WO2007063637A1 - 半導体バルク多結晶の作製方法 - Google Patents

半導体バルク多結晶の作製方法 Download PDF

Info

Publication number
WO2007063637A1
WO2007063637A1 PCT/JP2006/318918 JP2006318918W WO2007063637A1 WO 2007063637 A1 WO2007063637 A1 WO 2007063637A1 JP 2006318918 W JP2006318918 W JP 2006318918W WO 2007063637 A1 WO2007063637 A1 WO 2007063637A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
balta
semiconductor
polycrystal
growth
Prior art date
Application number
PCT/JP2006/318918
Other languages
English (en)
French (fr)
Inventor
Kozo Fujiwara
Kazuo Nakajima
Original Assignee
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University filed Critical Tohoku University
Priority to JP2007547862A priority Critical patent/JP4203603B2/ja
Publication of WO2007063637A1 publication Critical patent/WO2007063637A1/ja
Priority to US12/130,863 priority patent/US8404043B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • the present invention relates to a method for producing a semiconductor Balta polycrystal, and more particularly, to a method for producing a Si, Ge or SiGe bulk polycrystal.
  • a cast growth method is known as a main growth method for Balta crystals used in low-cost practical solar cells.
  • the peripheral force of the cast is also used to create polycrystalline materials by nuclear growth, and Si Balta polycrystalline ingots are mainly grown.
  • the advantage of the cast growth method is that inexpensive and large-capacity Si Balta polycrystals can be grown relatively easily.
  • the conventional cast growth method has a problem in that it is difficult to form a Balta crystal with good crystal quality.
  • the particle size of Balta polycrystal is small, so if there are many crystal grain boundaries in the polycrystal, the charges and holes generated by photons Will recombine and cause a reduction in conversion efficiency.
  • the orientation of crystal grains is not aligned like a single crystal, a texture structure cannot be created when the surface is covered by chemical etching, and conversion efficiency decreases due to surface reflection.
  • a dendrite is a toothpick crystal, and a crystal is observed in a toothpick shape because the growth rate of a specific orientation of the crystal is high. Conventionally, in silicon crystal growth, it has not been observed that dendrites grow along the bottom of the crucible.
  • Patent Document 5 describes that dendrite is grown in the initial stage of solidification and the plane orientation in the growth direction is the ⁇ 111 ⁇ plane.
  • the ⁇ 111 ⁇ plane is a stable growth surface of silicon polycrystal, and is a surface that appears naturally in a normal cast growth method without using a dendrite crystal
  • the method disclosed in Patent Document 5 is a normal cast surface. It's not different from the growth method! / ⁇ .
  • the surface that appears will be the ⁇ 11 1 ⁇ plane using a dendrite crystal that has only ⁇ 112 ⁇ or ⁇ 110 ⁇ planes. It is impossible in principle to align the crystal grain orientation. In other words, no matter what method is used, it is impossible to align all crystal grain orientations on the ⁇ 111 ⁇ plane by the cast growth method, and the disclosure of Patent Document 5 is contrary to the laws of physics and does not make sense.
  • the ⁇ 111 ⁇ plane can be oriented only in a naturally oriented proportion (usually 50% to 60%), which is the result of having already been done in the usual way.
  • Patent Document 5 does not control the growth of dendrites in a direction perpendicular to the growth direction of the Balta crystal (the direction along the bottom surface). It is difficult to align the grain size.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-7493
  • Patent Document 2 JP-A-10-194718
  • Patent Document 3 Japanese Patent Laid-Open No. 11-116386
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-322195
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-132671 Disclosure of the invention
  • texture structure in order to obtain a good surface texture structure by chemical etching, it is ideal that the surface orientation is aligned with the ⁇ 100 ⁇ plane. A good texture structure can be obtained even on the ⁇ 110 ⁇ surface.
  • the cast growth method has a technique that can control the crystal grain size greatly, the crystal grain size is not controlled at all, and even if a crystal grain size of a large size happens to be mixed, it is normal.
