WO2007063998A1 - 中空糸膜モジュール - Google Patents

中空糸膜モジュール Download PDF

Info

Publication number
WO2007063998A1
WO2007063998A1 PCT/JP2006/324122 JP2006324122W WO2007063998A1 WO 2007063998 A1 WO2007063998 A1 WO 2007063998A1 JP 2006324122 W JP2006324122 W JP 2006324122W WO 2007063998 A1 WO2007063998 A1 WO 2007063998A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
raw water
cylindrical body
membrane bundle
Prior art date
Application number
PCT/JP2006/324122
Other languages
English (en)
French (fr)
Inventor
Daichi Sakashita
Yoshihide Kaiya
Masazumi Oba
Kenichi Futami
Junichi Hayakawa
Lianggang Chen
Qing Chen
Original Assignee
Ebara Corporation
Hainan Litree Purifying Tech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation, Hainan Litree Purifying Tech Co., Ltd. filed Critical Ebara Corporation
Priority to EP06833892.0A priority Critical patent/EP1964603B1/en
Priority to CN2006800447729A priority patent/CN101316645B/zh
Priority to US12/085,600 priority patent/US8197688B2/en
Publication of WO2007063998A1 publication Critical patent/WO2007063998A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/0223Encapsulating hollow fibres by fixing the hollow fibres prior to encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/041Gaskets or O-rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements

Definitions

  • the present invention relates to a hollow fiber membrane module, in particular, purification of drinking water, drinking water, industrial water, pure water, etc., turbidity removal such as river water and seawater, various wastewater treatment, human waste, sewage treatment such as sewage, and sludge
  • a hollow fiber membrane module used for water treatment such as slurry concentration.
  • Membrane separation methods that remove components and particles in treated water through permeation membranes include purification of drinking water, drinking water, industrial water, pure water, turbidity such as river water and seawater, various wastewater and human waste It is widely used in many fields such as sewage treatment such as sewage, and slurries such as sludge.
  • Separation membranes used for such applications are generally used in the form of membrane modules that are bundled with a plurality of membranes and fixed to a case for collecting filtered water.
  • Such membrane modules are required to have a large area for separating the water to be treated, to have good contact with the water to be treated, and to be able to cope with sudden changes in the quality of the water to be treated.
  • various types of membrane modules have been studied and put into practical use for microfiltration membranes and ultrafiltration membranes in order to meet such requirements directly related to the amount of treated water and treatment efficiency.
  • the hollow fiber membrane is converged in a cylindrical shape and fixed at both ends, and a flow straightening tube having a plurality of circular holes is arranged at the fixed end, and water to be treated is allowed to flow from these circular holes.
  • a module of the form is known (see, for example, Japanese Patent Laid-Open No. Hei 9 2 20 4 4 6). These circular holes are also used as air inlets when the hollow fiber membrane is washed with air (air washing).
  • an immersion type separation membrane module in which separation membranes bundled on a flat surface like a ridge are fixed to a housing and these are arranged in parallel in a water tank (for example, And Japanese Patent Laid-Open No. 5-220 3 56).
  • a separation membrane module has a larger installation area compared to a cylindrical membrane module having the same filtration area, space saving, which is an original advantage of the separation membrane, is achieved. It becomes difficult.
  • a large amount of cleaning chemicals is required to clean contaminated membranes with chemicals. For this reason, a large amount of chemical wastewater is generated, which is not desirable from the viewpoint of increasing the environmental load. Disclosure of the invention
  • the present invention has been made in view of the above-described problems of the prior art, and can reduce damage to the hollow fiber membrane due to retention of bubbles inside and reduction in flutter due to hydrophobicity of the hollow fiber membrane. It is a first object to provide a hollow fiber membrane module that can be used.
  • the second aspect of the present invention is to provide a hollow fiber membrane module that is excellent in physical cleanability in air cleaning performed when the hollow fiber membrane is contaminated and that can perform stable filtration over a long period of time. Objective.
  • the present invention provides a hollow fiber membrane module that can suppress the flow rate of the rapid flow of raw water and can prevent the hollow fiber membrane from being damaged by direct contact of the raw water with the hollow fiber membrane. Third purpose.
  • a fourth object of the present invention is to provide a hollow fiber membrane module that can improve sealing performance with a simple structure and that allows easy replacement and removal of the hollow fiber membrane.
  • the hollow fiber membrane module includes a membrane bundle in which a plurality of hollow fiber membranes are bundled, a cylindrical body that accommodates the membrane bundle, and at least one end of the membrane bundle is fixed to the cylindrical body.
  • a fixed part and a raw water outflow nozzle for discharging the raw water from the vicinity of the fixed part are provided.
  • the raw water supplied to the cylindrical body is permeated from the outside to the inside of the hollow fiber membrane.
  • the fixed part is the raw water Has at least one groove in the contact surface.
  • the groove may be formed in a resin fixing portion in which the end portion of the membrane bundle is fixed to the cylindrical body with resin, or may be made of a flexible material in order to prevent the hollow fiber membrane near the fixing portion from being damaged. You may form in the formed soft potting part.
  • a fixing part in which a groove is formed may be prepared in advance, and this may be fixed to the cylindrical body together with the hollow fiber membrane.
  • the groove of the fixed portion communicates with the raw water outflow nozzle.
  • at least a part of the groove of the fixed portion is connected to the raw water outflow nozzle.
  • at least a part of the groove of the fixing portion has an inclined surface toward the raw water outflow nozzle.
  • the groove of the fixed portion may be constituted by a main groove and a plurality of branch grooves connected to the main groove. In this case, the main groove functions as a bubble reservoir even if all of the bubbles accumulated inside the cylindrical body cannot be discharged, so that the hollow fiber membrane is damaged and the degradation of the flux due to hydrophobicity is greatly reduced. Can be reduced.
  • a hollow fiber membrane module that is excellent in physical washing such as air washing performed when the hollow fiber membrane is contaminated and can perform stable filtration over a long period of time. Is done.
  • the hollow fiber membrane module includes a membrane bundle in which a plurality of hollow fiber membranes are bundled, a tubular body that accommodates the membrane bundle, and an end portion of the membrane bundle on the side to which raw water is supplied. And a fixing part for fixing to the body. The raw water supplied to the inside of the cylindrical body passes from the outside to the inside of the hollow fiber membrane.
  • the fixing portion includes a plurality of through slits and a plurality of film bundle portions that extend substantially parallel to the through slit and are fixed.
  • the hollow fiber membrane module includes a membrane bundle in which a plurality of hollow fiber membranes are bundled, a tubular body that accommodates the membrane bundle, and an end portion of the membrane bundle on the side to which raw water is supplied. And a fixing part for fixing to the body.
  • the raw water supplied to the inside of the cylindrical body is permeated from the outside to the inside of the hollow fiber membrane.
  • the fixed portion includes a plurality of membrane bundle portions that are fixed in a substantially straight line at equal intervals to form a flat film, and the membrane bundle portion And a plurality of through slits extending substantially in parallel.
  • a hollow fiber membrane module which is excellent in physical washing 14 such as air washing performed when the hollow fiber membrane is contaminated and can perform stable filtration over a long period of time. Is done.
  • the hollow fiber membrane module includes a membrane bundle in which a plurality of hollow fiber membranes are bundled, a tubular body that accommodates the membrane bundle, and an end portion of the membrane bundle on the side to which raw water is supplied. And a fixing part for fixing to the body.
  • the raw water supplied to the inside of the cylindrical body is permeated from the outside to the inside of the hollow fiber membrane.
  • the fixing portion includes a plurality of through slits substantially parallel to each other, and a plurality of membrane bundle portions that are positioned between the adjacent through slits and extend substantially parallel to the through slit. .
  • the hollow fiber membrane module includes a membrane bundle in which a plurality of hollow fiber membranes are bundled, a tubular body that accommodates the membrane bundle, and an end portion of the membrane bundle on the side to which raw water is supplied. And a fixing part for fixing to the body.
  • the raw water supplied to the inside of the cylindrical body is permeated from the outside to the inside of the hollow fiber membrane.
  • the fixing portion is positioned between a plurality of through slits extending substantially parallel to each other and the adjacent through slits, and is fixed to extend over the entire length of at least one of the adjacent through slits. And have.
  • a raw water inflow nozzle that allows the raw water to flow into the cylindrical body may be disposed with a porous structure in which a large number of holes are formed in the vicinity of the raw water outflow nozzle that discharges the raw water from the vicinity of the fixed portion. Good.
  • a porous structure makes it difficult for the raw water flow in the cylindrical body collar to be biased.
  • the porous structure may be a structure removable from the cylindrical body, but it is preferable that the cylindrical body and the porous structure are integrally formed.
  • the porous structure in the cylindrical body.
  • the structure of the hollow fiber membrane module can be simplified by integrating the cylindrical body and the porous structure.
  • the step is not formed by the porous structure, the hollow fiber membrane can be prevented from being rocked and damaged.
  • the fixing portion fixes the end portion of the membrane bundle to the porous structure of the cylindrical body with a resin.
  • the resin enters the pores of the porous structure, and the cylindrical body and the membrane bundle can be firmly fixed, and the strength of the hollow fiber membrane module Can be improved.
  • the hollow fiber membrane can suppress the flow rate of the rapid flow of the raw water and can prevent the hollow fiber membrane from being damaged due to the raw water directly contacting the hollow fiber membrane.
  • a module is provided.
  • the hollow fiber membrane module includes a membrane bundle in which a plurality of hollow fiber membranes are bundled, a cylindrical body that accommodates the membrane bundle, and a fixing that fixes at least one end of the membrane bundle to the cylindrical body. Department. The raw water supplied to the inside of the cylindrical body is permeated from the outside to the inside of the hollow fiber membrane.
  • the hollow fiber membrane module includes a passage extending between the tubular body and the membrane bundle in a circumferential direction of the tubular body, a tangential direction of the tubular body, and allowing the raw water to flow into the passage. And a raw water inflow nozzle.
  • the hollow fiber membrane can suppress the flow rate of the rapid flow of the raw water and can prevent the hollow fiber membrane from being damaged by the raw water coming into direct contact with the hollow fiber membrane.
  • This hollow fiber membrane module is provided with a membrane bundle in which a plurality of hollow fiber membranes are bundled, a cylindrical body that accommodates the membrane bundle, and at least one end of the membrane bundle as the cylinder. And a fixing portion that is fixed to the body. The raw water supplied to the inside of the cylindrical body is permeated from the outside to the inside of the hollow fiber membrane.
  • the hollow fiber membrane module includes a raw water inflow nozzle having a flow path extending in a tangential direction of the cylindrical body and gradually expanding in a longitudinal direction of the cylindrical body so that a cross-sectional area of the flow path is constant. ing.
  • a porous structure that is provided to suppress the rapid flow rate of raw water supplied from the raw water inflow nozzle.
  • the raw water flow from the raw water inflow nozzle hits the hollow fiber membrane because the raw water is prevented from coming into direct contact with the hollow fiber membrane.
  • the hollow fiber membrane can be prevented from being damaged.
  • it is preferable to provide a protrusion for generating a swirling flow of the raw water in the passage By this projection, a swirling flow of raw water is generated in the passage, and the raw water can flow relatively uniformly in the cylindrical body.
  • a hollow fiber membrane module that can improve the sealing performance with a simple structure and that allows easy replacement and removal of the hollow fiber membrane.
  • the hollow fiber membrane module includes a membrane bundle in which a plurality of hollow fiber membranes are bundled, a cylindrical body that accommodates the membrane bundle, and a fixing portion that fixes at least one end of the membrane bundle to the cylindrical body. And a cover connected to at least one end of the cylindrical body. The raw water supplied to the cylindrical body is permeated through the hollow fiber membrane.
  • a seal member is disposed radially outward or inward of the tubular body, and the seal member seals between the tubular body and the cover.
  • the seal member continues to contact along the outer peripheral surface or inner peripheral surface of the cylindrical body. It becomes possible to seal reliably.
  • the cover can be connected to the cylindrical body by a simple method such as clamping instead of screwing or bonding, the structure of the hollow fiber membrane module can be simplified.
  • the cover is connected to the tubular body by a method such as clamping, the hollow fiber membrane inside can be replaced or removed by replacing and removing only the tubular body. Easy replacement and removal.
  • a seal member accommodating portion for accommodating the seal member is formed on the outer peripheral surface or the inner peripheral surface of the cylindrical body.
  • the hollow fiber membrane module of the present invention the following effects can be obtained. (1) It is difficult for the performance of the hollow fiber membrane to deteriorate due to interfiber clogging.
  • FIG. 1 is a longitudinal sectional view showing a hollow fiber membrane module according to the first embodiment of the present invention.
  • FIG. 2 is a partially broken perspective view showing an upper end portion of the hollow fiber membrane module shown in FIG.
  • FIG. 3 is a cross-sectional view of the soft potting portion shown in FIG.
  • 4A to 4C are cross-sectional views showing modifications of the groove formed in the soft potting portion shown in FIG.
  • FIG. 5 is a cross-sectional view of the lower fixing portion shown in FIG.
  • FIG. 7 is a longitudinal sectional view showing a hollow fiber membrane module according to the second embodiment of the present invention.
  • FIG. 8 is a perspective view of the intermediate casing shown in FIG.
  • FIG. 9 is a partially broken perspective view showing a lower end portion of the hollow fiber membrane module shown in FIG.
  • FIG. 10 is a cross-sectional view showing a hollow fiber membrane module according to a third embodiment of the present invention.
  • FIG. 11 is a schematic view showing a modification of the hollow fiber membrane module shown in FIG.
  • FIG. 12 is a cross-sectional view showing a modification of the hollow fiber membrane module shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 12 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 1 is a longitudinal sectional view showing a hollow fiber membrane module 1 in a first embodiment of the present invention.
  • the hollow fiber membrane module 1 includes a membrane bundle 20 in which a number of hollow fiber membranes 10 are bundled in a cylindrical shape, and a cylindrical tubular body 30 in which the membrane bundle 20 is accommodated. It has.
  • the cylindrical body 30 in this embodiment includes an upper casing 31, an intermediate casing 32, and a lower casing 33.
  • An upper cover 2 having a nozzle 2a for discharging filtered water is attached to the upper end of the cylindrical body 30. Air or raw water used for air cleaning is attached to the lower end of the cylindrical body 30.
  • a lower cover 3 having a nozzle 3a for introducing the is attached.
  • This hollow fiber membrane module 1 is used for external pressure filtration in which raw water supplied to the inside of the cylindrical body 30 is permeated from the outside to the inside of the hollow fiber membrane 10 for filtration.
  • the hollow fiber membrane module 1 is configured to filter all the raw water supplied to the inside of the cylindrical body 30. It can be used for both volume filtration and cross-flow filtration in which raw water is filtered while moving at a constant speed along the membrane surface of the hollow fiber membrane 10.
  • Both ends of the membrane bundle 20 are fixed to the cylindrical body 30 with resin.
  • the upper end fixing portion 40 for fixing the upper end portion of the membrane bundle 20 to the upper casing 31.
  • a lower end fixing portion 50 for fixing the lower end portion of the membrane bundle 20 to the lower casing 33 is formed.
  • a raw water inflow nozzle 3 for flowing raw water into the flange of the cylindrical body 30 and for flowing backwash drainage from the inside of the cylindrical body 30. 5 is installed.
  • the upper end fixing portion 40 includes a resin fixing portion 41 that is hardened with resin and a soft potting portion 42 that is soft potted with a flexible material. This soft potting part 42 is formed on the side of the resin fixing part 41 that contacts the raw water.
  • the lower end fixing part 50 includes a resin fixing part 51 hardened by a resin and a soft potting part 52 softened with a soft material. The soft potting portion 52 is formed on the side of the resin fixing portion 51 that contacts the raw water.
  • the soft potting part 4 2 of the upper end fixing part 40 and the soft potting part 5 2 of the lower end fixing part 50 are provided with a membrane so that the hollow fiber membrane 10 is not damaged by the oscillation of the membrane that occurs during inflow of raw water or during washing. It protects the bundle 20.
  • the material of the soft potting parts 4 2 and 52 is not particularly limited, but a material having high chemical stability such as silicon rubber, nitrile rubber, buty rubber, and fluoro rubber is preferable. Chemical cleaning is performed when the performance of the hollow fiber membrane 10 deteriorates due to adhesion of contaminants, but chemical cleaning can be achieved by using the above-mentioned highly chemical-stable materials for the soft potting parts 4 2 and 5 2.
  • the soft potting portions 4 2 and 5 2 are formed over the entire surface of the cylindrical body 30 perpendicular to the axial direction. It may be covered with the above-mentioned flexible material, and in this case, the same effect as described above can be obtained.
  • FIG. 2 is a partially broken perspective view showing an upper end portion of the hollow fiber membrane module 1 shown in FIG. 1, and FIG. 3 is a cross-sectional view of FIG.
  • the soft potting portion 42 of the upper end fixing portion 40 in this embodiment has an upper case on the surface that comes into contact with the raw water.
  • a groove 4 3 extending in the radial direction of the single 3 1 is formed.
  • the groove 43 extends toward the raw water outflow nozzle 34 provided in the upper casing 31, and its end communicates with the flow path of the raw water outflow nozzle 34.
  • This groove 43 has a function of discharging bubbles staying at the upper end of the cylindrical body 30 when raw water is filtered or air-washed.
  • the bubbles staying inside the cylindrical body 30 during filtration or air washing can be collected in the groove 43, and these bubbles can be effectively discharged. Therefore, it is possible to greatly reduce the decrease in flux due to the breakage of the hollow fiber membrane 10 and the hydrophobicity.
  • the depth of the groove 43 is about 5 to 20 mm, preferably about 10 to 15 mm. If the groove 43 is shallower than this range, it is considered that the function of discharging bubbles or the function as a bubble reservoir is lowered.
  • the bottom area of the groove 43 is about 5 to 25%, preferably about 15 to 20% with respect to the cross-sectional area of the resin fixing portion 41. If the bottom area of the groove 43 is larger than this range, the packing density of the hollow fiber membrane 10 is reduced, so that the effective membrane area is reduced and the flux per hollow fiber membrane module is reduced. Absent.
  • FIG. 3 the example in which only the groove 4 3 extending toward the raw water outflow nozzle 3 4 has been described, but the shape of the groove that can be formed on the surface of the soft potting part 42 that contacts the raw water is limited to this. It is not a thing.
  • a plurality of branch grooves 43 a communicating with the main groove 43 may be formed at right angles to the main groove 43.
  • a plurality of branch grooves 4 3 b communicating with the main groove 43 may be formed obliquely toward the raw water outflow nozzle 3 4 with respect to the main groove 43.
  • each branch groove 4 3a since the length of each branch groove 4 3a can be shortened compared to the example shown in FIG. 4B, the bubbles existing in the branch groove 4 3a can be removed in a shorter time. 3 can be discharged.
  • the branch groove 4 3 b since the branch groove 4 3 b faces the raw water outflow nozzle 3 4, bubbles existing in the branch groove 4 3 b are effectively discharged to the raw water outflow nozzle 3 4. That's right.
