WO2007069334A1 - フラットパネルディスプレイの製造方法 - Google Patents

フラットパネルディスプレイの製造方法 Download PDF

Info

Publication number
WO2007069334A1
WO2007069334A1 PCT/JP2005/023165 JP2005023165W WO2007069334A1 WO 2007069334 A1 WO2007069334 A1 WO 2007069334A1 JP 2005023165 W JP2005023165 W JP 2005023165W WO 2007069334 A1 WO2007069334 A1 WO 2007069334A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
substrate
terminal portion
electrode
electrode group
Prior art date
Application number
PCT/JP2005/023165
Other languages
English (en)
French (fr)
Inventor
Masahiro Watabe
Original Assignee
Fujitsu Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Hitachi Plasma Display Limited filed Critical Fujitsu Hitachi Plasma Display Limited
Priority to US12/089,348 priority Critical patent/US20100129530A1/en
Priority to PCT/JP2005/023165 priority patent/WO2007069334A1/ja
Priority to JP2007550062A priority patent/JPWO2007069334A1/ja
Publication of WO2007069334A1 publication Critical patent/WO2007069334A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/38Dielectric or insulating layers

Definitions

  • the present invention relates to the manufacture of flat panel displays in which electrode coating is performed by chemical vapor deposition.
  • Chemical Vapor Deposition is a film formation technique that forms a raw material gas force film by chemical reaction. It is on the order of meters from the formation of thin films of fine devices such as semiconductor devices. It is widely applied industrially to coating of objects.
  • Japanese Patent No. 3481142 describes that in the production of an AC plasma display panel, a dielectric layer covering an electrode is formed by plasma CVD. According to the CVD method, a thin dielectric layer having a uniform thickness can be obtained, and silicon dioxide, organic silicon oxide, and the like having a relative dielectric constant smaller than that of a low melting point glass which is a general material. A dielectric layer made of the above material can be formed at a temperature lower than that of the thick film method.
  • a parallel plate type plasma CVD apparatus is suitable for forming a film on a relatively large object such as a flat panel display substrate.
  • This type of apparatus includes an upper electrode that also serves as a nozzle that uniformly jets a raw material gas over a wide range, and a lower electrode that also serves as a platform for supporting an object, and plasma is generated between the object on the lower electrode and the upper electrode. It is configured to generate.
  • Japanese Unexamined Patent Application Publication No. 2003-324075 which is a prior art document relating to masking, discloses a masking member in which a rectangular frame and a thin strip-like member are combined.
  • Patent Document 1 Japanese Patent No. 3481142 Patent Document 2: Japanese Patent Laid-Open No. 2003-324075
  • a plasma display panel in which a dielectric layer having a thickness of several ⁇ m to 20 ⁇ m is formed on a substrate on which electrodes are arranged by a CVD method, in order to expose terminal portions of the electrodes
  • the thickness of the dielectric layer may become non-uniform. Specifically, as shown in Fig. 1, a phenomenon occurs in which the vicinity of the mask becomes extremely thicker than other parts.
  • Fig. 1 (A) and Fig. 1 (B) are both cases where the film is formed on both sides of the mask. However, in Fig. 1 (A), the film is thick on both sides of the mask as shown by curves al and a2, and in Fig.
  • the film is thick on one side of the mask as shown by curve a4. Yes. Curve a3 shows that the film thickness is uniform on the other side of the mask.
  • the source gas flows from the center of the mask to both sides, and both the left and right mask edges in the figure are located downstream of the gas flow with respect to the mask center.
  • the source gas is flowing to the left side of the mask and the right edge is positioned upstream of the gas flow with respect to the center of the mask, and the right edge is positioned downstream.
  • the film thickness of the locally thick part may reach twice the film thickness (deposition set value) of the uniform part of the thickness away from the mask force.
  • the locally thick area is about 2 to 3 mm away from the mask.
  • Nonuniformity of the thickness of the dielectric layer causes variations in operating characteristics between cells constituting the screen. In order to perform high-quality and stable display, it is desirable that the thickness of the dielectric layer is uniform.
  • the dielectric layer must be partially removed so that the terminal portion of the electrode is exposed. For example, it is necessary to perform wet etching. The addition of these processes increases the manufacturing time and costs. That is, productivity is reduced.
  • An object of the present invention is to make the film thickness of the electrode coating uniform by chemical vapor deposition and to ensure the productivity.
  • a flat panel display manufacturing method that achieves the object of the present invention includes first and second methods.
  • the electrode group includes a terminal portion including a common terminal connected to a plurality of electrodes and a terminal portion not including the common terminal
  • the terminal portion not including the common terminal is masked and the terminal portion including the common terminal is masked. I like it.
  • conductive connection to a plurality of corresponding electrodes can be made.
  • the individual terminals corresponding to one electrode must be exposed almost entirely to ensure a conductive connection to that electrode. That is, high accuracy is required for the removal of the insulator.
  • FIG. 1 is a diagram showing a relationship between a mask and a film thickness in conventional film formation.
  • FIG. 2 is an exploded perspective view showing an example of a cell structure of a plasma display panel.
  • FIG. 3 is a plan view showing a first example of a pattern of display electrodes.
  • FIG. 4 is a plan view showing a region that needs to be exposed in the display electrode group.
  • FIG. 5 is a plan view of the mask.
  • FIG. 6 is a plan view of a mask and a frame that supports the mask.
  • FIG. 7 is a schematic diagram showing an outline of a plasma CVD apparatus.
  • FIG. 8 is a diagram showing a manufacturing process of a plasma display panel.
  • FIG. 9 is a plan view showing a second example of display electrode patterns.
  • FIG. 10 is a plan view showing a region that needs to be exposed in the second example of the display electrode pattern.
  • FIG. 11 is a plan view showing a modification of masking.
  • a typical plasma display panel has a cell structure shown in FIG. In FIG. 2, a portion including six cells corresponding to three columns in two rows is drawn, and the front plate 10 and the back plate 20 are separated in order to make the internal structure easy to understand.
  • the plasma display panel 1 includes a front plate 10, a back plate 20, and a discharge gas (not shown).
  • the front plate 10 includes a glass substrate 11, a first row electrode X, a second row electrode Y, a dielectric layer 17, and a protective film 18.
  • Each of the row electrode X and the row electrode ⁇ is a laminated body of a patterned transparent conductive film 14 and a metal film 15.
  • the back plate 20 includes a glass substrate 21, a column electrode ⁇ , a dielectric layer 22, a plurality of barrier ribs 23, a red (R) phosphor 24, a green (G) phosphor 25, and a blue ( ⁇ ) phosphor 26. Is provided.
  • the row electrodes X and the row electrodes ⁇ alternately arranged on the inner surface of the glass substrate 11 as display electrodes for generating surface discharge are covered with a dielectric layer 17 and a protective film 18.
  • the dielectric layer 17 is an essential element for the AC plasma display panel and is an element corresponding to the insulator layer of the present invention. By covering with the dielectric layer 17, the surface discharge can be repeatedly generated using the wall charges accumulated in the dielectric layer 17.
  • the protective film 18 prevents snorting on the dielectric layer 17.
