WO2007068821A1 - Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression - Google Patents

Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression Download PDF

Info

Publication number
WO2007068821A1
WO2007068821A1 PCT/FR2006/002711 FR2006002711W WO2007068821A1 WO 2007068821 A1 WO2007068821 A1 WO 2007068821A1 FR 2006002711 W FR2006002711 W FR 2006002711W WO 2007068821 A1 WO2007068821 A1 WO 2007068821A1
Authority
WO
WIPO (PCT)
Prior art keywords
bath
coating
nickel
envelope
rod
Prior art date
Application number
PCT/FR2006/002711
Other languages
English (en)
Inventor
Françoise STELTZLEN
Marc Foucault
Yves Meyzaud
Peter Scott
Original Assignee
Areva Np
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva Np filed Critical Areva Np
Priority to CA2633205A priority Critical patent/CA2633205C/fr
Priority to US12/097,170 priority patent/US9730277B2/en
Priority to CN2006800523120A priority patent/CN101336566B/zh
Priority to EP06841915A priority patent/EP1961265B1/fr
Priority to JP2008545039A priority patent/JP5543108B2/ja
Priority to AT06841915T priority patent/ATE503366T1/de
Priority to DE602006020915T priority patent/DE602006020915D1/de
Publication of WO2007068821A1 publication Critical patent/WO2007068821A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/82Fixedly-mounted immersion heaters
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • G21C1/09Pressure regulating arrangements, i.e. pressurisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention generally relates to the heating rods for pressurizer primary circuit of nuclear reactor water under pressure.
  • the invention relates, according to a first aspect, to a heating rod for a pressure pressurizer of a pressurized water nuclear reactor, of the type comprising a longitudinally elongated metal outer shell having an outer surface, and a heater mounted inside the casing.
  • Such rods are normally mounted on the lower part of the pressurizer, and are immersed in the water of the primary circuit which partially fills this pressurizer. These rods are put into operation when it is desired to increase the operating pressure of the primary circuit of the reactor. They heat the water to its boiling point, so that a part of it evaporates. It has been found that there are leaks on the heating rods of the state of the art. It happens indeed that the outer envelope of one of these rods is cracked, so that the inside of the rod is put in communication with the water in the pressurizer.
  • Such a leakage may result in deterioration of the cane heater, loss of operation of the cane, and even leakage of pressurized water to the outside of the pressurizer, through the interior space of the cane.
  • the invention aims to propose heating rods of improved reliability.
  • the invention relates to a heating rod of the type described above, characterized in that it comprises a protective coating against corrosion covering at least a portion of the outer surface of the casing.
  • the cane may also have one or more of the above characteristics, considered individually or in any technically feasible combination:
  • the coating mainly comprises nickel; the coating comprises at least 95% by weight of nickel;
  • the coating was deposited on the outer surface by electrolysis in a bath of nickel salts
  • the coating has a thickness greater than 50 microns; -
  • the rod comprises an active heating zone, the coating extending longitudinally at least along the entire active heating zone;
  • the coating extends longitudinally on either side of the active heating zone over a guard distance; - the guard distance is greater than 10 millimeters;
  • the casing is made of austenitic stainless steel.
  • the invention relates to a method for treating a metal casing for a heating rod of the above type, characterized in that it comprises a step of depositing the coating on at least part of the surface external envelope in an electrolytic cell comprising a bath and an electrode immersed in the bath, the bath containing predominantly nickel sulfamate, nickel chloride, and boric acid, the envelope being disposed in the bath and an electric current being maintained between the electrode and the envelope.
  • the process may also have one or more of the above characteristics, considered individually or in any technically feasible combination:
  • the pH of the bath is maintained between 3 and 5 during the deposition step
  • the electrode is in soluble nickel; the electric current is maintained at a current density of between 5 and 50 amperes per square decimeter of the external surface of the envelope to be treated during the deposition step;
  • the step of depositing the coating is preceded by a preliminary step of depositing a bonding layer on at least a portion of the outer surface of the envelope in an electrolytic cell comprising a bath and an electrode immersed in the bath , the bath being a Watts bath comprising mainly nickel sulphate, nickel chloride, kel, and boric acid, the envelope being disposed in the bath and an electric current being maintained between the electrode and the envelope;
  • the pH of the bath is maintained between 3 and 5 during the preliminary stage; and the attachment layer has a thickness of less than 10 microns.
  • FIG. 1 is a simplified schematic representation of the primary circuit a pressurized water nuclear reactor, comprising a preserver with heating rods according to the invention
  • FIG. 2 is a sectional view in a vertical plane of a lower portion of the pressurizer of Figure 1;
  • FIG. 3 is an enlarged view of an upper portion of a heating rod of the pressurizer of FIGS. 1 and 2;
  • FIG. 4 is an enlarged partial view of a portion IV of the cane of Figure 3, seen in section in a longitudinal plane of the cane; and
  • FIG. 5 is a simplified schematic representation of an electrolytic cell adapted to deposit the corrosion protection coating on the rods of FIGS. 1 to 4.
  • FIG. 1 represents a primary circuit 1 of a pressurized water nuclear reactor.
  • This circuit 1 comprises a tank 2 in which are assemblies of nuclear fuel, a steam generator 4 provided with primary and secondary parts, a primary pump 6, and a pressurizer 8.
  • the tank 2, the steam generator 4 and the pump 6 are connected by primary pipe sections 10.
  • the circuit 1 contains primary water, this water being discharged by the pump 6 to the tank 2, passing through the tank 2 undergoing heating in contact with the fuel assemblies , then passing through the primary part of the steam generator 4 before returning to the suction of the pump 6.
  • the heated primary water in the tank 2 transfers its heat into the steam generator 4 to a secondary secondary water. pouring the secondary part of this generator.
  • the secondary water circulates in a closed loop in a secondary circuit not shown.
  • the pressurizer 8 is shunted on the primary pipe by a conduit 18 stitched on the section 10 connecting the tank 2 to the generator 4. It is disposed at a higher elevation than that of the pump 6 and the tank 2.
  • the pressurizer 8 comprises a boiler shell 1 1 substantially cylindrical and of vertical axis, provided with a dome 12 and a lower bottom 14.
