WO2007074591A1 - 車両及び車両の操舵制御装置 - Google Patents

車両及び車両の操舵制御装置 Download PDF

Info

Publication number
WO2007074591A1
WO2007074591A1 PCT/JP2006/322618 JP2006322618W WO2007074591A1 WO 2007074591 A1 WO2007074591 A1 WO 2007074591A1 JP 2006322618 W JP2006322618 W JP 2006322618W WO 2007074591 A1 WO2007074591 A1 WO 2007074591A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
image
vehicle
complexity
steering
Prior art date
Application number
PCT/JP2006/322618
Other languages
English (en)
French (fr)
Inventor
Daisuke Hanzawa
Tetsuo Ikeda
Kiyozumi Unoura
Tomoyoshi Aoki
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to US12/159,102 priority Critical patent/US8340866B2/en
Priority to DE602006011789T priority patent/DE602006011789D1/de
Priority to JP2007551864A priority patent/JP4956442B2/ja
Priority to EP06832580A priority patent/EP1982906B1/en
Publication of WO2007074591A1 publication Critical patent/WO2007074591A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/24Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
    • B62D1/28Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation

Definitions

  • Vehicle and vehicle steering control device
  • the present invention processes road images acquired via imaging means such as a camera to recognize road lanes, and performs vehicle steering control so that the vehicle travels along the recognized lanes.
  • the present invention relates to a vehicle and a vehicle steering control device.
  • an imaging means such as a CCD camera is mounted on a vehicle, the road surface of a running road is imaged, and the obtained image is processed to detect a lane mark such as a white line on the road.
  • a lane mark such as a white line on the road.
  • the luminance on each horizontal line is differentiated from the left to the horizontal direction with respect to a plurality of horizontal lines on the road image, and based on the peak of the differential value.
  • points where the luminance changes from dark to bright (positive edge points) and points where luminance changes from light to dark (negative edge points) are extracted.
  • combinations of edge points appearing in the order of positive and negative on each horizontal line and the interval between the edge points is considered to be reasonable as white lines are extracted as white line candidates, and the extracted white line candidates are extracted.
  • a white line is detected based on the position on the image.
  • the present invention eliminates the inconvenient problem, and inappropriate control based on an erroneously recognized lane when performing vehicle steering control so that the vehicle travels along a lane recognized as a road image force. It is an object of the present invention to provide a vehicle and a vehicle steering control device in which steering control is suppressed.
  • the vehicle according to the first aspect of the present invention includes an imaging means, and an image acquisition means for acquiring a road image via the imaging means.
  • An image force acquired by the image acquisition means a lane recognition means for detecting a lane mark of the road and recognizing a lane in which the vehicle travels from the detected lane mark; and a steering capable of steering the steered wheels of the vehicle.
  • An actuator for driving a mechanism steering assist means for executing steering assist processing for driving the actuator so that the vehicle travels along a lane recognized by the lane recognition means, a position of the vehicle, and the lane
  • a lateral deviation amount calculating means for calculating a deviation amount in the lane width direction from the center position of the lane recognized by the recognition means, and an acquired image of the image acquiring means at a predetermined time
  • Steering assist for prohibiting the steering assist processing based on the lane by the steering assist means based on the lane width direction calculated by the lateral deviation amount calculation means based on the lane recognized by the lane recognition means.
  • prohibiting means prohibiting means.
  • the vehicle steering control apparatus includes an image acquisition unit that acquires an image of a road via an imaging unit mounted on the vehicle, and an image force acquired by the image acquisition unit. Detecting a lane mark on the road and detecting the detected lane mark force Lane recognition means for recognizing the lane in which the vehicle travels, an actuator for driving a steering mechanism capable of steering the steering wheel of the vehicle, and the actuator so that the vehicle travels along the lane recognized by the lane recognition means Steering assist means for executing steering assist processing for driving the vehicle, lateral deviation amount calculating means for calculating a deviation amount in the lane width direction between the position of the vehicle and the center position of the lane recognized by the lane recognition means, The steering according to the amount of deviation in the lane width direction calculated by the lateral deviation amount calculation means based on the lane recognized by the lane recognition means from the acquired image of the image acquisition means at a predetermined time. Steering assist prohibiting means for prohibiting the steering assist processing based
  • the lateral deviation amount calculating means includes a deviation amount in the lane width direction between the position of the vehicle and the center position of the lane recognized by the lane recognition means. Is calculated.
  • the lane recognition means may erroneously detect the guardrail as a white line. In this case, it is erroneously detected that there is a white line at the position where the guardrail is projected onto the road plane. Therefore, the position and width of the lane recognized by the lane recognition means as well as the detected position of the white line are different from the actual position and width of the lane.
  • the position of the vehicle is considered to be near the center of the actual lane. Therefore, when the lane recognized by the lane recognition means is different from the actual lane, a deviation in the lane width direction between the vehicle position and the recognized center position of the lane occurs.
  • the steering assist prohibiting unit is an acquired image of the image acquiring unit at a predetermined time point.
  • the deviation amount in the lane width direction calculated by the lateral deviation amount calculation unit is larger than a first predetermined value based on the lane recognized by the lane recognition unit, the lane by the steering assist unit is The steering assist process based on the above is prohibited.
  • the greater the deviation amount in the lane width direction the greater the degree of difference between the lane recognized by the lane recognition means and the actual lane. Therefore, when the amount of deviation in the lane width direction is large, it can be determined that there is a high probability that the lane will be erroneously recognized by a structure such as a guardrail on the road. Therefore, the deviation in the lane width direction calculated by the lateral deviation amount calculation means based on the lane recognized by the lane recognition means from the image obtained by the image acquisition means at a predetermined time by the steering assist prohibition means.
  • the steering assist process based on the lane by the steering assist means is prohibited, and based on the lane erroneously recognized by a structure such as a guardrail on the road. Inappropriate steering control can be suppressed.
  • the vehicle according to the second aspect of the present invention includes an imaging unit, an image acquisition unit that acquires an image of a road via the imaging unit, and an image force acquired by the image acquisition unit.
  • Lane recognition means for detecting a lane mark on the road and recognizing a lane in which the vehicle travels from the detected lane mark; an actuator for driving a steering mechanism capable of steering the steering wheel of the vehicle; and the lane recognition
  • a steering assist means for executing a steering assist process for driving the actuator so that the vehicle travels along a lane recognized by the means, and a complexity for calculating the complexity of the image acquired by the image acquisition means.
  • the acquired image force is recognized by the lane recognition means according to the degree of complexity of the acquired image of the image acquisition means at a predetermined time calculated by the degree calculating means and the complexity calculating means.
  • steering assist prohibiting means for prohibiting the steering assist processing by the steering assist means based on the lane that is set.
  • the vehicle steering control apparatus includes an image acquisition unit that acquires an image of a road via an imaging unit mounted on the vehicle, and an image force acquired by the image acquisition unit.
  • Lane recognition means for detecting the lane mark of the road and detecting the lane mark force detected by the vehicle, and steering capable of steering the steered wheels of the vehicle Acquired by the actuator for driving the mechanism, steering assist means for executing a steering assist process for driving the actuator so that the vehicle travels along the lane recognized by the lane recognition means, and the image acquisition means
  • a complexity calculating means for calculating the complexity of the image, and the acquired image power according to the complexity of the acquired image of the image acquiring means at a predetermined time calculated by the complexity calculating means.
  • Steering assist prohibiting means for prohibiting the steering assist processing by the steering assist means based on the lane recognized by the lane recognition means.
  • the lane recognition unit may erroneously detect the guardrail as a white line.
  • the guardrail it is erroneously detected that there is a white line at the position where the guardrail is projected on the road plane. Therefore, the position and width of the lane recognized by the lane recognition means from the position of the detected white line are different from the actual position and width of the lane.
  • the guardrail is located on the road on which the vehicle travels, the number of objects to be detected increases on the acquired image, and the complexity of the image increases.
  • the lane recognition unit recognizes the acquired image from the acquired image according to the complexity of the acquired image of the image acquiring unit at a predetermined time calculated by the complexity calculating unit by the steering assist prohibiting unit.
  • the steering assist processing by the steering assist means By prohibiting the steering assist processing by the steering assist means based on the detected lane, inappropriate steering control is performed based on the lane mistakenly recognized by a structure such as a guardrail on the road. Can be suppressed.
  • the steering assist prohibiting means is the image acquiring means at a predetermined time calculated by the complexity calculating means. Prohibiting the steering assist process by the steering assist means based on the lane recognized by the lane recognition means from the acquired image when the complexity of the acquired image is greater than a second predetermined value.
  • the vehicle according to the third aspect of the present invention includes an imaging unit, an image acquisition unit that acquires an image of a road via the imaging unit, and an image force acquired by the image acquisition unit.
  • Lane recognition means for detecting a lane mark on the road and recognizing a lane in which the vehicle travels from the detected lane mark; an actuator for driving a steering mechanism capable of steering the steering wheel of the vehicle; and the lane recognition Steering assist means for executing steering assist processing for driving the actuator so that the vehicle travels along the lane recognized by the means, the position of the vehicle, and the center of the lane recognized by the lane recognition means
  • a lateral deviation amount calculating means for calculating a deviation amount in the lane width direction from the position, a complexity calculating means for calculating the complexity of the image acquired by the image acquiring means, and a predetermined time point Based on the lane recognized by the lane recognition means from the acquired image of the image acquisition means, the deviation amount in the lane width direction calculated by the lateral deviation amount calculation means and the complexity calculation
  • the vehicle steering control device includes an image acquisition unit that acquires an image of a road via an imaging unit mounted on the vehicle, and an image force acquired by the image acquisition unit.
  • Lane recognition means for detecting a lane mark on the road and detecting the detected lane mark force; a lane recognition means for recognizing a lane in which the vehicle travels; an actuator for driving a steering mechanism capable of steering a steered wheel of the vehicle; and the lane recognition means
  • a steering assist process for driving the actuator so that the vehicle travels along the lane recognized by Obtained by the steering assist means, a lateral deviation amount calculating means for calculating a deviation amount in the lane width direction between the position of the vehicle and the center position of the lane recognized by the lane recognition means, and acquired by the image acquisition means.