  • a plurality of branch grooves 43 c communicating with the main groove 43 may be formed concentrically. According to such a configuration, the bubbles existing in the branch groove 43 c can be smoothly flowed without stagnation.
  • a semicircular branch groove 4 3 c is formed symmetrically with respect to a direction perpendicular to the main groove 4 3.
  • the groove formed in the fixing portion 40 is composed of the main groove 4 3 and a plurality of branch grooves connected to the main groove 43, thereby providing a cylindrical body. Even if all the air bubbles staying inside 30 cannot be discharged, the main groove 43 functions as a bubble reservoir. Thus, it is possible to greatly reduce the decrease in flux due to the breakage of the hollow fiber membrane 10 and the hydrophobicity. Further, in the example shown in FIGS. 4A to 4C, it is preferable to make the intervals between adjacent branch grooves substantially equal. By making the interval between adjacent branch grooves substantially equal, bubbles existing in each part of the hollow fiber membrane 10 can be efficiently accumulated in the branch groove or main groove.
  • the groove is formed in the soft potting part 42.
  • the surface on which the groove is formed is not limited to the soft potting part 42, and any surface as long as the surface is in contact with raw water. There may be.
  • a groove may be formed in the resin fixing part 41.
  • a fixing portion in which a groove is formed may be prepared in advance, and this may be fixed to the upper casing 31 together with the hollow fiber membrane 10.
  • FIG. 5 is a cross-sectional view of the resin fixing portion 51 of the lower end fixing portion 50 shown in FIG. As shown in FIG.
  • the resin fixing portion 51 is formed with a plurality of through slits 53 extending substantially in parallel and in one direction, and thus, between these through slits 53.
  • a plurality of film bundle portions 54 that extend substantially in parallel and in one direction are formed.
  • a through slit similar to the resin fixing portion 51 is formed in the soft potting portion 52 of the lower end fixing portion 50.
  • the membrane bundle portions 54 made of hollow fiber membranes can be arranged in a flat plate shape.
  • the cleaning efficiency can be improved, and interfiber clogging can be effectively prevented.
  • the resin fixing part 5 is not only from the raw water inflow nozzle 35, but also from the lower end fixing part 50, depending on the properties of the raw water.
  • Raw water can be introduced into the inside of the cylindrical body 30 through the through slit 53 of 1 and the soft potting part 52.
  • the configuration of the resin fixing part 51 is not limited to that shown in FIG.
  • a plurality of circular through slits 53a arranged in a substantially parallel and concentric manner are formed, and the circular through slits 53a are arranged in a substantially parallel and concentric manner.
  • a plurality of film bundle portions 5 4 a may be formed.
  • the groove formed in the soft potting portion 42 of the upper end fixing portion 40 is formed concentrically as shown in FIG. 4C in correspondence with the through slit 53a, bubbles are effectively discharged. It is preferable in that it can be performed.
  • a plurality of through slits extending substantially in parallel and in a straight line 5 3 b may be formed, and a plurality of film bundle portions 5 4 b extending substantially in parallel and in a straight line may be formed between the through slits 5 3 b.
  • a plurality of through slits 53 c extending substantially in parallel and substantially radially are formed, and a plurality of slits extending substantially in parallel and substantially radially are formed between these through slits 53 c.
  • the film bundle portion 5 4 c may be formed.
  • the membrane bundle portion is located between the adjacent through slits, and each membrane bundle portion is adjacent to the adjacent through slit. It extends at least over the entire length of at least one of the two. Further, these through slits and the membrane bundle portion are arranged symmetrically with respect to a certain center line passing through the center of the lower casing 33.
  • the through slits are arranged in parallel to each other, and the interval between the center lines of the through slits is substantially constant.
  • the center line of the through slit is a line in which the center in the width direction of the through slit is connected over the entire length of the through slit and extends in the longitudinal direction of the through slit.
  • the through slit formed in the resin fixing part 51 described above preferably opens at a ratio of about 5 to 25% with respect to the cross-sectional area of the lower end fixing part 50.
  • the opening ratio of the through slits is about 15 to 25%, preferably about 20%.
  • the width of the through slit is about 1 to 8 mm, preferably about 2 to 6 mm, more preferably 3 to 5 in order to smoothly flow the raw water and improve the efficiency of air cleaning. It is preferable to be about mm.
  • the aperture ratio of the through slits is about 5 to 15%, preferably about 6 to 10% for effective cleaning. It is preferable to make it. By setting such an aperture ratio, it is possible to widen the gap between the membrane bundle portion and the membrane bundle portion, so that it is difficult to cause interfiber necking, and the sludge peeled off from the hollow fiber membrane 10 is efficiently used. In particular, it can be discharged through these through slits. In this case, if the width of the through slit is about 0.5 to 5 mm, preferably about 1 to 3 mm, more preferably about 1.5 to 2.5 mm, the amount of air required for air cleaning Can be reduced, which is preferable.
  • the present invention is not limited to this.
  • the lower casing 3 3 A fixing portion with a through slit may be prepared in advance, and fixed to the lower casing 33 together with the hollow fiber membrane 10.
  • FIG. 7 is a longitudinal sectional view showing the hollow fiber membrane module 101 according to the second embodiment of the present invention.
  • the hollow fiber membrane module 100 in the present embodiment includes a membrane bundle 20 in which a number of hollow fiber membranes 10 are bundled in a cylindrical shape, and a cylindrical tubular body 130 in which the membrane bundle 20 is accommodated. It has.
  • the tubular body 130 includes an upper casing 31, an intermediate casing 13 2, and a lower casing 33.
  • the intermediate casing 1 3 2 in the present embodiment is different from the intermediate casing 3 2 in the first embodiment in that it extends over the entire length of the membrane bundle 20.
  • illustrations of covers attached to the upper end portion and the lower end portion of the cylindrical body 30 are omitted.
  • FIG. 8 is a perspective view showing the intermediate casing 1 3 2.
  • the upper end of the intermediate casing 1 3 2 is provided with a porous structure in which a large number of holes 1 3 2 a are formed, and the lower end of the intermediate casing 1 3 2.
  • a porous structure in which holes 1 3 2 b are formed is provided.
  • a porous structure in which a large number of holes are formed in the vicinity of the raw water outflow nozzle 34 and the raw water inflow nozzle 35 is formed.
  • the porous structure is formed integrally with the intermediate casing 13 2 .
  • a porous structure May be formed on a member separate from the intermediate casing 13 2.
  • a step is generated in the portion where the member having a porous structure is attached, and if the swung hollow fiber membrane 10 comes into contact with this step, it may cause the hollow fiber membrane 10 to break.
  • the intermediate casing 1 3 2 and the porous structure are integrated as in the present embodiment, no step is formed by the porous structure, so that the hollow fiber membrane 10 can be prevented from rocking and being damaged.
  • the structure of the hollow fiber membrane module can be simplified.
  • the porous structure holes 1 3 2 a, 1 3 2 b
  • the intermediate casing 1 3 2 the membrane bundle 20, and the upper casing 3 1 are firmly fixed to each other, and the intermediate casing 1 3 2 can be prevented from falling off from the upper casing 3 1. Therefore, the strength of the hollow fiber membrane module can be improved.
  • the raw water inflow nozzle 3 5 of the intermediate casing 1 3 2 It is preferable not to form holes 1 3 2 b in the surface facing 1 3 2 c. That is, it is preferable that the surface 13 32 c of the cylindrical body 130 facing the raw water inflow nozzle 35 is a continuous surface.
  • FIG. 9 is a partially broken perspective view showing a lower end portion of the hollow fiber membrane module 1001. As shown in FIG. 9, also in the present embodiment, through slits 53 are formed in the soft potting portion 52 and the resin fixing portion 51 of the lower fixing portion 50 as in the first embodiment.
  • FIG. 10 is a cross-sectional view showing a hollow fiber membrane module according to a third embodiment of the present invention.
  • a passage 2 60 extending in the circumferential direction of the lower casing 2 3 3 is formed between the lower casing 2 3 3 and the membrane bundle 2 0 in the present embodiment.
  • the casing 2 3 3 is provided with a raw water inflow nozzle 2 3 5 extending along the tangential direction of the lower casing 2 3 3.
  • Such a structure eliminates the need for a porous structure (for example, the holes 13 2 b in FIG. 8) provided to suppress the rapid flow rate of the raw water supplied from the raw water inflow nozzle. Also, by providing the raw water inflow nozzle 2 3 5 extending along the tangential direction of the lower casing 2 3 3, the raw water supplied from the raw water inflow nozzle 2 3 5 is prevented from coming into direct contact with the hollow fiber membrane. It is also possible to solve the problem peculiar to the external pressure filtration membrane module that the hollow fiber membrane is damaged by the flow of the raw water supplied from the raw water inflow nozzle 2 35 hits the hollow fiber membrane. Such a structure can also be applied to a hollow fiber membrane module using cross-flow filtration.
  • the projections 2 6 2 projecting inward at a predetermined interval are connected to the passage 2 6 If it is set to 0, disturbance dispersion of the flow in the passage 260 can be promoted and the flow velocity thereof can be quickly reduced, and the raw water can flow relatively uniformly in the cylindrical body.
  • an effective swirling flow can be generated, and the raw water in the cylindrical body can be generated. The flow can be made more uniform.
  • the inner diameter of the lower casing 2 3 3 near the raw water inflow nozzle 2 3 5 is increased so that the lower casing 2 3 3 and the membrane bundle 20
  • the width of the passage 2 60 may be expanded in the vicinity of the raw water inflow nozzle 2 3 5.
  • the inner diameter of the cylindrical body including the lower casing 2 3 3 may be the same from the vicinity of the raw water inflow nozzle 2 3 5 from the upper side, but in order to prevent unevenness in the water pressure applied to the hollow fiber membrane, Force to reduce the diameter near the raw water inflow nozzle 2 3 5 just above the vicinity of the raw water inflow nozzle 2 3 5 ⁇ It is preferable to gradually decrease from the inner diameter near the raw water inflow nozzle 2 3 5 as it goes upward.
  • the passage may be formed in a spiral shape so that the flow path from the raw water inflow nozzle 2 35 gradually goes upward.
  • a swirl flow can be generated in the same manner as described above. If it is difficult to form the passage 2 60 between the lower casing 2 3 3 and the membrane bundle 20 due to design reasons, etc., or if you want to reduce the flow rate of the raw water flowing into the cylindrical body
  • the cross-sectional shape of the connecting portion that extends in the tangential direction of the lower casing 2 3 3 of the raw water inflow nozzle 2 3 5 may be as shown in FIG.
  • the cross-sectional shape of the raw water inflow nosole 2 3 5 is a substantially rectangular shape 2 3 5 a extending in the longitudinal direction of the cylindrical body at the connection portion with the lower casing 2 3 3, and the lower casing 2 3 3 and Therefore, it may be changed to a substantially circular shape 2 3 5 b that can be connected to a normal external pipe.
  • the cross-sectional area of the substantially rectangular shape 2 3 5 a of the raw water inflow nozzle 2 3 5 is the same as the cross-sectional area of the substantially circular shape 2 3 5 b or the section of the substantially rectangular shape 2 3 5 a
  • the raw water inflow nozzle 2 35 is preferably configured so that the area is larger than the cross-sectional area of the substantially circular shape 2 3 5 b.
  • the flow is applied to the inner wall of the raw water inflow nozzle 2 3 5.
  • a projecting structure for disturbing or a perforated plate for reducing the flow rate of the raw water flowing into the cylindrical body may be provided.
  • FIG. 12 is a cross-sectional view showing a modification of the hollow fiber membrane module shown in FIG.
  • the space between the upper cover 2 and the upper casing 3 1 is sealed with a sealing member (O-ring) 3 0
  • the space between the lower cover 3 and the lower casing 3 3 is sealed (O Ring) Sealed with 3 0 2
  • the seal member 300 is disposed on the radially outer side of the upper casing 31, and the seal member 302 is disposed on the radially outer side of the lower casing 33.
  • a first locking piece 3 1 a extending radially outward is provided at the upper end of the upper casing 3 1 to which the upper cover 2 is connected.
  • a second locking piece 3 1 b extending outward in the direction is provided.
  • the length of the first locking piece 3 1 a is shorter than that of the second locking piece 3 1 b.
  • a seal member accommodating portion 3 1 c for accommodating the seal member 300 is formed on the outer peripheral surface of the upper end portion of the upper casing 31.
  • a recess (groove) for accommodating the seal member 300 may be formed on the outer peripheral surface of the upper casing 31 without forming the locking pieces 3 1 a and 3 1 b. .
  • a first locking piece 33a extending radially outward is provided at the lower end of the lower casing 33 to which the lower cover 3 is connected, and above it is radially outward.
  • An extending second locking piece 33b is provided.
  • the length of the first locking piece 3 3 a is shorter than that of the second locking piece 3 3 b.
  • the seal members 300 and 30 By arranging the seal members 300 and 30 in this way, even if the inside of the hollow fiber membrane module is pressurized and the covers 2 and 3 are slightly displaced in the axial direction, the seal member 30 Since 0 and 30 2 are kept in contact with the outer peripheral surfaces of the casings 3 1 and 3 3, it is possible to seal them securely. On the other hand, when the seal member is disposed at the axial ends of the covers 2 and 3, if the covers 2 and 3 are displaced in the axial direction due to the pressurization inside the hollow fiber membrane module, problems such as leakage may occur. It is likely to occur.
  • the arrangement of the seal members 300, 300 described above enables the force-2, 3 to be connected to the casings 31, 3, 3 by a simple method such as clamping rather than by screwing or bonding. .
  • the structure of the hollow fiber membrane module can be simplified.
  • the covers 2 and 3 are connected to the casings 3 1 and 3 3 by a method such as clamping, only the cylindrical body 30 is replaced.
  • the hollow fiber membrane 10 can be easily replaced and removed.
  • Such a sheath structure is not limited to external pressure filtration but can also be used for internal pressure filtration.
  • the seal members 3 0 0, 3 0 2 are arranged on the radially outer side of the casings 3 1, 3 3, but the seal members 3 0 0, 3 0 2 are connected to the casing 3 1 , 33 may be arranged on the radially inner side for sealing.
  • a porous hollow fiber membrane having a nominal pore diameter of 0.1 / xm was used as the hollow fiber membrane 10.
  • a cylindrical pipe having an inner diameter of 15 O mm was used as the intermediate casing 13 2.
  • a porous structure was formed at both ends of the casing 1 3 2.
  • the hollow fiber membranes 10 were bundled, both ends thereof were fixed with resin, and the inside of the cylindrical body 130 was filled.
  • a groove 43 having a width of 2 O mm and a depth of 1 O mm was formed on the surface of the upper end fixing portion 40 that contacts the raw water. As shown in FIG. 3, the groove 43 was formed so as to extend in the direction of the raw water outflow nozzle 34 of the upper casing 31. '
  • Example 1 Using the same hollow fiber membrane module as in Example 1 above, except that no groove was formed in the upper end fixing part 40, a continuous water flow test for 2 weeks was carried out under the same operating conditions as in Example 1. did. As a result, the filtered water amount after 2 weeks decreased to 93% of the initial filtered water amount.
  • the hollow fiber membrane module was disassembled and the hollow fiber membrane was observed, and it was observed that a part of the hollow fiber membrane on the upper end side of the module was in a dry state. For this reason, the amount of filtered water decreases because the bubbles supplied by air scrubbing are not completely discharged and stays at the upper end of the module even during the filtration process, so that the hollow fiber membrane dries and becomes hydrophobic. It is considered that the effective membrane area has decreased.
  • a porous hollow fiber membrane having a nominal pore diameter of 0.1 / zm was used as the hollow fiber membrane 10, and a hard chloride bull pipe having an inner diameter of 15 O mm was used as the intermediate casing 13 2.
  • a porous structure was formed at both ends of the casing 1 3 2.
  • the hollow fiber membranes 10 were bundled, both ends thereof were fixed with resin, and the inside of the cylindrical body 130 was filled. Further, a groove 43 having a width of 20 mm and a depth of 1 O mm was formed on the surface of the upper end fixing portion 40 that contacts the raw water. This groove 4 3 is shown in Fig. 3.
  • the upper casing 31 was formed so as to extend toward the raw water outflow nozzle 3 4.
  • 10 pieces of through slits 53 having a width of 3 mm are formed in the resin fixing portion 51 of the lower fixing portion 50 and the soft potting portion 52, and the raw water is passed through the through slit 53. And air for air scrubbing.
  • the aperture ratio of the through slit 53 was about 20% with respect to the cross sectional area of the lower end fixing portion 50.
  • a hollow fiber membrane module similar to that of Example 2 above is used except that a circular opening is formed in the lower end fixing part 50 instead of the through slit 53, and continuous passage is performed under the same operating conditions as in Example 2.
  • a water test was performed.
  • the diameter of the circular opening was 1 O mm, the number was 32, and the opening ratio of the circular opening was about 20% with respect to the cross-sectional area of the lower end fixing part 50 as in Example 2.
  • the amount of filtered water after 750 hours decreased to 58% of the initial amount of filtered water, and the flux was clearly decreased as compared with Example 2.
  • Example 3 Example 3
  • a hollow fiber membrane module having the following configuration.
  • the hollow fiber membrane 10 a porous hollow fiber membrane having a nominal pore diameter of 0.1 ⁇ was used, and as the intermediate casing 13 2, a hard chloride chloride pipe having an inner diameter of 15 O mm was used.
  • a porous structure was formed at both ends of the casing 1 3 2.
  • the hollow fiber membranes 10 were bundled, both ends thereof were fixed with resin, and the inside of the cylindrical body 130 was filled. Further, a groove 43 having a width of 20 mm and a depth of 1 O mm was formed on the surface of the upper end fixing portion 40 that contacts the raw water. As shown in FIG.
  • the groove 4 3 was formed so as to extend in the direction of the raw water outflow nozzle 3 4 of the upper casing 3 1.
  • 10 pieces of through slits 5 3 with a width of 3 mm are formed in the resin fixing part 5 1 and the soft potting part 5 2 of the lower fixing part 50, and these through slits 53 are used.
  • Supply raw water and air for rubbing I got it.
  • the opening ratio of the through slit 53 was about 20% with respect to the cross-sectional area of the lower end fixing portion 50.
  • Example 3 Continuously using the same hollow fiber membrane module as in Example 3 above, except that a circular opening was formed instead of the through slit 5.3 in the lower end fixing part 50, under the same operating conditions as in Example 3.
  • a water flow test was conducted.
  • the diameter of the circular opening was 10 mm, the number was 32, and the opening ratio of the circular opening was about 20% with respect to the cross-sectional area of the lower end fixing part 50 as in Example 3.
  • the amount of filtered water after 70 hours was reduced to 72% of the initial filtered water, and the flux was clearly reduced as compared with Example 2.
  • the present invention provides water treatment such as purification of drinking water, drinking water, industrial water, pure water, etc., turbidity removal of river water and seawater, various wastewater, human waste, sewage treatment such as sewage, and slurry concentration such as sludge. It can be used for the hollow fiber membrane module used in the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

