WO2007069553A1 - 燃料電池システム及び移動体 - Google Patents

燃料電池システム及び移動体 Download PDF

Info

Publication number
WO2007069553A1
WO2007069553A1 PCT/JP2006/324616 JP2006324616W WO2007069553A1 WO 2007069553 A1 WO2007069553 A1 WO 2007069553A1 JP 2006324616 W JP2006324616 W JP 2006324616W WO 2007069553 A1 WO2007069553 A1 WO 2007069553A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
fuel
learning
pressure
Prior art date
Application number
PCT/JP2006/324616
Other languages
English (en)
French (fr)
Inventor
Kenji Umayahara
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112006003414T priority Critical patent/DE112006003414B4/de
Priority to US12/085,531 priority patent/US8642224B2/en
Priority to CN2006800472684A priority patent/CN101331637B/zh
Publication of WO2007069553A1 publication Critical patent/WO2007069553A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a moving body. Background Technology ''
  • a fuel cell system equipped with a fuel cell that generates power by receiving supply of reaction gas has been proposed and put into practical use.
  • a fuel cell system is provided with a fuel supply channel for flowing fuel gas supplied from a fuel supply source such as a hydrogen tank to the fuel cell.
  • the fuel cell As a pressure adjusting valve that is provided on the fuel supply flow path and adjusts the pressure of the fuel gas supplied to the fuel cell, by applying an applied pressure using an oxidizing gas as a pressure drop, the fuel cell There is known a fuel cell system provided with a variable pressure control valve that can adjust the pressure of the fuel gas supplied to the battery (for example, Japanese Patent Laid-Open No. 2 0 0 5-1 5 0 0 90 0, Japanese Patent Laid-Open No. 0 4.—See 3 4 2 3 8 6).
  • the present invention has been made in view of such circumstances, and it is possible to appropriately change the supply pressure of the fuel gas in accordance with the operating state of the fuel cell, and suppress the influence of aging and individual differences as much as possible. To ensure good pressure response To do.
  • a fuel cell system includes a fuel cell, a fuel supply system for supplying fuel gas to the fuel cell, and a gas state upstream of the fuel supply system.
  • a gas state variable supply device to be supplied to the downstream side, and the gas state variable supply device is connected to the operating state of the fuel cell (power generation amount (power, current, voltage) of the fuel cell, temperature of the fuel cell, abnormality of the fuel cell system)
  • a fuel cell system that controls driving according to the state, an abnormal state of the fuel cell main body, and the like, and learning the drive characteristics of the gas state variable supply device, and based on the learning result, Learning means for setting the drive parameters of the gas state variable supply unit is provided.
  • Gas state means the state of gas (flow rate, pressure, temperature, molar concentration, etc.), and particularly includes at least one of gas flow rate and gas pressure.
  • the gas state variable supply device is arranged so as to be movable in the internal flow that communicates between the upstream side and the downstream side, and the opening area of the internal flow channel can be changed according to the movement position.
  • a valve body drive unit that drives the valve body with an electromagnetic driving force, and may be an electromagnetic drive type injector, or the valve body is driven via a diaphragm by air pressure or a motor, for example. It can be a variable pressure regulator such as a diaphragm regulator.
  • the driving characteristics of the gas state variable supply device include, for example, the fuel cell inlet side gas state (secondary gas state of the gas state variable supply device) and the inlet side target gas state (secondary target of the gas state variable supply device).
  • Gas state fuel cell inlet side gas state (secondary gas state of gas state variable supply device) and generated current
  • the drive parameters of the gas state variable supply device are, for example, an injection amount, an injection time, a duty ratio, a drive frequency, a drive pulse, etc. when the gas state variable supply device is an injector of the above electromagnetic drive system.
  • the gas state variable supply device is the diaphragm type regulator, there is an applied pressure (for example, fluid pressure or panel pressure) that urges the valve body in the opening direction or the closing direction via the diaphragm. . '
  • the learning means may learn the driving characteristics of the gas state variable supply device for each of a plurality of learning regions corresponding to the output of the fuel cell.
  • the learning means may learn the drive characteristics of the gas state variable supply device according to the state of the fuel gas supplied to the fuel cell. According to these configurations, learning of the drive characteristics of the gas state variable supply device is performed according to the output of the fuel cell and the state of the fuel gas actually supplied to the fuel cell, so that the learning accuracy is improved.
  • learning during fuel cell operation is possible. Furthermore, even if the gas state can be varied (adjusted) over a wide range, can the deterioration of pressure regulation accuracy due to changes over time or differences in solids be suppressed? ).
  • the state of the fuel gas supplied to the fuel cell includes, for example, the pressure and flow rate of the fuel gas supplied to the fuel cell, the primary side pressure of the gas state variable supply unit ft, etc. There are combinations with the other including either pressure or flow rate.
  • the learning unit performs the learning when a variation in a generation current of the fuel cell and a fuel gas pressure (a gas state of the fuel gas) supplied to the fuel cell is equal to or less than a predetermined value. You may go. Further, the learning may be prohibited while the off-gas of the fuel gas discharged from the fuel cell is purged to the outside of the fuel supply system.
  • the drive parameter may be set based on individual differences of the gas state variable supply device during system manufacture. According to such a configuration, it is possible to optimize the drive parameters of the gas state variable supply device regardless of individual differences before the fuel cell system reaches the user's hand.
  • the moving body according to the present invention includes the fuel cell system. According to such a configuration, the fuel cell system capable of driving and controlling the gas state variable supply device reflecting the variation due to aging and individual differences is provided, so that a good pressure response can be ensured. Can do.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining the process of calculating the injector injection time in the fuel cell system shown in FIG.
  • FIG. 3 is an example of a map used for the process of step S 3 in the flowchart shown in FIG.
  • FIG. 4 is an example of a map used for the process of step S5 of the flowchart shown in FIG.
  • FIG. 5 is an example of a map used for the process of step S 11 in the flowchart shown in FIG.
  • FIG. 6 is a flowchart for explaining the learning value calculation process in the map used for the processing in step S 11 of the flowchart shown in FIG.
  • FIG. 7 is an example of a map used in the process of step S 23 of the flowchart shown in FIG.
  • FIG. 8 is a diagram for explaining the processing of steps S 25 and S 27 in the flowchart shown in FIG.
  • FIG. 9 is a diagram for explaining the processing in step S 29 of the flowchart shown in FIG.
  • FIG. 10 is a diagram for explaining the processing of steps S 3 1 to S 35 in the flowchart shown in FIG. No:
  • the fuel cell system 1 includes a fuel cell 10 that generates electric power upon receiving supply of reaction gases (oxidized gas and fuel gas), and includes a fuel cell 10.
  • Oxygen gas piping system (fuel supply system) 2 that supplies air as oxidizing gas 2
  • Hydrogen gas piping system 3 that supplies hydrogen gas as fuel gas to the fuel cell 10 3
  • Control system that controls the entire system ( Control means, learning means) 4 etc.
  • the fuel cell 10 has a stack structure in which a required number of unit cells that generate power upon supply of reaction gas are stacked, and the power generated by the fuel cell 10 is PCU (Power Control Unit) 1 1 To be supplied.