  • the complexity calculating means for calculating the complexity of the image, and the acquired image force of the image acquiring means at a predetermined time point, the lane width direction calculated by the lateral deviation amount calculating means based on the lane recognized by the lane recognition means
  • Steering assist prohibiting means for prohibiting the steering assist processing based on the lane by the steering assist means in accordance with the amount of deviation and the complexity of the acquired image calculated by the complexity calculating means.
  • the lateral deviation calculation means includes a deviation in a lane width direction between the position of the vehicle and the center position of the lane recognized by the lane recognition means. Is calculated.
  • the lane recognition means may erroneously detect the guardrail as a white line. In this case, it is erroneously detected that there is a white line at the position where the guardrail is projected onto the road plane. Therefore, the position and width of the lane recognized by the lane recognition means as well as the detected position of the white line are different from the actual position and width of the lane.
  • the position of the vehicle is considered to be near the center of the actual lane. Therefore, when the lane recognized by the lane recognition means is different from the actual lane, a deviation in the lane width direction between the vehicle position and the recognized center position of the lane occurs.
  • the amount of deviation in the lane width direction can also occur, for example, when the position of the vehicle is changed by the driver's operation, in addition to the case where the lane is erroneously recognized.
  • the situation in which the lane is erroneously recognized is, for example, a situation in which a guardrail is located on the road on which the vehicle travels.
  • the number of objects to be detected increases on the acquired image, It is thought that the complexity of the image increases.
  • the change in the complexity of the image is considered to be small.
  • the steering assist prohibiting means calculates the lateral deviation amount calculated by the lateral deviation amount calculating means based on the lane recognized by the lane recognition means from the image acquired by the image acquisition means at a predetermined time.
  • Calculated by the complexity calculation means Based on the lane erroneously recognized by a structure such as a guardrail on the road by prohibiting the steering assist processing based on the lane by the steering assist means in accordance with the complexity of the acquired image. Therefore, it is possible to suppress inappropriate steering control.
  • the steering assist prohibiting means is recognized by the lane recognition means from an acquired image of the image acquiring means at a predetermined time. Based on the determined lane, the amount of deviation in the lane width direction calculated by the lateral deviation amount calculating means is larger than a first predetermined value and the complexity of the acquired image calculated by the complexity calculating means When the value is larger than a second predetermined value, the steering assist processing based on the lane by the steering assist means is prohibited.
  • the greater the deviation amount in the lane width direction the greater the degree of difference between the lane recognized by the lane recognition means and the actual lane.
  • the greater the complexity of the image the greater the likelihood that a structure such as a guardrail will be located on the road on which the vehicle is traveling. Therefore, when the amount of deviation in the lane width direction is large and the complexity of the image is large, it is determined that there is a high probability that the lane is erroneously recognized by a structure such as a guardrail on the road. can do.
  • the steering assist prohibiting means calculates the lateral deviation amount calculated by the lateral deviation amount calculating means based on the lane recognized by the lane recognition means from the image acquired by the image acquiring means at a predetermined time. Based on the lane by the steering assist means when the deviation amount is larger than a first predetermined value and the complexity of the acquired image calculated by the complexity calculating means is larger than a second predetermined value.
  • the complexity calculation means may determine the density of edge points when the image is subjected to edge extraction processing.
  • the complexity is calculated using at least one of a value indicating the number of edge points and a value indicating the number of edge points constituting the straight line among the edge points.
  • the value indicating the number of edge points constituting the straight line among the edge points is large, it indicates that there are many line segments on the image, so the image is considered to be complicated. . Therefore, at least one of a value indicating the density of edge points when the image is subjected to edge extraction processing by the complexity calculating means and a value indicating the number of edge points constituting the straight line among the edge points.
  • the complexity can be calculated using either one of them.
  • the complexity calculation means may calculate the density of edge points when the image is subjected to edge extraction processing.
  • the complexity is calculated by multiplying the value indicating the number of edge points constituting the straight line among the edge points by the value indicating the number of edge points.
  • the complexity of the image increases. Further, the larger the value indicating the number of edge points constituting the straight line among the edge points, the higher the complexity of the image. Therefore, the product of the value indicating the density of edge points and the value indicating the number of edge points constituting the straight line among the edge points is considered to be a value more prominently indicating the complexity of the image. Therefore, a value indicating the density of edge points when the image is subjected to edge extraction processing by the complexity calculating means, and a value indicating the number of edge points constituting the straight line of the edge points. The complexity can be calculated more appropriately by multiplication.
  • the range specification for specifying the detection range of the lane mark in the image acquired by the image acquisition means is included in the vehicle according to the second aspect and the third aspect of the present invention.
  • the complexity calculating means calculates the complexity for the detection range specified by the range specifying means of the image acquired by the image acquiring means.
  • the range specifying unit specifies the detection range of the lane mark in the image acquired by the image acquisition unit.
  • the detection range of the lane mark is, for example, a range set assuming a range occupied by a road in the image.
  • the detection range of the lane mark is, for example, a range set assuming a range occupied by a road in the image.
  • the complexity calculation means calculates the complexity with respect to the detection range of the image, thereby eliminating the influence of the environment other than the detection range of the lane mark, and the like such as a guardrail on the road. It is possible to calculate a complexity that more clearly indicates the presence of a structure.
  • the lateral deviation amount calculating means is the lane recognized by the lane recognition means and the position of the vehicle. The distance in the lane width direction from the center position is divided by the lane width of the recognized lane to calculate the amount of deviation in the lane width direction.
  • the lateral deviation amount calculating means calculates the deviation amount in the lane width direction.
  • the value divided by the recognized lane width of the lane is a value indicating the degree of deviation of the vehicle position in the lane width direction relative to the lane width. Therefore, the degree of deviation in the lane width direction can be grasped from this value.
  • FIG. 1 is a functional block diagram of a vehicle steering control device according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a steering control process of the vehicle steering control device of FIG.
  • FIG. 3 is a view showing an example of a processing image in the steering control processing of FIG.
  • FIG. 4 is an explanatory diagram regarding processing for detecting lane marks in the steering control processing of FIG.
  • FIG. 5 is an explanatory diagram relating to a process for calculating a lateral deviation amount in the steering control process of FIG.
  • FIG. 6 is an explanatory diagram related to a process for calculating complexity in the steering control process of FIG.
  • steering control device 2 is an electronic unit configured by a microcomputer or the like, and is an image that acquires an image of a road via video camera 3 mounted on vehicle 1.
  • Image acquisition means 4 image power acquired by image acquisition means 4, lane recognition means 5 for recognizing the lane in which vehicle 1 travels, and actuator 6 that drives steering mechanism 13 that can steer steering wheels 12 of vehicle 1
  • steering assist means 7 for executing steering assist processing for driving the actuator 6 so that the vehicle 1 travels along the lane recognized by the lane recognition means 5, and is mounted on the vehicle 1.
  • the steering control device 2 includes a lateral deviation amount calculating means 8 for calculating an amount of deviation in the lane width direction between the position of the vehicle 1 and the center position of the lane recognized by the lane recognition means 5, and an image acquisition means.
  • the range specifying means 9 for specifying the detection range of the lane mark in the image acquired by 4, the complexity calculating means 10 for calculating the complexity of the image acquired by the image acquiring means 4, and the deviation amount in the lane width direction
  • steering assist prohibiting means 11 for prohibiting the steering assist processing by the steering assist means 7 according to the complexity.
  • the image processing unit 4 is configured by pixel data via a video camera 3 (an imaging unit of the present invention, such as a CCD camera) that is attached to the front portion of the vehicle 1 and captures an image ahead of the vehicle 1. Get the image of the road that will be.
  • the vehicle of the present invention is configured by providing the video camera 3 and the steering control device 2.
  • the lane recognition means 5 processes the image acquired by the image acquisition means 4, and detects a lane mark that defines the lane (the driving lane of the vehicle 1) on which the vehicle 1 travels on the road. Then, the lane recognition means 5 recognizes the lane in which the vehicle 1 travels from the detected lane mark.
  • a method for detecting a lane mark and recognizing a lane for example, a method described in Japanese Patent No. 3429167 by the present applicant can be used.
  • the actuator 6 is a motor, and torque (steering assist torque) generated by driving the actuator 6 is supplied to the driver via a steering handle (not shown) provided in the steering mechanism 13 of the vehicle 1. Along with the torque (driver steering torque) input by manual operation, the steering wheel 13 is transmitted to the steering wheel 12 through the steering mechanism 13 to steer the steering wheel 12.
  • the steering assist means 7 performs a steering assist process for driving the actuator 6 so that the vehicle 1 travels along the lane recognized by the lane recognition means 5.
  • the steering assist means 7 is the position and curvature of the lane recognized by the lane recognition means 5 and the current vehicle. Based on the position of 1 and the vehicle speed, the target baud rate is set so that vehicle 1 runs along the recognized lane. Then, the steering assist means 7 provides the driver steering torque input to the steering mechanism 13 so that the deviation between the target correct rate and the output of the correct rate sensor (not shown) provided in the vehicle 1 is eliminated. Steering assist torque that assists is calculated. Then, the steering assist means 7 calculates a command value for causing the actuator 7 to generate the calculated steering assist torque, outputs the command value to the actuator 7, and drives the actuator 7 based on the command value.
  • the lateral deviation amount calculation means 8 calculates the deviation amount (lateral deviation amount) in the lane width direction between the position of the vehicle 1 and the center position of the lane recognized by the lane recognition means 5. At this time, the lateral deviation amount calculation means 8 divides the distance in the lane width direction between the position of the vehicle 1 and the center position of the lane recognized by the lane recognition means 5 by the lane width of the recognized lane. Thus, the amount of deviation in the lane width direction is calculated.
  • the range specifying unit 9 specifies the detection range of the lane mark in the image acquired by the image acquisition unit 4.
  • the detection range is a predetermined range assuming that a road occupies the image.