中空糸膜モジュール(1)は、複数本の中空糸膜(10)を束ねた膜束(20)と、膜束(20)を収容する筒状体(30)と、膜束(20)の少なくとも1つの端部を筒状体(30)に固定する固定部(40,50)と、原水を固定部(40)の近傍から流出させる原水流出ノズル(34)とを備えている。筒状体(30)の内部に供給された原水は中空糸膜(10)の外側から内側に透過される。ソフトポッティング部(42)は、原水が接触する面に少なくとも1つの溝(43)を有している。

Description

明 細 書 中空糸膜モジュール 技術分野
本発明は、 中空糸膜モジュールに係り、 特に上水や飲料用水、 工業用水、 純水 などの精製、 河川水や海水などの除濁、 各種廃水やし尿、 下水などの汚水処理、 さらには汚泥等のスラリー濃縮などの水処理に用いられる中空糸膜モジュールに 関す ものである。 背景技術
分離膜を透過させて被処理水中の成分や粒子を除去する膜分離法は、 上水や飲 料用水、工業用水、純水などの精製、河川水や海水などの除濁、各種廃水やし尿、 下水などの汚水処理、 さらには汚泥等のスラリ一濃縮など多くの分野で幅広く利 用されている。 このような用途に用いられる分離膜は、 一般に、 複数の膜を束ね て、 濾過水を収集するケースなどに固定した膜モジュールの形態で用いられる。 このような膜モジュールには、 被処理水の分離を行う面積が広いこと、 被処理 水との接触がよいこと、 被処理水の急激な水質変動に対応可能であることなどが 要求される。 従来かち、 このような処理水量や処理効率に直接関係する要求に対 応するため、 精密濾過膜や限外濾過膜に対して様々な形態の膜モジュールが検討 および実用化されてきた。
例えば、 円筒状に中空糸膜を収束してその両端を固定し、 複数の円形孔が形成 された整流筒を固定した端部に配置して、 これらの円形孔から被処理水を流入さ せる形態のモジュールが知られている (例えば、 特開平 9一 2 2 0 4 4 6号公報 参照) 。 これらの円形孔は、 中空糸膜を空気により洗浄する (空気洗浄) 際の空 気の流入口としても用いられる。
し力、しながら、 このような形態の中空糸膜モジュールにおいては、 長期間にわ たる使用により円形孔に面する中空糸膜が互いに固着して棒状の膜束が形成され る現象 (インターファイバークロツギング現象) が生じることがある。 このよう な棒状の膜束が形成されると、 膜束の内部に被処理水が浸入および接触しにくく なり、 その結果として濾過面積が減少し、 濾過機能の低下を招く。
また、 このような中空糸膜モジュールは、 内部に気泡が滞留しやすいため、 こ れが膜の破損を生じさせる原因ともなつている。 すなわち、 空気洗浄時に気泡が 中空糸膜モジュールの上端部に滞留するため、 中空糸膜の端部に過剰なス トレス がかかり、 この端部で膜の破損が生じやすい。 このようにして滞留した気泡は、 濾過水を用いた逆洗時にも同様の現象を引き起こす可能性が高い。 また、 気泡が 滞留した部分の膜は乾燥して疎水化するため、 濾過を再開しても水がこの部分を 通過せず、 この結果、 濾過面積の減少、 すなわち膜濾過水量 (フラックス) の低 下を引き起こすことになる。
このような欠点を解消するため、 簾のように平面上に束ねた分離膜をハウジン グに固定し、 これらを水槽内に並列に配置した浸漬型分離膜モジュールが開発さ れて 、る (例えば、 特開平 5— 2 2 0 3 5 6号公報参照) 。 し力 しながら、 この ような分離膜モジュールは、 同一の濾過面積を有する円筒状の膜モジュールと比 ベると、 設置面積が大きくなるため、 分離膜の本来の利点である省スペース化を 図ることが難しくなってしまう。 さらに、 汚染した膜を薬品によって洗浄する際 には、 大量の洗浄用薬品が必要となる。 このため、 大量の薬品排水が発生するこ ととなり、 環境負荷を増大させるという観点からも望ましくはない。 発明の開示
本発明は、 このような従来技術の問題点に鑑みてなされたもので、 内部での気 泡の滞留による中空糸膜の破損や中空糸膜の疎水化によるフラッタスの低下を低 減することができる中空糸膜モジュールを提供することを第 1の目的とする。 また、 本発明は、 中空糸膜が汚染された場合に行われる空気洗浄などにおける 物理的洗浄性に優れ、 長期にわたって安定した濾過を行うことができる中空糸膜 モジュールを提供することを第 2の目的とする。
さらに、 本発明は、 原水の急速な流れの流速を抑えることができ、 中空糸膜に 直接原水が接触することによる中空糸膜の破損を防止することができる中空糸膜 モジュールを提供することを第 3の目的とする。
また、 本発明は、 簡易な構造でシール性を向上させることができ、 中空糸膜の 交換や取り外しが容易な中空糸膜モジュールを提供することを第 4の目的とする。 本発明の第 1の態様によれば、 中空糸膜の破損や疎水化によるフラックスの低 下を低減することができる中空糸膜モジュールが提供される。 この中空糸膜モジ ユールは、 複数本の中空糸膜を束ねた膜束と、 上記膜束を収容する筒状体と、 上 記膜束の少なくとも 1つの端部を上記筒状体に固定する固定部と、 原水を上記固 定部の近傍から流出させる原水流出ノズルとを備えている。 上記筒状体に供給さ れた原水は上記中空糸膜の外側から内側に透過される。 上記固定部は、 上記原水 が接触する面に少なくとも 1つの溝を有している。
このような構成により、 濾過時や空気洗浄時に筒状体の内部に滞留した気泡を 固定部に形成された溝に集めることができ、 これらの気泡を効果的に排出するこ とができる。 したがって、 内部での気泡の滞留による中空糸膜の破損や中空糸膜 の疎水化によるフラッタスの低下を大幅に低减することができる。
上記溝は、 膜束の端部を樹脂により筒状体に固定した樹脂固定部に形成しても よいし、 あるいは、 固定部近傍の中空糸膜の破損を防止するために柔軟な材質に より形成されたソフトポッティング部に形成してもよい。 また、 溝を形成した固 定部 予め作製し、 これを中空糸膜とともに筒状体に固定してもよい。
上述した気泡の排出を容易にするために、 上記固定部の溝の少なくとも一部が 上記原水流出ノズルに連通されていることが好ましい。 別言すれば、 上記固定部 の溝の少なくとも一部が上記原水流出ノズルに接続されていることが好ましい。 この場合において、 さらに効果的に気泡を排出するために、 上記固定部の溝の少 なくとも一部は上記原水流出ノズルに向かって傾斜面を有していることが好まし い。 また、 上記固定部の溝を主溝と該主溝に摈続される複数の枝溝とにより構成 してもよい。 この場合には、 筒状体の内部に滞留した気泡をすベて排出できなく ても、 主溝が気泡溜めとして機能するので、 中空糸膜の破損や疎水^によるフラ ックスの低下を大幅に低減することができる。
本発明の第 2の態様によれば、 中空糸膜が汚染された場合に行われる空気洗浄 などにおける物理的洗 生に優れ、 長期にわたって安定した濾過を行うことがで きる中空糸膜モジュールが提供される。 この中空糸膜モジュールは、 複数本の中 空糸膜を束ねた膜束と、 上記膜束を収容する筒状体と、 原水が供給される側の上 記膜束の端部を上記筒状体に固定する固定部とを備えている。 上記筒状体の内部 に供給された原水は上記中空糸膜の外側から内側に 過される。 上記固定部は、 複数の貫通スリットと、 上記貫通スリットと略平行に延びて固定される複数の膜 束部とを有している。
本発明の第 3の態様によれば、 中空糸膜が汚染された場合に行われる空気洗浄 などにおける物理的洗浄性に優れ、 長期にわたって安定した濾過を行うことがで きる中空糸膜モジュールが提供される。 この中空糸膜モジュールは、 複数本の中 空糸膜を束ねた膜束と、 上記膜束を収容する筒状体と、 原水が供給される側の上 記膜束の端部を上記筒状体に固定する固定部とを備えている。 上記筒状体の内部 に供給された原水は上記中空糸膜の外側から内側に透過される。 上記固定部は、 等間隔で略直線状に固定されて平板状膜を形成する複数の膜束部と、 上記膜束部 と略平行に延びる複数の貫通スリットとを有している。
本発明の第 4の態様によれば、 中空糸膜が汚染された場合に行われる空気洗浄 などにおける物理的洗 14に優れ、 長期にわたって安定した濾過を行うことがで きる中空糸膜モジュールが提供される。 この中空糸膜モジュールは、 複数本の中 空糸膜を束ねた膜束と、 上記膜束を収容する筒状体と、 原水が供給される側の上 記膜束の端部を上記筒状体に固定する固定部とを備えている。 上記筒状体の内部 に供給された原水は上記中空糸膜の外側から内側に透過される。 上記固定部は、 互いに略平行な複数の貫通スリツトと、 互いに隣り合う上記貫通スリットの間に 位置し、 上記貫通スリットと略平行に延びて固定される複数の膜束部とを有して いる。
本発明の第 5の態様によれば、 中空糸膜が汚染された場合に行われる空気洗浄 などにおける物理的洗浄性に優れ、 長期にわたって安定した濾過を行うことがで きる中空糸膜モジュールが提供される。 この中空糸膜モジュールは、 複数本の中 空糸膜を束ねた膜束と、 上記膜束を収容する筒状体と、 原水が供給される側の上 記膜束の端部を上記筒状体に固定する固定部とを備えている。 上記筒状体の内部 に供給された原水は上記中空糸膜の外側から内側に透過される。 上記固定部は、 互いに略平行に延びる複数の貫通スリットと、 互いに隣り合う上記貫通スリット の間に位置し、 上記隣り合う貫通スリットの少なくとも一方の全長にわたって延 びて固定される複数の膜束部とを有している。
このような構成により、 固定部の貫通スリットを通して原水または洗浄用の空 気を筒状体の内部に導入することができる。 また、 上述した構成により、 空気洗 净の際に、 大きな気泡を形成することができるとともに、 これらの気泡を膜束の 全体に均一に接触させることができる。 したがって、 洗浄効率を大幅に向上させ ることができる。 また、 中空糸膜を濾過水により逆洗浄した場合には、 それぞれ の中空糸膜から汚泥等が剥離するが、 上述したように、 膜束部と平行に貫通スリ ットが形成されているため、 剥離した汚泥が固定部の上部にほとんど滞留するこ となく、 効率的に寊通スリットから排出される。
ここで、 上記原水を上記筒状体の内部に流入させる原水流入ノズルゃ上記原水 を上記固定部の近傍から流出させる原水流出ノズノレの近傍に多数の孔が形成され た多孔構造を配置してもよい。 このような多孔構造により、 筒状体內部での原水 の流動に偏りが生じにくくなる。 なお、 原水流入ノズルから原水が直接中空糸膜 に接触することを防止するために、 原水流入ノズルに対向する面には多孔構造の 孔を形成しないことが好ましい。 この場合において、 上記多孔構造は上記筒状体に対して取り外し可能な構造と してもよいが、 上記筒状体と上記多孔構造とを一体に形成することが好ましい。 別言すれば、上記筒状体に上記多孔構造を形成することが好ましい。このように、 筒状体と多孔構造とを一体の構造にすることにより、 中空糸膜モジュールの構造 を単純化することができる。 また、 多孔構造により段差が形成されないため、 中 空糸膜が揺動して破損することを防止することができる。
また、 上記固定部は、 上記膜束の端部を樹脂により上記筒状体の多孔構造に固 定することが好ましい。 このようにすれば、 膜束を筒状体に固定する際に樹脂が 多孔構造の孔に入り込んで、 筒状体と膜束とを強固に固着させることができ、 中 空糸膜モジュールの強度を向上させることができる。
本発明の第 6の態様によれば、 原水の急速な流れの流速を抑えることができ、 中空糸膜に直接原水が接触することによる中空糸膜の破損を防止することができ る中空糸膜モジュールが提供される。 この中空糸膜モジュールは、 複数本の中空 糸膜を束ねた膜束と、 上記膜束を収容する筒状体と、 上記膜束の少なくとも 1つ の端部を上記筒状体に固定する固定部とを備えている。 上記筒状体の内部に供給 された原水は上記中空糸膜の外側から内側に透過される。 上記中空糸膜モジユー ルは、 上記筒状体と上記膜束との間で上記筒状体の周方向に延びる通路と、 上記 筒状体の接線方向に延び、 上記原水を上記通路に流入させる原水流入ノズルとを 備えている。
本発明の第 7の態様によれば、 原水の急速な流れの流速を抑えることができ、 中空糸膜に直接原水が接触することによる中空糸膜の破損を防止することができ る中空糸膜キジユールが提供される 9 この中空糸膜モジュールは、 複数本の中空 糸膜を束ねた膜束と、 上記膜束を収容する筒状体と、 上記膜束の少なくとも 1つ の端部を上記筒状体に固定する固定部とを備えている。 上記筒状体の内部に供給 された原水は上記中空糸膜の外側から内側に透過される。 上記中空糸膜モジユー ルは、 上記筒状体の接線方向に延び、 流路の断面積が一定となるように上記筒状 体の長手方向に向かって次第に広がる流路を有する原水流入ノズルを備えている。 このような構成により、 原水流入ノズルから供給される原水の急速な流れの流 速を抑えるために設けられる多孔構造を別途設ける必要がなくなる。 また、 上記 中空糸膜モジュールをクロスフロー濾過で用いる場合においても、 中空糸膜に直 接原水が接触することが防止されるので、 原水流入ノズルから供給される原水の 流れが中空糸膜に当たることにより中空糸膜が破損することを防止することがで きる。 この場合において、 上記通路内に上記原水の旋回流を生じさせる突起を設ける ことが好ましい。 この突起により、 通路内で原水の旋回流が生じ、 筒状体内で比 較的均一に原水を流動させることができる。
本発明の第 8の態様によれば、簡易な構造でシール性を向上させることができ、 中空糸膜の交換や取り外しが容易な中空糸膜モジュールが提供される。 この中空 糸膜モジュールは、 複数本の中空糸膜を束ねた膜束と、 上記膜束を収容する筒状 体と、 上記膜束の少なくとも 1つの端部を上記筒状体に固定する固定部と、 上記 筒状体の少なくとも一方の端部に接続されるカバーとを備えている。 上記筒状体 に供給される原水は上記中空糸膜に透過される。 上記筒状体の径方向外方または 内方にはシール部材が配置され、 このシール部材により上記筒状体と上記カバー との間をシールする。
このような構成により、 中空糸膜モジュールの内部が加圧されてカバーが多少 軸方向にずれたとしても、 シール部材は筒状体の外周面または内周面に沿って接 触し続けるため、 確実にシールすることが可能となる。 また、 ねじ込みや接着と いった方法ではなくクランプ等の簡易な方法によりカバーを筒状体に接続するこ とができるので、 中空糸膜モジュールの構造を単純化することが可能となる。 さ らに、クランプ等の方法によりカバーを筒状体に接続すれば、筒状体のみを交換 · 取り外しすることにより内部の中空糸膜の交換や取り外しを行うことができ、 中 空糸膜の交換や取り外しが容易になる。
この場合において、 上記シール部材を収容するシール部材収容部を上記筒状体 の外周面または内周面に形成することが好ましい。
本発明の中空糸膜モジュールによれば、以下のような効果を得ることができる。 ( 1 ) インターファイバークロツギングによる中空糸膜の性能の低下が生じにく い。
( 2 ) 空気洗浄による中空糸膜の表面の洗浄効果が得られやすい。
( 3 ) 筒状体の内部に滞留する気泡を効果的に排出できるため、 中空糸膜の破損 と中空糸膜の疎水化によるフラッタスの低下を防止することができる。
( 4 ) さらに、 中空糸膜の逆洗および薬品洗浄の頻度を大幅に下げることができ るので、 メンテナンスによる運転停止の頻度を少なくできるだけではなく、 洗浄 に伴って発生する洗浄排水や薬品排水を大幅に低減することができ、 環境負荷を 低減することができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態における中空糸膜モジュールを示す縦断面図 である。
図 2は、図 1に示す中空糸膜モジュールの上端部を示す部分破断斜視図である。 図 3は、 図 2に示すソフトポッティング部の横断面図である。
図 4 Aから図 4 Cは、 図 3に示すソフトポッティング部に形成される溝の変形 例を示す横断面図である。
図 5は、 図 1に示す下側固定部の横断面図である。
図 6 Aから図 6 Cは図 5に示す下側固定部の変形例を示す横断面図である。 図 7は、 本発明の第 2の実施形態における中空糸膜モジュールを示す縦断面図 である。