  • PCU 1 1 is an inverter that is placed between fuel cell 10 and traction motor 1 2 DC-DC A converter is provided.
  • the fuel cell 10 is provided with a current sensor 13 for detecting a current during the generation.
  • the oxidizing gas piping system 2 includes an air supply channel 21 for supplying the oxidizing gas (air) humidified by the humidifier 20 to the fuel cell 10, and an “oxidized off-gas discharged from the fuel cell 10.
  • An air discharge passage 22 that leads to the humidifier 20 and an exhaust passage 23 that guides the oxidant off-gas from the humidifier 20 to the outside are provided.
  • the air supply passage 21 is a compressor that takes in the oxidizing gas in the atmosphere and pumps it to the humidifier 20.
  • the water gas piping system 3 includes a hydrogen tank 30 as a fuel supply source storing hydrogen gas at a high pressure (for example, 7 OMPa), and a hydrogen gas for supplying the hydrogen gas from the hydrogen tank 30 to the fuel cell 10.
  • Hydrogen supply flow path 31 as a fuel supply flow path : A circulation flow path for returning the hydrogen off-gas discharged from the fuel cell 10 to the hydrogen supply flow path 31
  • the hydrogen gas piping system 3 is a cold embodiment of the fuel supply system in the present invention. .
  • a reformer that generates hydrogen-rich reformed gas from hydrocarbon fuel, and a high-pressure gas tank that stores the reformed gas generated by the reformer in a high-pressure state. And can also be used as a fuel supply source.
  • a tank having a hydrogen storage alloy may be employed as the fuel supply source.
  • the hydrogen supply flow path 3 1 includes a shut-off valve 3 3 that shuts off or allows supply of hydrogen gas from the hydrogen tank 30, a regulator 3 4 that adjusts the pressure of the hydrogen gas, and an injector (gas state variable)
  • the upstream side of the injector 35 is provided with a primary pressure sensor 41 for detecting the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 31.
  • a temperature sensor 4 2 is provided downstream of the injector 3 5 and upstream of the junction between the hydrogen supply flow path 3 1 and the circulation flow path 3 2.
  • a secondary pressure sensor 4 3 is provided to detect the pressure of the hydrogen gas inside.
  • the regulator 34 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure.
  • a mechanical pressure reducing valve for reducing the primary pressure is employed as the regulator 34.
  • the mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure regulating chamber are formed with a diaphragm separated from each other, and a primary pressure is set to a predetermined pressure in the pressure regulating chamber by the back pressure in the back pressure chamber. It is possible to adopt a known configuration in which the pressure is reduced to a secondary pressure.
  • the upstream pressure of the injector 35 can be effectively reduced.
  • the degree of freedom in design of the mechanical structure of the injector 35 (valve body, housing, flow path, drive device, etc.) can be increased.
  • the valve body of the injector 35 is difficult to move due to an increase in the differential pressure between the upstream pressure and the downstream pressure of the injector 35. Can be suppressed. Accordingly, it is possible to widen the adjustable pressure width of the downstream pressure of the injector 35 and to suppress the decrease in the responsiveness of the injector 35.
  • the injector 35 is an electromagnetic drive capable of adjusting a gas state such as a gas flow rate and a gas pressure by driving the valve body directly at a predetermined drive cycle with an electromagnetic drive force and separating it from the valve seat. It is a type on-off valve.
  • the injector 35 includes a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (gas And a valve body that is accommodated and held so as to be movable in the flow direction) and opens and closes the injection hole.
  • the valve body of the injector 35 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is increased in two stages by turning on and off the pulsed excitation current supplied to the solenoid. Multi-stage, continuous (stepless), Or it can be switched to linear.
  • the flow rate and pressure of the hydrogen gas are controlled with high accuracy.
  • the injector 35 is a valve (valve body and valve seat) that directly opens and closes with an electromagnetic driving force, and has a high responsiveness because its driving cycle can be controlled to a highly responsive region.
  • the injector 35 changes at least one of the opening area (opening) and the opening time of the valve provided in the gas flow path of the injector 35 in order to supply the required gas flow rate downstream. As a result, the gas flow rate (or hydrogen molar concentration) supplied to the downstream side (fuel cell 10 side) is adjusted.
  • the gas flow rate can be adjusted by opening and closing the valve body of the injector 35, and the gas pressure supplied downstream of the injector 35 is reduced from the gas pressure upstream of the injector 35. It can also be interpreted as a pressure valve (pressure reducing valve, regulator).
  • the modulation amount (pressure reduction amount) of the upstream gas pressure of the injector 35 can be changed so as to match the required pressure within a predetermined pressure range according to the gas demand. It can also be interpreted as a pressure valve.
  • an indicator 35 is arranged upstream of the junction A 1 with the hydrogen supply channel 31 and the circulation channel 32.
  • the hydrogen gas supplied from each hydrogen tank 30 is joined (hydrogen gas joining part A 2) Place the injector 35 on the downstream side.
  • An exhaust flow path 3 8 is connected to the circulation flow path 3 2 via a gas-liquid separator 3 6 and an exhaust drain valve 3 7.
  • the gas-liquid separator 36 recovers moisture from the hydrogen off gas.
  • the exhaust drain valve 3 7 is activated by a command from the control device 4. As a result, the water recovered by the gas-liquid separator 36, the hydrogen off-gas containing impurities in the circulation flow path 32, and the "discharge" (purge) to the outside are performed.
  • the circulation channel 3 2 is provided with a hydrogen pump 39 that pressurizes the hydrogen off-gas in the circulation channel 32 and sends it to the hydrogen supply channel 31 side.
  • the gas in the exhaust flow path 38 is diluted by the diluter 40 and merges with the gas in the exhaust flow path 23.
  • the control device g 4 detects the operation amount of an acceleration operating device (such as an accelerator) installed in the vehicle S, and determines the acceleration required value (eg, the required power generation amount from a load device such as the traction motor 12). Receives control information and controls the operation of various devices in the system. '
  • an acceleration operating device such as an accelerator
  • the load device refers to auxiliary equipment required to operate the fuel cell 10 (for example, compressor 24, hydrogen pump 39, cooling pump motor, etc.), vehicle Air conditioners (air conditioners) used in various devices (transmissions, wheel control devices, steering devices, suspension devices, etc.) involved in S traveling, air conditioners (air conditioners), lighting, audio, etc. It is a general term for consumer devices. ,
  • the control device 4 is configured by a computer system (not shown).
  • a computer system includes a CPU, ROM, RAM, HDD, input / output interface and display, and the CPU reads and executes various control programs recorded in the ROM. As a result, various control operations are realized.
  • the control device 4 detects the generated current (hereinafter referred to as FC current) of the fuel cell 10 with the current sensor 13 (step S 1), for example, FIG. Map, that is, the FC current detected in step S 1 and the inlet target pressure of the fuel cell 10 (hereinafter referred to as FC inlet target pressure) set corresponding to the required output for the fuel cell 10.
  • FC current the generated current
  • FC inlet target pressure the inlet target pressure set corresponding to the required output for the fuel cell 10.
  • control device 4 uses, for example, a map shown in FIG. 4, that is, a map representing the relationship between the FC current and the feedforward term (hereinafter referred to as F / F value) that is the basic injection time of the injector.