  • the arrangement of the row electrodes may be either of two widely known forms. One is to make the electrode gap between adjacent rows wider than the electrode gap (surface discharge gap) in each row as shown in FIG. The other is to make all row electrode gaps equal.
  • FIG. 3 shows a pattern of display electrodes.
  • the row electrode X and the row electrode Y constituting the display electrode group 40 are extended from the screen 60 to the vicinity of the edge of the glass substrate 11, and terminals Xt for conductive connection with the drive unit are provided at respective leading ends. , Yt is provided.
  • the terminal Xt of the row electrode X is disposed on the left end side of the glass substrate 11, and the terminal Yt of the row electrode Y is disposed on the right end side of the glass substrate 11.
  • Terminal Xt array pitch is row electrode on screen 60 Since it is different from the arrangement pitch of X, the left end portion of the row electrode X (including the terminal xt) is patterned in a bent band shape.
  • This bent portion also has a force only in the metal film 15 which is not the laminated body of the transparent conductive film 14 and the metal film 15.
  • the right end portion of the row electrode Y (including the terminal Yt) is patterned in a bent band shape, and this bent portion is composed of only the metal film 15.
  • the plasma display panel 1 having the above-described configuration is manufactured by a procedure in which the front plate 10 and the back plate 20 are separately manufactured and then bonded together.
  • a mother glass plate having an area twice as large as that of the glass substrate 11 is used, and a plurality of front plates 10 are produced collectively.
  • a plurality of back plates 20 are produced in a lump.
  • the mother glass plate Prior to the bonding of the front plate 10 and the rear plate 20, the mother glass plate is divided, and the individualized front plate 10 and the individualized rear plate 20 are integrated by bonding.
  • the dielectric layer 17 is formed by the CVD method, and masking is performed on one of the terminals Xt and Yt. Without masking, the entire display electrode group 40 including both the terminal Xt and the terminal Yt is covered with the dielectric layer 17 having a uniform thickness, and the terminals Xt and Yt are exposed by etching or polishing. It takes a long time to do. By performing masking, the portion to be removed of the dielectric layer 17 is reduced, and both the terminal Xt and the terminal Yt can be exposed so that wiring can be performed in a relatively short time.
  • FIG. 4 One mother-one glass sheet strength Four glass chamfering (four-in-one) for producing four glass substrates is taken as an example.
  • region S 11 in FIG. And area S 12 must be exposed.
  • four display electrode groups 40 are formed in two rows on a rectangular mother glass plate 111. The portion where each display electrode group 40 is arranged on the mother glass plate 111 and the force in the vicinity thereof corresponds to the front glass substrate 11 in one plasma display panel.
  • Region S11 corresponds to the left terminal portion (left end portion) of each display electrode group 40 in the drawing
  • region S12 corresponds to the right terminal portion (right end portion) of each display electrode group 40 in the drawing.
  • a region S17 in the figure is a region where a dielectric layer is to be formed.
  • These masks 71 and 72 are elongated strip-like plates made of an insulating material such as ceramics or heat-resistant glass, and are arranged so as to overlap both ends of the mother glass plate 111. Specifically, the mask 71 masks the left end portions of the two display electrode groups 40 positioned on the left side in FIG. 4, and the mask 72 masks the right end portions of the two display electrode groups 40 positioned on the right side in FIG. The right end portions of the two display electrode groups 40 located on the left side in FIG. 4 and the left end portions of the two display electrode groups 40 located on the right side in FIG. 4 are not masked.
  • the dimensions of the masks 71 and 72 are selected according to the screen size of the plasma display panel.
  • a glass substrate of a plasma display panel having a screen 60 of 42 inches diagonal has a size of about 994 mm X 585 mm.
  • the mother glass plate 111 is larger than at least four screens (1988 mm X I I 70 mm).
  • the widths of the masks 71 and 72 are about 20 mm to 30 mm, and the length is about the same as the corresponding side of the mother glass plate 111.
  • the thickness is about 5 ⁇ 2mm.
  • the masks 71 and 72 are supported by a rectangular frame 73 as shown in FIG.
  • the frame 73 is a rigid body having an aluminum alloy force of about 20 mm in thickness and is larger and thicker than the mother glass plate 111.
  • the frame 73 has sufficient mechanical strength as a pressing member for preventing the mother glass plate 111 from being warped by heating.
  • the dielectric layers using the masks 71 and 72 are formed by a parallel plate type plasma CVD apparatus 300 shown in FIG.
  • the plasma CVD apparatus 300 includes a chamber (reaction chamber) 310 made of a metal container, a shower plate 320 that ejects material gas evenly over a wide range, a movable base 330 that supports a film formation target, and the masking masks 71 and 72 described above. And a frame 73 for supporting the masks 71 and 72.
  • the shower plate 320 also serves as an upper electrode for generating plasma
  • the movable base 330 also serves as a lower electrode.
  • the movable base 330 incorporates a heater for heating the film formation target.
  • the movable base 330 has a display electrode.
  • the mother glass plate 111 on which the group 40 is formed is placed, and the lower surfaces of the masks 71 and 72 are close to the upper surface of the display electrode group 40.
  • Plasma is generated in the space between the display electrode group 40 and the shower plate 320.
  • the distance D between the mother glass plate 111 and the shower plate 320 is selected to be about 10 to 20 mm!
  • the movable base 330 of this example is a lift type movable up and down. When the mother glass plate 111 is carried in and out, the movable base 330 is lowered and separated from the fixed frame 73.
  • the chamber 310 has a loading / unloading mechanism having an interlock function.
  • the inside of the chamber 310 into which the mother glass plate 111 is loaded is reduced to a pressure of about 2.5 to 3.5 Torr, for example, and the mother glass plate 111 is heated to a temperature of about 200 to 400 ° C.
  • the raw material gas is introduced into the chamber 310 from the introduction hole 321 provided in the center of the shower plate 320.
  • silane (SiH) and nitrous acid nitrogen (N 2 O) are introduced.
  • the introduced source gas is a shower plate 31
  • the zero force is also ejected almost uniformly toward the entire mother glass plate 111.
  • the chamber 310 is exhausted through the main exhaust hole 311 located below the movable base 330.
  • the chamber 310 is provided with a vacuum gauge (not shown), and the degree of vacuum in the chamber 310 is kept constant by controlling the valve of the exhaust system according to the output.
  • Plasma generated by the application of high-frequency power of 5 kW activates the source gas and promotes chemical reactions. Then, the film material generated by the chemical reaction is deposited on the film formation surface S1 of the mother glass plate 111 to form a dielectric layer.
  • the film formation surface S1 is the upper surface of the mother glass plate 111 on which the display electrode group 40 is formed. Strictly speaking, the exposed surface (non-masking surface) of the display electrode group 40 and the substrate between the electrodes. It consists of a surface.
  • the central force also moves to the surroundings above the deposition surface S1. Therefore, when the mask is placed in the center of the film-forming surface S1, the film thickness is near the edge of the mask as explained in Fig. 1 (A). May increase locally.
