WO2007072886A1 - トナー用樹脂組成物及びトナー用樹脂組成物の製造方法 - Google Patents

トナー用樹脂組成物及びトナー用樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2007072886A1
WO2007072886A1 PCT/JP2006/325428 JP2006325428W WO2007072886A1 WO 2007072886 A1 WO2007072886 A1 WO 2007072886A1 JP 2006325428 W JP2006325428 W JP 2006325428W WO 2007072886 A1 WO2007072886 A1 WO 2007072886A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
polyester
toner
low molecular
branched polyester
Prior art date
Application number
PCT/JP2006/325428
Other languages
English (en)
French (fr)
Inventor
Kenichi Matsumura
Takashi Shinjo
Yoshihiro Inui
Kazuhiro Oomori
Masao Ikeda
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006119535A external-priority patent/JP2007292946A/ja
Priority claimed from JP2006184679A external-priority patent/JP2008015101A/ja
Priority claimed from JP2006340127A external-priority patent/JP2008152031A/ja
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to US12/097,921 priority Critical patent/US20100286357A1/en
Priority to EP06835048A priority patent/EP1970767A1/en
Publication of WO2007072886A1 publication Critical patent/WO2007072886A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08764Polyureas; Polyurethanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08791Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08793Crosslinked polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature

Definitions

  • the present invention relates to a toner resin composition capable of obtaining a toner having excellent low-temperature fixability and high-temperature offset resistance, a toner, and a method for producing the toner resin composition.
  • polyfunctional monomers having three or more functional groups are usually copolymerized to form a chemically cross-linked structure in the polymer to maintain high temperature offset resistance.
  • polyfunctional monomers having three or more functional groups are usually copolymerized to form a chemically cross-linked structure in the polymer to maintain high temperature offset resistance.
  • a low molecular weight polymer to a high molecular weight crosslinked polymer exist, and the molecular weight distribution becomes wide, it is difficult to achieve both high temperature offset resistance and low temperature fixability. .
  • Patent Document 1 discloses a crystallinity containing, as a binder resin for toner, terephthalic acid and a unit derived from a linear alkylene glycol having 2 to 6 carbon atoms in an amount of 50 mol% or more based on the total monomer units used. It has been proposed to use polyester resin. However, since this technology uses only crystalline polyester resin, it is difficult to maintain high-temperature offset resistance and blocking resistance without impairing low-temperature fixability because the temperature range for fixing is narrow. .
  • Patent Document 2 discloses an aliphatic solvent containing 50 mol% or more of a trivalent or higher polyvalent monomer, an aromatic dicarboxylic acid, and a branched aliphatic alcohol as a binder resin for toner. It has been proposed to use an amorphous polyester resin obtained by polymerizing lucol. However, this technique also uses a polyvalent monomer having a valence of 3 or more, dicarboxylic acid, diol, etc., so that the molecular weight distribution of the resulting non-crystalline polyester is widened. I got it.
  • Patent Document 3 includes a kneading means comprising a screw containing a polyester having a hydroxyl value of 6 to: LOO and a predetermined amount of isocyanate, which is obtained by reacting two base carboxylic acids, diols and triols.
  • a method for producing a binder resin having a gel fraction within a predetermined range is disclosed by kneading and reacting.
  • kneading is performed using a kneading means incorporating a screw such as an extrusion kneader, the high-temperature offset resistance of the resulting toner is impaired due to insufficient crosslinking between the polyester and the isocyanate. The toner performance was not obtained.
  • Patent Document 4 discloses a branched polyester having a hydroxyl value of 30 to 80 obtained by polymerizing dibasic carboxylic acid, diol, and a trihydric or higher polyhydric alcohol as a binder resin for the toner.
  • a urethane-modified polyester obtained by reacting a mixture of a low molecular weight linear polyester having a hydroxyl value of 5 or less obtained by polymerizing a dibasic carboxylic acid, a diol and a specific monocarboxylic acid with a predetermined amount of diisocyanate. It has been proposed to use.
  • Patent Document 1 Japanese Patent No. 2988703
  • Patent Document 2 Japanese Patent No. 2704282
  • Patent Document 3 Japanese Patent No. 2986820
  • Patent Document 4 Japanese Patent No. 3654766
  • the present invention provides a resin composition for toner capable of obtaining a toner excellent in low-temperature fixability, high-temperature offset resistance and image quality, and production of the toner and the resin composition for toner. It aims to provide a method.
  • the present invention relates to a branched polyester (A) having a number average molecular weight of 2000 to 7000 and a hydroxyl value of 20 to 80, and a low molecular weight linear shape having a number average molecular weight of 2000 to 5000 and a hydroxyl value of 20 to 55.
  • a resin composition for a toner obtained by reacting an isocyanate compound having two or more isocyanate groups in one molecule with a mixture with a polyester), wherein the branched polyester (A) A crosslinked structure, a structure in which the branched polyester (A) and the low molecular weight linear polyester) are bonded by the isocyanate compound, and an unreacted material of the low molecular weight linear polyester (B). It is a resin composition for toner.
  • the present invention is a step 1 in which a branched polyester and a low molecular weight linear polyester are charged into a kneader containing a barrel and a screw and melted. 1, an opening of a kneader containing the barrel and screw From step 2, the water content of the branched polyester and the low molecular weight linear polyester is reduced to 0.3% by weight or less by removing water contained in the branched polyester and the low molecular weight linear polyester.
  • a step of adding and reacting an isocyanate compound having two or more isocyanate groups in one molecule to the branched polyester and the low molecular weight linear polyester having a water content of 0.3 wt% or less 3 Is a method for producing a toner grease composition.
  • the inventors of the present invention reacted a isocyanate compound with a mixture of a branched polyester and a low molecular weight linear polyester to produce a toner resin composition.
  • a low molecular weight linear polyester having an OH group the original purpose of low-temperature fixing property by the low molecular weight linear polyester is not impaired, and the dispersion state of the resin can be made uniform.
  • the inventors have found that it is possible to obtain a toner having excellent toner performance such as low-temperature fixability, high-temperature offset resistance and image quality, and have completed the present invention.
  • the branched polyester (A) is preferably obtained by reacting a dicarboxylic acid, a diol and a trivalent or higher polyvalent carboxylic acid or a trivalent or higher polyhydric alcohol.
  • the branched polyester refers to a polyester having a branched structure in the polyester skeleton.
  • Examples of a method for reacting the dicarboxylic acid, diol, and trivalent or higher polyvalent carboxylic acid or trivalent or higher polyvalent alcohol include, for example, the dicarboxylic acid, diol, and trityl rubonic acid in a reaction vessel. It can be obtained by a method such as a transesterification reaction and a condensation reaction. In this method, if the amount of tricarboxylic acid added is increased, the reaction may proceed too quickly and the molecular weight may increase.
  • a transesterification reaction between the dicarboxylic acid and the diol is first performed, and when the transesterification reaction is almost completed, the tricarboxylic acid is added and reacted to obtain a branched polyester having desirable physical properties. be able to.
  • dicarboxylic acid examples include o-phthalic acid, terephthalic acid, isophthalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, octyl succinic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, and fumaric acid.
  • terephthalic acid, naphthalenedicarboxylic acid, and their anhydrous and lower alkyl esters are preferably used for imparting crystallinity.
  • diol examples include ethylene glycol, 1,3-propanediol, 1, 4 Butanediol, diethylene glycol, 1,5 pentanediol, 1,6 hexanediol, dipropylene glycol, triethylene glycol, tetraethylene glycol, 1,2 propanediol, 1,3 butanediol, 2,3 butanediol, neo Pentyl glycol (2,2 dimethylpropane 1,3 diol), 1,2 hexane diol, 2,5 hexane diol, 2-methyl-2,4 pentanediol, 3-methyl-1,3-pentanediol, 2 ethyl 1 , 3 Aliphatic diols such as hexanediol; 2, 2 bis (4 hydroxycyclohexyl) propane, 2, 2-bis (4 hydroxycyclohexyl) propane alkylene oxide, 1, 4 -C
  • a tricarboxylic acid for example, a tricarboxylic acid can be used.
  • pyromellitic acid, 1,2,7,8-octanetetracarboxylic acid and acid anhydrides thereof may be used. These may be used alone or in combination of two or more.
  • tricarboxylic acid examples include trimellitic acid, 1, 2, 4 cyclohexane tricarboxylic acid, 2, 5, 7 naphthalene tricarboxylic acid, 1, 2, 4 naphthalene tricarboxylic acid, 1, 2, 5 hexane tricarboxylic acid. And acid anhydrides thereof.
  • Examples of the trihydric or higher polyhydric alcohol include sorbitol, 1, 2, 3, 6 hexanetetralol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, sucrose, 1 , 2, 4 Butanetriol, 1, 2, 5 Pentatriol, Glycerol, 2 Methylpropanetriol, 2-Methyl-1,2,4 Butanetriol, Trimethylolethane, Trimethylolpropane, 1, 3, 5 Trihydroxymethyl Benzene and the like can be mentioned. These may be used alone or in combination of two or more.
  • the branched polyester (A) has a lower limit of number average molecular weight of 2000 and an upper limit of 7000. If it is less than 2000, the resulting toner may have insufficient offset resistance and durability, and if it exceeds 7000, the resulting toner will be inferior in low-temperature fixability.
  • a preferred upper limit is 5000.
  • the lower limit of the hydroxyl value of the branched polyester (A) is 20, and the upper limit is 80.
  • the crosslinking reaction point of the branched polyester (A) is reduced, so that the resulting crosslinked polyester has a low crosslinking density and insufficient high-temperature offset resistance.
  • the cross-linking reaction point of the polyester (A) is increased, the cross-linking density is increased, and the high-temperature offset resistance is improved, but the low-temperature fixability is lowered.
  • the above-mentioned branched polyester (A) has a preferred lower limit of the average degree of branching of 2.1 and a preferred upper limit of 7.0. 2.If it is less than 1, the crosslinking reaction point of the branched polyester (A) decreases, so that the crosslinking density of the resulting crosslinked polyester is lowered, and the high temperature offset resistance may be decreased. If it exceeds 0, the crosslinking reaction point of the branched polyester (A) is increased, the crosslinking density is increased, and the high temperature offset resistance is improved, but the low temperature fixability may be lowered.
  • the average degree of branching means the number of hydroxyl groups per branched polyester (A) lg (NOH), as shown in the following formula (1), and the number of molecules per branched polyester (A) lg (N ) Divided by).
  • the average degree of branching is 2.0, it indicates that all the polyesters are linear polyesters, and the proportion of the branched polyester (A) increases as the average degree of branching becomes greater than 2.0. Many, show that.
  • the branched polyester (A) preferably has a moisture content of 0.1% by weight or less. If it exceeds 0.1% by weight, the polyester may undergo hydrolysis and the molecular weight may be greatly reduced.
  • the method for measuring the moisture content of the branched polyester (A) is not particularly limited.
  • requiring the weight increment after water absorption etc. is mentioned.
  • the branched polyester (A) has a water content of 0.1% by weight or less, and an equivalent ratio of a hydroxyl group (OH group) to an isocyanate group (NCO group) of the isocyanate compound.
  • the preferable lower limit of (OH group ZNCO group) is 1, and the preferable upper limit is 28. If it is less than 1, the resistance to high temperature offset resistance is improved. Low temperature fixability may be reduced. If it exceeds 28, high-temperature offset resistance may be insufficient.
  • lower limit is 4, more preferred! / ⁇ Upper limit is 20.
  • the glass transition temperature of the branched polyester (A) is preferred, and the lower limit is 30 ° C.
  • the upper limit is 80 ° C. If the temperature is less than 30 ° C, the high-temperature offset resistance cannot be sufficiently obtained, and if it exceeds 80 ° C, the low-temperature fixability is poor.
  • a more preferred lower limit is 50 ° C, and a more preferred upper limit is 65 ° C.
  • aromatic dicarboxylic acids such as terephthalic acid have a function of improving the glass transition temperature, and long chain fatty acids such as sebacic acid and adipic acid. Since the group dicarboxylic acid has a function of lowering the glass transition temperature, the target glass transition temperature can be achieved by appropriately combining these dicarboxylic acids. However, even if the desired glass transition temperature can be achieved by appropriately combining an aromatic dicarboxylic acid and a long-chain aliphatic dicarboxylic acid, the soft soot temperature tends to be too high. .
  • the branched polyester (A) includes a polyvalent carboxylic acid containing at least either a divalent bent monomer capable of introducing a bent molecular structure into the molecular chain or a divalent monomer having a branched chain, and a polyvalent carboxylic acid. It is preferable to polymerize a monomer mixture containing alcohol.
  • Monomer mixture containing these divalent bending monomers and branched divalent monomers A polymer obtained by polymerizing a product can more easily balance the target glass transition temperature and the low softening temperature.
  • the divalent bending monomer includes an aromatic dicarboxylic acid in which the ortho or meta position is substituted with a carboxyl group, an aromatic diol in which the ortho or meta position is substituted with a hydroxyl group, and a carboxyl in an asymmetric position.
  • the dicarboxylic acid is not limited to diol, For example, it may be an anhydride or lower ester of dicarboxylic acid, monohydroxymonocarboxylic acid, etc.
  • phthalic anhydride, o phthalic acid, isophthalic acid, 1, 4 naphthalene dicarboxylic acid, 2, 7 naphthalene dicarboxylic acid Dicarboxylic acids such as acids and their anhydrides and lower esters; salicylic acid, 3-hydroxy-2-naphthalenecarboxylic acid Monohydroxy monocarboxylic acid and the like; catechol, 1, 4 include diols such Cyclohexanedicarboxylic methanol to Shikuro.
  • the divalent monomer having a branched chain is not particularly limited.
  • the low molecular weight linear polyester (B) has a number average. Those having a molecular weight of 2000 to 5000 and a hydroxyl value of 20 to 55 (hereinafter also referred to as low molecular weight linear polyester having a terminal hydroxyl group) are used.
  • both the branched polyester (A) and the terminal hydroxyl group low molecular weight linear polyester are mixed and then reacted with the isocyanate compound, both the branched polyester (A) and the terminal hydroxyl group low molecular weight linear polyester have end groups. Since most of them are hydroxyl groups, in addition to the crosslinked structure of branched polyesters (A) and the unreacted low molecular weight linear polyester (B), branched polyester (A) and low molecular weight linear polyester (B ) And an isocyanate compound are formed.
  • the low molecular weight linear polyester (B) is uniformly mixed, it is possible to disperse with compounding agents such as a release agent, a colorant, a charge control agent, and magnetic powder when a toner is manufactured. This makes it possible to produce a toner with excellent image quality.
  • linear polyester refers to a polyester having an ester structure that is linear.
  • the linear polyester may be one in which the terminal portion is acid-modified with carboxylic acid or the like.
  • the low molecular weight linear polyester (B) is not particularly limited, and for example, those obtained by polycondensation of dicarboxylic acid and diol can be used.
  • dicarboxylic acid and diol those similar to the above-mentioned branched polyester (A) can be used.
  • the lower limit of the number average molecular weight of the low molecular weight linear polyester (B) is preferably 2000, and the preferable upper limit is 5000. If it is less than 2000, the resulting toner may have insufficient blocking resistance, and if it exceeds 5000, the low-temperature fixability may be inferior.
  • the hydroxyl value of the low molecular weight linear polyester (B) is determined according to the average molecular weight.
  • the lower limit is 20 and the upper limit is 55. If it is less than 20, the low-temperature fixability of the resulting toner is poor, and if it exceeds 55, the blocking resistance becomes insufficient.
  • the lower limit of the glass transition temperature of the low molecular weight linear polyester (B) is preferably 30 ° C, and the upper limit is preferably 80 ° C. If it is less than 30 ° C, sufficient blocking resistance may not be obtained. If it exceeds 80 ° C, the low-molecular-weight linear polyester (B) will improve low-temperature fixability. The effect may not be fully exhibited.
  • the mixing weight ratio of the branched polyester (A) to the low molecular weight linear polyester (B) is preferably 20: 80-80: 20! /.
  • the ratio of the branched polyester (A) is less than 20% by weight, the reactivity with the isocyanate compound may be reduced.
  • the ratio exceeds 80% by weight the low molecular weight component is excessively reduced and obtained.
  • the low-temperature fixability of the toner may be reduced. More preferably, the mixing weight ratio is 30: 70-70: 30.
  • the isocyanate compound has two or more isocyanate groups in one molecule.
  • the number of isocyanate groups is less than 2 in one molecule, the formation of a crosslinked polyester becomes insufficient and the high temperature offset resistance is lowered.
  • the reactivity between the branched polyester (A) and the isocyanate compound is improved and the crosslinking density is moderate, so that a toner having excellent high-temperature offset resistance can be obtained.
  • the obtained resin composition for toner can be produced.
  • the preferable lower limit of the isocyanate group content is 0.3 mol
  • the preferable upper limit is 3 mol with respect to 1 mol of the branched polyester (A).
  • the amount is less than 0.3 mol, the formation of the crosslinked polyester becomes insufficient, and the high temperature offset resistance decreases. If it exceeds 3 moles, the excess isocyanate compound that does not participate in crosslinking increases and becomes close to the physical property of the isocyanate compound itself, so that the physical properties such as low-temperature fixability deteriorate.
  • the isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups in one molecule.
  • MD 1 Hydrogenated MDI
  • Polymeric MDI 1,5-Naphthalenediisocyanate
  • Norbornane diisocyanate Norbornane diisocyanate
  • Tolidine diisocyanate Tolidine diisocyanate
  • Examples of the other polyester include linear polyesters having the number average molecular weight of 2000 to 10,000.
  • a linear polyester having a number average molecular weight of 2000 to 10,000 hereinafter also simply referred to as a linear polyester
  • the crosslinking density of the crosslinked polyester obtained after crosslinking can be made moderate. Further, the crosslinked polyester and the linear polyester can be mixed more uniformly.
  • linear polyester for example, those obtained by polycondensation of dicarboxylic acid and diol can be used.
  • dicarboxylic acid and diol those similar to the above-mentioned branched polyester (A) can be used.
  • the preferred lower limit of the number average molecular weight of the linear polyester is 2000, and the preferred upper limit is 10,000. If it is less than 2000, the toner may have insufficient blocking resistance, and if it exceeds 10,000, the low-temperature fixability may deteriorate.
  • a more preferred lower limit is 2500, and a more preferred upper limit is 6000.
  • a preferred upper limit of the addition amount is 30% by weight. If it exceeds 30% by weight, the low-temperature fixability and high-temperature offset resistance of the resulting toner may be impaired. More preferred! /, The lower limit is 20% by weight.
  • the branched polyester (A), the low molecular weight linear polyester (B), and the isocyanate compound may be reacted in the presence of moisture.
  • a crosslinked polyester having many urea bonds in the molecule can be produced.
  • the resulting cross-linked polyester has excellent heat resistance and is difficult to thermally decompose during kneading. It becomes a rosin with stable physical properties.
  • the method of reacting in the presence of moisture is not particularly limited, and examples thereof include a method using a branched polyester containing water as a raw material and a method of adding water simultaneously with the raw material.
  • a preferable lower limit of the water content is 0.01% by weight, and a preferable upper limit is 1.0% by weight. If the amount is less than 0.01% by weight, a sufficient urea bond cannot be formed. If the amount exceeds 1.0% by weight, the polyester may be hydrolyzed to greatly reduce the molecular weight.
  • a polyhydric alcohol after reacting the branched polyester (A), the low molecular weight linear polyester (B) and the isocyanate compound. Thereby, a crosslinked polyester having a desired crosslinking density can be obtained.
  • the polyhydric alcohol is not particularly limited, and examples thereof include sorbitol, 1, 2, 3, 6-hexanetetralol, 1,4-sonolebitan, pentaerythritol, dipentaerythritol, tripentaerythritol, and shochuol.
  • Sugar 1, 2, 4-butanetriol, 1, 2, 5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butantriol, trimethylolethane, trimethylolpropane, 1, 3, 5-trihydroxymethyl benzene and the like. These may be used alone or in combination of two or more.
  • a preferable lower limit of the amount of polyhydric alcohol added is 0.01% by weight, and a preferable upper limit is 3.0% by weight.
  • a preferable upper limit is 3.0% by weight.
  • the content is less than 01% by weight, the effect of adding the polyhydric alcohol is not sufficiently exhibited.
  • the content exceeds 3.0% by weight, the crosslinking density is excessively increased, and the low molecular weight linear polyester (B) is dispersed. May decrease.
  • the resin composition for toner of the present invention is produced by using the above-described method, so that a crosslinked structure comprising the branched polyesters), the branched polyester (A), and the low molecular weight linear polyester is obtained. It contains a structure in which (B) is bound by an isocyanate compound and an unreacted substance of the low molecular weight linear polyester (B).
  • the resin composition for toner of the present invention has a cross-linked structure in which the above-mentioned branched polyester (A) also has strength, so that the obtained toner can retain high-temperature offset resistance. Further, by having an unreacted material of the low molecular weight linear polyester (B), it can contribute to the development of low-temperature fixability.
  • the toner resin composition of the present invention has a structure in which a branched polyester (A) and a low molecular weight linear polyester) are bonded by an isocyanate compound. )
  • the compatibility between the crosslinked structure and the low molecular weight linear polyester (B) is greatly improved.
  • the resin composition for toner of the present invention has a structure in which a low molecular weight linear polyester (B) is uniformly mixed with a crosslinked polyester having an appropriate crosslinking density, so that low-temperature fixability and high-temperature offset resistance are reduced.
  • a toner having an excellent balance of properties.
  • the dispersibility of a compounding agent such as a release agent, a colorant, a charge control agent, and magnetic powder is improved, and a toner with excellent image quality can be produced.
  • the resin composition for toner of the present invention comprises an unreacted product of a branched polyester (A) having a molecular weight equal to or lower than the peak molecular weight of the branched polyester (A) before the reaction (hereinafter referred to as a branched polyester (A )) And low molecular weight linear polyester (B).
  • A branched polyester
  • B low molecular weight linear polyester
  • the unreacted product of the branched polyester (A) is a component remaining after the reaction with the branched polyester (A), the low molecular weight linear polyester (B), and the isocyanate compound.
  • the resin composition for toner of the present invention contains the unreacted material (A) of the branched polyester, whereby the resulting toner can have appropriate low-temperature fixability.
  • the cross-linked structure composed of the branched polyester (A) and the isocyanate compound and the unreacted product of the branched polyester (A) have extremely good compatibility.