  • the complexity calculation unit 10 calculates the complexity of the image acquired by the image acquisition unit 4. At this time, the complexity calculating unit 10 performs the edge extraction processing on the image, and the value indicating the density of the edge points included in the detection range specified by the range specifying unit 9 and the edge included in the detection range The complexity of the image is calculated by multiplying the value indicating the number of edge points that constitute the straight line among the points.
  • the steering assist prohibiting means 11 has a deviation amount in the lane width direction calculated by the lateral deviation amount calculating means 8 based on the lane recognized by the lane recognition means 5 from the image acquired by the image acquisition means 4.
  • the complexity of the acquired image calculated by the complexity calculating means 10 is larger than the first predetermined value and larger than the second predetermined value, the steering assist processing based on the lane by the steering assist means 7 is prohibited. .
  • the traveling direction of the vehicle 1 is the arrow direction
  • the right side of the lane of the road on which the vehicle 1 is traveling is a lane mark.
  • a guardrail A2 is provided on the left side of the lane and specified by AO will be described as an example.
  • Such a situation occurs, for example, when a lane is temporarily restricted using a structure such as a guardrail in a road construction section.
  • a structure such as a guardrail in a road construction section.
  • the lane mark that defines the left side of the lane is not provided, but the virtual lane mark Ala is indicated by a dotted line at the position where the lane mark that defines the left side of the lane should be located. .
  • the lane mark is a white line.
  • image acquisition means 4 receives a video signal output from video camera 3, and acquires road image 10 composed of pixel data (STEP001).
  • the image 10 is an image as illustrated in FIG.
  • the steering control device 2 of the vehicle 1 executes the lane mark detection process of STEP001 to STEP010 in FIG. 2 for each predetermined control cycle.
  • the timing which acquires an image by STEP001 in each control cycle is equivalent to the predetermined time of this invention.
  • the lane recognition means 5 performs edge extraction processing on the acquired image 10 to extract edge points.
  • edge points on the image 10 are extracted as illustrated in the image II of FIG.
  • the lane recognition means 5 extracts a straight line component constituting the white line from the extracted edge point data.
  • the lane recognition means 5 performs Hough transform on the extracted edge point data.
  • the lane recognition means 5 searches for and extracts a straight line component in the Hough space.
  • the lane recognition means 5 performs projective transformation of the extracted linear component data from the Hough space to the image space.
  • the edge points (line component data) constituting the straight line among the edge points on the image II are extracted.
  • the lane recognition means 5 detects a lane mark that defines the lane in which the vehicle 1 travels from the extracted linear component data.
  • the lane recognition means 5 performs projective transformation of the extracted linear component data from the image space to the real space.
  • lane recognition means 5 selects straight line component data estimated to be a white line defining the right side of the lane from the straight line component data converted to the real space, and selects the selected straight line component.
  • the coordinates of multiple points included in the data are point sequence data PO.
  • the lane recognition means 5 selects data of a straight line component that is estimated to be a white line that defines the left side of the lane, and selects the selected data.
  • the coordinates of a plurality of points included in the straight line component data are set as point sequence data PI.
  • the point sequence data PO, P1 in the linear component data on the image 12 is detected as the white lines AO, Alb.
  • FIG. 4 shows an outline of the road on which the vehicle 1 travels as seen from the front side force of the vehicle 1.
  • point sequence data PO detected by lane recognition means 5 corresponds to an edge portion of white line AO, and white line AO is correctly detected.
  • the point sequence data P1 corresponds to the edge portion of the upper end of the guard rail A2, and the guard rail A2 is erroneously detected as a white line Alb.
  • the detected white line Alb is different from the position of the virtual white line Ala, and is the position where the upper end of the guardrail A2 is projected on the road plane with the video camera 3 as the base point. Is falsely detected.
  • the lane recognition means 5 recognizes the lane in which the vehicle 1 travels from the detected white lines AO, Alb. Specifically, the lane recognition means 5 calculates the coordinates of the point sequence on the center line CLb of the lane and the lane width W at each point from the selected point sequence data PO, P1. Note that the lane recognized by the lane recognition means 5 in STEP005 is a temporary lane (candidate for the lane), and the lane force recognized by the lane recognition means 5 in STEP005 is as follows. Whether or not the force is in the actual lane is determined in STEP 008 described later.
  • the lateral deviation amount calculation means 8 calculates the lateral deviation amount X between the position of the vehicle 1 at a predetermined time point and the center position of the lane recognized by the lane recognition means 5 from the image 10. .
  • FIG. 5 shows an outline of the vehicle 1 and the road on which the vehicle 1 travels, in which the upper side force of the vehicle 1 is also viewed.
  • the positions of the white lines AO, Alb, the virtual white line Ala, the actual lane center line CLa, and the lane center line CLb recognized by the lane recognition means 5 are solid lines. It is indicated by.
  • vehicle 1 is traveling in the direction of the arrow on center line CLa of the actual lane defined by white line AO and virtual white line Ala by the driver's operation.
  • the lane center line CLb and the lane width Wb recognized by the lane recognition means 5 are different from the actual lane center line CLa and the lane width Wa as shown in the figure.
  • This The lateral deviation amount calculation means 8 divides the distance D between the center line CLa and the center line CLb by the lane width Wb, and shows the lateral deviation amount X indicating the degree to which the recognized lane is different from the actual lane. Is calculated.
  • the detection range R is set to the range surrounded by the solid line ⁇ .
  • the edge point P_M on the image in Fig. 6 (a) schematically shows the edge point extracted by the image force edge extraction process, and the density of the edge point P_M is the value M.
  • a large value M indicates that there are many changes in the luminance distribution on the image, so the image is considered to be complex.
  • the edge point Pe on the image in Fig. 6 (b) schematically shows the edge points that form a straight line among the extracted edge points, and the number of edge points Pe is the value.
  • L A large value L indicates that there are many line segments on the image, so the image is considered to be complex.
  • the value M is a value indicating the density of edge points included in the detection range R in the image II calculated in STEP002. Further, the value is a value indicating the number of edge points constituting the linear component included in the detection range R in the image 12 calculated in STEP003.
  • the guardrail A2 is a three-dimensional structure with irregularities, and there are many portions where the brightness fluctuates when picked up. In general, the number of the white line forces is larger than the number of edge points and straight line components that are extracted. Therefore, the complexity of the product of the value M and the value L can be used to recognize that the guardrail A2 exists on the road.
  • the detection range R is set assuming that the image 10 includes only a road portion. It is determined. In this way, by calculating the complexity C for the detection range R in the image 10, the influence of the complexity variation of the part other than the detection range R in the image 10 is eliminated, and the presence of the guardrail A2 is confirmed. Complexity C can be obtained as shown more prominently.
  • the steering assist prohibiting means 11 determines whether or not the lateral deviation amount X is larger than the predetermined value Xth and the complexity C is larger than the predetermined value Cth.
  • the predetermined amount Xth is a value determined in advance as the amount of lateral deviation in which it is considered that the lane is erroneously recognized.
  • the predetermined amount Yth is a value determined in advance as a complexity that is considered to be a structure such as a guardrail on the road. As a result, it is determined whether or not there is a high probability that structures such as guardrails on the road are erroneously detected as white lines.
  • lane recognition means 5 The lane force recognized by is equivalent to the case where the vehicle 1 is different from the actual lane in which the vehicle travels. Therefore, in this case, it is determined that the lane recognized by the lane recognition means 5 in STEP 005 is not the actual lane in which the vehicle 1 is traveling, and the routine proceeds to STEP 010, where the steering assist prohibiting means 11 Steering assist processing based on lanes different from actual lanes by means 7 is prohibited. As a result, it is possible to suppress inappropriate steering control based on the lane in which the erroneously detected white line Alb force is recognized.
  • the complexity calculation means 10 is a product of a value M indicating the density of edge points and a value L indicating the number of edge points constituting the straight line of the edge points.
  • the complexity C is calculated, it may be calculated by either of the value M and the value L or the value M and the value L by other methods. Even in this case, since both the value M and the value L are values corresponding to the complexity of the image, the complexity of the image is calculated appropriately.
  • the range specifying unit 9 is provided, and the complexity calculating unit 10 calculates the complexity for the detection range R of the image 10 as the complexity C of the image 10.
  • the range specifying unit 9 may not be provided, and the complexity calculating unit 10 may calculate the complexity for the entire range of the image 10 as the complexity C of the image 10. In this case, the density force value M of the edge points included in the entire range of the image II is calculated, and the numerical force value L of the edge points constituting the linear component included in the entire range of the image 12 is calculated. .
  • the range specifying unit 9 sets the detection range R on the assumption that the range including only the road portion in the image 10 is assumed.
  • the specifying unit 9 can detect the detection range R by, for example, (a) the left side of the range including only the road portion in the image 10 and (b) the right side of the range including only the road portion in the image 10.
  • C The range on the near side of the range including only the road portion in image 10;
  • D The range on the back side of the range including only the road portion in image 10; It may be set.
  • the range specifying unit 9 sets a plurality of ranges in the image 10 as the detection range R, and the complexity calculating unit 10 is based on the complexity calculated for each range as a target. The complexity of image 10 may be calculated.
  • both the lateral deviation amount calculating means 8 and the complexity calculating means 10 are provided, and the steering assist prohibiting means 11 has a lateral deviation amount X larger than a predetermined value Xth and has a predetermined complexity. Force that prohibits the steering assist process when the value is larger than the value Cth
  • only the lateral deviation amount calculating means 8 is provided, and the steering assist prohibiting means 11 is used when the lateral deviation amount X is larger than a predetermined value Xth.
  • the steering assist process may be prohibited (this corresponds to the vehicle steering control device according to the first aspect of the present invention).
  • the complexity calculating means 10 may be provided, and the steering assist prohibiting means 11 may prohibit the steering assist processing when the complexity level is larger than a predetermined value Cth (this is , This corresponds to the vehicle steering control device of the second aspect of the present invention).
  • a structure such as a guard rail is used as a lane mark such as a white line, but other structures such as a guard rail are used.
  • the light on the road is reflected! / Puddles are also included.
  • the effect of the present invention is also applied to a case where the detection target is a force that detects a white line as a lane mark, or another type of lane mark (yellow line, Botts Dots, cat's eye, etc.). Can be obtained.
  • the present invention can process an image of a road ahead of the vehicle and suppress inappropriate steering control based on the erroneously recognized lane. Useful for behavior control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

