US3859721A - Method of making electric heater assemblies - Google Patents

Method of making electric heater assemblies Download PDF

Info

Publication number
US3859721A
US3859721A US427823A US42782373A US3859721A US 3859721 A US3859721 A US 3859721A US 427823 A US427823 A US 427823A US 42782373 A US42782373 A US 42782373A US 3859721 A US3859721 A US 3859721A
Authority
US
United States
Prior art keywords
tube
mounting member
metal
bushing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US427823A
Inventor
Donald M Cunningham
Ralph Santorc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerson Electric Co
Original Assignee
Emerson Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Electric Co filed Critical Emerson Electric Co
Priority to US427823A priority Critical patent/US3859721A/en
Priority to US05/517,366 priority patent/US3934116A/en
Priority to FR7442934A priority patent/FR2256620B3/fr
Application granted granted Critical
Publication of US3859721A publication Critical patent/US3859721A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • Y10T29/49098Applying terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49925Inward deformation of aperture or hollow body wall
    • Y10T29/49934Inward deformation of aperture or hollow body wall by axially applying force

Definitions

  • the heater assembly comprises a sheathed electric heating element and an elastomeric bushing within a sheath end opening.
  • a mounting flange is rigidly se- [58] Field of Search 274; 219/536, 544, 336, 548
  • FIG. 4 is a view similar to FIG. 3, but further enlarged, showing the apparatus after it has effected the assembly,
  • FIG. 5 is a fragmentary longitudinal sectional view
  • the invention is. particularly adapted for electric drawn to reduced scale, showing another form of asheating elements fo'rheating liquids in a container, such as the commercially known water heater elements adapted to heat water in a tank.
  • the heater is held to the wall of the'tank by a mounting flange which is rigidly connected to the heater sheath.
  • the heater assembly comprises a conventional sheathed electric heating element, the components of which include a tubular metal sheath; a resistance member, such as a helical resistance wire, within the sheath and electrically insulated from the inner wall surface thereof by compacted refractory material; and
  • a mounting flange is rigidly connected to the end (or ends) of the sheath by a mechanical connection, such as by staking.
  • a metal flange to a sheathed heating element by a staking operation is U.S. Pat. No. 2,670,529.
  • Our invention enables the use of the softer rubber bushings to provide the effective air seal, and the inven tion makes use of the fact that rubber behaves similar to fluids when subjected to pressure.
  • end pressure axially on the rubber bushing within the end of the tubular element, it is possible to transmit that pressure to the side wall of the tube to provide the necessary backup.
  • FIG. 1 is a broken perspective view of a conventional tubular heating element
  • FIG. 2 is a broken perspective showing the element of FIG. 1 after bending to hairpin shape, with a mounting flange connected across the tubular legs,
  • FIG. 3 is an enlarged, fragmentary, longitudinal sectional view illustrating apparatus at the start of the operation of assembling a mounting member to a tubular sheath
  • FIG. 6 is a view similar to FIG. 5 showing an optional step in the assembly.
  • the heater assembly comprises a conventional sheathed electric heating element, such as shown in FIG. I.
  • the element comprises an elongated tube 10 formed of any suitable metal to meet requirements.
  • the tube has frequently been formed of copper or a copper alloy.
  • a resistance member such as the helically wound resistance wire 11 is disposed within thesheath and is insulated therefrom by granular refractory material 12, such as magnesium oxide.
  • a metal terminal pin 14 is mechanically and electrically connected to each end of the resistance wire and each terminal pin extends outwardly of the respective tube end for connection to source of electrical energy.
  • An insulating bushing 15 is disposed within each end of the tube and in the disclosed embodiment this bushing is formed of silicone rubber.
  • the bushings 15 have a fairly close fit with the tube openings and as an example, the tube may have an outside diameter of 0.375 inches and an inside diameter of 0.319 inches, while the bushing may have an outside diameter of 0.317 inches.
  • the assembly thus far described is subjected to a rolling or side pressing operation to reduce the diameter of thetube (to an outside diameter of 0.3l5 inches in the example given) and thus compact the refractory material and firmly lock the bushings in place.
  • the tubular element is usually bent to the hairpin shape shown in FIG. 2, and a mounting member 16 is rigidly connected across the legs of the bent element.
