WO2009011324A1 - 燃料電池システム及び移動体 - Google Patents

燃料電池システム及び移動体 Download PDF

Info

Publication number
WO2009011324A1
WO2009011324A1 PCT/JP2008/062657 JP2008062657W WO2009011324A1 WO 2009011324 A1 WO2009011324 A1 WO 2009011324A1 JP 2008062657 W JP2008062657 W JP 2008062657W WO 2009011324 A1 WO2009011324 A1 WO 2009011324A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
fuel
pressure
flow rate
Prior art date
Application number
PCT/JP2008/062657
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Hasuka
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800252927A priority Critical patent/CN101755357B/zh
Priority to DE112008001877.4T priority patent/DE112008001877B4/de
Priority to US12/669,627 priority patent/US8192884B2/en
Publication of WO2009011324A1 publication Critical patent/WO2009011324A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a moving body, and more particularly to a control technique at the end of these operations.
  • the present invention provides a fuel gas having an optimum flow rate according to the temperature environment at the end of operation of the fuel cell system, and can efficiently suppress deterioration of the fuel cell after the operation ends. And its purpose is to provide a moving body.
  • the present invention is a fuel cell system comprising: a fuel cell; a fuel gas supply system that supplies fuel gas to the fuel cell; and an oxidant gas supply system that supplies oxidant gas to the fuel cell,
  • the flow rate of the fuel gas supplied to the fuel cell is increased by a predetermined amount determined based on the temperature environment of the fuel cell system.
  • an optimal flow rate of the fuel gas corresponding to the temperature environment is supplied during the operation termination process and the operation termination process. This can be provided later, whereby the deterioration of the fuel cell due to the shortage of fuel gas can be efficiently suppressed.
  • the “temperature environment” typically indicates a temperature acquired at one or a plurality of locations inside or outside the fuel cell system.
  • the predetermined amount is at least a first required for allowing fuel gas to remain in the fuel cell at the end of the operation end process.
  • the fuel gas flow rate may be determined based on the sum of the fuel gas flow rate and the second fuel gas flow rate required to discharge the moisture in the fuel cell to the outside during the operation termination process.
  • moisture in the fuel cell can be discharged to the outside during the operation end process by the second fuel gas flow rate increased at the start of the operation end process. Even if it is below, the water inside the fuel cell will be frozen due to the temperature drop inside the fuel cell after the operation is completed. This can be prevented. Further, even if the fuel gas is used due to the drainage of water during the end-of-operation process, the increased first fuel gas flow rate can cause the fuel gas to remain in the fuel cell even after the end of the operation. Therefore, carbon oxidation can also be suppressed.
  • the predetermined amount is the first and second fuel gas flow rates, and the predetermined amount required for the fuel cell to output a current required for the operation end process during the operation end process. It may be determined based on a total value obtained by further adding the fuel gas flow rate of 3.
  • the fuel cell system itself can secure the current required for the operation termination process in a low temperature environment.
  • based on the total value indicates that the total value is the basis for calculating the predetermined amount
  • “determined based on the total value” means, for example, that the total value is used as the predetermined amount.
  • a value obtained by adding a value obtained by adding a gas leakage amount in the fuel cell system to the total value is set as a predetermined amount.
  • Equipment operation at the end of operation refers to, for example, the operation of collecting moisture from the gas-liquid separator, the rotation of the hydrogen pump, the injection of the injector, and the opening / closing operation of the exhaust drain valve, etc.
  • the predetermined amount when the temperature environment is higher than a predetermined temperature, the predetermined amount may be determined based on the first fuel gas flow rate.
  • the increased first fuel gas flow rate can be used even after the end of operation. Since fuel gas can remain in the fuel cell, carbon oxidation can be suppressed.
  • treatment such as moisture discharge is not required at the end of operation (ie, fuel gas for moisture discharge is not required) Force Based on the first fuel gas flow rate Since the predetermined amount is determined, an excessive flow of fuel gas is not supplied. In this way, the flow rate of the fuel gas to be increased at the start of the operation end process is changed between the low temperature environment and the high temperature environment, so the fuel cell deteriorates after the operation ends with the optimal flow rate fuel gas according to the temperature environment. Can be suppressed.
  • the flow rate of the fuel gas may be increased by increasing the supply pressure of the fuel gas with an injector provided in the fuel gas supply system.
  • the injector in this specification typically has a gas state (flow rate, pressure, temperature, molar concentration, etc.) by driving the valve body directly with a predetermined driving cycle with an electromagnetic driving force and separating it from the valve seat.
  • a gas state flow rate, pressure, temperature, molar concentration, etc.
  • it includes at least one of gas flow rate and gas pressure.
  • the pressure can be adjusted with high accuracy and speed, so that an appropriate flow rate of fuel gas can be supplied to the fuel cell at the start of the operation termination process. Since the flow rate is controlled by pressure, the flow rate can be controlled while maintaining the inter-electrode differential pressure between the anode force swords within a predetermined range.
  • the mobile body of this invention is equipped with the said fuel cell system.
  • FIG. 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a pressure regulation target at the start of the operation end process according to the embodiment.
  • the fuel cell system 1 includes a fuel cell 2 that generates electric power upon receiving a supply of a reactive gas (oxidizing gas and fuel gas), and a fuel cell that uses air as the oxidizing gas.
  • oxidant gas piping system 3 to be supplied to the fuel cell 3
  • fuel gas piping system 4 to supply hydrogen gas as fuel gas to the fuel cell 2
  • refrigerant piping system 5 to supply the refrigerant to the fuel cell 2 and cool the fuel cell 2 5
  • a power system 6 that charges and discharges the power of the system, and a control unit 7 that performs overall control of the entire system.
  • the oxidant gas piping system 3 has an air supply channel 11 through which air as an oxidant gas supplied to the fuel cell 2 flows, and an exhaust channel 12 through which the oxidant off-gas discharged from the fuel cell 2 flows. is doing.
  • the air supply flow path 11 is provided with a compressor 14 that takes in the oxidizing gas via the filter 13 and a humidifier 15 that humidifies the oxidizing gas fed by the compressor 14.
  • Oxidized off-gas flowing in the exhaust flow path 1 2 passes through the back pressure regulating valve 16 and is used for moisture exchange in the humidifier 15, and is finally exhausted into the atmosphere outside the system as exhaust gas.
  • the compressor 14 takes in oxidizing gas in the atmosphere by driving a motor (not shown).
  • the fuel gas piping system 4 is discharged from the hydrogen supply source 21, the hydrogen supply flow path 2 2 through which hydrogen gas as the fuel gas supplied from the hydrogen supply source 21 to the fuel cell 2 flows, and the fuel cell 2.
  • a circulation flow path 2 3 for returning hydrogen off gas (fuel off gas) to the merge point A 1 of the hydrogen supply flow path 2 2, and a hydrogen pump for pumping the hydrogen off gas in the circulation flow path 2 3 to the hydrogen supply flow path 2 2 Branch connection to 2 4 and circulation flow path 2 3
  • the exhaust drainage flow path 25 is provided.
  • the hydrogen supply source 21 is composed of, for example, a high-pressure tank or a hydrogen storage alloy, and is configured to store, for example, 35 MPa or 70 MPa of hydrogen gas.
  • the hydrogen supply flow path 2 2 includes a shutoff valve 26 that shuts off or allows the supply of hydrogen gas from the hydrogen supply source 21, a regulator 2 7 that adjusts the pressure of the hydrogen gas, and an injector 2 8. Is provided. Further, the pressure of the hydrogen gas in the hydrogen supply flow path 2 2 is detected on the downstream side of the injector 28 and upstream of the junction A 1 between the hydrogen supply flow path 2 2 and the circulation flow path 2 3. A pressure sensor 29 is provided. Further, on the upstream side of the indicator 28, a pressure sensor and a temperature sensor (not shown) for detecting the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 22 are provided. Information related to the gas state (pressure, temperature) of the hydrogen gas detected by the pressure sensor 29 and the like is used for feedback control and purge control of the injector 28.
  • the regulator 27 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure.
  • a mechanical pressure reducing valve for reducing the primary pressure is employed as the regulator 27.