 画像取得手段4により取得された画像から車線認識手段5により認識された車線に沿って車両1が走行するようにアクチュエータ6を駆動する操舵アシスト処理を実行する操舵アシスト手段7と、車両1の位置と認識された車線の中心位置との車線幅方向のずれ量を算出する横ずれ量算出手段8と、取得された画像の複雑度を算出する複雑度算出手段10と、所定時点における取得画像から認識された車線に基づいて算出された車線幅方向のずれ量と、該取得画像の複雑度とに応じて、操舵アシスト手段7による該車線に基づく操舵アシスト処理を禁止する操舵アシスト禁止手段11とを有する。これにより、道路の画像から認識した車線に沿って車両が走行するように車両の操舵制御を行う際に、誤って認識された車線に基づく不適切な操舵制御がなされることを抑制することができる。

Description

明 細 書
車両及び車両の操舵制御装置
技術分野
[0001] 本発明は、カメラ等の撮像手段を介して取得された道路の画像を処理して道路の 車線を認識し、認識した車線に沿って車両が走行するように車両の操舵制御を行う 車両及び車両の操舵制御装置に関する。
背景技術
[0002] 近年、車両に CCDカメラ等の撮像手段を搭載して、走行している道路の路面を撮 像し、得られた画像を処理して道路上の白線等のレーンマークを検出し、検出した結 果カも認識される車両が走行する車線 (走行レーン)の情報に基づいて、車両の操 舵制御や運転者への情報の提示を行う技術が知られて!/、る(例えば日本国公開特 許公報平成 11 147473号 (以下、特許文献 1と!ヽぅ)参照)。
[0003] 特許文献 1の保舵力補助装置においては、道路の画像上の複数の水平線に対し て、各水平線上の輝度をそれぞれ左から横方向に微分して、微分値のピークに基づ いて、輝度が暗力 明に変化する点 (正のエッジ点)と、輝度が明から暗に変化する 点 (負のエッジ点)とが抽出される。そして、各水平線上でエッジ点が正、負の順に現 れ、且つそれぞれのエッジ点の間隔が白線として妥当と思われる程度に納まってい る組み合わせが白線候補として抽出され、抽出された白線候補のうちから画像上の 位置等に基づ 、て白線が検出される。
[0004] し力しながら、道路上には、白線等のレーンマークの他に、例えば、ガードレール等 の構造物が設けられている場合がある。この場合に、特許文献 1のものでは、取得し た画像上で、ガードレール等の部分も明暗が変化するのでエッジ点として抽出される 。このため、ガードレール等の部分も白線候補となり、白線として検出される可能性が ある。特に、道路上では、ガードレール等の構造物が設けられている場合に、車線を 規定する白線等のレーンマークが部分的に無力つたり、一時的に見えな力つたりする こともある。このときには、ガードレール等の部分が白線として検出される可能性がさ らに高くなる。 [0005] そして、ガードレール等の構造物には実際は高さがあるので、白線の検出の際には 、ガードレール等を道路平面上に投射した位置に白線があるものと検出されてしまう 。このため、その検出された白線の位置から車両が走行する車線を認識すると、車線 の位置や幅が、実際の車線の位置や幅と異なって認識されることとなる。よって、この ように認識された車線に基づ ヽて車両の操舵制御を行うと、車両の操舵制御が不適 切なものとなるという不都合があった。
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、力かる不都合を解消し、道路の画像力 認識した車線に沿って車両が 走行するように車両の操舵制御を行う際に、誤って認識された車線に基づく不適切 な操舵制御がなされることを抑制した車両及び車両の操舵制御装置を提供すること を目的とする。
課題を解決するための手段
[0007] 本発明は上記目的を達成するためになされたものであり、本発明の第 1態様の車 両は、撮像手段と、前記撮像手段を介して道路の画像を取得する画像取得手段と、 前記画像取得手段により取得された画像力 前記道路のレーンマークを検出し、該 検出したレーンマークから車両が走行する車線を認識する車線認識手段と、前記車 両の操舵輪を操舵可能な操舵機構を駆動するァクチユエータと、前記車線認識手段 により認識された車線に沿って前記車両が走行するように前記ァクチユエータを駆動 する操舵アシスト処理を実行する操舵アシスト手段と、前記車両の位置と、前記車線 認識手段により認識された車線の中心位置との、車線幅方向のずれ量を算出する横 ずれ量算出手段と、所定時点における前記画像取得手段の取得画像から前記車線 認識手段により認識された車線に基づいて、前記横ずれ量算出手段により算出され た車線幅方向のずれ量に応じて、前記操舵アシスト手段による該車線に基づく前記 操舵アシスト処理を禁止する操舵アシスト禁止手段とを有する。
[0008] また、本発明の第 1態様の車両の操舵制御装置は、車両に搭載された撮像手段を 介して道路の画像を取得する画像取得手段と、前記画像取得手段により取得された 画像力 前記道路のレーンマークを検出し、該検出したレーンマーク力 前記車両 が走行する車線を認識する車線認識手段と、前記車両の操舵輪を操舵可能な操舵 機構を駆動するァクチユエータと、前記車線認識手段により認識された車線に沿って 前記車両が走行するように前記ァクチユエータを駆動する操舵アシスト処理を実行す る操舵アシスト手段と、前記車両の位置と、前記車線認識手段により認識された車線 の中心位置との、車線幅方向のずれ量を算出する横ずれ量算出手段と、所定時点 における前記画像取得手段の取得画像カゝら前記車線認識手段により認識された車 線に基づいて、前記横ずれ量算出手段により算出された車線幅方向のずれ量に応 じて、前記操舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止する 操舵アシスト禁止手段とを有する。
[0009] 前記本発明の車両及び車両の操舵制御装置によれば、前記横ずれ量算出手段は 、前記車両の位置と前記車線認識手段により認識された車線の中心位置との車線幅 方向のずれ量を算出する。ここで、例えば、車両が走行する道路上にガードレール が所在するときに、前記車線認識手段によりガードレールが白線として誤検出される 場合がある。そして、この場合、ガードレールを道路平面上に投射した位置に白線が あると誤検出される。よって、検出した白線の位置カゝら前記車線認識手段により認識 された車線の位置や幅は、実際の車線の位置や幅と相違したものとなる。これに対し 、車両は運転者の操作により実際の車線に沿って走行しているので、車両の位置は 、実際の車線の中心付近にあると考えられる。従って、前記車線認識手段により認識 された車線が、実際の車線と相違したときには、前記車両の位置と前記認識された 車線の中心位置との車線幅方向のずれ量が生じることとなる。
[0010] そこで、前記操舵アシスト禁止手段により、所定時点における前記画像取得手段の 取得画像から前記車線認識手段により認識された車線に基づ ヽて、前記横ずれ量 算出手段により算出された車線幅方向のずれ量に応じて、前記操舵アシスト手段に よる該車線に基づく前記操舵アシスト処理を禁止することによって、道路上のガード レール等の構造物により誤って認識された車線に基づいて不適切な操舵制御がなさ れることを抑帘 Uすることができる。
[0011] 具体的には、前記本発明の第 1態様の車両及び車両の操舵制御装置において、 前記操舵アシスト禁止手段は、所定時点における前記画像取得手段の取得画像か ら前記車線認識手段により認識された車線に基づいて、前記横ずれ量算出手段に より算出された車線幅方向のずれ量が、第 1所定値より大きいときに、前記操舵ァシ スト手段による該車線に基づく前記操舵アシスト処理を禁止することを特徴とする。
[0012] これによれば、前記車線幅方向のずれ量が大きいほど、前記車線認識手段により 認識された車線が、実際の車線と相違する度合が大きいと考えられる。そのため、前 記車線幅方向のずれ量が大きいときには、道路上のガードレール等の構造物により 車線が誤って認識されて ヽる蓋然性が高 、状況にあると判断することができる。そこ で、前記操舵アシスト禁止手段により、所定時点における前記画像取得手段の取得 画像カゝら前記車線認識手段により認識された車線に基づいて、前記横ずれ量算出 手段により算出された車線幅方向のずれ量が、第 1所定値より大きいときに、前記操 舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止することによって、 道路上のガードレール等の構造物により誤って認識された車線に基づいて不適切な 操舵制御がなされることを抑制することができる。
[0013] 次に、本発明の第 2態様の車両は、撮像手段と、前記撮像手段を介して道路の画 像を取得する画像取得手段と、前記画像取得手段により取得された画像力 前記道 路のレーンマークを検出し、該検出したレーンマークから車両が走行する車線を認 識する車線認識手段と、前記車両の操舵輪を操舵可能な操舵機構を駆動するァク チユエータと、前記車線認識手段により認識された車線に沿って前記車両が走行す るように前記ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段 と、前記画像取得手段により取得された前記画像の複雑度を算出する複雑度算出 手段と、前記複雑度算出手段により算出された、所定時点における前記画像取得手 段の取得画像の複雑度に応じて、該取得画像力 前記車線認識手段により認識さ れた車線に基づく、前記操舵アシスト手段による前記操舵アシスト処理を禁止する操 舵アシスト禁止手段とを有する。
[0014] また、本発明の第 2態様の車両の操舵制御装置は、車両に搭載された撮像手段を 介して道路の画像を取得する画像取得手段と、前記画像取得手段により取得された 画像力 前記道路のレーンマークを検出し、該検出したレーンマーク力 前記車両 が走行する車線を認識する車線認識手段と、前記車両の操舵輪を操舵可能な操舵 機構を駆動するァクチユエータと、前記車線認識手段により認識された車線に沿って 前記車両が走行するように前記ァクチユエータを駆動する操舵アシスト処理を実行す る操舵アシスト手段と、前記画像取得手段により取得された前記画像の複雑度を算 出する複雑度算出手段と、前記複雑度算出手段により算出された、所定時点におけ る前記画像取得手段の取得画像の複雑度に応じて、該取得画像力 前記車線認識 手段により認識された車線に基づぐ前記操舵アシスト手段による前記操舵アシスト 処理を禁止する操舵アシスト禁止手段とを有する。
[0015] 前記本発明の車両及び車両の操舵制御装置において、例えば、車両が走行する 道路上にガードレールが所在するときに、前記車線認識手段によりガードレールが 白線として誤検出される場合がある。そして、この場合、ガードレールを道路平面上 に投射した位置に白線があると誤検出される。よって、検出した白線の位置から前記 車線認識手段により認識された車線の位置や幅は、実際の車線の位置や幅と相違 したものとなる。ここで、このように車両が走行する道路上にガードレールが所在する ときには、取得した画像上で、検出の対象となる物体が増カロして、画像の複雑度が高 くなると考えられる。
[0016] そこで、前記操舵アシスト禁止手段により、前記複雑度算出手段により算出された、 所定時点における前記画像取得手段の取得画像の複雑度に応じて、該取得画像か ら前記車線認識手段により認識された車線に基づぐ前記操舵アシスト手段による前 記操舵アシスト処理を禁止することによって、道路上のガードレール等の構造物によ り誤って認識された車線に基づいて不適切な操舵制御がなされることを抑制すること ができる。
[0017] 具体的には、前記本発明の第 2態様の車両及び車両の操舵制御装置において、 前記操舵アシスト禁止手段は、前記複雑度算出手段により算出された、所定時点に おける前記画像取得手段の取得画像の複雑度が第 2所定値より大きいときに、該取 得画像カゝら前記車線認識手段により認識された車線に基づく、前記操舵アシスト手 段による前記操舵アシスト処理を禁止することを特徴とする。
[0018] これによれば、前記画像の複雑度が大きいほど、車両が走行する道路上にガード レール等の構造物が所在する可能性が大きいと考えられる。そのため、前記画像の 複雑度が大きいときには、道路上のガードレール等の構造物により車線が誤って認 識されている蓋然性が高い状況にあると判断することができる。そこで、前記操舵ァ シスト禁止手段により、前記複雑度算出手段により算出された、所定時点における前 記画像取得手段の取得画像の複雑度が第 2所定値より大きいときに、該取得画像か ら前記車線認識手段により認識された車線に基づぐ前記操舵アシスト手段による前 記操舵アシスト処理を禁止することによって、道路上のガードレール等の構造物によ り誤って認識された車線に基づいて不適切な操舵制御がなされることを抑制すること ができる。
[0019] 次に、本発明の第 3態様の車両は、撮像手段と、前記撮像手段を介して道路の画 像を取得する画像取得手段と、前記画像取得手段により取得された画像力 前記道 路のレーンマークを検出し、該検出したレーンマークから車両が走行する車線を認 識する車線認識手段と、前記車両の操舵輪を操舵可能な操舵機構を駆動するァク チユエータと、前記車線認識手段により認識された車線に沿って前記車両が走行す るように前記ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段 と、前記車両の位置と、前記車線認識手段により認識された車線の中心位置との、 車線幅方向のずれ量を算出する横ずれ量算出手段と、前記画像取得手段により取 得された前記画像の複雑度を算出する複雑度算出手段と、所定時点における前記 画像取得手段の取得画像カゝら前記車線認識手段により認識された車線に基づいて 、前記横ずれ量算出手段により算出された車線幅方向のずれ量と、前記複雑度算 出手段により算出された該取得画像の複雑度とに応じて、前記操舵アシスト手段によ る該車線に基づく前記操舵アシスト処理を禁止する操舵アシスト禁止手段とを有する