  • the member 16 may be in the form of a flat plate, having holes near its periphery to pass mounting bolts, or it may be in the form of a screw plug so that it may be threaded into an opening in the tank wall.
  • the member 16 is shown as a flat plate with holes 17 to pass mounting bolts.
  • FIGS. 3 and 4 show only one heater leg and it will be appreciated that if two legs of a hairpin heater are to be connected to the mounting plate 16, side-by-side assemblies would be required.
  • the inner end of the bushing 15 abuts the adjacent end portion of the compacted refractory material 12 to reduce voids and restrict its inward movement; however, the bushing 15 is firmly locked in position and would resist longitudinal movement in any case.
  • the mounting plate 16 has an opening to closely pass the end of the tube 10 so that the parts may be positioned as shown in FIG. 3.
  • a stationary lower stake holder 20 surrounds, and is clamped to, the tube 10 so that the latter is held against longitudinal movement.
  • the holder 20 has a conical stake projection 21 extending upwardly therefrom.
  • a punch holder 22 carries the upper staking member 23, the latter having a lower conical projection 24.
  • the holder 22 isadapted to be secured to the movable platen 25 of a press (not shown) and the lower stake holder 20 is'adapted to be carried by the bed of the press.
  • the holder 22, in the,'disclosed embodiment, comprises a sleeve 2'6 which is threaded at its-lower end to receive an exteriorly threaded sleeve 27, and the staking member 23 is also threaded on the sleeve 27 so that its upperend abuts the lower end of the sleeve 26.
  • a plunger 30 is mounted for axial movement and is provided with a head portion 3l slidable within the sleeve 26 and a reduced lower portion 32 slidable within the sleeve 27.
  • the plunger 30 has an axial open ing to closely but slidably receive the end of the terminal pin 14, and the end of the sheath 10 is adapted to fit within the annular space 33.
  • Resilient means 34 is disposed within the sleeve 26, between the upper end of the head portion 31 and a plug 35 threaded into the.
  • the resilient means is in the form of a compressible rubber plug, but such means may also take the form of a compression spring.
  • the punch holder 22 When the platen 25 of the press is moved downwardly, the punch holder 22 will drive the upper staking projection 24 into the upper surfaceof the mounting plate 16 and in turn will drive the lower staking projection 21 into the lower surface of the plate. Movement of the platen 25 will be controlled so that the staking projections will reach the condition shown in FIG.
  • the staking projections have cut into the metal and displaced metal in- I wardly to seal against the exterior surface of the tube
  • the lower end of plunger 32 is pressed against the upper end of the bushing and the head portion 31 will move upwardly into the sleeve 26 but will be resiliently resisted by the resilient means 34 so as to apply an axial force downwardly on the bushing 34.
  • the resiliency of the means 34 may be chosen to apply the axial force in a predetermined amount to adequately back up the tube while mechanical staking the steel flange in the described manner. As seen in FIG.
  • the staking operation with the bushing under longitudinal compression causes flange metal to be forced against the tube at the staking projections, as suggested at 40, while the tube intermediate staking projections bulges slightly, as suggested at 41, and the combination of these conditions produces a water and air tight seal between the tube 10 and the wall surface defining the flange opening.
  • the bushing being locked in the tube end by the rolling or side pressing action, and being further locked in the staking operation, will be in sealing contact with the inner wall of the tube and the periphery to the terminal pin to produce a water and air tight seal at these locations.
  • a sheathed electric heating element with a mounting member which supports the heating element on the wall of a container, said element comprising a .metal tube, a resistance member within said tube and insulatingmeans within said tube for electrically insulating said resistance member from said tube, metal terminal pins electrically and mechanically connected to respective ends of said resistance member within said tube and projecting outwardly from respective tube ends, an elastomeric bush ing within at least one end of said tube and fitting therein and about the terminal pin thereat withclose tolerance, and said mounting member being formed of metal. and having a hole therethrough for closely receiving said one tube end, the improved method comprising: 7

Landscapes

  • Resistance Heating (AREA)

Abstract

The heater assembly comprises a sheathed electric heating element and an elastomeric bushing within a sheath end opening. A mounting flange is rigidly secured to the sheath inwardly of an end, and the bushing is held under longitudinal compression at the time the mounting flange is secured to the sheath.