  • the resin composition for toner of the present invention has a structure in which the unreacted material of the branched polyester (A) is uniformly mixed with a crosslinked structure having an appropriate crosslinking density.
  • the dispersibility of compounding agents such as release agents, colorants, charge control agents, and magnetic powders is improved, resulting in improved image quality. An excellent toner can be produced.
  • the method for measuring the content of the unreacted branched polyester (A) in the resin composition for toner of the present invention is not particularly limited, but the tetrahydro of the resin composition for toner of the present invention is not particularly limited. Less than the peak molecular weight of the branched polyester before the above reaction when the molecular weight distribution of furan solubles (hereinafter also referred to as THF solubles) is measured using gel permeation chromatography (hereinafter also referred to as GPC). By measuring the area ratio of the peak area in this range to the total peak area, it can be used as a measure of the content of the unreacted substance of the branched polyester (A).
  • the following method can be used as a means for measuring the area ratio of the peak area within the range of the peak molecular weight of the branched polyester (A) before the reaction to the total peak area.
  • FIGS. La and b are molecular weight distribution curves obtained when the THF soluble content of the branched polyester (A) before the reaction and the resin composition for toner of the present invention is measured by GPC.
  • the area of the A region which is the total peak area, is obtained from the molecular weight distribution curve (Fig. La) obtained when the THF soluble content of the branched polyester (A) before the reaction is measured by GPC.
  • the peak molecular weight obtained by measuring the molecular weight distribution curve of the branched polyester (A) before the reaction from the molecular weight distribution curve (figure lb) of the toner resin composition after the reaction indicated by the broken line (Obtain the area of region B that is less than or equal to X) in the figure lb. Then, by calculating the ratio of the area of the B region to the A region, the ratio of the area of the peak area in the range below the peak molecular weight of the branched polyester (A) before the reaction to the total peak area is obtained. You can
  • the peak area in the range below the peak molecular weight of the branched polyester before the reaction is the total peak area.
  • the preferred lower limit is 20% and the preferred upper limit is .45%. If it is less than 20%, the high-temperature offset resistance is improved, but the low-temperature fixability may be lowered. 4 If it exceeds 5%, the high temperature offset resistance may be insufficient.
  • the GPC measurement apparatus is not particularly limited, and examples thereof include HTR-C (manufactured by Nihon Millipore Limited), GPC-101 (manufactured by Showa Denko KK), and the like.
  • the column used in the GPC is not particularly limited, and examples thereof include KF-800 series (manufactured by Showa Denko), TSK-GEL HHR series (manufactured by Tosoh Corporation), and the like.
  • the preferable lower limit of the component (gel content) insoluble in tetrahydrofuran is 1% by weight, and the preferable upper limit is 40% by weight. If it is less than 1% by weight, the high-temperature offset resistance may be deteriorated, and if it exceeds 40% by weight, the low-temperature fixability may be insufficient.
  • the rosin composition for toner of the present invention preferably has a swelling ratio measured by a method in which it is immersed in tetrahydrofuran, shaken at room temperature for 16 hours and then filtered through a 200-mesh wire mesh filter. 500%, preferred! /, Upper limit power 000%.
  • the swelling rate is related to the crosslink density of the cross-linked polyester, it indirectly becomes an index indicating the uniformity of mixing of the cross-linked polyester and the linear polyester in the toner composition for toner.
  • the swelling ratio is within the above range, it is considered that the crosslinked structure is formed with an appropriate density, and the crosslinked polyester and the linear polyester are uniformly mixed.
  • the obtained toner can have both low-temperature fixability and high-temperature offset resistance.
  • the resin composition for toner of the present invention has a lower limit of the flow softening point of 100 ° C and an upper limit of 160 ° C. When the temperature is lower than 100 ° C, the high temperature offset resistance is insufficient, and when the temperature exceeds 160 ° C, the low temperature fixing property is deteriorated. A preferred upper limit is 150 ° C, and a more preferred upper limit is 145 ° C.
  • the flow soft saddle point is, for example, a high-flow type flow tester (for example, “CFT-500 type” manufactured by Shimadzu Corporation), load 20 kg / cm 2 , orifice lmm ⁇ X lmm, preliminary temperature 60 ° C, preliminary time 5 minutes, chart speed 20mmZ minutes, plunger 1.0cm 2 , heating rate 6 ⁇ 0.5 ° CZmin, open 1.19mm JIS standard sieve Pass 1.
  • a high-flow type flow tester for example, “CFT-500 type” manufactured by Shimadzu Corporation
  • load 20 kg / cm 2 for example, orifice lmm ⁇ X lmm, preliminary temperature 60 ° C, preliminary time 5 minutes, chart speed 20mmZ minutes, plunger 1.0cm 2 , heating rate 6 ⁇ 0.5 ° CZmin, open 1.19mm JIS standard sieve Pass 1.
  • Fig. 2 shows the relationship between the amount of plunger drop and time (temperature) when the flow soft saddle point Tf is determined by the constant temperature heating method.
  • the resin composition for toner of the present invention has a relaxation modulus G (0.1 sec) after applying the shear strain when 450% shear strain is applied at 170 ° C. 0. 1) Preference
  • the V ⁇ lower limit is 100Pa
  • the preferred! / ⁇ upper limit is 1500Pa.
  • the present inventors have found that the offset phenomenon in the toner occurs when the cohesive force of the melted toner is smaller than the adhesive force between the toner and the heat fixing roller, and the high temperature offset resistance of the toner is It was found that there is a relationship between the cohesive strength of the toner resin composition and the relaxation modulus of the toner resin composition under large deformation. As a result of further intensive studies, the present inventors have found that the use of a toner resin composition having a certain relaxation modulus can improve the low-temperature fixability while maintaining the high-temperature offset resistance of the toner. I found it.
  • the relaxation elastic modulus is obtained by, for example, molding a toner resin composition of the present invention into a disk having a predetermined size and then using it as a test sample, and measuring a relaxation elastic modulus (for example, [0064]
  • the acid value of the resin composition for toner of the present invention is not particularly limited, but the preferred lower limit is 1, and the preferred upper limit. Is 30.
  • Such an acid value is the above-mentioned crosslinked polyester or the above linear It originates from a functional group at the end of the polyester, specifically, for example, a carboxyl group. When the acid value is within this range, the toner obtained is excellent in low-temperature fixability, and the compatibility with paper is also improved.
  • the resin composition for toner of the present invention can be produced, for example, by using the following method for producing a resin composition for toner.
  • the method for producing a resin composition for toner according to the present invention includes a step of charging and melting a branched polyester and a low molecular weight linear polyester into a kneader incorporating a barrel and a screw, and an opening of the kneader incorporating the screw. Removing water contained in the branched polyester and the low molecular weight linear polyester from a part to reduce the water content of the branched polyester and the low molecular weight linear polyester to 0.3% by weight or less. And a step 3 of adding an isocyanate compound to the branched polyester and low molecular weight linear polyester having a water content of 0.3% by weight or less and reacting them.
  • the present inventors put the branched polyester and the low molecular weight linear polyester into a kneader containing a barrel and a screw, melted, and then branched from the opening of the kneader.
  • the water content of the linear polyester and the low molecular weight linear polyester is removed, the water content of the branched polyester and the low molecular weight linear polyester is reduced to a predetermined ratio, and then the isocyanate compound is added to melt. It is possible to react the isocyanate compound with the branched polyester and low molecular weight linear polyester efficiently, and it is possible to obtain a toner having excellent toner performance such as low-temperature fixability, high-temperature offset resistance and image quality. As a result, the present invention has been completed.
  • a kneader incorporating a barrel and a screw is used.
  • the branched polyester and the low molecular weight linear polyester and the isocyanate compound can be continuously supplied and kneaded, and the branched polyester and the low molecular weight linear polyester can be kneaded.
  • the isocyanate compound can sufficiently proceed with the crosslinking reaction, so that the resin composition for toner of the present invention can be continuously produced.
  • the kneader incorporating the barrel and the screw is not particularly limited, but a twin-screw extrusion kneader such as a single-screw extrusion kneader, a biaxial co-directional extrusion kneader, or a biaxial different-direction extrusion kneader, A shaft extrusion kneader, feeder / looper, kneader, injection molding machine, or the like can be used. Of these, a twin-screw extrusion kneader is preferable.
  • the kneader incorporating the barrel and the screw contains, from the upstream side, a supply unit for supplying the branched polyester and the low molecular weight linear polyester, and the branched polyester and the low molecular weight linear polyester. It is preferable to have an opening for removing moisture and an addition part for adding an isocyanate compound in this order.
  • the branched polyester and the low molecular weight linear polyester are melted, the moisture contained in the branched polyester and the low molecular weight linear polyester is removed, and then the isocyanate compound is added.
  • the crosslinking reaction can be performed.
  • FIG. 3 is a schematic view showing an example of a kneader incorporating a screw for performing the method for producing a resin composition for toner of the present invention.
  • the extrusion kneader 1 is provided with a supply unit 2, an opening 3 and an addition unit 4 in this order from the upstream side.
  • a branched polyester and a low molecular weight linear polyester are continuously supplied from a supply unit 2 using a quantitative feeder, and are melt-kneaded by heating.
  • the water content of the branched polyester and the low molecular weight linear polyester is removed from the opening 3 and the branched polyester is adjusted to a predetermined moisture content, and then the isocyanate compound is continuously supplied from the addition portion 4.
  • the resin composition for toner can be produced by reacting the branched polyester or low molecular weight linear polyester with the isocyanate compound.
  • the preferred lower limit of the ratio of the length (L) to the screw diameter (D) (L ZD) is 20, and the preferred upper limit is 100. If it is less than 20, the length of the screw is short, so melting, dehydration, kneading, reaction, etc. may be insufficient. If it exceeds 100, the heating time becomes longer, and the produced crosslinked polyester undergoes thermal decomposition or thermal degradation, so that the high temperature offset resistance may not be improved.
  • a more preferred lower limit is 30, and a more preferred upper limit is 60.
  • the screw is used after the step 1 of melting the branched polyester and the low molecular weight linear polyester, and It is preferred that each has a seal configuration prior to step 3 of adding the phantom compound. By having such a seal configuration, it becomes possible to stably remove the water contained in the branched polyester.
  • the seal configuration is not particularly limited. For example, when a twin-screw co-directional extruder is used, a reverse screw, a needing disk, a seal ring, or the like can be used.
  • the opening is not particularly limited as long as it can remove moisture contained in the branched polyester from the opening.
  • a vent provided with a decompression device that is preferably a vent is used. More preferably, it is a vacuum vent port that can reduce the pressure inside the vent port and a part of the screw to create a vacuum atmosphere.
  • the opening may be any opening that can remove moisture contained in the branched polyester under atmospheric pressure.
  • a decompression device is used. By reducing the pressure, the water content of the branched polyester can be effectively reduced.
  • the preferable upper limit of the degree of vacuum is 200 Torr, the more preferable upper limit is 100 Torr, and the further preferable upper limit is 30 Torr.
  • the preferred lower limit of the ratio (LZD) of the length (L) to the diameter (D) of the screw is 1, and the more preferred lower limit is 5.
  • LZD the ratio of the length (L) to the diameter (D) of the screw
  • the method for producing a resin composition for toner of the present invention includes Step 1 in which a branched polyester and a low molecular weight linear polyester are charged into a kneader incorporating a barrel and a screw and melted.
  • the temperature at which the branched polyester and the low molecular weight linear polyester are melted is not particularly limited, but a preferred lower limit is 50 ° C and a preferred upper limit is 200 ° C.
  • a preferred lower limit is 50 ° C
  • a preferred upper limit is 200 ° C.
  • the temperature is less than 50 ° C
  • the branched polyester and the low molecular weight linear polyester are sufficiently melted. May not be possible.
  • the temperature exceeds 200 ° C the branched polyester and the low molecular weight linear polyester are thermally decomposed and thermally deteriorated, so that the high-temperature offset resistance of the obtained toner may be deteriorated.
  • the branched polyester and the low molecular weight linear polyester are further melted by heating to 120 ° C or higher.
  • moisture, volatile components and the like contained in the branched polyester and the low molecular weight linear polyester can be removed.
  • a preferable upper limit of the temperature for melting the branched polyester and the low molecular weight linear polyester is 180 ° C.
  • the temperature exceeds 180 ° C the branched polyester is thermally decomposed and thermally deteriorated, and the high-temperature offset resistance of the obtained toner may be deteriorated.
  • the water content of the branched polyester is removed by removing water contained in the branched polyester from an opening of a kneader incorporating the screw. It has the process 2 which makes a ratio 0.3 weight% or less.
  • the temperature of the branched polyester is not particularly limited, but a preferred lower limit is 80 ° C. If the temperature is less than 80 ° C, the melted branched polyester force may not be able to remove moisture efficiently. A more preferred lower limit is 100 ° C.
  • the molten branched polyester and the low molecular weight linear polyester are used. It is preferable to control the temperature at 90-130 ° C. By controlling the branched polyester and the low molecular weight linear polyester at 90 to 130 ° C., the added isocyanate compound is differentiated in the branched polyester and the low molecular weight linear polyester as described later. Becomes pretty.
  • the branched polyester and the low molecular weight linear shape are preferably used.
  • the temperature of the branched polyester and the low molecular weight linear polyester will rise above 120 ° C even after melting.
  • the method for controlling the temperature of the branched polyester and the low molecular weight linear polyester to 90 to 130 ° C. is not particularly limited.
  • the barrel or screw of a kneader having a barrel and a screw is cooled with cooling water or the like. Methods and the like.
  • the upper limit of the water content of the branched polyester and the low molecular weight linear polyester from which water has been removed is 0.3 wt%.
  • the content exceeds 3% by weight, the water component contained in the branched polyester, the branched polyester, and the low molecular weight linear polyester are inhibited from reacting with the isocyanate compound.
  • the viscosity cannot be increased sufficiently, and high temperature offset resistance as a toner cannot be exhibited.
  • a preferred upper limit is 0.1% by weight.
  • the method for producing a resin composition for toner according to the present invention includes the branched polyester and the low molecular weight linear polyester having a water content of 0.3% by weight or less, and two or more isocyanates per molecule. It has the process 3 which adds and reacts the isocyanate compound which has group.
  • step 3 the temperature of the branched polyester and the low molecular weight linear polyester when adding the isocyanate compound is preferably U, the lower limit is 90 ° C, and the upper limit is 130 ° C. . If it is less than 90 ° C, the melt viscosity of the branched polyester and low molecular weight linear polyester becomes too high, and even if an isocyanate compound is added, it cannot be finely dispersed.
  • the resulting cross-linked polyester is not formed, and the resulting toner cannot exhibit high-temperature offset resistance.
  • the isocyanate compound when the isocyanate compound is added, the reaction of the branched polyester and low molecular weight linear polyester with the isocyanate compound starts before the isocyanate compound is sufficiently dispersed. As a result, the isocyanate compound cannot be finely dispersed, so that a crosslinked polyester having a uniform and appropriate crosslinked structure is not formed, and the resulting toner may not exhibit high-temperature offset resistance.
  • the temperature of the branched polyester and the low molecular weight linear polyester at the time of adding the isocyanate compound is 90 to 130 ° C, whereby the branched polyester and the low molecular weight linear polyester A toner having a uniform and appropriate cross-linked structure because the isocyanate compound can be sufficiently dispersed in the branched polyester and the low molecular weight linear polyester before the reaction with the isocyanate compound proceeds. It is possible to produce a resin composition, and the toner obtained can be excellent in toner properties such as low-temperature fixability and high-temperature offset resistance.
  • the kneading temperature after addition of the isocyanate compound is such that the crosslinking reaction of the branched polyester and the low molecular weight linear polyester and the isocyanate compound sufficiently proceeds to obtain a crosslinked polyester.
  • the temperature is not particularly limited as long as it can be used, but the preferable lower limit is 100 ° C and the preferable upper limit is 230 ° C. If it is less than 100 ° C, the formation of a crosslinked polyester that is difficult to proceed with the crosslinking reaction may be insufficient. If the temperature exceeds 230 ° C, the high-temperature offset resistance cannot be improved due to the thermal degradation or thermal degradation of the resulting crosslinked polyester! ,Sometimes. More preferred! / ⁇ Upper limit is 200 ° C.
  • the preferable lower limit of the residence time in the extrusion kneader is 3 minutes, and the preferable upper limit is 30 minutes. If it is less than 3 minutes, branched polyester and low molecular weight linear polyester The cross-linking reaction between stealth and isocyanate compounds may be insufficient. If it exceeds 30 minutes, the resulting crosslinked polyester may not be able to improve the high temperature offset resistance due to thermal decomposition or thermal degradation. More preferred, upper limit is 20 minutes.
  • the resin composition for toner of the present invention is used as a binder resin, and if necessary, a release agent, a colorant, a charge control agent, a magnetic material, a rubbery polymer, a styrene acrylate copolymer.
  • the toner can be produced by mixing with a toner grease, a carrier, a cleaning property improving agent, and the like. Such a toner is also one of the present invention.
  • the toner of the present invention is excellent in both low-temperature fixability and high-temperature offset resistance by using the toner resin composition of the present invention, and therefore may contain a release agent. .
  • the release agent is not particularly limited, and examples thereof include olefin-based wax and paraffin-based wax such as polypropylene wax, polyethylene wax, microcrystalline wax, and oxidized polyethylene wax; carnauba wax, sazol wax, and montanic acid ester wax.
  • olefin-based wax and paraffin-based wax such as polypropylene wax, polyethylene wax, microcrystalline wax, and oxidized polyethylene wax; carnauba wax, sazol wax, and montanic acid ester wax.
  • Fatty ester waxes such as tas; Deacidified carnauba wax; Saturated aliphatic acid waxes such as baltimic acid, stearic acid, and montanic acid; Unsaturated aliphatic acid systems such as pracidic acid, eleostearic acid, and valinal acid Wax; saturated alcohol waxes and fatty alcohol waxes such as stearyl alcohol, aralkyl alcohole, behe-noleanoreconole, canole navinoleanoreconole, serinoleanoreconole, melicinorenoleol; Sol Polyhydric alcohol wax such as Toll; saturated fatty acid amide wax such as linoleic acid amide, oleic acid amide, lauric acid amide; methylene bis stearic acid amide, ethylene bis-power puric acid amide, ethylene bis lauric acid amide, hexamethylene Saturated fatty acid
  • long-chain alkyl acrylate wax and aromatic acrylate wax are preferred because they are highly compatible with the resin composition for toner and provide a highly transparent toner.
  • These release agents may be used alone or in combination of two or more, but it is particularly preferable to use in combination of two or more release agents having different melting points of 30 ° C. or more.
  • the size of the release agent in the toner is not particularly limited, but the major axis is preferably 2 m or less.
  • the colorant is not particularly limited.
  • carbon black such as furnace black, lamp black, thermal black, acetylene black, channel black, aniline black, phthalocyanine blue, quinoline yellow lamp black, rhodamine B, azo pigments, perylene pigments, perinone pigments, anthraquinone pigments, dioxazine pigments, isoindoline pigments, isoindolinone pigments, selenium pigments, indico pigments, quinophthalone, diketopyrrolopyrrole, quinacridone Etc.
  • the preferred lower limit of the blending amount of these colorants is usually 1 part by weight with respect to 100 parts by weight of the toner resin composition, and the preferred upper limit is 10 parts by weight.
  • charge control agents There are two types of charge control agents, positive charge and negative charge.
  • Examples of the charge control agent for positive charge include Niguguchishin dyes, ammonium salts, pyridinium salts, and azines.
  • Examples of charge control agents for negative charge include chromium complexes and iron complexes. Can be mentioned. Among these, an acid-modified charge control agent is preferable, and when it is salicylic acid-modified, it is crosslinked with the toner resin composition to exhibit rubber elasticity.
  • Metal complexes of alkyl-substituted salicylic acid such as di-tert-butylsalicylate chromium complex are preferable because they are colorless or light-colored and do not affect the color tone of the toner.
  • charge control resin As the charge control agent, charge control resin (CCR) can also be suitably used.
  • the charge control resin include a styrene copolymer obtained by copolymerizing a monomer containing a quaternary ammonium salt, an organic fluorine-based monomer, a sulfonic acid group-containing monomer, a phenol maleimide monomer, and the like. Acrylic polymer and the like.
  • the preferred lower limit of the amount of these charge control agents is usually 0.1 parts by weight with respect to 100 parts by weight of the toner resin composition, and the preferred upper limit is 10 parts by weight.
  • Examples of the magnetic material include the trade name "TAROX BL series” (made by Titanium Industry Co., Ltd.), the trade name “EPT series”, the trade name “MAT series”, and the trade name “MTS series” (all of which are Toda Industries).
  • Product name "DCM series” manufactured by Dowa Iron Powder Co., Ltd.
  • product name "KBC series” manufactured by Dowa Iron Powder Co., Ltd.
  • product name "KBI series” product name "KBF series”
  • product name "KBP series” Kelden And “Bay OX ide E series” (manufactured by Bayer AG).
  • the resin composition of the present invention exhibits good high-temperature offset resistance in a magnetic one-component toner that is considered to have the lowest ratio of the resin occupying the whole toner among the commonly used toners. Can be applied to any toner
  • Examples of the rubber-like polymer include natural rubber, polyisoprene rubber, polybutadiene rubber, nitrile rubber (acrylonitrile-butadiene copolymer), chloroprene rubber, butyl rubber, attalinole rubber, polyurethane elastomer, silicone rubber, ethylene propylene.