図 8は、 図 7に示す中間ケーシングの斜視図である。
図 9は、図 7に示す中空糸膜モジュールの下端部を示す部分破断斜視図である。 図 1 0は、 本発明の第 3の実施形態における中空糸膜モジュールを示す横断面 図である。
図 1 1は、 図 1 0に示す中空糸膜モジュールの変形例を示す模式図である。 図 1 2は、 図 1に示す中空糸膜モジュールの変形例を示す横断面図である。 発明を実施するための最良の形態
以下、 本発明に係る中空糸膜の実施形態について図 1から図 1 2を参照して詳 細に説明する。 なお、 図 1から図 1 2において、 同一または相当する構成要素に は、 同一の符号を付して重複した説明を省略する。
図 1は、 本発明の第 1の実施形態における中空糸膜モジュール 1を示す縦断面 図である。 図 1に示すように、 中空糸膜モジュール 1は、 多数の中空糸膜 1 0を 円筒状に束ねた膜束 2 0と、 この膜束 2 0を収容する円筒形の筒状体 3 0とを備 えている。 本実施形態における筒状体 3 0は、 上部ケーシング 3 1と、 中間ケー シング 3 2と、 下部ケーシング 3 3とを備えている。 また、 筒状体 3 0の上端部 には、濾過水を排出するノズル 2 aを有する上部カバー 2が取り付けられており、 筒状体 3 0の下端部には、 空気洗浄時の空気または原水を導入するノズル 3 aを 有する下部カバー 3が取り付けられている。
この中空糸膜モジュール 1は、 筒状体 3 0の内部に供給される原水を中空糸膜 1 0の外側から内側に透過させて濾過する外圧濾過に用いられる。 また、 この中 空糸膜モジュール 1は、 筒状体 3 0の内部に供給される原水の全量を濾過する全 量濾過および原水を中空糸膜 1 0の膜面に沿って一定速度で移動させながら濾過 を行うクロスフロー濾過のいずれにも用いることができる。
膜束 2 0の両端部は樹脂により筒状体 3 0に固定されており、 図 1に示す例で は、 膜束 2 0の上端部を上部ケーシング 3 1に固定する上端固定部 4 0と、 膜束 2 0の下端部を下部ケーシング 3 3に固定する下端固定部 5 0とが形成されてい る。 上部ケーシング 3 1の外周面には、 原水や逆洗排水を上端固定部 4 0の近傍 から流出させるための原水流出ノズル 3 4が取り付けられている。 また、 下部ケ 一シング 3 3の外周面には、 原水を筒状体 3 0の內部に流入させたり、 逆洗排水 を筒^体 3 0の内部から流出させたりするための原水流入ノズル 3 5が取り付け られている。
上端固定部 4 0は、 樹脂により固められた樹脂固定部 4 1と、 柔軟な材質によ りソフトポッティングが施されたソフトポッティング部 4 2とを含んでいる。 こ のソフトポッティング部 4 2は、 樹脂固定部 4 1の原水に接触する側に形成され ている。 また、 同様に、 下端固定部 5 0は、 榭脂により固められた樹脂固定部 5 1と、 柔軟な材質によりソフトポッティングが施されたソフトポッティング部 5 2と.を含んでいる。 このソフトポッティング部 5 2は、 樹脂固定部 5 1の原水に 接触する側に形成されている。
上端固定部 4 0のソフトポッティング部 4 2および下端固定部 5 0のソフトポ ッティング部 5 2は、 原水の流入時や空洗時に生じる膜の揺動により中空糸膜 1 0が破損しないように膜束 2 0を保護するものである。 ソフトポッティング部 4 2 , 5 2の材質としては、 特に制限がないが、 シリコンゴムや二トリルゴム、 ブ チルゴム、 フッ素ゴムといった化学的安定性の高い材料が好ましい。 汚染物質の 付着により中空糸膜 1 0の性能が低下した場合には薬品洗浄が行われるが、 上述 した化学的安定性の高い材料をソフトポッティング部 4 2 , 5 2に用いることで、 薬液洗浄に用いられる例えば次亜塩素酸ナトリウムのような酸化剤、 水酸化ナト リウムのようなアルカリ剤、 塩酸ゃシユウ酸などの酸剤による劣化が生じにくく なる。 なお、 図 1に示す例では、 筒状体 3 0の軸方向に垂直な面の全面にわたつ てソフトポッティング部 4 2, 5 2が形成されているが、 それぞれの中空糸膜 1 0を上述した柔軟な材質により被覆してもよく、 この場合にも上述と同様の効果 を得ることができる。
図 2は、 図 1に示す中空糸膜モジュール 1の上端部を示す部分破断斜視図、 図 3は、 図 2の横断面図である。 図 2および図 3に示すように、 本実施形態におけ る上端固定部 4 0のソフトポッティング部 4 2には、 原水が接触する面に上部ケ 一シング 3 1の径方向に延びる溝 4 3が形成されている。 この溝 4 3は、 上部ケ 一シング 3 1に設けられた原水流出ノズノレ 3 4に向かって延びており、 その端部 は原水流出ノズル 3 4の流路に連通されている。 この溝 4 3は、 原水の濾過時ま たは空気洗浄時に筒状体 3 0内部の上端部に滞留する気泡を排出する機能を有す る。 すなわち、 濾過時や空気洗浄時に筒状体 3 0の内部に滞留した気泡を溝 4 3 に集めることができ、 これらの気泡を効果的に排出することができる。 したがつ て、 中空糸膜 1 0の破損や疎水化によるフラックスの低下を大幅に低減すること ができる。
こ 溝 4 3の深さは、 5〜2 0 mm程度、 好ましくは 1 0〜 1 5 mm程度であ るのがよい。 この範囲よりも溝 4 3が浅くなると、 気泡を排出させる機能あるい は気泡溜めとしての機能が低下すると考えられる。 また、 溝 4 3の底面積は、 樹 脂固定部 4 1の断面積に対して 5〜 2 5 %程度、 好ましくは 1 5〜2 0 %程度で あるのがよい。 この範囲よりも溝 4 3の底面積が大きくなると、 中空糸膜 1 0の 充填密度が小さくなるため、 有効膜面積が低下し、 中空糸膜モジュールあたりの フラックスの減少を招くことになるので好ましくない。
図 3では、 原水流出ノズル 3 4に向かって延びる溝 4 3のみが形成された例を 説明したが、 ソフトポッティング部 4 2の原水が接触する面に形成きれる溝の形 態はこれに限られるものではない。 例えば、 図 4 Aに示すように、 主溝 4 3に加 えて、主溝 4 3に連通する複数の枝溝 4 3 aを主溝 4 3に直角に形成してもよい。 あるいは、 図 4 Bに示すように、 主溝 4 3に連通する複数の枝溝 4 3 bを主溝 4 3に対して斜めに原水流出ノズル 3 4に向けて形成してもよい。 図 4 Aに示す例 は、 図 4 Bに示す例に比べてそれぞれの枝溝 4 3 aの長さを短くできるので、 枝 溝 4 3 a内に存在する気泡をより短時間で主溝 4 3に排出することができる。 一 方、 図 4 Bに示す例では、 枝溝 4 3 bが原水流出ノズル 3 4に向いているので、 枝溝 4 3 b内に存在する気泡を効果的に原水流出ノズル 3 4に排出することがで さる。
また、 図 4 Cに示すように、 主溝 4 3に連通する複数の枝溝 4 3 cを同心円状 に形成してもよい。 このような構成によれば、 枝溝 4 3 c内に存在する気泡を滞 zらせずにスムーズに流すことができる。 なお、 図 4 Cに示す例では、 主溝 4 3に 垂直な方向に対して対称に半円状の枝溝 4 3 cが形成されている。
図 4 Aから図 4 Cに示すように、 固定部 4 0に形成される溝を主溝 4 3とこの 主溝 4 3に接続される複数の枝溝とにより構成することで、 筒状体 3 0の内部に 滞留した気泡をすベて排出できなくても、 主溝 4 3が気泡溜めとして機能するの で、 中空糸膜 1 0の破損や疎水化によるフラックスの低下を大幅に低減すること ができる。 また、 図 4 Aから図 4 Cに示す例においては、 隣接する枝溝の間隔を 略等しくすることが好ましい。 隣接する枝溝の間隔を略等しくすることで、 中空 糸膜 1 0の各部に存在する気泡を効率的に枝溝または主溝に溜めることができる。 なお、 上述した例では、 ソフトポッティング部 4 2に溝を形成しているが、 溝 を形成する面は、 ソフトポッティング部 4 2に限られず、 原水が接触する面であ ればいずれの面であってもよい。 例えば、 ソフトポッティング部 4 2を設けない 場合には、 樹脂固定部 4 1に溝を形成してもよい。 また、 溝を形成した固定部を 予め作製し、 これを中空糸膜 1 0とともに上ケーシング 3 1に固定してもよい。 図 5は、 図 1に示す下端固定部 5 0の樹脂固定部 5 1の横断面図である。 図 5 に示すように、 樹脂固定部 5 1には、 略平行かつ一方向に延びる複数の貫通スリ ット 5 3が形成されており、 これにより、 これらの貫通スリッ ト 5 3の間には略 平行かつ一方向に延びる複数の膜束部 5 4が形成されている。 また、 下端固定部 5 0.のソフトポッティング部 5 2にも、 樹脂固定部 5 1と同様の貫通スリットが 形成されている。 空気洗浄の際には、 下部カバー 3のノズル 3 aから導入されだ 空気を樹脂固定部 5 1の貫通スリット 5 3およびソフトポッティング部 5 2の貫 通スリツトを通して筒状体 3 0の内部に導入する。 上述したように、 貫通スリッ ト 5 3と膜束部 5 4とを一定間隔で交互に配置することにより、 中空糸膜からな る膜束部 5 4を平板状に配置することができ、 空気洗浄の効率を向上することが できるとともに、 インターファイバークロツギングを効果的に防止することがで きる。
また、 下端固定部 5 0に貫通スリッ卜が形成されているので、 原水の性状によ つては、 原水流入ノズル 3 5からだけではなく、 下端固定部 5 0の下方からも樹 脂固定部 5 1の貫通スリット 5 3およびソフトポッティング部 5 2を通して原水 を筒状体 3 0の内部に導入ずることができる。
榭脂固定部 5 1の構成は、 図 5に示されるものに限られなレ、。 例えば、 図 6 A に示すように、 略平行かつ同心円状に配置された複数の円形貫通スリット 5 3 a を形成し、 これらの円形貫通スリット 5 3 aの問に略平行かつ同心円状に配置さ れた複数の膜束部 5 4 aを形成してもよい。 この場合には、 上端固定部 4 0のソ フトポッティング部 4 2に形成する溝を貫通スリット 5 3 aに対応させて図 4 C に示すような同心円状に形成すると、 気泡を効果的に排出することができる点で 好ましい。
また、 図 6 Bに示すように、 略平行かつ略直線状に延びる複数の貫通スリット 5 3 bを形成し、 これらの貫通スリット 5 3 bの間に略平行かつ略直線状に延び る複数の膜束部 5 4 bを形成してもよい。 あるいは、 図 6 Cに示すように、 略平 行かつ略放射状に延びる複数の貫通スリット 5 3 cを形成し、 これらの貫通スリ ット 5 3 cの間に略平行かつ略放射状に延びる複数の膜束部 5 4 cを形成しても よい。
図 5および図 6 Aから図 6 Cに示すように、 貫通スリットと膜束部とを一定間 隔で交互に配置することで、 貫通スリッ トの開口率が増えるため、 空気洗浄の効 率を向上することができる。 図 5および図 6 Aから図 6 Cに示す樹脂固定部 5 1 においては、 互いに隣り合う貫通スリ ッ トの間に膜束部が位置し、 それぞれの膜 束部は、 隣り合う貫通スリ ッ トの少なくとも一方の全長にわたって少なくとも延 びている。 また、 これらの貫通スリットと膜束部は、 下部ケーシング 3 3の中心 を通るある中心線に対して対称に配置されている。 この中心線を挟んだそれぞれ の領域においては、 各貫通スリットが互いに平行に配置されおり、 各貫通スリツ トの中心線の間隔が略一定となるように構成されている。 ここで、 貫通スリッ ト の中心線とは、 貫通スリットの幅方向の中心を貫通スリッ卜の全長にわたって連 続させた線であって貫通スリットの長手方向に延びる線をいう。
上述した樹脂固定部 5 1に形成する貫通スリットは、 下端固定部 5 0の横断面 積に対して 5〜 2 5 %程度の割合で開口していることが好ましい。 例えば、 これ らの貫通スリットを原水の導入のためにも用いる場合には、 貫通スリッ卜の開口 率を 1 5〜2 5 %程度、 好ましくは 2 0 %程度にすることが好ましい。 この場合 において、 原水の流入をスムーズに行うとともに空気洗浄の効率を向上させる上 では、 貫通スリッ トの幅を 1〜8 mm程度、 好ましくは 2〜6 mm程度、 より好 ましくは 3〜 5 mm程度にすることが好ましい。
また、 これらの貫通スリットを空気の導入のためだけに用いる場合には、 効果 的な洗浄を行う上で、 貫通スリッ トの開口率を 5〜 1 5 %程度、 好ましくは 6〜 1 0 %程度にすることが好ましい。 このような開口率とすることにより、 膜束部 と膜束部の間隔を広くすることができるので、 インターファイバーク口ツギング が生じにくくなり、 また、 中空糸膜 1 0から剥離した汚泥を効率的にこれらの貫 通スリ ッ トを通して排出することができる。 この場合において、 貫通スリ ッ トの 幅を 0 . 5〜5 mm程度、 好ましくは l〜3 mm程度、 より好ましくは 1 . 5〜 2 . 5 mm程度にすれば、空気洗浄に必要な空気量を少なくできるので好ましい。 本実施形態においては、 樹脂固定部 5 1に貫通スリット 5 3を形成した例を説 明したが、 これに限られるものではない。 例えば、 下部ケーシング 3 3の大きき に合わせて貫通スリット付の固定部を予め作製し、 これを中空糸膜 1 0とともに 下部ケーシング 3 3に固定してもよい。
図 7は、 本発明の第 2の実施形態における中空糸膜モジュール 1 0 1を示す縦 断面図である。 本実施形態における中空糸膜モジュール 1 0 1は、 多数の中空糸 膜 1 0を円筒状に束ねた膜束 2 0と、 この膜束 2 0を収容する円筒形の筒状体 1 3 0とを備えている。 この筒状体 1 3 0は、 上部ケーシング 3 1と、 中間ケーシ ング 1 3 2と、 下部ケーシング 3 3とを備えている。 本実施形態における中間ケ 一シング 1 3 2は、 膜束 2 0の全長にわたって延びている点で第 1の実施形態に おけ 中間ケーシング 3 2と異なる。 図 7において、 筒状体 3 0の上端部および 下端部に取り付けられるカバーの図示は省略してある。
図 8は、 中間ケーシング 1 3 2を示す斜視図である。 図 8に示すように、 中間 ケーシング 1 3 2の上端部には、 多数の孔 1 3 2 aが形成された多孔構造が設け られており、 中間ケーシング 1 3 2.の下端部には、 多数の孔 1 3 2 bが形成され た多孔構造が設けられている。 このように、 本実施形態では、 原水流出ノズル 3 4および原水流入ノズル 3 5の近傍に多数の孔が形成された多孔構造が形成され ている。:
上端部の多孔構造の孔 1 3 2 aにより、 筒状体 1 3 0の内部から^水が原水流 出ノズル 3 4に均一に排出され、 下端部の多孔構造の孔 1 3 2 bにより、 原水流 入ノズル.3 5から筒状体 1 3 0の内部に流入する原水が各中空糸膜 1 0に均一に 供給される。 このように、 上端部と下端部の多孔構造により、 筒状体 1 3 0の内 部での原水の流動を安定化させることができる。 また、 これらの多孔構造は、 上 述した第 1の実施形態におけるソフトポッティング部 4 2の溝 4 3と相俟って、 空気洗浄時において気泡を効率的に排出する作用も有する。
本実施形態では、 多孔構造を中間ケーシング 1 3 2と一体に形成した例を説明 したが、. このような多孔構; it.を中間ケーシング 1 3 2と別個の部材に形成しても よい。 ただし、 この場合には、 多孔構造を有する部材を取り付ける部分に段差が 生じ、 揺動した中空糸膜 1 0がこの段差に接触すると、 中空糸膜 1 0を破断させ る原因となる場合がある。 本実施形態のように中間ケーシング 1 3 2と多孔構造 とを一体構造とすれば、 多孔構造により段差が形成されないので、 中空糸膜 1 0 が揺動して破損することを防止することができる。 また、 中空糸膜モジュールの 構造を単純化することができる。
また、 中間ケーシング 1 3 2と多孔構造とを一体化することにより、 膜束 2 0 を樹脂により筒状体 1 3 0に固定する際に、 多孔構造の孔 1 3 2 a, 1 3 2 bに 樹脂が入り込むので、 中間ケーシング 1 3 2、 膜束 2 0、 上部ケーシング 3 1と が強固に固着され、 上部ケーシング 3 1から中間ケーシング 1 3 2が脱落するこ とを防止できる。 したがって、 中空糸膜モジュールの強度を向上させることがで きる。