Description

14 1 Jan. 14,1975
United States Patent 1191 Cunningham et al.
mm MB 1 METHOD OF MAKING ELECTRIC HEATER ASSEMBLIES [75] Inventors: Donald M. Cunningham,
29/614 X Van lnthoudt........................
Ralph Santorc, Verona, both of Pa.
[73] Assignee: Emerson Electric Co.
[22] Filed:
3,116,401 12/1963 Drugmand......................338/228X 3,134,889
, St. Louis, Mo.
5/1964 Drugmand...,.................. 338/228 X Dec. 26, 1973 Primary Examiner--C. W. Lanham App! 427823 Assistant ExaminerVictor A. DiPalma Attorney, Agent, or Firm-Michael Williams ABSTRACT The heater assembly comprises a sheathed electric heating element and an elastomeric bushing within a sheath end opening. A mounting flange is rigidly se- [58] Field of Search 274; 219/536, 544, 336, 548
. cured to the sheath inwardly of an end, and the bush- References Cited UNITED STATES PATENTS ing is held under longitudinal compression at the time the mounting flange is secured to the sheath.
2,527,890 10/1950 Pouchnik et 29/615 X 4 Claims, 6 Drawing Figures MAKING ELECTRIC HEATER ASSEMBLIES BACKGROUND AND SUMMARY METHOD or FIG. 4 is a view similar to FIG. 3, but further enlarged, showing the apparatus after it has effected the assembly,
FIG. 5 is a fragmentary longitudinal sectional view,
The invention is. particularly adapted for electric drawn to reduced scale, showing another form of asheating elements fo'rheating liquids in a container, such as the commercially known water heater elements adapted to heat water in a tank. The heater is held to the wall of the'tank by a mounting flange which is rigidly connected to the heater sheath.
The heater assembly comprises a conventional sheathed electric heating element, the components of which include a tubular metal sheath; a resistance member, such as a helical resistance wire, within the sheath and electrically insulated from the inner wall surface thereof by compacted refractory material; and
metal terminal pins electrically connected 'to the ends of the resistance wire. A mounting flange is rigidly connected to the end (or ends) of the sheath by a mechanical connection, such as by staking. Representative of the prior art of connecting a metal flange to a sheathed heating element by a staking operation is U.S. Pat. No. 2,670,529.
An end seal of some type is usually disposed within the open end of the sheath, and U.S. Pat. Nos. 2,489,998 and 2,861,162 disclose rubber bushings held within the sheath end. In mechanical staking of a mounting flange or screw plug to a sheathed heater, the staking displaces the metal of the flange or plug inwardly towards the tubular leg of the heater. However, in order to effect a satisfactory seal between the engaging surfaces of the mounting flange and tubular leg, the
latter must have sufficient internal backup to prevent it from collapsing during the staking operation.
It has been found that a relatively soft rubber bushing within the end of the tubular leg does not provide a satisfactory backup and for that reason relatively hard bushings, such as hard plastic or rubber were used. The hard bushings provided satisfactory backup but did not always provide an effective seal. Since finished tank assemblies are presently being tested with air pressure to check for leaks, it is necessary to provide an effective seal that will not leak air at approximately 100 p.s.i.
Our invention enables the use of the softer rubber bushings to provide the effective air seal, and the inven tion makes use of the fact that rubber behaves similar to fluids when subjected to pressure. By applying end pressure axially on the rubber bushing within the end of the tubular element, it is possible to transmit that pressure to the side wall of the tube to provide the necessary backup.
DESCRIPTION OF THE DRAWING In the drawing accompanying this specification and forming a part of this application, there are shown, for purpose of illustration, several embodiments which our invention may assume, and in this drawing:
FIG. 1 is a broken perspective view of a conventional tubular heating element,
FIG. 2 is a broken perspective showing the element of FIG. 1 after bending to hairpin shape, with a mounting flange connected across the tubular legs,
FIG. 3 is an enlarged, fragmentary, longitudinal sectional view illustrating apparatus at the start of the operation of assembling a mounting member to a tubular sheath,
sembly, and
FIG. 6 is a view similar to FIG. 5 showing an optional step in the assembly.
DESCRIPTION OF THE PREFERRED EMBODIMENT The heater assembly comprises a conventional sheathed electric heating element, such as shown in FIG. I. Briefly, the element comprises an elongated tube 10 formed of any suitable metal to meet requirements. When the heating element is to be operated in a corrosive environment, the tube has frequently been formed of copper or a copper alloy.