  • the major problem is that only low-quality Balta polycrystals with a small grain size and many grain boundaries can be obtained.
  • the present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and the surface orientation is ⁇ 112 ⁇ by using a dendrite crystal grown along the bottom of the crucible by a cast growth method.
  • the objective is to produce a high quality Balta polycrystal with a large crystal grain size and constant control while aligning with the plane or ⁇ 110 ⁇ plane orientation.
  • the present invention provides a dendrite crystal having a controlled orientation along the bottom of the crucible in the initial stage of growth in the growth of a Balta polycrystal from a melt using a crucible.
  • the main point is to grow a Balta polycrystal on the upper surface of these dendrite crystals after being grown and strained.
  • a semiconductor barrier characterized by limiting the top surface of the dendrite crystal to ⁇ 110 ⁇ or ⁇ 112 ⁇ by controlling the growth direction of the dendrite crystal to 112> or 110>.
  • a method for producing a semiconductor Balta polycrystal characterized in that an angle formed by a dendrite crystal plane with respect to the bottom surface of the crucible is 10 ° or less.
  • the bottom surface of the crucible has wedge-shaped and conical irregularities, and the grain orientation of the Balta polycrystal is freely controlled with respect to the growth axis by growing dendrite crystals along the irregular bottom surface of the crucible.
  • a method for producing a semiconductor Balta polycrystal comprising a step of growing a crystal, and a step of growing the Balta polycrystal of the semiconductor on the upper surface of the dendrite crystal after exerting force.
  • the semiconductor melt mainly composed of Si is held in the crucible, and the crucible is cooled by creating a temperature gradient in the longitudinal direction in the melt in the crucible.
  • a method for producing a semiconductor Balta polycrystal including a step of growing a crystal in one direction.
  • the temperature gradient at the bottom of the crucible is controlled in the range of 10 ° CZcm to 150 ° CZcm, supercooling is applied to the melt near the bottom of the crucible, and the crucible is in the range of 5 ° CZmin to 100 ° CZmin at the beginning of growth.
  • a method for producing a semiconductor Balta polycrystal characterized in that a dendrite crystal is grown along the bottom surface of the crucible by cooling at room temperature.
  • (10) During the temperature gradient move the crucible to the low temperature side within the range of 0.5 mmZmin to 10 mmZmin at the beginning of growth, supercool the melt near the bottom of the crucible, and make dendrite crystals along the bottom of the crucible.
  • a method for producing a semiconductor Balta polycrystal characterized by growing a semiconductor.
  • a method for producing a semiconductor Balta polycrystal characterized by comprising:
  • a semiconductor valve For controlling the temperature of the bottom surface of the crucible in the early stage of growth, a semiconductor valve is characterized by forcibly cooling the bottom surface of the crucible and dissipating heat only from the bottom surface of the crucible by arranging a refrigerant tube on the bottom surface of the crucible.
  • a method for producing a polycrystal is characterized by forcibly cooling the bottom surface of the crucible and dissipating heat only from the bottom surface of the crucible by arranging a refrigerant tube on the bottom surface of the crucible.
  • a method for producing a semiconductor bulk polycrystal in which the crucible material into which the melt for growing the Balta polycrystal is filled is quartz.
  • a high-quality semiconductor Balta polycrystal can be produced by growing a dendrite crystal over the entire bottom surface of the crucible in the initial stage of solidification.
  • the semiconductor Balta polycrystal obtained according to the present invention has the following crystal grain orientation, and the crystal grain size is controlled to be extremely large, thereby enabling the following.
  • the method for producing a semiconductor Balta crystal of the present invention (right diagram) is compared with the method for producing a semiconductor Balta crystal disclosed in Patent Document 5 (left diagram).
  • the dendrite crystal does not grow upward, the dendrite crystal grows by a natural growth mechanism that has no effect of controlling the grain orientation and grain size by the dendrite crystal.
  • the dendrite crystal extends along the bottom of the crucible, so the top surface has a grain orientation with the ⁇ 110 ⁇ plane or ⁇ 1 12 ⁇ plane.