  • the mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure regulating chamber are formed with a diaphragm therebetween, and the primary pressure is set to a predetermined pressure in the pressure regulating chamber by the back pressure in the back pressure chamber. It is possible to adopt a known configuration in which the pressure is reduced to a secondary pressure. In this embodiment, it is shown in FIG. In this manner, by arranging two regulators 27 on the upstream side of the injector 28, the upstream pressure of the injector 28 can be effectively reduced.
  • the degree of freedom in designing the mechanical structure of the injector 28 can be increased.
  • the valve body of the injector 28 is difficult to move due to an increase in the differential pressure between the upstream pressure and the downstream pressure of the injector 28. Can be suppressed. Therefore, it is possible to widen the adjustable pressure width of the downstream pressure of the injector 28, and to suppress a decrease in response of the injector 28.
  • the regulator 27 adjusts the gas state (gas pressure) on the upstream side of the hydrogen supply flow path 22 and supplies it to the downstream side, and corresponds to the variable gas supply device in the present invention.
  • the injector 28 is an electromagnetically driven on-off valve that can adjust the gas flow rate and gas pressure by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat.
  • the indicator 28 includes a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (gas flow with respect to the nozzle body). And a valve body that is accommodated and held movably in a direction) to open and close the injection hole.
  • the valve body of the injector 28 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is increased in two or more stages by turning on and off the pulsed excitation current fed to the solenoid. It is possible to switch to the stage.
  • the injector 28 is a valve (valve body and valve seat) that directly opens and closes with an electromagnetic driving force, and has a high responsiveness because its driving period can be controlled to a highly responsive region.
  • Injector 28 is used to supply the required gas flow downstream.
  • the flow rate of gas supplied to the downstream side (fuel cell 2 side) (or hydrogen) by changing at least one of the opening area (opening) and the opening time of the valve provided in the gas flow path of the injector 28 Molar concentration).
  • the gas flow rate is adjusted by opening and closing the valve body of the injector 28, and the gas pressure supplied to the downstream of the injector 28 is reduced from the gas pressure upstream of the injector 28. (Pressure reducing valve, Regulator)
  • the injector 28 adjusts the gas state (gas flow rate, hydrogen molar concentration, gas pressure) on the upstream side of the hydrogen supply flow path 22 and supplies it to the downstream side.
  • the injector 28 is disposed upstream of the junction A 1 between the hydrogen supply channel 22 and the circulation channel 23.
  • the hydrogen gas supplied from each hydrogen supply source 21 is joined (hydrogen gas merger).
  • the injector 28 is disposed downstream of the part A2).
  • An exhaust / drain channel 25 is connected to the circulation channel 23 via a gas / liquid separator 30 and an exhaust / drain valve 31.
  • the gas-liquid separator 30 collects moisture from the hydrogen off gas.
  • the exhaust / drain valve 31 is operated according to a command from the control unit 7 so that moisture recovered by the gas-liquid separator 30 and hydrogen off-gas (fuel off-gas) including impurities in the circulation channel 23 Is discharged (purged) to the outside. Opening the exhaust / drain valve 31 reduces the concentration of impurities in the hydrogen off-gas in the circulation channel 23 and increases the concentration of hydrogen in the hydrogen off-gas that is circulated.
  • An upstream pressure sensor that detects the hydrogen off-gas pressure at the upstream position (on the circulation flow path 2 3) and the downstream position (on the exhaust flow path 2 5) of the exhaust drain valve 3 1. And a downstream pressure sensor is provided.
  • the hydrogen off-gas discharged through the exhaust / drain valve 31 and the exhaust / drain channel 25 is diluted by a diluter (not shown) and merges with the oxidizing off-gas in the exhaust channel 12.
  • the hydrogen pump 24 circulates and supplies hydrogen gas in the circulation system to the fuel cell 2 by driving a motor (not shown).
  • the hydrogen gas circulation system is composed of the downstream flow path at the confluence point A 1 of the hydrogen supply flow path 2 2, the fuel gas flow path formed in the separator of the fuel cell 2, and the circulation flow path 2 3.
  • the Rukoto is composed of the downstream flow path at the confluence point A 1 of the hydrogen supply flow path 2 2, the fuel gas flow path formed in the separator of the fuel cell 2, and the circulation flow path 2 3.
  • the refrigerant piping system 5 cools the refrigerant flow path 41 connected to the cooling flow path in the fuel cell 2, the cooling pump 4 2 provided in the cooling flow path 41, and the refrigerant discharged from the fuel cell 2.
  • Rajeta 4 3 and The cooling pump 42 circulates and supplies the refrigerant in the refrigerant flow path 41 to the fuel cell 2 by driving a motor (not shown).
  • the power system 6 includes a high-voltage DCDC converter 6 1, a battery 6 2, a traction inverter 6 3, a traction motor 6 4, various auxiliary inverters not shown in the figure, and the like.
  • the high-voltage DC / DC converter 6 1 is a DC voltage converter that adjusts the DC voltage input from the battery 6 2 and outputs it to the traction inverter 6 3 side.
  • the fuel cell 2 or the traction motor 6 And a function of adjusting the DC voltage input from 4 and outputting it to the battery 62.
  • These functions of the high-voltage D C ZD C converter 61 make it possible to charge and discharge the battery 62.
  • the output voltage of the fuel cell 2 is controlled by the high voltage DC / DC converter 61.
  • the battery 62 is configured such that battery cells are stacked and a constant high voltage is used as a terminal voltage, and surplus power can be charged or supplementary power can be supplied under the control of a battery computer (not shown).
  • the traction inverter 63 converts the direct current into a three-phase alternating current and supplies it to the traction motor 64.
  • the motor 64 is, for example, a three-phase AC motor, and constitutes the main power source of the vehicle on which the fuel cell system 1 is mounted.
  • the auxiliary inverter is an electric motor controller that controls the drive of each motor, and converts the direct current into three-phase alternating current and supplies it to each motor.
  • the auxiliary inverter is, for example, a pulse width modulation type PWM inverter, which converts the DC voltage output from the fuel cell 2 or the battery 62 into a three-phase AC voltage in accordance with a control command from the control unit 7, and converts each motor to each motor. Controls the torque generated by the.
  • the control unit 7 detects the amount of operation of an acceleration operation member (accelerator, etc.) provided in the vehicle, and controls information such as an acceleration request value (for example, a required power generation amount from a load device such as the traction motor 64). In response, it controls the operation of various devices in the system.
  • the load device is an auxiliary device required to operate the fuel cell 2 (for example, each motor of the compressor 1 4, hydrogen pump 2 4, cooling pump 4 2),
  • Collective term for power consumption devices including actuators used in various devices (transmissions, wheel control units, steering devices, suspension devices, etc.) involved in vehicle travel, air conditioning devices for passenger spaces (air conditioners), lighting, audio, etc. It is a thing.
  • the control unit 7 is configured by a computer system (not shown). Such a computer system includes a CPU, ROM, RAM, HDD, input / output interface, display, and the like, and the CPU reads various control programs recorded in the ROM and executes desired calculations. Various processes and controls such as an operation end process to be described later are performed.
  • the control unit 7 inputs detection signals from various pressure sensors and temperature sensors used in the oxidant gas piping system 3, the fuel gas piping system 4, and the refrigerant piping system 5, and an outside air temperature sensor (not shown). A control signal is output to each component.
  • operation termination processing of the fuel cell system Next, the operation when the operation of the fuel cell system 1 is terminated and power generation is stopped. (Hereinafter simply referred to as “operation end processing”).
  • the temperature outside the fuel cell vehicle (hereinafter referred to as the outside air temperature) is measured at the start of the operation termination process, and the injection pressure of the indicator 28 is increased based on this outside air temperature. More specifically, the injection pressure to be increased is different depending on whether the outside air temperature is below freezing (hereinafter referred to as “low temperature environment”) or higher than below freezing (hereinafter referred to as “high temperature environment”). This point will be described in detail below with reference to FIGS.
  • FIG. 2 is a flowchart showing the operation end processing according to the embodiment of the present invention