  • the block copolymer may be a styrene butadiene block copolymer, a styrene isoprene block copolymer
  • a rubber-like polymer having a block copolymerization force between an aromatic hydrocarbon having a polar group such as a hydroxyl group, a carboxyl group, an aldehyde group, a sulfonyl group, a cyano group, a nitro group, or a halogen group and a conjugate group is This is preferable because of excellent affinity with the toner.
  • a polar group such as a hydroxyl group, a carboxyl group, an aldehyde group, a sulfonyl group, a cyano group, a nitro group, or a halogen group and a conjugate group.
  • the rubber-like polymer can improve the resin strength of the resin contained in the toner. Therefore, the toner containing the rubber-like polymer can prevent the toner filming phenomenon, and a toner suitable for a non-magnetic one-component toner that requires a high grease strength can be obtained.
  • Examples of the carrier include simple metals such as iron, nickel, copper, zinc, cobalt, manganese, chromium, and rare earth, alloys, oxides, and flights.
  • the surface of the carrier may be oxidized.
  • the carrier surface is polytetrafluoroethylene, monochlorotrifluoroethylene polymer, polyvinylidene fluoride, silicone polymer, polyester, metal complexes of di-tert-butylsalicylic acid, styrenic polymer, acrylic polymer, polyamide, polyvinyl It may be coated with butyral, niggincin basic dye, silica powder, alumina powder, etc. It is preferable to coat the carrier, and triboelectric chargeability can be imparted to the carrier.
  • the cleaning property improver is not particularly limited as long as the fluidity of the toner is improved by mixing with the toner particles.
  • the toner adheres to the cleaning blade.
  • fluorinated polymer powder such as vinylidene fluoride polymer, acrylic polymer powder such as acrylate polymer, fatty acid metal salt powder such as zinc stearate, calcium stearate, lead stearate, zinc oxide powder, titanium oxide powder
  • metal oxide powder fine powder silica powder, silica powder surface-treated with silane coupling agent, titanium coupling agent, silicon oil, etc. Examples thereof include fumed silica.
  • a sphere having a particle diameter of 0.05 to 0.5 m made of an acrylic polymer or a styrene polymer can be suitably used.
  • the toner of the present invention preferably has a peak at a position where the weight average molecular weight is 2000 or less as measured by gel permeation chromatography. This improves the adherence.
  • the toner of the present invention preferably has a peak at a position where the weight average molecular weight is 10,000 or more as measured by gel permeation chromatography. Thereby, water resistance improves.
  • the particle size of the toner of the present invention is not particularly limited, but particularly high image quality can be obtained when it is 5 m or less.
  • the moisture content of the toner of the present invention is not particularly limited, but a preferred lower limit is 0.01% by weight and a preferred upper limit is 0.2% by weight. If it is less than 0.01% by weight, it will be difficult to manufacture. If it exceeds 0.2% by weight, sufficient charging stability may not be obtained.
  • the repose angle of the toner of the present invention is not particularly limited, but the preferred lower limit of the repose angle at 23 ° C. and 60% humidity is 1 degree, and the preferred upper limit is 30 degrees. If it is less than 1 degree, handling of the toner may be difficult, and if it exceeds 30 degrees, the fluidity of the toner may be insufficient.
  • the angle of repose of the toner can be measured by, for example, a noda tester (for example, PT-N type manufactured by Hosokawa Micron Corporation).
  • the surface roughness of the toner of the present invention is not particularly limited, but a preferred lower limit is 0.01 m and a preferred upper limit is 2 ⁇ m. If it is less than 0.01 ⁇ m, it may be difficult to print, and if it exceeds 2 m, the surface gloss of the resulting image may be insufficient.
  • the surface roughness can be measured by a method defined in JIS B 0601 as a method for measuring the arithmetic average roughness (Ra) of the printed portion of an image printed using the toner of the present invention.
  • the toner of the present invention can exhibit good fixability in a wide range over a low temperature force and a high temperature, and is excellent in both low temperature fixability, high temperature offset resistance and blocking resistance. Since the time from printing to printing becomes possible can be shortened, it is economical, and even when the temperature of the roller drops, the sharpness of the image can be maintained. Therefore, high-speed printing can be achieved.
  • the toner of the present invention is excellent in image reproducibility.
  • the toner of the present invention may be fixed by a fixing roller to which a release oil is applied. Good fixability can be exhibited even if the release oil is not applied to the fixing roller. .
  • the present invention it is possible to provide a toner resin composition capable of obtaining a toner having excellent low-temperature fixability and high-temperature offset resistance, a toner, and a method for producing the toner resin composition. .
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm. Condensation reaction was performed and free diol generated by the condensation reaction was distilled out of the reaction system to obtain a branched polyester.
  • the hydroxyl value of the obtained branched polyester was measured and found to be 40.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm.
  • the condensation reaction was performed and the free diol generated by the condensation reaction was distilled out of the reaction system to obtain a low molecular weight linear polyester.
  • the hydroxyl value of the obtained low molecular weight linear polyester was 38.
  • polymer type MDI 44V20, manufactured by Sumika Bayer Urethane Co., Ltd.
  • a resin composition for toner was obtained by melt-kneading at a barrel temperature of 170 ° C.
  • this toner powder is classified by a classifier (MDS-2, manufactured by Nippon-Umatic Co., Ltd.) to obtain an average particle size of about 10 m fine toner powder was obtained.
  • MDS-2 manufactured by Nippon-Umatic Co., Ltd.
  • To 100 parts by weight of the toner fine powder 1.0 part by weight of hydrophobic silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was uniformly mixed (externally added) to produce a toner.
  • the amount of branched polyester added is 39 parts by weight
  • the amount of low molecular weight linear polyester added is 58.5 parts by weight
  • polymeric MDI (44V20, manufactured by Sumika Bayer Urethane Co., Ltd.) ) was added in the same manner as in Example 1 except that the amount of addition was 2.5 parts by weight.
  • toner resin composition In the production of a toner resin composition, the amount of branched polyester added was 97.5 parts by weight, the amount of low molecular weight linear polyester added was 0 parts by weight, and polymer type MDI (44V20, manufactured by Sumika Bayer Urethane Co., Ltd.) A toner resin composition and a toner were produced in the same manner as in Example 1 except that the amount added was 2.5 parts by weight.
  • polyesterol was obtained by conducting a condensation reaction and distilling the free diol produced by the condensation reaction out of the reaction system.
  • a low molecular weight linear polyester was obtained by adding 13 mol of trimellitic anhydride to the total amount of the obtained polyester and reacting at 200 ° C. for about 1 hour.
  • the acid value of the obtained low molecular weight linear polyester was measured to be 53.
  • the amount of addition of the branched polyester of Example 1 was 68.2 parts by weight, and the amount of addition of the low molecular weight linear polyester obtained was 29.
  • a resin composition and a toner for toner were produced in the same manner as in Example 1 except that 3 parts by weight and the amount of added force of polymeric MDI (44V20, manufactured by Sumika Bayer Urethane Co., Ltd.) was 2.5 parts by weight. did.
  • HTR-C manufactured by Nihon Millipore Limited
  • KF-800P (1), KF-806M (2), KF- 802.5 (1) manufactured by Showa Denko KK are used for the column.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Measurement conditions are as follows: temperature is 40 ° C, sample is 0.2 wt% THF solution (passed through a 0.45 m filter), injection volume is 100, recarrier solvent is THF, and standard polystyrene is used as a calibration sample. It was.
  • the toner grease composition was measured according to JIS K 7121 using a differential scanning calorimeter (Seiko Denshi Kogyo Co., Ltd., DSC-6 200R) at a heating rate of 10 ° CZ, The intermediate glass transition temperature described in 9.3 “How to determine the glass transition temperature”) was determined.
  • the obtained rosin composition for toner was weighed into a sample bottle, and 30 g of THF was added to it, shaken at room temperature for 16 hours, filtered through a 200-mesh wire mesh filter, and the insoluble matter was shared three times. By washing, the weight of the obtained residue (swelled body weight) was measured. Subsequently, the obtained residue was dried at 110 ° C. for 1 hour, and the weight after drying (dry weight) was measured. From the weight of the swollen body and the weight of the dried body thus obtained, the swelling ratio and the THF-insoluble matter (gel fraction) were determined by the following formula.
  • Tetrahydrofuran insoluble matter (%) (dry weight Z sample weight) X 100 [0114] [Measurement of Flow Soft Temperature]
  • the resin composition for toner After melting the resin composition for toner, it was molded into a disk shape with a diameter of 25 mm and a height of 1 mm, and this was used as a test sample. This was attached to a disk-disk jig with a diameter of 25 mm, and shear strain was measured at 170 ° C and initial shear strain of 450% using a relaxation modulus measurement device (ARES, manufactured by T'A Instruments Inc.). Applying force 0.1 Measure the relaxation modulus G (0.1) after 1 second.
  • ARES relaxation modulus measurement device
  • a developer was prepared by mixing 6.5 parts by weight of the toner obtained in Examples 1 and 2 and Comparative Examples 1 and 2 with 93.5 parts by weight of an iron powder carrier having an average particle size of 50 to 80 / zm.
  • an electrophotographic copying machine a YUIX4160AF manufactured by Koyuka Co., Ltd. was used so that the set temperature of the heat fixing roller could be changed up to 250 ° C.
  • non-offset temperature region The maximum value in the non-offset temperature region was the high temperature offset temperature, and the minimum value was the low temperature offset temperature.
  • Copying is carried out by changing the set temperature of the heat fixing roller of the electrophotographic copying machine step by step, and the blank portion and the fixed image are not contaminated with toner without causing a fog on the blank portion or the fixed image.
  • the fixed image of the copy was rubbed with a typewriter member, if the density of the fixed image was less than 10%, the fixing was judged good, and the lowest temperature at that time was determined.
  • the image density was measured using a Macbeth photometer.
  • An unfixed image was formed in the same way as the test for measuring the high temperature offset temperature and the low temperature offset temperature, the 100th image was fixed, and the image quality (presence or absence of capri) was confirmed visually.
  • the occurrence of capri is not a problem! When there is a level, no capri is assumed, and when there is a capri that causes a problem, capri is assumed.
  • the image density was measured using a Macbeth photometer.
  • Methyl phthalate 90 90 90 ⁇ Methyl iriphthalate 5 5 5 5 5 PO Raw material monomer-Phthalic anhydride 5 5 5 5 5 Formulation (mol) ⁇ Limelic succinic acid 2.5 2.5 2.5 2.5 Ntilek 'recovered' 100 100 100 100 range Ethylene glycol 'recall 100 100 100 100 ⁇ Glass transition temperature C) 52 52 52 52 Le Weight average molecular weight 1 7000 1 7000 17000 17000 Evaluation
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm. Condensation reaction was performed and free diol generated by the condensation reaction was distilled out of the reaction system to obtain a branched polyester.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm.
  • the condensation reaction was performed and the free diol generated by the condensation reaction was distilled out of the reaction system to obtain a low molecular weight linear polyester.
  • the hydroxyl value of the obtained low molecular weight linear polyester was 38.
  • polymer type MDI 44V20, manufactured by Sumika Bayer Urethane Co., Ltd.
  • the mixture was further melt kneaded at a barrel temperature of 170 ° C. to obtain a resin composition for toner.
  • the toner powder was classified by a classifier (MDS-2, manufactured by Nippon-Umatic) to obtain a toner fine powder having an average particle diameter of about 10 m.
  • MDS-2 manufactured by Nippon-Umatic
  • To 100 parts by weight of the toner fine powder 1.0 part by weight of hydrophobic silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was uniformly mixed (added externally) to produce a toner.
  • a branched polyester was obtained in the same manner as in Example 3.
  • the addition amount of the obtained branched polyester was 92.5 parts by weight, the addition amount of the low molecular weight linear polyester was 5.0 parts by weight, and the addition amount of polymeric MDI (44V20, manufactured by Sumika Bayer Urethane Co., Ltd.) was 2
  • a resin composition for toner was obtained in the same manner as in Example 3 except that the amount was 1 part by weight.
  • a toner was produced in the same manner as in Example 3 using the obtained resin composition for toner.
  • a branched polyester was obtained in the same manner as in Example 3, except that the amount of trimellitic acid added was 4.3 mol.
  • the addition amount of the obtained branched polyester was 70.0 parts by weight
  • the addition amount of low molecular weight linear polyester was 27.5 parts by weight
  • the addition amount of polymeric MDI (44V20, manufactured by Sumika Bayer Urethane Co., Ltd.) was 1.
  • a resin composition for toner was obtained in the same manner as in Example 3 except that the amount was 5 parts by weight.
  • a toner was produced in the same manner as in Example 3 using the obtained resin composition for toner.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm. Condensation reaction was performed and free diol generated by the condensation reaction was distilled out of the reaction system to obtain a branched polyester.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm.
  • the condensation reaction was performed and the free diol generated by the condensation reaction was distilled out of the reaction system to obtain a low molecular weight linear polyester.
  • the hydroxyl value of the obtained low molecular weight linear polyester was measured and found to be 38.
  • polymer type MDI 44V20, manufactured by Sumika Bayer Urethane Co., Ltd.
  • a resin composition for toner was obtained by melt-kneading at a barrel temperature of 170 ° C.
  • the toner powder was classified with a classifier (MDS-2, manufactured by Nippon-Eumatic) to obtain a toner fine powder having an average particle diameter of about 10 m.
  • MDS-2 manufactured by Nippon-Eumatic
  • To 100 parts by weight of the toner fine powder 1.0 part by weight of hydrophobic silica (R972, manufactured by Nippon Aerosil Co., Ltd.) was uniformly mixed (added externally) to produce a toner.
  • a toner was produced in the same manner as in Example 6 using the obtained resin composition for toner.
  • the addition amount of the obtained branched polyester was 70.0 parts by weight, the addition amount of low molecular weight linear polyester was 27.5 parts by weight, and the addition amount of polymeric MDI (44V20, manufactured by Sumika Bayer Urethane Co., Ltd.) was 5.
  • a resin composition for toner was obtained in the same manner as in Example 3 except that the amount was 2 parts by weight.
  • a toner was produced in the same manner as in Example 3 using the obtained resin composition for toner.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm. Condensation reaction was performed and free diol generated by the condensation reaction was distilled out of the reaction system to obtain a linear polyester.
  • a toner was produced in the same manner as in Example 3 using the obtained resin composition for toner.
  • a branched polyester was obtained in the same manner as in Example 3, except that the amount of trimellitic acid added was 5.9 mol.
  • the addition amount of the obtained branched polyester was 92.5 parts by weight, the addition amount of low molecular weight linear polyester was 5.0 parts by weight, and the addition amount of polymeric MDI (44V20, manufactured by Sumika Bayer Urethane Co., Ltd.) was 1.
  • a resin composition for toner was obtained in the same manner as in Example 3, except that the amount was 5 parts by weight.
  • a toner was produced in the same manner as in Example 3 using the obtained resin composition for toner.
  • polyester and toner were used in the same manner as in Examples 1-2 and Comparative Examples 1-2. Measures the molecular weight distribution, glass transition temperature, flow softening temperature, relaxation elastic modulus, high temperature offset temperature, low temperature offset temperature, minimum toner fixing temperature, and blocking properties, filming, image quality (capri Existence and image density) were evaluated. Moreover, the following method evaluated. The results are shown in Table 2.
  • the hydroxyl value of the obtained branched polyester was determined by a method based on JIS K 0070.
  • the acid value was determined by a method based on JIS K 6751 except that tetrahydrofuran (THF) was used instead of ethyl alcohol.
  • the average degree of branching of the branched polyester was calculated from the hydroxyl value (OHV) and number average molecular weight (Mn) of the branched polyester measured as described above.
  • the toner obtained above The peak area (B region) corresponding to the range below the peak molecular weight of the branched polyester before the reaction in the resin composition was determined. From these areas, the area ratio of the peak area in the range below the peak molecular weight of the branched polyester to the total peak area was calculated.
  • the moisture content was calculated
  • a distillation column, water separator, nitrogen gas inlet tube, thermometer and stirring measures were installed in a 60 L reaction vessel according to a conventional method. Under a nitrogen gas atmosphere, 90 mol of terephthalic acid, 5 mol of isophthalic acid, Phthalic anhydride 5 mol, trimellitic acid 2.5 mol, neopentyl glycol 100 mol as diol component, ethylene glycol 100 mol, titan tetrabutoxide (TBB) O. 05 mol as catalyst are generated at 200 ° C The transesterification reaction was carried out while distilling water to be distilled from the distillation tower. The transesterification reaction was completed when water no longer distilled from the distillation column.
  • TAB titan tetrabutoxide
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 Torr or less, 240 ° C, stirring time A condensation reaction was performed at a rotation number of 60 rpm, and free diol generated by the condensation reaction was distilled out of the reaction system to obtain a branched polyester.
  • the hydroxyl value of the obtained branched polyester was measured and found to be 40.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm.
  • the condensation reaction was performed and the free diol generated by the condensation reaction was distilled out of the reaction system to obtain a low molecular weight linear polyester.
  • the hydroxyl value of the obtained low molecular weight linear polyester was 38.
  • the temperature of the branched polyester and the low molecular weight linear polyester was 160 ° C.
  • Continuously supplying 0 parts by weight, and at a barrel temperature of 170 ° C A resin composition for toner was obtained by melt kneading.
  • the kneaded branched polyester and low molecular weight linear polyester were cooled and pulverized, and passed through a 100-mesh sieve to obtain branched polyester and low molecular weight linear polyester before drying.
  • the water content of the branched polyester and the low molecular weight linear polyester before the reaction is represented by the following formula (2).
  • the water content of the branched polyester and the low molecular weight linear polyester before the reaction can be said to be almost the same value as the water content of the branched polyester and the low molecular weight linear polyester when the isocyanate compound is added.
  • the toner powder was classified and removed by a classifier (MDS-2, manufactured by Nihon-Eumatic) to obtain a toner fine powder having an average particle size of about 10 / zm.
  • MDS-2 manufactured by Nihon-Eumatic
  • To 100 parts by weight of the toner fine powder 1.0 part by weight of hydrophobic silica (R972, manufactured by Nippon Aerosil Co., Ltd.) is uniformly mixed (added externally) to prepare toner.
  • toner resin composition and toner were produced in the same manner as in Example 7, except that the opening was a vacuum vent and water was removed under reduced pressure to lOOTorr. did.
  • Pre-reaction branched polyester and low molecular weight linear polyester in the same manner as in Example 7 except that water was removed in a state where the pressure was reduced to lOOTorr from the vent port, and then melted and kneaded without adding the isocyanate compound. When the moisture content of was calculated, it was 0.1% by weight.
  • the resin composition for toner and the toner composition were prepared in the same manner as in Example 7 except that the vent port was closed and the branched polyester and the low molecular weight linear polyester were not able to remove moisture. A toner was produced.
  • Pre-reaction branched polyester and low molecular weight linear polyester in the same manner as in Example 7 except that water was removed in a state where the pressure was reduced to lOOTorr from the vent port, and then melted and kneaded without adding the isocyanate compound. When the moisture content of was calculated, it was 0.6% by weight.
  • the molecular weight of the polyester and toner resin composition was the same as in Examples 1-2 and Comparative Examples 1-2. Measurements of distribution, glass transition temperature, flow softening temperature, relaxation modulus, high temperature offset temperature, low temperature offset temperature, minimum toner fixing temperature, blocking properties, filming, image quality (presence of capri, image density) Evaluation was performed. The results are shown in Table 3. It was.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm. Condensation reaction was performed and free diol generated by the condensation reaction was distilled out of the reaction system to obtain a branched polyester.
  • the hydroxyl value of the obtained branched polyester was measured and found to be 40.
  • the opening to the distillation column of the 60 L reaction vessel is closed and the line from the vacuum pump is opened, the pressure inside the reaction system is reduced to 5 mmHg or less, 240 ° C, stirring speed 60 rpm.
  • the condensation reaction was performed and the free diol generated by the condensation reaction was distilled out of the reaction system to obtain a low molecular weight linear polyester.
  • the hydroxyl value of the obtained low molecular weight linear polyester was 38.
  • fine particles were classified and removed from the toner powder by a classifier (MDS-2, manufactured by Nihon-Eumatic Co., Ltd.) to obtain a toner fine powder having an average particle size of about 10 / zm.
  • MDS-2 manufactured by Nihon-Eumatic Co., Ltd.
  • To 100 parts by weight of the toner fine powder 1.0 part by weight of hydrophobic silica (R972, manufactured by Nippon Aerosil Co., Ltd.) is uniformly mixed (added externally) to prepare toner.
  • Example 9 Using the branched polyester and the low molecular weight linear polyester obtained in Example 9 , in the production of a toner resin composition for a toner, after being melt-kneaded at a barrel temperature of 160 ° C, the branched polyester is not cooled. A toner resin composition and a toner were produced in the same manner as in Example 9, except that the isocyanate was added when the temperature of the polyester and the low molecular weight linear polyester was 160 ° C.
  • Neo helium 'ntylgericol 100 100 low molecular weight linear ethylene glycol 100 100 polyester glass te transition temperature (° c) 54 54
  • the present invention it is possible to provide a resin composition for toner excellent in low-temperature fixability, high-temperature offset resistance and image quality, a toner, and a method for producing the toner resin composition.
  • FIG. La This is a molecular weight distribution curve obtained when the branched polyester (A) before reaction is measured by GPC.
  • FIG. Lb is a molecular weight distribution curve obtained when the resin composition for toner of the present invention and the branched polyester (A) before reaction are measured by GP C.
  • FIG. 2 is a schematic flow chart showing the relationship between the plunger lowering amount and time (temperature) when the flow soft saddle point Tf is determined by the constant temperature heating method.
  • FIG. 3 is a schematic view showing an example of a kneader used for continuously performing the method for producing a resin composition for toner of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