  • the masks 71 and 72 are arranged at the end of the film-forming surface S1, which is downstream of the gas flow, the film thickness hardly varies. This is because the film-forming surface SI is located upstream of the masks 71 and 72 as described with reference to FIG. In other words, the effect of masking at the edge of the film-forming surface S1 is smaller than the effect of masking at the center of the film-forming surface S1.
  • the mask is not disposed near the center of the plasma generation space in the chamber 310, so that the film thickness is made uniform, and the masks 71 and 72 are disposed only at the ends of the plasma generation space. This masking reduces the cost of exposing the terminals Xt and Yt.
  • the masks 71 and 72 are not brought into contact with the display electrode group 40 during masking. This is because the display electrode group 40 is not damaged. Since the terminal portion is covered with a thin dielectric layer by the deposition of the gas that has entered the gap between the masks 71 and 72 and the display electrode group 40, the mother glass plate 111 is exposed to the atmosphere after deposition or in the atmosphere. There is an advantage that the display electrode group 40 does not oxidize even if heat treatment is applied. If the layer is thin enough, for example, if it is several thousand angstroms or less, the external conductor such as a flexible wiring board is pressed against the terminal covered with the layer, and the layer is broken and the external conductor and the terminal become conductive.
  • the masking in the present specification is to make the mask face the film-forming surface S1 and intentionally set the film thickness to zero or a value close to it, and includes a form in which the mask is in contact with the film-forming surface and a form in which the mask is not in contact.
  • FIG. 8 is a diagram showing a manufacturing process of the plasma display panel.
  • a plurality of display electrode groups 40 are formed on a multi-faceted mother-glass plate 111.
  • the mother glass plate 111 includes a plurality of substrate members having the same size as the glass substrate 11 of the front plate 10.
  • Each display electrode group 40 includes two terminal portions 41 and 42 which are both end portions thereof.
  • the first terminal portion 41 is on the edge of the mother glass plate 111.
  • the second terminal portion 42 is located near the center in the left-right direction of the mother glass plate 111 and is adjacent to the terminal portion 42 of the other display electrode group 40. Which electrode these terminal portions 41 and 42 correspond to is determined by the position of the corresponding display electrode group 40 on the mother glass plate 111.
  • the first terminal part 41 to be masked in the display electrode group 40 on the side includes the terminals Xt of all the row electrodes X in one plasma display panel 1, and the second terminal part 42 in the one plasma display panel 1 Including the terminal Yt of the row electrode Y.
  • the first terminal portion 41 to be masked in the right display electrode group 40 includes the terminals Yt of all the row electrodes Y in one plasma display panel 1, and the second terminal portion 42 is one plasma display panel. Includes terminal Xt of all row electrodes X in 1 (see Figure 3).
  • the dielectric layer 17a is formed by chemical vapor deposition on the mother glass plate 111 on which the plurality of display electrode groups 40 are formed.
  • the plasma CVD apparatus 300 described above is used for the formation, and the terminal portions 41 at both ends of the mother glass plate 111 are covered with masks 71 and 72.
  • magnesia is deposited as a protective film 18 on the dielectric layer 17a.
  • the protective film 18 is formed only in a region in contact with the discharge gas in a completed state.
  • Such a film can be obtained, for example, by masking during vapor deposition.
  • the present invention is not limited to the example, and the protective film 18 may be deposited on the entire surface of the dielectric layer 17a. Since the protective film 18 is sufficiently thin, unnecessary portions can be easily removed later.
  • the mother glass plate 111 is divided into a plurality of glass substrates 11.
  • the dielectric layer 17a is divided into dielectric layers 17b corresponding to the respective plasma display panels 1.
  • a separately manufactured back plate 20 is bonded to a plurality of front plates 10a obtained by division.
  • one terminal portion of the front panel 10a is covered with the dielectric 171, and an external conductor cannot be connected to the terminal section.
  • the plasma display panel 1 shown in FIG. 8 (F) is obtained.
  • the manufacturing procedure for removing the dielectric 171 after dividing the mother glass plate 111 and further joining the front plate 10a and the back plate 20 together has the following advantages. That is, unnecessary dielectric material 171 can be removed by wet etching which is advantageous in terms of process throughput. In addition, in the heat treatment for bonding the back plate 20, If body 171 prevents, there are advantages.
  • FIG. 9 is a plan view showing a second example of the display electrode pattern.
  • the terminal of the row electrode X is a common terminal XT connected to the plurality of row electrodes X.
  • the row electrode X is divided into two groups, and two common terminals XT are arranged on the right end side of the glass substrate 11, one for each group. It must be common to multiple electrodes.
  • the common terminal XT is larger than the terminal Yt of each row electrode Y (individual terminal corresponding to one electrode).
  • FIG. 10 is a plan view showing a region that needs to be exposed in the display electrode group 40b of FIG. 9 when the dielectric layer is formed by the four-chamfering method.
  • the mother glass plate 111 has four display electrode groups 40b formed in two rows. Each display electrode group 40b on the mother glass plate 111 is arranged! And its peripheral force corresponds to the front glass substrate 11 in one plasma display panel. Region S12 corresponds to terminal Yt of row electrode Y in each display electrode group 40b, and region S13 corresponds to common terminal XT of row electrode X in each display electrode group 40b (see FIG. 9).
  • a feature of this example is that the region to be exposed that is arranged near the center in the left-right direction of the mother glass plate 111 is the region S13 corresponding to the common terminal XT.
  • the display electrode group 40b is arranged so that the upper and lower directions of the display electrode group 40b are opposite on the left and right sides of the mother glass plate 111. ing.
  • the white arrow in the figure indicates the vertical direction.
  • the center of the mother glass plate 111 is close to the four terminal portions.
  • Masking the remaining terminals without masking two masks 71 and 72 are used as shown in Fig. 11.
  • the formation of the dielectric layer and the subsequent manufacturing procedure may be the same as in the above example.
  • the mask pattern should be selected according to the shape of the film formation target, and is not limited to the patterns illustrated in FIG. 6 and FIG. Not only four chamfering, but only one chamfering (1 in 1) to produce only one glass substrate from a mother glass plate, or n chamfering (n in 1) to produce two or more n glass substrates The invention is applicable.
  • the materials, planar dimensions, thickness, the number and arrangement of the masks 71 and 72, the configuration of the film forming apparatus, and the like of the masks 71 and 72 and the frame 73 can be appropriately selected within the scope of the gist of the present invention. it can.
  • the present invention is useful for forming an electrode coating film by a chemical vapor deposition method, and can be used for manufacturing a flat panel display including a plasma display panel and a liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 フラットパネルディスプレイ(1)を製造するための方法は、第1および第2の端子部分(41,42)をもつ電極群(40) が形成された基板(111)上に、第1および第2の端子部分(41,42)のうちでマスキングの影響が他方よりも小さい一方の端子部分(41)に対してマスキングをし且つ残りの片方の端子部分(42)に対してマスキングをしない状態で、化学的気相堆積によって絶縁体(17a)を堆積させる工程と、マスキングされなかった端子部分(42)に堆積した絶縁体(171)の少なくとも一部を取り除く工程とを含む。                                                                                 