  • FIG. 3 is a diagram for explaining a pressure regulation target at the start of the operation end processing.
  • the process flow of the operation end process starts when an operation end command is issued to the fuel cell system 1. This command is given, for example, by the OFF operation of the idle switch by the driver of the vehicle.
  • the control unit 7 determines whether or not this operation end command has been input to the control unit 7 (S 1), and if it is determined that it has been input (S 1: Y E S), starts the operation end process. If it is determined that the operation end command has not been input (S1: NO), the control unit 7 continues normal operation.
  • the control unit 7 When the operation termination process is started, the control unit 7 outputs a hydrogen shut-off valve closing command to close the shut-off valve 2 6 of the hydrogen supply source 2 1 and stop the new supply of hydrogen (S 2 ). As a result, the closing process of the shutoff valve 26 is started (time t 0 in FIG. 3). However, due to the valve closing delay, a certain amount of time is required for the shut-off valve 26 to be completely shut off. Until a certain time elapses (time ti in Fig. 3), the hydrogen supply source 2 1 The supply of hydrogen gas is not completely stopped. Hydrogen gas also remains in the hydrogen supply channel 22. In other words, the hydrogen gas flow rate can be adjusted even at this stage.
  • the control unit 7 acquires the outside air temperature detected by the outside air temperature sensor, and increases the outside air temperature based on the outside air temperature.
  • the hydrogen flow rate is calculated (S 3).
  • the control unit 7 calculates the upstream pressure (pressure adjustment target) of the injector 25 necessary for supplying the calculated hydrogen flow rate to the fuel cell 2 (S 3).
  • FIG. Fig. 3 shows the pressure upstream of the indicator at the start of the end-of-operation process (time ti from the time when the shut-off valve 26 is closed to the time when the shut-off valve 26 is completely closed). Shows time history.
  • M H is the time history of the injector upstream pressure in a high temperature environment
  • M L is the time history of the injector upstream pressure in a low temperature environment.
  • the the pressure control target pressure during a low-temperature environment and PL also to set the the pressure control target pressure during high-temperature environment as P H.
  • the pressure regulation target pressure P L in the low temperature environment is set as follows.
  • the pressure (Po) immediately before the start of the operation end process is set at the end of the operation end process (that is, when the operation of the fuel cell system 1 ends).
  • the hydrogen gas flow rate necessary for preventing carbon oxidation that is, the hydrogen gas flow rate required to make at least the anode side of the fuel cell 2 filled with hydrogen gas
  • first fuel gas flow rate: Q i Hydrogen gas partial pressure (P and hydrogen gas partial pressure (P 2 ) corresponding to the hydrogen gas flow rate required for exhaust of parts (second fuel gas flow rate: Q 2 ) and hydrogen required for power generation during the end-of-operation process gas flow rate (third fuel gas flow rate: Q 3).
  • pressure control target pressure P H of the high temperature environment in FIG. 3
  • the pressure (P.) just before the start of the operation termination process And plus hydrogen gas partial pressure (P i) corresponding to the hydrogen gas flow rate (Q i) required to prevent.
  • the control unit 7 controls the pressure regulation in the injector 28 so that the upstream pressure of the injector reaches the pressure regulation target until the time 11 until the shutoff valve 26 is completely closed. Since the pressure is adjusted by the injector 28, highly accurate pressure adjustment can be performed in a short time.
  • Injector 2 8 When the upstream pressure reaches the pressure regulation target, the control unit 7 outputs an injector injection command (S 4). As a result, hydrogen gas having a larger flow rate than that immediately before the start of the operation end process is supplied from the injector 28 to the fuel cell 2. Specifically, the combined value of the hydrogen gas flow rates Q i, Q 2 and Q 3 is supplied to the fuel cell 2 in a low temperature environment, and the hydrogen gas flow rate is supplied to the fuel cell 2 in a high temperature environment.
  • the control unit 7 determines whether or not the outside air temperature is below the freezing point (S 5).
  • the controller 7 determines that the outside air temperature is below freezing (S5: YES)
  • it outputs a power generation command and a component scavenging command (S6).
  • the power generation command is output, the fuel cell 2 continues the power generation of the fuel cell 2 using a part of the supplied hydrogen gas (here, Q 3 ). The electric power obtained by this power generation is used in the subsequent operation termination process.
  • the motor of the hydrogen pump 24 is driven at a high speed to circulate the hydrogen gas in the fuel gas piping system 3, and a part of the supplied hydrogen gas (here, By pushing out Q 2 ), the moisture in the anode side of the fuel cell 2 and the fuel gas piping system 3 is recovered in the gas-liquid separator 30.
  • the control unit 7 outputs an exhaust / drain valve opening command (S 7). As a result, the exhaust drain valve 31 is opened.
  • the water accumulated in the gas-liquid separator 30 is flowed to the exhaust drainage flow path 25 to exhaust the water, and at the same time, it contains impurities on the anode side of the fuel cell 2 and the fuel gas piping system 3. Hydrogen gas and hydrogen off-gas are exhausted in the form of a part of the supplied hydrogen gas (here, pushed out to.
  • the control unit 7 outputs an exhaust drain valve closing command, and the exhaust drain valve is turned off. (S 8)
  • all the valves of the hydrogen gas and oxidant gas piping system connected to the fuel cell 2 are closed, the fuel cell 2 is sealed, and the operation termination process is completed.
  • the control unit 7 determines that the outside air temperature is higher than the freezing point (S5: NO)
  • the control unit 7 outputs the exhaust drainage valve opening command without performing the power generation command and the component scavenging command (S7).
  • the exhaust drain valve 31 is opened.
  • fuel Hydrogen gas and hydrogen off-gas containing impurities from the anode side of the battery 2 and the fuel gas piping system 3 are exhausted while being pushed out to a part of the supplied hydrogen gas (here, Q i).
  • the control unit 7 outputs an exhaust drain valve closing command to close the exhaust drain valve (S 8). Then, all the valves of the hydrogen gas and oxidant gas piping system connected to the fuel cell 2 are closed, the fuel cell 2 is brought into a sealed state, and the operation end process is completed.
  • S7 the control unit 7 outputs the exhaust drainage valve opening command without performing the power generation command and the component scavenging command (S7).
  • the exhaust drain valve 31 is opened.
  • At least the anode side of the fuel cell 2 is filled with hydrogen gas after the operation of the fuel cell system 1 is completed, whether in a high temperature environment or a low temperature environment.
  • carbon oxidation on the anode side can be suppressed.
  • the filled hydrogen gas reacts with oxygen. This is because oxygen can be consumed. In this way, deterioration of the fuel cell after the operation can be suppressed by the fuel gas having the optimum flow rate according to the temperature environment.
  • the operation termination process can be simplified by not performing operations that are not required under high-temperature environments such as moisture exhaust. As a result, fuel consumption in a high temperature environment can be improved.
  • the temperature outside the fuel cell vehicle is measured, and the injection pressure of the injector 28 is increased based on this outside air temperature.
  • the present invention is not limited to this.
  • it may be a temperature acquired by a temperature sensor in the fuel cell system or an external temperature sensor connected to the fuel cell system.
  • the temperature state inside the fuel cell after the end of operation is estimated from the acquired temperature (for example, it is highly likely that the temperature is below freezing point), and the control of the fuel gas flow rate at the start of the operation end process It is preferable to carry out.
  • the temperature state inside the fuel cell after operation is estimated (for example, it is likely to be below freezing point). End processing You can control the fuel gas flow rate at the start.
  • the flow rate is set so that at least the anode side of the fuel cell 2 is filled with hydrogen after the operation is completed.
  • the flow rate is not limited to this.
  • the fuel cell system according to the present invention is mounted on a fuel cell vehicle.
  • the present invention can be applied to various moving bodies (robots, ships, aircrafts, etc.) other than the fuel cell vehicle.
  • the fuel cell system according to the present invention can also be mounted.
  • the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (a house, a building, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本発明の燃料電池システム(1)は、燃料電池(2)と、燃料電池(2)に燃料ガスを供給する燃料ガス供給系(22)と、燃料電池(2)に酸化ガスを供給する酸化ガス供給系(11)とを備え、運転終了処理の開始時に、燃料電池(2)に供給する燃料ガスの流量を、燃料電池システム(1)の温度環境に基づいて決定される所定量だけ増加させる。これにより、燃料電池システム(1)の運転終了時に、温度環境に応じた最適な流量の燃料ガスを提供し、運転終了後の燃料電池の劣化を効率的に抑制することができる。