低温定着性及び耐高温オフセット性に優れるトナーを得ることが可能なトナー用樹脂組成物及びトナーを提供することを目的とする。 数平均分子量が2000~7000、水酸基価が20~80の分岐状ポリエステル(A)と、数平均分子量が2000~5000、水酸基価が20~55の低分子量線状ポリエステル(B)との混合物に、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物を反応させてなるトナー用樹脂組成物であって、前記分岐状ポリエステル(A)同士の架橋構造体と、前記分岐状ポリエステル(A)と前記低分子量線状ポリエステル(B)とが前記イソシアネート化合物により結合した構造体と、前記低分子量線状ポリエステル(B)の未反応体とを含有するトナー用樹脂組成物。

Description

明 細 書
トナー用樹脂組成物及びトナー用樹脂組成物の製造方法
技術分野
[0001] 本発明は、低温定着性及び耐高温オフセット性に優れるトナーを得ることが可能なト ナー用榭脂組成物、トナー及び該トナー用榭脂組成物の製造方法に関する。
背景技術
[0002] 電子写真等において静電荷像を現像する方式として、乾式現像方式が多用されて いる。乾式現像方式において、通常、トナーはキャリアと呼ばれる鉄粉、ガラスビーズ 等との摩擦によって帯電し、これが感光体上の静電潜像に電気的引力によって付着 し、次に用紙上に転写され、加熱ローラ等によって定着されて永久可視像となる。
[0003] 定着の方法としては、トナーに対して離型性を有する材料で表面を形成した熱定着 ローラの表面に、被定着シートのトナー画像を圧接触させながら通過せしめることに より行う加熱ローラ法が汎用されている。
[0004] この熱定着ローラ法を用いる場合は、消費電力等の経済性を向上させるため、及び 、複写速度を上げるため、より低温で定着可能なトナーが求められている。
しかしながら、上記の低温定着性を改善しょうとすると、トナーの一部が熱定着ローラ 表面に付着し、それが紙に再転写するといつたオフセット現象が起こりやすくなつたり 、榭脂同士が様々な環境を通して受ける熱によってトナーが凝集するブロッキング現 象が起こりやすくなつたりするといつた問題がある。
[0005] 従来のポリエステル系トナーでは、通常 3官能以上の多官能モノマーを共重合するこ とによって、ポリマー内に化学的架橋構造を形成させ、耐高温オフセット性を保持さ せていた。しかし、このような方法では、低分子量のポリマーから分子量の高い架橋 ポリマーまでが存在することとなり、分子量分布が広くなるため、耐高温オフセット性と 低温定着性とを両立させることが困難であった。
[0006] 特許文献 1には、トナーのバインダー榭脂として、テレフタル酸と炭素数 2〜6の直鎖 型アルキレングリコールから導かれる単位とを全使用モノマー単位に対して 50モル %以上含む結晶性ポリエステル榭脂を用いることが提案されて 、る。 しかしながら、この技術では、結晶性ポリエステル榭脂のみを用いているので、定着 可能な温度幅が狭ぐ低温定着性を損なうことなぐ耐高温オフセット性及び耐ブロッ キング性を保つことが困難であった。
[0007] 特許文献 2には、トナーのバインダー榭脂として、 3価以上の多価単量体、芳香族ジ カルボン酸、及び、分岐鎖を持つ脂肪族アルコールを 50モル%以上含む脂肪族ァ ルコールを重合してなる非結晶性ポリエステル榭脂を用いることが提案されて 、る。 しかしながら、この技術においても、 3価以上の多価単量体、ジカルボン酸、ジォー ル等を用いることから、得られる非結晶性ポリエステルの分子量分布が広くなり、特に 低温定着性が充分ではな力つた。
[0008] また、特許文献 3には、 2塩基のカルボン酸、ジオール及びトリオールを反応してなり 、水酸基価が 6〜: LOOのポリエステルと、所定量のイソシァネートとをスクリューを内蔵 する混練手段を用いて混練、反応させることにより、ゲル分率が所定範囲内であるバ インダー榭脂を製造する方法が開示されている。しかしながら、押出混練機等のスク リューを内蔵する混練手段を用いて混練を行う場合、ポリエステルとイソシァネートと の架橋が不充分となることにより、得られるトナーの耐高温オフセット性が損なわれる ため、所望のトナー性能が得られな力つた。
[0009] また、特許文献 4には、トナーのバインダー榭脂として、 2塩基のカルボン酸、ジォー ル及び 3価以上の多価アルコールを重合してなる水酸基価 30〜80の分岐状ポリエ ステルと、 2塩基のカルボン酸、ジオール及び特定のモノカルボン酸を重合してなる 水酸基価 5以下の低分子量線状ポリエステルとの混合物を、所定量のジイソシァネ ートで反応させて得られるウレタン変性ポリエステルを用いることが提案されている。 通常、分岐状ポリエステルと低分子量線状ポリエステルとの混合物にイソシァネート を反応させると、イソシァネートが分岐状ポリエステルだけでなぐ低分子量線状ポリ エステルの OH基にも反応し、低分子量線状ポリエステルによる低温定着性の発現 が損なわれることがあるが、このような技術では、末端の大部分力 SCOOH基である低 分子量線状ポリエステルを使用するため、低分子量線状ポリエステルとイソシァネー トとが実質的に反応せず、低分子量線状ポリエステルによる低温定着性の発現が期 待できる。 しかしながら、実際には、分岐状ポリエステルとイソシァネートとの反応で生成される 架橋体と、低分子量線状ポリエステルとの間に粘度差があることにより、榭脂の混練 が不充分となり、トナーのバインダー榭脂として用いた場合、画質に不具合が生じる ことがあった。
特許文献 1:特許第 2988703号公報
特許文献 2:特許第 2704282号公報
特許文献 3:特許第 2986820号公報
特許文献 4:特許第 3654766号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記現状に鑑み、低温定着性、耐高温オフセット性及び画質に優れるト ナーを得ることが可能なトナー用榭脂組成物、トナー及び該トナー用榭脂組成物の 製造方法を提供することを目的とする。
課題を解決するための手段
[0011] 本発明は、数平均分子量が 2000〜7000、水酸基価が 20〜80の分岐状ポリエステ ル (A)と、数平均分子量が 2000〜5000、水酸基価が 20〜55の低分子量線状ポリ エステル )との混合物に、 1分子中に 2個以上のイソシァネート基を有するイソシァ ネートイ匕合物を反応させてなるトナー用榭脂組成物であって、前記分岐状ポリエステ ル (A)同士の架橋構造体と、前記分岐状ポリエステル (A)と前記低分子量線状ポリ エステル )とが前記イソシァネート化合物により結合した構造体と、前記低分子量 線状ポリエステル (B)の未反応体とを含有するトナー用榭脂組成物である。
[0012] また、本発明は、分岐状ポリエステル及び低分子量線状ポリエステルをバレル及びス クリューを内蔵する混練機に投入し、溶融する工程 1、前記バレル及びスクリューを内 蔵する混練機の開口部から、前記分岐状ポリエステル及び低分子量線状ポリエステ ルが含有する水分を除去することにより、前記分岐状ポリエステル及び低分子量線 状ポリエステルの含水率を 0. 3重量%以下にする工程 2、及び、含水率を 0. 3重量 %以下にした前記分岐状ポリエステル及び低分子量線状ポリエステルに 1分子中に 2個以上のイソシァネート基を有するイソシァネートイ匕合物を添加し反応させる工程 3 を有するトナー用榭脂組成物の製造方法である。
以下に本発明を詳述する。
[0013] 本発明者らは鋭意検討の結果、分岐状ポリエステルと低分子量線状ポリエステルと の混合物にイソシァネートイ匕合物を反応させ、トナー用榭脂組成物を製造する際に、 末端部分に多数の OH基を有する低分子量線状ポリエステルを用いることで、低分 子量線状ポリエステルによる低温定着性の発現という本来の目的は損なわれず、か つ、榭脂の分散状態を均一にすることができ、低温定着性、耐高温オフセット性及び 画質等のトナー性能に優れるトナーを得ることが可能となることを見出し、本発明を完 成させるに至った。
[0014] 上記分岐状ポリエステル (A)は、ジカルボン酸、ジオール及び 3価以上の多価カル ボン酸又は 3価以上の多価アルコールを反応させてなるものであることが好ましい。 なお、本明細書において、分岐状ポリエステルとは、ポリエステル骨格中に分岐構造 を有するポリエステルのことを 、う。
[0015] 上記ジカルボン酸、ジオール及び 3価以上の多価カルボン酸又は 3価以上の多価ァ ルコールを反応させる方法としては、例えば、上記ジカルボン酸、ジオール及びトリ力 ルボン酸を反応釜に一括投入して、エステル交換反応及び縮合反応させる方法等 により得ることができる。なお、この方法では、トリカルボン酸の添加量が多くなると、 反応が早く進行しすぎて分子量が上昇してしまうことがある。このような場合は、最初 にジカルボン酸とジオールとのエステル交換反応を行 、、エステル交換反応がほぼ 終了した時点でトリカルボン酸を投入し、反応させることで、望ましい物性の分岐状ポ リエステルを得ることができる。
[0016] 上記ジカルボン酸としては、例えば、 o—フタル酸、テレフタル酸、イソフタル酸、コハ ク酸、アジピン酸、セバシン酸、ァゼライン酸、ォクチルコハク酸、シクロへキサンジカ ルボン酸、ナフタレンジカルボン酸、フマル酸、マレイン酸、ィタコン酸、デカメチレン カルボン酸、これらの無水物及び低級アルキルエステル等が挙げられる。なかでも、 結晶性を付与するために、テレフタル酸、ナフタレンジカルボン酸、及び、これらの無 水物及び低級アルキルエステルが好適に用 ヽられる。
[0017] 上記ジオールとしては、例えば、エチレングリコール、 1, 3—プロパンジオール、 1, 4 ブタンジオール、ジエチレングリコール、 1, 5 ペンタンジオール、 1, 6 へキサ ンジオール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコー ル、 1, 2 プロパンジオール、 1, 3 ブタンジオール、 2, 3 ブタンジオール、ネオ ペンチルグリコール(2, 2 ジメチルプロパン 1, 3 ジオール)、 1, 2 へキサン ジオール、 2, 5 へキサンジオール、 2—メチルー 2, 4 ペンタンジオール、 3—メ チルー 1, 3 ペンタンジオール、 2 ェチルー 1, 3 へキサンジオール等の脂肪族 ジオール類; 2, 2 ビス(4 ヒドロキシシクロへキシル)プロパン、 2, 2-ビス(4 ヒド 口キシシクロへキシル)プロパンのアルキレンオキサイド付カ卩物、 1, 4ーシクロへキサ ンジオール、 1, 4ーシクロへキサンジメタノール等の脂環族ジオール類等が挙げられ る。これらのなかでは、脂肪族ジオール類が好ましい。
[0018] 上記 3価以上の多価カルボン酸としては、例えば、トリカルボン酸を用いることができ る。また、上記トリカルボン酸のほか、ピロメリット酸、 1, 2, 7, 8—オクタンテトラカルボ ン酸及びこれらの酸無水物等が挙げられる。なお、これらは単独で用いてもよぐ 2種 以上を併用してもよい。
上記トリカルボン酸としては、例えば、トリメリット酸、 1, 2, 4 シクロへキサントリカル ボン酸、 2, 5, 7 ナフタレントリカルボン酸、 1, 2, 4 ナフタレントリカルボン酸、 1, 2, 5 へキサントリカルボン酸及びこれらの酸無水物等が挙げられる。
[0019] 上記 3価以上の多価アルコールとしては、例えば、ソルビトール、 1, 2, 3, 6 へキサ ンテトラロール、 1, 4ーソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリ ペンタエリスリトール、庶糖、 1, 2, 4 ブタントリオール、 1, 2, 5 ペンタトリオール、 グリセロール、 2 メチルプロパントリオール、 2—メチルー 1, 2, 4 ブタントリオール 、トリメチロールェタン、トリメチロールプロパン、 1, 3, 5 トリヒドロキシメチルベンゼ ン等が挙げられる。なお、これらは単独で用いてもよぐ 2種以上を併用してもよい。
[0020] 上記 3価以上の多価カルボン酸または 3価以上の多価アルコールの添カ卩量の好まし い下限は、ジカルボン酸の添カ卩量に対して 0. 5モル%、好ましい上限は 20モル%で ある。 0. 5モル%未満であると、得られる分岐状ポリエステルの分岐部分が少なくな るため、イソシァネートイ匕合物との反応性が低下することがある。また、イソシァネート 化合物と反応させても充分な架橋密度を有する架橋ポリエステルが得られず、耐高 温オフセット性が不充分となることがある。 20モル%を超えると、架橋密度が上がり、 耐高温オフセット性は向上する力 低温定着性が低下することがある。
[0021] 上記分岐状ポリエステル (A)は、数平均分子量の下限が 2000、上限が 7000である 。 2000未満であると、得られるトナーの耐オフセット性及び耐久性が不充分となるこ とがあり、 7000を超えると、得られるトナーが低温定着性に劣るものとなる。好ましい 上限は 5000である。
[0022] 上記分岐状ポリエステル (A)の水酸基価の下限は 20、上限は 80である。
20未満であると、上記分岐状ポリエステル (A)の架橋反応点が減少することから、得 られる架橋ポリエステルの架橋密度が低くなり、耐高温オフセット性が不充分となり、 80を超えると、上記分岐状ポリエステル (A)の架橋反応点が増え、架橋密度が上が り、耐高温オフセット性は向上するが、低温定着性が低下する。
[0023] 上記分岐状ポリエステル (A)は、平均分岐度の好ましい下限が 2. 1、好ましい上限 が 7. 0である。 2. 1未満であると、上記分岐状ポリエステル (A)の架橋反応点が減少 することから、得られる架橋ポリエステルの架橋密度が低くなつて、耐高温オフセット 性が低下することがあり、 7. 0を超えると、上記分岐状ポリエステル (A)の架橋反応 点が増え、架橋密度が上がり、耐高温オフセット性は向上するが、低温定着性が低 下することがある。
本明細書において、平均分岐度とは、下記式(1)に示すように、分岐状ポリエステル (A) lg当たりの水酸基数 (NOH)を、分岐状ポリエステル (A) lg当たりの分子数 (N )で割ったもののことをいう。なお、 NOHは、数平均分子量(Mn)を用いて、 NOH = lZMnで表され、 Nは、分岐状ポリエステル (A)の水酸基価(OHV)を用いて、 N = OHVX 10"3/56. 1で表される。従って、上記平均分岐度は、 Mn及び OHVを用 いて表すこともできる。
ここで、平均分岐度が 2. 0となる場合は、全てのポリエステルが直鎖ポリエステルで あることを示しており、平均分岐度が 2. 0より大きくなるほど、分岐状ポリエステル (A) の割合が多 、ことを示して 、る。
[0024] [数 1]
B u = N O H/N
= (O H V X 1 0 " 3 / 5 6 . 1 ) / ( 1 /M n ) = O H V X M n X 1 0 - 3ノ5 6 . 1 ( 1 ) [0025] 上記分岐状ポリエステル (A)は、含水率が 0. 1重量%以下であることが好まし 、。 0 . 1重量%を超えると、ポリエステルが加水分解を起こして分子量が大きく低下するこ とがある。
[0026] 上記分岐状ポリエステル (A)の含水率を測定する方法としては特に限定されず、例 えば、 JIS K 7251に準拠してカールフィッシャー法により求める方法や、 JIS K 7 209に準拠して吸水後の重量増分を求める等の方法が挙げられる。
[0027] 上記分岐状ポリエステル (A)は、上記含水率が 0. 1重量%以下であり、かつ、イソシ ァネートイ匕合物のイソシァネート基 (NCO基)に対して水酸基 (OH基)の当量比(O H基 ZNCO基)の好ましい下限が 1、好ましい上限が 28である。 1未満であると、耐 高温オフセット性は向上する力 低温定着性が低下することがある。 28を超えると、 耐高温オフセット性が不充分となることがある。
より好まし 、下限は 4、より好まし!/ヽ上限は 20である。
[0028] 上記分岐状ポリエステル (A)のガラス転移温度の好まし 、下限は 30°C、好まし!/ヽ上 限は 80°Cである。 30°C未満であると、高温耐オフセット性ゃ耐ブロッキング性が充分 に得られず、 80°Cを超えると、低温定着性が劣る。より好ましい下限は 50°C、より好 ましい上限は 65°Cである。
[0029] 上記分岐状ポリエステル (A)のガラス転移温度にっ 、ては、テレフタル酸等の芳香 族ジカルボン酸はガラス転移温度を向上させる働きがあり、セバシン酸やアジピン酸 等の長鎖の脂肪族ジカルボン酸はガラス転移温度を低下させる働きがあるのでこれ らのジカルボン酸を適宜組み合わせることにより目的のガラス転移温度を達成するこ とができる。しかし、芳香族ジカルボン酸と長鎖の脂肪族ジカルボン酸とを適宜組み 合わせること〖こよって目的のガラス転移温度を達成することができたとしても、軟ィ匕温 度が高くなりすぎる傾向がある。
そこで、上記分岐状ポリエステル (A)は、屈曲した分子構造を分子鎖中に導入できる 2価の屈曲モノマー又は分岐鎖を有する 2価のモノマーのいずれかを少なくとも含有 する多価カルボン酸と多価アルコールを含むモノマー混合物を重合させてなることが 好ましい。
これら 2価の屈曲モノマーや分岐鎖を有する 2価のモノマーを含有するモノマー混合 物を重合してなるポリマーは、 目的のガラス転移温度と低い軟ィ匕温度をより容易に両 立させることができる。
[0030] 上記 2価の屈曲モノマーとしては、オルト位又はメタ位がカルボキシル基で置換され た芳香族ジカルボン酸、オルト位又はメタ位がヒドロキシル基で置換された芳香族ジ オール、非対称位置にカルボキシル基を有する多環芳香族ジカルボン酸、非対称位 置にヒドロキシル基を有する多環芳香族ジオール等ポリマーの分子鎖に屈曲した分 子構造を導入できるモノマーであればジカルボン酸ゃジオールに限定されず、例え ば、ジカルボン酸の無水物や低級エステル、モノヒドロキシモノカルボン酸等であって もよぐ例えば、無水フタル酸、 o フタル酸、イソフタル酸、 1, 4 ナフタレンジカル ボン酸、 2, 7 ナフタレンジカルボン酸等のジカルボン酸及びこれらの無水物や低 級エステル;サリチル酸、 3 -ヒドロキシ - 2-ナフタレンカルボン酸等のモノヒドロキシ モノカルボン酸;カテコール、 1, 4ーシクロへキサンジメタノール等のジオールが挙げ られる。
[0031] また、分岐鎖を有する 2価のモノマーは、分岐鎖の立体障害によりポリマーの結晶化 を効果的に抑制する。結晶化を効果的に抑制できる分岐鎖を有するモノマーとして は、分岐アルキル鎖を有する脂肪族ジオールや、分岐アルキル鎖を有する脂環式ジ オール等が挙げられる。なお、脂環式ジオールとしては、複数の脂環式ジオールが 分岐アルキレン鎖により連結された脂環式ジオールが好ましい。
上記分岐鎖を有する 2価のモノマーとしては特に限定されず、例えば、 1, 2—プロパ ンジオール、 1, 3 ブタンジオール、 2, 3 ブタンジオール、ネオペンチルグリコー ル(2, 2 ジメチルプロパン 1, 3 ジオール)、 1, 2 へキサンジオール、 2, 5— へキサンジオール、 2—メチルー 2, 4 ペンタンジオール、 3—メチルー 1, 3 ペン タンジオール、 2 ェチルー 1, 3 へキサンジオール、 2 ブチルー 2 ェチルー 1 , 3 プロパンジオール、 2, 4 ジェチルー 1, 5 ペンタンジオール等の脂肪族ジ オール; 2, 2 ビス(4 ヒドロキシシクロへキシル)プロパン、 2, 2 ビス(4 ヒドロキ シシクロへキシル)プロパンのアルキレンオキサイド付加物等の脂環族ジオール類等 が挙げられる。
[0032] 本発明のトナー用榭脂組成物では、低分子量線状ポリエステル (B)として、数平均 分子量が 2000〜5000、水酸基価が 20〜55であるもの(以下、末端水酸基低分子 量線状ポリエステルとも 、う)を用いる。
上記分岐状ポリエステル (A)と末端水酸基低分子量線状ポリエステルと混合した後、 イソシァネート化合物を反応させた場合、分岐状ポリエステル (A)と末端水酸基低分 子量線状ポリエステルとはともに末端基の大部分が水酸基であるため、分岐状ポリエ ステル (A)同士の架橋構造体及び低分子量線状ポリエステル (B)の未反応体以外 に、分岐状ポリエステル (A)と低分子量線状ポリエステル (B)とがイソシァネートイ匕合 物により結合した構造体が形成される。
このような、分岐状ポリエステル (A)と低分子量線状ポリエステル (B)とがイソシァネ 一トイ匕合物により結合した構造体は、分岐状ポリエステル (A)同士の架橋構造体及 び低分子量線状ポリエステル (B)の未反応体の何れにも相溶しやす!/ヽため、得られ るトナー用榭脂組成物は、適度な架橋密度を有する架橋ポリエステルに低分子量線 状ポリエステル (B)が均一に混合された構成となる。これにより、低温定着性と耐高 温オフセット性のバランスに優れるトナーを作製することが可能となる。また、低分子 量線状ポリエステル (B)が均一に混合された構成となることにより、トナーを製造した 場合に離型剤、着色剤、荷電制御剤、磁性粉等の配合剤との分散性が良好となり、 画質の優れるトナーを作製することが可能となる。
なお、本明細書において、線状ポリエステルとは、エステル構造が直鎖状に存在する ポリエステルのことをいう。但し、上記線状ポリエステルは、末端部がカルボン酸等で 酸変性されたものであってもょ 、。
[0033] 上記低分子量線状ポリエステル (B)として特に限定されず、例えば、ジカルボン酸と ジオールとを縮重合させることにより得られるものを用いることができる。
なお、上記ジカルボン酸及びジオールとしては、上述した分岐状ポリエステル (A)と 同様のものを用いることができる。
[0034] 上記低分子量線状ポリエステル (B)の数平均分子量の好ま 、下限は 2000、好ま しい上限は 5000である。 2000未満であると、得られるトナーの耐ブロッキング性が 不充分となることがあり、 5000を超えると、低温定着性が劣ることがある。
[0035] 上記低分子量線状ポリエステル (B)の水酸基価にっ 、ては平均分子量に応じて決 定される力 下限は 20、上限は 55である。 20未満であると、得られるトナーの低温定 着性が劣り、 55を超えると、耐ブロッキング性が不充分となる。
[0036] 上記低分子量線状ポリエステル (B)のガラス転移温度の好ま 、下限は 30°C、好ま しい上限は 80°Cである。 30°C未満であると、耐ブロッキング性が充分に得られないこ とがあり、 80°Cを超えると、上記低分子量線状ポリエステル (B)の添カ卩により低温定 着性を向上させる効果が充分に発揮されないことがある。
[0037] 上記分岐状ポリエステル (A)と低分子量線状ポリエステル (B)との混合重量比は、 2 0: 80-80: 20であることが好まし!/、。上記分岐状ポリエステル (A)の比率が 20重量 %未満であると、イソシァネートイ匕合物との反応性が低下することがあり、 80重量%を 超えると、低分子量成分が少なくなりすぎ、得られるトナーの低温定着性が低下する ことがある。より好まし 、混合重量比は 30: 70-70: 30である。
[0038] 上記イソシァネートイ匕合物は、 1分子中に 2個以上のイソシァネート基を有する。上記 イソシァネート基が 1分子中に 2個未満であると、架橋ポリエステルの生成が不充分と なり、耐高温オフセット性が低下する。
好ましくは、 1分子中に 3個以上である。 1分子中に 3個以上とすることで、分岐状ポリ エステル (A)とイソシァネートイ匕合物との反応性が向上し、架橋密度が適度なものと なるため、耐高温オフセット性に優れるトナーが得られるトナー用榭脂組成物を製造 することができる。
[0039] 上記イソシァネートイ匕合物において、イソシァネート基の含有量の好ましい下限は上 記分岐状ポリエステル (A) lモルに対して 0. 3モル、好ましい上限は 3モルである。 0 . 3モル未満であると、架橋ポリエステルの生成が不充分となり、耐高温オフセット性 が低下する。 3モルを超えると、架橋に関与しない余剰のイソシァネートイ匕合物が増 加し、イソシァネートイ匕合物自体の物性に近くなることから、低温定着性等の物性が 低下する。
[0040] 上記イソシァネートイ匕合物は 1分子中に 2個以上のイソシァネート基を有する化合物 であれば特に限定されず、例えば、イソホロンジイソシァネート、 2, 4 トリレンジイソ シァネート、 2, 6 トリレンジイソシァネート、へキサメチレンジイソシァネート、トリメチ ルへキサメチレンジイソシァネート、ジフエニルメタン— 4, 4'—ジイソシァネート(MD 1)、水添 MDI、ポリメリック MDI、 1, 5—ナフタレンジイソシァネート、ノルボルナンジ イソシネート、トリジンジイソシァネート、キシリレンジイソシァネート(XDI)、水添 XDI、 リジンジイソシァネート、トリフエ-ルメタントリイソシァネート、トリス (イソシァネートフエ -ル)チォフォスフェート、テトラメチルキシレンジイソシァネート、 1, 6, 10—ゥンデ力 ントリイソシァネート等が挙げられる。
[0041] 本発明では、分岐状ポリエステル (A)、低分子量線状ポリエステル (B)及びイソシァ ネート化合物を反応させた後に、得られるトナー用榭脂組成物の特性を損なわない 範囲で、更に別のポリエステルを添カ卩してもよい。
[0042] 上記別のポリエステルとしては、例えば、上記数平均分子量が 2000〜1万である線 状ポリエステル等が挙げられる。上記数平均分子量が 2000〜1万である線状ポリエ ステル (以下、単に線状ポリエステルともいう)を投入することにより、架橋後に得られ る架橋ポリエステルの架橋密度を適度なものとすることができ、架橋ポリエステルと線 状ポリエステルとを更に均一に混合することができる。
[0043] 上記線状ポリエステルとしては、例えば、ジカルボン酸とジオールとを縮重合させるこ とにより得られるものを用いることができる。
なお、上記ジカルボン酸及びジオールとしては、上述した分岐状ポリエステル (A)と 同様のものを用いることができる。
[0044] 上記線状ポリエステルの数平均分子量の好ましい下限は 2000、好ましい上限は 1万 である。 2000未満であると、トナーの耐ブロッキング性が不充分となることがあり、 1万 を超えると、低温定着性が低下することがある。より好ましい下限は 2500、より好まし い上限は 6000である。
[0045] 本発明にお 、て、上記別のポリエステルを添加する場合、添加量の好ま ヽ上限は 30重量%である。 30重量%を超えると、得られるトナーの低温定着性及び耐高温ォ フセット性が損なわれることがある。より好まし!/、下限は 20重量%である。
[0046] 本発明では、上記分岐状ポリエステル (A)、低分子量線状ポリエステル (B)及びイソ シァネートイ匕合物を水分の存在下で反応させてもよい。このような方法を用いることで 、分子内にウレァ結合を多く有する架橋ポリエステルを製造することができる。これに より、得られる架橋ポリエステルは、耐熱性に優れ、混練時にも熱分解しにくいため、 物性の安定した榭脂となる。
上記水分の存在下で反応させる方法としては、特に限定されず、例えば、原料として 水を含む分岐状ポリエステルを用いる方法や、原料と同時に水を投入する方法等が 挙げられる。