  • the lower bottom 14 has a central orifice 16 (Figure 2) connected to the primary pipe by the conduit 18.
  • the pressurizer 8 also comprises spraying means 19 comprising a tapping 20 passing through the dome 12, a spraying nozzle 21 disposed inside the envelope 11 and mounted on the tapping 20, a pipe 22 connecting the tapping 20 at the primary pipe, at the discharge of the pump 6, and means (not shown) for selectively allowing or prohibiting the circulation of primary water in the pipe 22 to the nozzle 21.
  • the primary circuit 1 also comprises a safety circuit 23 comprising a discharge tank 24, a pipe 25 connecting the tank 24 to the dome 12 of the pressurizer, and a safety valve 26 interposed on the pipe 25 between the tank 24 and the pressurizer 8 .
  • the interior space of the pressurizer 8 is in communication with the primary circuit 1, so that the pressurizer 8 is permanently partially filled with the primary water, the water level inside the pressurizer being a function of the pressure operating current of the primary circuit.
  • the sky of the pressurizer 8 is filled with steam, at a pressure substantially equal to the pressure of the water flowing in the primary pipe 10 connecting the generator 4.
  • the valve 26 s opens and the water vapor is discharged to the tank 24, in which it condenses.
  • the pressurizer 8 is equipped with several tens of electric heating rods 28. These rods are arranged vertically, and are mounted on the lower bottom 14. They pass through the bottom 14 through orifices provided for this purpose, sealing means being interposed between the cannons and the bottom 14.
  • the rods 28 have a great length, typically between 1 m and 2.50 m, and a small section with respect to their length.
  • Each rod 28 comprises a portion 30 (FIG 2) disposed inside the casing 11 of the pressurizer and immersed in the partially filling water thereof, an intermediate portion 32 mounted in a hole in the bottom 14, and a connecting part 34 disposed outside the casing 11.
  • the immersed part 30 comprises an outer casing 36 of cylindrical shape made of stainless steel or alloy, generally a central mandrel 38 disposed inside the casing 36 along the central axis thereof, and a heating wire 40 wound around the mandrel 38 in a spiral, and interposed between the mandrel 38 and the casing 36.
  • the heating wire 40 comprises an electrically conductive resistive metal core 42, for example copper or nickel-chromium alloy, and a steel metal sheath 44 surrounding the core 42 electrically insulated by magnesia. It is in contact with an inner face of the envelope 36.
  • the wire 40 is arranged so as to create, in the submerged portion 30, a heating central longitudinal zone 46 (FIG 2), and two longitudinal heating zones 48, disposed on either side of the heating zone 46. .
  • the mandrel 38 is made of copper, and the wire 40 is wound around the mandrel 38, forming contiguous turns.
  • the wire 40 extends along the intermediate portion 32, inside thereof, and is connected to an electrical connector 49 located in the portion 34.
  • This connector 49 is electrically connected to an electric generator (not shown ) able to circulate an electric current in the wire 40.
  • the submerged portion 30 has a longitudinal length of, for example, 2150 mm.
  • the heating zone 46 has a longitudinal length of, for example, 1100 mm.
  • the non-heating zone 48 interposed between the zone 46 and the intermediate portion 32 has a longitudinal length of, for example, 450 mm.
  • the non-heating zone 48 located on the other side of the heating zone 46 has a longitudinal length of about 550 mm.
  • the outer casing 36 has a constant outer diameter along the entire portion 30, for example 22 mm.
  • Parts 32 and 34 have a total length of, for example, 340 mm.
  • the electric power of each rod 28 varies from 6 to 30 kW. It delivers a thermal flux that varies between 20 and 50 W / cm 2 , considered at the outer surface of the envelope 36.
  • the pressurizer 8 further comprises guide plates 50 for holding the rods 28, visible in FIG. 2. These guide plates 50 extend substantially horizontally over the entire internal section of the pressurizer 8. They are arranged one above the other at different vertical levels in the pressurizer 8. Each comprises lights 52 allowing the flow of water through the plates 50, and holes 54 for guiding the rods 28.
  • the holes 54 are circular and have a diameter slightly greater than outer diameter of the submerged portion 30 of the rods ( Figure 3). This portion 30 passes through the various plates 50, through holes 54 superimposed, so that the rods 28 are guided at several levels and are maintained in a substantially vertical orientation by the plates 50.
  • the outer casing 36 of the cane is not normally in contact with the edges of the holes 54.
  • the pressurizer 8 has the function of controlling the pressure of the water in the primary circuit. Because it communicates through the pipe 18 with the primary pipe, it plays a role of expansion vessel. Thus, when the volume of water circulating in the primary circuit increases or decreases, the water level inside the pressurizer 8 will, as the case may be, rise or fall. This variation in the volume of water can result, for example, from an injection of water into the primary circuit, or from a variation of the operating temperature of the primary circuit.
  • the pressurizer 8 also has the function of increasing or decreasing the operating pressure of the primary circuit.
  • the heating rods 28 are electrically powered such that they heat the water contained in the lower part of the pressurizer and bring it to its boiling point. Part of this water boils, so that the pressure in the sky of the pressurizer 8 increases. Because the steam is constantly in hydrostatic equilibrium with the water flowing in the primary circuit 1, the operating pressure of this primary circuit 1 increases.
  • the spray nozzle 21 placed in the sky of the pressurizer 8 is operated by allowing the circulation of water in the pipework 22 using the means provided for this purpose. .
  • the water taken from the primary pipe 10 at the discharge of the pump 6 is projected into the sky of the pressurizer 8, and causes the condensation of a portion of the water vapor therein.
  • the pressure of the steam in the sky of the pressurizer 8 decreases, so that the operating pressure of the primary circuit 1 also decreases.
  • the heating rods 28 each comprise a coating 60 for protection against corrosion, covering at least a portion of the outer surface 62 of the casing 36.
  • This coating 60 extends longitudinally over the entire heating zone 46 of the cane, and also extends longitudinally on either side of this zone 46 over a guard distance.
  • This guard distance is greater than 10 mm, preferably greater than 30 mm and is typically of the order of 50 mm to 100 mm.
  • the coating 60 extends over the entire periphery of the outer casing 36, so that it completely covers the casing 36 in the heating zone 46 and in part of the zones 48, over the guard distance.