  • FIG. 1 A dendrite crystal growing along the bottom of the crucible (left) and an orientation analysis result diagram of the dendrite crystal (right).
  • FIG. 2 is a diagram showing the orientation relationship of dendrite crystals growing along the bottom of the crucible.
  • FIG. 3 is a diagram showing the arrangement of crucibles and the temperature distribution in the furnace.
  • FIG. 4 is a diagram showing a temperature gradient near the bottom of the crucible in the early stage of growth.
  • FIG. 5 is a diagram showing the orientation distribution of a Balta polycrystal in which a dendrite crystal has grown along the bottom of the crucible and a Balta polycrystal in which the dendrite crystal has grown not along the bottom of the crucible.
  • FIG. 6 is an image diagram of crystal growth to obtain a semiconductor Balta polycrystal with uniform orientation.
  • FIG. 7 Orientation solution of growth direction of Si bulk polycrystalline (left) and orientation controlled by using dendrite growth along the bottom of crucible at the initial stage It is a figure which shows an analysis result.
  • FIG. 8 is a diagram showing a comparison of solar cell characteristics between Si bulk polycrystals with orientation controlled using dendrite growth along the bottom of the crucible in the early stage of growth and Si Balta polycrystals grown without orientation control. .
  • FIG. 9 is a cross-sectional photograph of a Si Balta polycrystal produced according to the present invention using a 150 mm ⁇ crucible.
  • FIG. 10 is a diagram showing a comparison of conversion efficiencies of Si Balta polycrystals produced according to the present invention using various crucible sizes.
  • FIG. 11 is a diagram showing a comparison between the present invention and the production method described in Patent Document 5.
  • the present invention provides a high-quality semiconductor Balta crystal in which the crystal growth orientation is aligned and the crystal grain size is largely controlled by a cast growth method, which is a main production technique for high-efficiency solar cell crystals. It is aimed. Embodiments will be described below with reference to the drawings. First, in order to obtain a high-quality semiconductor Balta crystal realized by the present invention, the conditions under which dendrite growth occurred were confirmed. The behavior of the melt during crystallization was observed using an in-situ observation device for the melt growth process developed by the inventors (see J. of Crystal Grough262 (2004) 124-129).
  • FIG. 2 schematically shows the orientation relationship of dendrites that grow along the bottom of the crucible in the early stage of growth.
  • the top surface is 110> direction
  • the growth direction is 110>
  • the top surface is 112> direction
  • the ⁇ 111 ⁇ plane is a crystal plane orthogonal to the dendrite growth direction and the dendrite top surface. It was found that this dendrite growth requires that only the melt near the bottom of the crucible be rapidly cooled to create a supercooled state along the bottom of the crucible. In the experiment, rapid cooling at about 30 ° C Zmin was performed, and when the degree of supercooling was increased, the tendency for the preferential growth direction to increase in the 110 direction was greater than in the ⁇ 112> direction. Dendrite growth will not occur.
  • the temperature gradient when set to 20 ° CZcm, it moves at 5mmZmin until the bottom of the crucible reaches 1390 ° C, which is 24 ° C lower than the melting point of Si, 1414 ° C.
  • the cooling rate at the bottom of the crucible is 10 ° CZmin based on the temperature gradient and moving speed. Although this cooling rate is not necessarily equal to the crystal growth rate, it can create a supercooled state sufficient for dendrite crystals to grow.
  • the cooling rate in this case is determined by the temperature gradient and the moving speed.
  • the crucible moving speed is 0.5 mmZmin to 10 mmZmin
  • the cooling speed at the bottom of the crucible is 5 ° CZmin to 100 ° CZmin. Dendritic crystals grow.
  • the growth axis direction is controlled to the ⁇ 112 ⁇ plane or ⁇ 110 ⁇ plane.
  • the orientation of the growth axis direction can be controlled freely by growing the dendrite crystal along the bottom of the crucible with a wedge-shaped or conical shape at the bottom of the crucible.