A resistance member, such as the helically wound resistance wire 11, is disposed within thesheath and is insulated therefrom by granular refractory material 12, such as magnesium oxide. A metal terminal pin 14 is mechanically and electrically connected to each end of the resistance wire and each terminal pin extends outwardly of the respective tube end for connection to source of electrical energy. An insulating bushing 15 is disposed within each end of the tube and in the disclosed embodiment this bushing is formed of silicone rubber.
The bushings 15 have a fairly close fit with the tube openings and as an example, the tube may have an outside diameter of 0.375 inches and an inside diameter of 0.319 inches, while the bushing may have an outside diameter of 0.317 inches. The assembly thus far described is subjected to a rolling or side pressing operation to reduce the diameter of thetube (to an outside diameter of 0.3l5 inches in the example given) and thus compact the refractory material and firmly lock the bushings in place.
For water heater purposes, the tubular element is usually bent to the hairpin shape shown in FIG. 2, and a mounting member 16 is rigidly connected across the legs of the bent element. The member 16 may be in the form of a flat plate, having holes near its periphery to pass mounting bolts, or it may be in the form of a screw plug so that it may be threaded into an opening in the tank wall. In the construction illustrated in FIGS. 2 through 4, the member 16 is shown as a flat plate with holes 17 to pass mounting bolts.
FIGS. 3 and 4 show only one heater leg and it will be appreciated that if two legs of a hairpin heater are to be connected to the mounting plate 16, side-by-side assemblies would be required. As seen in FIG. 3, the inner end of the bushing 15 abuts the adjacent end portion of the compacted refractory material 12 to reduce voids and restrict its inward movement; however, the bushing 15 is firmly locked in position and would resist longitudinal movement in any case.
The mounting plate 16 has an opening to closely pass the end of the tube 10 so that the parts may be positioned as shown in FIG. 3. A stationary lower stake holder 20 surrounds, and is clamped to, the tube 10 so that the latter is held against longitudinal movement. The holder 20 has a conical stake projection 21 extending upwardly therefrom. A punch holder 22 carries the upper staking member 23, the latter having a lower conical projection 24.
The holder 22 isadapted to be secured to the movable platen 25 of a press (not shown) and the lower stake holder 20 is'adapted to be carried by the bed of the press. The holder 22, in the,'disclosed embodiment, comprises a sleeve 2'6 which is threaded at its-lower end to receive an exteriorly threaded sleeve 27, and the staking member 23 is also threaded on the sleeve 27 so that its upperend abuts the lower end of the sleeve 26.
A plunger 30 is mounted for axial movement and is provided with a head portion 3l slidable within the sleeve 26 and a reduced lower portion 32 slidable within the sleeve 27. The plunger 30 has an axial open ing to closely but slidably receive the end of the terminal pin 14, and the end of the sheath 10 is adapted to fit within the annular space 33. Resilient means 34 is disposed within the sleeve 26, between the upper end of the head portion 31 and a plug 35 threaded into the.
pressure may be applied to tube to bring it to and beyond its yield point, it is possible to cause the tube to expand to a water and air tight seal with the wall surface defining the opening in the mounting .flange withouta'staking operation, and FIGS. 5 and 6 show this condition. In this case an axial end ,force .in excess of upper end of the sleeve 26. In the disclosed embodiment, the resilient means is in the form of a compressible rubber plug, but such means may also take the form of a compression spring.