Description

明 細 書
フラットパネルディスプレイの製造方法
技術分野
[0001] 本発明は、化学的気相堆積によって電極被覆を行うフラットパネルディスプレイの 製造に関する。
背景技術
[0002] 化学的気相堆積 (Chemical Vapor Deposition: CVD)は、化学反応によって原料ガ ス力 膜を形成する成膜手法であり、半導体装置をはじめとする微細デバイスの薄膜 の形成からメートルオーダの物体のコーティングに至るまで工業的に幅広く応用され ている。
[0003] 近年、 CVD法は、対角 1メートル以上の大画面をもつフラットパネルディスプレイの 製造にも用いられるようになった。特許 3481142号公報には、 ACプラズマディスプ レイパネルの製造にお 、て、電極を被覆する誘電体層をプラズマ CVDによって形成 することが記載されている。 CVD法によれば、薄くて厚さの均一な誘電体層を得るこ とができるとともに、一般的な材料である低融点ガラスよりも比誘電率の小さい二酸ィ匕 珪素や有機酸化珪素などの物質からなる誘電体層を厚膜法よりも低い温度で形成 することができる。
[0004] フラットパネルディスプレイの基板のような比較的に大きな物体への成膜には、平行 平板型のプラズマ CVD装置が適している。この種の装置は、原料ガスを広範囲に均 等に噴き出すノズルを兼ねる上側電極と、物体を支持する台を兼ねる下側電極とを 備え、下側電極上の物体と上側電極との間でプラズマを発生させるように構成されて いる。
[0005] CVDによる成膜に際して、成膜対象の物体に成膜不用の箇所があるときには、そ の箇所に対してマスキングが行われる。マスキングに関する先行文献である特開 200 3— 324075号公報は、長方形のフレームと薄い帯状体である桟とを組み合わせた マスキング部材を開示して 、る。
特許文献 1:特許 3481142号公報 特許文献 2:特開 2003 - 324075号公報
発明の開示
[0006] 電極の配列された基板上に CVD法によって厚さ数 μ m〜20 μ m程度の誘電体層 を形成するプラズマディスプレイパネルの製造にぉ 、て、電極の端子部を露出させる ために基板にマスクを重ねてマスキングを行うと、誘電体層の厚さが不均一になるこ とがある。詳しくは、図 1に示すようにマスクの近傍が他の部分よりも極端に厚くなると いう現象が起きる。図 1 (A)、図 1 (B)はともにマスクの両側に成膜する場合である。し かし、図 1 (A)では曲線 al, a2が示すようにマスクの両側で膜が厚くなつており、図 1 (B)では曲線 a4が示すようにマスクの片側で膜が厚くなつている。曲線 a3はマスクの 他の側では膜厚が均一であることを示している。図 1 (A)では、原料ガスがマスクの中 央から両側に流れており、図における左右のマスク端縁の双方がマスク中央に対し てガス流の下流側に位置する。図 1 (B)では原料ガスがマスクの左方力 右方へ流 れており、マスクの左端縁はマスク中央に対してガス流の上流側に位置し、右端縁は 下流側に位置する。局部的に厚い部分の膜厚は、マスク力 離れて厚さの均一な部 位の膜厚 (成膜の設定値)の 2倍に達することがある。局部的に厚い部分の範囲はマ スクからの距離が 2〜3mm程度の範囲である。
[0007] このような局部的な膜厚の増大の原因としては、反応室内での導入ロカも排気口 へ向力う原料ガスの流れがマスクによって阻害され、マスク端縁で流速が変化するこ とが考えられる。
[0008] 誘電体層の厚さの不均一は、画面を構成するセル間の動作特性のばらつきを生む 。高品位で安定した表示を行うには、誘電体層の厚さが均一であるのが望ましい。
[0009] しかし、マスキングを行わなければ、電極全体を被覆するように誘電体を堆積させ た後に、電極の端子部分が露出するように誘電体層を部分的に除去しなければなら ない。例えばウエットエッチングを行う必要がある。このような工程が加わることにより 製造の所要時間が長くなるとともに、費用が増える。つまり、生産性が低下する。
[0010] 本発明の目的は化学的気相堆積による電極被覆の膜厚の均一化と生産性の確保 を図ることことである。
[0011] 本発明の目的を達成するフラットパネルディスプレイの製造方法は、第 1および第 2 の端子部分をもつ電極群が形成された基板上に化学的気相堆積によって絶縁体層 を形成する工程と、前記第 1および第 2の端子部分のうちでマスキングの影響が他方 よりも小さい一方の端子部分に対してマスキングをし、且つ残りの片方の端子部分に 対してマスキングをしな!ヽ状態で、前記電極群が形成された前記基板上に化学的気 相堆積によって絶縁体を堆積させる工程と、マスキングされなかった端子部分に堆積 した絶縁体の少なくとも一部を取り除く工程とを含む。
[0012] 2つの端子部分の片方をマスキングする場合では、両方をマスキングしない場合と 比べて、化学的気相堆積を終えた後に除去しなければならない絶縁体が少ない。単 純に考えると、除去すべき絶縁体はマスキングしない場合の 1Z2である。したがって 、除去に要する時間および費用(コスト)の削減が可能である。
[0013] 電極群が複数の電極と繋がった共通端子を含む端子部分と含まない端子部分とが ある場合には、共通端子を含まない端子部分をマスキングし、共通端子を含む端子 部分をマスキングするのが好ま 、。共通端子の一部分さえ露出すれば対応する複 数の電極に対する導電接続を行うことができる。これに対して、 1つの電極に対応す る個別端子は、その電極に対する導電接続を確実に行うために、そのほぼ全体を露 出させなければならない。つまり、絶縁体の除去に高い精度が要求される。
図面の簡単な説明
[0014] [図 1]従来の成膜におけるマスクと膜厚との関係を示す図である。
[図 2]プラズマディスプレイパネルのセル構造の一例を示す分解斜視図である。
[図 3]表示電極のパターンの第 1例を示す平面図である。
[図 4]表示電極群において露出させる必要のある領域を示す平面図である。
[図 5]マスクの平面図である。
[図 6]マスクとそれを支持するフレームの平面図である。
[図 7]プラズマ CVD装置の概要を示す模式図である。
[図 8]プラズマディスプレイパネルの製造過程を示す図である。
[図 9]表示電極のパターンの第 2例を示す平面図である。