[0047] 原料として水を含むポリエステルを用いる場合、水分量の好ましい下限は 0. 01重量 %、好ましい上限は 1. 0重量%である。 0. 01重量%未満であると、充分なウレァ結 合を形成することができず、 1. 0重量%を超えると、ポリエステルが加水分解を起こし て分子量が大きく低下することがある。
[0048] 本発明では、分岐状ポリエステル (A)、低分子量線状ポリエステル (B)及びイソシァ ネート化合物を反応させた後に、更に多価アルコールを投入することが好ましい。こ れにより、所望の架橋密度を有する架橋ポリエステルを得ることができる。
[0049] 上記多価アルコールとしては特に限定されず、例えば、ソルビトール、 1, 2, 3, 6— へキサンテトラロール、 1, 4ーソノレビタン、ペンタエリスリトール、ジペンタエリスリトー ル、トリペンタエリスリトール、ショ糖、 1, 2, 4—ブタントリオール、 1, 2, 5—ペンタトリ オール、グリセロール、 2—メチルプロパントリオール、 2—メチルー 1, 2, 4ーブタント リオール、トリメチロールェタン、トリメチロールプロパン、 1, 3, 5—トリヒドロキシメチル ベンゼン等が挙げられる。なお、これらは単独で用いてもよぐ 2種以上を併用しても よい。
[0050] 上記多価アルコールの添加量の好ましい下限は 0. 01重量%、好ましい上限は 3. 0 重量%である。 0. 01重量%未満であると、上記多価アルコールの添加効果が充分 に発揮されず、 3. 0重量%を超えると、架橋密度が上がりすぎ、低分子量線状ポリエ ステル (B)の分散性が低下することがある。
[0051] 上記分岐状ポリエステル (A)、低分子量線状ポリエステル (B)及びイソシァネートイ匕 合物を反応させる方法としては、上記イソシァネート反応が充分に進行するような方 法であれば特に限定されず、例えば、イソシァネート反応が充分に進行する温度で、 反応釜や溶融押出機を用いて溶融混練し反応させる方法等が挙げられる。なかでも 、分岐状ポリエステル (A)とイソシァネート化合物との架橋反応を充分に進行させるこ とができ、連続生産が可能である等の理由から、一軸又は二軸方式の押出混練機が 好ましぐ二軸押出混練機がより好ましい。
[0052] 本発明のトナー用榭脂組成物は、上述した方法を用いて製造することにより、分岐状 ポリエステルお)同士からなる架橋構造体と、分岐状ポリエステル (A)と低分子量線 状ポリエステル (B)とがイソシァネートイ匕合物により結合した構造体と、低分子量線状 ポリエステル (B)の未反応体とを含有するものとなる。
[0053] 本発明のトナー用榭脂組成物は、上記分岐状ポリエステル (A)同士力もなる架橋構 造体を有することで、得られるトナーに耐高温オフセット性を保持させることができる。 また、上記低分子量線状ポリエステル (B)の未反応体を有することで、低温定着性の 発現に寄与するものとすることができる。
カロえて、本発明のトナー用榭脂組成物は、分岐状ポリエステル (A)と低分子量線状 ポリエステルお)とがイソシァネートイ匕合物により結合した構造体を有することで、分 岐状ポリエステル (A)同士の架橋構造体と低分子量線状ポリエステル (B)との相溶 性が大幅に向上する。その結果、本発明のトナー用榭脂組成物は、適度な架橋密度 を有する架橋ポリエステルに低分子量線状ポリエステル (B)が均一に混合された構 成となるため、低温定着性と耐高温オフセット性のバランスに優れるトナーを作製す ることが可能となる。また、トナーを作製した場合に離型剤、着色剤、荷電制御剤、磁 性粉等の配合剤の分散性が良好となり画質の優れるトナーを作製することが可能と なる。
[0054] 本発明のトナー用榭脂組成物は、反応前の分岐状ポリエステル (A)のピーク分子量 以下の分子量を有する分岐状ポリエステル (A)の未反応体 (以下、分岐状ポリエステ ル (A)の未反応体とも!ヽぅ)及び低分子量線状ポリエステル (B)を含有することが好 ましい。
なお、本明細書において、上記分岐状ポリエステル (A)の未反応体とは、上記分岐 状ポリエステル (A)、低分子量線状ポリエステル (B)及びイソシァネートイ匕合物との 反応後に残存する成分であって、反応前の分岐状ポリエステル (A)のテトラヒドロフラ ン可溶分をゲルパーミュエーシヨンクロマトグラフィーで測定することにより得られるピ ーク分子量以下の分子量を有する分子量成分の総称を 、 、、これらは分岐状ポリエ ステル (A)のみならず低分子量線状ポリエステル (B)も含んだものに相当する。 [0055] 本発明のトナー用榭脂組成物は、上記分岐状ポリエステルの未反応体 (A)を含有す ることで、得られるトナーを適度な低温定着性を有するものとすることができる。
また、上記分岐状ポリエステル (A)とイソシァネート化合物とからなる架橋構造体と、 上記分岐状ポリエステル (A)の未反応体とは、相溶性が極めて良好である。その結 果、本発明のトナー用榭脂組成物は、適度な架橋密度を有する架橋構造体に、上 記分岐状ポリエステル (A)の未反応体が均一に混合された構成となるため、低温定 着性と耐高温オフセット性のバランスに優れるトナーを作製することが可能となるとと もに、離型剤、着色剤、荷電制御剤、磁性粉等の配合剤の分散性が良好となり画質 の優れるトナーを作製することが可能となる。
[0056] 本発明のトナー用榭脂組成物における分岐状ポリエステル (A)の未反応体の含有 量を測定する方法としては特に限定されないが、本発明のトナー用榭脂組成物のテ トラヒドロフラン可溶分 (以下、 THF可溶分とも 、う)の分子量分布をゲルパーミユエ ーシヨンクロマトグラフィー(以下、 GPCともいう)を用いて測定した場合の、上記反応 前の分岐状ポリエステルのピーク分子量以下の範囲のピーク面積の全ピーク面積に 対する面積比を測定することにより、上記分岐状ポリエステル (A)の未反応体の含有 量の目安とすることができる。
[0057] 上記反応前の分岐状ポリエステル (A)のピーク分子量以下の範囲のピーク面積の全 ピーク面積に対する面積比を測定する手段としては、以下の方法を用いることができ る。
なお、図 la及び bは、反応前の分岐状ポリエステル (A)及び本発明のトナー用榭脂 組成物の THF可溶分を GPCで測定した場合に得られる分子量分布曲線である。 まず、反応前の分岐状ポリエステル (A)の THF可溶分を GPCで測定した場合に得 られる分子量分布曲線(図 la)から、全ピーク面積である A領域の面積を求める。次 いで、破線で示す反応後のトナー用榭脂組成物の分子量分布曲線(図 lb)から、予 め反応前の分岐状ポリエステル (A)の分子量分布曲線を測定することにより求めた ピーク分子量(図 lb中の X)以下の範囲である B領域の面積を求める。そして、 A領域 に対する B領域の面積の割合を算出することにより、上記反応前の分岐状ポリエステ ル (A)のピーク分子量以下の範囲のピーク面積の全ピーク面積に対する面積比を求 めることができる。
[0058] 本発明のトナー用榭脂組成物の THF可溶分の分子量分布を GPCを用いて測定し た場合、反応前の分岐状ポリエステルのピーク分子量以下の範囲のピーク面積は、 全ピーク面積に対して好ましい下限が 20%、好ましい上限が. 45%である。 20%未 満であると、耐高温オフセット性は向上するが、低温定着性が低下することがある。 4 5%を超えると、耐高温オフセット性が不充分となることがある。
[0059] 上記 GPCの測定装置としては特に限定されず、例えば、 HTR— C (日本ミリポアリミ テッド社製)、 GPC- 101 (昭和電工社製)等が挙げられる。
上記 GPCに用いるカラムとしては特に限定されず、例えば、 KF— 800シリーズ (昭 和電工社製)、 TSK-GEL HHRシリーズ (東ソ一社製)等が挙げられる。
[0060] また、本発明のトナー用榭脂組成物では、テトラヒドロフランに不可溶な成分 (ゲル分 )の好ましい下限は 1重量%、好ましい上限は 40重量%である。 1重量%未満である と、耐高温オフセット性が低下することがあり、 40重量%を超えると、低温定着性が不 充分となることがある。
[0061] 本発明のトナー用榭脂組成物は、テトラヒドロフランに浸漬し、常温で 16時間振とうし た後、 200メッシュの金網フィルターで濾過する方法により測定した膨潤率の好まし V、下限が 500%、好まし!/、上限力 000%である。
上記膨潤率は、架橋ポリエステルの架橋密度と関連性があることから、間接的にトナ 一用榭脂組成物中における架橋ポリエステルと線状ポリエステルとの混合の均一性 を示す指標となる。
従って、膨潤率が上記範囲内であると、架橋構造が適度な密度で形成され、かつ、 架橋ポリエステルと線状ポリエステルとが均一に混合されていると考えられることから
、得られるトナーは、低温定着性と耐高温オフセット性とを両立したものとすることがで きる。
500%未満であると、架橋密度が高くなりすぎ、耐高温オフセット性は向上するが、低 温定着性が低下することがある。 4000%を超えると、架橋密度が低くなりすぎ、これ に伴って、耐高温オフセット性が不充分となることがある。より好ましい下限は 700% 、より好ましい上限は 3500%である。 [0062] 本発明のトナー用榭脂組成物は、フロー軟化点の下限が 100°C、上限が 160°Cであ る。 100°C未満であると、耐高温オフセット性が不充分となり、 160°Cを超えると、低 温定着性が低下する。好ましい上限は 150°Cであり、より好ましい上限は 145°Cであ る。
なお、本明細書においてフロー軟ィ匕点とは、例えば、高化式フローテスター(例えば 、島津製作所社製の「CFT— 500型」等)を用い、荷重 20kg/cm2、オリフィス lmm Φ X lmm、予備温度 60°C、予備時間 5分、チャート速度 20mmZ分、プランジャー 1. 0cm2、昇温速度 6±0. 5°CZminの条件下で、目開き 1. 19mmの JIS標準篩を 通過する 1. Ogの測定試料を溶融流出させ、プランジャー降下量と温度との関係を求 めたときに、榭脂の流出開始時におけるプランジャー降下量と、榭脂の流出停止時 におけるプランジャー降下量との中間のプランジャー降下量 hZ2を与えるときの温 度 Tfを意味する。
図 2に、等速昇温法によりフロー軟ィ匕点 Tfを求める際のプランジャー降下量と時間( 温度)との関係を示す図を示した。
[0063] 本発明のトナー用榭脂組成物は、 170°Cの条件下で 450%の剪断ひずみを与えた ときに、上記剪断ひずみを与えてから 0. 1秒後の緩和弾性率 G (0. 1)の好まし
170¾
Vヽ下限が 100Pa、好まし!/ヽ上限が 1500Paである。
本発明者らは鋭意検討の結果、トナーにおけるオフセット現象は、溶融したトナーの 凝集力が、トナーと熱定着ローラとの接着力よりも小さい場合に発生し、トナーの耐高 温オフセット性は、トナー用榭脂組成物の凝集力の大きさと、大変形下でのトナー用 榭脂組成物の緩和弾性率に関係があることを見出した。そして、本発明者らは更に 鋭意検討した結果、一定の緩和弾性率を有するトナー用榭脂組成物を用いれば、ト ナ一の耐高温オフセット性を維持しつつ、低温定着性を改善できることを見出した。 なお、上記緩和弾性率は、例えば、本発明のトナー用榭脂組成物を溶融した後に所 定の大きさの円盤状に成形したものを試験用試料とし、緩和弾性率測定装置 (例え ば、ティー ·エイ 'インスツルメント社製、 ARES等)を用いて測定することができる [0064] 本発明のトナー用榭脂組成物の酸価としては特に限定されないが、好ましい下限が 1、好ましい上限が 30である。このような酸価は、上記架橋ポリエステルや上記線状 ポリエステルの末端の官能基、具体的には例えばカルボキシル基等に起因するもの である。酸価がこの範囲にあると、得られるトナーが低温定着性に優れることに加え、 紙との親和性も向上する。
[0065] 本発明のトナー用榭脂組成物は、例えば、以下に示すトナー用榭脂組成物の製造 方法を用いることにより製造することができる。
本発明のトナー用榭脂組成物の製造方法は、分岐状ポリエステル及び低分子量線 状ポリエステルをバレル及びスクリューを内蔵する混練機に投入し、溶融する工程 1、 前記スクリューを内蔵する混練機の開口部から、前記分岐状ポリエステル及び低分 子量線状ポリエステルが含有する水分を除去することにより、前記分岐状ポリエステ ル及び低分子量線状ポリエステルの含水率を 0. 3重量%以下にする工程 2、及び、 含水率を 0. 3重量%以下にした前記分岐状ポリエステル及び低分子量線状ポリエス テルにイソシァネートイ匕合物を添加し反応させる工程 3を有する方法である。
[0066] 本発明者らは、鋭意検討の結果、分岐状ポリエステル及び低分子量線状ポリエステ ルをバレル及びスクリューを内蔵する混練機に投入し、溶融した後、混練機の開口部 カゝら分岐状ポリエステル及び低分子量線状ポリエステルが含有する水分を除去し、 分岐状ポリエステル及び低分子量線状ポリエステルの含水率を所定の割合に低下さ せた後に、イソシァネートイ匕合物を投入することによって、溶融させた分岐状ポリエス テル及び低分子量線状ポリエステルにイソシァネートイ匕合物を効率よく反応させるこ とが可能となり、低温定着性、耐高温オフセット性及び画質等のトナー性能に優れる トナーを得ることが可能となることを見出し、本発明を完成させるに至った。
[0067] 本発明のトナー用榭脂組成物の製造方法では、バレル及びスクリューを内蔵する混 練機を用いる。このような混練機を用いることによって、分岐状ポリエステル及び低分 子量線状ポリエステルとイソシァネートイ匕合物とを連続的に供給し混練することができ 、かつ、分岐状ポリエステル及び低分子量線状ポリエステルとイソシァネートイ匕合物と の架橋反応を充分に進行させることができるため、本発明のトナー用榭脂組成物を 連続的に製造することが可能となる。
[0068] 上記バレル及びスクリューを内蔵する混練機としては特に限定されないが、一軸押出 混練機、二軸同方向押出混練機、ニ軸異方向押出混練機等の二軸押出混練機、四 軸押出混練機、フィーダ一ルーダー、ニーダー、射出成形機等を使用することができ る。なかでも、二軸押出混練機が好ましい。
[0069] 上記バレル及びスクリューを内蔵する混練機は、上流側から、分岐状ポリエステル及 び低分子量線状ポリエステルを供給するための供給部、前記分岐状ポリエステル及 び低分子量線状ポリエステルが含有する水分を除去するための開口部、及び、イソ シァネートイ匕合物を添加するための添加部をこの順に有することが好ましい。
このような構造を有することによって、分岐状ポリエステル及び低分子量線状ポリエス テルを溶融し、分岐状ポリエステル及び低分子量線状ポリエステルが含有する水分 を除去した後、イソシァネートイ匕合物を添加することによって、架橋反応させることが できる。
[0070] 図 3は、本発明のトナー用榭脂組成物の製造方法を行うためのスクリューを内蔵する 混練機の一例を示した模式図である。図 3に示すように、押出混練機 1には、上流側 から供給部 2、開口部 3及び添加部 4がこの順で設置されている。
本発明では、まず分岐状ポリエステル及び低分子量線状ポリエステルを定量フィー ダーを用いて供給部 2から連続的に供給し、加熱することにより溶融混練する。その 後、開口部 3から分岐状ポリエステル及び低分子量線状ポリエステルが含有する水 分を除去し、分岐状ポリエステルを所定の含水率とした後に、添加部 4からイソシァネ ート化合物を連続的に供給する。そして、更に溶融混練することによって、分岐状ポ リエステル及び低分子量線状ポリエステルとイソシァネートイ匕合物とを反応させること により、トナー用榭脂組成物を製造することができる。
[0071] 上記スクリューを内蔵する混練機は、スクリューの直径 (D)に対する長さ (L)の比 (L ZD)の好ましい下限が 20、好ましい上限が 100である。 20未満であると、スクリュー の長さが短いため、溶融、脱水、混練、反応等が不充分となることがある。 100を超え ると、加熱時間が長くなり、生成した架橋ポリエステルが熱分解や熱劣化をすることか ら、耐高温オフセット性を改善できないことがある。より好ましい下限は 30、より好まし い上限は 60である。
[0072] 上記スクリューは、上記開口部から効率良く水分の除去を行うために、上記分岐状ポ リエステル及び低分子量線状ポリエステルを溶融する工程 1の後、及び、上記イソシ ァネートイ匕合物を添加する工程 3の前に、それぞれシール構成を有することが好まし い。このようなシール構成を有することによって、上記分岐状ポリエステルが含有する 水分を安定的に除去することが可能となる。
上記シール構成としては特に限定されないが、例えば、二軸同方向押出機を使用す る場合には、逆ネジのスクリュー、ニーデイングディスク、シールリング等を使用するこ とがでさる。
[0073] 上記開口部は、該開口部から上記分岐状ポリエステルが含有する水分を除去できる ものであれば特に限定されないが、例えば、ベント口であることが好ましぐ減圧装置 が取り付けられたベント口であって、ベント口の内部及びスクリューの一部を減圧し、 真空雰囲気にすることが可能な真空ベント口であることがより好ま 、。
上記スクリューを内蔵する混練機の開口部を真空ベント口とすることによって、上記 分岐状ポリエステルが含有する水分を減圧した状態で除去することが可能となるため 、効果的に水分を除去することができる。
[0074] 上記開口部は、大気圧の下で上記分岐状ポリエステルが含有する水分を除去するこ とができるものであればよいが、上記真空ベント口を有する場合には、減圧装置を用 いて減圧することによって、上記分岐状ポリエステルの含水率を効果的に低下するこ とが可能となる。上記真空ベント口を用いて減圧する場合には、真空度の好ましい上 限は 200Torr、より好ましい上限は 100Torr、更に好ましい上限は 30Torrである。
[0075] 上記開口部において、上記スクリューの直径 (D)に対する長さ (L)の比 (LZD)の好 ましい下限は 1、より好ましい下限は 5である。上記開口部における上記スクリューの 長さは、長ければ長い程水分を充分に除去することが可能となるが、使用する混練 機の全長とのバランスが重要である。
[0076] 本発明のトナー用榭脂組成物の製造方法は、分岐状ポリエステル及び低分子量線 状ポリエステルをバレル及びスクリューを内蔵する混練機に投入し、溶融する工程 1 を有する。
上記分岐状ポリエステル及び低分子量線状ポリエステルを溶融する温度としては特 に限定されないが、好ましい下限は 50°C、好ましい上限は 200°Cである。 50°C未満 であると、分岐状ポリエステル及び低分子量線状ポリエステルを充分に溶融すること ができないことがある。 200°Cを超えると、分岐状ポリエステル及び低分子量線状ポリ エステルが熱分解や熱劣化するため、得られるトナーの耐高温オフセット性が悪ィ匕す ることがある。
[0077] 上記工程 1においては、更に分岐状ポリエステル及び低分子量線状ポリエステルを 1 20°C以上に加熱して溶融することが好ましい。 120°C以上に加熱することにより、分 岐状ポリエステル及び低分子量線状ポリエステル中に含まれる水分、揮発成分等を 除去することができる。
上記分岐状ポリエステル及び低分子量線状ポリエステルを溶融する際の温度の好ま しい上限は 180°Cである。 180°Cを超えると、分岐状ポリエステルが熱分解や熱劣化 するため、得られるトナーの耐高温オフセット性が悪ィ匕することがある。
[0078] 本発明のトナー用榭脂組成物の製造方法は、上記スクリューを内蔵する混練機の開 口部から、上記分岐状ポリエステルが含有する水分を除去することにより、上記分岐 状ポリエステルの含水率を 0. 3重量%以下にする工程 2を有する。
従来の分岐状ポリエステル力 水分を除去する方法では、予め固体状態の分岐状ポ リエステルを真空乾燥する等の方法が採られていた。し力しながら、この方法では、 分岐状ポリエステルの含水率を 0. 3重量%以下に安定させるために 20時間以上必 要となったり、分岐状ポリエステルの融点が低いため加熱する際に合着したり、分岐 状ポリエステルの内部に微量の水分が残存したり、混練機に投入するまでのわずか な時間に空気中の水分を吸収してしまったりすることがあった。これに対して、本発明 では、上記分岐状ポリエステルが含有する水分を除去する際に、分岐状ポリエステル を溶融状態にしておくことによって分岐状ポリエステルから充分に水分を除去し、か つ、水分を除去した分岐状ポリエステルを連続工程でイソシァネートイ匕合物と反応さ せることから、水分による反応の阻害がほとんど起こらな 、。
[0079] 上記分岐状ポリエステルが含有する水分を除去する際、上記分岐状ポリエステルの 温度としては特に限定されないが、好ましい下限は 80°Cである。 80°C未満であると、 溶融した上記分岐状ポリエステル力も効率良く水分を除去できな 、ことがある。より好 ましい下限は 100°Cである。
[0080] 上記工程 2においては、溶融した分岐状ポリエステル及び低分子量線状ポリエステ ルを 90〜 130°Cに制御することが好ま 、。上記分岐状ポリエステル及び低分子量 線状ポリエステルを 90〜130°Cに制御することによって、後述するように、添加したィ ソシァネートイ匕合物を分岐状ポリエステル及び低分子量線状ポリエステル中で微分 散させることが可會となる。
なお、上述のように本発明のトナー用榭脂組成物の製造方法においては、工程 1で 分岐状ポリエステルを 120°C以上に加熱することが好ましいが、上記分岐状ポリエス テル及び低分子量線状ポリエステルを供給した後、速やかに 120°C以上とするため には、通常、供給部 2付近においてバレルを強加熱する必要がある。従って、何らか の冷却を行って温度を制御しない限り、分岐状ポリエステル及び低分子量線状ポリ エステルの温度は溶融後にも 120°Cを超えて上昇していく。本発明のトナー用榭脂 組成物の製造方法にお!ヽては、この分岐状ポリエステル及び低分子量線状ポリエス テルの温度上昇を抑えて 90〜 130°Cに制御することが重要である。
上記分岐状ポリエステル及び低分子量線状ポリエステルの温度を 90〜 130°Cに制 御する方法としては特に限定されず、例えば、バレル及びスクリューを有する混練機 のバレル又はスクリューを冷却水等により冷却する方法等が挙げられる。
[0081] 水分を除去した上記分岐状ポリエステル及び低分子量線状ポリエステルの含水率の 上限は 0. 3重量%である。 0. 3重量%を超えると、分岐状ポリエステルが含有する水 分力、分岐状ポリエステル及び低分子量線状ポリエステルとイソシァネートイ匕合物と の反応を阻害するため、得られるトナー用榭脂組成物の粘度を充分に高くすることが できず、トナーとして耐高温オフセット性を発現することができなくなる。好ましい上限 は 0. 1重量%である。
[0082] 本発明のトナー用榭脂組成物の製造方法は、含水率を 0. 3重量%以下にした上記 分岐状ポリエステル及び低分子量線状ポリエステルに、 1分子中に 2個以上のイソシ ァネート基を有するイソシァネートイ匕合物を添加し反応させる工程 3を有する。
0. 3重量%以下の含水率を有する分岐状ポリエステル及び低分子量線状ポリエステ ルに、イソシァネートイ匕合物を添加することによって、これらの反応が水分によって阻 害されることなぐ充分に反応が進行し、架橋ポリエステルを生成することが可能とな る。 [0083] 上記工程 3において、上記イソシァネートイ匕合物を添加する際の上記分岐状ポリエス テル及び低分子量線状ポリエステルの温度の好ま U、下限は 90°C、好ま 、上限は 130°Cである。 90°C未満であると、分岐状ポリエステル及び低分子量線状ポリエステ ルの溶融粘度が高くなり過ぎ、イソシァネートイ匕合物を添加しても微分散させることが できないため、均一かつ適度な架橋構造を有する架橋ポリエステルが形成されず、 得られるトナーが耐高温オフセット性を発現できないことがある。 130°Cを超えると、ィ ソシァネートイ匕合物を添加した場合、イソシァネートイ匕合物が充分に分散する前に分 岐状ポリエステル及び低分子量線状ポリエステルとイソシァネートイ匕合物との反応が 開始してしまい、イソシァネートイ匕合物を微分散させることができないため、均一かつ 適度な架橋構造を有する架橋ポリエステルが形成されず、得られるトナーが耐高温 オフセット性を発現できな 、ことがある。
[0084] このように上記イソシァネートイ匕合物を添加する際の上記分岐状ポリエステル及び低 分子量線状ポリエステルの温度を 90〜130°Cとすることによって、分岐状ポリエステ ル及び低分子量線状ポリエステルとイソシァネートイ匕合物との反応が進行してしまう 前に、分岐状ポリエステル及び低分子量線状ポリエステルに対してイソシァネートイ匕 合物を充分に分散させることができるため、均一かつ適度な架橋構造を有するトナー 用榭脂組成物を製造することが可能となり、得られるトナーを、低温定着性、耐高温 オフセット性等のトナー性に優れるものとすることができる。
[0085] 上記イソシァネートイ匕合物を添加した後の混練温度としては、分岐状ポリエステル及 び低分子量線状ポリエステルとイソシァネートイ匕合物との架橋反応が充分に進行して 、架橋ポリエステルを得ることができる温度であれば特に限定されないが、好ましい下 限は 100°C、好ましい上限は 230°Cである。 100°C未満であると、架橋反応が進行し にくぐ架橋ポリエステルの生成が不充分となることがある。 230°Cを超えると、生成し た架橋ポリエステルが熱分解や熱劣化することにより、耐高温オフセット性を改善でき な!、ことがある。より好まし!/ヽ上限は 200°Cである。
[0086] 上記分岐状ポリエステル及び低分子量線状ポリエステルに上記イソシァネート化合 物を添加した後、上記押出混練機内での滞留時間の好ましい下限は 3分、好ましい 上限は 30分である。 3分未満であると、分岐状ポリエステル及び低分子量線状ポリエ ステルとイソシァネートイ匕合物との架橋反応が不充分となることがある。 30分を超える と、生成した架橋ポリエステルが熱分解や熱劣化することにより、耐高温オフセット性 を改善できな 、ことがある。より好ま U、上限は 20分である。
[0087] 本発明のトナー用榭脂組成物をバインダー榭脂として用いて、必要に応じて、離型 剤、着色剤、電荷制御剤、磁性体、ゴム状ポリマー、スチレン アクリル酸エステル共 重合体からなるトナー用榭脂、キャリア、クリーニング性向上剤等と混合することにより 、トナーを製造することができる。このようなトナーもまた、本発明の 1つである。
なお、本発明のトナーは、本発明のトナー用榭脂組成物を用いることにより低温定着 性及び耐高温オフセット性の両方に優れて ヽることから、離型剤を含有して ヽなくて ちょい。