  • the coating 60 comprises predominantly nickel, and preferably comprises at least 95% nickel by weight.
  • the coating is a pure or substantially pure nickel coating electrolytically deposited as explained below.
  • the coating 60 has a thickness greater than 50 microns, and less than 200 microns. Preferably, it has a thickness of about 100 microns.
  • This cell 64 comprises a tank 66 capable of containing a treatment bath and provided with an inlet 68 and an outlet 70, a pump 72 of circulation of the liquid forming the bath, from the outlet 70 to the inlet 68 of the tank, an electrode 74 immersed in the bath, and an electric generator 76.
  • the electrode 74 is soluble nickel.
  • the electric generator 76 is capable of being electrically connected, on the one hand, to the electrode 74 and, on the other hand, to the rod 28 to be treated. It is able to maintain a potential difference between the electrode 74 and the rod to be treated 28.
  • the treatment method comprises the following successive steps.
  • Step 1 Supply a heating rod 28 to be treated. This rod is equipped with all its internal equipment (core 38, heating wire 40).
  • Step 2 Degreasing the outer surface 62 of the casing 36.
  • Step 3 Pickling the surface to be coated with sulfuric acid.
  • Step 4 - Attack in reverse polarity so as to dissolve the surface layer of the surface to be coated can be carried out in the cell 64.
  • it is filled by a suitable solution, the immersed part 30 of the cane being immersed in the solution, and the electric generator 76 being mounted so as to maintain the envelope 36 at a positive potential and the electrode 74 at a negative potential.
  • the original surface layer of the envelope 36 has been dissolved, and has been replaced by placed by a new surface covered with a freshly formed passive film.
  • Step 5 Attack in normal polarity, so as to exceed the surface to be coated.
  • This step can be performed in the electrolytic cell 64. In this case, it is filled with a suitable electrolyte bath, the portion 30 of the rod being, as before, immersed in the bath.
  • the generator 76 is this time mounted so as to maintain the casing 36 at a negative potential and the electrode 74 at a positive potential. This step makes it possible to eliminate the passive film formed in the preceding step 4, and to expose the metal of the envelope 36 to allow a better adhesion of the coating 60.
  • Step 6 Depositing a tie layer.
  • This bonding layer is part of the coating 60, and comprises substantially only nickel. It has a thickness less than 10 microns, preferably equal to 2 microns.
  • the tank 66 is filled with a very acidic Watts bath, composed mainly of nickel sulphate, nickel chloride and boric acid. The pH of the solution is maintained between 3 and 5.
  • the electrical generator 76 maintains the electrode 74 at a positive potential, and the envelope 36 at a negative potential.
  • the pump 72 continuously recirculates the bath during step 6, a stream of liquid being withdrawn from the tank 66 through the outlet 70 and reinjected by the inlet 68.
  • Step 7 Deposition of the coating 60 itself, the attachment layer also forming part of the coating 60.
  • This deposit is made in the cell 64.
  • the tank 66 is filled with a sulfamate bath, essentially comprising sulfamate. nickel, nickel chloride and boric acid.
  • the pH of the bath is maintained between 3 and 5 during this step, preferably at about 4.5.
  • the electrical generator 76 maintains the electrode 74 at a positive potential, and the envelope 36 at a negative potential.
  • An electric current is thus maintained between the electrode 74 and the envelope 36 of the rod, the current density being between 5 and 50 Ampere / dm 2 of the outer surface of the envelope to be treated.
  • the current density is of the order of 20 Ampere / dm 2 .
  • the nickel layer deposited during step 7 has a thickness of the order of 100 microns.
  • the parts of the external surface 62 of the cane which are not intended to receive the coating are protected by a suitable protective layer, for example an
  • the heating rods and the method of treatment described above have many advantages.
  • the coating 60 partially covering the outer surface of the casing 36 protects these rods against corrosion and improve the service life of the rods.
  • a caustic medium develops between the heating zone 46 of the cane and the guide plates 50, and more precisely between the zone 46 and the edges of the holes 54.
  • the interstice is a confined space, in which the water circulates little and is slowly renewed, so that boiling overheating can occur in this space, leading to the creation of a caustic medium.
  • the coating 60 makes it possible to avoid stress corrosion of the envelope 36, in particular at the level of the plates 50, this corrosion being able to cause the cracking of the envelope 36, and the communication of the interior of the envelope the rod 28 with the primary water. Thus, the reliability of the rods 28 is improved.
  • the electrolytic nickel coating chosen in the example mentioned above to partially cover the envelopes of the rods is particularly suitable because:
  • an electrode 74 in soluble nickel in the cell 64 for depositing the> coating 60 is particularly suitable because it makes it possible to maintain a substantially constant bath composition during the phases 6 and 7, and consequently guarantees a constant and reproducible nickel quality throughout the nickel-plating operation.
  • the coating 60 is resistant to corrosion, even in the hot-test situation of the primary circuit of the reactor or in a situation of extension of the cycle, a basic medium that can develop in the pressurizer in these two situations.
  • a cycle extension situation corresponds to a prolonged operation of the nuclear reactor between two cold shutdowns for unloading certain fuel assemblies.
  • the geometry of the heating rods is virtually unchanged from the state of the art. To obtain exactly the same external diameter for the immersed part 30, it is possible to remove by grinding a layer of about 100 microns in the outer casing, before deposition of the electrolytic coating.
  • the heating rods 28 and the method of treatment described above may have multiple variants.
  • the coating 60 may cover the entire submerged portion 30, not only the zone 46 but also the zones 48 disposed on either side of the zone 46. It is possible to use a material other than nickel for coating 60. This material may for example be chromium, or a more noble material than nickel such as platinum or gold.
  • the rod 28 may comprise an inner portion different from that described above (mandrel 38, heating wire 40).
  • the outer casing 36 of the rod 28 may not be austenitic stainless steel but for example Inconel 690.
  • the heating rods may have dimensions different from those mentioned above (total length of the part 30, diameter outside, length of the heating zone 46, non-heating zones 48, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Measuring Fluid Pressure (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