[図 10]表示電極のパターンの第 2例において露出させる必要のある領域を示す平面 図である。 [図 11]マスキングの変形例を示す平面図である。
発明を実施するための最良の形態
[0015] 以下、フラットパネルディスプレイとしてプラズマディスプレイパネルを例にあげて本 発明の製造方法を説明する。
[0016] 典型的なプラズマディスプレイパネルは図 2に示されるセル構造をもつ。図 2では 2 行中の 3列に対応した 6個のセルを含む部分が描かれ、内部構造を解り易くするため に前面板 10と背面板 20とが分離されて 、る。
[0017] プラズマディスプレイパネル 1は前面板 10と背面板 20と図示しな 、放電ガスとで構 成される。前面板 10は、ガラス基板 11、第 1の行電極 X、第 2の行電極 Y、誘電体層 17、および保護膜 18を備える。行電極 Xおよび行電極 Υのそれぞれは、パターニン グされた透明導電膜 14と金属膜 15の積層体である。背面板 20は、ガラス基板 21、 列電極 Α、誘電体層 22、複数の隔壁 23、赤 (R)の蛍光体 24、緑 (G)の蛍光体 25、 および青 (Β)の蛍光体 26を備える。
[0018] 面放電を生じさせる表示電極としてガラス基板 11の内面に交互に配列された行電 極 Xおよび行電極 Υは、誘電体層 17および保護膜 18によって被覆されている。誘電 体層 17は ACプラズマディスプレイパネルに必須の要素であり、本発明の絶縁体層 に相当する要素である。誘電体層 17で被覆することにより、誘電体層 17に蓄積する 壁電荷を利用して面放電を繰り返し起すことができる。保護膜 18は誘電体層 17に対 するスノッタリングを防ぐ。
[0019] なお、本発明の実施において行電極の配列は広く知られる 2つの形態のどちらでも よい。 1つは、図 1のように隣接する行の間の電極間隙を各行における電極間隙(面 放電ギャップ)よりも広くするものである。他の 1つは、全ての行電極間隙を等しくする ものである。
[0020] 図 3は表示電極のパターンを示す。表示電極群 40を構成する行電極 Xおよび行電 極 Yは、画面 60からガラス基板 11の端縁の近傍まで延長されており、それぞれの先 端に駆動ユニットとの導電接続のための端子 Xt, Ytが設けられている。図 3において 、行電極 Xの端子 Xtはガラス基板 11の左端側に配置され、行電極 Yの端子 Ytはガ ラス基板 11の右端側に配置されて 、る。端子 Xtの配列ピッチは画面 60での行電極 Xの配列ピッチと異なるので、行電極 Xの左端の部分 (端子 xtを含む)は屈曲した帯 状にパター-ングされている。この屈曲した部分は透明導電膜 14と金属膜 15の積層 体ではなぐ金属膜 15のみ力もなる。同様に、行電極 Yの右端の部分 (端子 Ytを含 む)は屈曲した帯状にパターユングされており、この屈曲した部分は金属膜 15のみか らなる。
[0021] 以上の構成をもつプラズマディスプレイパネル 1は、前面板 10および背面板 20を 別個に作製し、その後に貼り合わす手順で製造される。一般に、前面板 10の作製に はガラス基板 11の 2倍以上の面積をもつマザ一ガラス板が用いられ、複数個の前面 板 10がー括に作製される。同様に複数個の背面板 20も一括に作製される。前面板 10と背面板 20の貼り合わせに先立ってマザ一ガラス板の分割が行われ、個別化さ れた前面板 10と個別化された背面板 20とが貼り合わせによって一体になる。
[0022] 前面板 10の作製において、誘電体層 17は CVD法によって形成され、その際に端 子 Xt, Ytの片方に対してマスキングが行われる。マスキングを行わなければ、端子 X tおよび端子 Ytの両方を含めて表示電極群 40の全体が一様な厚さの誘電体層 17 で覆われてしまい、エッチングまたは研磨によって端子 Xt, Ytを露出させるのに長い 時間がかかる。マスキングを行うことにより、誘電体層 17のうちの取り除くべき部分が 少なくなり、比較的に短い時間で端子 Xtおよび端子 Ytの両方を配線可能となるよう に露出させることができる。
[0023] 1枚のマザ一ガラス板力 4つのガラス基板を作製する 4面取り(4イン 1)を例に挙 げると、プラズマディスプレイパネル 1を駆動回路と接続するに当たって図 4の領域 S 11および領域 S 12を露出させなければならな 、。図 4にお 、て四角形のマザーガラ ス板 111には 4個の表示電極群 40が 2列に形成されて 、る。マザ一ガラス板 111に おける各表示電極群 40の配置されて ヽる部分とその近傍力 1個のプラズマデイス プレイパネルにおける前面側のガラス基板 11に相当する。領域 S 11は各表示電極 群 40の図中左側の端子部分 (左端部)に対応し、領域 S12は各表示電極群 40の図 中右側の端子部分 (右端部)に対応する。なお、図中の領域 S17は誘電体層を形成 すべき領域である。
[0024] 本例では、計 8つの端子部分のうちでマザ一ガラス板 111の中央に近い 4つの端子 部分に対してはマスキングを行わず、残りの端子部分に対してマスキングを行う。マス キングには図 5のように 2つのマスク 71, 72を用いる。
[0025] これらマスク 71, 72はセラミックスまたは耐熱ガラスなどの絶縁材料力 なる細長い 帯状の板であり、マザ一ガラス板 111の両端部と重なるように配置される。詳しくは、 マスク 71は図 4で左側に位置する 2つの表示電極群 40における左端部をマスキング し、マスク 72は図 4で右側に位置する 2つの表示電極群 40における右端部をマスキ ングする。図 4で左側に位置する 2つの表示電極群 40における右端部、およびに図 4で右側に位置する 2つの表示電極群 40における左端部はマスキングされない。
[0026] マスク 71, 72の寸法はプラズマディスプレイパネルの画面サイズに応じて選定され る。例えば、対角 42インチの画面 60をもつプラズマディスプレイパネルのガラス基板 はおよそ 994mm X 585mmの大きさをもつ。このガラス基板を 2面取りで作製する場 合のマザ一ガラス板 111は少なくとも画面 4つ分( 1988mm X I I 70mm)よりも大き い。マスク 71, 72の幅は 20mm〜30mm程度であり、長さはマザ一ガラス板 111の 対応する辺と同程度である。厚みは 5 ± 2mm程度である。