Description

明細書 燃料電池システム及び移動体 技術分野
本発明は、 燃料電池システム及び移動体に関し、 特にこれらの運転終了時 の制御技術に関するものである。 背景技術
近年、 燃料極 (アノード) に供給された水素ガス等の燃料ガスと、 空気極
(カソ一ド) に供給された空気等の酸化ガスとの酸化還元反応による化学ェ ネルギーを電気エネルギーとして直接取り出す燃料電池を備えた燃料電池シ ステムが提案されている。
このような燃料電池システムにおいて、 運転終了後、 アノードに空気が流 入しセパレータゃアノードの触媒を担持するカーボン等が酸化する (以下、 カーボン酸化ともいう) ことにより、 燃料電池の寿命が短くなつてしまう現 象が知られている。
そこで、 たとえば、 特開 2 0 0 5— 1 0 0 8 4 6号公報に記載の燃料電池 システムでは、 システムの運転終了時にアノード及びカソードへ不活性ガス を供給することで燃料電池の劣化を防止する技術が提案されている。 発明の開示
しかしながら、 このような燃料電池システムでは、 不活性ガスを供給する 手段が必要であり、 システムが複雑化する。 また、 燃料電池システムの運転 終了時の温度環境を考慮していないため、 運転終了時に温度環境に応じた最 適なガス流量を確保できなレ、場合もある。 そこで、 本発明は、 燃料電池システムの運転終了時に、 温度環境に応じた 最適な流量の燃料ガスを提供し、 運転終了後の燃料電池の劣化を効率的に抑 制することができる燃料電池システム及び移動体を提供することをその目的 とする。
本発明においては、 上記課題を解決するために、 以下の手段を採用した。 すなわち、 本発明は、 燃料電池と、 前記燃料電池に燃料ガスを供給する燃料 ガス供給系と、 前記燃料電池に酸化ガスを供給する酸化ガス供給系と、 を備 えた燃料電池システムであって、 前記燃料電池システムの運転終了処理の開 始時に、 前記燃料電池に供給する燃料ガスの流量を、 燃料電池システムの温 度環境に基づいて決定される所定量だけ増加させるようになつている。 この構成によれば、 燃料電池システムの運転終了処理の開始時に燃料ガス の流量を温度環境に基づいて増加させるので、 温度環境に応じた最適な流量 の燃料ガスを運転終了処理中および運転終了処理後に提供することができ、 これにより、 燃料ガスの不足に起因する燃料電池の劣化を効率的に抑制する ことができる。
尚、 本明細書において、 「温度環境」 とは、 典型的には、 燃料電池システ ム内部または外部の一箇所または複数個所で取得される温度を示す。
また、 上記;燃料電池システムにおいて、 前記温度環境が所定温度以下であ る場合、 前記所定量は少なくとも、 運転終了処理の終了時に前記燃料電池内 に燃料ガスを残留させるのに必要な第 1の燃料ガス流量と、 運転終了処理中 に燃料電池内の水分を外部に排出させるのに必要な第 2の燃料ガス流量との 合算値に基づいて決定されるようにしてもよい。
この構成によれば、 運転終了処理の開始時に増加させた第 2の燃料ガス流 量によって、 運転終了処理中に燃料電池内の水分を外部に排出できるので、 温度環境が所定温度以下の低温環境下であっても、 運転終了後に燃料電池内 部の温度が低下することにより、 燃料電池に残留した水分が凍結してしまう ことを防止することができる。 また、 この運転終了処理終了中の水分の排出 によって燃料ガスが使用されたとしても、 増加させた第 1の燃料ガス流量に よつて運転終了後も燃料電池内に燃料ガスを残留させることができるので、 カーボン酸化も抑制することができる。
また、 上記燃料電池システムにおいて、 前記所定量は、 前記第 1および前 記第 2の燃料ガス流量に、 運転終了処理に必要な電流を燃料電池が運転終了 処理中に出力するために必要な第 3の燃料ガス流量をさらに加えた合算値に 基づいて決定されるようにしてもよい。
この構成によれば、 增加させた第 3の燃料ガス流量を燃料電池システムの 発電に用いることで、 低温環境下において、 運転終了処理に必要な電流を燃 料電池システム自体で確保することができる。 これは、 運転終了処理時の機 器動作に必要な電流をパッテリやキャパシタなどの蓄電手段から供給可能な システムにおいては、 低温環境下には出力が低下しやすいこれらバッテリや キャパシタ等の蓄電手段から運転終了処理に必要な電流を得る場合よりも効 率がよい。 また、 視点を変えれば、 バッテリやキャパシタ等の蓄電手段の電 力を燃料電池システム始動時のために残しておくことにもなる。
尚、 上記 「合算値に基づいて」 とは、 合算値が所定量算出のベースである ことを示し、 「合算値に基づいて決定する」 とは、 例えば、 合算値をそのま ま所定量とする場合、 合算値に例えば燃料電池システム内のガス漏量を加味 した値を加えた値を所定量とする場合等を含む。 また、 「運転終了処理時の 機器動作」 とは、 例えば、 気液分離器の水分の回収動作、 水素ポンプの回転 動作、 インジ クタの噴射動作、 排気排水弁等の開閉動作等を示す
また、 上記燃料電池システムにおいて、 前記温度環境が所定温度より高い 場合、 前記所定量は、 前記第 1の燃料ガス流量に基づいて決定されるように してもよい。
この構成によれば、 増加させた第 1の燃料ガス流量によつて運転終了後も 燃料電池内に燃料ガスを残留させることができるので、 カーボン酸化を抑制 することができる。 これに加え、 温度環境が所定温度より高い高温環境下で は水分排出等の処理が運転終了時には必要ない (すなわち水分排出用の燃料 ガスが必要とされない) 力 第一の燃料ガス流量に基づいて所定量が決定さ れるので、 余分な流量の燃料ガスが供給されることもない。 このように、 運 転終了処理開始時に増加させる燃料ガスの流量を低温環境下と高温環境下と で変化させるので、 温度環境に応じた最適な流量の燃料ガスにより運転終了 後の燃料電池の劣化を抑制することができる。
また、 上記燃料電池システムにおいて、 前記燃料ガス供給系に設けられた インジェクタにより前記燃料ガスの供給圧力を増加させることで、 前記燃料 ガスの流量を増加させるようにしてもよい。
本明細書におけるインジェクタは、 典型的には、 弁体を電磁駆動力で直接 的に所定の駆動周期で駆動して弁座から離隔させることによりガス状態 (流 量、 圧力、 温度、 モル濃度などで表されるガスの状態を意味し、 特にガス流 量及びガス圧力の少なくとも一方を含む) を調整することが可能な電磁駆動 式の開閉弁どして構成される。 このようなインジェクタにより高精度かつ速 やかに調圧を行えるので、 運転終了処理の開始時に適切な流量の燃料ガスを 燃料電池に供給することができる。 また圧力により流量を制御するので、 ァ ノード力ソード間の極間差圧を所定範囲に保ちつつ流量を制御することもで さる。
また、 本発明の移動体は、 上記燃料電池システムを備える。
この構成によれば、 移動体がおかれた温度環境に応じて最適な流量の燃料 ガスを移動体の運転終了処理中および運転終了処理後に提供することができ ので、 燃料電池の劣化を防止でき、 ひいては移動体の燃費の向上および信頼 性の向上が図れる。
以上、 本発明によれば、 燃料電池システムの運転終了時に、 温度環境に応 じた最適な流量の燃料ガスを提供し、 運転終了後の燃料電池の劣化を効率的 に抑制することができる燃料電池システム及び移動体を提供することができ る。
図面の簡単な説明
図 1は、 本発明の実施形態に係る燃料電池システムの構成図。
図 2は、 同実施の形態に係る運転終了処理を示すフローチヤ一ト。
図 3は、 同実施の形態に係る運転終了処理開始時の調圧目標を説明するた めの図。
発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施形態に係る燃料電池システムについ て以下の順番で説明する。
1 . 本発明の実施の形態にかかる燃料電池システムの全体構成
2 . 本発明の実施の形態にかかる燃料電池システムの運転終了処理
3 . 本発明の実施の形態にかかる燃料電池システムの変形例
尚、 各図面において、 同一の部品には同一の符号を付している。
