 6時間減 圧乾燥 (lTorr)した後、押出機 1に供給した。押出機 2、及び押出機 1に供給された 各原料を、押出機の溶融部、混練り部、ポリマー管、ギアポンプまでの榭脂温度は 2 80°C、その後のポリマー管では 275°Cとし、 2層合流ブロックを用いて積層し、口金よ りシート状に溶融押出した。
[0160] なお、 A層と B層との厚み比率は、 25対 75となるように、各層のギアポンプを用いて 制御した。また、口金の温度は、押出された榭脂温度が 275°Cになるように制御した
[0161] そして、押し出した榭脂を、表面温度 30°Cの冷却ドラム上にキャスティングして静電 印加法を用いて冷却ドラム表面に密着させて冷却固化し、厚さ 1. 3mmの未延伸フィ ルムを作成した。このとき、 B層面を冷却ドラムに接する面とした。
[0162] 次 、で、得られた未延伸フィルムの片面 (B層面)に易接着層を塗布した。塗布液 には、前記塗布液 (M3)を濾過粒子サイズ 5 μ m (初期濾過効率 95%)のフェルト型 ポリプロピレン製濾材で精密濾過を行ったものを用いた。また、塗布方法にはリバ一 スロール法を採用し、ウエット塗布量が 20g/m2となるように塗布した。その後、 2ゾー ンに分かれた乾燥炉にて、第 1ゾーン温度 100°C、風速 20mZ秒、 10秒間、第 2ゾ ーン温度 70°C、風速 20mZ秒、 10秒間にて塗布面を乾燥した。
[0163] 次いで、塗布層を有する未延伸フィルムを、パンタグラフ方式の同時二軸延伸機を 用いて、 105°Cの熱風で 40秒間の予熱を行った後、 20秒間をかけて、縦および横 方向に 3. 7倍ずつ同時二軸延伸した。このとき、縦および横方向の延伸倍率は、図
5に示した通りとし、その延伸速度は図 6に示した通りとした。
[0164] 次いで、フィルムの寸法を固定した状態で、 230°Cで 30秒間の熱処理を施し、室温 まで冷却する過程で、縦および横方向に 3%の緩和処理を行い、厚さ 100 mの二 軸延伸フィルムを製造した。得られたフィルムの特性を表 4に示す。
[0165] 本実施例 10で得られた光拡散性フィルムは、二軸延伸フィルム本来の優れた耐熱 性と機械的な強度を有しており、かつ優れた光線透過率と光拡散性とを有しており高 品質であった。
[0166] 比較例 7
実施例 10と全く同じ方法で得た未延伸フィルムを、従来公知の方法で二軸延伸し た。
まず、 75°Cに加熱したロール群でフィルムを予熱した後、非接触の赤外線ヒータを 用いてフィルムを 96°Cまで加熱して、周速が異なるロール間で 3. 4倍に縦延伸を施 した。このとき、フィルムの接点間の距離は 200mmであり、低速ロールの周速は 12 mZ分とした。ロール間のフィルム速度を、低速ロール周速と高速ロール周速の中間 値で代表させると、ロール間のフィルム速度は 26. 4mZ分となり、ロール間の通過時 間は 0. 45秒となる。したがって、 0. 45秒間に 3. 4倍、即ち 240%の延伸を施したこ とになり、その延伸速度は 530%Z秒となる。
[0167] 次 、で、上記の縦延伸フィルムの両端をクリップで把持し、横延伸を行った。横延 伸温度は 135°C、横延伸倍率は 3. 7倍、横延伸速度は 25%Z秒で一定とした。次 いで、 230°Cで 15秒間の熱処理を行い、 60°Cまで冷却する過程で幅方向に 2. 5% の緩和処理を施した。
[0168] 次 、で、フィルムの両端を把持して 、たクリップを開放し、フィルムの両端をトリミング してロール状に巻き取り、二軸延伸フィルムを製造した。得られたフィルムの特性を表 4に示す。 [0169] 本比較例 7で得られた光拡散性フィルムは、ヘーズが高く光拡散性は良好であるが 光線透過率が低ぐ光拡散性と光線透過率のノ ランスが取れておらず低品質であつ た。また、寸法変化率も実施例 10で得られた光拡散性フィルムより劣っていた。
[0170] 比較例 8
光拡散性層(A)の原料として、 PET(M1) 93. 3質量部と、架橋ポリスチレン粒子 含有 PET(M2) 6. 7質量部とを混合して用いること以外は、比較例 7と同様の方法で 二軸延伸フィルムを製造した。得られたフィルムの特性を表 4に示す。
[0171] 本比較例 8で得られた光拡散性フィルムは、光線透過率は高!ヽが、ヘーズ値が低く 光拡散性が不足しており、光拡散性と光線透過率のバランスが取れておらず低品質 であった。また、寸法変化率も実施例 10で得られた光拡散性フィルムより劣っていた
[0172] 実施例 11
実施例 10の方法において、架橋ポリスチレン粒子の代わりに、平均粒子径が 8 /z m で、ほぼ単分散で球状の架橋アクリル粒子を用いる以外は、実施例 10と同様の方法 で光拡散性フィルムを得た。得られたフィルムの特性を表 1に示す。
[0173] 本実施例 11で得られた光拡散性フィルムは、実施例 10で得られた光拡散性フィル ムと同様に、各特性がバランスしており高品質であった。
[0174] [表 4]
Figure imgf000035_0001
産業上の利用可能性 本発明の製造方法で得られた光拡散性フィルムは、二軸延伸フィルム本来の優れ た耐熱性と機械的強度を有し、かつ優れた光線透過率と光拡散性とを両立させて!/ヽ るため、他の光学機能性フィルムとの一体ィ匕することが可能であり、ノ ックライトュ-ッ トの小型化や、ノ ックライトユニット構成 '製造工程の簡略化、低コスト化、等に役立て ることがでさる。