[0027] 使用に際してマスク 71, 72は図 6のように四角形のフレーム 73によって支持される 。フレーム 73は厚さ 20mm程度のアルミニウム合金力もなる剛体であり、マザーガラ ス板 111よりも大きく且つ厚、。このことによってマザ一ガラス板 111が加熱によって 反るのを防ぐ押さえ部材として十分な機械的強度がフレーム 73に備わっている。
[0028] マスク 71, 72を使用する誘電体層の成膜は、図 7に示される平行平板型のプラズ マ CVD装置 300によって行われる。プラズマ CVD装置 300は、金属製容器からなる チャンバ (反応室) 310、材料ガスを広範囲に均等に噴き出すシャワープレート 320、 成膜対象物を支持する可動ベース 330、上述したマスキング用のマスク 71, 72、お よびマスク 71, 72を支持するフレーム 73を備える。
[0029] シャワープレート 320はプラズマ発生のための上側電極を兼ね、可動ベース 330は 下側電極を兼ねる。可動ベース 330には成膜対象物を加熱するヒータが組み込まれ ている。
[0030] チャンバ 310の内部において、シャワープレート 320と可動ベース 330との間にマ スク 71, 72が配置される。図示の成膜時の状態では、可動ベース 330には表示電極 群 40の形成されたマザ一ガラス板 111が載置され、マスク 71, 72の下面が表示電 極群 40の上面と近接している。表示電極群 40とシャワープレート 320との間の空間 でプラズマが発生する。マザ一ガラス板 111とシャワープレート 320との距離 Dは 10 〜 20mm程度に選定されて!、る。
[0031] 本例の可動ベース 330は上下に移動可能なリフト式である。マザ一ガラス板 111の 搬入時および搬出時には可動ベース 330は下がり、固定配置されたフレーム 73から 離れる。チャンバ 310にはインタロック機能をもった搬入'搬出のための機構が組み 付けられている。
[0032] 成膜工程の概要は次のとおりである。
[0033] マザ一ガラス板 111を搬入したチャンバ 310の内部を例えば 2. 5〜3. 5Torr程度 の圧力に減圧し、マザ一ガラス板 111を 200〜400°C程度の温度に加熱した状態で 、シャワープレート 320の中央に設けられた導入孔 321からチャンバ 310内に原料ガ スが導入される。二酸化珪素からなる誘電体層を形成する場合には、例えばシラン( SiH )と亜酸ィ匕窒素 (N O)が導入される。導入された原料ガスはシャワープレート 31
4 2
0力もマザ一ガラス板 111の全体に向かってほぼ均等に噴出する。
[0034] 原料ガスの導入と並行して、可動ベース 330の下方に位置する主排気孔 311を介 してチャンバ 310に対する排気が行われる。チャンバ 310には図示しない真空計が 設けられており、その出力に応じて排気系のバルブを制御することによってチャンバ 310の真空度が一定に保たれる。
[0035] このようにして一定量の原料ガスが供給されるチャンバ 310の内部では、 1. 5〜2.
5kWの高周波電力の印加により発生したプラズマが原料ガスを活性ィ匕し、化学反応 を促進させる。そして、化学反応で生じた膜材料がマザ一ガラス板 111の成膜面 S1 に堆積し、誘電体層を形成する。本例での成膜面 S1とは、表示電極群 40の形成さ れたマザ一ガラス板 111における上面であり、厳密には表示電極群 40の露出面 (非 マスキング面)と電極間の基板面とで構成される。
[0036] このような成膜において、原料ガスの導入と排気にともなってガスの流れが生じる。
その流れは成膜面 S1の上方において中央力も周囲へと向かう。したがって、成膜面 S1の中央にマスクを配置すると、図 1 (A)で説明したようにマスクの端縁付近で膜厚 が局所的に増大するおそれがある。一方、ガスの流れの下流である成膜面 S1の端 部ではマスク 71, 72を配置しても膜厚の不均一はほとんど起こらない。それは図 1 (B )で説明したように成膜面 SIがマスク 71, 72に対して上流側に位置するからである。 つまり、成膜面 S1の中央におけるマスキングの影響よりも成膜面 S1の端部における マスキングの影響の方が小さ 、。
[0037] 本例では、チャンバ 310内のプラズマ発生空間の中央付近にはマスクを配置しな いことによって膜厚の均一化が実現され、プラズマ発生空間の端部のみにマスク 71 , 72を配置するマスキングによって、端子 Xt, Ytを露出させる工程のコスト低減が実 現される。
[0038] マスキングに際してマスク 71, 72を表示電極群 40と接触させないのが望ましい。表 示電極群 40の損傷が生じないからである。カロえて、マスク 71, 72と表示電極群 40と の間隙に入り込んだガスの堆積によって端子部分が薄い誘電体層で被覆されるので 、成膜後にマザ一ガラス板 111を大気に晒したり大気中で熱処理を加えたりしても表 示電極群 40が酸ィ匕しないという利点がある。十分に薄い層であれば、例えば数千ォ ングストローム以下であれば、それで覆われた端子にフレキシブル配線板などの外 部導体を圧接することによって層が破れて外部導体と端子とが導通するので、除去 のための特別の処理をする必要がない。除去をするにしても短時間で終えることがで きる。本明細書におけるマスキングはマスクを成膜面 S1に対向させて意図的に膜厚 を零またはそれに近い値にすることであり、マスクを成膜面に接触する形態および接 触させない形態を含む。
[0039] 図 8はプラズマディスプレイパネルの製造過程を示す図である。