  • F / F value a map representing the relationship between the FC current and the feedforward term
  • the FZF value which is the basic injection time of the injector, is obtained from the FC current detected in S1 (step S5).
  • control device 4 compares the FC inlet target pressure determined in step S'3 with the current fuel cell 10 inlet side pressure ⁇ (hereinafter referred to as FC inlet pressure) detected by the secondary side pressure sensor 43. Find the deviation (hereinafter referred to as FCA port pressure deviation) (Step S7), and use the correction value to correct (reduce) this FC inlet pressure deviation as the feedback term for the injector injection time (hereinafter referred to as F / B). Value) (step S9). .
  • the control device 4 uses, for example, the map shown in FIG. 5, that is, the map showing the relationship between the FC current and the learning value, and the secular change of the indicator 35 from the FC current detected in step S 1
  • the learning value of the injector injection time is obtained as learning ⁇ for correcting flow rate variations due to individual differences (step S11).
  • the learning value is switched for each fixed FC current zone (regions 1 to 6 separated by the broken line in Fig. 5). In other words, multiple values corresponding to the fuel cell 1 O output The learning value is switched for each learning area. This learning value is updated as needed according to the operating state of the fuel cell 10, as will be described in detail later.
  • control device 4 adds the FZB value obtained in step S9 and the learned value obtained in step S11 to the FZF value that is the basic injection time of the injector 35 obtained in step S3.
  • the injection time (injection amount) of the injector 35 is obtained (step S 1 3).
  • the injection hole of the injector 35 is in two stages: fully open and fully closed. Since the fully open / closed cycle is set to a constant value, there is a constant correlation between the injection amount and the injection time. Then, the control device 4 controls the injection time and the injection timing of the injector 35 by supplying a control signal for realizing the injection time to the injector 35 and supplies it to the fuel cell 10. Adjust the flow rate and pressure of the hydrogen gas.
  • the control device 4 detects the generated current (FC current) of the fuel cell 10 with the current sensor 13 (step S 2 1).
  • FC current generated current
  • a learning zone to be learned from the hydrogen gas flow rate is obtained using a map showing (Step S 2 3).
  • step S 25 it is determined whether or not the change value of the FC current detected by the current sensor 13 is equal to or less than a predetermined value (the fluctuation in the generated current of the fuel cell is equal to or less than a certain value) (step S 25, FIG. 8). If the change value of this FC current exceeds the predetermined value (Step S 2 5: NO), the process returns to Step S 21, and if it is less than the predetermined value (Step S 2 5: YES), the current It is determined whether a predetermined time has elapsed after entering the current zone (Step S 27, Fig. 8). In these steps S 2 5 and S 2 7, it is determined whether or not it is in a steady state based on the current change value and the elapsed time after entering the current current zone.
  • a predetermined value the fluctuation in the generated current of the fuel cell is equal to or less than a certain value
  • step S2 7 If the predetermined time has not elapsed since entering the current current zone (step S2 7: NO), return to step S21 and if the predetermined time has elapsed (Step S27: YES), is the FC inlet pressure deviation obtained in the same way as in Step S7 in Fig. 2 below the specified value? (Fluctuation in fuel gas pressure supplied to the fuel cell is below a certain level) (Step S2.9, Figure 9).
  • the processing in step S29 determines whether the learning value set based on the FC inlet pressure deviation in step S33, which will be described later, can be in an appropriate range, that is, whether the learning value is suitable for learning. ing.
  • step S 29: N0 If it is not in a learnable state (step S 29: N0), go back to step S 2 1, and if it is in a learnable state (step S 29: 'YES), do the same as step S 9 in Figure 2
  • step S 29: 'YES The previous value and current value of the feedback term (FZB value) of the injector injection time obtained in this way are integrated (step S31).
  • step S33 it is determined whether or not the total number of times is equal to or greater than the predetermined number (step S33). If the number is less than the predetermined number (step S33: NO), the process returns to step S21. If there is (Step S 3.3: YES), the FZB value of the injector injection time accumulated in Step S 3 1 is divided by the number of calculations to obtain the average value. The average value of this F / B value is calculated in Step S 23 The current learning value in the obtained learning zone is used (Step S35, Fig. 10).
  • the control device 4 learns the drive characteristics of the injector 35 through the above processing. If this driving characteristic learning is performed for all of learning zones 1 to 6, a map as shown in Fig. 5 is obtained, and this map is obtained in steps S25, S2.7, S29, and S33 of Fig. 6. It is updated for each learning zone when all the conditions are satisfied. This learning result is reflected in the setting of the drive parameter of the indicator 35 (in this embodiment, the injection time). That is, the control device 4 of the present embodiment is an example of learning means.
  • the control device 4 detects the FC inlet target pressure set based on the FC current of the fuel cell 10 and the secondary pressure sensor 43. Deviation from actual FC inlet pressure In addition to calculating the FZB value to reduce the FC inlet pressure deviation, the FC inlet pressure deviation caused by the aging of the injector 35 and individual differences is learned according to the FC current. The injector injection time is set based on the learning result.
  • the hydrogen gas supply pressure can be changed appropriately according to the operating conditions, and even if the pressure is varied widely, the fluctuations due to aging of the injector 35 and individual differences It is possible to ensure a good pressure response that does not depend on.
  • the injector 35 functions as a water gas flow rate adjustment valve and a variable pressure control valve, it is of course possible to adjust the pressure with high accuracy in addition to improving the pressure response.
  • the variation in FC inlet pressure deviation is learned only when the FC current and FC inlet pressure are stable, that is, only in a state suitable for learning.
  • Injector 35 Suppresses erroneous learning of FC inlet pressure deviation variations due to factors other than aging and individual differences, ensuring good transient characteristics and stability.
  • the current value (FC current) during power generation of the fuel cell 10 is detected, and the learning value is set based on this current value.
  • the learning value may be set based on the hydrogen flow rate.
  • the learning is prevented only by allowing learning only when the FC current and the FC inlet pressure are stable, but the state of the operating state of the fuel cell 10 (starting state)
  • the control device determines the intermittent operation state, normal operation state, purge operation state, abnormal state of the fuel cell itself, abnormal state of the fuel cell system, etc., for example, by prohibiting learning when in the purge operation state
  • the fuel cell system according to the present invention is mounted on the fuel cell vehicle S.
  • the present invention can be applied to various mobile bodies (robots, ships, aircrafts, etc.) other than the fuel cell vehicle S.
  • the fuel cell system according to the present invention can also be mounted.
  • the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (house, building, etc.). Industrial availability ''
  • the present invention it is possible to provide a fuel cell system and a moving body having a good pressure responsiveness that does not depend on a secular change or individual difference of the gas state variable supply device. Therefore, it can be widely used for fuel cell systems and moving bodies that have such requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Description