  • the dendrite crystal growth and the crystal melting state are balanced, so that it takes time to grow the dendrite crystal over the entire bottom surface.
  • the bottom surface temperature is lowered to a lower temperature, the temperature of the melt itself decreases, and undesired growth of the dendrite crystals directed toward the melt center starts from the side when unintended crystal growth starts. Occur.
  • the present invention is not suitable for implementation at temperatures below 30 ° C. below the melting point.
  • the cooling is performed by means of moving in a crucible provided with a temperature gradient in this embodiment, but a cooling method and temperature control suitable for the implementation of the present invention are used. It is clear that the present invention can be implemented using methods. For example, the same effect can be achieved by controlling the temperature of the surrounding heating element without moving the crucible. Further, a medium such as water for cooling may be brought into close contact with the lower part of the crucible.
  • Dendritic crystal growth by performing supercooling to a temperature below the melting point by the above means happenss. By maintaining this state sufficiently, a dendrite crystal can be grown on the entire bottom surface. The required time is determined by the temperature of the bottom surface to be held 'the temperature of the melt and its temperature gradient. In this example, when the surface is held for 40 minutes, the growth of dendritic crystals can be expressed along the bottom surface of the crucible. did it. If the dendrite crystal covers the entire bottom surface but is maintained in this state, the melt temperature is somewhat high, and no further crystal growth occurs, resulting in an equilibrium state. Therefore, there is no restriction on the longer holding time.
  • the crucible is moved downward at 0.2 mmZmin to crystallize the entire melt.
  • This moving speed is 0.4 ° CZmin when converted as the cooling rate, which is equivalent to the case of growing silicon crystals by the usual cast growth method.
  • the upper limit of the cooling rate is & 5 ° C / min.
  • FIG. 6 shows an image diagram of crystal growth for obtaining a semiconductor Balta polycrystal having uniform orientation according to the present invention.
  • a dendrite that grows under specific conditions at the bottom of the crucible (a crystal with a ⁇ 112> or ⁇ 110> orientation) is grown on the entire bottom, and then the entire melt is of good quality while maintaining the crystallinity of the dendrite. Ingot having excellent crystallinity.
  • Si Balta polycrystals with uniform orientation can be obtained by growing dendritic crystals along the bottom of the crucible at the initial stage of growth.
  • FIG. 8 is a diagram showing a comparison of solar cell characteristics between Si Balta polycrystals with orientation controlled using dendritic growth along the bottom of the crucible in the early stage of growth and Si Balta polycrystals grown without orientation control. It is. As shown in the figure, a modification of the solar cell produced by cutting out the obtained crystal was performed. The conversion efficiency is high and uniform over almost the whole Balta polycrystal. Since the height of the obtained ingot is about 25 mm, it is estimated that the bottom force of the ingot can be used as an effective solar cell material up to the top. As a comparative example, when the same measurement was performed on a Si Balta polycrystal grown using the same crucible and the same Si raw material with the usual cooling method without orientation control, the conversion efficiency was greatly reduced at the top of the ingot. ing.
  • the present invention can be applied to germanium (Ge) and silicon germanium (SiGe) materials that exhibit the same behavior in force crystal growth using silicon as a material. .
  • FIG. 9 shows a cross-sectional photograph of a Si Balta polycrystal prepared using a 150 mm diameter crucible.
  • the crystal grain size is the largest, about 60mm, which is very large. In this way, by growing the dendrite crystal along the bottom of the crucible at the initial stage of growth, the crystal grain size can be made very large.