[0088] 上記離型剤としては特に限定されず、例えば、ポリプロピレンワックス、ポリエチレンヮ ッタス、マイクロクリスタリンワックス、酸化ポリエチレンワックス等のォレフィン系ワックス やパラフィン系ワックス;カルナバワックス、サゾールワックス、モンタン酸エステルヮッ タス等の脂肪族エステル系ワックス;脱酸カルナバワックス;バルチミン酸、ステアリン 酸、モンタン酸等の飽和脂肪族酸系ワックス;プラシジン酸、エレォステアリン酸、バリ ナリン酸等の不飽和脂肪族酸系ワックス;ステアリルアルコール、ァラルキルアルコー ノレ、ベへ-ノレァノレコーノレ、カノレナゥビノレアノレコーノレ、セリノレアノレコーノレ、メリシノレアノレ コール等の飽和アルコール系ワックスや脂肪族アルコール系ワックス;ソルビトール等 の多価アルコール系ワックス;リノール酸アミド、ォレイン酸アミド、ラウリン酸アミド等の 飽和脂肪酸アミド系ワックス;メチレンビスステアリン酸アミド、エチレンビス力プリン酸 アミド、エチレンビスラウリン酸アミド、へキサメチレンビスステアリン酸アミド等の飽和 脂肪酸ビスアミド系ワックス;エチレンビスォレイン酸アミド、へキサメチレンビスォレイ ン酸アミド、 N, N,ージォレイルアジピン酸アミド、 N, N,ージォレイルセバシン酸アミ ド等の不飽和酸アミド系ワックス; m キシレンビスステアリン酸アミド、 N, N,—ジステ ァリルイソフタル酸アミド等の芳香族ビスアミド系ワックス;ステアリン酸カルシウム、ラ ゥリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の脂肪酸金属塩; スチレンやアクリル酸等のビュル系モノマーをポリオレフインにグラフト重合させたダラ フト変性ワックス;ベへニン酸モノグリセリド等の脂肪酸と多価アルコ一ルとを反応させ た部分エステルワックス;植物性油脂を水素添加して得られるヒドロキシル基を有する メチルエステルワックス;エチレン成分の含有割合が高いエチレン 酢酸ビュル共重 合体ワックス;アクリル酸等の飽和ステアリルアタリレートワックス等の長鎖アルキルァ タリレートワックス;ベンジルアタリレートワックス等の芳香族アタリレートワックス等が挙 げられる。なかでも、長鎖アルキルアタリレートワックスや芳香族アタリレートワックスは 、トナー用榭脂組成物との相溶性に優れ透明性の高いトナーが得られることから好適 である。これらの離型剤は単独で用いてもよいし、 2種以上を併用してもよいが、特に 融点が 30°C以上異なる 2種以上の離型剤を併用することが好ましい。
上記離型剤のトナー中における大きさとしては特に限定されないが、長径が 2 m以 下であることが好ましい。
[0089] 上記着色剤としては特に限定されず、例えば、ファーネスブラック、ランプブラック、サ 一マルブラック、アセチレンブラック、チャンネルブラック等のカーボンブラック、ァニリ ンブラック、フタロシア-ンブルー、キノリンイェローランプブラック、ローダミン B、ァ ゾ系顔料、ペリレン系顔料、ペリノン系顔料、アントラキノン系顔料、ジォキサジン系 顔料、イソインドリン系顔料、イソインドリノン系顔料、スレン系顔料、インジコ系顔料、 キノフタロン、ジケトピロロピロール、キナクリドン等が挙げられる。
これらの着色剤の配合量の好ましい下限は、通常、トナー用榭脂組成物 100重量部 に対して 1重量部、好ましい上限は 10重量部である。
[0090] 上記電荷制御剤には、正帯電用と負帯電用との 2種類がある。上記正帯電用電荷制 御剤としては、例えば、ニグ口シン染料、アンモニゥム塩、ピリジ-ゥム塩、ァジン等が 挙げられ、負帯電用電荷制御剤としては、例えば、クロム錯体、鉄錯体等が挙げられ る。なかでも、酸変性荷電制御剤が好適であり、サリチル酸変性であるとトナー用榭 脂組成物と架橋してゴム弾性を発現する。ジ tert ブチルサリチル酸クロム錯体ジ tert ブチルサリチル酸亜鉛錯体等のアルキル置換サルチル酸の金属錯体は、 無色又は淡色であるためトナーの色調に影響を与えないので好ましい。また、上記 電荷制御剤としては、荷電制御榭脂(CCR)も好適に用いることができる。上記荷電 制御榭脂としては、例えば、 4級アンモ-ゥム塩を含むモノマー、有機フッ素系モノマ 一、スルホン酸基含有モノマー、フエ-ルマレイミド系モノマー等を共重合したスチレ ンアクリルポリマー等が挙げられる。
これらの電荷制御剤の配合量の好ましい下限は、通常、トナー用榭脂組成物 100重 量部に対して 0. 1重量部、好ましい上限は 10重量部である。
[0091] 上記磁性体としては、例えば、商品名「TAROX BLシリーズ」(チタン工業社製)、 商品名「EPTシリーズ」、商品名「MATシリーズ」、商品名「MTSシリーズ」(いずれも 戸田工業社製)、商品名「DCMシリーズ」(同和鉄粉社製)、商品名「KBCシリーズ」 、商品名「KBIシリーズ」、商品名「KBFシリーズ」、商品名「KBPシリーズ」(いずれも 関東電ィ匕工業社製)、商品名「BayOXide Eシリーズ」(Bayer AG社製)等が挙げ られる。
なお、従来のトナーでは、上記磁性体を添加した場合、トナー中の樹脂の比率が非 磁性トナーに比べて低下することや、定着ローラの-ップ圧を高めることにより、耐高 温オフセット性が発現しにくい傾向になる力 本発明のトナーでは、磁性体を添加し た場合であっても、良好な耐高温オフセット性を発現させることが可能となる。このよう に磁性体を添加した場合でも優れた耐高温オフセット性を実現できる理由の 1つとし ては、本発明のトナー用榭脂組成物では、イソシァネート基が榭脂中に高分散して おり、これに伴い、トナーに添加した極性基を有する離型剤についても良好に分散さ れることが挙げられる。
このように本発明の榭脂組成物は、通常用いられるトナーの中でも、トナー全体に占 める樹脂の比率が最も低いと考えられる磁性一成分トナーにおいて、良好な耐高温 オフセット性を発現させることができることから、あらゆるトナーに適応することができる
[0092] 上記ゴム状ポリマーとしては、例えば、天然ゴム、ポリイソプレンゴム、ポリブタジエン ゴム、二トリルゴム(アクリロニトリル—ブタジエン共重合体)、クロロプレンゴム、ブチル ゴム、アタリノレゴム、ポリウレタンエラストマ一、シリコーンゴム、エチレン プロピレン共 重合体、エチレン プロピレン ジェン共重合体、クロロスルフィン化ポリエチレン、 エチレン酢酸ビニル共重合体、エチレン アクリル酸共重合体、エチレン アクリル 酸エステル共重合体、塩素化ポリエチレン、ェピクロロヒドリンゴム、二トリルイソプレン ゴム等の合成ゴム、ポリエステルエラストマ一、ウレタンエラストマ一等のエラストマ一、 スチレン一ブタジエン一スチレンブロック共重合体、スチレン一イソプレン一スチレン ブロック共重合体、スチレン一エチレンブチレン一スチレンブロック共重合体、スチレ ンーエチレンプロピレン スチレンブロック共重合体等の芳香族炭化水素と共役ジェ ン系炭化水素とのブロック共重合体が挙げられる。なお、ブロック共重合体にはスチ レン ブタジエンブロック共重合体やスチレン イソプレンブロック共重合体等が混 合されてあってもよぐこれらの水素添加物が混合されてあつてもよい。
また、末端に水酸基、カルボキシル基、アルデヒド基、スルホニル基、シァノ基、ニトロ 基、ハロゲン基等の極性基を有する芳香族炭化水素と共役ジェンとのブロック共重 合体力もなるゴム状ポリマーは、トナーとの親和性に優れるので好ましい。これら末端 に極性基を有するブロック共重合体はリビング重合により得ることができる。
ゴム状ポリマーは、トナーに含まれる榭脂の樹脂強度を向上させることができる。よつ て、ゴム状ポリマーを含有するトナーは、トナーのフィルミング現象を防止することがで き、また、高い榭脂強度が必要な非磁性 1成分トナーに好適なトナーが得られる。
[0093] 上記キャリアとしては、例えば、鉄、ニッケル、銅、亜鉛、コバルト、マンガン、クロム、 希土類等の金属単体、合金、酸化物、フ ライト等が挙げられる。キャリアは表面が酸 化されていてもよい。また、キャリア表面がポリテトラフルォロエチレン、モノクロロトリフ ルォロエチレンポリマー、ポリフッ化ビ-リデン、シリコーンポリマー、ポリエステル、ジ tert ブチルサリチル酸の金属錯体、スチレン系ポリマー、アクリル系ポリマー、ポ リアミド、ポリビニルブチラール、ニグ口シン塩基性染料、シリカ粉末、アルミナ粉末等 で被覆されて ヽてもよ ヽ。キャリアを被覆することにより好まし 、摩擦帯電性をキャリア に付与することができる。
[0094] 上記クリーニング性向上剤としては、トナー粒子と混合することによりトナーの流動性 が向上するものであれば特に限定されない。トナーの流動性が向上するとトナーがク リー-ングブレードに付着しに《なる。例えば、フッ化ビ-リデンポリマー等のフッソ 系ポリマー粉末、アクリル酸エステルポリマー等のアクリル系ポリマー粉末、ステアリン 酸亜鉛、ステアリン酸カルシウム、ステアリン酸鉛等の脂肪酸金属塩粉末、酸化亜鉛 粉末、酸化チタン粉末等の金属酸化物粉末、微粉末シリカ粉末、シランカップリング 剤やチタンカップリング剤やシリコンオイル等により表面処理が施されたシリカ粉末、 ヒュームドシリカ等が挙げられる。また、上記クリーニング性向上剤としては、アクリル 系ポリマーやスチレン系ポリマー等からなる粒径 0. 05〜0. 5 mの球体も好適に用 いることがでさる。
[0095] 本発明のトナーは、ゲルパーミュエーシヨンクロマトグラフィーで測定したときに、重量 平均分子量が 2000以下の位置にピークが認められることが好まし 、。これにより定 着性が向上する。また、本発明のトナーは、ゲルパーミュエーシヨンクロマトグラフィー で測定したときに、重量平均分子量が 1万以上の位置にピークが認められることが好 ましい。これにより耐水性が向上する。
[0096] 本発明のトナーの粒径としては特に限定されないが、 5 m以下である場合には特に 高い画質が得られる。
本発明のトナーの含水分量としては特に限定されないが、好ましい下限は 0. 01重 量%、好ましい上限は 0. 2重量%である。 0. 01重量%未満であると、製造上の問題 力 製造が困難となり、 0. 2重量%を超えると、充分な帯電安定性が得られないこと がある。
本発明のトナーの安息角としては特に限定されないが、 23°C、湿度 60%における安 息角の好ましい下限は 1度、好ましい上限は 30度である。 1度未満であると、トナーの ハンドリングが困難となることがあり、 30度を超えると、トナーの流動性が不足すること がある。なお、上記トナーの安息角は、例えば、ノ ウダ一テスター(例えば、ホソカワミ クロン社製 PT—N型等)等により測定することができる。
[0097] 本発明のトナーの表面粗さとしては特に限定されないが、好ましい下限は 0. 01 m 、好ましい上限は 2 μ mである。 0. 01 μ m未満であると、印字を行うことが困難となる ことがあり、 2 mを超えると得られる画像の表面光沢が不充分となることがある。なお 、上記表面粗さは、本発明のトナーを用いて印字した画像の印字部を JIS B 0601 に算術平均粗さ (Ra)の測定方法として規定される方法により測定することができる。
[0098] 本発明のトナーは、低温力 高温にわたる広い範囲で良好な定着性を発現すること ができ、低温定着性と耐高温オフセット性、耐ブロッキング性との両方に優れることか ら、スィッチをいれてから印刷が可能になるまでの時間を短縮することができるので、 経済的であり、更に、ローラの温度が下がっても画像の鮮明性を維持することができ るので、印刷の高速ィ匕を図ることができる。本発明のトナーは、画像再現性に優れる
[0099] また、本発明のトナーは、離型オイルが塗布された定着ローラにより定着されてもよい 力 定着ローラに離型オイルが塗布されていなくても良好な定着性を発現することが できる。
発明の効果
[0100] 本発明によれば、低温定着性及び耐高温オフセット性に優れるトナーを得ることが可 能なトナー用榭脂組成物、トナー及び該トナー用榭脂組成物の製造方法を提供でき る。
発明を実施するための最良の形態
[0101] 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。
[0102] (実施例 1)
(1)分岐状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸 9 0モル、屈曲モノマー成分としてイソフタル酸 5モル、無水フタル酸 5モル、 3価以上の 多価単量体として、トリメリット酸 2. 5モル、分岐モノマー成分としてネオペンチルグリ コール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮合 触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する水 を蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より水が留出しなくな つた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、分岐状ポリエステルを得た。
なお、得られた分岐状ポリエステルの水酸基価を測定したところ、 40であった。
[0103] (2)低分子量線状ポリエステルの製造 60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸ジ メチル 90モル、屈曲モノマー成分としてイソフタル酸ジメチル 10モル、ネオペンチル グリコール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮 合触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する 水及びメタノールを蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より 水が留出しなくなつた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、低分子量線状ポリエステルを得た。なお、得られた低分子量線状ポリエ ステルの水酸基価を測定したところ、 38であった。
[0104] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステル 68. 2重量部と低分子量線状ポリエステル 29. 3重量部 とを定量フィーダ一を用いて二軸押出機 (池貝社製、 L/D = 37)に連続的に供給し 、バレル温度 120°Cで溶融混練した後、二軸押出機の第一ベント口より揮発成分を 除去した。
次いで、二軸押出機の第二ベント口から 1分子中に 2個以上のイソシァネート基を有 するポリメリック型 MDI (44V20、住化バイエルウレタン社製) 2. 5重量部を連続的に 供給し、更にバレル温度 170°Cで溶融混練を行うことにより、トナー用榭脂組成物を 得た。
[0105] (4)トナーの製造
得られたトナー用榭脂組成物 100重量部に荷電制御剤(S— 34、オリエント化学社 製) 1重量部、カーボンブラック 5重量部(MA— 100、三菱化学社製)、カルナバヮッ タス 3. 5重量部(融点 83°C)をヘンシェルミキサーで充分に混合した後、 130°Cで溶 融混練し、冷却、粗粉砕した。その後、ジェットミル (ラボジェット、日本-ユーマチック 社製)で微粉砕して、平均粒径約 8〜12 1!1のトナー粉末を得た。更に、このトナー 粉末を分級機 (MDS— 2、日本-ユーマチック社製)で分級して、平均粒径約 10 mのトナー微粉末を得た。このトナー微粉末 100重量部に、疎水性シリカ (R972、 日 本ァエロジル社製) 1. 0重量部を均一に混合 (外添)してトナーを製造した。
[0106] (実施例 2)
トナー用榭脂組成物の製造において、分岐状ポリエステルの添加量を 39重量部、低 分子量線状ポリエステルの添力卩量を 58. 5重量部、ポリメリック型 MDI (44V20、住 化バイエルウレタン社製)の添加量を 2. 5重量部とした以外は、実施例 1と同様にし てトナー用榭脂組成物及びトナーを製造した。
[0107] (比較例 1)
トナー用榭脂組成物の製造において、分岐状ポリエステルの添加量を 97. 5重量部 、低分子量線状ポリエステルの添加量を 0重量部、ポリメリック型 MDI (44V20、住化 バイエルウレタン社製)の添加量を 2. 5重量部とした以外は、実施例 1と同様にしてト ナー用榭脂組成物及びトナーを製造した。
[0108] (比較例 2)
(1)低分子量線状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸ジ メチル 90モル、屈曲モノマー成分としてイソフタル酸ジメチル 10モル、ネオペンチル グリコール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮 合触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する 水及びメタノールを蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より 水が留出しなくなつた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、ポリエステノレを得た。
得られたポリエステルの全量に対して無水トリメリット酸 13モルを加え、 200°Cで約 1 時間反応させることにより、低分子量線状ポリエステルを得た。なお、得られた低分子 量線状ポリエステルの酸価を測定したところ、 53であり、水酸基価を測定したところ、 2であった。
[0109] 次いで、トナー用榭脂組成物の製造において、実施例 1の分岐状ポリエステルの添 カロ量を 68. 2重量部とし、得られた低分子量線状ポリエステルの添力卩量を 29. 3重量 部、ポリメリック型 MDI (44V20、住化バイエルウレタン社製)の添力卩量を 2. 5重量部 とした以外は、実施例 1と同様にしてトナー用榭脂組成物及びトナーを製造した。
[0110] (評価)
実施例 2及び比較例 1、 2で作製したトナー用榭脂組成物又はトナーについて、 以下の方法により評価を行った。結果を表 1に示した。
[0111] [ポリエステル及びトナー用榭脂組成物の分子量の測定]
GPC測定装置として、日本ミリポアリミテッド社製の HTR—Cを用い、カラムには昭和 電工社製の KF— 800P ( 1本)、 KF— 806M (2本)、 KF— 802. 5 ( 1本)を直列に つな!/ヽで使用し、重量平均分子量 (Mw)及び数平均分子量 (Mn)を測定した。測定 条件は、温度は 40°C、試料は 0. 2重量%THF溶液(0. 45 mのフィルターを通過 したもの)、注入量は 100 レキャリア溶媒は THF、校正試料として標準ポリスチレ ンを用いた。
[0112] [ガラス転移温度 (Tg)の測定]
トナー用榭脂組成物について、示差走査熱量計 (セイコー電子工業社製、 DSC-6 200R)を用いて、昇温速度 10°CZ分で、 JIS K 7121に準拠して測定し、該規格 ( 9. 3「ガラス転移温度の求め方」)に記載されている中間ガラス転移温度を求めた。
[0113] [膨潤率及び THF不溶分 (ゲル分率)の測定]
得られたトナー用榭脂組成物 0. 3gをサンプル瓶に秤取し、これに THF30gを入れ、 常温にて 16時間振とうした後、 200メッシュ金網フィルターで濾過し、不溶分を 3回共 洗いすることにより、得られた残留物の重量 (膨潤体重量)を測定した。次いで、得ら れた残留物を 110°Cで 1時間、乾燥し、乾燥後の重量 (乾燥体重量)を測定した。こ のようにして得られた膨潤体重量及び乾燥体重量から、以下の式により、膨潤率及 び THF不溶分 (ゲル分率)を求めた。
膨張率 = (膨潤体重量 Z乾燥体重量) X 100
テトラヒドロフラン不溶分 (%) = (乾燥体重量 Z試料重量) X 100 [0114] [フロー軟ィ匕温度の測定]
高化式フローテスター(島津製作所社製、 CFT— 500型)を用い、荷重 20kgZcm2 、オリフィス lmm φ X lmm、予備温度 60°C、予備時間 5分、チャート速度 20mmZ 分、プランジャー 1. 0cm2、昇温速度 6±0. 5°CZminの条件下で、目開き 1. 19m mの JIS標準篩を通過する 1. Ogの測定試料を溶融流出させ、図 1に示すように、榭 脂の流出開始時におけるプランジャー降下量と、榭脂の流出停止時におけるプラン ジャー降下量との中間のプランジャー降下量 hZ2を与えるときの温度 Tfを測定した
[0115] [緩和弾性率の測定]
トナー用榭脂組成物を溶融後、直径 25mm、高さ lmmの円盤状に成形し、これを試 験用試料とした。これを直径 25mmの円盤-円盤治具に取り付け、緩和弾性率測定 装置 (ティー 'エイ'インスツルメント社製、 ARES)を用いて 170°C、初期剪断ひずみ 450%の条件で、剪断ひずみを与えて力 0. 1秒後の緩和弾性率 G (0. 1)を測
170¾ し 7こ。
[0116] [ブロッキング'性の評価]
トナー 10gを lOOmLサンプル瓶に取り、 50°Cの恒温槽中に 8時間放置した後、パゥ ダーテスター(ホソカワミクロン社製)を用いて 250 μ mのフィルターでふる!/ヽに力 4ナフ ィルター上に凝集物が残存するかを観察し、凝集物がある場合には、トナー重量に 対する凝集物の重量 (重量%)を求めた。
[0117] [フィルミング評価]
1万枚印刷を行い、感光体ローラにトナーが付着していないかを目視で観察し、トナ 一の付着が見られないものをフィルミングなしと評価した。
[0118] [高温オフセット温度及び低温オフセット温度の測定]
実施例 1〜2及び比較例 1〜2で得られたトナー 6. 5重量部を平均粒径 50〜80 /z m の鉄粉キャリア 93. 5重量部と混合して現像剤を作製した。電子写真複写機としてコ ユカ社製の UBIX4160AFを熱定着ローラの設定温度が最大 250°Cまで変えられる ように改造したものを用いた。
熱定着ローラの設定温度を段階的に変化させて、各設定温度の熱定着ローラによつ て未定着トナー像を転写紙に定着させた複写物を得た。
得られた複写物の余白部分や定着画像がトナーにより汚されているか否かを観察し 、汚れが生じない温度領域を非オフセット温度領域とした。また、非オフセット温度領 域の最大値を高温オフセット温度とし、最小値を低温オフセット温度とした。
[0119] [トナーの最低定着温度の測定]
電子写真複写機の熱定着ローラの設定温度を段階的に変えて複写を行い、余白部 分や定着画像にかぶりが発生することなく余白部分や定着画像がトナーにより汚され ておらず、得られた複写物の定着画像をタイプライター用メンパットで擦ったとき、定 着画像の濃度の低下が 10%未満である場合を定着良好と判定し、その時の最低温 度を求めた。
なお、画像の濃度はマクベス光度計を用いて測定した。
[0120] [画質 (カプリの有無、画像濃度)の確認]
高温オフセット温度及び低温オフセット温度の測定の試験と同様に未定着画像を形 成し、 100枚目の画像を定着させ目視により画質 (カプリの有無)を確認した。カプリ の発生が問題のな!、レベルである場合をカプリなしとし、問題となるようなカプリが発 生している場合をカプリありとした。また、画像の濃度をマクベス光度計を用いて測定 した。
[0121] [表 1]
実施例 1 実施例 2 比較例 1 比較例 2
Τレフタル酸シ'メチル 90 90 90 90 イリフタル酸シ'メチル 5 5 5 5 ポ 原料モノマ- 無水フタル酸 5 5 5 5 配合 (モル) 卜リメリツ卜酸 2.5 2.5 2.5 2.5 リ分刀 ネオへ。ンチルク 'リコ一ル 100 100 100 100 岐 エチレンク'リコール 100 100 100 100 ί状 ガラス転移温度 C) 52 52 52 52 ル 重量平均分子量 1 7000 1 7000 17000 17000 評価
数平均分子量 3 I 00 3100 3100 3100 水酸基価 40 40 40 40 テレフタル酸シ'メチル 90 90 - 90 イソフタル酸シ'メチル 1 0 10 ― 10 原料モノマ- ポ低 無水トリメリット酸 一 ― ― 13 配合 (モル)
リ分 ネオ ンチルゲリコ—ル 100 100 一 100 ェ子 エチレンク'リコール t oo 100 ― 100 里 ガラス転移温度 (°c) 54 54 ― 62 亍線 重量平均分子量 9400 9400 ― 1 1200 ル状 評価 效平均分子量 4900 4900 ― 3000 水酸基価 38 38 3 酸価 2 2 53 ホ-リメリック MDI ホ メリック MDI ホ。リメリック MDI ホ'リメリック MD1 イソシァネート 種類 (44V20) (MR200) (44V20) (44V20) 化合物
1分子中のイソシァネート基数 約 3個 約 3個 約 3個 約 3個 分岐状ポリエステル 68.2 39 97.5 68.2 卜 配合 低分子量線状ポリエステル 29.3 58.5 0 29.3 ナ (重量部) ホ°リエステル中の含水率(%) 0.10 0.10 0.10 0.10
1 イソシァネート化合物 2.5 2.5 2.5 2.5 用 ガラス転移温度 (°c) 61 63 60 61 樹 重量平均分子量 70000 40700 60700 57000 脂 数平均分子量 7700 7500 10600 9700 組 評価 フロー軟化点 C) 144.6 125.8 163.6 139.0 成 緩和弾性率 Gi 7(K0.1 ) (Pa) 8 30 102 3.50 X 102 1 ,55 X 103 5.50 102 物 THF不可溶分(ゲル分率) 6.1 4.4 7.8 5.2 膨澗率 [: %) 3700 2000 5300 3100 トナー用樹脂組成物 100 too 100 100 力—ホ'ンブラック (MA - 100) 5 5 5 5 配合
荷電制御剤 (S— 34) 1 1 1 1
(重量部〉
3.5 3.5 3.5 3.5 離型剤
カルナハ' カルナハ" カルナハ" カルナハ' 卜
ブロッキング(重量%) 0.5 0.5 0.5 0.5 ナ
1 フィルミング評価 なし なし なし なし 高温オフセット温度(°c) 240 220 240以上 230 評価 低温オフセット温度(°c) 145 125 1 60 140 最低定着温度 1 0 120 155 135 画質 (画像; 度) 1.5 1 .5 1 ,5 1.0 画質 (かぶりの有無) なし なし なし あり (実施例 3)
(1)分岐状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸 9 0モル、屈曲モノマー成分としてイソフタル酸 5モル、無水フタノレ酸 5モル、 3価以上の 多価単量体として、トリメリット酸 2. 5モル、分岐モノマー成分としてネオペンチルグリ コール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮合 触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する水 を蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より水が留出しなくな つた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、分岐状ポリエステルを得た。