Claims

請求の範囲
[1] 結晶性ポリエステル 50〜99質量部と、光拡散性添加剤 1〜50質量部を含む混合 物からなる未延伸シートを二軸延伸して得られる光拡散層を有する光拡散性フィル ムの製造方法であって、前記二軸延伸を縦方向及び横方向にそれぞれ、 2. 5倍以 上の延伸倍率で、かつ 300%Z秒未満の延伸速度で行うことを特徴とする光拡散性 フィルムの製造方法。
[2] 前記の二軸延伸を、同時二軸延伸機を用いて行うことを特徴とする請求項 1に記載 の光拡散性フィルムの製造方法。
[3] 光拡散性添加剤が結晶性ポリエステルに非相溶性の熱可塑性榭脂であることを特 徴とする請求項 1に記載の光拡散性フィルムの製造方法。
[4] 光拡散性添加剤が無機粒子であることを特徴とする請求項 1に記載の光拡散性フ イルムの製造方法。
[5] 光拡散性添加剤が非溶融性ポリマー粒子であることを特徴とする請求項 1に記載 の光拡散性フィルムの製造方法。
[6] 熱可塑性榭脂が非晶性の透明ポリマーであることを特徴とする請求項 3に記載の 光拡散性フィルムの製造方法。
[7] 非晶性の透明ポリマー力 ポリスチレン榭脂、アクリロニトリル 'スチレン共重合体、メ タクリル酸メチル ·スチレン共重合体等のスチレン系榭脂、環状ォレフィン榭脂、メタク リル酸榭脂に代表されるアクリル系榭脂、またはポリカーボネート榭脂であることを特 徴とする請求項 6に記載の光拡散性フィルムの製造方法。
[8] 結晶性ポリエステルの融点が 250°C以上であることを特徴とする請求項 1に記載の 光拡散性フィルムの製造方法。
[9] 結晶性ポリエステルがポリエチレンテレフタレートまたはポリエチレンテレフタレート 系共重合体よりなることを特徴とする請求項 1に記載の光拡散性フィルムの製造方法
[10] 請求項 1〜9の 、ずれかに記載された方法で製造された光拡散性フィルムであって 、全光線透過率が 85%以上、ヘーズが 50%以上、 150°Cにおける寸法変化率が縦 方向及び横方向とも 3%以下、引張強さが縦方向及び横方向とも lOOMPa以上であ ることを特徴とする光拡散性フィルム。
PCT/JP2006/326013 2005-12-28 2006-12-27 光拡散性フィルムの製造方法および光拡散性フィルム WO2007074853A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005378311 2005-12-28
JP2005-378313 2005-12-28
JP2005-378312 2005-12-28
JP2005378312A JP4715510B2 (ja) 2005-12-28 2005-12-28 光拡散性フィルム
JP2005378313A JP4715511B2 (ja) 2005-12-28 2005-12-28 光拡散性フィルム
JP2005-378311 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007074853A1 true WO2007074853A1 (ja) 2007-07-05