1 . 本発明の実施の形態にかかる燃料電池システムの全体構成
本実施形態においては、 本発明を燃料電池車両 (移動体) の車載発電シス テムに適用した例について説明することとする。
まず、 図 1を用いて、 本発明の実施形態に係る燃料電池システム 1の構成 について説明する。 本実施形態に係る燃料電池システム 1は、 図 1に示すよ うに、 反応ガス (酸化ガス及び燃料ガス) の供給を受けて電力を発生する燃 料電池 2と、 酸化ガスとしての空気を燃料電池 2に供給する酸化ガス配管系 3と、 燃料ガスとしての水素ガスを燃料電池 2に供給する燃料ガス配管系 4 と、 燃料電池 2に冷媒を供給して燃料電池 2を冷却する冷媒配管系 5と、 シ ステムの電力を充放電する電力系 6と、 システム全体を統括制御する制御部 7と、 を備えている。
燃料電池 2は、 例えば固体高分子電解質型で構成され、 多数の単電池を積 層したスタック構造を備えている。 燃料電池 2の単電池は、 イオン交換膜か らなる電解質の一方の面に空気極 (力ソード) を有し、 他方の面に燃料極 (アノード) を有し、 さらに力ソード及びアノードを両側から挟みこむよう に一対のセパレータを有している。 一方のセパレータの燃料ガス流路に燃料 ガスが供給され、 他方のセパレータの酸化ガス流路に酸化ガスが供給され、 このガス供給により燃料電池 2は電力を発生する。 燃料電池 2には、 発電中 の電流を検出する電流センサ 2 aが取り付けられている。 アノード及びカソ ードには、 カーボン素材をベース白金等の触媒が担持 (結着) されたものが 用いられる。
酸化ガス配管系 3は、 燃料電池 2に供給される酸化ガスとしての空気が流 れる空気供給流路 1 1と、 燃料電池 2から排出された酸化オフガスが流れる 排気流路 1 2と、 を有している。 空気供給流路 1 1には、 フィルタ 1 3を介 して酸化ガスを取り込むコンプレッサ 1 4と、 コンプレッサ 1 4により圧送 される酸化ガスを加湿する加湿器 1 5と、 が設けられている。 排気流路 1 2 を流れる酸化オフガスは、 背圧調整弁 1 6を通って加湿器 1 5で水分交換に 供された後、 最終的に排ガスとしてシステム外の大気中に排気される。 コン プレッサ 1 4は、 図示されていないモータの駆動により大気中の酸化ガスを 取り込む。
燃料ガス配管系 4は、 水素供給源 2 1と、 水素供給源 2 1から燃料電池 2 に供給される燃料ガスとしての水素ガスが流れる水素供給流路 2 2と、 燃料 電池 2から排出された水素オフガス (燃料オフガス) を水素供給流路 2 2の 合流点 A 1に戻すための循環流路 2 3と、 循環流路 2 3内の水素オフガスを 水素供給流路 2 2に圧送する水素ポンプ 2 4と、 循環流路 2 3に分岐接続さ れた排気排水流路 2 5と、 を有している。 ' 水素供給源 2 1は、 例えば高圧タンクや水素吸蔵合金などで構成され、 例 えば 3 5 M P a又は 7 0 M P aの水素ガスを貯留可能に構成されている。 遮 断弁 2 6を開くと、 水素供給源 2 1から水素供給流路 2 2に水素ガスが流出 する。 水素ガスは、 後述するレギユレータ 2 7やインジェクタ 2 8により最 終的に例えば 2 0 0 k P a程度まで減圧されて、 燃料電池 2に供給される。 なお、 炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、 こ の改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクと、 から水素供給源 2 1を構成してもよい。 また、 水素吸蔵合金を有するタンク を水素供給源 2 1として採用することもできる。
水素供給流路 2 2には、 水素供給源 2 1からの水素ガスの供給を遮断又は 許容する遮断弁 2 6と、 水素ガスの圧力を調整するレギユレータ 2 7と、 ィ ンジェクタ 2 8と、 が設けられている。 また、 インジェクタ 2 8の下流側で あって水素供給流路 2 2と循環流路 2 3との合流部 A 1の上流側には、 水素 供給流路 2 2内の水素ガスの圧力を検出する圧力センサ 2 9が設けられてい る。 また、 インジヱクタ 2 8の上流側には、 水素供給流路 2 2内の水素ガス の圧力及び温度を検出する図示されていない圧力センサ及び温度センサが設 けられている。 圧力センサ 2 9等で検出された水素ガスのガス状態 (圧力、 温度) に係る情報は、 インジェクタ 2 8のフィードバック制御やパージ制御 に用いられる。
レギユレータ 2 7は、 その上流側圧力 (一次圧) を、 予め設定した二次圧 に調圧する装置である。 本実施形態においては、 一次圧を減圧する機械式の 減圧弁をレギユレータ 2 7として採用している。 機械式の減圧弁の構成とし ては、 背圧室と調圧室とがダイアフラムを隔てて形成された筐体を有し、 背 圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする 公知の構成を採用することができる。 本実施形態においては、 図 1に示すよ うに、 インジェクタ 2 8の上流側にレギユレータ 2 7を 2個配置することに より、 インジェクタ 2 8の上流側圧力を効果的に低減させることができる。 このため、 インジェクタ 2 8の機械的構造 (弁体、 筐体、 流路、 駆動装置 等) の設計自由度を高めることができる。 また、 インジェクタ 2 8の上流側 圧力を低減させることができるので、 インジェクタ 2 8の上流側圧力と下流 側圧力との差圧の増大に起因してインジヱクタ 2 8の弁体が移動し難くなる ことを抑制することができる。 従って、 インジェクタ 2 8の下流側圧力の 可変調圧幅を広げることができるとともに、 ィンジェクタ 2 8の応答性の低 下を抑制することができる。 レギユレータ 2 7は、 水素供給流路 2 2の上流 側のガス状態 (ガス圧力) を調整して下流側に供給するものであり、 本発明 における可変ガス供給装置に相当する。
ィンジェクタ 2 8は、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動 して弁座から離隔させることによりガス流量やガス圧を調整することが可能 な電磁駆動式の開閉弁である。 インジヱクタ 2 8は、 水素ガス等の気体燃料 を噴射する噴射孔を有する弁座を備えるとともに、 その気体燃料を噴射孔ま で供給案内するノズルボディと、 このノズルボディに対して軸線方向 (気体 流れ方向) に移動可能に収容保持され噴射孔を開閉する弁体と、 を備えてい る。 本実施形態においては、 インジェクタ 2 8の弁体は電磁駆動装置である ソレノィドにより駆動され、 このソレノィ ドに給電されるパルス状励磁電流 のオン ·オフにより、 噴射孔の開口面積を 2段階又は多段階に切り替えるこ とができるようになっている。 制御部 7から出力される制御信号によってィ ンジェクタ 2 8のガス噴射時間及びガス噴射時期が制御されることにより、 水素ガスの流量及び圧力が高精度に制御される。 インジェクタ 2 8は、 弁 (弁体及び弁座) を電磁駆動力で直接開閉駆動するものであり、 その駆動周 期が高応答の領域まで制御可能であるため、 高い応答性を有する。
インジェクタ 2 8は、 その下流に要求されるガス流量を供給するために、 ィンジェクタ 2 8のガス流路に設けられた弁体の開口面積 (開度) 及び開放 時間の少なくとも一方を変更することにより、 下流側 (燃料電池 2側) に供 給されるガス流量 (又は水素モル濃度) を調整する。 なお、 インジェクタ 2 8の弁体の開閉によりガス流量が調整されるとともに、 インジェクタ 2 8下 流に供給されるガス圧力がインジェクタ 2 8上流のガス圧力より減圧される ため、 インジェクタ 2 8を調圧弁 (減圧弁、 レギユレータ) と解釈す.ること もできる。 また、 本実施形態では、 ガス要求に応じて所定の圧力範囲の中で 要求圧力に一致するようにインジ クタ 2 8の上流ガス圧の調圧量 (減圧 量) を変化させることが可能な可変調圧弁と解釈することもできる。 インジ クタ 2 8は、 水素供給流路 2 2の上流側のガス状態 (ガス流量、 水素モル 濃度、 ガス圧力) を調整して下流側に供給するものである。