[0040] 図 8 (A)のように、多面取り用のマザ一ガラス板 111に複数の表示電極群 40 (図示 は 2つ)を形成する。マザ一ガラス板 111は前面板 10のガラス基板 11と同じサイズの 複数の基板部材を含む。各表示電極群 40はそれの両端部分である 2つの端子部分 41, 42を含む。第 1の端子部分 41はマザ一ガラス板 111の端縁に在る。第 2の端子 部分 42はマザ一ガラス板 111の左右方向の中央付近に在り、他の表示電極群 40の 端子部分 42と隣接する。これらの端子部分 41, 42がどの電極に対応するかは、該 当する表示電極群 40のマザ一ガラス板 111での位置で決まる。本例においては、左 側の表示電極群 40におけるマスキングされる第 1の端子部分 41は 1つのプラズマデ イスプレイパネル 1における全ての行電極 Xの端子 Xtを含み、第 2の端子部分 42は 1 つのプラズマディスプレイパネル 1における全ての行電極 Yの端子 Ytを含む。逆に、 右側の表示電極群 40におけるマスキングされる第 1の端子部分 41は 1つのプラズマ ディスプレイパネル 1における全ての行電極 Yの端子 Ytを含み、第 2の端子部分 42 は 1つのプラズマディスプレイパネル 1における全ての行電極 Xの端子 Xtを含む(図 3 参照)。
[0041] 図 8 (B)のように、複数の表示電極群 40が形成されたマザ一ガラス板 111に化学的 気相堆積によって誘電体層 17aを形成する。その形成には上述したプラズマ CVD装 置 300を用い、マザ一ガラス板 111の両端部に在る端子部分 41をマスク 71, 72によ つて覆う。
[0042] 図 8 (C)のように、誘電体層 17aに保護膜 18として例えばマグネシアを蒸着する。
図示では完成状態で放電ガスと接する領域のみに保護膜 18を形成した例を示して いる。このような膜は例えば蒸着時にマスキングをすることによって得られる。ただし、 例示に限らず、誘電体層 17aの表面全体に保護膜 18を被着させてもよい。保護膜 1 8は十分に薄 、ので、後にその不要部分を容易に取り除くことができる。
[0043] 図 8 (D)のように、マザ一ガラス板 111を複数のガラス基板 11に分割する。これによ り誘電体層 17aは各プラズマディスプレイパネル 1に対応する誘電体層 17bに分かれ る。
[0044] 図 8 (E)のように、分割で得られた複数の前面板 10aに別途作製された背面板 20 を貼り合せる。前面板 10aと背面板 20の一体ィ匕を終えた段階では、前面板 10aの一 方の端子部分が誘電体 171で覆われており、当該端子部分に外部導体を接続する ことができない。この誘電体 171を除去することにより、図 8 (F)に示されるプラズマデ イスプレイパネル 1が得られる。
[0045] マザ一ガラス板 111を分割し、さらに前面板 10aと背面板 20とを一体ィ匕した後に 誘電体 171を除去する製造手順は次の利点を有する。それは不要の誘電体 171の 除去を、工程のスループットの上で有利なウエットエッチングによって行うことができる ことである。また、背面板 20を貼り合せるための熱処理において電極の酸ィ匕を誘電 体 171が防ぐと 、う利点がある。
[0046] 以下、化学的気相堆積におけるマスキングの変形例を説明する。
[0047] 図 9は表示電極のパターンの第 2例を示す平面図である。本例の表示電極群 40b においては、行電極 Xの端子が複数の行電極 Xに繋がった共通端子 XTである。例 示において、行電極 Xは 2つの組に分けられ、各組に対して 1つずつ、計 2つの共通 端子 XTが、ガラス基板 11の右端側に配置されている。複数の電極に共通であること カゝら必然的に共通端子 XTは、各行電極 Yの端子 Yt (l本の電極に対応する個別端 子)よりも大きい。
[0048] 図 10は 4面取り方式で誘電体層を形成する場合において、図 9の表示電極群 40b において露出させる必要のある領域を示す平面図である。
[0049] プラズマディスプレイパネル 1を駆動回路と接続するに当たって図 10の領域 S12お よび領域 S 13を露出させなければならな!/、。図 10にお!/、てマザ一ガラス板 111には 4個の表示電極群 40bが 2列に形成されて 、る。マザ一ガラス板 111における各表示 電極群 40bの配置されて!、る部分とその近傍力 1個のプラズマディスプレイパネル における前面側のガラス基板 11に相当する。領域 S12は各表示電極群 40bにおけ る行電極 Yの端子 Ytに対応し、領域 S 13は各表示電極群 40bにおける行電極 Xの 共通端子 XTに対応する(図 9参照)。
[0050] 本例の特徴は、マザ一ガラス板 111の左右方向の中央付近に配置される露出すベ き領域がいずれも共通端子 XTに対応した領域 S 13とされていることである。この特 徴を得るため、 4つの表示電極群 40bの形成に際して、マザ一ガラス板 111の左側と 右側とで表示電極群 40bの上下の向きが反対となるように表示電極群 40bが並べら れている。図中の白抜きの矢印は上下の向きを示している。
[0051] 本例においても上記の例と同様に、 4つの表示電極群 40bが 2つずつ備える計 8つ の端子部分のうちでマザ一ガラス板 111の中央に近 、4つの端子部分に対してはマ スキングを行わず、残りの端子部分に対してマスキングを行う。マスキングには図 11 のように 2つのマスク 71, 72を用いる。誘電体層の形成およびその後の製造手順は 上記の例と同様でよい。
[0052] 個別の端子 Ytを含む端子部分をマスキングし、共通端子 XTを含む端子部分をマ スキングしないことにより、電極を覆う不要の誘電体 171 (図 8 (E)参照)の除去が簡 単になる。それは、共通端子 XTの一部分さえ露出すれば、対応する複数の行電極
Xに対する導電接続を行うことができるので、個別端子とは違って端子全体を確実に 露出させる必要がないからである。また、不要の誘電体 171をエッチングする場合に オーバーエッチングの許容範囲が広 、。
[0053] 本発明の実施において、マスクパターンは成膜対象の形状に応じて選定されるべ きものであり、図 6および図 11に例示したパターンに限定されない。 4面取りに限らず 、マザ一ガラス板から 1枚のガラス基板のみを作製する 1面取り(1イン 1)、または 2以 上の n枚のガラス基板を作製する n面取り(nイン 1)に本発明は適用可能である。
[0054] マスク 71, 72およびフレーム 73の材質、平面寸法、厚さ、マスク 71, 72の数および 配置、成膜装置の構成などは、本発明の趣旨に沿う範囲内で適宜選定することがで きる。
産業上の利用可能性
[0055] 本発明は、化学的気相堆積法による電極被覆膜の形成に有用であり、プラズマデ イスプレイパネルおよび液晶パネルを含むフラットパネルディスプレイの製造に利用 することができる。