Family

ID=38218074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326013 WO2007074853A1 (ja) 2005-12-28 2006-12-27 光拡散性フィルムの製造方法および光拡散性フィルム

Country Status (2)

Country Link
TW (1) TWI350388B (ja)
WO (1) WO2007074853A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093478A1 (ja) * 2007-01-31 2008-08-07 Toyo Boseki Kabushiki Kaisha 表面光拡散性ポリエステルフィルム
WO2010016542A1 (ja) * 2008-08-06 2010-02-11 東洋紡績株式会社 表面光拡散性ポリエステルフィルム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268211A (ja) * 1998-03-19 1999-10-05 Toray Ind Inc 光拡散ポリエステルフィルム
JP2001272508A (ja) * 2000-03-28 2001-10-05 Toray Ind Inc 積層光拡散性フィルム
JP2003292639A (ja) * 2002-03-29 2003-10-15 Jsr Corp 光学用フィルムおよびその製造方法並びに偏光板
JP2004174788A (ja) * 2002-11-26 2004-06-24 Toray Ind Inc 二軸配向積層ポリエステルフィルム
JP2005181648A (ja) * 2003-12-19 2005-07-07 Mitsubishi Polyester Film Copp プリズムシート用光散乱性ポリエテルフィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268211A (ja) * 1998-03-19 1999-10-05 Toray Ind Inc 光拡散ポリエステルフィルム
JP2001272508A (ja) * 2000-03-28 2001-10-05 Toray Ind Inc 積層光拡散性フィルム
JP2003292639A (ja) * 2002-03-29 2003-10-15 Jsr Corp 光学用フィルムおよびその製造方法並びに偏光板
JP2004174788A (ja) * 2002-11-26 2004-06-24 Toray Ind Inc 二軸配向積層ポリエステルフィルム
JP2005181648A (ja) * 2003-12-19 2005-07-07 Mitsubishi Polyester Film Copp プリズムシート用光散乱性ポリエテルフィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093478A1 (ja) * 2007-01-31 2008-08-07 Toyo Boseki Kabushiki Kaisha 表面光拡散性ポリエステルフィルム
WO2010016542A1 (ja) * 2008-08-06 2010-02-11 東洋紡績株式会社 表面光拡散性ポリエステルフィルム

Also Published As

Publication number Publication date
TW200730887A (en) 2007-08-16
TWI350388B (en) 2011-10-11

Similar Documents

Publication Publication Date Title
JP4196306B2 (ja) 光拡散性フィルム
US8257821B2 (en) Light diffusion film
JP4702280B2 (ja) 光拡散性フィルム
JP4257619B2 (ja) 表面光拡散性ポリエステルフィルム
JP4715510B2 (ja) 光拡散性フィルム
JP4780242B2 (ja) 光拡散性ポリエステルフィルム
JP4352348B2 (ja) 表面光拡散性ポリエステルフィルム
JP4715511B2 (ja) 光拡散性フィルム
JP4370539B1 (ja) 表面光拡散性ポリエステルフィルム
JP5157724B2 (ja) 光拡散性フィルム
JP5076791B2 (ja) 光拡散性フィルム
JP5163085B2 (ja) 表面光拡散性ポリエステルフィルム
WO2007074853A1 (ja) 光拡散性フィルムの製造方法および光拡散性フィルム
JP5696356B2 (ja) 光拡散性ポリエステルフィルム
JP5114661B2 (ja) 光拡散性フィルムおよびその製造方法
JP2009143040A (ja) 表面光拡散性ポリエステルフィルム
JP4370538B1 (ja) 表面光拡散性ポリエステルフィルム
JP2011133872A (ja) 表面光拡散性ポリエステルフィルム
JP6210243B2 (ja) 二軸配向ポリエチレンテレフタレートフィルム
TWI451973B (zh) 光擴散性聚酯薄膜
JP2009139889A (ja) 表面光拡散性ポリエステルフィルム
JP2010032863A (ja) 光拡散性フィルム
JP2011133871A (ja) 光拡散性ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843395

Country of ref document: EP

Kind code of ref document: A1