[0123] (2)低分子量線状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸ジ メチル 90モル、屈曲モノマー成分としてイソフタル酸ジメチル 10モル、ネオペンチル グリコール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮 合触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する 水及びメタノールを蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より 水が留出しなくなつた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、低分子量線状ポリエステルを得た。なお、得られた低分子量線状ポリエ ステルの水酸基価を測定したところ、 38であった。
[0124] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステル 92. 5重量部と低分子量線状ポリエステル 5. 0重量部と を定量フィーダ一を用いて二軸押出機 (池貝社製、 L/D= 37)に連続的に供給し、 バレル温度 120°Cで溶融混練した後、二軸押出機の第一ベント口より揮発成分を除 去した。
次いで、二軸押出機の第二ベント口から 1分子中に 2個以上のイソシァネート基を有 するポリメリック型 MDI (44V20、住化バイエルウレタン社製) 2. 5重量部を連続的に 供給し、更にバレル温度 170°Cで溶融混練を行うことにより、トナー用榭脂組成物を 得た。
[0125] (4)トナーの製造
得られたトナー用榭脂組成物 100重量部に荷電制御剤(S— 34、オリエント化学社 製) 1重量部、カーボンブラック 5重量部(MA— 100、三菱化学社製)、カルナバヮッ タス 3. 5重量部(融点 83°C)をヘンシェルミキサーで充分に混合した後、 130°Cで溶 融混練し、冷却、粗粉砕した。その後、ジェットミル (ラボジェット、日本-ユーマチック 社製)で微粉砕して、平均粒径約 8〜12 1!1のトナー粉末を得た。更に、このトナー 粉末を分級機 (MDS— 2、日本-ユーマチック社製)で分級して、平均粒径約 10 mのトナー微粉末を得た。このトナー微粉末 100重量部に、疎水性シリカ (R972、日 本ァエロジル社製) 1. 0重量部を均一に混合 (外添)してトナーを製造した。
[0126] (実施例 4)
(1)分岐状ポリエステルの製造
実施例 3と同様にして分岐状ポリエステルを得た。
(2)低分子量線状ポリエステルの製造
実施例 3と同様にして低分子量線状ポリエステルを得た。
[0127] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステルの添加量を 92. 5重量部、低分子量線状ポリエステルの 添加量を 5. 0重量部、ポリメリック型 MDI (44V20、住化バイエルウレタン社製)の添 加量を 2. 1重量部とした以外は、実施例 3と同様にしてトナー用榭脂組成物を得た。
[0128] (4)トナーの製造
得られたトナー用榭脂組成物を用いて実施例 3と同様にしてトナーを製造した。
[0129] (実施例 5)
(1)分岐状ポリエステルの製造
トリメリット酸の添加量を 4. 3モルとした以外は、実施例 3と同様にして分岐状ポリエス テルを得た。
(2)低分子量線状ポリエステルの製造
実施例 3と同様にして低分子量線状ポリエステルを得た。 [0130] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステルの添加量を 70. 0重量部、低分子量線状ポリエステルの 添加量を 27. 5重量部、ポリメリック型 MDI (44V20、住化バイエルウレタン社製)の 添加量を 1. 5重量部とした以外は、実施例 3と同様にしてトナー用榭脂組成物を得 た。
[0131] (4)トナーの製造
得られたトナー用榭脂組成物を用いて実施例 3と同様にしてトナーを製造した。
[0132] (実施例 6)
(1)分岐状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸 9 0モル、屈曲モノマー成分としてイソフタル酸 5モル、無水フタル酸 5モル、 3価以上の 多価単量体として、トリメリット酸 2. 5モル、分岐モノマー成分としてネオペンチルグリ コール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮合 触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する水 を蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より水が留出しなくな つた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、分岐状ポリエステルを得た。
[0133] (2)低分子量線状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸ジ メチル 90モル、屈曲モノマー成分としてイソフタル酸ジメチル 10モル、ネオペンチル グリコール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮 合触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する 水及びメタノールを蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より 水が留出しなくなつた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、低分子量線状ポリエステルを得た。なお、得られた低分子量線状ポリエ ステルの水酸基価を測定したところ、 38であった。
[0134] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステル 70. 0重量部と低分子量線状ポリエステル 27. 5重量部 とを定量フィーダ一を用いて二軸押出機 (池貝社製、 L/D = 37)に連続的に供給し 、バレル温度 120°Cで溶融混練した後、二軸押出機の第一ベント口より揮発成分を 除去した。
次いで、二軸押出機の第二ベント口から 1分子中に 2個以上のイソシァネート基を有 するポリメリック型 MDI (44V20、住化バイエルウレタン社製) 1. 8重量部を連続的に 供給し、更にバレル温度 170°Cで溶融混練を行うことにより、トナー用榭脂組成物を 得た。
[0135] (4)トナーの製造
得られたトナー用榭脂組成物 100重量部に荷電制御剤(S— 34、オリエント化学社 製) 1重量部、カーボンブラック 5重量部(MA— 100、三菱化学社製)、カルナバヮッ タス 3. 5重量部(融点 83°C)をヘンシェルミキサーで充分に混合した後、 130°Cで溶 融混練し、冷却、粗粉砕した。その後、ジェットミル (ラボジェット、日本-ユーマチック 社製)で微粉砕して、平均粒径約 8〜12 1!1のトナー粉末を得た。更に、このトナー 粉末を分級機 (MDS— 2、日本-ユーマチック社製)で分級して、平均粒径約 10 mのトナー微粉末を得た。このトナー微粉末 100重量部に、疎水性シリカ (R972、日 本ァエロジル社製) 1. 0重量部を均一に混合 (外添)してトナーを製造した。
得られたトナー用榭脂組成物を用いて実施例 6と同様にしてトナーを製造した。
[0136] (比較例 3)
(1)分岐状ポリエステルの製造
トリメリット酸の添力卩量を 4. 7モル、分岐モノマー成分としてネオペンチルグリコールの 添力卩量を 45モル、他のジオールとしてエチレングリコールの添力卩量を 45モルにした 以外は、実施例 3と同様にして分岐状ポリエステルを得た。
[0137] (2)低分子量線状ポリエステルの製造
実施例 3と同様にして低分子量線状ポリエステルを得た。
[0138] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステルの添加量を 70. 0重量部、低分子量線状ポリエステルの 添加量を 27. 5重量部、ポリメリック型 MDI (44V20、住化バイエルウレタン社製)の 添加量を 5. 2重量部とした以外は、実施例 3と同様にしてトナー用榭脂組成物を得 た。
[0139] (4)トナーの製造
得られたトナー用榭脂組成物を用いて実施例 3と同様にしてトナーを製造した。
[0140] (比較例 4)
( 1)直鎖ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸 9 0モル、屈曲モノマー成分としてイソフタル酸 10モル、分岐モノマー成分としてネオべ ンチルダリコール 100モル、他のジオールとしてエチレングリコール 100モル、エステ ルイ匕縮合触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生 成する水を蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より水が留出 しなくなつた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、直鎖ポリエステルを得た。
[0141] (2)トナー用榭脂組成物の製造
得られた直鎖ポリエステルの添力卩量を 96. 3重量部、ポリメリック型 MDI (44V20、住 化バイエルウレタン社製)の添加量を 3. 7重量部とした以外は、実施例 3と同様にし てトナー用榭脂組成物を得た。 [0142] (3)トナーの製造
得られたトナー用榭脂組成物を用いて実施例 3と同様にしてトナーを製造した。
[0143] (比較例 5)
(1)分岐状ポリエステルの製造
トリメリット酸の添加量を 5. 9モルとした以外は、実施例 3と同様にして分岐状ポリエス テルを得た。
[0144] (2)低分子量線状ポリエステルの製造
実施例 3と同様にして低分子量線状ポリエステルを得た。
[0145] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステルの添加量を 92. 5重量部、低分子量線状ポリエステルの 添加量を 5. 0重量部、ポリメリック型 MDI (44V20、住化バイエルウレタン社製)の添 加量を 1. 5重量部とした以外は、実施例 3と同様にしてトナー用榭脂組成物を得た。
[0146] (4)トナーの製造
得られたトナー用榭脂組成物を用いて実施例 3と同様にしてトナーを製造した。
[0147] (評価)
実施例 3〜6及び比較例 3〜5で作製した分岐状ポリエステル、トナー用榭脂組成物 又はトナーについて、実施例 1〜2及び比較例 1〜2の場合と同様にして、ポリエステ ル及びトナー用榭脂組成物の分子量分布、ガラス転移温度、フロー軟化温度、緩和 弾性率、高温オフセット温度、低温オフセット温度、トナーの最低定着温度の測定を 行うとともに、ブロッキング性、フィルミング、画質 (カプリの有無、画像濃度)の評価を 行った。また、以下の方法による評価を行った。結果を表 2に示した。
[0148] [分岐状ポリエステルの水酸基価の測定]
得られた分岐状ポリエステルについて、 JIS K 0070に準拠した方法により水酸基価 を求めた。
[0149] [分岐状ポリエステルの酸価の測定]
得られた分岐状ポリエステルにつ 、て、エチルアルコールの代わりにテトラヒドロフラ ン (THF)を用いた以外は、 JIS K 6751に準拠した方法により酸価を求めた。
[0150] [平均分岐度の算出] 上述のように測定した分岐状ポリエステルの水酸基価 (OHV)及び数平均分子量( Mn)から、分岐状ポリエステルの平均分岐度を算出した。
[0151] [面積比の測定]
上述した分岐状ポリエステルの分子量分布の測定で得られた分岐状ポリエステルの 分子量分布曲線を用いて、反応前の分岐状ポリエステルの全ピーク面積 (A領域)を 求めた後、上述で得られたトナー用榭脂組成物中における、反応前の分岐状ポリエ ステルのピーク分子量以下の範囲に該当するピーク面積 (B領域)を求めた。これら の面積から、分岐状ポリエステルのピーク分子量以下の範囲のピーク面積の全ピー ク面積に対する面積比を算出した。
[0152] [含水率の測定]
得られた分岐状ポリエステルについて、 JIS K 7251に準拠した方法により含水率 を求めた。
[0153] [表 2]
Figure imgf000043_0001
(実施例 7)
(1)分岐状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、カルボン酸成分としてテレフタル酸 90 モル、イソフタル酸 5モル、無水フタル酸 5モル、トリメリット酸 2. 5モル、ジオール成分 としてネオペンチルグリコール 100モル、エチレングリコール 100モル、触媒としてチ タンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する水を蒸留塔より 留出させながらエステル交換反応を行った。蒸留塔より水が留出しなくなつた時点で エステル交換反応を終了した。
エステル交換反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に 、真空ポンプからのラインを開き、反応系内を 5Torr以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、分岐状ポリエステルを得た。
なお、得られた分岐状ポリエステルの水酸基価を測定したところ、 40であった。
[0155] (2)低分子量線状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸ジ メチル 90モル、屈曲モノマー成分としてイソフタル酸ジメチル 10モル、ネオペンチル グリコール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮 合触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する 水及びメタノールを蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より 水が留出しなくなつた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、低分子量線状ポリエステルを得た。なお、得られた低分子量線状ポリエ ステルの水酸基価を測定したところ、 38であった。
[0156] (3)トナー用榭脂組成物の製造
得られた分岐状ポリエステル 60. 0重量部と低分子量線状ポリエステル 38. 0重量部 とを定量フィーダ一を用いて二軸押出混練機 (池貝社製、 L/D = 37)に連続的に 供給し、バレル温度 160°Cで溶融混練した後、二軸押出機のベント口より大気圧下 で水分を除去した。
その際、分岐状ポリエステル及び低分子量線状ポリエステルの温度は、 160°Cであ つた。添カ卩口から 1分子中に 2個以上のイソシァネート基を有するポリメリック型 MDI ( 44V20、住化バイエルウレタン社製) 2. 0重量部を連続的に供給し、更にバレル温 度 170°Cで溶融混練を行うことにより、トナー用榭脂組成物を得た。
[0157] (4)含水率の測定
得られた分岐状ポリエステル及び低分子量線状ポリエステルを二軸押出混練機 (池 貝社製、 L/D = 37)に連続的に供給し、バレル温度 160°Cで溶融混練した後、二 軸押出機のベント口より大気圧下で水分を除去した後、イソシァネートイヒ合物を添カロ せずに溶融混練した。
混練した分岐状ポリエステル及び低分子量線状ポリエステルは冷却後、粉砕し、 10 0メッシュの篩いを通過させて乾燥前分岐状ポリエステル及び低分子量線状ポリエス テルとした。得られた乾燥前分岐状ポリエステル及び低分子量線状ポリエステル 3g を秤量し、アルミトレイに乗せて、 110°C、 3時間ギアオーブンで乾燥させ、乾燥後分 岐状ポリエステル及び低分子量線状ポリエステルとした。
反応前分岐状ポリエステル及び低分子量線状ポリエステルの含水率は、下記式(2) で表される。なお、反応前分岐状ポリエステル及び低分子量線状ポリエステルの含 水率は、イソシァネートイ匕合物を添加する際の分岐状ポリエステル及び低分子量線 状ポリエステルの含水率とほぼ同様の値ということができる。
[0158] [数 2]
. , _ ¾ ^前分岐状ポリエステル重量—乾燥後分岐状ポリエステル重量 " 1 00 ( 2 )
S水率 ( "½) = 乾燥前分岐状ポリエステル重量 得られた反応前分岐状ポリエステル及び低分子量線状ポリエステルの含水率を算出 したところ、 0. 3重量%であった。
[0159] (5)トナーの製造
得られたトナー用榭脂組成物 100重量部に荷電制御剤(S— 34、オリエント化学社 製) 1重量部、カーボンブラック 5重量部(MA— 100、三菱化学社製)、カルナバヮッ タス 3. 5重量部(融点 83°C)をヘンシェルミキサーで充分に混合した後、 130°Cで溶 融混練し、冷却、粗粉砕した。その後、ジェットミル (ラボジェット、 日本-ユーマチック 社製)で微粉砕して、平均粒径約 8〜12 1!1のトナー粉末を得た。更に、このトナー 粉末を分級機 (MDS— 2、 日本-ユーマチック社製)で微細粒子を分級除去して、平 均粒径約 10 /z mのトナー微粉末を得た。このトナー微粉末 100重量部に、疎水性シ リカ (R972、 日本ァエロジル社製) 1. 0重量部を均一に混合 (外添)してトナーを製 し 7こ。
[0160] (実施例 8)
(1)トナー用榭脂組成物及びトナーの製造 トナー用榭脂組成物の製造において、開口部を真空ベント口とし、 lOOTorrに減圧 した状態で水分を除去したこと以外は、実施例 7と同様にしてトナー用榭脂組成物及 びトナーを製造した。
[0161] (2)含水率の測定
分岐状ポリエステル及び低分子量線状ポリエステルを二軸押出混練機 (池貝社製、 L/D = 37)に連続的に供給し、バレル温度 160°Cで溶融混練した後、二軸押出機 の真空ベント口より lOOTorrに減圧した状態で水分を除去した後、イソシァネートイ匕 合物を添加せずに溶融混練した以外は、実施例 7と同様にして、反応前分岐状ポリ エステル及び低分子量線状ポリエステルの含水率を算出したところ、 0. 1重量%で めつに。
[0162] (比較例 6)
(1)トナー用榭脂組成物及びトナーの製造
トナー用榭脂組成物の製造において、ベント口を塞ぎ、分岐状ポリエステル及び低 分子量線状ポリエステル力も水分を除去しな力つたこと以外は、実施例 7と同様にし てトナー用榭脂組成物及びトナーを製造した。
[0163] (2)含水率の測定
分岐状ポリエステル及び低分子量線状ポリエステルを二軸押出混練機 (池貝社製、 L/D = 37)に連続的に供給し、バレル温度 160°Cで溶融混練した後、二軸押出機 の真空ベント口より lOOTorrに減圧した状態で水分を除去した後、イソシァネートイ匕 合物を添加せずに溶融混練した以外は、実施例 7と同様にして、反応前分岐状ポリ エステル及び低分子量線状ポリエステルの含水率を算出したところ、 0. 6重量%で めつに。
[0164] (評価)
実施例 7、 8及び比較例 6で作製したトナー用榭脂組成物又はトナーについて、実施 例 1〜2及び比較例 1〜2の場合と同様にして、ポリエステル及びトナー用榭脂組成 物の分子量分布、ガラス転移温度、フロー軟化温度、緩和弾性率、高温オフセット温 度、低温オフセット温度、トナーの最低定着温度の測定を行うとともに、ブロッキング 性、フィルミング、画質 (カプリの有無、画像濃度)の評価を行った。結果を表 3に示し た。
[0165] [表 3]
Figure imgf000047_0001
[0166] (実施例 9) (1)分岐状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸 9 0モル、屈曲モノマー成分としてイソフタル酸 5モル、無水フタル酸 5モル、 3価以上の 多価単量体として、トリメリット酸 2. 5モル、分岐モノマー成分としてネオペンチルグリ コール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮合 触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する水 を蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より水が留出しなくな つた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、分岐状ポリエステルを得た。
なお、得られた分岐状ポリエステルの水酸基価を測定したところ、 40であった。
[0167] (2)低分子量線状ポリエステルの製造
60Lの反応容器に蒸留塔、水分離装置、窒素ガス導入管、温度計及び攪拌措置を 常法に従い設置し、窒素ガス雰囲気下にて、ジカルボン酸成分としてテレフタル酸ジ メチル 90モル、屈曲モノマー成分としてイソフタル酸ジメチル 10モル、ネオペンチル グリコール 100モル、他のジオールとしてエチレングリコール 100モル、エステル化縮 合触媒としてチタンテトラブトキシド (TBB) O. 05モルを仕込み、 200°Cで、生成する 水及びメタノールを蒸留塔より留出させながらエステルイ匕反応を行った。蒸留塔より 水が留出しなくなつた時点でエステルイ匕反応を終了した。
エステル化反応終了後、 60Lの反応容器の蒸留塔への開口部を閉鎖すると共に、 真空ポンプからのラインを開き、反応系内を 5mmHg以下に減圧し、 240°C、攪拌回 転数 60rpmで縮合反応を行うとともに縮合反応で生じた遊離ジオールを反応系外へ 留出させて、低分子量線状ポリエステルを得た。なお、得られた低分子量線状ポリエ ステルの水酸基価を測定したところ、 38であった。
[0168] (3)トナー用榭脂組成物の製造 得られた分岐状ポリエステル 60. 0重量部と低分子量線状ポリエステル 38. 0重量部 とを定量フィーダ一を用いて二軸押出機 (池貝社製、 L/D = 37)に連続的に供給し 、バレル温度 160°Cで溶融混練した後、二軸押出機の第一ベント口より水分及び揮 発成分を除去した。このとき、分岐状ポリエステルの温度は、 160°Cであった。
その後、チラ一水 (4°C)を流してバレルを冷却することによって、イソシァネート添カロ 直前での分岐状ポリエステル及び低分子量線状ポリエステルの温度を 100°Cに下げ た。第二ベント口から 1分子中に 2個以上のイソシァネート基を有するポリメリック型 M DI (44V20、住化バイエルウレタン社製) 2. 0重量部を連続的に供給し、更にバレル 温度 170°Cで溶融混練を行うことにより、トナー用榭脂組成物を得た。
[0169] (4)トナーの製造
得られたトナー用榭脂組成物 100重量部に荷電制御剤(S— 34、オリエント化学社 製) 1重量部、カーボンブラック 5重量部(MA— 100、三菱化学社製)、カルナバヮッ タス 3. 5重量部(融点 83°C)をヘンシェルミキサーで充分に混合した後、 130°Cで溶 融混練し、冷却、粗粉砕した。その後、ジェットミル (ラボジェット、日本-ユーマチック 社製)で微粉砕して、平均粒径約 8〜12 1!1のトナー粉末を得た。更に、このトナー 粉末を分級機 (MDS— 2、日本-ユーマチック社製)で微細粒子を分級除去して、平 均粒径約 10 /z mのトナー微粉末を得た。このトナー微粉末 100重量部に、疎水性シ リカ (R972、 日本ァエロジル社製) 1. 0重量部を均一に混合 (外添)してトナーを製 し 7こ。
[0170] (比較例 7)
実施例9で得られた分岐状ポリエステル及び低分子量線状ポリエステルを使用し、ト ナー用榭脂組成物の製造において、バレル温度 160°Cで溶融混練した後、バレル を冷却せずに分岐状ポリエステル及び低分子量線状ポリエステルの温度が 160°Cの ときにイソシァネートを添加したこと以外は、実施例 9と同様にしてトナー用榭脂組成 物及びトナーを製造した。
[0171] (評価)
実施例 9及び比較例 7で作製したトナー用榭脂組成物又はトナーにっ ヽて、実施例 1〜2及び比較例 1〜2の場合と同様にして、ポリエステル及びトナー用榭脂組成物 の分子量分布、ガラス転移温度、フロー軟化温度、緩和弾性率、高温オフセット温度 、低温オフセット温度、トナーの最低定着温度の測定を行うとともに、ブロッキング性、 フィルミング、画質 (カプリの有無、画像濃度)の評価を行った。結果を表 4に示した。
[表 4]
実施例 9 比較例 7 亍レフタル Sきシ'メチル 90 90 イソフタル酸シ 'メチル 5 5 原料モノマー 無水フタル酸 5 5 配合 (モル) 卜リメリツ卜酸 2.5 2.5 分岐状 ネオへ 'ンチルゲリコール 100 100 ポリエステル エチレンク "リコール 100 100
ガラス転移温度(°c) 52 52 重量平均分子量 1 7000 17000 評価
数平均分子量 3100 3100 水酸基価 40 40 テレフタル酸シ'メチル 90 90 イソフタル酸シ'メチル 10 10 原料モノマ- 無水トリメリット酸 - 配合 (モル) ―
ネオへ 'ンチルゲリコール 100 100 低分子量線状 エチレンク'リコ-ル 100 100 ポリエステル ガラス te移温度 (°c) 54 54
重量平均分子量 9400 9400 評価 数平均分子量 4900 4900
水酸基価 38 38 酸価 2 2 ホ。リメリック MDI ホ。リメリック 種類 (44V20) (44V20) イソシァネート
化合物
1分子中のイソシァネ一ト基数 約 3個 約 3個 イソシァネート化合物を添加する直前の
分岐状ポリエステルの温度 (¾) 100 160
分岐状ポリエス亍ル 60.0 60.0 配合
低分子量線状ポリエステル 38.0 38.0
(重量部)
トナー用 イソシァネート化合物 2.0 2.0 樹脂組成物 ガラス転移温度 C) 63 58
評価 フロー軟化点(°c) ) 28 1 19
緩和弹性率 G ¾(0.1 )(Pa) 5.8 X 102 1.3 X 102 トナー用樹脂組成物 100 100 カーホ'ン ラック (MA - 100) 5 5 配合
荷電制御剤 (S-34) 1 1
(重量部)
3.5 3.5 離型剤
カルナハ' カルナハ' 卜ナー ブロッキング(重量%) 0.5 0.5 フィルミング評価 なし なし 高温オフセット温度(°C) 230 160 低温オフセット温度 C) 120 120 最低定着温度 (°C) 125 130 画質 (かぶりの有無) なし あり 産業上の利用可能性
[0173] 本発明によれば、低温定着性、耐高温オフセット性及び画質に優れるトナー用榭脂 組成物、トナー及び該トナー用榭脂組成物の製造方法を提供できる。
図面の簡単な説明
[0174] [図 la]反応前の分岐状ポリエステル (A)を GPCで測定した場合に得られる分子量分 布曲線である。
[図 lb]本発明のトナー用榭脂組成物、及び、反応前の分岐状ポリエステル (A)を GP Cで測定した場合に得られる分子量分布曲線である。
[図 2]等速昇温法によりフロー軟ィ匕点 Tfを求める際のプランジャー降下量と時間(温 度)との関係を示す模式的フローチャートである。
[図 3]本発明のトナー用榭脂組成物の製造方法を連続的に行う際に使用する混練機 の一例を示した模式図である。
[0175] 1 押出混練機
2 供給部
3 開口部
4 添加部