[0020] また、本発明の第 3態様の車両の操舵制御装置は、車両に搭載された撮像手段を 介して道路の画像を取得する画像取得手段と、前記画像取得手段により取得された 画像力 前記道路のレーンマークを検出し、該検出したレーンマーク力 前記車両 が走行する車線を認識する車線認識手段と、前記車両の操舵輪を操舵可能な操舵 機構を駆動するァクチユエータと、前記車線認識手段により認識された車線に沿って 前記車両が走行するように前記ァクチユエータを駆動する操舵アシスト処理を実行す る操舵アシスト手段と、前記車両の位置と、前記車線認識手段により認識された車線 の中心位置との、車線幅方向のずれ量を算出する横ずれ量算出手段と、前記画像 取得手段により取得された前記画像の複雑度を算出する複雑度算出手段と、所定 時点における前記画像取得手段の取得画像力 前記車線認識手段により認識され た車線に基づいて、前記横ずれ量算出手段により算出された車線幅方向のずれ量 と、前記複雑度算出手段により算出された該取得画像の複雑度とに応じて、前記操 舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止する操舵アシスト 禁止手段とを有する。
[0021] 前記本発明の車両及び車両の操舵制御装置によれば、前記横ずれ量算出手段は 、前記車両の位置と前記車線認識手段により認識された車線の中心位置との車線幅 方向のずれ量を算出する。ここで、例えば、車両が走行する道路上にガードレール が所在するときに、前記車線認識手段によりガードレールが白線として誤検出される 場合がある。そして、この場合、ガードレールを道路平面上に投射した位置に白線が あると誤検出される。よって、検出した白線の位置カゝら前記車線認識手段により認識 された車線の位置や幅は、実際の車線の位置や幅と相違したものとなる。これに対し 、車両は運転者の操作により実際の車線に沿って走行しているので、車両の位置は 、実際の車線の中心付近にあると考えられる。従って、前記車線認識手段により認識 された車線が、実際の車線と相違したときには、前記車両の位置と前記認識された 車線の中心位置との車線幅方向のずれ量が生じることとなる。
[0022] ただし、前記車線幅方向のずれ量は、車線が誤って認識された場合以外に、例え ば、運転者の操作により車両の位置が変更された場合にも生じ得る。そして、車線が 誤って認識される状況とは、例えば、車両が走行する道路上にガードレールが所在 する状況であり、この場合、取得した画像上で、検出の対象となる物体が増加して、 画像の複雑度が高くなると考えられる。これに対し、車両の位置が変更されて車線幅 方向のずれ量が生じた場合には、画像の複雑度の変化は小さいと考えられる。
[0023] そこで、前記操舵アシスト禁止手段により、所定時点における前記画像取得手段の 取得画像から前記車線認識手段により認識された車線に基づ ヽて、前記横ずれ量 算出手段により算出された車線幅方向のずれ量と、前記複雑度算出手段により算出 された該取得画像の複雑度とに応じて、前記操舵アシスト手段による該車線に基づく 前記操舵アシスト処理を禁止することによって、道路上のガードレール等の構造物に より誤って認識された車線に基づいて不適切な操舵制御がなされることを抑制するこ とがでさる。
[0024] 具体的には、前記本発明の第 3態様の車両及び車両の操舵制御装置において、 前記操舵アシスト禁止手段は、所定時点における前記画像取得手段の取得画像か ら前記車線認識手段により認識された車線に基づいて、前記横ずれ量算出手段に より算出された車線幅方向のずれ量が、第 1所定値より大きぐ且つ、前記複雑度算 出手段により算出された該取得画像の複雑度が第 2所定値より大きいときに、前記操 舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止することを特徴と する。
[0025] これによれば、前記車線幅方向のずれ量が大きいほど、前記車線認識手段により 認識された車線が、実際の車線と相違する度合が大きいと考えられる。また、前記画 像の複雑度が大きいほど、車両が走行する道路上にガードレール等の構造物が所 在する可能性が大きいと考えられる。そのため、前記車線幅方向のずれ量が大きぐ 且つ、前記画像の複雑度が大きいときには、道路上のガードレール等の構造物によ り車線が誤って認識されている蓋然性が高い状況にあると判断することができる。
[0026] そこで、前記操舵アシスト禁止手段により、所定時点における前記画像取得手段の 取得画像から前記車線認識手段により認識された車線に基づ ヽて、前記横ずれ量 算出手段により算出された車線幅方向のずれ量が、第 1所定値より大きぐ且つ、前 記複雑度算出手段により算出された該取得画像の複雑度が第 2所定値より大きいと きに、前記操舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止する ことによって、道路上のガードレール等の構造物により誤って認識された車線に基づ いて不適切な操舵制御がなされることを抑制することができる。
[0027] また、前記本発明の第 2態様及び第 3態様の車両及び車両の操舵制御装置にお いて、前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の 密度を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とのうち の少なくともいずれか一方を用いて、前記複雑度を算出することを特徴とする。 [0028] これによれば、画像にエッジ抽出処理を施すことで抽出されるエッジ点は、画像の 輝度が明から暗、又は暗力 明に変化する点 (画素)であるので、該エッジ点の密度 を示す値が大き ヽ場合には、画像上で輝度の分布の変化が多数あることを示してお り、画像は複雑であると考えられる。また、前記エッジ点のうちの直線を構成するエツ ジ点の数を示す値が大きい場合にも、画像上に線分が多数あることを示しているの で、画像は複雑であると考えられる。従って、前記複雑度算出手段により、前記画像 にエッジ抽出処理を施した際のエッジ点の密度を示す値と、該エッジ点のうちの直線 を構成するエッジ点の数を示す値との少なくとも ヽずれか一方を用いて前記複雑度 を算出することができる。
[0029] また、前記本発明の第 2態様及び第 3態様の車両及び車両の操舵制御装置にお いて、前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の 密度を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とを乗じ て、前記複雑度を算出することを特徴とする。
[0030] これによれば、エッジ点の密度を示す値が大きくなるほど、画像の複雑度は高くなる 。また、前記エッジ点のうちの直線を構成するエッジ点の数を示す値が大きくなるほど 、画像の複雑度は高くなる。よって、エッジ点の密度を示す値と、該エッジ点のうちの 直線を構成するエッジ点の数を示す値との積は、画像の複雑度をより顕著に示す値 となると考えられる。従って、前記複雑度算出手段により、前記画像にエッジ抽出処 理を施した際のエッジ点の密度を示す値と、該エッジ点のうちの直線を構成するエツ ジ点の数を示す値とを乗じて前記複雑度をより適切に算出することができる。
[0031] また、前記本発明の第 2態様及び第 3態様の車両及び車両の操舵制御装置にお いて、前記画像取得手段により取得された画像内で前記レーンマークの検出範囲を 特定する範囲特定手段を備え、前記複雑度算出手段は、前記画像取得手段により 取得された画像の前記範囲特定手段により特定された検出範囲を対象として前記複 雑度を算出することを特徴とする。
[0032] これによれば、前記範囲特定手段は、前記画像取得手段により取得された画像内 で前記レーンマークの検出範囲を特定する。前記レーンマークの検出範囲は、例え ば、前記画像内で道路が占める範囲を想定して設定される範囲である。このとき、前 記検出範囲以外の画像部分においては、道路周囲の様々なものが撮像されている ため、画像の複雑度の変動が大きくなると想定される。これに対して、前記検出範囲 内の画像部分においては、画像の大部分を舗装された路面が占め、該路面部分の 画像の複雑度の変動は少ないと考えられる。よって、前記複雑度算出手段は、前記 複雑度を、前記画像の前記検出範囲を対象として算出することで、レーンマークの検 出範囲以外の環境の影響を排除して、道路上のガードレール等の構造物の存在を より顕著に示す複雑度を算出することができる。
[0033] また、前記本発明の第 1態様及び第 3態様の車両及び車両の操舵制御装置にお いて、前記横ずれ量算出手段は、前記車両の位置と前記車線認識手段により認識さ れた車線の中心位置との車線幅方向の距離を、該認識された車線の車線幅で除算 して、前記車線幅方向のずれ量を算出することを特徴とする。
[0034] これによれば、前記横ずれ量算出手段が前記車線幅方向のずれ量として算出する 、前記車両の位置と前記車線認識手段により認識された車線の中心位置との車線幅 方向の距離を、該認識された車線の車線幅で除算した値は、車線幅に対する相対 的な車線幅方向の車両位置のずれの度合を示す値である。そのため、この値から、 車線幅方向のずれの程度を把握できる。
図面の簡単な説明
[0035] [図 1]本発明の第 1実施形態による車両の操舵制御装置の機能ブロック図。
[図 2]図 1の車両の操舵制御装置の操舵制御処理を示すフローチャート。
[図 3]図 2の操舵制御処理における処理画像の例示図。
[図 4]図 2の操舵制御処理におけるレーンマークを検出する処理に関する説明図。
[図 5]図 2の操舵制御処理における横ずれ量を算出する処理に関する説明図。
[図 6]図 2の操舵制御処理における複雑度を算出する処理に関する説明図。
発明を実施するための最良の形態
[0036] 本発明の一実施形態を添付の図面を参照して説明する。なお、本実施形態は、本 発明の第 3態様の車両の操舵制御装置に相当する。
[0037] 図 1を参照して、操舵制御装置 2は、マイクロコンピュータ等により構成された電子 ユニットであり、車両 1に搭載されたビデオカメラ 3を介して道路の画像を取得する画 像取得手段 4と、画像取得手段 4により取得された画像力 車両 1が走行する車線を 認識する車線認識手段 5と、車両 1の操舵輪 12を操舵可能な操舵機構 13を駆動す るァクチユエータ 6と、車線認識手段 5により認識された車線に沿って車両 1が走行す るようにァクチユエータ 6を駆動する操舵アシスト処理を実行する操舵アシスト手段 7と を備えて、車両 1に搭載される。
[0038] また、操舵制御装置 2は、車両 1の位置と車線認識手段 5により認識された車線の 中心位置との車線幅方向のずれ量を算出する横ずれ量算出手段 8と、画像取得手 段 4により取得された画像内のレーンマークの検出範囲を特定する範囲特定手段 9と 、画像取得手段 4により取得された画像の複雑度を算出する複雑度算出手段 10と、 車線幅方向のずれ量と複雑度とに応じて操舵アシスト手段 7による操舵アシスト処理 を禁止する操舵アシスト禁止手段 11とを備える。
[0039] 画像処理手段 4は、車両 1のフロント部分に取り付けられて車両 1の前方の画像を 撮像するビデオカメラ 3 (CCDカメラ等、本発明の撮像手段)を介して、画素データに より構成される道路の画像を取得する。なお、ビデオカメラ 3と操舵制御装置 2とを備 えることにより、本発明の車両が構成される。
[0040] 車線認識手段 5は、画像取得手段 4により取得された画像を処理して、道路の車両 1が走行する車線 (車両 1の走行レーン)を規定するレーンマークを検出する。そして 、車線認識手段 5は、検出したレーンマークから車両 1が走行する車線を認識する。 なお、レーンマークを検出して車線を認識する手法としては、例えば、本出願人によ る日本国特許第 3429167号に記載されているような手法を用いることができる。
[0041] ァクチユエータ 6はモータであり、ァクチユエータ 6を駆動することにより発生するトル ク (操舵アシストトルク)は、車両 1の操舵機構 13に備えられたステアリングハンドル( 図示せず)を介して運転者の手動操作により入力されたトルク (運転者操舵トルク)と 共に、操舵機構 13を介して操舵輪 12に伝達され、操舵輪 12を転舵させる。
[0042] 操舵アシスト手段 7は、車線認識手段 5により認識された車線に沿って車両 1が走 行するようにァクチユエータ 6を駆動する操舵アシスト処理を実行する。操舵アシスト 手段 7は、操舵アシスト処理において、上述の日本国特許第 3429167号に記載され ているように、車線認識手段 5により認識された車線の位置や曲率等と、現在の車両 1の位置や車速等とから、車両 1が認識された車線に沿って走行するように目標ョー レートを設定する。そして、操舵アシスト手段 7は、目標ョーレートと、車両 1に備えら れたョ一レートセンサ(図示せず)の出力との偏差が解消するように、操舵機構 13に 入力された運転者操舵トルクをアシストするような操舵アシストトルクを算出する。そし て、操舵アシスト手段 7は、算出した操舵アシストトルクをァクチユエータ 7に発生させ る指令値を演算してァクチユエータ 7に出力し、その指令値に基づいてァクチユエ一 タ 7を駆動させる。
[0043] 横ずれ量算出手段 8は、車両 1の位置と、車線認識手段 5により認識された車線の 中心位置との、車線幅方向のずれ量 (横ずれ量)を算出する。このとき、横ずれ量算 出手段 8は、車両 1の位置と、車線認識手段 5により認識された車線の中心位置との 、車線幅方向の距離を、該認識された車線の車線幅で除算して、車線幅方向のずれ 量を算出する。
[0044] 範囲特定手段 9は、画像取得手段 4により取得された画像内のレーンマークの検出 範囲を特定する。ここで、検出範囲は、画像内で道路が占めると想定して予め定めら れた範囲である。
[0045] 複雑度算出手段 10は、画像取得手段 4により取得された画像の複雑度を算出する 。このとき、複雑度算出手段 10は、画像にエッジ抽出処理を施した際に、範囲特定 手段 9により特定された検出範囲に含まれるエッジ点の密度を示す値と、該検出範囲 に含まれるエッジ点のうちの直線を構成するエッジ点の数を示す値とを乗じて、画像 の複雑度を算出する。