なお、 本実施形態においては、 図 1に示すように、 水素供給流路 2 2と循 環流路 2 3との合流部 A 1より上流側にィンジェクタ 2 8を配置している。 また、 図 1に破線で示すように、 燃料供給源として複数の水素供給源 2 1を 採用する場合には、 各水素供給源 2 1から供給される水素ガスが合流する部 分 (水素ガス合流部 A 2 ) よりも下流側にィンジェクタ 2 8を配置するよう にする。
循環流路 2 3には、 気液分離器 3 0及び排気排水弁 3 1を介して、 排気排 水流路 2 5が接続されている。 気液分離器 3 0は、 水素オフガスから水分を 回収するものである。 排気排水弁 3 1は、 制御部 7からの指令によって作動 することにより、 気液分離器 3 0で回収した水分と、 循環流路 2 3内の不純 物を含む水素オフガス (燃料オフガス) と、 を外部に排出 (パージ) するも のである。 排気排水弁 3 1の開放により、 循環流路 2 3内の水素オフガス中 の不純物の濃度が下がり、 循環供給される水素オフガス中の水素濃度が上が る。 排気排水弁 3 1の上流位置 (循環流路 2 3上) 及び下流位置 (排気排水 流路 2 5上) には、 各々、 水素オフガスの圧力を検出する上流側圧カセンサ 及び下流側圧力センサが設けられている。
排気排水弁 3 1及び排気排水流路 2 5を介して排出される水素オフガスは、 図示されていない希釈器によって希釈されて排気流路 1 2内の酸化オフガス と合流するようになっている。 水素ポンプ 2 4は、 図示されていないモータ の駆動により、 循環系内の水素ガスを燃料電池 2に循環供給する。 水素ガス の循環系は、 水素供給流路 2 2の合流点 A 1の下流側流路と、 燃料電池 2の セパレータに形成される燃料ガス流路と、 循環流路 2 3と、 によって構成さ ることとなる。
冷媒配管系 5は、 燃料電池 2内の冷却流路に連通する冷媒流路 4 1と、 冷 媒流路 4 1に設けられた冷却ポンプ 4 2と、 燃料電池 2から排出される冷媒 を冷却するラジェータ 4 3と、 を有している。 冷却ポンプ 4 2は、 図示され ていないモータの駆動により、 冷媒流路 4 1内の冷媒を燃料電池 2に循環供 給する。
電力系 6は、 高圧 D C ZD Cコンバータ 6 1、 バッテリ 6 2、 トラクショ ンインバータ 6 3、 トラクシヨンモータ 6 4、 図示されていない各種の補機 インバータ等を備えている。 高圧 D C /D Cコンバータ 6 1は、 直流の電圧 変換器であり、 バッテリ 6 2から入力された直流電圧を調整してトラクショ ンインバータ 6 3側に出力する機能と、 燃料電池 2又はトラクシヨンモータ 6 4から入力された直流電圧を調整してバッテリ 6 2に出力する機能と、 を 有する。 高圧 D C ZD Cコンバータ 6 1のこれらの機能により、 バッテリ 6 2の充放電が実現される。 また、 高圧 D C /D Cコンバータ 6 1により、 燃 料電池 2の出力電圧が制御される。
バッテリ 6 2は、 バッテリセルが積層されて一定の高電圧を端子電圧とし、 図示しないバッテリコンピュータの制御によって余剰電力を充電したり補助 的に電力を供給したりが可能になっている。 トラクシヨンインバータ 6 3は、 直流電流を三相交流に変換し、 トラクシヨンモータ 6 4に供給する。 トラク ションモータ 6 4は、 例えば三相交流モータであり、 燃料電池システム 1が 搭載される車両の主動力源を構成する。 補機インバータは、 各モータの駆動 を制御する電動機制御部であり、 直流電流を三相交流に変換して各モータに 供給する。 補機ィンバータは、 例えばパルス幅変調方式の P WMィンバータ であり、 制御部 7からの制御指令に従って燃料電池 2又はバッテリ 6 2から 出力される直流電圧を三相交流電圧に変換して、 各モータで発生する回転ト ルクを制御する。
制御部 7は、 車両に設けられた加速用の操作部材 (アクセル等) の操作量 を検出し、 加速要求値 (例えばトラクシヨンモータ 6 4等の負荷装置からの 要求発電量) 等の制御情報を受けて、 システム内の各種機器の動作を制御す る。 なお、 負荷装置とは、 トラクシヨンモータ 6 4のほかに、 燃料電池 2を 作動させるために必要な補機装置 (例えばコンプレッサ 1 4、 水素ポンプ 2 4、 冷却ポンプ 4 2の各モータ等)、 車両の走行に関与する各種装置 (変速 機、 車輪制御部、 操舵装置、 懸架装置等) で使用されるァクチユエータ、 乗 員空間の空調装置 (エアコン)、 照明、 オーディオ等を含む電力消費装置を 総称したものである。
制御部 7は、 図示していないコンピュータシステムによって構成されてい る。 かかるコンピュータシステムは、 C P U、 R OM、 R AM、 H D D , 入 出カインタフェース及びディスプレイ等を備えるものであり、 R OMに記録 された各種制御プログラムを C P Uが読み込んで所望の演算を実行すること により、 後述する運転終了処理など種々の処理や制御を行う。 制御部 7は、 酸化ガス配管系 3、 燃料ガス配管系 4、 冷媒配管系 5に用いられる各種の圧 カセンサぉよび温度センサゃ図示しない外気温センサなどの検出信号を入力 し、 燃料電池システム 1の各構成要素に制御信号を出力する。
2 . 本発明の実施の形態にかかる燃料電池システムの運転終了処理 続いて、 燃料電池システム 1の運転を終了し発電を停止させる際の動作 (以下、 単に 「運転終了処理」 という) を説明する。
本実施の形態においては、 運転終了処理の開始時において燃料電池車両の 外の温度 (以下、 外気温という) を測定しこの外気温に基づいてィ'ンジエタ タ 2 8の噴射圧力を増大させる。 より具体的には、 外気温が氷点下以下の場 合 (以下、 低温環境下という) と氷点下より高い場合 (以下、 高温環境下と いう) とで、 増加させる噴射圧力を異ならせている。 この点を、 以下図 2と 図 3を用いて詳細に説明する。 ここで、 図 2は、 本発明の実施の形態に係る 運転終了処理を示すフローチャート、 図 3は、 運転終了処理開始時の調圧目 標を説明するための図である。
図 2に示すように、 運転終了処理の処理フローは、 燃料電池システム 1に 運転終了指令がなされることで開始される。 この指令は、 例えば車両の運転 手によるイダニッシヨンスィッチの O F F操作等によってなされる。 制御部 7は、 この運転終了指令が制御部 7に入力されたか否かを判断 (S 1 ) し、 入力されたと判断した場合 (S 1 : Y E S ) 運転終了処理を開始する。 運転 終了指令が入力されていないと判断した場合は (S 1 : N O) , 制御部 7は、 通常運転を継続させる。
運転終了処理が開始されると、 制御部 7は、 水素供給源 2 1の遮断弁 2 6 を閉止し水素の新たな供給を停止するために、 水素遮断弁閉止指令を出力す る (S 2 )。 これにより遮断弁 2 6の閉止処理が開始される (図 3における 時間 t 0)。 ただし、 閉弁遅れがあるため、 遮断弁 2 6が完全に遮断されるに は一定の時間が必要であり、 一定時間が経過するまでは (図 3における時間 t i)、 水素供給源 2 1からの水素ガスの供給は完全には停止していない。 ま た水素供給流路 2 2にも水素ガスが残っている。 すなわち、 この段階でも水 素ガスの流量を調整することが可能である。 この点を利用して、 燃料電池 2 に供給する水素ガスの流量を増加させる。 具体的には、 制御部 7は、 外気温 センサにより検出された外気温を取得し、 この外気温に基づいて増加させる 水素流量を算出する (S 3 )。 あわせて、 制御部 7は、 この算出した水素流 量を燃料電池 2に供給するために必要なィンジェクタ 2 5の上流側圧力 (調 圧目標) を算出する (S 3 )。