Claims

請求の範囲
[1] 数平均分子量が 2000〜7000、水酸基価が 20〜80の分岐状ポリエステル (A)と、 数平均分子量が 2000〜5000、水酸基価が 20〜55の低分子量線状ポリエステル( B)との混合物に、 1分子中に 2個以上のイソシァネート基を有するイソシァネートイ匕合 物を反応させてなるトナー用榭脂組成物であって、
前記分岐状ポリエステル (A)同士の架橋構造体と、前記分岐状ポリエステル (A)と 前記低分子量線状ポリエステル (B)とが前記イソシァネートイ匕合物により結合した構 造体と、前記低分子量線状ポリエステル (B)の未反応体とを含有する
ことを特徴とするトナー用榭脂組成物。
[2] 更に、反応前の分岐状ポリエステル (A)のピーク分子量以下の分子量を有する分岐 状ポリエステルの未反応体を含有し、テトラヒドロフラン可溶分の分子量分布をゲル パーミュエーシヨンクロマトグラフィーを用いて測定したときに、前記反応前の分岐状 ポリエステル (A)のピーク分子量以下の範囲のピーク面積が全ピーク面積に対して 2 0〜45%であることを特徴とする請求項 1記載のトナー用榭脂組成物。
[3] 分岐状ポリエステル (A)は、下記式(1)で表される平均分岐度が 2. 1〜7.0であるこ とを特徴とする請求項 1又は 2記載のトナー用榭脂組成物。
[数 1]
B u =NOH/N
= (OIIVX 10"3/5 6. 1) / (l/Mn) =OHVXMn X 1 0- 3ノ5 6. 1 ( 1 ) 式(1)中、 Buは平均分岐度、 NOHは分岐状ポリエステル lg当たりの水酸基数、 N は分岐状ポリエステル lg当たりの分子数、 Mnは数平均分子量、 OHVは分岐状ポリ エステルの水酸基価、 56. 1は水酸化カリウムの分子量を表す。
[4] 分岐状ポリエステルは、含水率が 0. 1重量%以下であり、かつ、イソシァネートイ匕合 物のイソシァネート基に対して水酸基の当量比が 1〜28であること特徴とする請求項 1、 2又は 3記載のトナー用榭脂組成物。
[5] イソシァネートイ匕合物は、 1分子中に 3個以上のイソシァネート基を有すること特徴と する請求項 1、 2、 3又は 4記載のトナー用榭脂組成物。
[6] 請求項 1、 2、 3、 4又は 5記載のトナー用榭脂組成物を用いてなることを特徴とするト ナー。
[7] 分岐状ポリエステル及び低分子量線状ポリエステルをバレル及びスクリューを内蔵す る混練機に投入し、溶融する工程 1、
前記バレル及びスクリューを内蔵する混練機の開口部から、前記分岐状ポリエステル 及び低分子量線状ポリエステルが含有する水分を除去することにより、前記分岐状 ポリエステル及び低分子量線状ポリエステルの含水率を 0. 3重量%以下にする工程 2、及び、
含水率を 0. 3重量%以下にした前記分岐状ポリエステル及び低分子量線状ポリエス テルに 1分子中に 2個以上のイソシァネート基を有するイソシァネートイ匕合物を添加し 反応させる工程 3を有する
ことを特徴とするトナー用榭脂組成物の製造方法。
[8] 工程 1において 120°C以上に加熱して分岐状ポリエステル及び低分子量線状ポリエ ステルを溶融し、工程 2にお ヽて溶融した分岐状ポリエステル及び低分子量線状ポリ エステルを 90〜 130°Cに制御し、工程 3にお!/、て前記 90〜 130°Cに制御した前記 分岐状ポリエステル及び低分子量線状ポリエステルに 1分子中に 2個以上のイソシァ ネート基を有するイソシァネートイ匕合物を添加することを特徴とする請求項 7記載のト ナー用榭脂組成物の製造方法。
[9] バレル及びスクリューを内蔵する混練機の開口部は真空ベント口であることを特徴と する請求項 7又は 8記載のトナー用榭脂組成物の製造方法。
[10] バレル及びスクリューを内蔵する混練機は、直径 (D)に対する長さ(L)の比 (LZD) が 30以上のスクリューを内蔵する二軸押出混練機であることを特徴とする請求項 7、 8又は 9記載のトナー用榭脂組成物の製造方法。
[11] バレル及びスクリューを内蔵する混練機は、上流側から、分岐状ポリエステル及び低 分子量線状ポリエステルを供給するための供給部、前記分岐状ポリエステル及び低 分子量線状ポリエステルが含有する水分を除去するための開口部、及び、 1分子中 に 2個以上のイソシァネート基を有するイソシァネートイ匕合物を添加するための添カロ 部をこの順に有することを特徴とする請求項 7、 8、 9又は 10記載のトナー用榭脂組 成物の製造方法。
PCT/JP2006/325428 2005-12-20 2006-12-20 トナー用樹脂組成物及びトナー用樹脂組成物の製造方法 WO2007072886A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/097,921 US20100286357A1 (en) 2005-12-20 2006-12-20 Resin composition for toner and method for preparing resin composition for toner
EP06835048A EP1970767A1 (en) 2005-12-20 2006-12-20 Resin composition for toner and method for producing resin composition for toner

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005-367043 2005-12-20
JP2005367043 2005-12-20
JP2006119535A JP2007292946A (ja) 2006-04-24 2006-04-24 トナー用樹脂組成物及びトナー
JP2006119533 2006-04-24
JP2006-119535 2006-04-24
JP2006-119533 2006-04-24
JP2006184679A JP2008015101A (ja) 2006-07-04 2006-07-04 トナー用樹脂組成物の製造方法
JP2006-184679 2006-07-04
JP2006340127A JP2008152031A (ja) 2006-12-18 2006-12-18 トナー用樹脂組成物
JP2006-340127 2006-12-18

Publications (1)

Publication Number Publication Date
WO2007072886A1 true WO2007072886A1 (ja) 2007-06-28

Family

ID=38188662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325428 WO2007072886A1 (ja) 2005-12-20 2006-12-20 トナー用樹脂組成物及びトナー用樹脂組成物の製造方法

Country Status (4)

Country Link
US (1) US20100286357A1 (ja)
EP (1) EP1970767A1 (ja)
KR (1) KR20080079693A (ja)
WO (1) WO2007072886A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011301A1 (ja) * 2007-07-13 2009-01-22 Sanyo Chemical Industries, Ltd. トナーバインダー及びトナー
JP2011164601A (ja) * 2010-01-15 2011-08-25 Sanyo Chem Ind Ltd トナーバインダーおよびトナー組成物
JP2016133713A (ja) * 2015-01-21 2016-07-25 三洋化成工業株式会社 トナーバインダーおよびトナー組成物
JP2016194688A (ja) * 2015-03-31 2016-11-17 三洋化成工業株式会社 トナーバインダーの製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924715B1 (fr) * 2007-12-06 2012-10-12 Arkema France Materiau forme de molecules arborescentes comportant des groupes associatifs
US8057726B2 (en) * 2008-06-19 2011-11-15 Grupo Petrotemex, S.A. De C.V. Screw designs having improved performance with low melting PET resins
JP5766906B2 (ja) * 2008-10-30 2015-08-19 大日精化工業株式会社 顔料・樹脂組成物の製造方法
US9878479B2 (en) * 2013-12-30 2018-01-30 Toray Plastics (America), Inc. Method to direct compound extruded structure for the production of irradiation crosslinked polypropylene foam
US9663958B2 (en) 2013-12-31 2017-05-30 Toray Plastics (America), Inc. Methods of producing foam structures from recycled metallized polyolefin material
JP2015135368A (ja) * 2014-01-16 2015-07-27 株式会社リコー 静電荷像現像用トナー及びそれを用いた画像形成方法、画像形成装置並びにプロセスカートリッジ
US9821533B2 (en) 2014-12-30 2017-11-21 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures from recycled metallized polyolefin material and methods of making the same
US9669600B2 (en) 2014-12-30 2017-06-06 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures from recycled polyolefin foam material and methods of making the same
US10384388B2 (en) 2014-12-30 2019-08-20 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures and methods of making the same
US11007761B2 (en) 2017-03-31 2021-05-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
US10501598B2 (en) 2017-06-29 2019-12-10 Toray Plastics (America), Inc. Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
US11590677B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Method of making coextruded, crosslinked polyolefin foam with KEE cap layers
US11590730B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Coextruded, crosslinked polyolefin foam with KEE cap layers

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263950A (ja) * 1984-06-13 1985-12-27 Fujikura Kasei Kk 静電荷像現像トナ−用樹脂
JPH02166464A (ja) * 1988-12-21 1990-06-27 Mitsui Toatsu Chem Inc 電子写真用トナー組成物
JPH02256066A (ja) * 1988-12-26 1990-10-16 Mitsui Toatsu Chem Inc バインダー樹脂の製造方法
JPH07140713A (ja) * 1993-11-19 1995-06-02 Konica Corp 静電荷像現像剤と画像形成方式
JPH07234539A (ja) * 1994-02-21 1995-09-05 Konica Corp 静電荷像現像用トナー
JPH07287420A (ja) * 1994-04-18 1995-10-31 Konica Corp トナーの製造方法
JPH0862892A (ja) * 1994-08-25 1996-03-08 Konica Corp 静電荷像現像剤用トナー及びその製造法
JPH0943906A (ja) * 1995-08-03 1997-02-14 Canon Inc 静電荷像現像用トナー
JPH10115951A (ja) * 1996-10-09 1998-05-06 Canon Inc 静電荷像現像用トナー
JPH10186722A (ja) * 1996-12-26 1998-07-14 Canon Inc 静電荷像現像用トナー、画像形成方法、トナー用樹脂組成物及びトナー用樹脂組成物の製造方法
JP2005215492A (ja) * 2004-01-30 2005-08-11 Sekisui Chem Co Ltd 球状トナー
JP2005316378A (ja) * 2004-03-31 2005-11-10 Sekisui Chem Co Ltd 相溶化剤、トナー用ポリエステル系樹脂組成物及びトナー

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263950A (ja) * 1984-06-13 1985-12-27 Fujikura Kasei Kk 静電荷像現像トナ−用樹脂
JPH02166464A (ja) * 1988-12-21 1990-06-27 Mitsui Toatsu Chem Inc 電子写真用トナー組成物
JPH02256066A (ja) * 1988-12-26 1990-10-16 Mitsui Toatsu Chem Inc バインダー樹脂の製造方法
JPH07140713A (ja) * 1993-11-19 1995-06-02 Konica Corp 静電荷像現像剤と画像形成方式
JPH07234539A (ja) * 1994-02-21 1995-09-05 Konica Corp 静電荷像現像用トナー
JPH07287420A (ja) * 1994-04-18 1995-10-31 Konica Corp トナーの製造方法
JPH0862892A (ja) * 1994-08-25 1996-03-08 Konica Corp 静電荷像現像剤用トナー及びその製造法
JPH0943906A (ja) * 1995-08-03 1997-02-14 Canon Inc 静電荷像現像用トナー
JPH10115951A (ja) * 1996-10-09 1998-05-06 Canon Inc 静電荷像現像用トナー
JPH10186722A (ja) * 1996-12-26 1998-07-14 Canon Inc 静電荷像現像用トナー、画像形成方法、トナー用樹脂組成物及びトナー用樹脂組成物の製造方法
JP2005215492A (ja) * 2004-01-30 2005-08-11 Sekisui Chem Co Ltd 球状トナー
JP2005316378A (ja) * 2004-03-31 2005-11-10 Sekisui Chem Co Ltd 相溶化剤、トナー用ポリエステル系樹脂組成物及びトナー

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011301A1 (ja) * 2007-07-13 2009-01-22 Sanyo Chemical Industries, Ltd. トナーバインダー及びトナー
JP2011164601A (ja) * 2010-01-15 2011-08-25 Sanyo Chem Ind Ltd トナーバインダーおよびトナー組成物
JP2016133713A (ja) * 2015-01-21 2016-07-25 三洋化成工業株式会社 トナーバインダーおよびトナー組成物
JP2016194688A (ja) * 2015-03-31 2016-11-17 三洋化成工業株式会社 トナーバインダーの製造方法

Also Published As

Publication number Publication date
EP1970767A1 (en) 2008-09-17
KR20080079693A (ko) 2008-09-01
US20100286357A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
WO2007072886A1 (ja) トナー用樹脂組成物及びトナー用樹脂組成物の製造方法
JP4053889B2 (ja) トナー用樹脂組成物及びトナー
JP2007193317A (ja) トナー用樹脂組成物
WO2004025372A1 (ja) トナー用樹脂組成物及びトナー
JP2005316378A (ja) 相溶化剤、トナー用ポリエステル系樹脂組成物及びトナー
JP2008152031A (ja) トナー用樹脂組成物
JP2007025622A (ja) トナー用樹脂組成物の製造方法、トナー用樹脂組成物及びトナー
JP2004264318A (ja) トナー用樹脂組成物及びトナー
JP2006220754A (ja) トナー用樹脂組成物及びトナー
JP2007292946A (ja) トナー用樹脂組成物及びトナー
JP2019020690A (ja) トナー
JP4027202B2 (ja) トナー用樹脂組成物及びトナー
JP2004151709A (ja) トナー用樹脂組成物及びトナー
JP4037731B2 (ja) トナー用樹脂組成物及びトナー
JP4358079B2 (ja) トナー用樹脂組成物及びトナー
JP2008015101A (ja) トナー用樹脂組成物の製造方法
JP2007316585A (ja) トナー用樹脂組成物及びトナー
JP4339710B2 (ja) 球状トナー
JP2005215491A (ja) トナー
JP6686969B2 (ja) 静電潜像現像用トナー
JP2007199580A (ja) トナー用樹脂組成物の製造方法、トナー用樹脂組成物及びトナー
JP4053866B2 (ja) トナー用樹脂組成物及びトナー
JP2005189808A (ja) トナー用樹脂組成物及びトナー
JP4034635B2 (ja) トナー
JP2004264803A (ja) トナー用樹脂組成物及びトナー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047782.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006835048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12097921

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6206/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087017709

Country of ref document: KR