[0046] 操舵アシスト禁止手段 11は、画像取得手段 4の取得画像から車線認識手段 5によ り認識された車線に基づいて、横ずれ量算出手段 8により算出された車線幅方向の ずれ量が、第 1所定値より大きぐ且つ、複雑度算出手段 10により算出された該取得 画像の複雑度が第 2所定値より大きいときに、操舵アシスト手段 7による該車線に基 づく操舵アシスト処理を禁止する。
[0047] 次に、本実施形態の車両 1の操舵制御装置 2の作動 (操舵制御処理)を、図 2に示 したフローチャートに従って説明する。以下では、図 3 (a)に示したように、車両 1の進 行方向が矢示方向であり、車両 1が走行している道路の車線の右側はレーンマーク AOで規定され、車線の左側にガードレール A2が設けられて 、る場合を例にして説 明する。このような状況は、例えば、道路の工事区間で、ガードレール等の構造物を 用いて一時的に車線を狭く規制しているような場合に生じるものである。図 3 (a)に示 した例において、車線の左側を規定するレーンマークは設けられていないが、車線 の左側を規定するレーンマークが所在すべき位置に仮想レーンマーク Alaを点線で 示している。なお、本実施形態において、レーンマークは白線とする。
[0048] 図 2を参照して、まず、画像取得手段 4は、ビデオカメラ 3から出力される映像信号 を入力して、画素データにより構成される道路の画像 10を取得する(STEP001)。こ こで、画像 10は、図 3 (a)に例示するような画像である。なお、車両 1の操舵制御装置 2は、所定の制御サイクル毎に図 2の STEP001〜010のレーンマーク検出処理を実 行する。そして、各制御サイクルにおいて STEP001で画像を取得するタイミングが、 本発明の所定時点に相当する。
[0049] 次に、 STEP002で、車線認識手段 5は、取得された画像 10にエッジ抽出処理を施 して、エッジ点を抽出する。これにより、図 3 (b)の画像 IIに例示するように、画像 10上 のエッジ点が抽出される。
[0050] 次に、 STEP003で、車線認識手段 5は、抽出したエッジ点のデータから、白線を 構成する直線成分を抽出する。まず、車線認識手段 5は、抽出したエッジ点のデータ をハフ変換する。次に、車線認識手段 5は、ハフ空間で直線成分を探索して抜き出 す。次に、車線認識手段 5は、抜き出された直線成分のデータを、ハフ空間から画像 空間へ射影変換する。これにより、図 3 (c)の画像 12に例示するように、画像 II上のェ ッジ点のうちの直線を構成するエッジ点(直線成分のデータ)が抽出される。
[0051] 次に、 STEP004で、車線認識手段 5は、抽出した直線成分のデータから、車両 1 が走行する車線を規定するレーンマークを検出する。まず、車線認識手段 5は、抽出 した直線成分のデータを、画像空間から実空間へ射影変換する。次に、車線認識手 段 5は、実空間へ変換された直線成分のデータのうちから、車線の右側を規定する 白線であると推定される直線成分のデータを選抜し、選抜した直線成分のデータ〖こ 含まれる複数の点の座標を点列データ POとする。同様に、車線認識手段 5は、車線 の左側を規定する白線であると推定される直線成分のデータを選抜し、その選抜し た直線成分のデータに含まれる複数の点の座標を点列データ PIとする。これにより 、図 3 (d)の画像 13に例示するように、画像 12上の直線成分のデータのうちの点列デ ータ PO, P1が、白線 AO, Albとして検出される。
[0052] ここで、実際の車線の左側を規定する仮想白線 Alaと、画像 10から車線認識手段 5 により検出された白線 Albとの、実空間における位置関係について、図 4を参照して 説明する。図 4には、車両 1が走行する道路を車両 1の前側力 見た概略が図示され ている。図 4を参照して、車線認識手段 5により検出された点列データ POは、白線 AO のエッジ部分に相当し、白線 AOが正しく検出されている。一方、点列データ P1は、 ガードレール A2の上端部のエッジ部分に相当し、ガードレール A2が白線 Albとして 誤検出されている。そして、この場合、図 4で矢示したように、検出された白線 Albは 、仮想白線 Alaの位置とは相違した、ビデオカメラ 3を基点としてガードレール A2の 上端部を道路平面上に投射した位置にあると誤検出される。
[0053] 次に、 STEP005で、車線認識手段 5は、検出した白線 AO, Albから、車両 1が走 行する車線を認識する。具体的には、車線認識手段 5は、選抜された点列データ PO , P1から、車線の中心線 CLb上の点列の座標と、各点での車線幅 Wを算出する。な お、 STEP005で車線認識手段 5により認識された車線は、暫定的なもの(車線の候 補)であり、 STEP005で車線認識手段 5により認識された車線力 車両 1が走行して V、る実際の車線である力否かは、後述の STEP008で判断される。
[0054] 次に、 STEP006で、横ずれ量算出手段 8は、所定時点の車両 1の位置と、画像 10 カゝら車線認識手段 5により認識された車線の中心位置との横ずれ量 Xを算出する。
[0055] ここで、横ずれ量 Xの算出について、図 5を参照して説明する。図 5には、車両 1と その走行する道路を、車両 1の上方側力も見た概略が図示されている。なお、図 5に おいて、白線 AO, Albと、仮想白線 Alaと、実際の車線の中心線 CLaと、車線認識 手段 5により認識された車線の中心線 CLbとは、それぞれ、その位置が実線で示され ている。図 5を参照して、所定時点において、車両 1は、運転者の操作により白線 AO と仮想白線 Alaとにより規定される実際の車線の中心線 CLa上を、矢示方向に走行 している。一方、車線認識手段 5により認識された車線の中心線 CLb、車線幅 Wbは 、図示したように、実際の車線の中心線 CLa、車線幅 Waと相違したものとなる。このと き、横ずれ量算出手段 8は、中心線 CLaと中心線 CLbとの距離 Dを、車線幅 Wbで除 算して、認識された車線が実際の車線と相違している度合を示す横ずれ量 Xを算出 する。
[0056] 次に、 STEP007で、複雑度算出手段 10は、画像 10の複雑度を算出する。まず、 複雑度算出手段 10は、画像 10のうちの範囲特定手段 9により画像上で予め特定され た検出範囲 Rに含まれるエッジ点の密度 Mを算出する。次に、複雑度算出手段 10は 、画像 10の検出範囲 Rに含まれるエッジ点のうちの、直線を構成するエッジ点の数 L を算出する。次に、複雑度算出手段 10は、複雑度 C = M X Lから、画像 10の複雑度 Cを算出する。
[0057] ここで、値 Mと値 Lとにっ 、て、図 6 (a) (b)に例示した画像を参照して説明する。図 6 (a) (b)において、検出範囲 Rは、実線 αで囲まれた範囲に設定されている。図 6 (a )の画像上のエッジ点 P_Mは、画像力 エッジ抽出処理により抽出されたエッジ点を 模式的に示したものであり、このエッジ点 P_Mの密度が値 Mである。値 Mが大きい場 合には、画像上で輝度の分布の変化が多数あることを示しているので、画像は複雑 であると考えられる。また、図 6 (b)の画像上のエッジ点 Pェは、抽出されたエッジ点の うちの直線を構成するエッジ点を模式的に示したものであり、このエッジ点 Pェの数が 値 Lである。値 Lが大きい場合には、画像上に線分が多数あることを示しているので、 画像は複雑であると考えられる。
[0058] また、図 3 (a)に例示した画像 10の場合において、値 Mは、 STEP002で算出され た画像 IIのうちの検出範囲 Rに含まれるエッジ点の密度を示す値である。また、値し は、 STEP003で算出された画像 12のうちの検出範囲 Rに含まれる直線成分を構成 するエッジ点の数を示す値である。このとき、ガードレール A2は凹凸のある立体的な 構造物であり、撮像した場合に輝度の変動する部分が多いので、画像 Π, 12におい て、ガードレール A2の部分力も抽出されたエッジ点及び直線成分の数は、一般的に 、平面的な白線力 抽出されるエッジ点及び直線成分の数に比較して多くなる。その ため、値 Mと値 Lとの積による複雑度ひこより、道路上にガードレール A2が存在する ことを認識することができる。
[0059] なお、検出範囲 Rは、画像 10において道路部分のみが含まれる範囲を想定して設 定されたものである。このように、画像 10のうちの検出範囲 Rを対象として複雑度 Cを 算出することにより、画像 10の検出範囲 R以外の部分の複雑度の変動の影響を排除 して、ガードレール A2の存在をより顕著に示すように複雑度 Cを得ることができる。
[0060] 次に、 STEP008で、操舵アシスト禁止手段 11は、横ずれ量 Xが所定値 Xthより大 きぐかつ複雑度 Cが所定値 Cthより大きいか否カゝ判断する。なお、所定量 Xthは、 車線が誤って認識されていると考えられる横ずれ量として予め定められる値である。 また、所定量 Ythは、道路上にガードレール等の構造物が存在していると考えられる 複雑度として、予め定められる値である。これにより、道路上のガードレール等の構造 物が白線として誤検出されている蓋然性が高い状況にある力否かが判断される。
[0061] STEP008の判断結果が YESの場合は、道路上のガードレール等の構造物が白 線として誤検出されている蓋然性が高い状況であり、図 4に例示したように、車線認 識手段 5により認識された車線力 車両 1が走行する実際の車線と相違している場合 に相当する。そこで、この場合には、 STEP005において車線認識手段 5により認識 された車線は、車両 1が走行している実際の車線ではないと判断されて、 STEP010 に進み、操舵アシスト禁止手段 11は、操舵アシスト手段 7による、実際の車線と相違 した車線に基づく操舵アシスト処理を禁止する。これにより、誤検出された白線 Alb 力 認識された車線に基づぐ不適切な操舵制御がなされることを抑制することがで きる。
[0062] 一方、 STEP008の判断結果が NOの場合は、道路上のガードレール等の構造物 が白線として誤検出されている蓋然性が低い状況であり、画像取得手段 4により取得 された画像力 車線を規定するレーンマークが正しく検出され、車線認識手段 5によ り実際の車線が適切に認識されていると考えられる。この場合には、 STEP005〖こお いて車線認識手段 5により認識された車線力 車両 1が走行している実際の車線であ ると判断されて、 STEP009に進み、操舵アシスト手段 7は、車線認識手段 5により認 識された車線に基づく操舵アシスト処理を実行する。
[0063] 以上の処理により、道路の画像力 認識した車線に沿って車両 1が走行するように 車両 1の操舵制御を行う際に、道路上に所在するガードレール A2から誤って認識さ れた車線に基づく不適切な操舵制御がなされることを抑制することができる。 [0064] なお、本実施形態においては、複雑度算出手段 10は、エッジ点の密度を示す値 M と、該エッジ点のうちの直線を構成するエッジ点の数を示す値 Lとの積で複雑度 Cを 算出したが、他の方法により、値 Mと値 Lとの両方、又は、値 Mと値 Lとのいずれか一 方で算出してもよい。このようにした場合でも、値 Mと値 Lとのいずれも、画像の複雑 度に対応する値であるので、画像の複雑度が適切に算出される。
[0065] また、本実施形態では、範囲特定手段 9を備え、複雑度算出手段 10は、画像 10の 複雑度 Cとして、画像 10のうちの検出範囲 Rを対象として複雑度を算出したが、他の 実施形態として、範囲特定手段 9を備えず、複雑度算出手段 10は、画像 10の複雑度 Cとして、画像 10の全範囲を対象として複雑度を算出してもよい。この場合には、画像 IIの全範囲に含まれるエッジ点の密度力 値 Mを算出し、画像 12の全範囲に含まれ る直線成分を構成するエッジ点の数力ゝら値 Lを算出する。
[0066] また、本実施形態において、範囲特定手段 9は、検出範囲 Rを、画像 10において道 路部分のみが含まれる範囲を想定して設定するものとしたが、他の実施形態として、 範囲特定手段 9は、検出範囲 Rとして、例えば、(a)画像 10において道路部分のみが 含まれる範囲のうちの左側の範囲、(b)画像 10において道路部分のみが含まれる範 囲のうちの右側の範囲、(c)画像 10において道路部分のみが含まれる範囲のうちの 手前側の範囲、 (d)画像 10にお 、て道路部分のみが含まれる範囲のうちの奥側の範 囲等を設定してもよい。さらに、他の実施形態として、範囲特定手段 9は、検出範囲 R として、画像 10において複数の範囲を設定し、複雑度算出手段 10は、各範囲を対象 としてそれぞれ算出した複雑度に基づいて、画像 10の複雑度を算出してもよい。
[0067] また、本実施形態では、横ずれ量算出手段 8と複雑度算出手段 10との両方を備え 、操舵アシスト禁止手段 11は、横ずれ量 Xが所定値 Xthより大きぐかつ複雑度じが 所定値 Cthより大きい場合に、操舵アシスト処理を禁止するものとした力 他の実施 形態として、横ずれ量算出手段 8のみを備え、操舵アシスト禁止手段 11は、横ずれ 量 Xが所定値 Xthより大きい場合に、操舵アシスト処理を禁止するものとしてもよい(こ れは、本発明の第 1態様の車両の操舵制御装置に相当する)。または、他の実施形 態として、複雑度算出手段 10のみを備え、操舵アシスト禁止手段 11は、複雑度じが 所定値 Cthより大きい場合に、操舵アシスト処理を禁止するものとしてもよい (これは、 本発明の第 2態様の車両の操舵制御装置に相当する)。
[0068] また、本実施形態では、白線等のレーンマークとして誤検出されるものに、ガードレ ール等の構造物を挙げたが、他に、例えば、路面上の車輪の跡 (轍)や、路面上の 光が反射して!/ヽる水溜り等も挙げられる。
[0069] また、本実施形態では、レーンマークとして、白線を検出した力 他の種類のレーン マーク (黄線、 Botts Dots,キャッツアイ等)を検出対象とする場合にも、本発明の効 果を得ることができる。
産業上の利用可能性
[0070] 以上のように、本発明は、車両前方の道路の画像を処理して、誤って認識された車 線に基づく不適切な操舵制御がなされることを抑制することができることから、車両挙 動の制御のために有用である。