When the platen 25 of the press is moved downwardly, the punch holder 22 will drive the upper staking projection 24 into the upper surfaceof the mounting plate 16 and in turn will drive the lower staking projection 21 into the lower surface of the plate. Movement of the platen 25 will be controlled so that the staking projections will reach the condition shown in FIG. 4 wherein it willbe seen that the staking projections have cut into the metal and displaced metal in- I wardly to seal against the exterior surface of the tube As the punch holder is driven downwardly, the lower end of plunger 32 is pressed against the upper end of the bushing and the head portion 31 will move upwardly into the sleeve 26 but will be resiliently resisted by the resilient means 34 so as to apply an axial force downwardly on the bushing 34. The resiliency of the means 34 may be chosen to apply the axial force in a predetermined amount to adequately back up the tube while mechanical staking the steel flange in the described manner. As seen in FIG. 4, the staking operation with the bushing under longitudinal compression, causes flange metal to be forced against the tube at the staking projections, as suggested at 40, while the tube intermediate staking projections bulges slightly, as suggested at 41, and the combination of these conditions produces a water and air tight seal between the tube 10 and the wall surface defining the flange opening. The bushing, being locked in the tube end by the rolling or side pressing action, and being further locked in the staking operation, will be in sealing contact with the inner wall of the tube and the periphery to the terminal pin to produce a water and air tight seal at these locations.
It has been calculated that an internal pressure of about 10,000 to 11,000 p.s.i. on the copper tube will bring it to the yield point and pressure above this value would actually cause the tube to expand. Again, by calculation, it has been determined that an axial end force on the bushing, of the size noted, about in the order of about 500 pounds will supply suff cient force to raise the internal pressure on the tube close to the yield point and provide the backup required.
DESCRIPTION OF OTHER EMBODIMENT Since it has been determined that sufficient internal 500 pounds has beenappjlied to the bushing 1511 by the I plunger 32a. It; will benoted that the tube l0a hasbeen expanded in sealing contact with the flange opening and" that the tube on opposite sides of the flange has bulged slightly beyond the size of the flange opening to lock the tube in place. It has been determined that the bushing will remain in its longitudinally stressed relation after end pressure thereon has been removed; however, in some cases it may be desirable to turn in the tube end, as seen at 45 in FIG. 6, before end pressure is removed from the-bushing.
We claim:
1. The method of assembling a sheathed electric heating element with a mounting member which supports the heating element on the wall of a container, said element comprising a .metal tube, a resistance member within said tube and insulatingmeans within said tube for electrically insulating said resistance member from said tube, metal terminal pins electrically and mechanically connected to respective ends of said resistance member within said tube and projecting outwardly from respective tube ends, an elastomeric bush ing within at least one end of said tube and fitting therein and about the terminal pin thereat withclose tolerance, and said mounting member being formed of metal. and having a hole therethrough for closely receiving said one tube end, the improved method comprising: 7
applying axial pressure to said bushing to force its peripheral surface against the inner wall of said tube one end and deforming metal adjacent to said-tube one end and the surface of the hole in said mounting memberinto sealing engagement. 2. The method defined in claim 1, including pressing a staking projection against and into a surface of said mounting member and thereby displacing metal around the hole in the latterinwardly against the outer periphery of said tube end, while axial pressure is applied to said bushing to form a backup for the inward force transmitted by the displaced metal against said one tube end.
' 3. The method defined in claim 1 including applying axial force to said bushing in an amount sufflcient to provide a component radial force which exceeds the elastic limit of the metal of said tube one end to thereby force the wall of the latter outwardly and into sealing engagement with the surface defining the hole in said mounting member.
4. The method defined in claim 1, including firmly holding said tube against longitudinal movement and providing a rigid base' against which one side'of said mounting member abuts for supporting said mounting member with said tube one end extending through the hole in the former,
pressing a staking die against and into the opposite side of said mounting member to deform metal surrounding the hole in the mounting member inwardly against the outer periphery of said tube one end, and simultaneously applying axial force to said bushing in an amount sufficient to produce a component radial force to backup said tube one end.