ここで、 原水流入ノズル 3 5から供給される原水が、 中空糸膜 1 0に直接接触 することを防止するために、 図 8に示すように、 中間ケーシング 1 3 2の原水流 入ノズル 3 5に対向する面 1 3 2 cには孔 1 3 2 bを形成しないことが好ましレ、。 すなわち、 筒状体 1 3 0の原水流入ノズル 3 5に対向する面 1 3 2 cは連続面と なつ Tいることが好ましい。
図 9は、 中空糸膜モジュール 1 0 1の下端部を示す部分破断斜視図である。 図 9に示すように、 本実施形態においても、 第 1の実施形態と同様に下側固定部 5 0のソフトポッティング部 5 2および樹脂固定部 5 1に貫通スリット 5 3が形成 されている。
図 1 0は、 本発明の第 3の実施形態における中空糸膜モジュールを示す横断面 図である。 図 1 0に示すように、 本実施形態における下部ケーシング 2 3 3と膜 束 2 0との間には、 下部ケーシング 2 3 3の円周方向に延びる通路 2 6 0が形成 されており、 下部ケーシング 2 3 3には、 この下部ケーシング 2 3 3の接線方向 に沿って延びる原水流入ノズル 2 3 5が設けられている。
このような構造により、 原水流入ノズルから供給される原水の急速な流れの流 速を抑えるために設けられる多孔構造 (例えば図 8の孔 1 3 2 b )が不要となる。 また、 下部ケーシング 2 3 3の接線方向に沿って延びる原水流入ノズル 2 3 5を 設けることにより、 原水流入ノズル 2 3 5から供給される原水が直接中空糸膜に 接触することが防止されるため、 原水流入ノズル 2 3 5から供給される原水の流 れが中空糸膜に当たることにより中空糸膜が破損するという、 外圧濾過膜モジュ ールに特有の問題を解決することもできる。 なお、 このような構造は、 クロスフ ロー濾過を用いた中空糸膜モジュールにも適用することができる。
下部ケーシング 2 3 3と膜束 2 0との間の通路 2 6 0の形状に特に制限はない 力 図 1に示すように、 所定の間隔で内方に突出する突起 2 6 2を通路 2 6 0に 設ければ、通路 2 6 0内の流れの攪乱分散を促進してその流速を速やかに低減し、 筒状体内で比較的均一に原水を流動させることができる。 この通路 2 6 0と突起 2 6 2の寸法を原水の流入量に応じてそれぞれ適当な値に選択する.ことで、 効果 的な旋回流を生じさせることができ、 筒状体内での原水の流動をより均一化する ことができる。 また、 原水流入ノズル 2 3 5から流入する原水の流速によっては、 原水流入ノ ズル 2 3 5近傍の下部ケ一シング 2 3 3の内径を大きくし、 下部ケーシング 2 3 3と膜束 2 0との間の通路 2 6 0の幅を原水流入ノズル 2 3 5近傍で膨らませて もよい。 また、 下部ケ一シング 2 3 3を含む筒状体の内径は、 原水流入ノズノレ 2 3 5近傍から上方についても同一にしてもよいが、 中空糸膜にかかる水圧にムラ が生じないように、 原水流入ノズル 2 3 5近傍の直上方で原水流入ノズル 2 3 5 近傍の径ょりも小さくする力 \ 上方に行くに従って原水流入ノズル 2 3 5近傍の 内径から徐々に小さくすることが好ましい。
ま 、 上述した通路 2 6 0に突起 2 6 2を設ける代わりに、 原水流入ノズル 2 3 5からの流路が徐々に上方に向かうように通路を螺旋状に形成することによつ ても、 上記と同様に旋回流を生じさせることができる。 設計上の理由などにより 下部ケーシング 2 3 3と膜束 2 0との間に通路 2 6 0を形成することが困難な場 合や、 筒状体の内部に流入する原水の流速を低减したい場合には、 原水流入ノズ ル 2 3 5の下部ケーシング 2 3 3の接線方向に延びて接続する部分の断面形状を 図 1 1に示すようにしてもよレ、。すなわち、原水流入ノスソレ 2 3 5の断面形状を、 下部ケーシング 2 3 3との接続部では、 筒状体の長手方向に向かって伸びる略矩 形形状 2 3 5 aとし、 下部ケーシング 2 3 3との接続部から離れる 従って、 通 常の外部パイプに接続できる略円形形状 2 3 5 bに変化させてもよい。
この場合において、 原水流入ノズル 2 3 5の略矩形形状 2 3 5 aの断面積が略 円形形状 2 3 5 bの断面積と同一になるように、 あるいは、 略矩形形状 2 3 5 a の断面積が略円形形状 2 3 5 bの断面積よりも広くなるように、 原水流入ノズル 2 3 5を構成することが好ましい。 このようにすることで、 上述した問題点を解 決することができる。
また、 原水流入ノズル 2 3 5の断面積を略円形形 2 3 5 bから略矩形形状 2 3 5 aに向けて大きくしていく場合には、 原水流入ノズノレ 2 3 5の内壁に、 流れ を攪乱させるための突起構造や、 筒状体の内部に流入する原水の流速を低減する ための多孔板を設けてもよい。
図 1 2は、 図 1に示す中空糸膜モジュールの変形例を示す横断面図である。 こ の変形例においては、上部カバー 2と上部ケーシング 3 1との間がシール部材. (O リング) 3 0 0でシールされ、 下部カバー 3と下部ケーシング 3 3との間がシー ル部材 (Oリング) 3 0 2でシールされている。 シール部材 3 0 0は上部ケ一シ ング 3 1の径方向外側に配置されており、 シール部材 3 0 2は下部ケーシング 3 3の径方向外側に配置されている。 図 1 2に示すように、 上部カバー 2が接続される上部ケーシング 3 1の上端部 には、 径方向外側に延びる第 1の係止片 3 1 aが設けられており、 その下方には 径方向外側に延びる第 2の係止片 3 1 bが設けられている。 第 1の係止片 3 1 a の長さは第 2の係止片 3 1 bよりも短くなつている。 これらの係止片 3 1 a, 3 l bにより、 上部ケーシング 3 1の上端部外周面にシール部材 3 0 0を収容する シール部材収容部 3 1 cが形成されている。 なお、 このような係止片 3 1 a, 3 1 bを形成せずに、 上部ケーシング 3 1の上端部外周面にシール部材 3 0 0を収 容する凹部 (溝) を形成してもよい。
ま 、 同様に、 下部カバー 3が接続される下部ケーシング 3 3の下端部には、 径方向外側に延びる第 1の係止片 3 3 aが設けられており、 その上方には径方向 外側に延びる第 2の係止片 3 3 bが設けられている。 第 1の係止片 3 3 aの長さ は第 2の係止片 3 3 bよりも短ぐなつている。 これらの係止片 3 3 a, 3 3 bに より、 下部ケーシング 3 3の下端部外周面にシール部材 3 0 2を収容するシール 部材収容部 3 3 cが形成されている。 なお、 このような係止片 3 3 a, 3 3 bを 形成せずに、 下部ケーシング 3 3の下端部外周面にシール部材 3 0 2を収容する 凹部 (溝) を形成してもよい。
このようにシール部材 3 0 0, 3 0 2を配置することにより、 中空糸膜モジュ ールの内部が加圧されてカバー 2, 3が多少軸方向にずれたとしても、 シール部 材 3 0 0, 3 0 2はケーシング 3 1 , 3 3の外周面に接触し続けるため、 確実に シールすることが可能となる。 これに対して、 シール部材をカバー 2 , 3の軸方 向端部に配置した場合には、 中空糸膜モジュール内部の加圧によりカバー 2, 3 が軸方向にずれると、 リーク等の問題が生ずる可能性が高い。
また、 上述したシール部材 3 0 0 , 3 0 2の配置により、 ねじ込みや接着とい つた方法ではなくクランプ等の簡易な方法により力 ー 2, 3をケーシング 3 1, 3 3に接続することができる。 このため、 中空糸膜モジュールの構造を単純化す ることが可能となる。 さらに、 クランプ等の方法によりカバー 2, 3をケーシン グ 3 1 , 3 3に接続すれば、 筒状体 3 0のみを交換 '取り外しすることにより中 空糸膜 1 0の交換や取り外しを行うことができ、 中空糸膜 1 0の交換や取り外し が容易になる。 このようなシーノレ構造は、 外圧濾過に限られず、 内圧濾過の場合 にも採用することができる。
なお、 図 1 2に示す例では、 シール部材 3 0 0 , 3 0 2がケーシング 3 1, 3 3の径方向外側に配置されているが、 シール部材 3 0 0, 3 0 2をケーシング 3 1 , 3 3の径方向内側に配置してシールする構成にしてもよい。 (実施例 1 )
以下のような構成の中空糸膜モジュールを用いて実験を行った。 中空糸膜 1 0 として、 公称孔径 0 . 1 /x mの多孔質中空糸膜を用い、 中間ケーシング 1 3 2と しては、 内径 1 5 O mmの円筒状パイプを用いた。 このケーシング 1 3 2の両端 部には多孔構造を形成した。 中空糸膜 1 0を束ねて、 その両端を樹脂で固定し、 筒状体 1 3 0の内部に充填した。 また、 上端固定部 4 0の原水に接触する面に幅 2 O mm、深さ 1 O mmの溝 4 3を形成した。この溝 4 3は、図 3に示すように、 上部ケ一シング 3 1の原水流出ノズル 3 4の方向に向かって延びるように形成し た。 '
このようにして製作された外圧式中空糸膜モジュールを用いて、 全量濾過によ る連続通水試験を実施した。 まず、 下端固定部 5 0の下方から貫通スリットを通 して純水を筒状体 1 3 0の内部に供給して原水の濾過を 1 5分行った。 その後、 濾過水による逆洗と同時に、 下部カバー 3.のノズノレ 3 aから貫通スリ ットを通じ て空気を供給してエアスクラビングを 3 0秒間行った。 そして、 筒状体 1 3 0の 内部の水を 3 0秒間排水した。 これらの工程を 1サイクルとして 2週間の連続試 験を実施した。 その結果、 2週間後の濾過水量は初期濾過水量の 9 9 %であり、 フラックスの低下はほとんど見られなかった。 '
(比較例 1 )
上端固定部 4 0に溝を形成していない点を除いて上記実施例 1と同様の中空糸 膜モジュールを用いて、 実施例 1と同様の運転条件で 2週間の連続通水試験を実 施した。その結果、 2週間後の濾過水量は初期濾過水量の 9 3 %にまで低下した。 確認のため、 中空糸膜モジュールを解体し、 中空糸膜を観察したところ、 モジュ ールの上端側の中空糸膜の一部が乾燥している状態であることが観察された。 こ のことから、 濾過水量の低下原因は、 エアスクラビングにより供給した気泡が完 全に排出されず、 濾過工程時にもモジュールの上端部に滞留することで、 中空糸 膜が乾燥して疎水化し、 有効膜面積が減少したことにあると考えられる。
(実施例 2 )
以下のような構成の中空糸膜モジュールを用いて実験を行った。 中空糸膜 1 0 として、 公称孔径 0 . 1 /z mの多孔質中空糸膜を用い、 中間ケーシング 1 3 2と しては、 内径 1 5 O mmの硬質塩化ビュルパイプを用いた。 このケーシング 1 3 2の両端部には多孔構造を形成した。 中空糸膜 1 0を束ねて、 その両端を樹脂で 固定し、 筒状体 1 3 0の内部に充填した。 また、 上端固定部 4 0の原水に接触す る面に幅 2 0 mm、 深さ 1 O mmの溝 4 3を形成した。 この溝 4 3は、 図 3に示 すように、 上部ケ一シング 3 1の原水流出ノズル 3 4の方向に向かって延ぴるよ うに形成した。 下部固定部 5 0の樹脂固定部 5 1およびソフ トポッティング部 5 2に、 図 5に示すように、 幅 3 mmの貫通スリット 5 3を 1 0本形成し、 この貫 通スリット 5 3を通じて原水の供給およびエアスクラビング用の空気の供給を行 つた。貫通スリット 5 3の開口率は、下端固定部 5 0の横断面積に対して約 2 0 % とした。
このようにして製作された外圧式中空糸膜モジュールを用いて、 濁度 2〜1 1 度の範囲で変動する河 J 11の表流水を原水として全量濾過方式で連続通水試験を実 施し^。 まず、 下端固定部 5 0の下方から貫通スリ ット 5 3を通して原水を筒状 体 1 3 0の内部に供給して原水の濾過を 1時間行った。 その後、 濾過水による逆 洗と同時に、 下部カバー 3のノズル 3 aから貫通スリット 5 3を通じて空気を供 給してエアスクラビングを 3 0秒間行った。 そして、 筒状体 1 3 0の内部の水を 貫通スリット 5 3を通して 3 0秒間排水した。 これらの工程を 1サイクルとして 1ヶ月間の連続試験を実施した。 その結果、 7 5 0時間後の濾過水量は初期濾過 水量の 8 1 %であった。
(比較例 2 )
下端固定部 5 0に貫通スリット 5 3の代わりに円形の開口部を形成した点を除 いて上記実施例 2と同様の中空糸膜モジュールを用いて、 実施例 2と同様の運転 条件で連続通水試験を実施した。 円形開口部の径は 1 O mm、 数は 3 2個とし、 円形開口部の開口率は、 実施例 2と同様に、 下端固定部 5 0の横断面積に対して 約 2 0 %とした。 その結果、 7 5 0時間後の濾過水量は初期濾過水量の 5 8 %ま でに低下し、 実施例 2と比べると明らかにフラックスの低下が見られた。 - (実施例 3 )
以下のような構成の中空糸膜モジュールを用いて実験を行った。 中空糸膜 1 0 として、 公称孔径 0 . 1 μ πιの多孔質中空糸膜を用い、 中間ケーシング 1 3 2と しては、 内径 1 5 O mmの硬質塩化ビュルパイプを用いた。 このケーシング 1 3 2の両端部には多孔構造を形成した。 中空糸膜 1 0を束ねて、 その両端を樹脂で 固定し、 筒状体 1 3 0の内部に充填した。 また、 上端固定部 4 0の原水に接触す る面に幅 2 0 mm、 深さ 1 O mmの溝 4 3を形成した。 この溝 4 3は、 図 3に示 すように、 上部ケーシング 3 1の原水流出ノズノレ 3 4の方向に向かって延びるよ うに形成した。 下部固定部 5 0の樹脂固定部 5 1およびソフトポッティング部 5 2に、 図 5に示すように、 幅 3 mmの貫通スリ ッ ト 5 3を 1 0本形成し、 この貫 通スリット 5 3を通じて原水の供給およびェアスタラビング用の空気の供給を行 つた。貫通スリ ット 5 3の開口率は、下端固定部 5 0の横断面積に対して約 2 0 % とした。
このようにして製作された外圧式中空糸膜モジュールを用いて、 濁度 2 ~ 1 1 度の範囲で変動する河川の表流水を原水として全量濾過方式で連続通水試験を実 施した。 まず、 下端固定部 5 0の下方から貫通スリ ッ ト 5 3を通して原水を筒状 体 1 3 0の内部に供給して原水の濾過を 1時間行った。 その後、 濾過水による逆 洗と同時に、 下部カバー 3のノズ/レ 3 aから貫通スリット 5 3を通じて空気を供 給してエアスクラビングを 3 0秒間行った。 そして、 筒状体 1 3 0の内部の水を 貫通 リット 5 3を通して 3 0秒間排水した。 れらの工程を 1サイクルとして 1ヶ月間の連続試験を実施した。 その結果、 7 5 0時間後の濾過水量は初期濾過 水量の 8 6 %であった。
(比較例 3 )
下端固定部 5 0に貫通スリット 5. 3の代わりに円形の開口部を形成した点を除 いて上記実施例 3と同様の中空糸膜モジュールを用いて、 実施例 3と同様の運転 条件で連続通水試験を実施した。 円形開口部の径は 1 0 mm、 数は 3 2個とし、 円形開口部の開口率は、 実施例 3と同様に、 下端固定部 5 0の横断面積に対して 約 2 0 %とした。 その結果、 7 5 0時間後の濾過水量は初期濾過水 ίの 7 2 %ま でに低下し、 実施例 2と比べると明らかにフラックスの低下が見られた。
これまで本発明の一実施形態について説明したが、 本発明は上述の実施形態に 限定されず、 その技術的思想の範囲内において種々異なる形態にて実施されてよ いことは言うまでもない。 産業上の利用可能性
本発明は、 上水や飲料用水、 工業用水、 純水などの精製、 河川水や海水などの 除濁、 各種廃水やし尿、 下水などの汚水処理、 さらには汚泥等のスラリー濃縮な どの水処理に用いられる中空糸膜モジュールに利用可能である。