Claims

請求の範囲
[1] 撮像手段と、
前記撮像手段を介して道路の画像を取得する画像取得手段と、
前記画像取得手段により取得された画像から前記道路のレーンマークを検出し、 該検出したレーンマークから車両が走行する車線を認識する車線認識手段と、 前記車両の操舵輪を操舵可能な操舵機構を駆動するァクチユエータと、 前記車線認識手段により認識された車線に沿って前記車両が走行するように前記 ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段と、 前記車両の位置と、前記車線認識手段により認識された車線の中心位置との、車 線幅方向のずれ量を算出する横ずれ量算出手段と、
所定時点における前記画像取得手段の取得画像から前記車線認識手段により認 識された車線に基づいて、前記横ずれ量算出手段により算出された車線幅方向の ずれ量に応じて、前記操舵アシスト手段による該車線に基づく前記操舵アシスト処理 を禁止する操舵アシスト禁止手段とを有する車両。
[2] 前記操舵アシスト禁止手段は、所定時点における前記画像取得手段の取得画像 力 前記車線認識手段により認識された車線に基づいて、前記横ずれ量算出手段 により算出された車線幅方向のずれ量が、第 1所定値より大きいときに、前記操舵ァ シスト手段による該車線に基づく前記操舵アシスト処理を禁止することを特徴とする 請求の範囲第 1項記載の車両。
[3] 撮像手段と、
前記撮像手段を介して道路の画像を取得する画像取得手段と、
前記画像取得手段により取得された画像から前記道路のレーンマークを検出し、 該検出したレーンマークから車両が走行する車線を認識する車線認識手段と、 前記車両の操舵輪を操舵可能な操舵機構を駆動するァクチユエータと、 前記車線認識手段により認識された車線に沿って前記車両が走行するように前記 ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段と、 前記画像取得手段により取得された前記画像の複雑度を算出する複雑度算出手 段と、 前記複雑度算出手段により算出された、所定時点における前記画像取得手段の取 得画像の複雑度に応じて、該取得画像カゝら前記車線認識手段により認識された車 線に基づぐ前記操舵アシスト手段による前記操舵アシスト処理を禁止する操舵ァシ スト禁止手段とを有する車両。
[4] 前記操舵アシスト禁止手段は、前記複雑度算出手段により算出された、所定時点 における前記画像取得手段の取得画像の複雑度が第 2所定値より大きいときに、該 取得画像から前記車線認識手段により認識された車線に基づく、前記操舵アシスト 手段による前記操舵アシスト処理を禁止することを特徴とする請求の範囲第 3項記載 の車両。
[5] 撮像手段と、
前記撮像手段を介して道路の画像を取得する画像取得手段と、
前記画像取得手段により取得された画像から前記道路のレーンマークを検出し、 該検出したレーンマークから車両が走行する車線を認識する車線認識手段と、 前記車両の操舵輪を操舵可能な操舵機構を駆動するァクチユエータと、 前記車線認識手段により認識された車線に沿って前記車両が走行するように前記 ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段と、 前記車両の位置と、前記車線認識手段により認識された車線の中心位置との、車 線幅方向のずれ量を算出する横ずれ量算出手段と、
前記画像取得手段により取得された前記画像の複雑度を算出する複雑度算出手 段と、
所定時点における前記画像取得手段の取得画像から前記車線認識手段により認 識された車線に基づいて、前記横ずれ量算出手段により算出された車線幅方向の ずれ量と、前記複雑度算出手段により算出された該取得画像の複雑度とに応じて、 前記操舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止する操舵 アシスト禁止手段とを有する車両。
[6] 前記操舵アシスト禁止手段は、所定時点における前記画像取得手段の取得画像 力 前記車線認識手段により認識された車線に基づいて、前記横ずれ量算出手段 により算出された車線幅方向のずれ量が、第 1所定値より大きぐ且つ、前記複雑度 算出手段により算出された該取得画像の複雑度が第 2所定値より大きいときに、前記 操舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止することを特徴 とする請求の範囲第 5項記載の車両。
[7] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とのうちの少 なくともいずれか一方を用いて、前記複雑度を算出することを特徴とする請求の範囲 第 3項記載の車両。
[8] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とのうちの少 なくともいずれか一方を用いて、前記複雑度を算出することを特徴とする請求の範囲 第 5項記載の車両。
[9] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とを乗じて、 前記複雑度を算出することを特徴とする請求の範囲第 3項記載の車両。
[10] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とを乗じて、 前記複雑度を算出することを特徴とする請求の範囲第 5項記載の車両。
[11] 前記画像取得手段により取得された画像内で前記レーンマークの検出範囲を特定 する範囲特定手段を備え、
前記複雑度算出手段は、前記画像取得手段により取得された画像の前記範囲特 定手段により特定された検出範囲を対象として前記複雑度を算出することを特徴とす る請求の範囲第 3項記載の車両。
[12] 前記画像取得手段により取得された画像内で前記レーンマークの検出範囲を特定 する範囲特定手段を備え、
前記複雑度算出手段は、前記画像取得手段により取得された画像の前記範囲特 定手段により特定された検出範囲を対象として前記複雑度を算出することを特徴とす る請求の範囲第 5項記載の車両。
[13] 前記横ずれ量算出手段は、前記車両の位置と前記車線認識手段により認識された 車線の中心位置との車線幅方向の距離を、該認識された車線の車線幅で除算して、 前記車線幅方向のずれ量を算出することを特徴とする請求の範囲第 1項記載の車両
[14] 前記横ずれ量算出手段は、前記車両の位置と前記車線認識手段により認識された 車線の中心位置との車線幅方向の距離を、該認識された車線の車線幅で除算して、 前記車線幅方向のずれ量を算出することを特徴とする請求の範囲第 5項記載の車両
[15] 車両に搭載された撮像手段を介して道路の画像を取得する画像取得手段と、 前記画像取得手段により取得された画像から前記道路のレーンマークを検出し、 該検出したレーンマークカゝら前記車両が走行する車線を認識する車線認識手段と、 前記車両の操舵輪を操舵可能な操舵機構を駆動するァクチユエータと、 前記車線認識手段により認識された車線に沿って前記車両が走行するように前記 ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段と、
前記車両の位置と、前記車線認識手段により認識された車線の中心位置との、車 線幅方向のずれ量を算出する横ずれ量算出手段と、
所定時点における前記画像取得手段の取得画像から前記車線認識手段により認 識された車線に基づいて、前記横ずれ量算出手段により算出された車線幅方向の ずれ量に応じて、前記操舵アシスト手段による該車線に基づく前記操舵アシスト処理 を禁止する操舵アシスト禁止手段とを有する車両の操舵制御装置。
[16] 前記操舵アシスト禁止手段は、所定時点における前記画像取得手段の取得画像 力 前記車線認識手段により認識された車線に基づいて、前記横ずれ量算出手段 により算出された車線幅方向のずれ量が、第 1所定値より大きいときに、前記操舵ァ シスト手段による該車線に基づく前記操舵アシスト処理を禁止することを特徴とする 請求の範囲第 15項記載の車両の操舵制御装置。
[17] 車両に搭載された撮像手段を介して道路の画像を取得する画像取得手段と、 前記画像取得手段により取得された画像から前記道路のレーンマークを検出し、 該検出したレーンマークカゝら前記車両が走行する車線を認識する車線認識手段と、 前記車両の操舵輪を操舵可能な操舵機構を駆動するァクチユエータと、 前記車線認識手段により認識された車線に沿って前記車両が走行するように前記 ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段と、 前記画像取得手段により取得された前記画像の複雑度を算出する複雑度算出手 段と、
前記複雑度算出手段により算出された、所定時点における前記画像取得手段の取 得画像の複雑度に応じて、該取得画像カゝら前記車線認識手段により認識された車 線に基づぐ前記操舵アシスト手段による前記操舵アシスト処理を禁止する操舵ァシ スト禁止手段とを有する車両の操舵制御装置。
[18] 前記操舵アシスト禁止手段は、前記複雑度算出手段により算出された、所定時点 における前記画像取得手段の取得画像の複雑度が第 2所定値より大きいときに、該 取得画像から前記車線認識手段により認識された車線に基づく、前記操舵アシスト 手段による前記操舵アシスト処理を禁止することを特徴とする請求の範囲第 17項記 載の車両の操舵制御装置。
[19] 車両に搭載された撮像手段を介して道路の画像を取得する画像取得手段と、 前記画像取得手段により取得された画像から前記道路のレーンマークを検出し、 該検出したレーンマークカゝら前記車両が走行する車線を認識する車線認識手段と、 前記車両の操舵輪を操舵可能な操舵機構を駆動するァクチユエータと、 前記車線認識手段により認識された車線に沿って前記車両が走行するように前記 ァクチユエータを駆動する操舵アシスト処理を実行する操舵アシスト手段と、 前記車両の位置と、前記車線認識手段により認識された車線の中心位置との、車 線幅方向のずれ量を算出する横ずれ量算出手段と、
前記画像取得手段により取得された前記画像の複雑度を算出する複雑度算出手 段と、
所定時点における前記画像取得手段の取得画像から前記車線認識手段により認 識された車線に基づいて、前記横ずれ量算出手段により算出された車線幅方向の ずれ量と、前記複雑度算出手段により算出された該取得画像の複雑度とに応じて、 前記操舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止する操舵 アシスト禁止手段とを有する車両の操舵制御装置。
[20] 前記操舵アシスト禁止手段は、所定時点における前記画像取得手段の取得画像 力 前記車線認識手段により認識された車線に基づいて、前記横ずれ量算出手段 により算出された車線幅方向のずれ量が、第 1所定値より大きぐ且つ、前記複雑度 算出手段により算出された該取得画像の複雑度が第 2所定値より大きいときに、前記 操舵アシスト手段による該車線に基づく前記操舵アシスト処理を禁止することを特徴 とする請求の範囲第 19項記載の車両の操舵制御装置。
[21] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とのうちの少 なくともいずれか一方を用いて、前記複雑度を算出することを特徴とする請求の範囲 第 17項記載の車両の操舵制御装置。
[22] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とのうちの少 なくともいずれか一方を用いて、前記複雑度を算出することを特徴とする請求の範囲 第 19項記載の車両の操舵制御装置。
[23] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とを乗じて、 前記複雑度を算出することを特徴とする請求の範囲第 17項記載の車両の操舵制御 装置。
[24] 前記複雑度算出手段は、前記画像にエッジ抽出処理を施した際のエッジ点の密度 を示す値と、該エッジ点のうちの直線を構成するエッジ点の数を示す値とを乗じて、 前記複雑度を算出することを特徴とする請求の範囲第 19項記載の車両の操舵制御 装置。
[25] 前記画像取得手段により取得された画像内で前記レーンマークの検出範囲を特定 する範囲特定手段を備え、
前記複雑度算出手段は、前記画像取得手段により取得された画像の前記範囲特 定手段により特定された検出範囲を対象として前記複雑度を算出することを特徴とす る請求の範囲第 17項記載の車両の操舵制御装置。
[26] 前記画像取得手段により取得された画像内で前記レーンマークの検出範囲を特定 する範囲特定手段を備え、
前記複雑度算出手段は、前記画像取得手段により取得された画像の前記範囲特 定手段により特定された検出範囲を対象として前記複雑度を算出することを特徴とす る請求の範囲第 19項記載の車両の操舵制御装置。
[27] 前記横ずれ量算出手段は、前記車両の位置と前記車線認識手段により認識された 車線の中心位置との車線幅方向の距離を、該認識された車線の車線幅で除算して、 前記車線幅方向のずれ量を算出することを特徴とする請求の範囲第 15項記載の車 両の操舵制御装置。
[28] 前記横ずれ量算出手段は、前記車両の位置と前記車線認識手段により認識された 車線の中心位置との車線幅方向の距離を、該認識された車線の車線幅で除算して、 前記車線幅方向のずれ量を算出することを特徴とする請求の範囲第 19項記載の車 両の操舵制御装置。
PCT/JP2006/322618 2005-12-27 2006-11-14 車両及び車両の操舵制御装置 WO2007074591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/159,102 US8340866B2 (en) 2005-12-27 2006-11-14 Vehicle and steering control device for vehicle
DE602006011789T DE602006011789D1 (de) 2005-12-27 2006-11-14 Fahrzeug und lenksteuervorrichtung für fahrzeug
JP2007551864A JP4956442B2 (ja) 2005-12-27 2006-11-14 車両
EP06832580A EP1982906B1 (en) 2005-12-27 2006-11-14 Vehicle and steering control device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005376444 2005-12-27
JP2005-376444 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007074591A1 true WO2007074591A1 (ja) 2007-07-05

Family

ID=38217813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322618 WO2007074591A1 (ja) 2005-12-27 2006-11-14 車両及び車両の操舵制御装置

Country Status (5)

Country Link
US (1) US8340866B2 (ja)
EP (2) EP1982906B1 (ja)
JP (1) JP4956442B2 (ja)
DE (2) DE602006011789D1 (ja)
WO (1) WO2007074591A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217737A (ja) * 2014-05-15 2015-12-07 トヨタ自動車株式会社 運転支援装置
JP2016173711A (ja) * 2015-03-17 2016-09-29 株式会社日本自動車部品総合研究所 走行区画線認識装置
US9594965B2 (en) 2014-08-20 2017-03-14 Denso Corporation Lane boundary lane recognition device and computer-readable storage medium storing program for recognizing lane boundary lines on roadway
JP2020135586A (ja) * 2019-02-22 2020-08-31 株式会社豊田中央研究所 周辺線分処理装置、走路推定装置、および周辺線分処理プログラム