Claims (4)

1. The method of assembling a sheathed electric heating element with a mounting member which supPorts the heating element on the wall of a container, said element comprising a metal tube, a resistance member within said tube and insulating means within said tube for electrically insulating said resistance member from said tube, metal terminal pins electrically and mechanically connected to respective ends of said resistance member within said tube and projecting outwardly from respective tube ends, an elastomeric bushing within at least one end of said tube and fitting therein and about the terminal pin thereat with close tolerance, and said mounting member being formed of metal and having a hole therethrough for closely receiving said one tube end, the improved method comprising: applying axial pressure to said bushing to force its peripheral surface against the inner wall of said tube one end and deforming metal adjacent to said tube one end and the surface of the hole in said mounting member into sealing engagement.
2. The method defined in claim 1, including pressing a staking projection against and into a surface of said mounting member and thereby displacing metal around the hole in the latter inwardly against the outer periphery of said tube end, while axial pressure is applied to said bushing to form a backup for the inward force transmitted by the displaced metal against said one tube end.
3. The method defined in claim 1 including applying axial force to said bushing in an amount sufficient to provide a component radial force which exceeds the elastic limit of the metal of said tube one end to thereby force the wall of the latter outwardly and into sealing engagement with the surface defining the hole in said mounting member.
4. The method defined in claim 1, including firmly holding said tube against longitudinal movement and providing a rigid base against which one side of said mounting member abuts for supporting said mounting member with said tube one end extending through the hole in the former, pressing a staking die against and into the opposite side of said mounting member to deform metal surrounding the hole in the mounting member inwardly against the outer periphery of said tube one end, and simultaneously applying axial force to said bushing in an amount sufficient to produce a component radial force to backup said tube one end.
US427823A 1973-12-26 1973-12-26 Method of making electric heater assemblies Expired - Lifetime US3859721A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US427823A US3859721A (en) 1973-12-26 1973-12-26 Method of making electric heater assemblies
US05/517,366 US3934116A (en) 1973-12-26 1974-10-23 Electric heater assemblies
FR7442934A FR2256620B3 (en) 1973-12-26 1974-12-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US427823A US3859721A (en) 1973-12-26 1973-12-26 Method of making electric heater assemblies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/517,366 Division US3934116A (en) 1973-12-26 1974-10-23 Electric heater assemblies

Publications (1)

Publication Number Publication Date
US3859721A true US3859721A (en) 1975-01-14

Family

ID=23696439

Family Applications (1)

Application Number Title Priority Date Filing Date
US427823A Expired - Lifetime US3859721A (en) 1973-12-26 1973-12-26 Method of making electric heater assemblies

Country Status (2)