Claims

請求の範囲
1 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 前記膜 束の少なくとも 1つの端部を前記筒状体に固定する固定部と、 原水を前記固定部 5 の近傍から流出させる原水流出ノズルとを有し、 前記筒状体に供給される原水を 前記中空糸膜の外側から内側に透過させる中空糸膜モジュールであって、 前記固定部は、 前記原水が接触する面に少なくとも 1つの溝を有する、 中空糸 膜モジュール。
10 2 . 前記固定部の溝の少なくとも一部は、 前記原水流出ノズルに連通されてい る、 請求項 1に記載の中空糸膜モジュール。
3 . 前記固定部の溝の少なくとも一部は、 前記原水流出ノズルに向かう傾斜面 を有する、 請求項 2に記載の中空糸膜モジュール。
15
4 . 多数の孔が形成された多孔構造を前記原水流出ノズルの近傍に配置した、 請求項 1から 3のいずれか一項に記載の中空糸膜モジュール。
5 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 原水が 20 供給される側の前記膜束の端部を前記筒状体に固定する固定部とを有し、 前記筒 状体の内部に供給される原水を前記中空糸膜の外側から内側に透過させる中空糸 膜モジユーノレであって、
前記固定部は、
複数の貫通スリットと、
25 前記貫通スリットと略平行に延びて固定される複数の膜束部と、
' を有する、 中空糸膜モジュール。
6 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 原水が 供給される側の前記膜束の端部を前記筒状体に固定する固定部とを有し、 前記筒 状体の内部に供給される原水を前記中空糸膜の外側から内側に透過させる中空糸 膜モジュールであって、
前記固定部は、
等間隔で略直線状に固定されて平板状膜を形成する複数の膜束部と、 前記膜束部と略平行に延びる複数の貫通スリットと、
を有する、 中空糸膜モジュール。 7 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 原水が 供給される側の前記膜束の端部を前記筒状体に固定する固定部とを有し、 前記筒 状体の内部に供給される原水を前記中空糸膜の外側から内側に透過させる中空糸 膜モジュールであって、
前記固定部は、 .
互いに略平行な複数の貫通スリットと、
互いに隣り合う前記貫通スリッ卜の間に位置し、 前記貫通スリットと略平行 に延びて固定される複数の膜束部と、
を有する、 中空糸膜モジュール。 8 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 原水が 供給される側の前記膜束の端部を前記筒状体に固定する固定部とを有し、 前記筒 状体の内部に供給される原水を前記中空糸膜の外側から内側に透過させる中空糸 膜モジユーノレであって、
前記固定部は、
互いに略平行に延びる複数の貫通スリットと、
互いに隣り合う前記貫通スリ ッ トの間に位置し、 前記隣り合う貫通スリ ッ ト の少なくとも一方の全長にわたって延びて固定される複数の膜束部と、 を有する、 中空糸膜モジュール。 9 . 前記原水を前記筒状体の内部に流入させる原水流入ノズルをさらに備え、 多数の孔が形成された多孔構造を前記原水流入ノズルの近傍に配置した、 請求 項 1から 8のいずれか一項に記載の中空糸膜モジユーノレ。
1 0 . 前記筒状体と前記多孔構造とを一体に形成した、 請求項 9に記載の中空 糸膜モジュール。
1 1 . 前記固定部は、 前記膜束の端部を樹脂により前記筒状体の多孔構造に固 定する、 請求項 1 0に記載の中空糸膜モジュール。
1 2 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 前記 膜束の少なくとも 1つの端部を前記筒状体に固定する固定部とを有し、 前記筒状 体の内部に供給される原水を前記中空糸膜の外側から内側に透過させる中空糸膜 モジユー/レであって、
前記筒状体と前記膜束との間で前記筒状体の周方向に延びる通路と、 前記筒状体の接線方向に延び、 前記原水を前記通路に流入させる原水流入ノズ ノレと、
を備えた、 中空糸膜モジュール。
1 3 . 前記通路内に位置する突起をさらに備えた、 請求項 1 2に記載の中空糸 膜モジュール。
1 4 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 前記 膜束の少なくとも 1つの端部を前記筒状体に固定する固定部とを有し、 前記筒状 体の内部に供給される原水を前記中空糸膜の外側から内側に透過させる中空糸膜 モジユーノレで'あって、
前記筒状体の接線方向に延び、 前記筒状体の長手方向に向かって次第に広がる 流路を有する原水流入ノズルを備えた、 中空糸膜モジュール。
1 5 . 前記筒状体の少なくとも一方の端部に接続されるカバーと、
前記筒状体の径方向外側または内側に配置され、 前記筒状体と前記力バーとの 間をシールするシール部材と、
をさらに備えた、請求項 1から 1 4のいずれか一項に記載の中空糸膜モジュ ル。
1 6 . 複数本の中空糸膜を束ねた膜束と、 前記膜束を収容する筒状体と、 前記 膜束の少なくとも 1つの端部を前記筒状体に固定する固定部と、 前記筒状体の少 なくとも一方の端部に接続されるカバーとを有し、 前記筒状体に供給される原水 を前記中空糸膜に透過させる中空糸膜モジュールであって、
前記筒状体の径方向外側または内側に配置され、 前記筒状体と前記カバーとの 間をシールするシール部材を備えた、 中空糸膜モジュール。
1 7 . 前記筒状体は、 該筒状体の外周面または内周面に形成され前記シール部 材を収容するシール部材収容部を有する、 請求項 1 5または 1 6に記載の中空糸 膜モジュール。
PCT/JP2006/324122 2005-11-29 2006-11-27 中空糸膜モジュール WO2007063998A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06833892.0A EP1964603B1 (en) 2005-11-29 2006-11-27 Hollow fiber membrane module
CN2006800447729A CN101316645B (zh) 2005-11-29 2006-11-27 中空丝膜组件
US12/085,600 US8197688B2 (en) 2005-11-29 2006-11-27 Hollow fiber membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005344662A JP4993901B2 (ja) 2005-11-29 2005-11-29 中空糸膜モジュール
JP2005-344662 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063998A1 true WO2007063998A1 (ja) 2007-06-07