明細書 燃料電池システム及び移動体
技術分野
本発明は、 燃料電池システム及び移動体に関する。 背景技術 '
現在、 反応ガス (燃料ガス及び酸化ガス) の供給を受けて発電を行う燃料 電池を備えた燃料電池システムが提案され、 実用化されている。 かかる燃料 電池システムには、 水素タンク等の燃料供給源から供給される燃料ガスを燃 料電池へと流すための燃料供給流路が設けられている。
そして、 燃料供袷流路上に設けられて燃料電池に供給される燃料ガスの圧 力を調整する圧力調整弁として、 酸化ガスを圧力頫とした印加圧力を作用さ せることに'より、 燃料電池に供給される燃料ガスの圧力を調整可能にした可 変調圧弁を備えた燃料電池システムが知られている (例えば、 特開 2 0 0 5 - 1 5 0 0 9 0号公報、 特開 2 0 0 4.— 3 4 2 3 8 6号公報参照)。
. 発明の開示
前記特開 2 0 0 5— 1 5 0 0 9 0号公報に記載されているような可変調 圧弁によれば、 運転状況に応じて燃料ガスの供給圧力を変化させることが可 能となる。 しかしながら、 このような可変調圧弁であっても、 経年変化や固 体差の影響を受けることは避けられず、 調圧精度や圧力応答性の低下を招く こと力 Sある。
本発明は、 かかる事情に鑑みてなされたものであり、 燃料電池の運転状態 に応じて燃料ガスの供給圧力を適切に変化させることが可能であり、 経年変 化や固体差の影響を極力抑えた良好な圧力応答性を確保することを目的と する。
前記目的を達成するため、本発明に係る燃料電池システムは、燃料電池と、 この燃料電池に燃料ガスを供給するための燃料供給系と、 この燃料供給系の 上流側のガス状態を調整して下流側に供給するガス状態可変供給装置と.、 該 ガス状態可変供給装置を前記燃料電池の運転状態 (燃料電池の発電量 (電力、 電流、 電圧)、 燃料電池の温度、 燃料電池システムの異常状態、 燃料電池本体 の異常状態等) に応じて駆動制御する制御手段と、 を える燃料電池システ ムであって、 前記ガス状態可変供給装置の駆動特性を学習し、 該学習の結果 に基づき前記ガス状態可変供給 置の駆動パラメータを設定する学習手段を 備える。 '
このような構成によれば、 ガス状態可変供給装置の経年変化や個体差によ る駆動特性のばらつきを学習し、 その学習結果を反映させたガス状態可変供 給装置の駆動制御が可能となる。なお、「ガス状態」 とは、ガスの状態(流量、 圧力、 温度、 モル濃度等) を意味し、 特にガス流量及びガス圧力の少なくと も一方を含む。
ガス状態可変供給装置は、 その上流側と下流側どを連通する内部流 と、 該内部流路内に移動可能に配設されその移動位置に応じて前記内部流路の開 口面積を変更可能な弁体と、 電磁駆動力により前記弁体を駆動する弁体駆動 部と、 を備えてなる電磁駆動方式のインジェクタでもよいし、 例えばエア圧 やモータによってダイヤフラムを介して弁体が駆動されるダイヤフラム式の レギュレータのような可変調圧レギュレ一タでもよレ、。
ガス状態可変供給装置の駆動特性とは、 例えば燃料電池の入口側ガス状態 (ガス状態可変供給装置の二次側ガス状態) と入口側目標ガス状態 (ガス状 態可変供給装置の二次側目標ガス状態) との関係、 燃料電池の入口側ガス状 態 (ガス状態可変供給装置の二次側ガス状態) と発電電流との関係、 ガス状 態可変供給装置の一次側ガス状態と二次側ガス状態との関係、 ガス状態可変 供給装置の一次側ガス状態と燃料電池の発電電流との関係等である。
ガス状態可変供給装啬の駆動パラメータとは、 例えばガス状態可変供給装' 置が上記電磁駆動方式のインジェクタである場合には、 噴射量、 噴射時間、 デューティ比、 駆動周波数、 駆動パルス等であり、 また、 ガス状態可変供給 装置が上記ダイヤフラム式のレギユレータである場合には、 ダイヤフラムを 介して弁体を開方向又は閉方向に付勢する印加圧力 (例えば、 流体圧やパネ 圧) 等がある。 '
本発明の燃料電池システムにおいて、 前記学習手段は、 前記燃料電池の出 力に対応する複数の学習領域毎 前記ガス状態可変供給装置の駆動特性を学 習してもよい。 あるいは、 前記学習手段は、 前記燃料電池に供給される燃料 ガスの状態に応じて前記ガス状態可変供給装置の駆動特性を学習してもよい。 これらの構成によれば、 ガス状態可変供給装置の駆動特性の学習が、 燃料 電池の出力や燃料電池に実際に供給される燃料ガスの状態に応じて行われる ので、 学習の精度が向上する。 また、 燃料電池運転中の学習も可能となる。 さらに、 幅広くガス状態を可変 (調整) しても、 経時変化や固体差による'調 圧精度の悪化を抑制でき?)。
燃料電池の出力としては、 例えば、 発電電流がある。 また、 燃料電池に供 給される燃料ガスの状態としては、 例えば、 燃料電池に供給される燃料ガス の圧力や流量、 ガス状態可変供給装 ftの一次側圧力等の他、 これらのうち少 なくとも圧力又は流量の一方を含む他との組合せがある。
本発明の燃料電池システムにおいて、 前記学習手段は、 前記燃料電池の発 電電流と前記燃料電池に供給される燃料ガス圧力 (燃料ガスのガス状態) の 変動が一定以下であるときに前記学習を行ってもよい。 また、 前記燃料電池 から排出された燃料ガスのオフガスを前記燃料供給系の外部へパージしてい る間は、 前記学習を禁止してもよい。
これらの構成によれば、 学習に適さない条件下での誤学習が抑制されるの で、 学習結果に基づく駆動制御の精度が向上する。
本発明の燃料電池システムにおいて 、 システム製造時に、 前記ガス状態 可変供給装置の個体差に基づいて前記駆動パラメータを設定してもよい。 このような構成によれば、 燃料電池システムがユーザの手に渡る前に、 ガ ス状態可変供給装置の駆動パラメータを個体差によらず最適化することが可 能となる。
本発明に係る移動体は、 前記燃料電池システムを備えるものである。 このような構成によれば、 経年変化や個体差によるばらつきを反映'させた ガス状態可変供給装置の駆 制御が可能な燃料電池システムを備えているた め、 良好な圧力応答性を確保することができる。
本発明によれば、 ガス状態可変供給装置の経年変化や個体差によらない良 好な圧力応答性を有する燃料電池システム及び移動体を提供することができ る。 . . 図面の簡単な説明
図 1は、 本発明の実施形態に係る燃料電池システムの構成図である。. 図 2は、 図 1に示した燃料電池システムにおけるインジェクタ噴射時間の 演算過程を説明するためのフローチャートである。
図 3は、 図 2に示したフローチヤ一卜のステップ S 3の処理に用いられる マップの一例である。
図 4は、 図 2に示したフローチヤ一トのステップ S 5の処理に用いられる マップの一例である。
図 5は、 図 2に示したフローチヤ一卜のステップ S 1 1の処理に用いられ るマップの一例である。
図 6は、 図 2に示したフローチヤ一トのステップ S 1 1の処理に用いられ るマップにおける学習値の演算過程を説明するためのフローチャートであ る。
図 7は、 図 6に示したフローチャードのステップ S 2 3の処理に用いられ るマップの一例である。
図 8は、 図 6に示したフローチャートのステップ S 2 5, S 2 7の処理を 説明するための図である。
図 9は、 図 6に示したフローチヤ一トのステップ S 2 9の処理を説明する ための図である。
図 1 0は、 図 6に示したフローチヤ一トのステップ S 3 1〜S 3 5の処理 を説明するための図である。 ノ:
発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態に係る燃料電池システム 1につ いて説明する。 本実施形態においては、 本発明を燃料電池車両 (移動体) の 車載発電システムに適用した例について説明することとする。 まず、 図 1を 用いて、 本発明の実施形態に係る燃料電池システム 1.の構成について説明十 る。 、 '
本実施形態に係る燃料電池システム 1は、図 1に示すように、反応ガス(酸 化ガス及び燃料ガス) の供給を受けて電力を発生する燃料電池 1 0を備える とともに、 燃料電池 1 0に酸化ガスとしての空気を供給する酸^ガス配管系 (燃料供給系) 2、 燃料電池 1 0に燃料ガスとしての水素ガスを供給する水 素ガス配管系 3、 システム全体を統合制御する制御装置 (制御手段、 学習手 段) 4等を備えている。
燃料電池 1 0は、 反応ガスの供給を受けて発電する単電池を所要数積層し て構成したスタック構造を有している燃料電池 1 0により発生した電力は、 P C U (Power Control Unit) 1 1に供給される。 P C U 1 1は、燃料電池 1 0と トラクションモータ 1 2との間に配置されるィンバータゃ D C - D C コンバータ等を備えている。 また、 燃料電池 1 0には、 発竜中の電流を検出 する電流センサ 1 3が琅り付けられている。