  • FIG. 10 shows a comparison of the conversion efficiencies of Si Balta polycrystalline solar cells fabricated by the method of the present invention with different crucible sizes. From the figure, it can be seen that increasing the crucible size improves the solar cell characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Description

明 細 書
半導体バルタ多結晶の作製方法
技術分野
[0001] 本発明は、半導体バルタ多結晶の作製方法に関し、特に Si、 Ge又は SiGeのバル ク多結晶の作製方法に関するものである。
背景技術
[0002] 低コストの実用型太陽電池に使用されるバルタ結晶の主要な成長法としてキャスト 成長法が知られている。キャスト成長法は、キャストの周辺力も核成長によって多結晶 材料を作成するものであり、 Siバルタ多結晶のインゴットが主に成長されている。 キャスト成長法の利点は、安価で大容量の Siバルタ多結晶が比較的容易に成長で きることにある。しかし、従来のキャスト成長法では結晶品質の良いバルタ結晶ができ にくいことが問題となっている。例えば得られた多結晶シリコンを太陽電池のウェハと して使う場合、バルタ多結晶の粒サイズが小さ 、ために多結晶中に結晶粒界などが 多く存在すると、光子によって生成した電荷と正孔が再結合し、変換効率の低下の 原因となる。また、結晶粒の方位が単結晶のようにそろっていないため、表面を化学 エッチングでカ卩ェした際にテクスチャー構造を作ることができず、表面反射により変 換効率が低下する。
[0003] このため、ウェハの原材料となるシリコンのインゴットの品質を向上させることが重要 となる。キャスト成長法で多結晶のシリコンを作製する場合は、縦方向の温度制御に より、ルツボの底部力も冷却し、上部に向力つて結晶成長を促進する方法が一般的 に用いられるが、このような温度制御によってシリコンの多結晶体を一方向凝固させ た場合にぉ 、ても、ルツボ底部において多くの成長核から結晶が成長することにより 、結晶粒サイズが大きく揃えられないため粒サイズが不ぞろいになり、粒界などが多 数発生し、良好な多結晶シリコンは得られて 、な 、。
[0004] キャスト成長法にお!、て、結晶性を改善するために、溶融したシリコンを保持するル ッボの底部に種結晶を配置し、そこ力 結晶成長させることにより良質のバルタ単結 晶あるいは多結晶を得ることも提案されている。しかし、種結晶をルツボの底部全面 に配置する方法を用いたとしても、制御性やコストの面で極めて不利であるとともに、 自然に結晶粒が成長することを妨げるために歪みの残留が多くなるなど、ルツボ内 部で融解した原料が種結晶の良好な結晶性を引き継いで成長するような結果は得ら れていない。
[0005] また結晶性改善のために、キャスト成長法において凝固初期にデンドライトを発生 させて凝固成長を促すと ヽぅ提案がある(特許文献 5)。
デンドライトとは榭枝状の結晶のことで、結晶の特定の方位の成長速度が速 、ため に結晶が榭枝状に観察されるものである。なお従来、シリコンの結晶成長においては 、デンドライトがルツボ底面に沿って成長して 、ることは観察されて 、なかった。
[0006] 特許文献 5には、凝固初期にデンドライトを成長させ、成長方向における面方位を { 111 }面とする記載がある。しかし { 111 }面はシリコン多結晶の安定成長面であり、デ ンドライト結晶を用いることなく通常のキャスト成長法で自然に現れる面であるため、 特許文献 5で開示された方法は、通常のキャスト成長法となんら変わるものではな!/ヽ 。(図 11左図参照)それどころか、デンドライト結晶をルツボ底面に沿って成長させた 場合に、表れる面は { 112}面又は { 110}面しかなぐデンドライト結晶を利用して { 11 1 }面に結晶粒方位を揃えることは原理的に不可能である。つまり、いかなる方法を用 いても、キャスト成長法で { 111 }面にすべての結晶粒方位を揃えることはできず、特 許文献 5の開示内容は物理の法則に反しており意味をなさない。