L'invention concerne une canne chauffante pour un pressuriseur de circuit primaire de réacteur nucléaire à eau sous pression, cette canne comprenant une enveloppe externe (36) métallique de forme allongée longitudinalement présentant une surface externe (62), et un organe de chauffage (40) monté à l'intérieur de l'enveloppe (36). Elle comprend un revêtement (60) de protection contre la corrosion couvrant au moins une partie de la surface externe (62) de l'enveloppe (36).

Description

Canne chauffante pour pressuriseur de circuit primaire d'un réacteur nucléaire à eau sous pression
L'invention concerne en général les cannes chauffantes pour pressuriseur de circuit primaire de réacteur nucléaire à eau sous pression.
Plus précisément, l'invention concerne, selon un premier aspect, une canne chauffante pour un pressuriseur de circuit primaire de réacteur nucléaire à eau sous pression, du type comprenant une enveloppe externe métallique de forme allongée longitudinalement présentant une surface externe, et un organe de chauffage monté à l'intérieur de l'enveloppe.
De telles cannes sont normalement montées sur la partie inférieure du pressuriseur, et sont immergées dans l'eau du circuit primaire qui remplit partiellement ce pressuriseur. Ces cannes sont mises en service quand on cherche à augmenter la pression de fonctionnement du circuit primaire du réacteur. Elles chauffent l'eau jusqu'à sa température d'ébullition, de telle sorte qu'une partie de celle-ci s'évapore. On a constaté qu'il se produisait des fuites sur les cannes chauffantes de l'état de la technique. Il arrive en effet que l'enveloppe externe de l'une de ces cannes se fissure, de telle sorte que l'intérieur de la canne est mis en communication avec l'eau qui se trouve dans le pressuriseur.
Une telle fuite peut avoir pour conséquence la détérioration de l'or- gane de chauffage de la canne, la perte de fonctionnement de la canne, et même la fuite de l'eau sous pression vers l'extérieur du pressuriseur, à travers l'espace intérieur de la canne.
Dans ce contexte, l'invention vise à proposer des cannes chauffantes de fiabilité améliorée. A cet effet, l'invention porte sur une canne chauffante du type décrit ci-dessus, caractérisée en ce qu'elle comprend un revêtement de protection contre la corrosion couvrant au moins une partie de la surface externe de l'enveloppe.
La canne peut également présenter une ou plusieurs des caractéristi- ques ci-dessus, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- le revêtement comprend majoritairement du nickel ; - le revêtement comprend au moins 95% en masse de nickel ;
- le revêtement a été déposé sur la surface externe par électrolyse dans un bain de sels de nickel ;
- le revêtement présente une épaisseur supérieure à 50 micromètres ; - la canne comprend une zone active de chauffage, le revêtement s'étendant longitudinalement au moins le long de toute la zone active de chauffage ;
- le revêtement se prolonge longitudinalement de part et d'autre de la zone active de chauffage sur une distance de garde ; - la distance de garde est supérieure à 10 millimètres ; et
- l'enveloppe est en acier inoxydable austénitique.
Selon un second aspect, l'invention porte sur un procédé de traitement d'une enveloppe métallique pour une canne chauffante du type ci- dessus, caractérisé en ce qu'il comprend une étape de dépôt du revêtement sur au moins une partie de la surface externe de l'enveloppe dans une cellule électrolytique comprenant un bain et une électrode plongée dans le bain, le bain contenant majoritairement du sulfamate de nickel, du chlorure de nickel, et de l'acide borique, l'enveloppe étant disposée dans le bain et un courant électrique étant maintenu entre l'électrode et l'enveloppe. Le procédé peut également présenter une ou plusieurs des caractéristiques ci-dessus, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- le pH du bain est maintenu entre 3 et 5 pendant l'étape de dépôt ;
- l'électrode est en nickel soluble ; - le courant électrique est maintenu à une densité de courant comprise entre 5 et 50 Ampères par décimètre carré de la surface externe de l'enveloppe à traiter pendant l'étape de dépôt ;
- l'étape de dépôt du revêtement est précédée par une étape préliminaire de dépôt d'une couche d'accrochage sur au moins une partie de la surface externe de l'enveloppe dans une cellule électrolytique comprenant un bain et une électrode plongée dans le bain, le bain étant un bain de Watts comprenant majoritairement du sulfate de nickel, du chlorure de nie- kel, et de l'acide borique, l'enveloppe étant disposée dans le bain et un courant électrique étant maintenu entre l'électrode et l'enveloppe ;
- le pH du bain est maintenu entre 3 et 5 pendant l'étape préliminaire ; et - la couche d'accrochage présente une épaisseur inférieure à 10 micromètres.
D'autres caractéristiques et avantages de l'invention ressortiront de la description qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles : - la figure 1 est une représentation schématique simplifiée du circuit primaire d'un réacteur nucléaire à eau sous pression, comprenant un pres- suriseur équipé de cannes chauffantes selon l'invention ;
- la figure 2 est une vue en coupe dans un plan vertical d'une partie inférieure du pressuriseur de la figure 1 ; - la figure 3 est une vue agrandie d'une partie supérieure d'une canne chauffante du pressuriseur des figures 1 et 2 ;
- la figure 4 est une vue partielle agrandie d'une partie IV de la canne de la figure 3, considérée en coupe dans un plan longitudinal de la canne ; et - la figure 5 est une représentation schématique simplifiée d'une cellule électrolytique adaptée pour déposer le revêtement de protection contre la corrosion sur les cannes des figures 1 à 4.
La figure 1 représente un circuit primaire 1 de réacteur nucléaire à eau sous pression. Ce circuit 1 comprend une cuve 2 dans laquelle se trou- vent des assemblages de combustible nucléaire, un générateur de vapeur 4 pourvu de parties primaire et secondaire, une pompe primaire 6, et un pressuriseur 8. La cuve 2, le générateur de vapeur 4 et la pompe 6 sont reliés par des tronçons de tuyauterie primaire 10. Le circuit 1 contient de l'eau primaire, cette eau étant refoulée par la pompe 6 vers la cuve 2, traversant la cuve 2 en subissant un échauffement au contact des assemblages combustibles, puis traversant la partie primaire du générateur de vapeur 4 avant de revenir à l'aspiration de la pompe 6. L'eau primaire chauffée dans la cuve 2 cède sa chaleur dans le générateur de vapeur 4 à une eau secondaire tra- versant la partie secondaire de ce générateur. L'eau secondaire circule en boucle fermée dans un circuit secondaire non-représenté. Elle s'évapore en traversant le générateur 4, la vapeur ainsi produite entraînant une turbine à vapeur. Le pressuriseur 8 est monté en dérivation sur la tuyauterie primaire par un conduit 18 piqué sur le tronçon 10 reliant la cuve 2 au générateur 4. Il est disposé à une élévation supérieure à celle de la pompe 6 et de la cuve 2. Le pressuriseur 8 comprend une enveloppe chaudronnée 1 1 sensiblement cylindrique et d'axe vertical, pourvue d'un dôme 12 et un fond inférieur 14. Le fond inférieur 14 comporte un orifice central 16 (figure 2) connecté à la tuyauterie primaire par le conduit 18.
Le pressuriseur 8 comporte également des moyens d'aspersion 19 comprenant un piquage 20 traversant le dôme 12, une buse d'aspersion 21 disposée à l'intérieur de l'enveloppe 11 et montée sur le piquage 20, une tuyauterie 22 raccordant le piquage 20 à la tuyauterie primaire, au niveau du refoulement de la pompe 6, et des moyens (non-représentés) pour sélectivement autoriser ou interdire la circulation d'eau primaire dans la tuyauterie 22 jusqu'à la buse 21.
Le circuit primaire 1 comprend également un circuit de sécurité 23 comportant un réservoir de décharge 24, une tuyauterie 25 connectant le réservoir 24 au dôme 12 du pressuriseur, et une soupape de sécurité 26 interposée sur la tuyauterie 25 entre le réservoir 24 et le pressuriseur 8.