外気温に基づく調圧目標の算出方法について、 図 3を用いてさらに詳しく 説明する。 図 3 (左側図) は、 運転終了処理開始時 (遮断弁 2 6の閉止指令 が為された時間 t oから遮断弁 2 6が完全に閉止するまでの時間 t i) におけ るインジヱクタ上流側圧力の時間履歴を示している。 MHは、 高温環境時の ィンジェクタ上流側圧力の時間履歴であり、 MLは、 低温環境時のィンジェ クタ上流側圧力の時間履歴である。 低温環境時には調圧目標圧力を P Lとし、 また高温環境時には調圧目標圧力を P Hとして設定する。
ここで、 低温環境時の調圧目標圧力 P Lは、 次のように設定される。 すな わち、 図 3 (右側図) に模式的に示すように、 運転終了処理開始直前の圧力 ( P o) に、 運転終了処理の終了時 (すなわち、 燃料電池システム 1の運転 終了時) に、 カーボン酸化防止に必要な水素ガス流量すなわち燃料電池 2の 少なくともアノード側が水素ガスで充填された状態にするために必要な水素 ガス流量 (第 1の燃料ガス流量: Q i) に対応する水素ガス分圧 (P と、 部品排気に必要な水素ガス流量 (第 2の燃料ガス流量: Q2) に対応する水 素ガス分圧 (P 2) と、 運転終了処理中の発電に必要な水素ガス流量 (第 3 の燃料ガス流量: Q3) に対応する水素ガス分圧 (P 3) を加えたものとする。 これに対し、 高温環境時の調圧目標圧力 PHは、 図 3に模式的に示すよう に、 運転終了処理開始直前の圧力 (P。) にカーボン酸化防止に必要な水素 ガス流量 (Q i) に対応する水素ガス分圧 (P i) を加えたものとする。
図 2に戻って説明を続ける。 制御部 7は、 遮断弁 2 6が完全に閉止するま での時間 1 1までの間にインジェクタ上流圧が調圧目標に達するように、 ィ ンジェクタ 2 8における調圧を制御する。 インジェクタ 2 8により調圧して いるので、 短時間に高精度な調圧を行うことができる。 インジェクタ 2 8の 上流圧が調圧目標に達した時点で、 制御部 7は、 インジェクタ噴射指令を出 力する (S 4 )。 これにより、 インジ クタ 2 8から運転終了処理開始直前 に比べて大きな流量の水素ガスが燃料電池 2に供給される。 具体的には、 低 温環境時には、 水素ガス流量 Q iと Q2と Q3との合算値が、 高温環境時には、 水素ガス流量 が燃料電池 2に供給される。
次に、 制御部 7は、 外気温が氷点下以下であるか否かを判断する (S 5 )。 制御部 7は、 外気温が氷点下以下であると判断した場合 (S 5 : Y E S ) に は、 発電指令および部品掃気指令を出力する (S 6 )。 発電指令が出力され ることで、 燃料電池 2は、 供給された水素ガスの一部 (ここでは、 Q3) を 用いて燃料電池 2の発電を継続させる。 この発電で得られた電力は、 以降の 運転終了処理で用いられる。 また、 部品掃気指令が出力されることで、 水素 ポンプ 2 4のモータが高回転で駆動し燃料ガス配管系 3内の水素ガスを循環 させるとともに、 供給された水素ガスの一部 (ここでは、 Q2) を押し出す ことで、 燃料電池 2のァノード側および燃料ガス配管系 3の水分が気液分離 器 3 0において回収される。 つづいて、 制御部 7は、 排気排水弁開放指令を 出力する (S 7 )。 これにより、 排気排水弁 3 1が開放される。 すると、 気 液分離器 3 0にたまった水分が排気排水流路 2 5へと流されることで水分が 排気され、 またほぼ同時に、 燃料電池 2のアノード側および燃料ガス配管系 3の不純物を含む水素ガスおよび水素オフガスが、 供給された水素ガスの一 部 (ここでは、 に押し出される形で排気される。 この段階で、 制御部 7は、 排気排水弁閉止指令を出力し、 排気排水弁を閉止させる (S 8 )。 そ して、 燃料電池 2につながる水素ガス及び酸化ガス配管系のすべてのバルブ を閉め、 燃料電池 2を封止状態にして運転終了処理を終える。
一方、 制御部 7は、 外気温が氷点下より高いと判断した場合 (S 5 : N O ) には、 発電指令および部品掃気指令を行わず、 排気排水弁開放指令を出 力する ( S 7 )。 これにより、 排気排水弁 3 1が開放される。 すると、 燃料 電池 2のアノード側および燃料ガス配管系 3の不純物を含む水素ガスおよび 水素オフガスが、 供給された水素ガスの一部 (ここでは、 Q i) に押し出さ れる形で排気される。 この段階で、 制御部 7は、 排気排水弁閉止指令を出力 し、 排気排水弁を閉止させる (S 8 )。 そして、 燃料電池 2につながる水素 ガス及び酸化ガス配管系のすべてのバルブを閉め、 燃料電池 2を封止状態に して運転終了処理を終える。 ·
以上の動作により、 高温環境時であっても低温環境時であっても、 燃料電 池システム 1の運転終了後は、 燃料電池 2の少なくともァノード側は、 水素 ガスが充満した状態になる。 これにより、 アノード側のカーボン酸化が抑制 できる。 これは例えば、 力ソード側に残留した空気がクロスリークしてァノ ード側に流入したとしても、 水素ガスが十分に充満していれば、 この充満し た水素ガスと酸素とが反応することにより、 酸素を消費できるからである。 このように、 温度環境に応じた最適な流量の燃料ガスにより運転終了後の燃 料電池の劣化を抑制することができる。 · また、 低温環境時は、 水分を運転終了時に排出しているので運転終了後に 燃料電池 2内部の温度が低下することにより、 燃料電池 2に残留した水分が 凍結してしまうことを防止することができる。 また、 低温環境下には出力が 低下しゃす!/、バッテリやキャパシタ等の蓄電手段から運転終了処理に必要な 電流を得る場合よりも効率がよい。 また、 視点を変えれば、 バッテリやキヤ パシタ等の蓄電手段の電力を燃料電池システム始動時のために残しておくこ とにもなる。
また、 高温環境時は、 水分排気等の高温環境下では必要とされない動作を 行わないことで、 運転終了処理が簡略化できる。 これにより、 高温環境時の 燃費を向上させることができる。
3 . 本発明の実施の形態にかかる燃料電池システムの変形例
以上本発明の実施形態を示したが、 本発明はこの実施の形態に限定される ものではなく、 その要旨を逸脱しない範囲内において様々な態様での実施が 可能である。 例えば以下のような変形例が可能である。
上記実施の形態においては、 燃料電池車両の外の温度を測定し、 この外気 温に基づいてインジェクタ 2 8の噴射圧力を増大させているが、 これに限ら れるものではない。 例えば、 燃料電池システム内の温度センサまたは燃料電 池システムに連結された外部の温度センサにより取得された温度でもよい。 これらの場合は、 取得された温度から運転終了後の燃料電池内部の温度状態 を推定して (例えば、 氷点下以下になる可能性が高い等)、 運転終了処理開 始時の燃料ガス流量の制御を行うことが好ましい。 また他の情報取得手段か ら得た天気予報などの情報を加味して、 運転終了後の燃料電池内部の温度状 態を推定して (例えば、 氷点下以下になる可能性が高い等)、 運転終了処理 開始時の燃料ガス流量の制御を行つてもよレ、。
また、 上記実施形態においては、 運転終了後に少なくとも燃料電池 2のァ ノード側に水素が充填されるように流量 を設定したが、 これに限られる ものではなく、 例えば、 力ソード側も含めて水素で充填されるように流量 Q
1を設定してもよい。
また、 以上の各実施形態においては、 本発明に係る燃料電池システムを燃 料電池車両に搭載した例を示したが、 燃料電池車両以外の各種移動体 (ロボ ット、 船舶、 航空機等) に本発明に係る燃料電池システムを搭載することも できる。 また、 本発明に係る燃料電池システムを、 建物 (住宅、 ビル等) 用 の発電設備として用いられる定置用発電システムに適用してもよい。