すなわち { 111 }面には、自然に配向した割合 (通常 50%〜60%)しか配向できず 、これは通常の方法ですでに行なわれて 、る結果である。
また特許文献 5で開示された方法は、バルタ結晶の成長方向に対して、デンドライト を垂直方向(底面に沿った方向)に成長の制御をするものではないため、成長方向 に結晶粒方位や結晶粒サイズをそろえることは困難である。
特許文献 1:特開平 10— 7493号公報
特許文献 2 :特開平 10— 194718号公報
特許文献 3:特開平 11― 116386号公報
特許文献 4:特開 2004— 322195号公報
特許文献 5 :特開 2005— 132671号公報 発明の開示
発明が解決しょうとする課題
[0007] キャスト成長法で成長したバルタ多結晶シリコンの最大の課題は、多くのインゴット の成長軸方向における結晶粒方位力 Sランダムで制御できて 、な 、ため、バルタ単結 晶の太陽電池のように化学エッチングにより良好なテクスチャー構造を結晶表面に作 れないこと、及び結晶粒サイズが制御できておらず、大きな結晶粒サイズのバルタ多 結晶ができないため、結晶性の悪い結晶粒界が多数存在することにある。
[0008] テクスチャー構造に関しては、化学エッチングにより良好な表面テクスチャー構造を 得るためには、表面の面方位が { 100}面に揃うことが理想である力 化学エッチング 技術の発展により { 112 }面又は { 110 }面でも良好なテクスチャー構造が得られる。
[0009] また、キャスト成長法では結晶粒サイズを大きく制御できる技術がな力 たため、結 晶粒サイズは一切制御されておらず、大きな結晶粒サイズのものもたまたま混ざるこ とはあっても通常は結晶粒サイズは小さぐ多くの結晶粒界が入る低品質のバルタ多 結晶しか得られな 、ことが大きな問題である。
[0010] したがって本発明は、上述した従来技術の欠点を除去するためになされたものであ り、キャスト成長法によって、ルツボ底面に沿って成長したデンドライト結晶を利用して 面方位を { 112 }面又は { 110 }面方位に揃えるとともに、結晶粒サイズが大きく高品 質のバルタ多結晶をコンスタントに制御して作製することを課題とする。
課題を解決するための手段
[0011] 本発明は、上記の課題を解決するために、ルツボを用いた融液からのバルタ多結 晶の成長において、成長初期にルツボ底面に沿って制御された方位を有するデンド ライト結晶を成長させ、し力る後にこれらのデンドライト結晶上面にバルタ多結晶を成 長させることを要点とするものである。
課題を解決するための手段の詳細は、次のとおりである。
[0012] (1)バルタ多結晶を構成する主たる元素を Siとすることを特徴とする半導体バルタ多 結晶の作製方法。
(2)デンドライト結晶の成長する方位をく 112 >又はく 110 >に制御することにより、 デンドライト結晶上面を { 110}又は { 112}に限定することを特徴とする半導体バルタ 多結晶の作製方法。
(3)ルツボ底面に対してデンドライト結晶面がなす角度を 10° 以下とすることを特徴 とする半導体バルタ多結晶の作製方法。
(4)ルツボ底面が平坦であることを特徴とする半導体バルタ多結晶の作製方法。
(5)ルツボ底面がくさび形、円錐形の凹凸を有し、この凹凸を有するルツボ底面に沿 つてデンドライト結晶を成長させることにより、バルタ多結晶の粒方位を成長軸に対し て自由に制御することを特徴とする半導体バルタ多結晶の作製方法。
(6) Si、 Ge及び SiGeから選択された半導体の融液をルツボ内に保持する工程、ル ッボの底部を冷却して温度勾配を付け、成長初期にルツボ底面の直上の融液を急 速に冷却してルツボ底面近傍の融液に過冷却を付ける工程、ルツボを冷却してルツ ボ底面近傍の融液に付けた過冷却によりルツボ底面上で核生成させ、ルツボ底面に 沿ってデンドライト結晶を成長させる工程、し力る後に前記デンドライト結晶の上面に 上記半導体のバルタ多結晶を成長させる工程を含む半導体バルタ多結晶の作製方 法。
