WO2007065578A1 - Verfahren zur herstellung von carbodiimid- und/oder uretonimin-gruppen enthaltenden polyisocyanaten - Google Patents

Verfahren zur herstellung von carbodiimid- und/oder uretonimin-gruppen enthaltenden polyisocyanaten Download PDF

Info

Publication number
WO2007065578A1
WO2007065578A1 PCT/EP2006/011336 EP2006011336W WO2007065578A1 WO 2007065578 A1 WO2007065578 A1 WO 2007065578A1 EP 2006011336 W EP2006011336 W EP 2006011336W WO 2007065578 A1 WO2007065578 A1 WO 2007065578A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyisocyanates
microwave radiation
reaction
preparation
groups
Prior art date
Application number
PCT/EP2006/011336
Other languages
English (en)
French (fr)
Inventor
Frithjof Hannig
Manfred Schmidt
Hartmut Nefzger
Wolfgang Friederichs
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to JP2008543695A priority Critical patent/JP2009518473A/ja
Priority to EP06818835A priority patent/EP1960448A1/de
Priority to BRPI0619525-3A priority patent/BRPI0619525A2/pt
Publication of WO2007065578A1 publication Critical patent/WO2007065578A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/82Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/025Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing carbodiimide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2115/00Oligomerisation
    • C08G2115/06Oligomerisation to carbodiimide or uretone-imine groups