Claims

請求の範囲
1 . 燃料電池と、 前記燃料電池に燃料ガスを供給する燃料ガス供給系と、 前記燃料電池に酸化ガスを供給する酸化ガス供給系と、 を備えた燃料電池シ ステムであって、
前記燃料電池システムの運転終了処理の開始時に、 前記燃料電池に供給す る燃料ガスの流量を、 燃料電池システムの温度環境に基づいて決定される所 定量だけ増加させる燃料電池システム。
2 . 請求の範囲第 1項において、
前記温度環境が所定温度以下である場合、 前記所定量は少なくとも、 運転 終了処理の終了時に前記燃料電池内に燃料ガスを残留させるのに必要な第 1 の燃料ガス流量と、 運転終了処理中に燃料電池内の水分を外部に排出させる のに必要な第 2の燃料ガス流量との合算値に基づいて決定される燃料電池シ ステム。
3 . 請求の範囲第 2項において、
前記所定量は、 前記第 1および前記第 2の燃料ガス流量に、 運転終了処理 時の機器の動作に必要な電流を燃料電池が運転終了処理中に出力するために 必要な第 3の燃料ガス流量をさらに加えた合算値に基づいて決定される燃料 電池システム。
4 . 請求の範囲第 2項または第 3項において、
前記温度環境が所定温度より高い場合、 前記所定量は、 前記第 1の燃料ガ ス流量に基づいて決定される燃料電池システム。
5 . 請求の範囲第 1項から第 4項において、
前記燃料ガス供給系に設けられたィンジェクタにより前記燃料ガスの供給 圧力を増加させることで、 前記燃料ガスの流量を増加させる燃料電池システ ム。
6 . 請求の範囲第 1項から第 5項いずれかに記載の燃料電池システムを備え た移動体。
PCT/JP2008/062657 2007-07-19 2008-07-08 燃料電池システム及び移動体 WO2009011324A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008800252927A CN101755357B (zh) 2007-07-19 2008-07-08 燃料电池系统及移动体
DE112008001877.4T DE112008001877B4 (de) 2007-07-19 2008-07-08 Brennstoffzellensystem und dessen Verwendung
US12/669,627 US8192884B2 (en) 2007-07-19 2008-07-08 Fuel cell system and mobile object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-188529 2007-07-19
JP2007188529A JP4993293B2 (ja) 2007-07-19 2007-07-19 燃料電池システム及び移動体

Publications (1)

Publication Number Publication Date
WO2009011324A1 true WO2009011324A1 (ja) 2009-01-22

Family

ID=40259657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062657 WO2009011324A1 (ja) 2007-07-19 2008-07-08 燃料電池システム及び移動体

Country Status (5)

Country Link
US (1) US8192884B2 (ja)
JP (1) JP4993293B2 (ja)
CN (1) CN101755357B (ja)
DE (1) DE112008001877B4 (ja)
WO (1) WO2009011324A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045031A1 (en) * 2010-09-30 2012-04-05 General Electric Company Aircraft fuel cell system
PT2530780E (pt) * 2011-06-01 2015-06-30 Belenos Clean Power Holding Ag Método para a gestão das operações de um sistema híbrido
FI125987B (fi) * 2011-06-30 2016-05-13 Convion Oy Menetelmä ja järjestely suojakaasujen tarpeen minimoimiseksi
CN102522582B (zh) * 2011-12-28 2014-06-18 新源动力股份有限公司 一种车载燃料电池发电系统的关机吹扫系统和吹扫方法
JP5591854B2 (ja) * 2012-03-19 2014-09-17 本田技研工業株式会社 移動体及びその燃料充填システム
JP5925076B2 (ja) * 2012-07-30 2016-05-25 本田技研工業株式会社 燃料電池システムの停止制御方法
JP6117551B2 (ja) * 2012-12-27 2017-04-19 日産自動車株式会社 調圧装置及び燃料電池システム
US8948947B2 (en) * 2013-03-18 2015-02-03 Honda Motor Co., Ltd. Moving body
KR101592736B1 (ko) * 2014-07-15 2016-02-15 현대자동차주식회사 연료 전지 시스템의 운전 제어 방법
JP6102893B2 (ja) * 2014-11-14 2017-03-29 トヨタ自動車株式会社 燃料電池システムおよび燃料電池搭載車両
JP6531838B2 (ja) * 2015-12-15 2019-06-19 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
CN110112438A (zh) * 2019-05-20 2019-08-09 浙江泓林新能源科技有限公司 一种燃料电池喷轨减压控制方法
CN111224134A (zh) * 2019-11-29 2020-06-02 安徽江淮汽车集团股份有限公司 燃料电池开关机保护方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179054A (ja) * 2002-11-28 2004-06-24 Honda Motor Co Ltd 燃料電池システムの発電停止方法
JP2005093231A (ja) * 2003-09-17 2005-04-07 Honda Motor Co Ltd 燃料電池運転装置および運転方法
JP2006040846A (ja) * 2004-07-30 2006-02-09 Equos Research Co Ltd 燃料電池システム及びその運転方法
JP2007026808A (ja) * 2005-07-14 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
JP2007035389A (ja) * 2005-07-26 2007-02-08 Honda Motor Co Ltd 燃料電池システムおよびその制御方法
JP2007123040A (ja) * 2005-10-27 2007-05-17 Honda Motor Co Ltd 燃料電池システム及び該システムにおける掃気処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275300A (ja) 1993-03-24 1994-09-30 Sanyo Electric Co Ltd 燃料電池システム
JP4864224B2 (ja) 2001-04-03 2012-02-01 本田技研工業株式会社 燃料電池の残留水排出装置
JP2005100846A (ja) 2003-09-25 2005-04-14 Nissan Motor Co Ltd 燃料電池システム
JP4710246B2 (ja) 2004-05-14 2011-06-29 トヨタ自動車株式会社 燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179054A (ja) * 2002-11-28 2004-06-24 Honda Motor Co Ltd 燃料電池システムの発電停止方法
JP2005093231A (ja) * 2003-09-17 2005-04-07 Honda Motor Co Ltd 燃料電池運転装置および運転方法
JP2006040846A (ja) * 2004-07-30 2006-02-09 Equos Research Co Ltd 燃料電池システム及びその運転方法
JP2007026808A (ja) * 2005-07-14 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
JP2007035389A (ja) * 2005-07-26 2007-02-08 Honda Motor Co Ltd 燃料電池システムおよびその制御方法
JP2007123040A (ja) * 2005-10-27 2007-05-17 Honda Motor Co Ltd 燃料電池システム及び該システムにおける掃気処理方法

Also Published As

Publication number Publication date
US20100203411A1 (en) 2010-08-12
US8192884B2 (en) 2012-06-05
JP4993293B2 (ja) 2012-08-08
JP2009026605A (ja) 2009-02-05
DE112008001877T5 (de) 2010-07-15
CN101755357B (zh) 2013-03-20
CN101755357A (zh) 2010-06-23
DE112008001877B4 (de) 2014-10-09

Similar Documents

Publication Publication Date Title
KR101811107B1 (ko) 연료 전지 시스템 및 해당 시스템 내의 유체의 배출 방법
JP4993293B2 (ja) 燃料電池システム及び移動体
JP5224082B2 (ja) 燃料電池システム及びその排水制御方法
JP5446023B2 (ja) 燃料電池システム
KR101859803B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 운전 제어 방법
KR101135654B1 (ko) 연료전지시스템 및 그 제어방법
US20100266920A1 (en) Fuel cell system
WO2008047603A1 (fr) Système à pile à combustible et son procédé de fonctionnement
JP2008130442A (ja) 燃料電池システム
JP5376390B2 (ja) 燃料電池システム
JP5077636B2 (ja) 燃料電池システム
JP2008084603A (ja) 燃料電池システム及びそのパージ方法
JP5136874B2 (ja) 燃料電池システム及び排気弁の異常判定方法
JP5013171B2 (ja) 燃料電池システム
JP5109280B2 (ja) 燃料電池システム
JP5151185B2 (ja) 燃料電池システムおよびその掃気処理方法
JP2008196596A (ja) 電磁弁
JP4941641B2 (ja) 燃料電池システム
JP2008282778A (ja) 燃料電池システム、および燃料電池の掃気処理方法
JP2009140658A (ja) 燃料電池システム
JP2008140618A (ja) 燃料電池システム
WO2008153222A1 (ja) 燃料電池システムおよびその起動完了度表示方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880025292.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778128

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12669627

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008001877

Country of ref document: DE

Date of ref document: 20100715

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08778128

Country of ref document: EP

Kind code of ref document: A1