酸化ガス配管系 2は、 加湿器 2 0により加湿ざれた酸化ガス (空気) を燃 料電池 1 0に供給する空気供給流路 2 1と、'燃料電池 1 0から排出された酸 化オフガスを加湿器 2 0に導く空気排出流路 2 2と、 加湿器 2 0から外部に 酸化オフガスを導くための排気流路 2 3と、 を備えている。 空気供給流路 2 1には、 大気中の酸化ガスを取り込んで加湿器 2 0に圧送するコンプレッサ
2 4が設けられている。 '
水 ガス配管系 3は、 高圧 . (例えば 7 O M P a ) の水素ガスを貯留した燃 料供給源としての水素タンク 3 0と、 水素タンク 3 0の水素ガスを燃料電池 1 0に供給するための燃料供給流路としての水素供給流路 3 1と :、 燃料電池 1 0から排出された水素オフガスを水素供給流路 3 1に戻すための循環流路
3 2と、 を備えている。 水素ガス配管系 3は、 本,発明における燃料供給系の 一寒施形態である。 .
なお、 水素タンク 3 0に代えて、 炭化水素系の燃料から水素リッチな改質 ガス.を生成する改質器と、 この改質器で生成した改質ガスを高圧状態にして 蓄圧する高圧ガスタンクと、 を燃料供給源として採用することもできる。 ま た、 水素吸蔵合金を有するタンクを燃料供給源.として採用してもよい。 .„ 水素供給流路 3 1には、 水素タンク 3 0からの水素ガスの供 を遮断又は 許容する遮断弁 3 3と、 水素ガスの圧力を調整するレギユレータ 3 4と、 ィ ンジェクタ (ガス状態可変供給装置) 3 5と、 が設けられている。 また、 ィ ンジェクタ 3 5の上流側には、 水素供給流路 3 1内の水素ガスの圧力及び温 度を検出する一次側圧力センサ 4 1及ぴ温度センサ 4 2が設けられている。 また、 インジェクタ 3 5の下流側であって水素供給流路 3 1と循環流路 3 2 との合流部の上流側には、 水素供給流路 3 1内の水素ガスの圧力を検出する 二次側圧力センサ 4 3が設けられている。 レギユレータ 3 4は、 その上流側圧力 (一次圧) を、 予め設定した二次圧 に調圧する装置である。 本実施形態においては、 一次圧を減圧する機械式の 減圧弁をレギュレータ 3 4として採用している。 機械式の減圧弁の構成とし ては、 背圧室と調圧室とがダイアブラムを隔てて形成された筐体を有し、 背 圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする 公知の構成を採用することができる。
本実施形態においては、 図 1に示すように、 インジヱ'クタ 3 5の上流側に レギユレータ 3 4を 2個配置することにより、 インジェク 3 5の上流側圧 力を効果的に低減させることが きる。 このため、 インジェクタ 3 5の機械 的構造 (弁体、 筐体、 流路、 駆動装置等) の設計自由度を高め'ることができ る。
また、 インジェクタ 3 5の上流側圧力を低減させることができるので、 ィ ンジェクタ 3 5の上流側圧力と下流側圧力との差圧の増大に起因してィンジ ヱクタ 3 5の弁体が移動し難くなることを抑制す ことができる。 従って、 インジヱクタ 3 5の下流側圧力の可変調圧幅を広げることができるとともに、 インジェクタ 3 5の応答性の低下を抑制することができる。
インジェクタ 3 5は、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動 して弁座から離隔させることによりガス流量やガス圧等のガス状態を調聱す ることが可能な電磁駆動式の開閉弁である。 インジェクタ 3 5は、 水素ガス 等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、 その気体燃 料を噴射孔まで供給案内するノズルボディと、 このノズルボディに対して軸 線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体と、 を備えている。
本実施形態においては、 ィンジェクタ 3 5の弁体は電磁駆動装置であるソ レノイ ドにより駆動され、 このソレノイ ドに給電されるパルス状励磁電流の オン ·オフにより、 噴射孔の開口面積を 2段階、 多段階、 連続的 (無段階)、 又はリニアに切り替えることができるようになっている。 制御装啬 4から出 力される制御信号によってインジヱクタ 3 5のガス噴射時間及びガス噴射時 期が制御されることにより、水素ガスの流量及び圧力が高精度に制御される。 インジ二クタ 3 5は、 弁 (弁体及び弁座) を電磁駆動力で直接開閉駆動す るものであり、 その駆動周期が高応答の領域まで制御可能であるため、 高い 応答性を有する。
インジェクタ 3 5は、 その下流に要求されるガス流量'を供給するために、 インジヱクタ 3 5のガス流路に設けられた弁体の開口面積'(開度) 及び開放 時間の少なくとも一方を変更す ことにより、 下流側 (燃料電池 1 0側) に 供給されるガス流量 (又は水素モル濃度) を調整する。
なお、 インジェクタ 3 5の弁体の開閉によりガス流量が調整きれるととも に、 ィンジェクタ 3 5下流に供給されるガス圧力がィンジェクタ 3 5上流の ガス圧力より減圧されるため、 インジェクタ 3 5.を調圧弁 (減圧弁、 レギュ レータ) と解釈することもできる。 また、 本実施形態では、 ガス要求に応じ て所定の圧力範囲の中で要求圧力に一致するようにィンジェクタ 3 5の上流 ガス圧の調圧量 (減圧量) を変化させることが可能な可変調圧弁と解釈する こともできる。
なお、 本実施形態においては、 図 1に示すように、 水素供給流路 3 1 循 環流路 3 2との合流部 A 1より上流側にインジヱクタ 3 5を配 ¾している。 また、 図 1に破線で示すように、 燃料供給源として複数の水素タンク 3 0を 採用する場合には、 各水素タンク 3 0から供給される水素ガスが合流する部 分 (水素ガス合流部 A 2 ) よりも下流側にインジェクタ 3 5を配置するよう にする。
循環流路 3 2には、 気液分離器 3 6及び排気排水弁 3 7を介して、 排出流 路 3 8が接続されている。 気液分離器 3 6は、 水素オフガスから水分を回収 するものである。 排気排水弁 3 7は、 制御装置 4からの指令によって作動す ることにより、 気液分離器 3 6で回収した水分と、 循環流路 3 2内の不純物 を含む水素オフガスと、'を外部に排出 '(パージ) するものである。
また、 循環流路 3 2には、 循環流路 3 2内の水素オフガスを加圧して水素 供給流路 3 1側へ送り出す水素ポンプ 3 9が設けられている。 なお、 排出流 路 3 8内のガスは、 希釈器 4 0によって希釈されて排気流路 2 3内のガスと 合流するようになっている。
制御装 g 4は、 車両 Sに設けられた加速操作装置 (ァ'クセル等) の操作量 を検出し、 加速要求値 (例えばトラクシヨンモータ 1 2等の負荷装置からの 要求発電量) 等の制御情報を受 ίナて、 システム内の各種機器の動作を制御す る。 '
なお、 負荷装置とは、 トラクシヨンモータ 1 2のほかに、 燃料電池 1 0を 作動させるために必要な補機装置 (例えばコンプレッサ 2 4、 水素ポンプ 3 9、 冷却ポンプのモータ等)、.車両 Sの走行に関与する各種装置 (変速機、 車 輪制御装置、 操舵装置、 懸架装置等) で使用されるァクチユエ一タ、 乗員空 間の空調装置 (エアコン)、 照明、 オーディオ等を含む竃カ消費装置を総称し たものである。 ,
制御装置 4は、 図示していないコンピュータシステムによって構成されて いる。 かかるコンピュータシステムは、 C P U.、 R OM、 R AM, H D D、 入出力インタフエ一ス及ぴディスプレイ等を備えるものであり、' R OMに記 録された各種制御プログラムを C P Uが読み込んで実行することにより、 各 種制御動作が実現されるようになっている。
具体的には、 図 2のフローチャートに示すように、 制御装置 4は、 燃料電 池 1 0の発電電流 (以下、 F C電流) を電流センサ 1 3で検出し (ステップ S 1 )、例えば図 3に示すマップ、 つまり、 ステップ S 1で検出した F C電流 と、 燃料電池 1 0に対する要求出力に対応して設定される燃料電池 1 0の入 口側目標圧力(以下、 F C入口目標圧力) との関係を表わすマップを甩いて、 ステップ S 1で検出した FC電流から FC入口目標圧力を汆める (ステップ S 3)。 . '
次に、 制御装置 4は、 例えば図 4に示すマップ、 つまり、 FC電流とイン ジェクタの基本噴射時間であるフィードフォワード項 (以下、 F/F値) と の関係を表わすマップを用いて、 ステップ S 1で検出した F C電流からイン ジェクタの基本噴射時間である FZF値を求める (ステップ S 5)。