Definitions

  • the present invention relates to a process for the preparation of polyisocyanates containing carbodiimide (CD) and / or uretonimim (UI) groups by means of microwave-assisted synthesis, and to the use thereof.
  • CD carbodiimide
  • UI uretonimim
  • Polyisocyanates are valuable and essential raw materials for polyurethane chemistry and are used as hard-segment building blocks in the manufacture of foamed and non-foamed polyurethane (PUR) materials on a large industrial scale.
  • PUR polyurethane
  • the carbodiimide groups can react further with excess isocyanate groups to form uretonimines.
  • Such modified polyisocyanates are also referred to as “ancarbodiimidized” polyisocyanates in order to express the fact that only partial conversion of NCO groups into carbodiimide / uretonimine groups is expressed.
  • Such a conversion to carbodiimide is particularly critical of reaction conditions and in particular of the type and depending on the amount of catalyst used.
  • 1-methylphospholine oxide has proven itself as a catalyst, with the use of inert solvents from aromatic polyisocyanates it is also possible to obtain high molecular weight polycarbodiimides which, at least when monofunctional isocyanates are also used, as chain terminators can also be processed by thermal forming (H. Ulrich, Chemistry and Technology of Isocyanates, John Wiley and Sons, 1996, p. 41 1). Carbodiimides from monofunctional isocyanates are also used as stabilizers in polyesters, polyester-based polyurethanes and in polyether-based poly (urethane ureas) in combination with antioxidants.
  • Aliphatic polyisocyanates can also be reacted using phospholine oxide, whereby, for example, hexamethylene diisoxy cyanate (HDI) does not split off the carbon dioxide formed at reaction temperatures of 20 - 50 0 C, but instead directly reinstalled in isomeric form (H. Ulrich, Chemistry and Technology of Isocyanates, John Wiley and Sons, 1996, p. 411).
  • polyisocyanate mixtures containing CD / UI groups can be prepared with highly effective catalysts from the phospholine series, in particular from the phospholine oxide series, by the processes according to US Pat. Nos. 2,853,473 and EP-A 515,933 or US Pat. No. 6,120,699 .
  • Further catalysts which can be used according to the prior art are described in US Pat. No. 6,120,699, EP-A 0989116 and EP-A 0193787.
  • Suitable stoppers are described, for example, in EP-A 515 933, EP-A 609 698 and US-A 6,120,699 and include, for example, acids, acid chlorides, chloroformates and silylated acids, such as, for example, trimethylsilyltrifluoromethanesulfonic acid esters, or alkylating agents, such as, for example, alkyl trifluoromethanesulfonic acid.
  • Another group of suitable catalysts are the esters of phosphoric acid according to EP-A 0193787, such as triethyl phosphate, which are distinguished by the fact that polyisocyanate mixtures containing CD-AJI groups prepared with them do not have to be stopped.
  • the reactions must, however, at elevated temperatures, for example, be carried out more than 200 ° C, wherein the reaction products due to the high thermal load are unerwünschter- colored as dark and above, the reaction product can be quenched after the reaction is very rapid at low temperatures below 100 0 C also has to limit the undesirable side reaction to the dimer.
  • the group of highly active phospholine or phospholine oxide catalysts mentioned above does not have the aforementioned disadvantage, since catalyzed reactions can be carried out at temperatures of about 60 to 100 ° C., so that the undesired dimerization can be avoided.
  • the usual reaction times for reactions catalyzed in this way are about 8 to 10 hours, so that an acceleration of the reaction is desirable from an economic point of view.
  • the amount of catalyst should be reduced so that the amount of stoppers can be kept low.
  • the invention relates to a process for the preparation of polyisocyanates (A) containing carbodiimide / uretonimine groups, which is characterized in that a) polyisocyanates (B) whose NCO value is greater than that of the modified polyisocyanates containing carbodiimide / uretonimine groups (A), are mixed with a catalyst, and b) this mixture is exposed to microwave radiation.
  • microwave radiation is understood to mean the frequency range from 300 MHz to 300 GHz or the wavelength range from 1 m to 1 mm (Römpp, Chemie Lexikon, Thieme Verlag, 9th adult and new edition, 1995, p. 2785).
  • the literature only describes syntheses for the production of low molecular weight compounds by means of microwave radiation in solvents on a laboratory scale (BL Hayes, - -
  • microwave rays significantly accelerate the carbodiimidization of polyisocyanates while obtaining clear reaction products.
  • the commercially available “Discover TM” mono-mode microwave device from CEM, Kamp-Lintfort, Germany (frequency 2.45 GHz) can be used.
  • a 100 ml reaction vessel was used.