Family

ID=38092330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324122 WO2007063998A1 (ja) 2005-11-29 2006-11-27 中空糸膜モジュール

Country Status (5)

Country Link
US (1) US8197688B2 (ja)
EP (1) EP1964603B1 (ja)
JP (1) JP4993901B2 (ja)
CN (1) CN101316645B (ja)
WO (1) WO2007063998A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143292A1 (ja) 2007-05-22 2008-11-27 Asahi Kasei Chemicals Corporation 中空糸膜モジュールとその製造方法および中空糸膜モジュール組立体とそれらを使用した懸濁水の浄化方法
JP2010064032A (ja) * 2008-09-12 2010-03-25 Kankyo Kogaku:Kk 浄水装置
EP2295131A1 (en) * 2008-07-01 2011-03-16 Toray Industries, Inc. Submerged hollow fiber membrane module
JP2011075241A (ja) * 2009-10-01 2011-04-14 Honda Motor Co Ltd 加湿用モジュール
JP6129389B1 (ja) * 2016-07-26 2017-05-17 株式会社リテラ ろ過装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
JP5602017B2 (ja) * 2008-06-04 2014-10-08 旭化成ケミカルズ株式会社 膜外周が被覆された中空糸膜モジュール
JP5124511B2 (ja) * 2009-03-18 2013-01-23 月島機械株式会社 濾過モジュール、濾過ユニット、および濾過装置
CN101658762B (zh) * 2009-09-21 2011-12-21 江苏金山环保工程集团有限公司 中空纤维超滤膜过滤装置
ES2738898T3 (es) 2010-04-30 2020-01-27 Evoqua Water Tech Llc Dispositivo de distribución de flujo de fluido
CN103118766B (zh) 2010-09-24 2016-04-13 伊沃夸水处理技术有限责任公司 膜过滤系统的流体控制歧管
FI125583B (en) * 2011-06-21 2015-12-15 Emp Innovations Oy A method for providing fluid circulation in membrane filtration and membrane filtration apparatus
HUE058060T2 (hu) 2011-09-30 2022-07-28 Rohm & Haas Electronic Mat Szigetelõ szelep
KR101532428B1 (ko) * 2011-12-09 2015-07-02 롯데케미칼 주식회사 중공사막 모듈 및 수처리 장치
KR101340671B1 (ko) * 2011-12-27 2013-12-12 코오롱인더스트리 주식회사 여과막용 헤더 및 이것을 포함하는 여과막 모듈
US9533261B2 (en) * 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
AU2013231145B2 (en) * 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
EP2900356A1 (en) 2012-09-27 2015-08-05 Evoqua Water Technologies LLC Gas scouring apparatus for immersed membranes
KR20140049421A (ko) * 2012-10-17 2014-04-25 제일모직주식회사 중공사막 모듈 및 그 제조방법
KR101705402B1 (ko) 2013-09-30 2017-02-09 롯데케미칼 주식회사 중공사막 모듈, 이의 제조 방법, 이를 위한 헤더 장치 및 중공사막 구속 장치
WO2015050764A1 (en) 2013-10-02 2015-04-09 Evoqua Water Technologies Llc A method and device for repairing a membrane filtration module
CN106232211B (zh) 2014-02-19 2020-08-14 巴斯夫欧洲公司 过滤元件
EP4335539A3 (en) 2014-03-29 2024-05-01 Princeton Trade and Technology Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
KR102263140B1 (ko) * 2014-07-23 2021-06-10 엘지전자 주식회사 필터 시스템
DE102014019506B4 (de) * 2014-12-23 2017-07-13 FilaTech Filament Technology u. Spinnanlagen GmbH Vorrichtung und Verfahren zur Herstellung von Fadenbündeln
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
WO2017053805A1 (en) * 2015-09-24 2017-03-30 Labib Mohamed E Cartridges for hollow fibre membrane-based therapies
KR20180033902A (ko) * 2016-09-26 2018-04-04 롯데케미칼 주식회사 중공사형 막 모듈
DE112017007039T5 (de) * 2017-02-10 2019-10-31 Asahi Kasei Kabushiki Kaisha Hohlfasermembranmodul und Filtrationsverfahren
CN107626208A (zh) * 2017-10-17 2018-01-26 海南立昇净水科技实业有限公司 中空纤维膜组件及其制造方法
CN112469495B (zh) 2018-07-27 2023-06-27 东丽株式会社 中空丝膜组件和中空丝膜组件的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100605A (en) 1980-01-16 1981-08-12 Kuraray Co Ltd Hollow yarn element
JPH02261522A (ja) * 1989-03-31 1990-10-24 Toshiba Corp 中空糸膜モジュール
JPH05220356A (ja) 1992-02-12 1993-08-31 Mitsubishi Rayon Co Ltd 中空糸膜モジュール
JPH06178918A (ja) * 1992-12-15 1994-06-28 Nitto Denko Corp 外圧式中空糸膜モジュ−ル
JPH07148421A (ja) * 1993-11-02 1995-06-13 Daicel Chem Ind Ltd 中空糸型膜モジュ−ル
WO2000018498A1 (en) 1998-09-25 2000-04-06 U.S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
EP1674149A1 (en) 2003-09-29 2006-06-28 Asahi Kasei Chemicals Corporation External pressure type hollow fiber membrane module

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895202U (ja) * 1981-12-22 1983-06-28 株式会社クラレ 流体分離装置
JPS59162906A (ja) * 1983-03-07 1984-09-13 Nitto Electric Ind Co Ltd 流体分離装置及びその製造方法
JPS6028972A (ja) * 1983-06-29 1985-02-14 Kyowa Hakko Kogyo Co Ltd ジベンゾ[b,e]オキセピン誘導体
JPS61192309A (ja) * 1985-02-21 1986-08-26 Asahi Chem Ind Co Ltd 中空糸型モジユ−ル
JPS60183003U (ja) * 1985-04-25 1985-12-04 株式会社クラレ 外圧濾過型の中空糸エレメント
US4876006A (en) * 1985-10-08 1989-10-24 Ebara Corporation Hollow fiber filter device
JP2858913B2 (ja) * 1990-09-26 1999-02-17 オルガノ株式会社 中空糸膜を用いる濾過方法
FR2713220B1 (fr) * 1993-11-30 1996-03-08 Omnium Traitement Valorisa Installation de potabilisation de l'eau à membranes filtrantes immergées.
JPH07171354A (ja) * 1993-12-20 1995-07-11 Asahi Chem Ind Co Ltd 外圧式中空糸状膜モジュール
JP3713343B2 (ja) * 1996-11-18 2005-11-09 旭化成ケミカルズ株式会社 継ぎ手を有する濾過膜カートリッジ
NL1008376C2 (nl) * 1998-02-20 1999-08-24 X Flow Bv Filtratiemembraanmodule.
JPH11314087A (ja) * 1998-05-06 1999-11-16 Nikkiso Co Ltd 高清浄水製造装置
JP2002282655A (ja) * 2001-01-16 2002-10-02 Toray Ind Inc 中空糸膜モジュール
US6805806B2 (en) * 2001-06-12 2004-10-19 Hydrotreat, Inc. Method and apparatus for treatment of wastewater employing membrane bioreactors
EP1442782A4 (en) * 2001-11-05 2005-04-06 Asahi Chemical Ind HOLLOW FIBER MEMBRANE MODULE
JP2004050023A (ja) * 2002-07-18 2004-02-19 Toray Ind Inc 中空糸膜モジュール
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
JP4491691B2 (ja) * 2003-06-17 2010-06-30 旭化成ケミカルズ株式会社 膜カートリッジ、膜分離装置及び膜分離方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100605A (en) 1980-01-16 1981-08-12 Kuraray Co Ltd Hollow yarn element
JPH02261522A (ja) * 1989-03-31 1990-10-24 Toshiba Corp 中空糸膜モジュール
JPH05220356A (ja) 1992-02-12 1993-08-31 Mitsubishi Rayon Co Ltd 中空糸膜モジュール
JPH06178918A (ja) * 1992-12-15 1994-06-28 Nitto Denko Corp 外圧式中空糸膜モジュ−ル
JPH07148421A (ja) * 1993-11-02 1995-06-13 Daicel Chem Ind Ltd 中空糸型膜モジュ−ル
WO2000018498A1 (en) 1998-09-25 2000-04-06 U.S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
EP1674149A1 (en) 2003-09-29 2006-06-28 Asahi Kasei Chemicals Corporation External pressure type hollow fiber membrane module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1964603A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143292A1 (ja) 2007-05-22 2008-11-27 Asahi Kasei Chemicals Corporation 中空糸膜モジュールとその製造方法および中空糸膜モジュール組立体とそれらを使用した懸濁水の浄化方法
EP2153882A1 (en) * 2007-05-22 2010-02-17 Asahi Kasei Chemicals Corporation Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
EP2153882A4 (en) * 2007-05-22 2010-12-08 Asahi Kasei Chemicals Corp HOLLOW FIBER MEMBRANE MODULE, METHOD OF MANUFACTURING THEREOF, HOLLOW FIBER MEMBRANE MODULE ASSEMBLY AND METHOD FOR CLEANING SUSPENDED WATER USING THEREOF
US8257590B2 (en) 2007-05-22 2012-09-04 Asahi Kasei Chemicals Corporation Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
EP2295131A1 (en) * 2008-07-01 2011-03-16 Toray Industries, Inc. Submerged hollow fiber membrane module
CN102026711A (zh) * 2008-07-01 2011-04-20 东丽株式会社 浸渍型中空丝膜组件
EP2295131A4 (en) * 2008-07-01 2012-08-15 Toray Industries UNDERWATER hollow fiber membrane module
JP2010064032A (ja) * 2008-09-12 2010-03-25 Kankyo Kogaku:Kk 浄水装置
JP2011075241A (ja) * 2009-10-01 2011-04-14 Honda Motor Co Ltd 加湿用モジュール
JP6129389B1 (ja) * 2016-07-26 2017-05-17 株式会社リテラ ろ過装置
JP2018015693A (ja) * 2016-07-26 2018-02-01 株式会社リテラ ろ過装置

Also Published As

Publication number Publication date
JP4993901B2 (ja) 2012-08-08
US20090218274A1 (en) 2009-09-03
EP1964603B1 (en) 2014-10-15
JP2007144349A (ja) 2007-06-14
US8197688B2 (en) 2012-06-12
CN101316645B (zh) 2013-06-12
CN101316645A (zh) 2008-12-03
EP1964603A1 (en) 2008-09-03
EP1964603A4 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
WO2007063998A1 (ja) 中空糸膜モジュール
JP2003024751A (ja) 中空糸膜カートリッジ
US8070947B2 (en) Permselective membrane module and method for manufacturing the same
JP2000157846A (ja) 中空糸膜カートリッジ
JP2001269546A (ja) ラック式濾過装置
JP2000157845A (ja) 中空糸膜カートリッジ及びその固定構造
WO2002004101A1 (fr) Cartouche à fibres creuses, module à fibres creuses utilisant cette cartouche et filtre du type réservoir
KR20040045038A (ko) 필터 요소와 교체식 필터를 갖는 필터 장치
KR101364155B1 (ko) 필터 조립체
JP2006247540A (ja) 中空糸膜モジュールおよびその運転方法
KR100733529B1 (ko) 막 카트리지, 막 분리 장치 및 막 분리 방법
JP4498373B2 (ja) 中空糸膜カートリッジ、並びにそれを用いた中空糸膜モジュール及びタンク型濾過装置
KR20160080010A (ko) 가압식 중공사막 모듈
EP3617157B1 (en) Adsorption structure unit and method for manufacturing same
JP6241656B2 (ja) 濾過装置
JP6633430B2 (ja) 外圧式中空糸膜モジュール
JP4454091B2 (ja) スパイラル型膜モジュールおよびスパイラル型膜エレメントの装填方法
JP4433276B2 (ja) 中空糸膜ろ過モジュールおよびその洗浄方法
JP2004344851A (ja) 膜ろ過モジュール
KR100340450B1 (ko) 중공사를 이용한 수처리용 분리막
JPH038419A (ja) 液体濾過装置の濾過膜の目詰り防止方法及び液体濾過装置
JP2006272108A (ja) 浄水器
JP4251079B2 (ja) 濾過装置
JP7175578B2 (ja) 外圧式中空糸膜モジュール
KR100312117B1 (ko) 고온 폐수 처리장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044772.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5083/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006833892

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12085600

Country of ref document: US