L'espace intérieur du pressuriseur 8 est en communication avec le circuit primaire 1 , de telle sorte que le pressuriseur 8 est en permanence partiellement rempli par l'eau primaire, le niveau d'eau à l'intérieur du pressuriseur étant fonction de la pression courante de fonctionnement du circuit primaire. Le ciel du pressuriseur 8 est rempli par de la vapeur d'eau, à une pression sensiblement égale à la pression de l'eau circulant dans la tuyauterie primaire 10 reliant le générateur 4. En cas de surpression dans le pressuriseur, la soupape 26 s'ouvre et la vapeur d'eau est évacuée jusqu'au réservoir 24, dans laquelle elle se condense. Le pressuriseur 8 est équipé de plusieurs dizaines de cannes chauffantes électriques 28. Ces cannes sont disposées verticalement, et sont montées sur le fond inférieur 14. Elles traversent le fond 14 par des orifices prévus à cet effet, des moyens d'étanchéité étant interposés entre les can- nés et le fond 14.
Les cannes 28 présentent une grande longueur, typiquement comprise entre 1 m et 2,50 m, et une faible section au regard de leur longueur.
Chaque canne 28 comprend une partie 30 (fig. 2) disposée à l'intérieur de l'enveloppe 11 du pressuriseur et immergée dans l'eau remplissant partiellement celui-ci, une partie intermédiaire 32 montée dans un orifice du fond 14, et une partie de connexion 34 disposée à l'extérieur de l'enveloppe 11.
Comme le montre la figure 4, la partie immergée 30 comprend une enveloppe externe 36 de forme cylindrique en acier ou alliage inoxydable, généralement un mandrin central 38 disposé à l'intérieur de l'enveloppe 36 selon l'axe central de celle-ci, et un fil chauffant 40 enroulé autour du mandrin 38 en spirale, et interposé entre le mandrin 38 et l'enveloppe 36.
Le fil chauffant 40 comprend une âme métallique résistive électriquement conductrice 42, par exemple en cuivre ou en alliage nickel-chrome, et une gaine métallique en acier 44 entourant l'âme 42 isolée électriquement par de la magnésie. Elle est en contact avec une face intérieure de l'enveloppe 36.
Le fil 40 est disposé de façon à créer, dans la partie immergée 30, une zone longitudinale centrale chauffante 46 (fig. 2), et deux zones longitu- dinales non chauffantes 48, disposées de part et d'autre de la zone chauffante 46.
Dans la zone chauffante 46, le mandrin 38 est en cuivre, et le fil 40 est enroulé autour du mandrin 38, en formant des spires jointives.
Le fil 40 s'étend le long de la partie intermédiaire 32, à l'intérieur de celle-ci, et est raccordé à un connecteur électrique 49 situé dans la partie 34. Ce connecteur 49 est relié électriquement à un générateur électrique (non représenté) apte à faire circuler un courant électrique dans le fil 40. La partie immergée 30 présente une longueur longitudinale de, par exemple, 2150 mm. La zone chauffante 46 présente une longueur longitudinale de, par exemple, 1100 mm. La zone non chauffante 48 interposée entre la zone 46 et la partie intermédiaire 32 présente une longueur longitudinale de, par exemple, 450 mm. La zone non-chauffante 48 située de l'autre côté de la zone chauffante 46 présente une longueur longitudinale d'environ 550 mm. L'enveloppe externe 36 présente un diamètre extérieur constant le long de toute la partie 30, par exemple de 22 mm. Les parties 32 et 34 présentent au total une longueur longitudinale de, par exemple, 340 mm. La puissance électrique de chaque canne 28 varie de 6 à 30 kW. Elle délivre un flux thermique qui varie entre 20 et 50 W/cm2, considéré au niveau de la surface extérieure de l'enveloppe 36.
Le pressuriseur 8 comprend en outre des plaques guide 50 de maintien des cannes 28, visibles sur la figure 2. Ces plaques guide 50 s'étendent sensiblement horizontalement sur toute la section interne du pressuriseur 8. Elles sont disposées les unes au-dessus des autres, à différents niveaux verticaux dans le pressuriseur 8. Chacune comporte des lumières 52 permettant la circulation de l'eau à travers les plaques 50, et des trous 54 de guidage des cannes 28. Les trous 54 sont circulaires et présentent un diamètre légèrement supérieur au diamètre extérieur de la partie immergée 30 des cannes (figure 3). Cette partie 30 traverse les différentes plaques 50, par des trous 54 superposés, de telle sorte que les cannes 28 sont guidées à plusieurs niveaux et sont maintenues dans une orientation sensiblement verticale par les pla- ques 50. L'enveloppe externe 36 de la canne n'est normalement pas en contact avec les bords des trous 54.
Le pressuriseur 8 a pour fonction de contrôler la pression de l'eau dans le circuit primaire. Du fait qu'il communique par le tuyau 18 avec la tuyauterie primaire, il joue un rôle de vase d'expansion. Ainsi, quand le vo- lume d'eau en circulation dans le circuit primaire augmente ou diminue, le niveau d'eau à l'intérieur du pressuriseur 8 va, selon le cas, s'élever ou s'abaisser. Cette variation du volume d'eau peut résulter par exemple d'une injection d'eau dans le circuit primaire, ou d'une variation de la température de fonctionnement du circuit primaire.
Le pressuriseur 8 a également pour fonction d'augmenter ou de dimi- nuer la pression de fonctionnement du circuit primaire.
Pour augmenter la pression de fonctionnement du circuit primaire, on alimente électriquement les cannes de chauffage 28, de telle sorte que celles-ci chauffent l'eau contenue dans la partie inférieure du pressuriseur et l'amènent à sa température d'ébullition. Une partie de cette eau bout, de telle sorte que la pression dans le ciel du pressuriseur 8 augmente. Du fait que la vapeur est constamment en équilibre hydrostatique avec l'eau circulant dans le circuit primaire 1 , la pression de fonctionnement de ce circuit primaire 1 augmente.
Pour faire diminuer la pression de fonctionnement du circuit primaire 1, on met en fonctionnement la buse d'aspersion 21 disposée dans le ciel du pressuriseur 8 en autorisant la circulation d'eau dans la tuyauterie 22 à l'aide des moyens prévus à cet effet. L'eau prélevée dans la tuyauterie primaire 10 au refoulement de la pompe 6 est projetée dans le ciel du pressuriseur 8, et provoque la condensation d'une partie de la vapeur d'eau qui s'y trouve. La pression de la vapeur d'eau dans le ciel du pressuriseur 8 diminue, de telle sorte que la pression de fonctionnement du circuit primaire 1 diminue elle aussi.
Comme le montre la figure 4, les cannes chauffantes 28 comprennent chacune un revêtement 60 de protection contre la corrosion, couvrant au moins une partie de la surface externe 62 de l'enveloppe 36. Ce revêtement 60 s'étend longitudinalement sur toute la zone chauffante 46 de la canne, et s'étend également longitudinalement de part et d'autre de cette zone 46 sur une distance de garde. Cette distance de garde est supérieure à 10 mm, de préférence supérieure à 30 mm et est typiquement de l'ordre de 50 mm à 100 mm. Le revêtement 60 s'étend sur toute la périphérie de l'enveloppe externe 36, de telle sorte qu'il couvre complètement l'enveloppe 36 dans la zone de chauffage 46 et dans une partie des zones 48, sur la distance de garde. Le revêtement 60 comprend majoritairement du nickel, et de préférence comprend au moins 95 % de nickel en masse. Dans un mode de réalisation préféré, le revêtement est un revêtement de nickel pur ou pratiquement pur, déposé électrolytiquement, comme expliqué ci-dessous. Le revêtement 60 présente une épaisseur supérieure à 50 μm, et inférieure à 200 μm. De préférence, il présente une épaisseur de 100 μm environ.