  • the CEM device is characterized, among other things, by the fact that it can generate a comparatively high energy density for microwave devices, which can also be maintained over a long period of time by the possibility of simultaneous cooling.
  • the temperature load on the reaction mixture can also be kept very low.
  • Energy densities of more than 200 watts / liter are preferred. Also included is the irradiation of the microwave energy with simultaneous cooling of the reaction mixture, so that despite the high energy input, only a comparatively low reaction temperature is reached. Compressed air is preferably used for cooling; however, other cooling systems, in particular those with a liquid cooling medium, can also be used.
  • microwave devices are not limited to mono-mode devices, but multi-mode devices can also be used in an analogous manner.
  • Multi-mode devices are comparable to the well-known household appliances and have inhomogeneous microwave fields, i.e. This irregular microwave distribution leads to so-called hot and cold spots within the microwave chamber, which can be largely compensated for by rotating a microwave plate.
  • Mono-mode devices have a homogeneous microwave field and, due to a special chamber design, have no such hot and cold spots.
  • the process according to the invention can be carried out not only batchwise, but also continuously by using a pump and suitable tubular reactors. Several microwave devices can also be connected in series or in parallel.
  • the process can of course also be carried out under increased or reduced pressure.
  • the latter may be advantageous since, in the case of aromatic polyisocyanates, carbon dioxide must be removed from the reaction space as a reaction product.
  • the carbon dioxide can of course also be removed in a second reaction step after the reaction has ended. Combinations are also conceivable such that a Part of the carbon dioxide is still separated in the microwave field and the other part is aftertreated by the finished reaction product.
  • Carrying out the process under increased pressure can be considered, for example, if, due to technical circumstances, there is no possibility of discharging carbon dioxide in the microwave field and thus, as a result of carbon dioxide bubbles, for example in tubular reactors, the flow rate of polyisocyanate would ultimately be reduced with a constant irradiation duration of a given reaction volume .
  • the process is preferably carried out without the use of a solvent.
  • a solvent can optionally also be used.
  • Preferred polyisocyanates are organic di- or polyisocyanates or polyisocyanate prepolymers.
  • Suitable di- or polyisocyanates are aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates as described in Justus Liebig's Annalen der Chemie 562, (1949) 75, for example those of the formula Q (NCO) n in which a whole Number from 2 to 4, preferably 2 and
  • Q is an aliphatic hydrocarbon radical with 2 to 18, preferably 6 to 10, carbon atoms, a cycloaliphatic hydrocarbon radical with 4 to 15, preferably 5 to 10, carbon atoms, an aromatic hydrocarbon radical with 6 to 15, preferably 6 to 13, carbon atoms.
  • Polyisocyanates as described in DE-A 28 32 253 are preferred.
  • the technically easily accessible polyisocyanates for example 2,4- and 2,6-tolylene diisocyanate, and any mixtures of these isomers (“TDI”), polyphenylene-polymethylene polyisocyanates, such as those obtained by aniline-formaldehyde condensation and subsequent ones, are generally used with particular preference are produced by phosgenation ( "crude MDI”), as well as separated from monomeric diiso- cyanates such as 4,4 ⁇ - and / or 2.4% - and / or 2,2'-diphenylmethane diisocyanate and mixtures thereof.
  • the carbodiimide (CD) and / or uretonimim (UI) group-containing polyisocyanates prepared by the process according to the invention using microwave radiation-assisted synthesis can be used in the manner known to those skilled in the art. Examples include: in - -
  • Example 1 (According to the Invention) Production of Polyisocyanates Containing Carbodiimide (CD) and / or Uretonimim (UI) Groups by Microwave Radiation-Assisted Synthesis with Phospholine Oxide Catalysis
  • Example 2 (According to the Invention) Preparation of Polyisocyanates Containing Carbodiimide (CD) and / or Uretonimim (TJI) Groups by Microwave Radiation-Assisted Synthesis with Triethyl Phosphate Catalysis 81.2 g of 4,4'-MDI with 1 , 65 g (2% by weight, experiment 2-1, table 2), or 0.82 g (1% by weight, experiment 2-2, table 2) of triethyl phosphate (TEP) stirred. These mixtures were then exposed to microwave radiation in a mono-mode microwave device from CEM (Discover), the reaction conditions listed in Table 2 being observed. The microwave energy input of 300 W was constant; it was not refrigerated.
  • CEM mono-mode microwave device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von carbodiimid- und/oder uretoniminmodifizierten Polyisocyanaten mittels Mikrowellenstrahlung sowie die Verwendung derartiger Polyisocyanate für die Syntheses von geschäumten und nicht geschäumten Polyurethan-Werkstoffen.

Description

- -
Verfahren zur Herstellung von Carbodiimid- und/oder Üretonimin-Gruppen enthaltenden Polvisocvanaten
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Carbodiimid- (CD) und/oder Uretonimim- (UI) Gruppen enthaltenden Polyisocyanaten mittels mikrowellenstrahlungsunter- stützter Synthese sowie deren Verwendung.
Polyisocyanate sind wertvolle und essentielle Rohstoffe für die Polyurethanchemie und werden als Hartsegment-Bausteine bei der Herstellung von geschäumten und nicht geschäumten PoIy- urethan(PUR)- Werkstoffen großtechnisch eingesetzt.
Zur Optimierung von Werkstoff-Eigenschaften der PUR sind eine große Zahl von Modifizierungen - auch auf Seiten der Polyisocyanate - durchgeführt und technisch umgesetzt worden. Ein weiterer Grund für Modifizierungen können aber auch Eigenschaften des Polyisocyanates selbst sein, die es zu optimieren gilt. Zu nennen ist stellvertretend beispielsweise das Schmelzverhalten des Polyisocyanates. So weist etwa 4,4'-Diphenylmethandiisocyanat (4,4'-MDI) einen Schmelzpunkt von etwa 42°C auf, was einen erhöhten Verarbeitungsaufwand gegenüber anderen Polyisocyanaten, die bei Raumtemperatur in flüssiger Form vorliegen, bedeutet. Eine der Möglichkeiten, diesen Nachteil zu beseitigen, stellt die teilweise Überführung der NCO-Gruppen von 4,4'-MDI in Carbo- diimidgruppen dar, wie sie im folgenden Schema skizziert ist:
Figure imgf000002_0001
Die Carbodiimidgruppen können mit überschüssigen Isocyanatgruppen weiter zu Uretoniminen reagieren.
Man bezeichnet derartig modifizierte Polyisocyanate auch als„ancarbodiimidisierte" Polyisocyanate, um der Tatsache der nur teilweisen Überführung von NCO-Gruppen in Carbodiimid- /Uretonimingruppen Ausdruck zu verleihen. Eine derartige Umsetzung zum Carbodiimid ist in besonders kritischer Weise von Reaktionsbedingungen und insbesondere von der Art und der Menge des verwendeten Katalysators abhängig.
Z.B. hat sich 1-Methylphospholinoxid als Katalysator bewährt, wobei unter Einsatz inerter Lösungsmittel aus aromatischen Polyisocyanaten auch hochmolekulare Polycarbodiimide erhalten werden können, die zumindest bei Mitverwendung von monofunktionellen Isocyanaten als Ketten- abbrecher auch durch thermische Umformung verarbeitbar sein können (H. Ulrich, Chemistry and Technology of Isocyanates, John Wiley and Sons, 1996, S. 41 1). Weiterhin finden Carbodiimide aus monofunktionellen Isocyanaten als Stabilisatoren in Polyestern, polyester-basierten Polyurethanen und in polyether-basierten Poly(urethanharnstoffen) in Kombination mit Antioxidantien Verwendung.
Aliphatische Polyisocyanate lassen sich ebenfalls mittels Phospholinoxid umsetzen, wobei beispielsweise Hexamethylendiisoxcyanat (HDI) bei Reaktionstemperaturen von 20 - 500C das gebildete Kohlendioxid nicht abspaltet, sondern in isomerer Form direkt wieder einbaut (H. Ulrich, Chemistry and Technology of Isocyanates, John Wiley and Sons, 1996, S. 411). Gemäß dem Stand der Technik können CD-/UI-Gruppen aufweisende Polyisocyanatmischungen mit hochwirksamen Katalysatoren aus der Phospholin-Reihe, insbesondere der Phospholinoxid- Reihe nach den Verfahren gemäß US-A 2,853,473 und EP-A 515 933 bzw. US-A 6,120,699 hergestellt werden. Derartige CD-/UI-Gruppen aufweisende Polyisocyanatmischungen, hergestellt aus aromatischen Polyisocyanaten, weisen im Vergleich zu den weiter oben genannten PoIy- carbodiimiden vergleichsweise niedrige Modifizierungsgrade auf. Weitere nach dem Stand der Technik verwendbare Katalysatoren sind in US-A 6,120,699, EP-A 0989116 und EP-A 0193787 beschrieben.
Bei Einsatz von Phospholinkatalysatoren, insbesondere von Phospholinoxidkatalysatoren müssen diese Katalysatoren infolge ihrer hohen katalytischen Aktivität nach beendeter Reaktion abge- stoppt werden.
Geeignete Stopper sind z.B. in EP-A 515 933, EP-A 609 698 und US-A 6,120,699 beschrieben und umfassen z.B. Säuren, Säurechloride, Chloroformiate und silylierte Säuren, wie z.B. Trimethyl- silyltrifluormethansulfonsäureester, oder Alkylierungsmittel, wie z.B. Trifluormethansulfonsäure- alkylester. Eine andere Gruppe von geeigneten Katalysatoren stellen die Ester der Phosphorsäure gemäß EP-A 0193787 dar, wie z.B. Triethylphosphat, die sich dadurch auszeichnen, dass mit ihnen hergestellte CD-AJI-Gruppen enthaltende Polyisocyanatmischungen nicht abgestoppt werden müssen. Die Umsetzungen müssen allerdings bei erhöhten Temperaturen, z.B. mehr als 200°C erfolgen, wobei die Reaktionsprodukte infolge der hohen thermischen Belastung unerwünschter- weise dunkel gefärbt sind und darüber hinaus das Reaktionsprodukt nach erfolgter Umsetzung sehr rasch auf tiefe Temperaturen unter 1000C abgeschreckt werden muss, um die unerwünschte Nebenreaktion zum Dimer zu begrenzen. Die Gruppe der o.g. hochaktiven Phospholin- bzw. Phospholinoxidkatalysatoren weist den vorgenannten Nachteil nicht auf, da mit diesen katalysierte Reaktionen bei Temperaturen von etwa 60 bis 1000C durchgeführt werden können, so dass die unerwünschte Dimerisierung vermieden werden kann. Übliche Reaktionszeiten derartig katalysierter Reaktionen liegen allerdings bei etwa 8 bis 10 Stunden, so dass eine Beschleunigung der Reaktion aus wirtschaftlicher Sicht wünschenswert ist.
Eine Erhöhung der Reaktionstemperatur auf z.B. 120 bis 1500C zur Beschleunigung der Reaktion ist nicht möglich, da hierdurch nicht nur die gewünschte Modifizierung zu Carbodiimid- und/oder Uretonimingruppen enthaltenden Isocyanaten beschleunigt wird, sondern auch die Bildung von Isocyanatdimeren erfolgt. Nachteil ist, dass diese Dimeren schwer löslich sind und zu unerwünschten Trübungen führen.
Aufgabe der vorliegenden Erfindung war es daher, die Raum-Zeit-Ausbeute bei der Herstellung von Carbodiimid- (CD) und/oder Uretonimim- (UI) Gruppen enthaltenden Polyisocyanaten bei möglichst niedriger Reaktionstemperatur zu erhöhen und gleichzeitig die Bildung unerwünschter Nebenprodukte zu vermeiden und klare Produkte ohne Trübungen zu erhalten.
Darüber hinaus sollte die Katalysatormenge reduziert werden, so dass die Abstoppermenge gering gehalten werden kann.
Überraschenderweise wurde gefunden, dass die vorgenannten Aufgaben vorteilhaft dadurch gelöst werden können, indem die Carbodiimid-/Uretonimin-Modifizierung unter Zuhilfenahme von Mikrowellenstrahlung ausgeführt wird.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Carbodiimid-/Uretonimingruppen aufweisenden Polyisocyanaten (A), welches dadurch gekennzeichnet ist, dass a) Polyisocyanate (B), deren NCO-Wert größer ist als der der Carbodiimid-/Uretonimin- gruppen aufweisenden modifizierten Polyisocyanate (A), mit einem Katalysator vermischt werden, und b) diese Mischung einer Mikrowellenstrahlung ausgesetzt wird.
Unter Mikrowellenstrahlung wird in diesem Zusammenhang der Frequenzbereich von 300 MHz bis 300 GHz bzw. der Wellenlängenbereich von 1 m bis lmm verstanden (Römpp, Chemie Lexikon, Thieme Verlag, 9. erw. und neubearbeitete Aufl., 1995, S. 2785). In der Literatur werden lediglich Synthesen zur Herstellung niedermolekularer Verbindungen mittels Mikrowellenstrahlung in Lösungsmitteln im Labormaßstab beschrieben (B.L. Hayes, - -
Microwave Synthesis, Chemstry at the Speed of Light, CEM Publishing, Matthews, NC 28105, S. 77 - 156). Synthesen in Lösungsmitteln sind in technischen Anlagen unerwünscht.
Überraschenderweise wurde gefunden, dass Mikrowellenstrahlen die Carbodiimidisierung von Polyisocyanaten unter Erhalt klarer Reaktionsprodukte deutlich beschleunigen. In einem typischen Versuchsaufbau kann beispielsweise das kommerziell erhältliche Mono-Mode- Mikrowellengerät„Discover™" der Firma CEM, Kamp-Lintfort, Germany eingesetzt werden (Frequenz 2,45 GHz). In den nachfolgend näher beschriebenen Versuchen wurde ein 100 ml Reaktionsgefäß verwendet. Das Gerät der Firma CEM zeichnet sich u.a. dadurch aus, dass es eine für Mikrowellengeräte vergleichsweise hohe Energiedichte erzeugen kann, die zudem durch die Möglichkeit der gleichzeitigen Kühlung über längere Zeit aufrecht erhalten werden kann. Die Temperaturbelastung für das Reaktionsgemisch kann ebenfalls sehr niedrig gehalten werden.
Bevorzugt sind Energiedichten von mehr als 200 Watt/Liter. Mit eingeschlossen ist weiterhin die Einstrahlung der Mikrowellenenergie unter gleichzeitiger Kühlung des Reaktionsgemisches, so dass trotz hohen Energieeintrages nur eine vergleichsweise niedrige Reaktionstemperatur erreicht wird. Vorzugsweise wird zur Kühlung Druckluft verwendet; es können jedoch auch andere Kühlsysteme, insbesondere solche mit einem flüssigen Kühlmedium verwendet werden.
Selbstverständlich ist der Einsatz von Mikrowellengeräten nicht auf Mono-Mode-Geräte beschränkt, sondern es können auch in an sich analoger Weise Multi-Mode-Geräte verwendet werden. Multi-mode Geräte sind mit den allgemein bekannten Haushaltsgeräten vergleichbar und weisen inhomogene Mikrowellenfelder auf, d.h. es kommt aufgrund dieser unregelmäßigen Mikrowellenverteilung zu sogenannten Hot- und Coldspots innerhalb der Mikrowellenkammer, was durch Rotation eines Mikrowellentellers weitgehend ausgeglichen werden kann.
Mono-mode Geräte besitzen dagegen ein homogenes Mikrowellenfeld und weisen infolge eines speziellen Kammerdesigns keine derartigen Hot- und Coldspots auf. Das erfindungsgemäße Verfahren kann nicht nur batchweise, sondern durch Verwendung einer Pumpe und geeigneten Rohrreaktoren auch kontinuierlich durchgeführt werden. Es können auch mehrere Mikrowellengeräte in Reihe oder parallel geschaltet werden.
Das Verfahren kann selbstverständlich auch unter erhöhtem oder vermindertem Druck durchgeführt werden. Letzteres ist gegebenenfalls von Vorteil, da bei aromatischen Polyisocyanaten Kohlendioxid als Reaktionsprodukt aus dem Reaktionsraum abgeführt werden muss. Die Entfernung des Kohlendioxides kann selbstverständlich auch nach an sich beendeter Umsetzung in einem zweiten Reaktionsschritt erfolgen. Weiterhin sind Kombinationen derart denkbar, dass ein Teil des Kohlendioxides noch im Mikrowellenfeld und der andere Teil durch Nachbehandlung des an sich fertigen Reaktionsproduktes abgetrennt wird.
Das Verfahren unter erhöhtem Druck durchzuführen, kann beispielsweise dann in Betracht kommen, wenn aufgrund technischer Gegebenheiten keine Möglichkeit besteht, Kohlendioxid im Mikrowellenfeld auszuschleusen und somit infolge von Kohlendioxidblasen, etwa in Rohrreaktoren, letztlich die Durchflussmenge an Polyisocyanat bei konstanter Bestrahlungsdauer eines gegebenen Reaktionsvolumens herabgesetzt werden würde.
Bevorzugt wird das Verfahren ohne die Verwendung eines Lösungsmittels durchgeführt. In speziellen Fällen, z.B. bei Polyisocyanaten mit erhöhter Viskosität kann jedoch gegebenenfalls ein Lösungsmittel mitverwendet werden.
Bevorzugte Polyisocyanate sind organische Di- oder Polyisocyanate oder Polyisocyanatprepoly- mere. Als Di- oder Polyisocyanate kommen aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate in Frage, wie sie in Justus Liebigs Annalen der Chemie 562, (1949) 75 beschrieben werden, beispielsweise solche der Formel Q(NCO)n in der n eine ganze Zahl von 2 bis 4, vorzugsweise 2 und
Q einen aliphatischen Kohlenwasserstoffrest mit 2 bis 18, vorzugsweise 6 bis 10 C-Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 4 bis 15, vorzugsweise 5 bis 10 C- Atomen, einen aromatischen Kohlenwasserstoffrest mit 6 bis 15, vorzugsweise 6 bis 13 C-
Atomen, oder einen araliphatischen Kohlenwasserstoffrest mit 7 bis 15, vorzugsweise 7 bis
13 C-Atomen bedeutet.
Bevorzugt sind Polyisocyanate, wie sie in DE-A 28 32 253 beschrieben werden. Besonders bevorzugt eingesetzt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren („TDI"), Polyphenylen- polymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden („rohes MDI"), sowie daraus abgetrennte monomere Diiso- cyanate wie 4,4Λ- und/oder 2,4%- und/oder 2,2'-Diphenylmethandiisocyanat und deren Gemische.
Die nach dem erfindungsgemäßen Verfahren mittels Mikrowellenstrahlung unterstützter Synthese hergestellten Carbodiimid- (CD) und/oder Uretonimim- (UI) Gruppen enthaltenden Polyisocyanate können in der dem Fachmann bekannten Weise verwendet werden. Beispielhaft seien genannt: in - -
Abmischungen mit nicht modifizierten Polyisocyanaten oder Umsetzung mit Polyolen zur Herstellung von NCO-Prepolymeren oder OH-Prepolymeren. Weiterhin können die nach dem erfindungsgemäßen Verfahren erhaltenen Produkte zur Herstellung von PUR-Werkstoffen aller Art eingesetzt werden. Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden.
Beispiele Vergleichsbeispiel
1000 g 4,4' MDI (Desmodur 44M® der Bayer MaterialScience AG) wurden bei 600C unter N2 vorgelegt und mit 2,5 mg (= 2,5 ppm) 1-Methyl-Phospholinoxid versetzt. Es wurde auf 900C erhitzt und bei dieser Temperatur ca. 8 h gerührt, bis 8,7 1 CO2 abgespalten waren. Anschließend wurde die Reaktionsmischung mit der doppelt molaren Menge an Trifluormethansulfonsäure- trimethylsilylester (TMST) versetzt und abgekühlt.
Es wurde ein klares Produkt erhalten. Der NCO-Gehalt betrug 29,5 Gew.-%; die Viskosität lag bei 35 mPas (25°C). Beispiel 1 (erfindungsgemäß) Herstellung von Carbodiimid- (CD) und/oder Uretonimim- (UI) Gruppen enthaltenden Polyisocyanaten mittels mikrowellenstrahlung-unterstützter Synthese mit Phospholinoxid-Katalyse
1294,8 g 4,4'-MDI (Desmodur 44M® der Bayer MaterialScience AG) und x ppm (z.B. 3,25 mg (2,5 ppm)) Phospholinoxid wurden unter Rühren gemischt. Zur Durchführung der Bestrahlung (siehe Tabelle 1) wurden je 80 g der Mischung in einen 100 ml-Glaskolben überführt und anschließend in einem Mono-Mode Mikrowellengerät der Fa. CEM (Discover) einer Mikrowellenstrahlung ausgesetzt, wobei folgende Reaktionsparameter variiert wurden:
Reaktionszeit: 5 - 60 Minuten; konstanter Mikrowellenenergieeintrag von 200 bis 300 W unter kontinuierlicher Kühlung mit Druckluft. Der Verlauf der Reaktion wurde mit Hilfe einer Gasuhr über die Menge an entstandenem CO2 kontrolliert. Die Reaktionen wurden jeweils durch Zugabe von 5 ppm Trimethylsilyltrifluor- methansulfonsäuremethylester (TMST) abgestoppt, wenn jeweils 705 ml CO2 abgespalten worden waren. Es wurden klare Reaktionsprodukte erhalten. Der NCO-Gehalt sowie die Viskosität wurden bestimmt. - -
Tabelle 1 Reaktionsbedingungen und Ergebnisse
Figure imgf000009_0001
Die Beispiele in Tabelle 1 zeigen deutlich, dass die Reaktion zur Herstellung von klaren, Carbo- diimid-(CD) und/oder Uretonimim-(UI) Gruppen enthaltenden Polyisocyanaten gemäß dem erfindungsgemäßen Verfahren in erheblich kürzerer Zeit durchgeführt werden konnte, so dass die Raum-Zeit-Ausbeute deutlich höher ist als beim Vergleichsversuch.
Beispiel 2 (erfindungsgemäß) Herstellung von Carbodiimid- (CD) und/oder Uretonimim- (TJI) Gruppen enthaltenden Polyisocyanaten mittels mikrowellenstrahlung-unterstützter Synthese mit Triethylphosphat-Katalyse In einem 100 ml Glaskolben wurden 81,2 g 4,4'-MDI mit 1,65 g (2 Gew.%, Versuch 2-1, Tabelle 2), bzw. 0,82 g (1 Gew.-%, Versuch 2-2, Tabelle 2) Triethylphosphat (TEP) verrührt. Diese Mischungen wurden anschließend in einem Mono-Mode Mikrowellengerät der Fa. CEM (Discover) einer Mikrowellenstrahlung ausgesetzt, wobei die in Tabelle 2 aufgeführten Reaktionsbedingungen eingehalten wurden. Der Mikrowellenenergieeintrag von 300 W war konstant; es wurde nicht gekühlt. Der Verlauf der Reaktionen wurde mit Hilfe einer Gasuhr über die Menge an entstandenem CO2 kontrolliert. Die Reaktionen wurden dann abgebrochen, wenn 710 ml CO2 abgespalten waren. Die Reaktionen wurden durch Absenken der Temperatur abgestoppt. Der NCO-Gehalt, die Viskosität und das Aussehen der Reaktionsprodukte wurden bestimmt (Tabelle 2). Tabelle 2 Reaktionsbedingungen und Ergebnisse
Figure imgf000009_0002

Claims

- -Patentansprüche
1. Verfahren zur Herstellung von Carbodiimid- und/oder Uretonimim-Gruppen enthaltenden Polyisocyanaten (A), dadurch gekennzeichnet, dass a) Polyisocyanate (B), deren NCO- Wert größer ist als der der Carbodiimid- und/oder Uretonimin-Gruppen enthaltenden Polyisocyanate (A), mit einem Katalysator vermischt werden, und b) diese Mischung einer Mikrowellenstrahlung ausgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass monomodale Mikrowellenstrahlung mit homogenen Mikrowellenstrahlungsfeldern eingesetzt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass multimodale Mikrowellenstrahlung mit heterogenen Mikrowellenstrahlungsfeldern eingesetzt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Polyisocyanate aus der Gruppe Diphenylmethandiisocyanate, Polyphenylenpolymethylenpolyisocyanate und Toluylendiisocyanate, besonders bevorzugt 4,4'-, 2,4'- und 2,2'-MDI und deren Mischungen sowie 2,4- und 2,6-TDI und deren Mischungen eingesetzt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erhaltenen Polyisocyanate (A) NCO- Werte von 20 bis 46 Gew.%, besonders bevorzugt von 22 bis 30 Gew.-% aufweisen.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Katalysator, Phospholin- katalysatoren, Phospholinoxidkatalysatoren und Ester der Phosphorsäure eingesetzt werden.
7. Verwendung der nach dem Verfahren gemäß den Ansprüchen 1 bis 6 hergestellten modifizierten Polyisocyanate zur Herstellung von Isocyanat-Abmischungen.
8. Verwendung der nach dem Verfahren gemäß den Ansprüchen 1 bis 6 hergestellten modifizierten Polyisocyanate zur Herstellung von Isocyanat-Prepolymeren.
9. Verwendung der nach dem Verfahren gemäß den Ansprüchen 1 bis 6 hergestellten modifizierten Polyisocyanate zur Herstellung von Hydroxylgruppen terminierten Prepolymeren.
10. Verwendung der nach dem Verfahren gemäß den Ansprüchen 1 bis 6 hergestellten modifizierten Polyisocyanate zur Herstellung von geschäumten und nicht geschäumten Polyurethan- Werkstoffen.
PCT/EP2006/011336 2005-12-09 2006-11-27 Verfahren zur herstellung von carbodiimid- und/oder uretonimin-gruppen enthaltenden polyisocyanaten WO2007065578A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008543695A JP2009518473A (ja) 2005-12-09 2006-11-27 カルボジイミド基および/またはウレトンイミン基含有ポリイソシアネートの製造方法
EP06818835A EP1960448A1 (de) 2005-12-09 2006-11-27 Verfahren zur herstellung von carbodiimid- und/oder uretonimin-gruppen enthaltenden polyisocyanaten
BRPI0619525-3A BRPI0619525A2 (pt) 2005-12-09 2006-11-27 processo para produção de poliisocianatos que contêm grupos carbodiimida e/ou uretonimina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005058835A DE102005058835A1 (de) 2005-12-09 2005-12-09 Verfahren zur Herstellung von Carbodiimid- und/oder Uretonimin-Gruppen enthaltenden Polyisocyanaten
DE102005058835.2 2005-12-09

Publications (1)

Publication Number Publication Date
WO2007065578A1 true WO2007065578A1 (de) 2007-06-14

Family

ID=37635725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/011336 WO2007065578A1 (de) 2005-12-09 2006-11-27 Verfahren zur herstellung von carbodiimid- und/oder uretonimin-gruppen enthaltenden polyisocyanaten

Country Status (9)

Country Link
US (1) US20070135608A1 (de)
EP (1) EP1960448A1 (de)
JP (1) JP2009518473A (de)
KR (1) KR20080080522A (de)
CN (1) CN101321791A (de)
BR (1) BRPI0619525A2 (de)
DE (1) DE102005058835A1 (de)
TW (1) TW200734363A (de)
WO (1) WO2007065578A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024097A (ja) * 2007-07-20 2009-02-05 Nisshinbo Ind Inc カルボジイミド化合物の製造方法
DE202019102078U1 (de) 2019-03-08 2019-04-23 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Formaldehyd-Fänger für Bindemittelsysteme
DE102018133239A1 (de) 2018-12-20 2020-06-25 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Isocyanat-Komposition und Bindemittelsystem enthaltend diese Isocyanat-Komposition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2386600B1 (de) 2010-04-15 2013-06-19 LANXESS Deutschland GmbH Isocyanatgruppen-enthaltende Vernetzer für Nitrilkautschuke
MX2014007223A (es) 2011-12-20 2014-09-22 Bayer Ip Gmbh Hidroxiaminopolimeros y procedimientos para su preparacion.
JP2017193656A (ja) * 2016-04-21 2017-10-26 Dic株式会社 粘着テープ、その製造方法、物品及び携帯電子端末
CN108586706B (zh) * 2018-04-18 2021-06-29 万华化学集团股份有限公司 制备含有碳化二亚胺和/或脲酮亚胺类衍生物的改性异氰酸酯混合物的方法
EP3741766B1 (de) * 2019-05-24 2022-08-31 Covestro Intellectual Property GmbH & Co. KG Neue katalysatoren für die synthese von oligomeren isocyanaten
CN115417971B (zh) * 2022-09-16 2023-09-19 万华化学集团股份有限公司 一种利用tdi精馏塔塔釜液制备的阻燃异氰酸酯组合料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2447143A1 (de) * 1973-10-01 1975-04-03 Minnesota Mining & Mfg Verkapselter isocyanurat-katalysator
EP0609698A1 (de) * 1993-02-01 1994-08-10 Bayer Ag Verfahren zur Herstellung organischer Carbodiimide und ihre Verwendung als Kunststoff Stabilisatoren

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853473A (en) * 1956-08-27 1958-09-23 Du Pont Production of carbodiimides
DE2832253A1 (de) * 1978-07-22 1980-01-31 Bayer Ag Verfahren zur herstellung von formschaumstoffen
DE3840079A1 (de) * 1988-11-28 1990-06-07 Illbruck Gmbh Verfahren zur herstellung von elastischen schaumstoffen auf polyurethan-basis durch mikrowellenverschaeumung
DE4117384A1 (de) * 1991-05-28 1992-12-03 Bayer Ag Verfahren zur herstellung fluessiger, lagerstabiler carbodiimid- und/oder uretonimingruppen aufweisender organischer isocyanate und ihre verwendung zur herstellung von polyurethankunststoffen
CN1070875C (zh) * 1995-01-13 2001-09-12 爱赛克斯特种产品公司 可用湿气固化的两组分聚氨酯粘合剂
US6120699A (en) * 1998-09-21 2000-09-19 Basf Corporation Storage stable methylene bis(phenylisocyanate) compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2447143A1 (de) * 1973-10-01 1975-04-03 Minnesota Mining & Mfg Verkapselter isocyanurat-katalysator
EP0609698A1 (de) * 1993-02-01 1994-08-10 Bayer Ag Verfahren zur Herstellung organischer Carbodiimide und ihre Verwendung als Kunststoff Stabilisatoren

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024097A (ja) * 2007-07-20 2009-02-05 Nisshinbo Ind Inc カルボジイミド化合物の製造方法
DE102018133239A1 (de) 2018-12-20 2020-06-25 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Isocyanat-Komposition und Bindemittelsystem enthaltend diese Isocyanat-Komposition
WO2020126689A1 (de) 2018-12-20 2020-06-25 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Isocyanat-komposition und bindemittelsystem enthaltend diese isocyanat-komposition
DE202019102078U1 (de) 2019-03-08 2019-04-23 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Formaldehyd-Fänger für Bindemittelsysteme
WO2020182724A1 (de) 2019-03-08 2020-09-17 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Formaldehyd-fänger für bindemittelsysteme

Also Published As

Publication number Publication date
KR20080080522A (ko) 2008-09-04
BRPI0619525A2 (pt) 2011-10-04
US20070135608A1 (en) 2007-06-14
CN101321791A (zh) 2008-12-10
DE102005058835A1 (de) 2007-06-14
TW200734363A (en) 2007-09-16
JP2009518473A (ja) 2009-05-07
EP1960448A1 (de) 2008-08-27

Similar Documents

Publication Publication Date Title
WO2007065578A1 (de) Verfahren zur herstellung von carbodiimid- und/oder uretonimin-gruppen enthaltenden polyisocyanaten
EP2785761B1 (de) Verfahren zur kontinuierlichen isocyanatmodifizierung
EP0377177B1 (de) Verfahren zur Herstellung von Uretdion-und Isocyanuratgruppen aufweisenden Polyisocyanaten, die nach diesem Verfahren erhältlichen Polyisocyanate und ihre Verwendung in Zweikomponenten Polyurethanlacken
EP1521789B1 (de) Uretdiongruppen aufweisende isocyanate
EP0317744B1 (de) Verfahren zur Herstellung (cyclo)-aliphatischer Uretdione
EP2100886B1 (de) Herstellung von Polyisocyanaten vom Trimertyp
EP2700665B1 (de) Verfahren zur Trimerisierung cycloaliphatischer Diisocyanate
EP2415795B1 (de) Verfahren zur Herstellung von Polyisocyanaten und deren Verwendung
EP0671426A1 (de) Modifizierte (cyclo)aliphatische Polyisocyanatmischungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE2837770C2 (de) Verfahren zur Herstellung von lagerbeständigen, flüssigen, Carbodiimidgruppen aufweisenden Polyisocyanaten
EP1379569B1 (de) Verfahren zur herstellung von mdi, insbesondere von 2,4'-mdi
DE4238046A1 (de) Neue Bis-(4-substituierte-2,6-diisopropyl-phenyl)-carbodiimide, ein Verfahren zu ihrer Herstellung und ihre Verwendung sowie die zu ihrer Herstellung verwendbaren 4-substituierten 2,6-Diisopropyl-phenylisocyanate
DE4124318A1 (de) Verfahren zur reinigung von polyisocyanaten, die so gereinigten polyisocyanate und ihre verwendung
EP3307709B1 (de) Verfahren zur herstellung von polymeren carbodiimiden unter zusatz von cäsiumsalzen, polymere carbodiimide und deren verwendung
EP0927731B1 (de) Verfahren zur Herstellung eines farbreduzierten isocyanuratgruppenhaltigen Polyisocyanats auf Basis von 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI)
DE19735043A1 (de) Verfahren zur Herstellung farbheller Uretdionpolyisocyanate
EP3741766B1 (de) Neue katalysatoren für die synthese von oligomeren isocyanaten
EP2287151B1 (de) Verfahren zur Herstellung von Polyisocyanaten mit Biuretstruktur
DE1803723C3 (de) Gemische auf Basis aromatischer Polyisocyanate, Verfahren zu ihrer Herstellung und Verwendung zur Herstellung von Polyurethanschaumstoffen
EP3976683A1 (de) Verbesserte destillierfähigkeit durch verdünnung mit abzutrennender komponente
EP3838947A1 (de) Verfahren zur herstellung von hydroxy-terminierten prepolymeren
DE19824490A1 (de) Verfahren zur Herstellung Imidooxadiazindiongruppen enthaltender Polyisocyanate, die so hergestellte Verfahrensprodukte und deren Verwendung
WO2006063745A1 (de) Verfahren zur herstellung von vergilbungsarmen (cyclo)aliphatischen polyisocyanaten
WO2021122285A1 (de) Verfahren zur kontinuierlichen herstellung von hydroxy-terminierten prepolymeren
EP3845576A1 (de) Verfahren zur herstellung von isocyanurat

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045702.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006818835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4005/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087013595

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008543695

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006818835

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0619525

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080609