次に、 制御装置 4は、 ステップ S'3で求めた FC入口.目標圧力と、 二次側 圧力センサ 43で検出した現在の燃料電池 10の入口側圧 Λ (以下、 FC入 口圧力) との偏差 (以下、 FCA口圧力偏差) を求め (ステップ S 7)、 この FC入口圧力偏差を補正する (低減させる) ための補正値とじて、 インジ土 クタ噴射時間のフィードバック項 (以下、 F/B値) を求める (ステップ S 9)。 . .
次に、 制御装置 4は、 例えば図 5に示すマップ.、 つまり、 FC電流と学習 値との関係を表わすマップを用いて、 ステップ S 1で検出した FC電流から インジ工クタ 35の経年変化や個体差による流量ばらつき等を補正するため の学習^として、インジェクタ噴射時間の学習値を求める(ステップ S 1 1)。 この図 5に示すマップでは、 一定の FC電流ゾーン (図 5中の破線で区切 ちれた 1〜6の領域) 毎に学習値が切り替わる.、 つまり、 燃料電池 1 O 出 力に対応する複数の学習領域毎に学習値が切り替わるようになっている。 こ の学習値は、 後に詳述するように、 燃料電池 10の運転状態に応じて随時更 新される。
次に、 制御装置 4は、 ステップ S 3で求めたインジェクタ 35の基本噴射 時間である FZF値に、 ステップ S 9で求めた FZB値と、 ステップ S 1 1 で求めた学習値とを加算することにより、 インジェクタ 35の噴射時間 (噴 射量) を求める (ステップ S 1 3)。
なお、 本実施形態では、 インジェクタ 35の噴射孔が全開 ·全閉の 2段階 に切り替わるものであると共に、 この全開 '全閉の周期が一定の値に設定さ れたものであるから、 噴射量と噴射時間との間には一定の相関関係がある。 . そして、 制御装置 4は、 かかる噴射時間を実現させるための制御信号をィ ンジェクタ 3 5に出力することにより、 インジェクタ 3 5の噴射時間及ぴ噴 射時期を制御し、 燃料電池 1 0に供給される水素ガスの流量及び圧力を調整 する。
次に、 図 6のフローチャートを参照しながら、 図 2の'ステップ S 1 1で用 いられた学習値の演算フローについて説明する。 、 ' 具体的には、 制御装置 4は、 燃料電池 1 0の発電電流 (F C電流) を電流 センサ 1 3で検出し (ステップ S 2 1 )、 例えば図 7に示すマ、ンプ、 つまり、 F C電流に対応する水素ガス流量と、 インジェクタ 3 5の一次圧 (上流圧) と、 所定の水素ガス流量範囲毎に設定された学習ゾーン (燃料電池の出力に 対応する複数の学習領域) との関係を示すマップを用いて、 水素ガス流量か ら学習すべき学習ゾーンを求める (ステップ S 2 3 )。
なお、'本実施形態では、 図 7に示すように、 水素ガス流量毎、 言い換えれ ば、 . F C電流毎に破線で.区切られた 6つの学習ゾーンが設定されている。 次に、 電流センサ 1 3で検出した F C電流の変化値が所定値以下 (燃料電 .池の発電電流の変動が一定以下) であるかを判断する (ステップ S 2 5、. 図 8 )。 この F C電流の変化値が所定値を超えている場合には ( テツプ S 2 5 : N O ) , ステップ S 2 1に戻り、 所定値以下である場合には (ステップ S 2 5 : Y E S )、現在の電流ゾーンに入って所定時間経過したかを判断する(ス テツプ S 2 7、 図 8 )。 これらステップ S 2 5, S 2 7では、 現在の電流ゾー ンに入ってからの電流変化値と経過時間とにより、 定常状態であるか否かを 判断している。
現在の電流ゾーンに入ってから所定時間が経過していない場合には (ステ ップ S 2 7 : N O )、 ステップ S 2 1に戻り、 所定時間が経過している場合に は (ステップ S 27 : YE S)、 図 2のステップ S 7と同様にして求められる FC入口圧力偏差が所定値以下.(燃料電池に供給される燃料ガス圧力の変動 が一定以下) であるかを判断する (ステップ S 2.9、 図 9)。 このステップ S 29の処理は、 後述するステップ S 33で FC入口圧力偏差に基づき設定さ れる学習値が適切な範囲となり得るか、 つまり、 学習に適した学習可能な状 態であるかを判断している。
学習可能な状態でない場合には (ステップ S 29 : N0)、 ステップ S 2 1 に戻り、 学習可能な状態である場合には (ステップ S 29 :' YES)、図 2の ステップ S 9と同様にして求め れるィンジェクダ噴射時間のフィードバッ ク項 (FZB値) の前回値と今回値を積算する (ステップ S 31)。
次に、 この積算回数が所定回数以上であるかを判断し (ステップ S 33)、 所定回数未満である場合には (ステップ S 33 : NO), ステップ S 21.に戻 り、 所定回数以上である場合には (ステップ S 3.3 : YES), ステップ S 3 1で積算したインジヱクタ噴射時間の FZB値を 算回数で除算して平均値 を求め、 この F/B値の平均値をステップ S 23で求めた学習ゾーンにおけ る現在の学習値とする ( テップ S 35、 図 10)。
制御装置 4は、以上の処理を経てインジ クタ 35の駆動特性を学習する。 この駆動特性の学習が学習ゾーン 1〜6の全て.について行われると、 図 5に 示すようなマップが得られ、このマップは、図 6のステップ S 25, S 2.7, S 29, S 33の条件を全て満足したときに学習ゾーン毎に更新される。 こ の学習結果は、 インジヱクタ 35の駆動パラメータ (本実施形態では、 噴射 時間) の設定に反映される。 つまり、 本実施形態の制御装置 4は、 学習手段 の一例である。
以上説明したように、 本実施形態に係る燃料電池システム 1においては、 制御装置 4が、 燃料電池 1 0の FC電流に基づいて設定された FC入口目標 圧力と、 二次側圧力センサ 43で検出した実際の FC入口圧力との偏差、 つ まり、 F C入口圧力偏差を低減させるための F Z B値を算出しているだけで なく、 インジェクタ 3 5の経年変化や個体差に起因して生ずる F C入口圧力 偏差のばらつきを F C電流に応じて学習し、 該学習結果に基づいてィンジェ クタ噴射時間を設定している。
よって、 燃料電池 1 0の運転中に運転状態に応じて水素ガスの供給圧力を 適切に変化させることができることはもとより、 幅広く圧力可変しても、 ィ ンジェクタ 3 5の経年変化や固体差によるばらつきによ'らない良好な圧力応 答性を確保することができる。 また、 インジェクタ 3 5は、 水 ガスの流量 調整弁及び可変調圧弁として機 するため、 圧力応答性の向上に加えて高精 度な調圧が可能となることはもちろんである。
さらに、 本実施形態の燃料電池システム 1において、 F C入口圧力偏差の ばらつきの学習は、 F C電流と F C入口圧力が安定している場合のみ、 つま り、 学習に適した状態でのみ行っているので、 ィ.ンジェクタ 3 5の経年変化 や固体差以外の要因による F C入口圧力偏差のばらつきを誤って学習してし まうことが抑制され、 良好な過渡特性と安定性を確保することができる。 なお、'上記実施形態においては、 燃料電池 1 0の発電時の電流値 (F C電 流) を検出し、 この電流値に基づいて学習値を設定した例を示したが、 他の 物理量、例えば F C電流の微分値(変化率)、燃料電池 1 0の発電時の電 値 や電力値、 燃料電池 1 0の温度、 インジェクタ 3 5の一次側圧; 、 インジェ クタ 3 5の二次側圧力、 及び水素流量に基づいて学習値を設定してもよい。 また、 上記実施形態においては、 F C電流と F C入口圧力が安定している 場合にのみ学習を許可することによって誤学習の防止を図っていたが、 燃料 電池 1 0の運転状態の態様 (起動状態、 間欠運転状態、 通常運転状態、 パー ジ運転状態、 燃料電池自体の異常状態、 燃料電池システムの異常状態等) を 制御装置が判定し、 例えばパージ運転状態である場合に学習を禁止すること によっても、 誤学習の防止を図ることができる。 また、 上記実施形態においては、 本発明に係る燃料電池システムを燃料電 池車両 Sに搭載した例を示したが、 燃料電池車両 S以外の各種移動体 (ロボ ット、 船舶、 航空機等) に本発明に係る燃料電池システムを搭載することも できる。 また、 本発明に係る燃料電池システムを、 建物 (住宅、 ビル等) 用 の発電設備として用いられる定置用発電システムに適用してもよい。 産業上め利用可能性 '
本発明によれば、 ガス状態可変供給装置の経年変化や個体差によら'ない良 好な圧力応答性を有する燃料電沲システム及び移動体を提供することができ る。 よって、 そのような要求のある燃料電池システム及び移動体に広く利用 することができる。