On va maintenant décrire le procédé de dépôt du revêtement 60 sur la surface 62 de l'enveloppe externe. Les principales étapes de ce procédé sont réalisées dans une cellule électrolytique du type représenté sur la figure 5. Cette cellule 64 comprend une cuve 66 susceptible de contenir un bain de traitement et pourvue d'une entrée 68 et d'une sortie 70, une pompe 72 de circulation du liquide formant le bain, depuis la sortie 70 jusqu'à l'entrée 68 de la cuve, une électrode 74 immergée dans le bain, et un générateur électrique 76. L'électrode 74 est en nickel soluble. Le générateur électrique 76 est susceptible d'être raccordé électriquement, d'une part, à l'électrode 74 et, d'autre part, à la canne 28 à traiter. Il est apte à maintenir une différence de potentiel entre l'électrode 74 et la canne à traiter 28. Le procédé de traitement comprend les étapes successives suivantes.
Etape 1 - Fourniture d'une canne chauffante 28 à traiter. Cette canne est équipé de tous ses équipements internes (noyau 38, fil chauffant 40). Etape 2 - Dégraissage de la surface externe 62 de l'enveloppe 36. Etape 3 - Décapage de la surface à revêtir avec de l'acide sulfurique.
Etape 4 - Attaque en polarité inverse de façon à dissoudre la couche superficielle de la surface à revêtir. Cette étape peut être réalisée dans la cellule 64. Dans ce cas, celle-ci est remplie par une solution adaptée, la partie immergée 30 de la canne étant immergée dans la solution, et le généra- teur électrique 76 étant monté de façon à maintenir l'enveloppe 36 à un potentiel positif et l'électrode 74 à un potentiel négatif. A la fin de cette étape, la couche superficielle d'origine de l'enveloppe 36 a été dissoute, et a été rem- placée par une nouvelle surface recouverte d'un film passif fraîchement formé.
Etape 5 - Attaque en polarité normale, de manière à dépassiver la surface à revêtir. Cette étape peut être réalisée dans la cellule électrolytique 64. Dans ce cas, celle-ci est remplie d'un bain d'électrolyte adapté, la partie 30 de la canne étant, comme précédemment, immergée dans ce bain. Le générateur 76 est cette fois monté de façon à maintenir l'enveloppe 36 à un potentiel négatif et l'électrode 74 à un potentiel positif. Cette étape permet de supprimer le film passif formé à l'étape précédente 4, et de mettre le mé- tal de l'enveloppe 36 à nu de façon à permettre une meilleure adhérence du revêtement 60.
Etape 6 - Dépôt d'une couche d'accrochage. Cette couche d'accrochage fait partie du revêtement 60, et ne comprend pratiquement que du nickel. Elle présente une épaisseur inférieure à 10 μm, de préférence égale à 2 μm. Au cours de cette étape, la cuve 66 est remplie avec un bain de Watts très acide, composé principalement de sulfate de nickel, de chlorure de nickel et d'acide borique. Le pH de la solution est maintenu entre 3 et 5. Le générateur électrique 76 maintient l'électrode 74 à un potentiel positif, et l'enveloppe 36 à un potentiel négatif. La pompe 72 assure une recirculation du bain en permanence pendant l'étape 6, un flux de liquide étant soutiré de la cuve 66 par la sortie 70 et réinjecté par l'entrée 68.
Etape 7 - Dépôt du revêtement 60 proprement dit, la couche d'accrochage faisant également partie du revêtement 60. Ce dépôt est effectué dans la cellule 64. La cuve 66 est remplie d'un bain au sulfamate, com- prenant essentiellement du sulfamate de nickel, du chlorure de nickel et de l'acide borique. Le pH du bain est maintenu entre 3 et 5 pendant cette étape, de préférence à environ 4,5. Le générateur électrique 76 maintient l'électrode 74 à un potentiel positif, et l'enveloppe 36 à un potentiel négatif. Un courant électrique est ainsi maintenu entre l'électrode 74 et l'enveloppe 36 de la canne, la densité de courant étant comprise entre 5 et 50 Ampère/dm2 de la surface externe de l'enveloppe à traiter. De préférence, la densité de courant est de l'ordre de 20 Ampère/dm2. La couche de nickel déposée pendant l'étape 7 présente une épaisseur de l'ordre de 100 μm. Pendant les étapes 3 à 7, les parties de la surface externe 62 de la canne qui ne sont pas destinées à recevoir le revêtement sont protégées par une couche protectrice adaptée, par exemple un vernis organique.
Les cannes chauffantes et le procédé de traitement décrits ci-dessus présentent de multiples avantages.
Le revêtement 60 couvrant partiellement la surface externe de l'enveloppe 36 permet de protéger ces cannes contre la corrosion et d'améliorer la tenue en service des cannes.
En effet, les inventeurs ont découvert que, dans certaines conditions de fonctionnement, il se développe un milieu caustique entre la zone chauffante 46 de la canne et les plaques guide 50, et plus précisément entre la zone 46 et les bords des trous 54. Cet interstice constitue un espace confiné, dans lequel l'eau circule peu et se renouvelle lentement, de telle sorte qu'il peut se produire dans cet espace une surchauffe avec ébullition, entraî- nant la création d'un milieu caustique.
Le revêtement 60 permet d'éviter que ne se développe une corrosion sous contrainte de l'enveloppe 36 en particulier au niveau des plaques 50, cette corrosion pouvant entraîner la fissuration de l'enveloppe 36, et la mise en communication de l'intérieur de la canne 28 avec l'eau primaire. Ainsi, la fiabilité des cannes 28 est améliorée.
Le revêtement électrolytique de nickel choisi dans l'exemple précité pour couvrir partiellement les enveloppes des cannes est particulièrement adapté, car :
- il est compatible avec l'acier inoxydable constituant les enveloppes 36 des cannes chauffantes ;
- il est autorisé dans le circuit primaire du fait de sa grande pureté ;
- il est résistant à la corrosion dans les conditions de fonctionnement caractéristiques du pressuriseur (composition chimique de l'eau primaire, température, pression) ; et - il est résistant à la corrosion sous contrainte dans le milieu primaire nominal.
L'utilisation d'une électrode 74 en nickel soluble dans la cellule 64 servant à déposer le > revêtement 60 est particulièrement adaptée, car elle permet de maintenir une composition du bain pratiquement constante pendant les phases 6 et 7, et garantit par conséquence une qualité de nickel constante et reproductible tout au long de l'opération de nickelage.
Par ailleurs, toutes les étapes du procédé sont effectuées à des tem- pératures très inférieures à la température de fusion du cuivre, typiquement
6O0C. Il n'y a donc aucun risque d'endommagement de la partie électrique de la canne (fil de cuivre) pendant l'opération de dépôt du nickel, et donc aucun risque de provoquer par la suite des défaillances électriques.
Le revêtement 60 résiste à la corrosion y compris en situation d'essai à chaud du circuit primaire du réacteur ou en situation d'extension de cycle, un milieu basique pouvant se développer dans le pressuriseur dans ces deux situations. Une situation d'extension de cycle correspond à une exploitation prolongée du réacteur nucléaire entre deux arrêts à froid pour déchargement de certains assemblages de combustible. La géométrie des cannes chauffantes est pratiquement inchangée par rapport à l'état de la technique. Pour obtenir exactement le même diamètre extérieur pour la partie immergée 30, il est possible d'enlever par rectification une couche d'environ 100 μm dans l'enveloppe externe, avant dépôt du revêtement électrolytique. Les cannes chauffantes 28 et le procédé de traitement décrits ci- dessus peuvent présenter de multiples variantes.
Le revêtement 60 peut couvrir la totalité de la partie immergée 30, non seulement la zone 46 mais également les zones 48 disposées de part et d'autre de la zone 46. II est possible d'utiliser un autre matériau que le nickel pour le revêtement 60. Ce matériau peut par exemple être du chrome, ou un matériau plus noble que le nickel tel que le platine ou l'or.
La canne 28 peut comprendre une partie interne différente de celle qui a été décrite ci-dessus (mandrin 38, fil chauffant 40). L'enveloppe externe 36 de la canne 28 peut ne pas être en acier inoxydable austénitique mais par exemple en Inconel 690.
Les cannes chauffantes peuvent présenter des dimensions différentes de celles mentionnées ci-dessus (longueur totale de la partie 30, diamè- tre extérieur, longueur de la zone chauffante 46, des zones non chauffantes 48, etc.).