Claims

請求の範囲
[1] 複数の電極とそれらを被覆する絶縁体層を備えたフラットパネルディスプレイを製 造するための方法であって、
第 1および第 2の端子部分をもつ電極群が形成された基板上に、前記第 1および第 2の端子部分のうちでマスキングの影響が他方よりも小さい一方の端子部分に対して マスキングをし且つ残りの片方の端子部分に対してマスキングをしな 、状態で、化学 的気相堆積によって絶縁体を堆積させる工程と、
マスキングされなカゝつた端子部分に堆積した絶縁体の少なくとも一部を取り除くェ 程とを含む
ことを特徴とするフラットパネルディスプレイの製造方法。
[2] 第 1および第 2の端子部分をもつ電極群および前記電極群を被覆する絶縁体層が 固着した基板を備え、前記基板の一端側に前記第 1の端子部分が配置され、前記基 板の他端側に前記第 2の端子部分が配置されたフラットパネルディスプレイを製造す るための方法であって、
前記基板と同じサイズの複数の基板部材を含む多面取り用のマザ一基板に、前記 電極群と同じパターンをもつ少なくとも 2つの電極群を、一方の電極群における第 1 の端子部分と他方の電極群における第 1または第 2の端子部分とが隣接するように並 ベて形成し、
前記 2つの電極群が形成された前記マザ一基板を化学的気相堆積装置の反応室 の中に配置し、
前記反応室にぉ 、て、隣接する端子部分に対してマスキングをせずに且つ残りの 端子部分に対してマスキングをした状態で、前記 2つの電極群が形成された前記マ ザ一基板上に絶縁体を堆積させ、
前記 2つの電極群におけるマスキングされなカゝつた端子部分に堆積した絶縁体の 少なくとも一部を取り除く
ことを特徴とするフラットパネルディスプレイの製造方法。
[3] 前記マザ一基板上に絶縁体を堆積させた後に、当該マザ一基板をそれぞれが電 極群をもつ複数の基板に分割し、さらにその後に各基板における端子部分に堆積し た絶縁体を取り除く
請求項 2に記載のフラットパネルディスプレイの製造方法。
[4] 第 1および第 2の端子部分をもつ電極群および前記電極群を被覆する絶縁体層が 固着した基板を備え、前記基板の一端側に前記第 1の端子部分が配置され、前記基 板の他端側に前記第 2の端子部分が配置されたフラットパネルディスプレイを製造す るための方法であって、
前記基板と同じサイズの 4つの基板部材を含む 4面取り用のマザ一基板に、前記電 極群と同じパターンをもつ 4つの電極群を 2列に並べて形成するステップと、 前記 4つの電極群が形成された前記マザ一基板を化学的気相堆積装置の反応室 の中に配置するステップと、
前記反応室において、計 8つの端子部分のうちで前記マザ一基板の中央に近い 4 つの端子部分に対してマスキングをせずに且つ残りの端子部分に対してマスキング をした状態で、前記 4つの電極群が形成された前記マザ一基板上に絶縁体を堆積さ せるステップと、
前記 4つの電極群におけるマスキングされなカゝつた端子部分に堆積した絶縁体の 少なくとも一部を取り除くステップと、を含む
ことを特徴とするフラットパネルディスプレイの製造方法。
[5] 前記第 1の端子部分は複数の電極に対応し且つ 1つの電極に対応した個別端子よ りも大きい共通端子を含んでおり、
前記 4つの電極群を並べて形成する際に、各電極群における第 1の端子部分を他 の電極群における第 1の端子部分と隣接させ、
第 1の端子部分に対してマスキングをせずに且つ第 2の端子部分に対してマスキン グをした状態で、前記マザ一基板上に絶縁体を堆積させる
請求項 4に記載のフラットパネルディスプレイの製造方法。
PCT/JP2005/023165 2005-12-16 2005-12-16 フラットパネルディスプレイの製造方法 WO2007069334A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/089,348 US20100129530A1 (en) 2005-12-16 2005-12-16 Method for manufacturing flat panel display
PCT/JP2005/023165 WO2007069334A1 (ja) 2005-12-16 2005-12-16 フラットパネルディスプレイの製造方法
JP2007550062A JPWO2007069334A1 (ja) 2005-12-16 2005-12-16 フラットパネルディスプレイの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/023165 WO2007069334A1 (ja) 2005-12-16 2005-12-16 フラットパネルディスプレイの製造方法

Publications (1)

Publication Number Publication Date
WO2007069334A1 true WO2007069334A1 (ja) 2007-06-21

Family

ID=38162656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023165 WO2007069334A1 (ja) 2005-12-16 2005-12-16 フラットパネルディスプレイの製造方法

Country Status (3)

Country Link
US (1) US20100129530A1 (ja)
JP (1) JPWO2007069334A1 (ja)
WO (1) WO2007069334A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255758A (ja) * 1995-03-15 1996-10-01 Toshiba Corp プラズマ気相成長装置
JPH0950769A (ja) * 1995-05-26 1997-02-18 Fujitsu Ltd プラズマディスプレイパネル及びその製造方法
JP2003324075A (ja) * 2002-04-25 2003-11-14 Applied Materials Inc 半導体装置用桟付きシャドウフレーム
JP2004111093A (ja) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法およびプラズマディスプレイ用のガラス基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290970A (ja) * 1992-04-14 1993-11-05 Fuji Electric Co Ltd 薄膜エレクトロルミネセンス素子の製造方法
JP3481142B2 (ja) * 1998-07-07 2003-12-22 富士通株式会社 ガス放電表示デバイス
JP2006054073A (ja) * 2004-08-10 2006-02-23 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255758A (ja) * 1995-03-15 1996-10-01 Toshiba Corp プラズマ気相成長装置
JPH0950769A (ja) * 1995-05-26 1997-02-18 Fujitsu Ltd プラズマディスプレイパネル及びその製造方法
JP2003324075A (ja) * 2002-04-25 2003-11-14 Applied Materials Inc 半導体装置用桟付きシャドウフレーム
JP2004111093A (ja) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法およびプラズマディスプレイ用のガラス基板

Also Published As

Publication number Publication date
JPWO2007069334A1 (ja) 2009-05-21
US20100129530A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4907088B2 (ja) 表示装置の製造方法
EP1928017A1 (en) Plasma reactor substrate mounting surface texturing
WO2007069334A1 (ja) フラットパネルディスプレイの製造方法
EP0342806A1 (en) Process for producing patterns in dielectric layers formed by plasma enhanced chemical vapor deposition (PECVD)
US20100127621A1 (en) Method for manfacturing flat panel display and panel for flat panel display
JPH0831752A (ja) Cvd装置の反応室のクリーニング方法およびコーティング方法
US20090092754A1 (en) Film formation method, mask for film formation and film formation device
KR20080065594A (ko) 플랫 패널 디스플레이의 제조 방법
JP4416601B2 (ja) プラズマプロセス装置、及びそれを用いた液晶表示装置の製造方法
KR20080056718A (ko) 플랫 패널 디스플레이의 제조 방법 및 플랫 패널디스플레이용 패널
JPH0610140A (ja) 薄膜堆積装置
KR100702411B1 (ko) 플라즈마 디스플레이 패널의 제조 방법
JPWO2007055030A1 (ja) Cvd装置を用いる成膜方法およびマスキングのためのマスク
WO2007055031A1 (ja) Cvd装置を用いる成膜方法およびマスキングのためのマスク
WO2007023535A1 (ja) 成膜方法、成膜用のマスク、および成膜装置
KR101870766B1 (ko) 플라즈마 전극 어셈블리 및 그 제조방법
KR20080014069A (ko) 성막 방법, 성막용 마스크, 및 성막 장치
KR101312002B1 (ko) 성막 방법
KR102298836B1 (ko) 플라즈마 화학기상 증착장비용 상부전극
US6815149B2 (en) Plasma display panel
JP3581813B2 (ja) 薄膜製造方法並びに薄膜太陽電池の製造方法
KR20150056305A (ko) 원자층 증착 장치 및 방법
KR20210081241A (ko) 플라즈마 에칭 방법
WO2007125600A1 (ja) プラズマディスプレイパネルおよびその前面板の製造方法
JPH11263603A (ja) プレート型オゾン発生装置用放電セル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550062

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087007269

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12089348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820061

Country of ref document: EP

Kind code of ref document: A1