Claims

請求の範囲
1 . 燃料電池と、 この燃料電池に燃料ガスを供給するための燃料供給系ど、 この燃料供給系の上流側のガス状態を調整して下流側に供給するガス状態 可変供給装置と、 該ガス状態可変供給装置を前記燃料電池の運転状態に応じ て駆動制御する制御手段と、 を備える燃料電池システムであって、
前記ガス状態可変供給装置の駆動特性を学習し、 該学 の結果に基づき前 記ガス状態可変供給装置の駆動パラメータを設定する学 手段を備える燃 料電池システム。 .
2 . 請求項 1において、 '
前記学習手段は、 前記燃料電池の出力に対応する複数の学習領域毎に前記 ガス状態可変供給装置の駆動特性を学習する燃料電池システム。
3 . 請求項 1において、
前記学習手段は、 前記燃料亀池に供給される燃料.ガスの状態に応じて前記 ガス状態可変供給装置の駆動特性を学習する燃料電池システム。
4 . . 請求項 1において、
前記学習手段は、 前記燃料電池の発電電流と前記燃料電池に供給される燃 料ガス圧力の変動が一定以下であるときに前記学習を行う燃料電池シス.テ ム。
5 . 請求項 4において、
前記学習手段は、 前記燃料電池から排出された燃料ガスのオフガスを前記 燃料供給系の外部へパージしている間は、 前記学習を禁止する燃料電池シス テム。
6 . 請求項 1から 5のいずれかにおいて、
システム製造時に、 前記ガス状態可変供給装置の個体差に基づいて前記駆 動パラメータが設定される燃料電池システム。
7 . 請求項 1から 6のいずれかにおいて、
前記ガス状態可変供給装置は、 その上流側と下流側とを連通する内部流路 と、 該内部流路内に移動可能に配設されその移動位置に応じて前記内部流路 の開口面積を変更可能な弁体と、 電磁駆動力により前記弁体を駆動する弁体 駆動部と、 を備えてなるインジヱクタである燃料電池システム。
8 . 請求項 1から 7のいずれかに記載の燃料電池システムを備えた移動体。
PCT/JP2006/324616 2005-12-15 2006-12-05 燃料電池システム及び移動体 WO2007069553A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112006003414T DE112006003414B4 (de) 2005-12-15 2006-12-05 Brennstoffzellensystem sowie seine Verwendung in einem Fahrzeug
US12/085,531 US8642224B2 (en) 2005-12-15 2006-12-05 Fuel cell system with a learning capability to readjust the driving characteristic of a gas supply device and vehicle
CN2006800472684A CN101331637B (zh) 2005-12-15 2006-12-05 燃料电池系统和车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-361984 2005-12-15
JP2005361984A JP4924792B2 (ja) 2005-12-15 2005-12-15 燃料電池システム及び移動体

Publications (1)

Publication Number Publication Date
WO2007069553A1 true WO2007069553A1 (ja) 2007-06-21

Family

ID=38162861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324616 WO2007069553A1 (ja) 2005-12-15 2006-12-05 燃料電池システム及び移動体