Claims

REVENDICATIONS
1. Canne chauffante (28) pour un pressuriseur (8) de circuit primaire (1) de réacteur nucléaire à eau sous pression, cette canne comprenant une enveloppe externe (36) métallique de forme allongée longitudinalement pré- sentant une surface externe (62), et un organe de chauffage (40) monté à l'intérieur de l'enveloppe (36), caractérisée en ce qu'elle comprend un revêtement (60) de protection contre la corrosion couvrant au moins une partie de la surface externe (62) de l'enveloppe (36).
2. Canne selon la revendication 1 , caractérisée en ce que le revête- ment (60) comprend majoritairement du nickel.
3. Canne selon la revendication 2, caractérisée en ce que le revêtement (60) comprend au moins 95% en masse de nickel.
4. Canne selon la revendication 2 ou 3, caractérisée en ce que le revêtement (60) a été déposé sur la surface externe (62) par électrolyse dans un bain de sels de nickel.
5. Canne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le revêtement (60) présente une épaisseur supérieure à 50 micromètres.
6. Canne selon l'une quelconque des revendications 1 à 5, caractéri- sée en ce qu'elle comprend une zone active de chauffage (46), le revêtement (60) s'étendant longitudinalement au moins le long de toute la zone active de chauffage (46).
7. Canne selon la revendication 6, caractérisée en ce que le revêtement (60) se prolonge longitudinalement de part et d'autre de la zone active de chauffage (46) sur une distance de garde.
8. Canne selon la revendication 7, caractérisée en ce que la distance de garde est supérieure à 10 millimètres.
9. Canne selon l'une quelconque des revendications 1 à 8, caractérisée en ce que l'enveloppe (36) est en acier inoxydable austénitique.
10. Procédé de traitement d'une enveloppe externe métallique (36) pour canne chauffante (28) selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend une étape de dépôt du revêtement (60) sur au moins une partie de la surface externe (62) de l'enveloppe (36) dans une cellule électrolytique (64) comprenant un bain et une électrode (74) plongée dans le bain, le bain contenant majoritairement du sulfamate de nickel, du chlorure de nickel, et de l'acide borique, l'enveloppe (36) étant disposée dans le bain et un courant électrique étant maintenu entre l'électrode (74) et l'enveloppe (36).
11. Procédé selon la revendication 10, caractérisé en ce que le pH du bain est maintenu entre 3 et 5 pendant l'étape de dépôt.
12. Procédé selon la revendication 10 ou11 , caractérisé en ce que l'électrode (74) est en nickel soluble.
13. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce que le courant électrique est maintenu à une densité de courant comprise entre 5 et 50 Ampères par décimètre carré de la surface externe (62) de l'enveloppe (36) à traiter pendant l'étape de dépôt.
14. Procédé selon l'une quelconque des revendications 10 à 13, ca- ractérisé en ce que l'étape de dépôt du revêtement (60) est précédée par une étape préliminaire de dépôt d'une couche d'accrochage sur au moins une partie de la surface externe (62) de l'enveloppe (36) dans une cellule électrolytique (64) comprenant un bain et une électrode (74) plongée dans le bain, le bain étant un bain de Watts comprenant majoritairement du sulfate de nickel, du chlorure de nickel, et de l'acide borique, l'enveloppe (36) étant disposée dans le bain et un courant électrique étant maintenu entre l'électrode (74) et l'enveloppe (36).
15. Procédé selon la revendication 14, caractérisé en ce que le pH du bain est maintenu entre 3 et 5 pendant l'étape préliminaire.
16. Procédé selon la revendication 14 oui 5, caractérisé en ce que la couche d'accrochage présente une épaisseur inférieure à 10 micromètres.
PCT/FR2006/002711 2005-12-16 2006-12-12 Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression WO2007068821A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2633205A CA2633205C (fr) 2005-12-16 2006-12-12 Pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression
US12/097,170 US9730277B2 (en) 2005-12-16 2006-12-12 Pressurizer heater for the primary cooling system of a pressurized-water nuclear reactor
CN2006800523120A CN101336566B (zh) 2005-12-16 2006-12-12 压水核反应堆的主级回路稳压器用的加热棒及这种加热棒用的金属外壳的处理方法
EP06841915A EP1961265B1 (fr) 2005-12-16 2006-12-12 Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression
JP2008545039A JP5543108B2 (ja) 2005-12-16 2006-12-12 加圧水型原子炉の一次冷却系統における加圧装置、及びその加圧装置を作る方法
AT06841915T ATE503366T1 (de) 2005-12-16 2006-12-12 Druckerhitzer für das primärkühlungssystem eines druckwasser-kernreaktors
DE602006020915T DE602006020915D1 (de) 2005-12-16 2006-12-12 Ruckwasser-kernreaktors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512853A FR2895206B1 (fr) 2005-12-16 2005-12-16 Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression.
FR0512853 2005-12-16

Publications (1)

Publication Number Publication Date
WO2007068821A1 true WO2007068821A1 (fr) 2007-06-21

Family

ID=36955843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/002711 WO2007068821A1 (fr) 2005-12-16 2006-12-12 Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression

Country Status (10)

Country Link
US (1) US9730277B2 (fr)
EP (1) EP1961265B1 (fr)
JP (1) JP5543108B2 (fr)
CN (1) CN101336566B (fr)
AT (1) ATE503366T1 (fr)
CA (1) CA2633205C (fr)
DE (1) DE602006020915D1 (fr)
ES (1) ES2363558T3 (fr)
FR (1) FR2895206B1 (fr)
WO (1) WO2007068821A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470104C2 (ru) * 2007-08-14 2012-12-20 Конинклейке Филипс Электроникс Н.В. Парогенератор с секцией для подогрева воды
US20090141850A1 (en) * 2007-12-04 2009-06-04 Westinghouse Electric Company, Llc Pressurized water reactor pressurizer heater sheath
FR2958659B1 (fr) 2010-04-08 2013-01-11 Electricite De France Traitement d'une canne chauffante destinee a un pressuriseur du circuit primaire d'un reacteur nucleaire.
FR2967288B1 (fr) * 2010-11-04 2015-07-17 Electricite De France Procede de remplissage en eau d'un circuit primaire d'un reacteur nucleaire, et dispositif de raccordement destine a la mise en oeuvre du procede
US8781057B2 (en) * 2010-12-16 2014-07-15 Babcock & Wilcox Mpower, Inc. Control system and method for pressurized water reactor (PWR) and PWR systems including same
CN103327666A (zh) * 2012-03-23 2013-09-25 成都酷玩网络科技有限公司 快速导热、高效加热的电加热装置
CN103369751A (zh) * 2012-03-27 2013-10-23 成都驹涛网络科技有限公司 快速导热、高效加热的电加热装置
CN103862186A (zh) * 2012-12-13 2014-06-18 中国核动力研究设计院 一种压水堆核电厂稳压器电加热元件套管焊接结构
FR3038443B1 (fr) * 2015-07-01 2021-04-02 Soc Technique Pour Lenergie Atomique Reacteur nucleaire avec elements chauffants entierement loges dans un pressuriseur integre, procede d'exploitation correspondant
CN106653100B (zh) * 2016-10-17 2018-05-22 中广核研究院有限公司 核动力浮动平台及能抑制晃荡现象的新型稳压器
RU2637490C1 (ru) * 2016-10-28 2017-12-05 Акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" Устройство электрообогрева ванны для дезактивации
KR101788605B1 (ko) * 2016-11-11 2017-10-20 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고
KR101786517B1 (ko) * 2016-11-11 2017-10-18 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고
CN111798998B (zh) * 2020-06-03 2021-11-09 江苏核电有限公司 一种稳压器电加热器的运行方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1128819A (en) * 1965-10-06 1968-10-02 Atomic Energy Authority Uk Improvements relating to immersion heaters for nuclear reactor pressurisers
JPS6187896A (ja) * 1985-09-30 1986-05-06 Fujikura Ltd ニツケルめつき銅線条体の製造方法
GB2319950A (en) * 1996-12-06 1998-06-10 Strix Ltd Electroplating a stainless steel electric heating plate to prevent corrosion