Country Link
US (1) US3859721A (en)
FR (1) FR2256620B3 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001547A (en) * 1975-12-22 1977-01-04 Emerson Electric Co. Electric heating elements
US4241291A (en) * 1979-03-09 1980-12-23 Electro-Therm, Inc. Mounting means for sheathed heating elements and method
US4295035A (en) * 1980-09-10 1981-10-13 Electro-Therm, Inc. Double-grip mounting means for sheathed heating elements
US4321744A (en) * 1979-03-09 1982-03-30 Electro-Therm, Inc. Method of securing a metal sheathed electric heating element
US5864941A (en) * 1996-05-22 1999-02-02 Watlow Electric Manufacturing Company Heater assembly method
US20040084434A1 (en) * 2002-05-01 2004-05-06 Watlow Electric Manufacturing Company Method and apparatus for splicing tubular heater sections
US20080310578A1 (en) * 2005-12-16 2008-12-18 Areva Np Pressurizer Heater for the Primary Cooling System of a Pressurized-Water Nuclear Reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527890A (en) * 1949-03-21 1950-10-31 Cutler Hammer Inc Tubular heater terminal seal
US2538808A (en) * 1950-03-24 1951-01-23 Westinghouse Electric Corp Sealed heater element and the like
US2670529A (en) * 1950-03-20 1954-03-02 Electro Therm Method of assembling an electrical heating unit of the liquid immersion type
US2748251A (en) * 1953-04-20 1956-05-29 Wiegand Co Edwin L Heating devices
US2785270A (en) * 1954-07-09 1957-03-12 Electro Therm Method of assembling an electrical heating unit of the liquid immersion type
US2861162A (en) * 1956-05-17 1958-11-18 John Van Inthoudt Methods of constructing sheathed electric heaters
US3116401A (en) * 1960-06-22 1963-12-31 Wiegand Co Edwin L Electric heaters
US3134889A (en) * 1961-06-22 1964-05-26 Wiegand Co Edwin L Electric immersion heater assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527890A (en) * 1949-03-21 1950-10-31 Cutler Hammer Inc Tubular heater terminal seal
US2670529A (en) * 1950-03-20 1954-03-02 Electro Therm Method of assembling an electrical heating unit of the liquid immersion type
US2538808A (en) * 1950-03-24 1951-01-23 Westinghouse Electric Corp Sealed heater element and the like
US2748251A (en) * 1953-04-20 1956-05-29 Wiegand Co Edwin L Heating devices
US2785270A (en) * 1954-07-09 1957-03-12 Electro Therm Method of assembling an electrical heating unit of the liquid immersion type
US2861162A (en) * 1956-05-17 1958-11-18 John Van Inthoudt Methods of constructing sheathed electric heaters
US3116401A (en) * 1960-06-22 1963-12-31 Wiegand Co Edwin L Electric heaters
US3134889A (en) * 1961-06-22 1964-05-26 Wiegand Co Edwin L Electric immersion heater assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001547A (en) * 1975-12-22 1977-01-04 Emerson Electric Co. Electric heating elements
US4241291A (en) * 1979-03-09 1980-12-23 Electro-Therm, Inc. Mounting means for sheathed heating elements and method
US4321744A (en) * 1979-03-09 1982-03-30 Electro-Therm, Inc. Method of securing a metal sheathed electric heating element
US4295035A (en) * 1980-09-10 1981-10-13 Electro-Therm, Inc. Double-grip mounting means for sheathed heating elements
US5864941A (en) * 1996-05-22 1999-02-02 Watlow Electric Manufacturing Company Heater assembly method
US20040084434A1 (en) * 2002-05-01 2004-05-06 Watlow Electric Manufacturing Company Method and apparatus for splicing tubular heater sections
US6806442B2 (en) 2002-05-01 2004-10-19 Watlow Electric Manufacturing Company Method and apparatus for splicing tubular heater sections
US20080310578A1 (en) * 2005-12-16 2008-12-18 Areva Np Pressurizer Heater for the Primary Cooling System of a Pressurized-Water Nuclear Reactor
US9730277B2 (en) * 2005-12-16 2017-08-08 Areva Np Pressurizer heater for the primary cooling system of a pressurized-water nuclear reactor

Also Published As

Publication number Publication date
FR2256620B3 (en) 1977-09-23
FR2256620A1 (en) 1975-07-25

Similar Documents

Publication Publication Date Title
US3934116A (en) Electric heater assemblies
US3859721A (en) Method of making electric heater assemblies
EP0786791B1 (en) Electric lamp
US2670529A (en) Method of assembling an electrical heating unit of the liquid immersion type
US2433911A (en) Lead through terminal
GB2323222A (en) Spring probe and method for biasing
US3354294A (en) Tubular, electrical, heating element with bulkhead fitting
US2748251A (en) Heating devices
EP0455884B1 (en) Single-cap lamp
US2785270A (en) Method of assembling an electrical heating unit of the liquid immersion type
US3934333A (en) Method of constructing bilateral heater unit
EP1811277B1 (en) Method for producing a thermostatic work element and thermostatic work element
US3657519A (en) Electrical heating element and fitting assembly
US2457647A (en) Method of making rubber articulated joints
US3116401A (en) Electric heaters
US2529863A (en) Method and apparatus for making hard thermoplastic tube assemblies
US20040108310A1 (en) Cartridge heater with moisture resistant seal and method of manufacturing same
US3775828A (en) Apparatus and method for field-repairing high-voltage electrical connector lead assemblies
US6667463B2 (en) Heater, glow plug and water heater
US2028942A (en) Electrical entrance plug
US1828635A (en) Electric heater
US1848312A (en) Manufacture of glass-filled screw plug bases
US2282239A (en) General bushing seal
US3355541A (en) Electric cable terminal assembly with restrained resilient member
CN108353466B (en) Armored resistor and manufacturing process thereof