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988786B2 (ja) * 2009-04-09 2012-08-01 株式会社日本自動車部品総合研究所 境界線認識装置
US8823556B2 (en) * 2010-09-02 2014-09-02 Honda Motor Co., Ltd. Method of estimating intersection control
US9959595B2 (en) 2010-09-21 2018-05-01 Mobileye Vision Technologies Ltd. Dense structure from motion
US9280711B2 (en) 2010-09-21 2016-03-08 Mobileye Vision Technologies Ltd. Barrier and guardrail detection using a single camera
JP5617524B2 (ja) * 2010-10-22 2014-11-05 株式会社ジェイテクト 油圧式パワーステアリング装置
DE112011103834T8 (de) 2010-11-19 2013-09-12 Magna Electronics, Inc. Spurhalteassistent und Spurzentrierung
WO2012145819A1 (en) 2011-04-25 2012-11-01 Magna International Inc. Image processing method for detecting objects using relative motion
JP5594246B2 (ja) * 2011-07-20 2014-09-24 株式会社デンソー 車線認識装置
WO2013043661A1 (en) 2011-09-21 2013-03-28 Magna Electronics, Inc. Vehicle vision system using image data transmission and power supply via a coaxial cable
US9681062B2 (en) 2011-09-26 2017-06-13 Magna Electronics Inc. Vehicle camera image quality improvement in poor visibility conditions by contrast amplification
US10099614B2 (en) 2011-11-28 2018-10-16 Magna Electronics Inc. Vision system for vehicle
US8694224B2 (en) 2012-03-01 2014-04-08 Magna Electronics Inc. Vehicle yaw rate correction
US10609335B2 (en) 2012-03-23 2020-03-31 Magna Electronics Inc. Vehicle vision system with accelerated object confirmation
US9751465B2 (en) 2012-04-16 2017-09-05 Magna Electronics Inc. Vehicle vision system with reduced image color data processing by use of dithering
US10089537B2 (en) 2012-05-18 2018-10-02 Magna Electronics Inc. Vehicle vision system with front and rear camera integration
DE102013217430A1 (de) 2012-09-04 2014-03-06 Magna Electronics, Inc. Fahrerassistenzsystem für ein Kraftfahrzeug
US9090234B2 (en) 2012-11-19 2015-07-28 Magna Electronics Inc. Braking control system for vehicle
US9743002B2 (en) 2012-11-19 2017-08-22 Magna Electronics Inc. Vehicle vision system with enhanced display functions
US10025994B2 (en) 2012-12-04 2018-07-17 Magna Electronics Inc. Vehicle vision system utilizing corner detection
US9481301B2 (en) 2012-12-05 2016-11-01 Magna Electronics Inc. Vehicle vision system utilizing camera synchronization
US20140218529A1 (en) 2013-02-04 2014-08-07 Magna Electronics Inc. Vehicle data recording system
US9092986B2 (en) 2013-02-04 2015-07-28 Magna Electronics Inc. Vehicular vision system
US10027930B2 (en) 2013-03-29 2018-07-17 Magna Electronics Inc. Spectral filtering for vehicular driver assistance systems
US9327693B2 (en) 2013-04-10 2016-05-03 Magna Electronics Inc. Rear collision avoidance system for vehicle
US10232797B2 (en) 2013-04-29 2019-03-19 Magna Electronics Inc. Rear vision system for vehicle with dual purpose signal lines
US10567705B2 (en) 2013-06-10 2020-02-18 Magna Electronics Inc. Coaxial cable with bidirectional data transmission
US9260095B2 (en) 2013-06-19 2016-02-16 Magna Electronics Inc. Vehicle vision system with collision mitigation
US20140375476A1 (en) 2013-06-24 2014-12-25 Magna Electronics Inc. Vehicle alert system
US10326969B2 (en) 2013-08-12 2019-06-18 Magna Electronics Inc. Vehicle vision system with reduction of temporal noise in images
US9619716B2 (en) 2013-08-12 2017-04-11 Magna Electronics Inc. Vehicle vision system with image classification
US9499139B2 (en) 2013-12-05 2016-11-22 Magna Electronics Inc. Vehicle monitoring system
US9988047B2 (en) 2013-12-12 2018-06-05 Magna Electronics Inc. Vehicle control system with traffic driving control
US9623878B2 (en) 2014-04-02 2017-04-18 Magna Electronics Inc. Personalized driver assistance system for vehicle
US9925980B2 (en) 2014-09-17 2018-03-27 Magna Electronics Inc. Vehicle collision avoidance system with enhanced pedestrian avoidance
JP6389119B2 (ja) * 2014-12-25 2018-09-12 株式会社デンソー 車線境界線認識装置
US9764744B2 (en) 2015-02-25 2017-09-19 Magna Electronics Inc. Vehicle yaw rate estimation system
US10286855B2 (en) 2015-03-23 2019-05-14 Magna Electronics Inc. Vehicle vision system with video compression
JP6456761B2 (ja) * 2015-04-21 2019-01-23 本田技研工業株式会社 道路環境認識装置、車両制御装置及び車両制御方法
US10819943B2 (en) 2015-05-07 2020-10-27 Magna Electronics Inc. Vehicle vision system with incident recording function
JP2017013519A (ja) * 2015-06-26 2017-01-19 株式会社デンソー 車線維持支援装置
US10144419B2 (en) 2015-11-23 2018-12-04 Magna Electronics Inc. Vehicle dynamic control system for emergency handling
US9494438B1 (en) * 2015-12-15 2016-11-15 Honda Motor Co., Ltd. System and method for verifying map data for a vehicle
US10055651B2 (en) 2016-03-08 2018-08-21 Magna Electronics Inc. Vehicle vision system with enhanced lane tracking
SE541719C2 (en) * 2016-04-20 2019-12-03 Scania Cv Ab Method and system for facilitating steering of a vehicle by a driver of the vehicle during driving along a road
US10607094B2 (en) 2017-02-06 2020-03-31 Magna Electronics Inc. Vehicle vision system with traffic sign recognition
US11364913B2 (en) 2019-03-26 2022-06-21 GM Global Technology Operations LLC Situational complexity quantification for autonomous systems
KR102350192B1 (ko) * 2019-07-19 2022-01-17 한국과학기술연구원 검색 데이터베이스를 구축하기 위한 관심영상 선별 방법 및 이를 수행하는 영상 관제 시스템
US11634124B2 (en) * 2020-08-26 2023-04-25 Carvi Inc. Method of recognizing median strip and predicting risk of collision through analysis of image
US11968639B2 (en) 2020-11-11 2024-04-23 Magna Electronics Inc. Vehicular control system with synchronized communication between control units

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274700A (ja) 1996-04-08 1997-10-21 Toyota Motor Corp 車両誘導制御装置
JP2002334400A (ja) * 2001-05-10 2002-11-22 Mitsubishi Motors Corp 運転支援装置
JP2002340574A (ja) * 2001-05-22 2002-11-27 Fujitsu Ten Ltd ナビゲーション装置
JP2002362396A (ja) 2001-06-06 2002-12-18 Nissan Motor Co Ltd 車線追従走行制御装置
JP2002367095A (ja) * 2001-06-12 2002-12-20 Nissan Motor Co Ltd 車線追従走行制御装置
JP3429167B2 (ja) 1997-09-13 2003-07-22 本田技研工業株式会社 車両用白線検出装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3574235B2 (ja) * 1995-08-31 2004-10-06 本田技研工業株式会社 車両の操舵力補正装置
JP3367355B2 (ja) * 1996-11-26 2003-01-14 トヨタ自動車株式会社 車両の操舵制御装置
JP3314698B2 (ja) 1997-11-18 2002-08-12 三菱自動車工業株式会社 保舵力補助装置
KR100391442B1 (ko) * 2000-12-27 2003-07-12 현대자동차주식회사 차선 이탈 방지용 영상 처리방법
JP2003040132A (ja) 2001-07-27 2003-02-13 Mitsubishi Motors Corp 走行レーン逸脱防止装置
JP3585874B2 (ja) * 2001-09-04 2004-11-04 本田技研工業株式会社 車両の走行制御装置
JP3803678B2 (ja) * 2004-05-10 2006-08-02 本田技研工業株式会社 車両の操舵力補正装置
JP4225242B2 (ja) * 2004-05-18 2009-02-18 トヨタ自動車株式会社 走行路認識装置
JP4703136B2 (ja) * 2004-06-02 2011-06-15 トヨタ自動車株式会社 線図形化処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274700A (ja) 1996-04-08 1997-10-21 Toyota Motor Corp 車両誘導制御装置
JP3429167B2 (ja) 1997-09-13 2003-07-22 本田技研工業株式会社 車両用白線検出装置
JP2002334400A (ja) * 2001-05-10 2002-11-22 Mitsubishi Motors Corp 運転支援装置
JP2002340574A (ja) * 2001-05-22 2002-11-27 Fujitsu Ten Ltd ナビゲーション装置
JP2002362396A (ja) 2001-06-06 2002-12-18 Nissan Motor Co Ltd 車線追従走行制御装置
JP2002367095A (ja) * 2001-06-12 2002-12-20 Nissan Motor Co Ltd 車線追従走行制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217737A (ja) * 2014-05-15 2015-12-07 トヨタ自動車株式会社 運転支援装置
US9594965B2 (en) 2014-08-20 2017-03-14 Denso Corporation Lane boundary lane recognition device and computer-readable storage medium storing program for recognizing lane boundary lines on roadway
JP2016173711A (ja) * 2015-03-17 2016-09-29 株式会社日本自動車部品総合研究所 走行区画線認識装置
JP2020135586A (ja) * 2019-02-22 2020-08-31 株式会社豊田中央研究所 周辺線分処理装置、走路推定装置、および周辺線分処理プログラム

Also Published As

Publication number Publication date
JPWO2007074591A1 (ja) 2009-06-04
EP2103500B1 (en) 2010-12-22
JP4956442B2 (ja) 2012-06-20
US20100228437A1 (en) 2010-09-09
DE602006019156D1 (de) 2011-02-03
DE602006011789D1 (de) 2010-03-04
EP1982906A1 (en) 2008-10-22
US8340866B2 (en) 2012-12-25
EP1982906A4 (en) 2009-02-25
EP1982906B1 (en) 2010-01-13
EP2103500A1 (en) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2007074591A1 (ja) 車両及び車両の操舵制御装置
JP5083658B2 (ja) 車両用車線認識装置、車両、及び車両用車線認識プログラム
US9352746B2 (en) Lane relative position estimation method and system for driver assistance systems
EP1221643B1 (en) Apparatus and method for detecting traffic lane mark for automotive vehicle
JP4607193B2 (ja) 車両及びレーンマーク検出装置
US20050002558A1 (en) Camera based position recognition for a road vehicle
JP2003228711A (ja) レーンマーク認識方法
JP2008168811A (ja) 車線認識装置、車両、車線認識方法、及び車線認識プログラム
JP6693893B2 (ja) 走路認識装置
JP4744537B2 (ja) 走行レーン検出装置
JP6141788B2 (ja) レーンマーク認識装置
JP2017174017A (ja) 車線逸脱回避システム
JP6189816B2 (ja) 走行区画線認識装置
JP6408935B2 (ja) 走行区画線認識装置
JP5577608B2 (ja) 車線認識装置及び方法
JP2012159470A (ja) 車両用画像認識装置
KR20140087622A (ko) 촬영 영상의 휘도를 이용한 차선 추출 방법
JP4324179B2 (ja) 情報提供装置
JP6132807B2 (ja) レーンマーク認識装置
US20180096210A1 (en) Driving area recognition device and method thereof
US20230094672A1 (en) Three-dimensional-object detection device, on-vehicle system, and three-dimensional-object detection method
JP5878090B2 (ja) 走行区分線検出装置
JP2004326214A (ja) 車線検出装置
JP5732890B2 (ja) 並走体検出装置及び並走体検出方法
JPH1115952A (ja) 走行レーン認識装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551864

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006832580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12159102

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE