WO2007064004A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2007064004A1
WO2007064004A1 PCT/JP2006/324133 JP2006324133W WO2007064004A1 WO 2007064004 A1 WO2007064004 A1 WO 2007064004A1 JP 2006324133 W JP2006324133 W JP 2006324133W WO 2007064004 A1 WO2007064004 A1 WO 2007064004A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
sox
exhaust gas
exhaust
ozone
Prior art date
Application number
PCT/JP2006/324133
Other languages
English (en)
French (fr)
Inventor
Hirohito Hirata
Masaru Kakinohana
Masaya Ibe
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06833903A priority Critical patent/EP1959109B1/en
Priority to JP2007548030A priority patent/JP4513862B2/ja
Priority to CN2006800448632A priority patent/CN101316992B/zh
Priority to US12/095,609 priority patent/US20100275586A1/en
Publication of WO2007064004A1 publication Critical patent/WO2007064004A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/085Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/38Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust emission control device for an internal combustion machine M, and more particularly to an exhaust emission purification device for an internal combustion engine provided with exhaust gas purification means such as a catalyst for purifying exhaust gas.
  • NO X catalysts have been put into practical use to purify nitrogen oxides (Nx) contained in the exhaust gas of lean combustion internal combustion engines.
  • Nx nitrogen oxides
  • a NOx catalyst with NOx storage for example, an alkaline earth such as barium (B a) and a noble metal such as platinum (P t) are supported on alumina as a carrier.
  • NO X in the exhaust gas is occluded in the NO x catalyst in the form of nitrate (B a (N_ ⁇ 3) 2).
  • N. ⁇ X catalyst is used in the exhaust gas when the internal combustion engine is operating at a lean air-fuel ratio.
  • the NO X catalyst has the property of storing sulfur components in exhaust gas as sulfates such as BaSO and being poisoned by sulfur components (S poison). Since the sulfate stored in the NO X catalyst is more stable than the nitrate, it is not released from the N0x catalyst and gradually accumulates in the NOx catalyst even when the exhaust air-fuel ratio is fuel-rich. When the amount of sulfate in the Nx catalyst increases, the amount of Nx that can be absorbed by the Nx catalyst gradually decreases, and the NOx storage capacity of the NOx catalyst decreases.
  • JP 2000-145436 A discloses a device that absorbs SOx in exhaust gas by a SOx absorbent upstream of the NOx absorbent. According to this, SOX in the exhaust gas is absorbed by the SOx absorbent before reaching the NO X absorbent, and S poisoning of the NOx absorbent is suppressed.
  • the SOx absorbent does not have sufficient SOx absorption capacity at low temperatures, and at this low temperature, SOx passes through the SOx absorbent and is absorbed by the NOx absorbent. There is a problem. Moreover, there is a problem that the SOx absorption capacity of the SOx absorbent decreases with time, and it is difficult to maintain a sufficient SOx absorption capacity over a long period of time. Disclosure of the invention
  • the present invention was devised to solve the above problems, and its purpose is to absorb S 0 X sufficiently even at low temperatures when absorbing S 0 X in exhaust gas upstream of exhaust purification means such as a catalyst. It is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine that can exhibit the performance and suppress the decrease in SOx absorption capacity.
  • an exhaust gas purification apparatus for an internal combustion engine in an exhaust passage of an internal combustion engine, exhaust purification means for purifying exhaust gas exhausted from a combustion chamber, and the exhaust gas Provided in the exhaust passage at a position upstream of the purifying means, absorbs SO X in the exhaust gas, and supplies ozone to the exhaust passage at a position upstream of the SOx trap catalyst.
  • An ozone supply means capable of purifying, and the exhaust purification means purifies at least one component of HC, CO, NOx in the exhaust gas at a purification rate higher than that of the SO X trap catalyst.
  • SOx contained in exhaust gas can be absorbed by the SO X trap catalyst before reaching the exhaust purification means, and sulfur poisoning of the exhaust purification means can be prevented. it can.
  • it is supplied to a position upstream of the SOx trap catalyst.
  • Ozone which is a strong oxidizing gas, can oxidize SOx in the exhaust gas and make it easily absorbed. Therefore, SO x can be absorbed by the SOx trap catalyst even at low temperatures.
  • “Purification” of exhaust gas includes absorption, adsorption or occlusion of specific components in the exhaust gas.
  • the S O x trap catalyst preferably contains an alkali metal element, an alkaline earth metal element, or a rare earth element.
  • the exhaust purification means includes an occlusion reduction type N O X catalyst, and the occlusion reduction type N O X catalyst carries a larger amount of noble metal than the S O X trap catalyst.
  • the amount of noble metal supported from the upstream end to the downstream end of the SO x trap catalyst is constant, and the amount of noble metal supported from the upstream end to the downstream end of the NOx storage reduction catalyst is constant, but the storage reduction type
  • the total supported amount of NOX catalyst can be made larger than the total supported amount of SOX trap catalyst.
  • the amount of noble metal supported may be gradually increased from the upstream end of the SOX trap catalyst to the downstream end of the NOx storage reduction catalyst.
  • the SO trap catalyst does not have an active site made of a noble metal.
  • the problem of sulfur poisoning where the active sites are covered with sulfate as SO x accumulates in the SO x trap catalyst, can be solved, and the SO x absorption capacity decreases with time. Can be suppressed.
  • FIG. 1 is a system diagram schematically showing an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention.
  • Figure 2 is an enlarged view of the SOX trap catalyst cell.
  • Figure 3 is an enlarged view of the carrier.
  • FIG. 4 is a diagram showing the entire experimental apparatus for experiments conducted in connection with the present embodiment.
  • Fig. 5 shows the details of V in Fig. 4.
  • FIG. 6 is a graph showing a comparison of the ratio of the sulfur content trapped by the S O X trap catalyst of each example.
  • FIG. 1 is a system diagram schematically showing an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention.
  • 10 is an internal combustion engine, that is, an engine, and the engine of this embodiment is a spark ignition internal combustion engine, more specifically, a direct injection gasoline engine.
  • the engine may be a compression ignition type internal combustion engine, that is, a diesel engine.
  • the engine type and type are not limited as long as the exhaust gas contains a sulfur component.
  • 1 1 is an intake manifold connected to an intake port
  • 1 2 is an exhaust manifold connected to an exhaust port
  • 1 3 is a combustion chamber.
  • the fuel supplied from the fuel tank (not shown) to the high pressure pump 17 is pumped to the delivery pipe 18 by the high pressure pump 17 and stored in a high pressure state, and the high pressure in the delivery pipe 18 is stored.
  • Fuel is directly injected into the combustion chamber 13 from the fuel injection valve 14.
  • the exhaust gas from the engine 10 passes from the exhaust manifold 12 through the turbocharger 19 and then flows into the downstream exhaust passage 15 where it is purified as described later and then discharged to the atmosphere.
  • the exhaust passage 15 is provided with a NO x catalyst 20 for purifying N0x in the exhaust gas as an exhaust purification means for purifying the exhaust gas discharged from the combustion chamber 13.
  • the exhaust purification means is not limited to the NOX catalyst 20, and any means may be used as long as it is poisoned by the sulfur component contained in the exhaust gas and loses the original exhaust purification performance. Good.
  • Other exhaust purification means include three-way catalyst, HC adsorbent, N Ox adsorbent, particulate matter oxidation catalyst, and the like.
  • the exhaust gas purification means may consist of a combination of two or more of these.
  • the NO X catalyst 20 of this embodiment is an NOx storage reduction (NSR) catalyst.
  • NSR NOx storage reduction
  • NOx catalyst 20 the substrate surface made of alumina A 1 2 0 oxide such as 3, a noble metal such as platinum P t as active sites, and the NOx absorption Ingredient consists are carried Yes.
  • NOx absorption components include, for example, potassium K, sodium Na, lithium Li, alkali metals such as cesium C s, alkaline earths such as norm Ba, force russium C, lanthanum La, yttrium Y It consists of at least one selected from rare earths such as
  • the NOx storage reduction catalyst 20 absorbs NOx when the air-fuel ratio of the exhaust gas flowing into it is leaner than a predetermined value (typically the stoichiometric air-fuel ratio), and the exhaust gas flowing into it It absorbs and releases NOx, releasing the absorbed NOx when the oxygen concentration of the gas decreases.
  • a direct injection gasoline engine is used, and lean burn operation can be executed.
  • the exhaust air-fuel ratio is lean during the lean burn operation, and N0X catalyst 20 is N.
  • ⁇ Absorb x When the reducing agent is supplied upstream of the NOx catalyst 20 and the air-fuel ratio of the inflowing exhaust gas becomes rich, the ⁇ ⁇ catalyst 20 releases the absorbed NQx. The released NOX reacts with the reducing agent and is reduced and purified.
  • Any reducing agent may be used as long as it generates reducing components such as hydrocarbons HC and carbon monoxide CO in the exhaust gas.
  • Gases such as hydrogen and carbon monoxide, liquids or gases such as propane, propylene, and butane are used.
  • Liquid fuels such as hydrocarbons, gasoline, light oil, and kerosene can be used.
  • gasoline which is a fuel
  • fuel is injected from an injection valve (not shown) provided separately in the upstream exhaust passage 15 of the NOx catalyst 20, or a larger amount of fuel is used than usual.
  • NOx catalyst 20 reduces NOx for the purpose of reducing NOx release.
  • the supply of the agent is referred to as a rich spike.
  • the NO X catalyst 20 may be a selective reduction type NO X catalyst (SCR: Selective Catalitic Reduction).
  • SCR Selective Catalitic Reduction
  • the selective reduction the NO x catalyst is or that carries a noble metal such as P t to the substrate surface, such as Zeoraito or ⁇ alumina, which was supported by Ion exchanged transition metal such as Cu on the substrate surface, Examples thereof include those in which a titania Z vanadium catalyst (v 2 o 5 ZWO 3 / T io 2 ) is supported on the surface of the base material.
  • HC in this selective reduction type NO X catalyst, under the condition that the air-fuel ratio of the inflowing exhaust gas is lean, HC :, NO in the exhaust gas reacts constantly and simultaneously, and ⁇ 2 , 0 2 , H 2 O As it is, it is purified.
  • the presence of HC is essential for NOX purification. Even if the air-fuel ratio is lean, unburned HC is always contained in the exhaust gas, so this can be used to reduce and purify NOx.
  • the reducing agent may be supplied by performing rich spike like the NOx storage reduction catalyst. In this case, ammonia or urea can be used as the reducing agent in addition to those exemplified above.
  • the three-way catalyst is made by supporting noble metals such as Pt, Pd and Rh on porous oxides such as alumina and ceria. It can simultaneously purify HC, CO and NOx in the exhaust gas in a nearby atmosphere.
  • the HC adsorbent is, for example, a porous adsorbent mainly composed of silica (for example, Si 0 2 supported between S i 0 4 layered crystals), a porous material such as Zeolai ⁇ , etc. It is formed in a cylindrical shape with a large number of thin axial flow channels (cells), and adsorbs HC components in the exhaust that flows when the adsorbent temperature is low, into the porous pores.
  • N_ ⁇ _X adsorbent a porous Zeorai Bok etc., is to hold intact rather than a NO or N0 2 in the exhaust gas in the form of nitrates.
  • the particulate matter oxidation catalyst is supported on the surface of a particulate filter that collects particulate matter (PM) discharged mainly from diesel engines, and the collected particulate matter is Oxidation (combustion) removal at relatively low temperatures, for example, noble metals such as platinum Pt, palladium Pd, rhodium Rh, and alkali metals such as potassium, sodium Na, lithium Li, cesium Cs, Selected from alkaline earth metals such as norium Ba, calcium Ca ', strontium Sr, lanthanum a, rare earth such as yttrium Y, cerium Ce, and transition metals such as iron Fe It consists of at least one.
  • noble metals such as platinum Pt, palladium Pd, rhodium Rh, and alkali metals such as potassium, sodium Na, lithium Li, cesium Cs, Selected from alkaline earth metals such as norium Ba, calcium Ca ', strontium Sr, lanthanum a, rare earth such
  • the SOx trap catalyst 30 that absorbs SOx in the exhaust gas is provided in the exhaust passage 15 at a position upstream of the NOx catalyst 20. ing. According to this, SOx contained in the exhaust gas can be absorbed (or adsorbed and trapped) by the SO X trap catalyst 30 before reaching the NOx catalyst 20, and sulfur poisoning of the N0x catalyst 20 can be reduced. Can be prevented. In addition, there is a possibility that the sulfur poisoning regeneration control for recovering from NO poisoning of the NO X catalyst 20 as commonly performed can be omitted.
  • This sulfur poisoning regeneration control is performed by temporarily making the air-fuel ratio stoichiometric or rich when the exhaust temperature in the NOx catalyst 20 is higher than a relatively high predetermined temperature (for example, 400 ° C.). As a result, the sulfate absorbed in the NOx catalyst 20 is decomposed into sulfur oxide (SOx) and desorbed from the NOx catalyst 20.
  • a relatively high predetermined temperature for example, 400 ° C.
  • the exhaust temperature at which the sulfate can be desorbed from the NOx catalyst 20 is, for example, 400 ° C or more, which is a temperature that can be reached relatively easily in the case of a gasoline engine as in this embodiment. In the case of diesel engines with low exhaust temperatures, it is relatively difficult to reach.
  • the temperature at which NOx can be released and reduced in the NO X catalyst is lower than the temperature at which sulfate can be desorbed, for example, about 200 to 300 ° C. Sulfate is more stable than nitrate, and cannot be removed unless the ambient temperature is higher than that of nitrate.
  • the exhaust temperature at which sulfate can be desorbed depends on the material and structure of the exhaust purification means, and may be, for example, 500 ° C or higher.
  • an ozone supply means capable of supplying ozone (0 3 ) is provided in the exhaust passage 15 at a position upstream of the S0 X trap catalyst 30.
  • Ozo The ozone supply means is connected to the ozone supply member 40 inserted into the exhaust passage 15 at a position upstream of the SOX trap catalyst 30 and the ozone supply member 40 through the ozone supply passage 4 2.
  • It consists of an ozone generator 41. Ozone generated in the ozone generator 4 1 reaches the ozone supply member 40 through the ozone supply passage 42 and passes through the supply port 4 3 provided in the ozone supply member 40 toward the downstream side in the exhaust passage 15. Injected and supplied.
  • the ozone supply member 40 extends in the diameter direction of the exhaust passage 15, and the supply ports 43 are arranged at predetermined intervals in the longitudinal direction of the ozone supply member 40 so that ozone is evenly distributed in the exhaust passage 15. Has been.
  • the position where these supply ports 43 exist is the ozone supply position in the exhaust passage 15.
  • the ozone generator 41 a form in which ozone is generated while flowing air or oxygen as a raw material in a discharge tube to which a high voltage can be applied, or any other type can be used.
  • the air or oxygen used as the raw material here is a gas taken from the outside of the exhaust passage 15, for example, a gas contained in the outside air, and is not a gas contained in the exhaust gas in the exhaust passage 15.
  • ozone generation efficiency is higher when a low temperature raw material gas is used than when a high temperature raw material gas is used. Therefore, it is possible to improve the ozone generation efficiency by generating ozone using the gas outside the exhaust passage 15 as described above.
  • the ozone generator 4 1 is connected to an electronic control unit (hereinafter referred to as ECU (Electrical Control Unit)) 10 0 0 as a control means, and generates ozone when the ECU 1 0 is turned on. 0 Stops ozone generation when turned off by 0.
  • the generated ozone is supplied into the exhaust passage 15 from the supply port 43 of the ozone supply member 40 as described above, and thereby ozone supply is executed.
  • the ozone generated when the ozone generator 41 is turned on at the time of ozone supply is immediately supplied, but ozone is generated and stored in advance, and ozone is supplied by switching the valve. Also good. Add ozone with a pump or a compressor. It is also possible to supply with pressure.
  • the ECU 100 executes the rich spike control for releasing NO X from the Nx catalyst 20 according to a predetermined program stored in advance. That is, when a predetermined rich spike execution condition is satisfied, the ECU 100 simultaneously injects fuel from a separately provided rich spike injection valve or injects a larger amount of fuel from the fuel injection valve 14 than usual. Or execute a rich injection by making a post injection from the fuel injection valve 14. As a result, the air-fuel ratio of the exhaust gas flowing into the NO X catalyst 20 becomes richer than the stoichiometric air-fuel ratio, N0x stored in the NO X catalyst 20 is released, and the unburned components (CO , HC) to reduce and purify. In this way, the rich spike control means is constituted by the ECU 100.
  • FIG. 2 shows an enlarged view of the Sx trap catalyst 30 cell.
  • the SOx trap catalyst 30 has a base material 32 made of, for example, a cylindrical colloidal material as a whole, and this base material 32 is formed in a mesh shape or a honeycomb shape to form a plurality of cells 33 as exhaust gas passage holes. Is defined.
  • Cell 33 It extends in the axial direction of the SOx trap catalyst 30 (front and back in Fig. 2), and its both ends are opened to form the exhaust gas inlet and outlet.
  • a carrier 34 as a washcoat layer is formed over the entire surface.
  • the support 34 is made of, for example, alumina (A 1 2 0 3 ), and its thickness is, for example, about 20 to 50 m.
  • FIG. 3 shows an enlarged view of the carrier 34.
  • the carrier 34 is configured by aggregating innumerable particles 35, and pores 36 capable of gas diffusion are formed between the particles 35.
  • the particle size of the particles 35 is, for example, about several tens of nm.
  • the carrier 34 is sintered by mixing and dispersing the powder of the material constituting the carrier 34 in a solution such as water, immersing the base material 32 in this solution, drying the base material 32, and firing it. .
  • SOX reaction components 38 On the surface of the particles 35 forming the carrier 34, a large number of components that react with SOx to generate sulfates, that is, SOX reaction components 38 are provided.
  • the SOX trap catalyst 30 may include the active point 37.
  • the active point 37 is not essential, but is preferably absent.
  • the reaction component 38 is preferably composed of an alkali metal element, an alkaline earth metal element, or a rare earth element.
  • the alkali metal element is preferably Li, Na or K
  • the alkaline earth metal element is preferably Ba, Ca or Sr
  • the rare earth element is La. preferable. '
  • the exhaust gas discharged from the combustion chamber 1 3 of the engine 10 is supplied with ozone from the ozone supply member 40, and then sequentially passes through the S0x trap catalyst 30 and the NOx catalyst 20. .
  • SOX in the exhaust gas is oxidized by ozone as a strong oxidizing gas, and is easily absorbed, that is, so 3 '.
  • S0 3 reacts with the SO x reaction component 3 8 in the S'O x trap catalyst 30 without the assistance of the active point 3 7 to produce sulfate.
  • This sulfate is adsorbed on the carrier 34, and as a result, SOx in the exhaust gas is absorbed by the SOx trap catalyst 30. Since the exhaust gas enters the pores 36 between the particles 35, the formation and adsorption of sulfate is performed over a wide area on the particle surface.
  • the absorption of S0x is possible even at a low temperature when the temperature of the exhaust gas or SOx soot catalyst 30 is low. This is because even at low temperatures, Ox is oxidized and easily absorbed by ozone.
  • conventional SOX trap catalysts cannot absorb SOX without relying on the active point 37, so absorb SOX unless the catalyst temperature rises above the activation temperature. It cannot be in a state where it is easy to be done. As a result, SOX cannot be absorbed at low temperatures, and this SO x passes through the SOx ⁇ wrap catalyst and adheres to the NO x catalyst, resulting in sulfur poisoning.
  • the exhaust emission control device according to the present invention does not have such a situation. For example, it is possible to prevent sulfur poisoning of the NOx catalyst immediately after engine startup or during low-temperature operation.
  • the present embodiment there is an advantage that a decrease in SO X absorption capacity in the Sx trap catalyst 30 can be suppressed and a sufficient SO X absorption capacity can be maintained over a long period of time. That is, when S0x is continuously absorbed by the S0x trap catalyst, sulfate is accumulated on the support 35. At this time, in the case of a conventional SOx trap catalyst, the active site 37 is gradually covered with sulfate, sulfur poisoning proceeds, and the activity and SOx absorption capacity of the catalyst decrease. On the other hand, in the exhaust emission control device according to the present invention, ozone is supplied, so S0x can be absorbed without the assistance of the active point 37, and the active point 37 does not actually exist in this embodiment.
  • the S0 X catalyst 30 does not have the active point 37, there are the following advantages. That is, if the sulfate adsorbed on the SOx trap catalyst is decomposed and desorbed, the sulfur content is adsorbed on the NOx catalyst 20 on the downstream side, resulting in sulfur poisoning of the Nx catalyst 20.
  • the atmosphere temperature of the catalyst is set to a high temperature (for example, 400 ° C or higher) at which sulfate can be desorbed, similar to the sulfur poisoning regeneration of NO X catalyst.
  • the atmosphere of the catalyst a reducing (rich) atmosphere
  • the SOx trap catalyst is exposed to the reducing atmosphere as well.
  • the exhaust temperature is a temperature at which sulfate can be desorbed due to high-load operation, etc.
  • the sulfate is decomposed and desorbed from the SOx trap catalyst, and the downstream NOX catalyst is poisoned with sulfur.
  • the sulfate desorption effect in this conventional SOx trap catalyst is an effect brought about by an active site made of a noble metal.
  • the active site becomes the entrance of the reaction, sulfate Cause decomposition and desorption.
  • the SOx trap catalyst 30 of the present embodiment since the active site 37 does not exist, even if the conditions such as the high temperature and the reducing atmosphere as described above are satisfied, the sulfate is not easily desorbed. Therefore, it is possible to prevent the NOx catalyst 20 on the downstream side from being poisoned with sulfur by the sulfate desorbed from the SOx soot wrap catalyst 30 during the rich spike execution.
  • the absorption of SO in the SO trap trap 30 is performed with the assistance of the supply ozone. Therefore, it is desirable to always supply ozone during engine operation, even if it is small.
  • SO X trap catalyst 30 absorbs SO X
  • the amount of SOx absorbed eventually reaches the maximum absorption amount of SO X trap catalyst 30, and S Ox trap catalyst 30 absorbs S Ox. Performance is significantly reduced (ie, saturated). If this is the force at which the S O X X wrap catalyst 30 is full, it may be possible to replace the S O X ⁇ wrap catalyst 30. Warning means such as a lamp or buzzer may be provided to inform the user of this replacement time.
  • Mako a means for detecting the full state of the S0x trap catalyst 30 may be provided. For example, the amount of fuel consumed is integrated based on the detected value of the ECU 100 power fuel meter, and the full state of the S0x trap catalyst 30 is detected based on this amount of fuel consumed.
  • the SO X trap catalyst will become full until the end of the vehicle's useful life. Therefore, there is a possibility that it will continue to exhibit sufficient SOx absorption capacity. Therefore, in such a case, it is not necessary to consider replacement of the SOx trap catalyst.
  • the NO X catalyst 20 purifies NO X in the exhaust gas at a higher purification rate than the S0x trap catalyst 30.
  • the amount of precious metal supported on the downstream NOx catalyst 20 is equal to the amount of precious metal supported on the upstream SOx trap catalyst 30. It is preferable to increase the amount. In this case, the amount of the noble metal supported from the upstream end to the downstream end of the SO x soot catalyst 30 is constant, and the amount of the noble metal supported from the upstream end to the downstream end of the NOX catalyst 20 is constant, The total supported amount of the noble metal of the catalyst 20 can be made larger than the total supported amount of the noble metal of the SO x trap catalyst 30. Alternatively, the amount of the noble metal supported may be gradually increased from the upstream end of the SO x trap catalyst 30 to the downstream end of the Nx catalyst 20.
  • Fig. 4 shows the whole experimental setup
  • Fig. 5 shows the details of V 'in Fig. 4.
  • 6 1 is a plurality of gas cylinders, and each gas cylinder is filled with a raw material gas for making a model gas imitating the exhaust gas composition of a gasoline engine.
  • the source gas here refers to gases such as N 2 , 0 2 , and CO.
  • 62 is a simulated gas generator, equipped with a mass flow controller, that mixes a predetermined amount of each source gas to generate simulated gas MG. As shown in detail in Fig.
  • the simulated gas MG passes through the three-way elbow 7 2 and then is placed in series in the quartz tube 6 3 and the SO x trap catalyst 6 4 and the NOx storage reduction catalyst 6 5 Are passed through in order, and discharged from an exhaust duct (not shown) to the outside.
  • the gaseous oxygen 0 2 supplied from the oxygen cylinder 6 7 is bifurcated.
  • the flow rate is controlled by the flow control unit 6 8 and then supplied to the ozone generator 69. Is done.
  • the oxygen in the ozone generator 6 9 is a selectively ,, and partially ozone ⁇ 3, these oxygen and ozone (or oxygen alone) reaches the ozone analyzer 7 0.
  • the flow rate of oxygen is controlled by another flow rate control unit 71, and then mixed with the gas supplied from the ozone generator 69, leading to the ozone analyzer 70.
  • the ozone analyzer 70 measures the ozone concentration of the gas flowing into it, that is, the supply gas, and then the flow rate of the supply gas is controlled by the flow control unit ⁇ ⁇ 1. Excess supply gas is discharged to the outside from an exhaust duct (not shown), and the flow rate is controlled.
  • the supplied gas is mixed with the simulated gas MG in a three-way elbow 72 as shown in FIG. This mixed gas is passed through the SOx trap catalyst 64 and the NOx storage reduction catalyst 65 in order, and then the exhaust gas analyzer 78 for measuring the concentration of S0x, S0 2 and H 2 S, and the ozone for measuring the ozone concentration. After being processed by the analyzer 9, it is discharged outside through an exhaust duct (not shown).
  • An electric heater 74 is provided on the outer peripheral portion of the quartz tube 63 so that the temperature of the SOx trap catalyst 64 is controlled.
  • a temperature sensor 75 for measuring the catalyst bed temperature of the S0x trap catalyst 64 is provided.
  • For NO X catalyst 65 diameter 30mm, length 25 mm, cell wall thickness 4m i 1 (milli inch length, 1/1000 inch) (approximately 0.1 mm), number of cells 400 cpsi (cells per square inch ) (About 62 pieces per square centimeter) of cordierite honeycomb substrate coated with key A 1 2 0 3 as a carrier was used.
  • the coating amount is 1 2 O gZL (however, the denominator L (liter) means per 1 L of catalyst).
  • barium acetate was loaded with water and baked at 500 ° C. for 2 hours.
  • the supported amount of barium acetate is 0.2mo 1 ZL.
  • This catalyst was immersed in a solution containing ammonium hydrogen carbonate and dried at 250 ° C. Furthermore, Pt was supported using an aqueous solution containing dinitrodiammine platinum, dried, and calcined at 450 ° C for 1 hour. The amount of Pt supported is 2 g and L.
  • the electric heater 74 is controlled so that the temperature detected by the temperature sensor 75 is constant (200 ° C).
  • a simulated gas having the following composition is circulated.
  • the supply gas is mixed with the simulation gas at the position of the three-way elbow 72.
  • the ozone generator 69 when supplying ozone.
  • the supply gas becomes a mixed gas of ozone and oxygen.
  • the ozone generator 69 is turned off. As a result, the supply gas is only oxygen.
  • the composition of the pseudo-gas is 50 p pm SO 2 , 3% H 2 O, and N 2 in the balance, respectively, by volume.
  • the flow rate of the simulated gas is 10 L (Little) Zmin.
  • the composition of the feed gas containing ozone ozone 0 3 is 50000 p pm, balance ⁇ 2.
  • the flow rate of the supply gas is 1 L (liter) / min.
  • the amount of sulfur trapped by the S O X soot wrap catalyst 64 and the N O X catalyst 65 during two hours after supplying the simulated gas was determined by inductively coupled plasma analysis (ICP analysis).
  • Diameter 30 mm, length 25 mm, cell wall thickness 4 mi 1 (milli inch length, 1/1000 inch) (approximately 0.1 mm), number of cells 400 cpsi (cells per square inch) (per square centimeter About 62) cordierite honeycomb cam base material coated with A 1 2 0 3 as a carrier was used.
  • the amount of coins is 120 gZL.
  • barium acetate was adsorbed and baked at 500 ° C. for 2 hours.
  • the supported amount of barium acetate is 0.2 mol ZL.
  • This catalyst was immersed in a solution containing ammonium hydrogen carbonate and dried at 250 ° C.
  • Pt was supported using an aqueous solution containing dinitrodiammine platinum, dried, and then calcined at 450 ° C. for 1 hour.
  • the supported amount of Pt is 2 gZL.
  • Example 1 The difference from Example 1 is that Pt is not supported. The rest is the same as in Example 1. '
  • the coat amount is 120 g / L.
  • Pt was supported using an aqueous solution containing dinitrodiammineplatinum, dried, and then dried at 450 ° C. Baked for hours.
  • the supported amount of Pt is 2 gZL.
  • potassium acetate was supported on this by water absorption, and calcined at 500 ° C for 2 hours.
  • the amount of potassium acetate supported is 0.2 mol l / L. ''
  • Example 3 The difference from Example 3 is that Pt is not supported. Otherwise, this is the same as Example 3. '
  • Figure 6 shows a comparison of the percentage of sulfur trapped in each trap catalyst of Examples 1 to 4.
  • the sulfur content could be captured almost 100% in any of the examples. From this result, it is possible to confirm the effect of the present invention that SO X outflow to the downstream side of the Sx trap catalyst can be prevented and sulfur poisoning of the NO X catalyst can be prevented.
  • the ozone generator 69 is turned off and ozone is not supplied, the ratio of sulfur trapped by the S0x trap catalyst is smaller than when ozone is supplied. The reason is that S_ ⁇ 2 simulated gas is because not sufficiently oxidized smaller the ozone.
  • Examples 1 and 3 having Pt can capture a larger amount of sulfur than Examples 2 and 4 having no Pt.
  • the reason is that the S0 2 of P t is the simulated gas acting as an active, but not so much as ozone, is because it is possible to oxidize or activated.
  • this experiment was conducted for only a short time of 2 hours from the new state, and when the sulfur content was captured for a longer time, Pt of Example 3 was gradually covered with sulfate. Therefore, it is expected that the S 0 X absorption capacity will decrease and eventually settle to the level of Examples 2 and 4 without Pt.
  • the present invention is applicable to an exhaust gas purification apparatus for an internal combustion engine provided with exhaust gas purification means such as a catalyst for purifying exhaust gas.

Abstract

内燃機関の排気浄化装置は、内燃機関(10)の排気通路(15)に設けられたNOx触媒(20)等の排気浄化手段と、排気浄化手段よりも上流側に設けられたSOxトラップ触媒(30)と、SOxトラップ触媒(30)よりも上流側の位置にオゾンを供給可能なオゾン供給手段(40,41)とを備える。排気中のSOxをNOx触媒(20)に到達する前にSOxトラップ触媒(30)で吸収できる。特に酸化性ガスとしてのオゾンにより、排気中のSOxを酸化し分解容易な状態にすることができ、低温時でもSOxの吸収が可能になる。好ましくはSOxトラップ触媒(30)が貴金属からなる活性点を有しない。この場合、SOxトラップ触媒の硫黄被毒が防止され、SOx吸収能の低下を抑制できる。

Description

明細書 内燃機関の排気浄化装置 技術分野
本発明は内燃機 Mの排気浄化装置に係り、 特に、 排気ガスを浄化する触媒等の排 気浄化手段を備えた内燃機関の排気浄化装置に関する。 背景技術
近年、 希薄 (リーン) 燃焼型の内燃機関の排気ガス^含まれる窒素酸化物 (N〇 X) を浄化するべく NO X触媒が実用化されている。 NO X触媒は、 例えば吸蔵還 元型 NOx触媒の場合、 例えばアルミナを担体としてバリウム (B a) などのアル カリ土類と白金 (P t) のような貴金属とが担持されたものであり、 排気ガス中の NO Xは硝酸塩 (B a (N〇3 ) 2 ) の形で NO x触媒に吸蔵される。 そして、 N. 〇 X触媒は内燃機関がリーン空燃比にて運転中であるときにはその排気ガス中の
NO Xを吸蔵する一方、内燃機関の排気空燃比が理論空燃比以下のリツチ空燃比で 運転されるときにはその吸蔵した N〇 Xを放出し還元する機能を有している。
ところが、 燃料および機関の潤滑油内には硫黄 (S) が含まれているので、 排気 ガス中にも硫黄が含まれる。 このため、 NO X触媒は排ガス中の硫黄成分を B a S O, などの硫酸塩として吸蔵してしまい、 硫黄成分により被毒 (S被毒) される性 質を有する。 NO X触媒に吸蔵された硫酸塩は硝酸塩に比べて安定性が高いため、 排気空燃比を燃料リツチにしても N〇x触媒から放出されず、 NOx触媒に次第に 蓄積される。 そして、 N〇x触媒内の硫酸塩の量が増大すると N〇x触媒が吸収し うる N〇 Xの量が次第に低下し、 N 0 X触媒の N O X吸蔵能力が低下するという問 題を生ずる。
かかる NO X触媒の S被毒の防止に関して、例えば特開 2000— 145436 号公報には、 NOx 吸収剤の上流側にて SOx 吸収剤により排気ガス中の SOx を吸収する装置が開示されている。これによれば、排気ガス中の S O Xが NO X 吸 収剤に到達する前に SOx 吸収剤に吸収され、 NOx 吸収剤の S被毒が抑制され る。
しかしながら、 この特開 2000 - 145436号公報に開示された装置では、 SOx 吸収剤における低温時の SOx吸収能が十分でなく、 この低温時に SOx が SOx 吸収剤を素通りし、 NOx吸収剤に吸収されてしまう問題がある。また、 SOx 吸収剤における SO X吸収能の時間に対する低下が比較的著しく、 十分な SOx吸収能を長期に渡って維持するのが困難という問題がある。 発明の開示
本発明は以上の問題を解決すべく創案され、 その目的は、 触媒等の排気浄化手段 の上流側にて排気ガス中の S 0 Xを吸収する場合に、低温時でも十分な S〇 X吸収 能を発揮でき、 また、 SOx吸収能の低下を抑制することができる内燃機関の排気 浄化装置を提供することにある。
上記目的を達成するため、 本発明に係る内燃機関の排気浄化装置の一形態は、 内 燃機関の排気通路に設けられ、燃焼室から排出された排気ガスを浄化する排気浄化 手段と、 該排気浄化手段よりも上流側の位置における前記排気通路に設けられ、 排 気ガス中の SO Xを吸収する SOx卜ラップ触媒と、該 SOxトラップ触媒よりも 上流側の位置における前記排気通路にオゾンを供給可能なオゾン供給手段とを備 え、 前記排気浄化手段が、 排気ガス中の HC, CO, NOxの少なくともいずれか 一つの成分を前記 SO X トラップ触媒よりも高い浄化率で浄化することを特徴と する。
この本発明の一形態によれば、排気ガス中に含まれる SOxを排気浄化手段に到 達する前に SO X トラップ触媒にて吸収することができ、排気浄化手段の硫黄被毒 を防止することができる。特に、 SOxトラップ触媒よりも上流側の位置に供給さ れた強い酸化性ガスとしてのオゾンにより、 排気ガス中の S〇xを酸化し、 吸収さ れやすい状態にすることができる。よって低温時でも S〇 X トラップ触媒による S O xの吸収が可能になる。 '
なお排気ガスを 「浄化」 することには、 排気ガス中の特定成分を吸収、 吸着ある いは吸蔵することも含まれる。
ここで、 前記 S O xトラップ触媒が、 アルカリ金属元素、 アルカリ土類金属元素 又は希土類元素を含むのが好ましい。
また、 前記排気浄化手段が吸蔵還元型 N O X触媒を含み、 該吸蔵還元型 N O X触 媒が前記 S O Xトラップ触媒よりも多量の貴金属を担持するのが好ましい。
この場合、 S O xトラップ触媒の上流端から下流端までの貴金属担持量を一定と し、吸蔵還元型 N〇x触媒の上流端から下流端までの貴金属担持量を一定としつつ も、吸蔵還元型 N O X触媒の総担持量を S O Xトラップ触媒の総担持量より多くす ることができる。 或いは、 S〇 Xトラップ触媒の上流端から吸蔵還元型 N〇 X触媒 の下流端に至るまでの間で貴金属担持量を徐^に増やすようにしてもよい。
好ましくは、 前記 S〇X トラップ触媒が、 貴金属からなる活性点を有しない。 この場合、 S O x トラップ触媒において S O xが蓄積されるに^れて活性点が硫 酸塩で覆われていくという硫黄被毒の問題を解消でき、 S O x吸収能の時間に対す る低下を抑制することができる。
本発明によれば、触媒等の排気浄化手段の上流側にて排気ガス中の S O Xを吸収 する場合に、 低温時でも十分な S O X吸収能を発揮でき、 また、 S O x吸収能の低 下を抑制することができるという、 優れた効果が発揮される。 図面の簡単な説明
図 1は、本発明の実施形態に係る内燃機関の排気浄化装置を概略的に示すシステ ム図である。
図 2は、 S〇 X トラップ触媒のセルの拡大図である。 図 3は、 担体の拡大図である。
図 4は、 本実施形態に関連して行われた実験の実験装置全体を示す図である。 図 5は、 図 4の V部詳細である。
図 6は、各実施例の S O X トラップ触媒に捕捉された硫黄分の割合の比較を示す グラフである。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明の実施の形態を説明する。
図 1は、本発明の実施形態に係る内燃機関の排気浄化装置を概略的に示すシステ ム図である。 図中、 1 0は内燃機関即ちエンジンであり、 本実施形態のエンジンは 火花点火式内燃機関、 より具体的には直噴式ガソリンエンジンである。 但し、 ェン ジンは圧縮着火式内燃機関即ちディーゼルエンジンなどであってもよい。要は排気 ガス中に硫黄成分が含まれるようなエンジンであればエンジンの形式や種別は問 わない。 1 1は吸気ポートに連通されている吸気マニフォルド、 1 2は排気ポート に連通されている排気マニフォルド、 1 3は燃焼室である。 本実施形態では、 不図 示の燃料タンクから高圧ポンプ 1 7に供給された燃料が、高圧ポンプ 1 7によりデ リパリパイプ 1 8に圧送されて高圧状態で蓄圧され、このデリバリパイプ 1 8内の 高圧燃料が燃料噴射弁 1 4から燃焼室 1 3内に直接噴射供給される。エンジン 1 0 からの排気ガスは、排気マニフォルド 1 2からターボチャージャ 1 9を経た後にそ の下流の排気通路 1 5に流され、 後述のように浄化処理された後、 大気に排出され る。
排気通路 1 5には、燃焼室 1 3から排出された排気ガスを浄化する排気浄化手段 として、 排気ガス中の N〇xを浄化する N O x触媒 2 0が設けられている。 但し、 排気浄化手段は N O X触媒 2 0に限られず、排気ガス中に含まれる硫黄成分によつ て被毒され、本来有する排気浄化性能を喪失するようなものであればいかなるもの であってもよい。 このような排気浄化手段としては他に三元触媒、 H C吸着剤、 N Ox吸着剤及び粒子状物質酸化触媒等が挙げられる。また排気浄化手段はこれらの うちの 2以上の組み合わせからなってもよい。
本実施形態の NO X触媒 20は吸蔵還元型 NOx触媒 (NSR: NOx Storage Reduction) である。 この場合、 NOx触媒 20は、 アルミナ A 12 03 等の酸化 物からなる基材表面に、 活性点としての白金 P tのような貴金属と、 NOx吸収成 分とが担持されて構成されている。 NOx吸収成分は、 例えばカリウム K、 ナトリ ゥム N a, リチウム L i、 セシウム C sのようなアルカリ金属、 ノ リウム B a、 力 ルシゥム C aのようなアルカリ土類、 ランタン L a、 イツトリウム Yのような希土 類から選ばれた少なくとも一つから成る。 吸蔵還元型 NOx触媒 20は、 これに流 入される排気ガスの空燃比が所定値(典型的には理論空燃比) よりリーンのときに は NOx を吸収し、 これに流入される排気ガス中の酸素濃度が低下すると吸収し た NOx を放出するという、 NOx の吸放出作用を行う。 本実施形態では直噴式 ガソリンエンジンが使用されており、 リーンバーン運転を実行可能であるため、 そ のリーンバーン運転時は排気空燃比がリーンであり、 N〇 X触媒 20は排気中の N . 〇xの吸収を行う。 また、 NOx触媒 20の上流側にて還元剤が供給され、 流入排 気ガスの空燃比がリツチになると、 ΝΌχ触媒 20は吸収した NQxの放出を行う。 そしてこの放出された N O Xは還元剤と反応して還元浄化される。
還元剤としては、排気中で炭化水素 HCや一酸化炭素 CO等の還元成分を発生す るものであれば良く、 水素、 一酸化炭素等の気体、 プロパン、 プロピレン、 ブタン 等の液体又は気体の炭化水素、ガソリン、軽油、灯油等の液体燃料等が使用できる。 本実施形態では貯蔵、補給等の際の煩雑さを避けるため燃料であるガソリンを還元 剤として使用している。 還元剤の供給方法としては、 例えば、 NOx触媒 20の上 流側の排気通路 1 5に別途設けられた噴射弁 (図示せず) から燃料を噴射したり、 通常時よりも多量の燃料を燃料噴射弁 14から噴射したり、膨張行程後期又は排気 行程で燃料噴射弁 14から燃料を噴射するいわゆるボス卜噴射を行う方法が可能 である。 このように、 NOx触媒 20における NOxの放出還元を目的とする還元 剤の供給をリツチスパイクと称する。
ところで、 NO X触媒 20は選択還元型 NO X触媒 (SCR: Selective Catalitic Reduction) であってもよい。 この選択還元型 NO x触媒は、 ゼォライトまたはァ ルミナ等の基材表面に P tなどの貴金属を担持したものや、その基材表面に Cu等 の遷移金属をィォン交換して担持させたもの、その基材表面にチタニヤ Zバナジゥ ム触媒 (v2 o5 ZW〇3 /T i o2 ) を担持させたもの等が例示できる。 この選 択還元型 NO X触媒においては、 流入排気ガスの空燃比がリーンという条件下で、 排気ガス中の HC:、 NOが定常的に且つ同時に反応されて Ν2 , 02 , H2 Oとい つたように浄化される。 ただし N O Xの浄化には H Cの存在が必須である。 空燃比 がリーンであっても、 排気ガス中には未燃 HCが必ず含まれているので、 これを利 用して NO Xの還元浄化が可能である。 また、 前記吸蔵還元型 NO X触媒のように リッチスパイクを実施して還元剤を供給してもよい。 この場合、 還元剤としては前 記に例示したもののほか、 アンモニアや尿素を使用することもできる。
他の排気浄化手段について説明すると、 三元触媒は、 アルミナ、 セリアなどの多 孔質酸化物に P t, P d及び Rhなどの貴金属を担持してなるものであり、 理論空 燃比 (ストィキ) 近傍雰囲気で排気ガス中の HC, CO及び NOxを同時に浄化し 得るものである。 HC吸着剤は、 例えば、 シリカを主成分とする多孔質吸着剤 (例 えば S i 04 の層状結晶間に S i 02 を担持させたもの)ゃゼォライ 卜等の多孔質 材料等を、多数の細い軸線方向流路(セル)を有する円筒状に形成したものであり、 吸着剤温度が低いときに流入する排気中の HC成分を多孔質の細孔内に吸着し、吸 着剤温度が高いときに吸着した HC成分を放出する HCの吸放出作用を行う。これ は特にエンジンの冷間始動時におけるいわゆるコールド HCの低減に有効である。 N〇x吸着剤は、 多孔質のゼォライ 卜等からなり、 排気ガス中の NOや N02 を硝 酸塩の形ではなくそのままの形で保持するものである。粒子状物質酸化触媒は、 主 にディーゼルエンジンから排出される粒子状物質 (PM; Particulate Matter) を捕 集するパティキュレートフィル夕の表面に担持され、その捕集された粒子状物質を 比較的低温で酸化 (燃焼) 除去するものであり、 例えば、 白金 P t、 パラジウム P d、 ロジウム Rh等の貴金属、 および、 カリウム 、 ナトリウム N a、 リチウム L i、 セシウム C s等のアルカリ金属、 ノ リウム B a、 カルシウム C a'、 ストロンチ ゥム S r等のアル力リ土類金属、 ランタンし a、 イツトリゥ厶 Y、 セリゥム C e等 の希土類、 鉄 F e等の遷移金属から選ばれた少なくとも一つからなる。
図 1に戻って、 本実施形態においては、 NO X触媒 20よりも上流側の位置にお ける排気通路 1 5に、排気ガス中の S〇xを吸収する S Oxトラップ触媒 30が設 けられている。 これによれば、 排気ガス中に含まれる SOxを NOx触媒 20に到 達する前に SO X トラップ触媒 30にて吸収(或いは吸着、捕捉)することができ、 N〇x触媒 20の硫黄被毒を防止することができる。 また、 一般に行われているよ うな、 NO X触媒 20の硫黄被毒からの回復を目的とする硫黄被毒再生制御を省略 できる可能性もある。 この硫黄被毒再生制御は、 NOx触媒 20における排気温度 が比較的高温の所定温度 (例えば 400°C) 以上にあるときに、 空燃比を一時的に ストィキ又はリッチにすることで行われる。 こ'うすると、 NOx触媒 20に吸収さ れていた硫酸塩が硫黄酸化物 (SOx) に分解されて NOx触媒 20から脱離され る。
なお、 補足すると、 NOx触媒 20から硫酸塩が脱離可能となる例えば 400°C 以上という排気温度は、本実施形態のようなガソリンエンジンの場合だと比較的容 易に到達できる温度であるが、元々排気温度の低いディーゼルエンジンの場合だと 比較的到達し難い温度である。 これに対し、 NO X触媒において吸蔵 N〇xが放出 還元可能となる温度は、 硫酸塩が脱離可能な温度よりも低く、 例えば 200〜30 0°C程度である。 硫酸塩は硝酸塩に比べ安定であり、 硝酸塩の場合よりも雰囲気温 度を高めなければ脱離不可能である。硫酸塩が脱離可能となる排気温度は排気浄化 手段の材料、 構造等に応じて異なり、 例えば 500°C以上の場合もある。
図 1に示すように、 S〇 X トラップ触媒 30よりも上流側の位置における排気通 路 1 5には、 オゾン (03 ) を供給可能なオゾン供給手段が設けられている。 ォゾ ン供給手段は、 S O Xトラップ触媒 3 0よりも上流側の位置における排気通路 1 5 内に挿入されたオゾン供給部材 4 0と、オゾン供給部材 4 0にオゾン供給通路 4 2 を介して接続されたオゾン発生器 4 1とから構成される。オゾン発生器 4 1で発生 したオゾンはオゾン供給通路 4 2を通じてオゾン供給部材 4 0に到達され、オゾン 供給部材 4 0に設けられた供給口 4 3からその下流側に向けて排気通路 1 5内に 噴射供給される。 供給口 4 3は本実施形態では複数 (二つ) だが、 一つであっても よい。 オゾン供給部材 4 0は排気通路 1 5の直径方向に延在され、 供給口 4 3は、 排気通路 1 5内に均等にオゾンが行き渡るよう、オゾン供給部材 4 0の長手方向に 所定間隔で配置されている。これら供給口 4 3の存在する位置が排気通路 1 5にお けるオゾン供給位置となる。
オゾン発生器 4 1としては、高電圧を印加可能な放電管内に原料となる空気また は酸素を流しつつオゾンを発生させる形態や他の任意の形式のものを用いること ができる。 ここで原料となる空気または酸素は、 排気通路 1 5外から取り込まれる 気体、 例えば外気に含まれる気 ^であり、 排気通路 1 5内の排気ガスに含まれる気 体ではない。 オゾン発生器 4 1においては、 高温の原料気体を用いるよりも低温の 原料気体を用レ ^た方がォゾンの生成効率が高い。従ってこのように排気通路 1 5外 の気体を用いてオゾンを生成することにより、オゾン生成効率を向上することが可 能である。
オゾン発生器 4 1は、 制御手段としての電子制御ユニッ ト (以下、 E C U (Electrical Control Unit) という) 1 0 0に接続され、 E C U 1 0 0によりオン されたときにオゾンを発生し、 E C U 1 0 0によりオフされたときにオゾンの発生 を停止する。発生されたオゾンは前述のようにしてオゾン供給部材 4 0の供給口 4 3.から排気通路 1 5内に供給され、 これによりオゾン供給が実行せしめられる。 本 実施形態では、オゾン供給時にオゾン発生器 4 1をオンにして生成されたオゾンを 直ちに供給するが、 オゾンを予め生成、 貯留しておいて、 バルブを切り替えること でオゾンを供給するようにしてもよい。またポンプやコンプレツサ等でオゾンを加 圧して供給することも可能である。
ECU 100は、 予め記憶された所定のプログラムに従って、 N〇x触媒 20か ら NO Xを放出させるためのリツチスパイク制御を実行する。 即ち、 ECU 100 は、 所定のリッチスパイク実行条件が成立すると、 それと同時に、 別途設けられた リツチスパイク用噴射弁から燃料を噴射させたり、通常時よりも多量の燃料を燃料 噴射弁 14から噴射させたり、燃料噴射弁 14からボスト噴射を実行させたりして、 リッチスパイクを実行する。 これにより、 NO X触媒 20に流入する排気ガスの空 燃比が理論空燃比よりもリツチになり、 NO X触媒 20に吸蔵されていた N〇xが 放出され、 排気ガス中の未燃成分 (CO, HC) と反応して還元浄化される。 この ようにリッチスパイク制御手段が ECU 100によって構成される。
図 2には、 S〇xトラップ触媒 30のセルの拡大図を示す。 SOxトラップ触媒 30は、 例えば全体が円柱状のコ一ジェライ ト等からなる基材 32を有し、 この基 材 32はメッシュ状或いは蜂の巣状に形成されて多数の排気ガス通路孔としての セル 33を画成する。 セル 33 SOxトラップ触媒 30の軸方向 (図 2の表裏方 向) に延び、 その両端が開放されて排気ガスの入口及び出口を形成する。 セル 33 の内壁にはゥォッシュコ一ト層としての担体 34が全面に亘つて形成される。担体 34は例えばアルミナ (A 12 03 ) からなり、 その厚さは例えば 20〜50 m 程度である。
図 3には担体 34の拡大図が示される。 担体 34は、 ミクロ的に見れば無数の粒 子 35が凝集して構成され、粒子 35間にはガスが拡散可能な空孔 36が形成され る。 粒子 35の粒径は例えば数 10 nm程度である。 担体 34は、 担体 34を構成 する材料の粉末を水等の溶液に混入して分散させ、この溶液中に基材 32を浸漬し、 基材 32を乾燥後焼成することで焼結形成される。担体 34をなす粒子 35の表面 には、 SOxと反応して硫酸塩を生成する成分即ち S〇 X反応成分 38が多数設け られる。
ここで、特開 2000 - 145436号公報に開示されているような従来の S O x トラップ触媒では、 図中仮想線で示されるように、 粒子 3 5の表面に、 P t , P d等の貴金属からなる活性点 3 7が多数設けられており、且つこの活性点 3 7は必 須であった。 これに対し、 本実施形態では、 粒子 3 5の表面にそのような活性点 3 7が存在せず、 担体 3 4は活性点 3 7を含まない。 本発明に係る排気浄化装置にお いて、 S O Xトラップ触媒 3 0は活性点 3 7を含んでもよい力 活性点 3 7は必須 ではなく、 むしろ無'い方が好ましい。
5〇 反応成分3 8は、 アルカリ金属元素、 アルカリ土類金属元素又は希土類元 素からなるのが好ましい。 また、 アルカリ金属元素は L i 、 N a又は Kであるのが 好ましく、 アルカリ土類金属元素は B a 、 C a又は S rであるのが好ましく、 希土 類元素は L aであるのが好ましい。 '
さて、 エンジン 1 0の燃焼室 1 3から排出された排気ガスは、 オゾン供給部材 4 0からオゾンの供給を受けた後、 S〇xトラップ触媒 3 0及び N O x触媒 2 0を順 次通過する。 そして、 排気ガス中の S O Xは、 強い酸化性ガスとしてのオゾンによ り酸化され、 吸収されやすい状態即ち s.o 3 と 'なる。 S〇3 は、 S'O x トラップ触 媒 3 0において、 活性点 3 7の補助なしに、 S O x反応成分 3 8と反応して硫酸塩 を生成する。 そしてこの硫酸塩が担体 3 4に吸着され、 結果的に排気ガス中の S〇 Xが S O xトラップ触媒 3 0に吸収される。排気ガスが粒子 3 5間の空孔 3 6に入 り込むので、 硫酸塩の生成、 吸着は粒子表面の広い面積で行われる。
特に、 かかる S〇xの吸収は、 排気ガス或いは S O x 卜ラップ触媒 3 0の温度が 低い低温時でも可能である。 なぜなら、 たとえ低温時であっても、 オゾンにより S 〇xが酸化され、 吸収されやすい状態となるからである。 これに対し、 従来の S O Xトラップ触媒では、活性点 3 7によらなければ S〇 Xを吸収されやすい状態とす ることができないため、触媒温度が活性化温度以上に上昇しなければ S O Xを吸収 されやすい状態とすることができない。よって結果的に低温時には S O Xを吸収で きず、 この S O xが S〇x 卜ラップ触媒を素通りして N O x触媒等に付着し、 硫黄 被毒をもたらす。本発明に係る排気浄化装置によればこのようなことがなく、 例え ば機関始動直後や低温運転時における NO x触媒の硫黄被毒を防止することがで さる。
また、 本実施形態においては、 S〇xトラップ触媒 30における SO X吸収能の 低下を抑制し、十分な SO X吸収能を長期に渡って維持することができるという利 点がある。 即ち、 S〇xトラップ触媒において S〇xを吸収し続けていくと硫酸塩 が担体 35上に蓄積されていく。このとき、従来の SOxトラップ触媒の場合だと、 次第に活性点 37が硫酸塩で覆われていき、 硫黄被毒が進行し、 触媒の活性及び S Ox吸収能が低下していく。 これに対し、 本発明に係る排気浄化装置においては、 オゾンが供給されるため、 活性点 37の補助無しに S〇xを吸収可能であり、 現に 本実施形態においても活性点 37が存在しない。 このため、 硫酸塩が担体 35上に 蓄積されていっても触媒の活性及び SOx吸収能は従来の S〇xトラップ触媒の ように低下しない。 よって、 十分な S〇x吸収能を長期に渡って維持することが可 能となる。
また、 本実施形態においては、 S〇 Xトラッ 触媒 30が活性点 37を有しない ため、 次のような利点もある。 即ち、 仮に SOxトラップ触媒に吸着された硫酸塩 が分解、 脱離すると、 これによる硫黄分が下流側の NO X触媒 20に吸着され、 N 〇x触媒 20の硫黄被毒をもたらす。従来のような活性点 37の有る SOxトラッ プ触媒の場合だと、 NO X触媒の硫黄被毒再生と同様、 触媒の雰囲気温度を硫酸塩 が脱離可能な高温(例えば 400°C以上) とし、 且つ触媒の雰囲気を還元(リッチ) 雰囲気とすることで、 SOx卜ラップ触媒から硫酸塩が分解、 脱離される。 一方、 N Ox触媒の NO X放出のためのリツチスパイクが実行されるとき、 S〇xトラッ プ触媒も同様に還元雰囲気に晒される。このとき高負荷運転中などの理由で排気温 度が硫酸塩脱離可能な温度となっていると、 SOxトラップ触媒から硫酸塩が分解、 脱離され、 下流側の N O X触媒が硫黄被毒される。
この従来の SOxトラップ触媒における硫酸塩脱離作用は、貴金属からなる活性 点によりもたらされる作用である。 つまり、 活性点が反応の入口となって、 硫酸塩 の分解、 脱離を生じさせる。 しかしながら、 本実施形態の SOxトラップ触媒 30 においては、 活性点 37が存在しないため、 上述のような高温且つ還元雰囲気とい う条件が整っても、 硫酸塩が脱離し難い。 よって、 リッチスパイク実行時に SOx 卜ラップ触媒 30から脱離された硫酸塩により下流側の NOx触媒 20が硫黄被 毒されることを防止できる。
本実施形態においては、 S〇 X トラップ触媒 30における S〇 Xの吸収が供給ォ ゾンの補助により行われる。 よって機関運転中は、 たとえ少量ずつであっても、 ォ ゾンを常時供給しておくのが望ましい。
ところで、 S〇xトラップ触媒 30において SO Xを吸収していくと、 やがて吸 収された SOx量が SO X トラップ触媒 30の最大吸収量に達し、 S〇x卜ラップ 触媒 30の S〇x吸収能が著しく低下する (即ち飽和する) ようになる。 これが S O X 卜ラップ触媒 30の満杯状態である力 こうなつた場合、 S〇 X 卜ラップ触媒 30を交換することが考えられる。 この交換時期をユーザに知らせるため、 ランプ やブザーなどの警告手段を設けてもよい。 まこ、 S〇xトラップ触媒 30の満杯状 態を検出する手段を設けてもよい。 例えば ECU 100力 燃料メータの検出値に 基づいて消費燃料量を積算し、この消費燃料量に基づいて S〇xトラップ触媒 30 の満杯状態を検出する。
一方、近年では硫黄濃度の極めて低い燃料が開発され、一部実用化に至っており、 ■ こうした燃料を用いる車両用エンジンの場合だと、車両の耐用年数に至るまで SO Xトラップ触媒が満杯にならず、十分な SOx吸収能を発揮し続ける可能性がある。 従ってこうした場合には S〇 Xトラップ触媒の交換を考慮する必要が無くなる。 なお、 当然ながら、 NO X触媒 20は、 排気ガス中の NO Xを S〇xトラップ触 媒 30よりも高い浄化率で浄化するものである。 また、 前記実施形態では活性点 3 7となる貴金属を有しない SOxトラップ触媒 30を用いた力、貴金属を有する S Ox卜ラップ触媒 30を用いることも可能である。 いずれにしても、 下流側の NO X触媒 20の貴金属担持量を上流側の SOxトラップ触媒 30の貴金属担持量よ りも多くするのが好ましい。 この場合、 S O x 卜ラップ触媒 3 0の上流端から下流 端までの貴金属担持量を一定とし、 N O X触媒 2 0の上流端から下流端までの貴金 属担持量を一定としつつも、 N O x触媒 2 0の貴金属総担持量を S O xトラップ触 媒 ·3 0の貴金属総担持量より多くすることができる。 或いは、 S O x トラップ触媒 3 0の上流端から N〇x触媒 2 0の下流端に至るまでの間で貴金属担持量を徐々 に増やすようにしてもよい。
次に、 本実施形態に関連して行った模擬ガス (モデルガス) による実験の結果を 以下に示す。
( 1 ) 実験装置
図 4には実験装置の全体を示し、 図 5には図 4の V'部詳細を示す。 6 1は複数 のガスボンベで、 各ガスボンベには、 ガソリンエンジンの排気ガス組成を模した模 擬ガスを作るための原料ガスがそれぞれ充填されている。ここでいう原料ガスとは N 2 、 〇2 、 C O等のガスである。 6 2は模擬ガス発生器であり、 マスフローコン トローラを備え、 各原料ガスを所定量ずつ混合 て模擬ガス M Gを生成する。 模擬 ガス M Gは、 図 5に詳細に示すように、 三方エルボ 7 2を通過した後、 石英管 6 3 内に直列に配置された S O x トラップ触媒 6 4及び吸蔵還元型 N〇x触媒 6 5を 順に通過し、 図示しない排気ダク卜から外部に排出される。
図 4に示すように、 酸素ボンべ 6 7から供給された気体酸素 0 2 は二分岐され、 その一方において、 流量制御ュニッ卜 6 8により流量が制御された後、 オゾン発生 器 6 9に供給される。 そしてオゾン発生器 6 9では酸素が選択的に、、且つ部分的に オゾン〇3 とされ、 これら酸素及びオゾン (又は酸素のみ) がオゾン分析計 7 0に 至る。 また、 分岐の他方において、 酸素は別の流量制御ュニット 7 1により流量が 制御された後、 オゾン発生器 6 9から供給されたガスと混合して、 オゾン分析計 7 0に至る。 オゾン分析計 7 0では、 これに流入してきたガス即ち供給ガスのオゾン 濃度が計測され、 この後、 供給ガスは、 流量制御ュニット Ί 1にて流量が制御され る。余剰の供給ガスは図示しない排気ダク卜から外部に排出され、 流量が制御され た供給ガスは、図 5に示すように、三方エルボ 72にて模擬ガス MGと混合される。 この混合ガスは、 SOxトラップ触媒 64及び吸蔵還元型 NO X触媒 65を順に通 過した後、 S〇x、 S02 , H2 S濃度計測用の排ガス分析計 78と、 オゾン濃度 計測用のオゾン分析計マ 9とによりそれぞれ処理された後、図示しない排気ダクト から外部に排出される。
石英管 63の外周'部には電気ヒー夕 74が設けられ、 SOx トラップ触媒 64の 温度が制御されるようになっている。 また、 S〇x トラップ触媒 64の触媒床温度 を計測するための温度センサ 7 5が設けられる。
NO X触媒 6 5に関しては、 直径 30mm、 長さ 2 5 mm, セル壁厚 4m i 1 (milli inch length, 1/1000 inch) (約 0. 1 mm)、セル数 400 c p s i (cells per square inch) ( 1平方センチメートル当たり約 62個) のコージエライ ト製ハニカ ム基材に、 担体としてァ— A 1 2 03 をコートしたものを用いた。 コート量は 1 2 O gZLである (ただし分母の L (リットル) は触媒 1 L当たりを意味する)。 こ れに、 酢酸バリウムを吸水担持し、 500°Cで' 2時間焼成した。 酢酸バリウムの担 持量は 0. 2mo 1 ZLである。 この触媒を炭酸水素アンモニゥムを含む溶液に浸 漬処理し、 250°Cで乾燥させた。 さらに、 ジニトロジアンミン白金を含む水溶液 を用いて P tを担持し、 乾燥後、 450°Cで 1時間焼成した。 P tの担持量は 2 g ,Lである。
+ (2) 実験条件
後述する実施例 1〜4の SOxトラップ触媒 64のそれぞれに対'し、以下の条件 で実験を行った。まず、温度センサ 75によって検出される温度が一定(200°C) となるように電気ヒー夕 74を制御し、 その温度が一定に安定したならば、 以下の 組成の模擬ガスを流通させ、これと同時に供給ガスを三方エルボ 72の位置にて模 擬ガスに混合する。 オゾン供給を行う場合はオゾン発生器 69をオンにする。 これ により供給ガスはオゾンと酸素との混合ガスとなる。 逆に、 オゾン供給を行わない 場合はオゾン発生器 69をオフにする。 これにより供給ガスは酸素のみとなる。模 擬ガスの組成は、 それぞれ体積濃度で SO 2 が 50 p pm、 H2 Oが 3%、 残部が N2 である。 模擬ガスの流量は 1 0 L (リツトル) Zm i nである。 オゾンを含む 供給ガスの組成はオゾン 03 が 50000 p pm、 残部が〇2 である。 供給ガスの 流量は 1 L (リットル) /m i nである。
そして模擬ガス供給後、 2時間の間における、 S O X 卜ラップ触媒 64及び N O X触媒 65に捕捉された硫黄量を誘導結合プラズマ分析 ( I CP分析) により求め た。
( 3 ·) 実施例 ( S〇 X トラップ触媒)
•実施例 1
直径 30 mm、長さ 2 5 mm、セル壁厚 4 m i 1 (milli inch length, 1/1000 inch) (約 0. 1 mm)、 セル数 400 c p s i (cells per square inch) ( 1平方センチ メートル当たり約 62個) のコージェライ ト製ハ二カム基材に、 担体としてァー A 1 2 03 をコー卜したものを用いた。 コ一卜量は 1 20 gZLである。 これに、 酢 酸バリウムを吸水担持し、 500°Cで 2時間焼成した。酢酸バリウムの担持量は 0. 2mo l ZLである。 この触媒を炭酸水素アンモニゥムを含む溶液に浸漬処理し、 250°Cで乾燥させた。 さらに、 ジニトロジアンミン白金を含む水溶液を用いて P tを担持し、乾燥後、 450°Cで 1時間焼成した。 P tの担持量は 2 gZLである。 •実施例 2 '
実施例 1と異なる点は、 P tを担持させていない点である。 それ以外は実施例 1 と同様である。 '
•実施例 3
直径 30mm、長さ 25mm、セル壁厚 4m i 1 (milli inch length, 1/1000 inch) (約 0. 1 mm)、 セル数 400 c p s i (cells per square inch) ( 1平方センチ メートル当たり約 62個) のコ一ジェライト製ハ二カム基材に、 担体としてァー A 123 をコー卜したものを用いた。 コ一ト量は 1 20 g/Lである。 これに、 ジ ニトロジアンミン白金を含む水溶液を用いて P tを担持し、 乾燥後、 450°Cで 1 時間焼成した。 P tの担持量は 2 gZLである。 さらにこれに、 酢酸カリウムを吸 水担持し、 500°Cで 2時間焼成した。 酢酸カリウムの担持量は 0. 2mo l //L である。 ' '
.実施例 4
実施例 3と異なる点は、 P tを担持させていない点である。 それ以外は実施例 3 と同様である。 '
(4) 実験結果 '
実施例 1〜4の 〇 トラップ触媒にそれぞれ捕捉 (トラップ) された硫黄分の 割合の比較を図 6に示す。見られるように、 オゾン発生器 69をオンにしてオゾン を供給した場合、 いずれの実施例においてもほぼ 100%、 硫黄分を捕捉すること ができた。この結果から、 S〇x トラップ触媒の下流側への SO Xの流出を防止し、 NO X触媒の硫黄被毒を防止できるという本発明の効果を確認することができる。 他方、 オゾン発生器 69をオフにしてオゾンを供給しない場合、 オゾンを供給す る場合に比べ、 S〇xトラップ触媒に捕捉され'る硫黄分の割合は少なくなる'。 その 理由は、 模擬ガス中の S〇2 がオゾンのときほど十分に酸化されないからである。 しかしながら、 P tを有する実施例 1 , 3の場合は、 P tを有しない実施例 2, 4 の場合に比べ、 硫黄分を多く捕捉することができる。 その理由は、 活性点である P tが模擬ガス中の S02 を、 オゾンほどではないが、 酸化或いは活性化することが できるからである。但し、 この実験は新品状態から 2時間という短時間しか行って おらず、 より長時間硫黄分の捕捉を行った場合は、 実施例 3の P tが徐々に硫 酸塩で覆われてレ ^つて S 0 X吸収能が低下していき、最終的には P tのない実施例 2, 4のレベルに落ち着くと予想される。
以上、 本発明の実施形態について説明してきたが、 本発明の実施形態は前述の実 施形態のみに限らない。例えば前記実施形態においては NOx触媒 20と SOx卜 ラップ触媒 30とが別個独立に設けられたが、 これらは、 例えば基材ゃケ一シング を共通化することにより、 一体化されても構わない。 本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあら ゆる変形例や応用例、 均等物が含まれる。 従って本発明は、 限定的に解釈されるべ きではなく、本発明の思想の範囲内に属する他の任意の技術にも適用することが可 能である。 産業上の利用可能性
本発明は、排気ガスを浄化する触媒等の排気浄化手段を備えた内燃機関の排気浄 化装置に適用可能である。

Claims

請求の範囲
1. 内燃機関の排気通路に設けられ、 燃焼室から排出された排気ガスを浄化する 排気浄化手段と、
該排気浄化手段よりも上流側の位置における前記排気通路に設けられ、排気ガス 中の SOxを吸収する S〇xトラップ触媒と、
該 S Oxトラップ触媒よりも上流側の位置における前記排気通路にオゾンを供 給可能なオゾン供給手段とを備え、
前記排気浄化手段が、 排気ガス中の HC, CO, N〇xの少なくともいずれか一 つの成分を前記 S〇X トラップ触媒よりも高い浄化率で浄化する
ことを特徴とする内燃機関の排気浄化装置。
2. 前記 SOx卜ラップ触媒力 アルカリ金属元素、 アルカリ土類金属元素又は 希土類元素を含むことを特徴と'する請求項 1記載の内燃機関の排気浄化装置。
3. 前記排気浄化手段が吸蔵還元型 N〇 X触媒を含み、 該吸蔵還元型 N O X触媒 が前記 S O X 卜ラップ触媒よりも多量の貴金属を担持することを特徴とする請求 項 1記載の内燃機関の排気浄化装置。
4. 前記 SOxトラップ触媒力 貴金属からなる活性点を有しないことを特徵と する請求項 1記載の内燃機関の排気浄化装置。
PCT/JP2006/324133 2005-12-01 2006-11-28 内燃機関の排気浄化装置 WO2007064004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06833903A EP1959109B1 (en) 2005-12-01 2006-11-28 Device for cleaning exhaust gas of internal combustion engine
JP2007548030A JP4513862B2 (ja) 2005-12-01 2006-11-28 内燃機関の排気浄化装置
CN2006800448632A CN101316992B (zh) 2005-12-01 2006-11-28 内燃机排气净化装置
US12/095,609 US20100275586A1 (en) 2005-12-01 2006-11-28 Device for cleaning exhaust gas of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005348292 2005-12-01
JP2005-348292 2005-12-01

Publications (1)

Publication Number Publication Date
WO2007064004A1 true WO2007064004A1 (ja) 2007-06-07

Family

ID=38092336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324133 WO2007064004A1 (ja) 2005-12-01 2006-11-28 内燃機関の排気浄化装置

Country Status (6)

Country Link
US (1) US20100275586A1 (ja)
EP (1) EP1959109B1 (ja)
JP (1) JP4513862B2 (ja)
KR (1) KR101000935B1 (ja)
CN (1) CN101316992B (ja)
WO (1) WO2007064004A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181888B2 (en) * 2013-10-28 2015-11-10 Cummins Inc. Selectively trapping and storing SO3 in an exhaust gas effluent
US9926825B2 (en) * 2016-04-19 2018-03-27 GM Global Technology Operations LLC Method and apparatus for exhaust purification for an internal combustion engine
DE102018004001A1 (de) * 2018-05-17 2019-11-21 A. Kayser Automotive Systems Gmbh Kraftstoffdampfpuffereinrichtung
CN114592946B (zh) * 2022-03-15 2023-05-23 潍柴动力股份有限公司 一种后处理除硫系统及其控制策略

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036162A1 (en) * 1998-01-19 1999-07-22 Johnson Matthey Public Limited Company Combatting air pollution
JP2000145436A (ja) 1998-11-09 2000-05-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003516491A (ja) * 1999-12-11 2003-05-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー SOxを含有する排気ガスの処理方法
WO2004024301A1 (de) * 2002-09-05 2004-03-25 Robert Bosch Gmbh Verfahren zur abgasnachbehandlung und vorrichtung hierzu
JP2005535438A (ja) * 2002-08-09 2005-11-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー リーンバーンエンジン用の排気機構

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806305A (en) * 1994-05-18 1998-09-15 Lockheed Martin Corporation Method and apparatus for reducing pollutants
CN1135568A (zh) * 1995-05-11 1996-11-13 刘明礼 一种提高燃油发动机排气污染净化效果的方法
JPH10169434A (ja) * 1996-12-09 1998-06-23 Ngk Insulators Ltd 排ガス浄化方法及びそれに用いる排ガス浄化システム
CN2326730Y (zh) * 1997-08-22 1999-06-30 张金城 内燃机废气降污染装置
US6775972B2 (en) * 1998-10-09 2004-08-17 Johnson Matthey Public Limited Company Purification of exhaust gases
US6176078B1 (en) * 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
US20030049191A1 (en) * 1999-12-11 2003-03-13 Twigg Martyn Vincent Process for treating exhaust gas including sox
US6212883B1 (en) * 2000-03-03 2001-04-10 Moon-Ki Cho Method and apparatus for treating exhaust gas from vehicles
FR2844000B1 (fr) * 2002-08-30 2006-03-24 Renault Sa Systeme de traitement de gaz d'echappement comportant un systeme d'ionisation des gaz avec injection d'air ionise
AT412845B (de) * 2003-07-14 2005-08-25 Alpps Fuel Cell Systems Gmbh Abgasnachbehandlungssystem zur reduzierung der nox-emissionen von wärmekraftmaschinen mittels aus treibstoff erzeugtem reduktionsmittel
US7484358B2 (en) * 2005-06-17 2009-02-03 Gm Global Technology Operations, Inc. Continuous reforming of diesel fuel for NOx reduction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036162A1 (en) * 1998-01-19 1999-07-22 Johnson Matthey Public Limited Company Combatting air pollution
JP2000145436A (ja) 1998-11-09 2000-05-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003516491A (ja) * 1999-12-11 2003-05-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー SOxを含有する排気ガスの処理方法
JP2005535438A (ja) * 2002-08-09 2005-11-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー リーンバーンエンジン用の排気機構
WO2004024301A1 (de) * 2002-09-05 2004-03-25 Robert Bosch Gmbh Verfahren zur abgasnachbehandlung und vorrichtung hierzu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1959109A4 *

Also Published As

Publication number Publication date
EP1959109A1 (en) 2008-08-20
CN101316992B (zh) 2010-06-09
JPWO2007064004A1 (ja) 2009-05-07
KR20080064900A (ko) 2008-07-09
EP1959109A4 (en) 2010-11-10
JP4513862B2 (ja) 2010-07-28
CN101316992A (zh) 2008-12-03
EP1959109B1 (en) 2012-06-27
US20100275586A1 (en) 2010-11-04
KR101000935B1 (ko) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4263711B2 (ja) 内燃機関の排気浄化装置
JP4270224B2 (ja) 内燃機関の排気浄化装置
WO2012029187A1 (ja) 内燃機関の排気浄化装置
JP2011526203A (ja) 低温性能の優れたNOx吸着触媒
JP2008267217A (ja) 内燃機関の排気浄化装置
EP2098699B1 (en) Exhaust gas purifying apparatus for internal combustion engine
WO2009087852A1 (ja) 排ガス浄化装置
JP4626854B2 (ja) 内燃機関の排気浄化装置
JP4453700B2 (ja) 内燃機関の排気ガス浄化装置
JP4513862B2 (ja) 内燃機関の排気浄化装置
JP4877574B2 (ja) 内燃機関の排気浄化装置
JP2007113497A (ja) 内燃機関の排気浄化装置
JP3560147B2 (ja) 排気ガス浄化システム
JP2000080913A (ja) 内燃機関の排気浄化装置
WO2012046332A1 (ja) 内燃機関の排気浄化装置
KR102142862B1 (ko) 질소산화물 저감을 위한 펄스 제어 시스템, 이를 사용한 질소산화물 저감방법, 및 이를 포함한 내연기관
JP2003322012A (ja) 排気ガス浄化システム
JP2006138213A (ja) 内燃機関の排気浄化装置
JP2011094482A (ja) ディーゼルエンジンの排ガス後処理装置
JP2007085353A (ja) 排気ガス浄化システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044863.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007548030

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087013187

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006833903

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12095609

Country of ref document: US