Country Status (6)

Country Link
US (1) US8642224B2 (ja)
JP (1) JP4924792B2 (ja)
KR (1) KR100966910B1 (ja)
CN (1) CN101331637B (ja)
DE (1) DE112006003414B4 (ja)
WO (1) WO2007069553A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021150A (ja) * 2007-07-13 2009-01-29 Toyota Motor Corp 燃料電池システムおよび燃料電池車両

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438854B2 (ja) 2007-11-19 2010-03-24 トヨタ自動車株式会社 燃料電池システム
JP2009135029A (ja) * 2007-11-30 2009-06-18 Toyota Motor Corp 燃料電池システム及び移動体
JP5319160B2 (ja) * 2008-05-19 2013-10-16 本田技研工業株式会社 燃料電池システム
CN102156020B (zh) * 2011-03-28 2013-06-26 同济大学 燃料电池系统估算氢瓶氢气剩余压力的方法及装置
JP5737593B2 (ja) * 2012-03-19 2015-06-17 トヨタ自動車株式会社 燃料電池システム
JP6015736B2 (ja) * 2014-11-10 2016-10-26 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
JP6137126B2 (ja) * 2014-11-13 2017-05-31 トヨタ自動車株式会社 バルブ制御装置およびバルブ制御方法
US10605530B2 (en) * 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10720655B2 (en) 2017-11-28 2020-07-21 Toyota Motor Engineering & Manufacturing North America, Inc. Partial derivative based feedback controls for pid
US11094950B2 (en) 2017-11-28 2021-08-17 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based state estimator for cooling system controller
US10714773B2 (en) 2017-11-28 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling system dT/dt based control
US10777831B2 (en) 2017-11-28 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based cooling system control strategy/method
AT520682B1 (de) * 2017-12-07 2021-07-15 Avl List Gmbh Verfahren zur Ermittlung eines Betriebszustandes eines elektrochemischen Systems
CN115020767A (zh) * 2022-05-25 2022-09-06 北京亿华通科技股份有限公司 一种燃料电池系统控制方法、燃料电池系统及计算机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185242A (ja) * 1989-12-14 1991-08-13 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JPH084579A (ja) * 1994-04-19 1996-01-09 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2004108160A (ja) * 2002-09-13 2004-04-08 Denso Corp 内燃機関用燃料噴射装置
JP2004207024A (ja) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2004349068A (ja) * 2003-05-21 2004-12-09 Nissan Motor Co Ltd 燃料電池システム
JP2005150018A (ja) * 2003-11-19 2005-06-09 Nissan Motor Co Ltd 燃料電池の冷却系制御装置
JP2005150090A (ja) * 2003-10-24 2005-06-09 Toyota Motor Corp 燃料電池システム
JP2005283127A (ja) * 2004-03-26 2005-10-13 Nissan Motor Co Ltd 燃料量演算装置
JP2005327596A (ja) * 2004-05-14 2005-11-24 Toyota Motor Corp 燃料電池システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915747A (en) * 1973-11-27 1975-10-28 United Technologies Corp Pulse width modulated fuel control for fuel cells
JPH06275300A (ja) 1993-03-24 1994-09-30 Sanyo Electric Co Ltd 燃料電池システム
JP4679701B2 (ja) * 2000-08-10 2011-04-27 本田技研工業株式会社 燃料電池の流体供給装置と燃料供給システム
JP4929556B2 (ja) 2003-05-14 2012-05-09 トヨタ自動車株式会社 燃料電池システムの運転制御
US20050023083A1 (en) * 2003-07-31 2005-02-03 Reimer Dale Robert Support assembly for a horizontally-extending member
JP4552399B2 (ja) 2003-08-07 2010-09-29 トヨタ自動車株式会社 複数タンクからなるタンクシステムおよびその制御方法
JP2005129427A (ja) 2003-10-27 2005-05-19 Aisin Seiki Co Ltd 燃料電池用ガス減圧弁及び燃料電池発電システム
DE602005026106D1 (de) * 2004-03-17 2011-03-10 Toyota Motor Co Ltd Brennstoffzellensystem
US7608351B2 (en) * 2005-10-07 2009-10-27 Gm Global Technology Operations, Inc. System and method for controlling cathode stoichiometry to minimize RH excursions during transients

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185242A (ja) * 1989-12-14 1991-08-13 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JPH084579A (ja) * 1994-04-19 1996-01-09 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2004108160A (ja) * 2002-09-13 2004-04-08 Denso Corp 内燃機関用燃料噴射装置
JP2004207024A (ja) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2004349068A (ja) * 2003-05-21 2004-12-09 Nissan Motor Co Ltd 燃料電池システム
JP2005150090A (ja) * 2003-10-24 2005-06-09 Toyota Motor Corp 燃料電池システム
JP2005150018A (ja) * 2003-11-19 2005-06-09 Nissan Motor Co Ltd 燃料電池の冷却系制御装置
JP2005283127A (ja) * 2004-03-26 2005-10-13 Nissan Motor Co Ltd 燃料量演算装置
JP2005327596A (ja) * 2004-05-14 2005-11-24 Toyota Motor Corp 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021150A (ja) * 2007-07-13 2009-01-29 Toyota Motor Corp 燃料電池システムおよび燃料電池車両

Also Published As

Publication number Publication date
DE112006003414T5 (de) 2008-10-09
US20090169936A1 (en) 2009-07-02
KR20080068922A (ko) 2008-07-24
US8642224B2 (en) 2014-02-04
JP2007165183A (ja) 2007-06-28
CN101331637A (zh) 2008-12-24
DE112006003414B4 (de) 2010-08-26
JP4924792B2 (ja) 2012-04-25
CN101331637B (zh) 2011-01-12
KR100966910B1 (ko) 2010-06-30

Similar Documents

Publication Publication Date Title
WO2007069553A1 (ja) 燃料電池システム及び移動体
JP5120590B2 (ja) 燃料電池システム及びインジェクタの診断方法
RU2359367C1 (ru) Батарея топливных элементов и подвижное устройство
JP4780390B2 (ja) 燃料電池システム及び移動体
JP4438854B2 (ja) 燃料電池システム
KR101190170B1 (ko) 연료전지시스템
US8771886B2 (en) Fuel cell system and method for controlling same
JP5446023B2 (ja) 燃料電池システム
WO2008099905A1 (ja) 燃料電池システム
JP4962777B2 (ja) ガス供給システム
WO2009028340A1 (ja) 燃料電池システム及びその制御方法
WO2008069111A1 (ja) 燃料電池システム
US8609292B2 (en) Fuel cell system
WO2009011324A1 (ja) 燃料電池システム及び移動体
WO2008050699A1 (fr) Système de pile à combustible et son procédé de débit turbiné
JP4655082B2 (ja) 燃料電池システム
JP5158558B2 (ja) 燃料電池システム
KR101135658B1 (ko) 연료전지시스템
JP2007317597A (ja) 燃料電池システム及び開閉弁の診断方法
JP5376390B2 (ja) 燃料電池システム
WO2007069484A1 (ja) 燃料電池システム及び移動体
JP2007323873A (ja) 燃料電池システム及びその制御方法
JP2008204711A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047268.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12085531

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087014364

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112006003414

Country of ref document: DE

Date of ref document: 20081009

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112006003414

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834371

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607