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2515781A (en) * 1949-04-23 1950-07-18 Gen Electric Electric heating unit
GB821098A (en) * 1954-11-23 1959-09-30 Mond Nickel Co Ltd Improvements relating to electroplated articles of alloy steel
US3111572A (en) 1960-06-08 1963-11-19 Wiegand Co Edwin L Electric immersion heater assembly
BE622312A (fr) 1961-09-11 1900-01-01
US3310769A (en) 1964-06-16 1967-03-21 Rama Corp Cartridge heater
FR1480060A (fr) * 1966-05-18 1967-05-05 Elpag Ag Chur Procédé visant à prévenir la corrosion selon les lignes de contrainte pour des objets en acier inoxydable au chrome-nickel
US3455014A (en) 1968-01-11 1969-07-15 M & T Chemicals Inc Method of joining by plating aluminum and alloys thereof
US3616280A (en) * 1969-03-24 1971-10-26 Atomic Energy Commission Nonaqueous electroplating solutions and processing
US3859721A (en) * 1973-12-26 1975-01-14 Emerson Electric Co Method of making electric heater assemblies
US3977073A (en) * 1975-08-11 1976-08-31 Emerson Electric Co. Method of making electric immersion heaters
FR2329058A1 (fr) * 1975-10-21 1977-05-20 Westinghouse Electric Corp Pressuriseur comportant des thermoplongeurs tubulaires rectilignes pour reacteurs nucleaires
JPS5938320B2 (ja) * 1977-11-30 1984-09-14 株式会社荏原製作所 伝熱管の製造方法
US4470947A (en) * 1981-12-30 1984-09-11 The United States Of America As Represented By The United States Department Of Energy Double-clad nuclear fuel safety rod
WO1985003528A1 (fr) * 1984-02-09 1985-08-15 Kabusiki Kaisha Kobe Seiko Sho Acier inoxydable austenitique a haute resistance a la traction et a la corrosion et son procede de production
JPS60262994A (ja) * 1984-06-11 1985-12-26 Takada Kenkyusho:Kk ステンレス鋼条のメツキ方法
JPS63121641A (ja) * 1986-11-10 1988-05-25 Nippon Yakin Kogyo Co Ltd オ−ステナイトステンレス鋼製シ−ズヒ−タ外部被覆
US5094801A (en) * 1990-01-22 1992-03-10 The Babcock & Wilcox Company Two piece pressurizer heater sleeve
US5091140A (en) 1990-01-22 1992-02-25 The Babcock & Wilcox Company Method of replacing a heater nozzle in a nuclear reactor pressurizer
FR2666679B1 (fr) * 1990-09-10 1994-03-04 Framatome Procede et dispositif d'extraction d'une canne chauffante presentant des deformations, d'une enveloppe de pressuriseur d'un reacteur nucleaire a eau sous pression.
US5196160A (en) 1992-03-23 1993-03-23 Porowski Jan S Nuclear reactor head and process for obtaining same
JPH0765936A (ja) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd 液中加熱ヒータ
JPH07232501A (ja) * 1994-02-24 1995-09-05 Hitachi Metals Ltd アルミニウム合金部材およびアルミホイール
JP3310496B2 (ja) * 1995-06-29 2002-08-05 日東電工株式会社 鋼管の継手防食方法
US6028294A (en) * 1997-05-15 2000-02-22 Kim Hotstart Manufacturing Company Heater assembly
CA2236933A1 (fr) * 1997-06-18 1998-12-18 Atotech Deutschland Gmbh Electrodeposition de nickel a faible contrainte
US6456785B1 (en) * 1999-06-01 2002-09-24 Robert Evans Resistance heating element
JP2001124891A (ja) 1999-07-09 2001-05-11 Hitachi Ltd 原子力プラント構造物の表面処理方法および原子力プラント
US6414281B1 (en) * 1999-07-30 2002-07-02 Watlow Electric Manufacturing Company Hot-toe multicell electric heater
JP2002040190A (ja) * 2000-07-21 2002-02-06 Hitachi Ltd 原子力プラント構造物の表面処理方法および原子力プラント
CN1405360A (zh) 2001-08-08 2003-03-26 王旭东 多层镍铁合金复合涂镀工艺
TWI234885B (en) * 2002-03-26 2005-06-21 Fujikura Ltd Electroconductive glass and photovoltaic cell using the same
CN1279791C (zh) 2003-04-16 2006-10-11 邓泰均 一种发热原件的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1128819A (en) * 1965-10-06 1968-10-02 Atomic Energy Authority Uk Improvements relating to immersion heaters for nuclear reactor pressurisers
JPS6187896A (ja) * 1985-09-30 1986-05-06 Fujikura Ltd ニツケルめつき銅線条体の製造方法
GB2319950A (en) * 1996-12-06 1998-06-10 Strix Ltd Electroplating a stainless steel electric heating plate to prevent corrosion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 262 (C - 371) 6 September 1986 (1986-09-06) *

Also Published As

Publication number Publication date
EP1961265B1 (fr) 2011-03-23
US9730277B2 (en) 2017-08-08
CA2633205C (fr) 2016-05-24
CA2633205A1 (fr) 2007-06-21
CN101336566A (zh) 2008-12-31
FR2895206A1 (fr) 2007-06-22
ATE503366T1 (de) 2011-04-15
CN101336566B (zh) 2012-01-18
JP2009519453A (ja) 2009-05-14
US20080310578A1 (en) 2008-12-18
EP1961265A1 (fr) 2008-08-27
ES2363558T3 (es) 2011-08-09
FR2895206B1 (fr) 2008-03-21
JP5543108B2 (ja) 2014-07-09
DE602006020915D1 (de) 2011-05-05

Similar Documents

Publication Publication Date Title
EP1961265B1 (fr) Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression
EP0836751B1 (fr) Generateur thermoelectrique
FR2975527A1 (fr) Dispositif de chauffage electrique d'un liquide, son procede de realisation et application a la simulation electrique de crayons de combustible nucleaire
EP2899724A1 (fr) Dispositif pour l'irradiation d'echantillons dans le coeur ou en peripherie du coeur d'un reacteur
EP2544190B1 (fr) Câble électrique à corrosion limitée et à résistance au feu améliorée
FR2565323A1 (fr) Procede de protection contre la corrosion d'un tube de generateur de vapeur et dispositif pour la mise en oeuvre de ce procede
EP0491641B1 (fr) Dispositif de coulée continue de bandes minces de métal, notamment d'acier
EP1592959B1 (fr) Methode de test de reservoir cryogenique comportant une protection cathodique
EP0049192A1 (fr) Dispositif perfectionné pour l'oxydation anodique par électrolyse au tampon et électrolytes mis en oeuvre dans ce dispositif
EP0344245B1 (fr) Thermoplongeur electrique
CA2171278A1 (fr) procede de reparation par chemisage electrolytique d'un tube tel qu'un tube de generateur de vapeur
EP0323942B1 (fr) Ballon de production d'eau chaude et procédé de mise en chauffe dudit ballon
FR2723677A1 (fr) Procede et dispositif de degivrage d'elements exposes au gel ou au givre
BE1028235B1 (fr) Chauffe-eau électrique à cuve de stockage en acier inoxydable et corps de chauffe en acier émaillé
EP0822272A1 (fr) Anode de plaquage électrolytique résonante
EP0706188A1 (fr) Dispositif de contrÔle du flux de chaleur par vanne thermique
EP0258131B1 (fr) Dispositif de refroidissement de secours d'un réacteur nulcléaire à neutrons rapides
FR2748099A1 (fr) Plaque de support de tubes echangeurs de chaleur et procede pour sa fabrication
EP2600699B1 (fr) Torche à plasma d'arc avec isolation électrique améliorée
WO2024100350A1 (fr) Cuve d'eau chaude sanitaire a accumulation avec element chauffant immerge
FR2748038A1 (fr) Procede de revetement d'une paroi metallique par du nickel et en particulier, de la surface interieure de tubes d'un generateur de vapeur d'un reacteur nucleaire a eau sous pression
EP3505657A1 (fr) Rouleaux conducteurs de courant
CA1102279A (fr) Dispositif de regeneration de zinc
FR3118117A1 (fr) Installation et procédé sous-marin de chauffage d’un effluent polyphasique circulant à l’intérieur d’une enveloppe sous-marine
FR3140669A1 (fr) Cuve d’eau chaude sanitaire à accumulation avec anode de protection contre la corrosion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006841915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2633205

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008545039

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12097170

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680052312.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006841915

Country of ref document: EP