(7) Siを主体とした半導体の融液をルツボ内に保持し、ルツボ内の融液中に縦方向 に温度勾配をつけてルツボを冷却し、前記デンドライト結晶上面に上記半導体のバ ルク多結晶を一方向に成長させる工程を含む半導体バルタ多結晶の作製方法。
(8) Siを主体とした半導体の融液をルツボ内に保持し、成長初期にルツボ底面の直 上の融液を急速に冷却してルツボ底面近傍の融液の過冷却度を制御し、過冷却に よりルツボ底面に沿って成長するデンドライト結晶の方位をく 112>方向又はく 110 >方向に制御する工程、成長方向の制御によりデンドライト結晶の上面を { 110}面 又は { 112}面に制御する工程、し力る後に前記デンドライト結晶の上面に上記半導 体のバルタ多結晶を一方向に凝固成長させる工程を含む半導体バルタ多結晶の作 製方法。
(9)ルツボ底面の温度勾配を 10°CZcm〜150°CZcmの範囲で制御し、ルツボ底 面近傍の融液中に過冷却をつけ、成長初期にルツボを 5°CZmin〜100°CZminの 範囲で冷却してデンドライト結晶をルツボ底面に沿って成長させることを特徴とする 半導体バルタ多結晶の作製方法。 (10)前記温度勾配中を、成長初期に、 0.5mmZmin〜10mmZminの範囲でルツ ボを低温側へ移動し、ルツボ底面近傍の融液中に過冷却をつけ、ルツボ底面に沿つ てデンドライト結晶を成長させることを特徴とする半導体バルタ多結晶の作製方法。
(11)前記成長初期のルツボ底面近傍の融液中の温度勾配を制御し、ルツボ底面か ら上方向 10mm以内の融液温度を融点より 5°C以下になるように保持 '制御すること により、デンドライト結晶をルツボ底面に沿ってのみ成長させることを特徴とする半導 体バルタ多結晶の作製方法。
(12)融液の入ったルツボ全体の温度勾配を 10°CZcm〜100°CZcmの範囲で制 御し、この温度勾配中を、成長初期にルツボを 5°CZmin〜100°CZminの範囲で冷 却してデンドライト結晶をルツボ底面に沿って成長し、しかる後 0. 4°CZmin〜5°CZ minで冷却してデンドライト結晶上面にバルタ多結晶を成長させる、 2段階の冷却速 度の制御を行なうことを特徴とする半導体バルタ多結晶の作製方法。
(13)成長初期のルツボ底面の温度制御のために、ルツボ底面に冷媒管を配置する ことにより、ルツボ底面を強制的に冷却し、ルツボ底面からのみ熱を逃がすことを特 徴とする半導体バルタ多結晶の作製方法。
( 14)バルタ多結晶の成長用の融液を入れるルツボの材質を石英とした半導体バル ク多結晶の作製方法。
発明の効果
本発明によれば、凝固初期にルツボ底面全体にデンドライト結晶を成長させること で、高品質の半導体バルタ多結晶を作製することができる。
そして本発明によって得られた半導体バルタ多結晶は、結晶粒の結晶方位が整つ ており、また結晶粒サイズが極めて大きく制御されているため、次のようなことを可能 にする。
(1)結晶品質が均一で高ぐ太陽電池とした場合の変換効率を高くすること。
(2)キャストからウェハとして切り出す位置による性能のばらつきを抑えること。
(3)成長したインゴットの底面力 上面まで品質が均一であるため、使用可能なイン ゴット領域の歩留まりが 2倍以上に増し、低コスト化に極めて有効であること。
(4)バルタ単結晶の太陽電池のように化学エッチングにより良好なテクスチャー構造 を結晶表面に作ること。
[0015] なお参考までに図 11において、本発明の半導体バルタ結晶の作製方法 (右図)と 特許文献 5で開示の半導体バルタ結晶の作製方法 (左図)とを対比する。後者では、 デンドライト結晶が上方に伸びる力、デンドライト成長していないために、デンドライト 結晶による結晶粒方位の制御や結晶粒サイズの制御の効果が全く無ぐ自然成長の メカニズムで成長するため、 Siの最安定面である { 111 }面が出てくるのに対し、本発 明では、ルツボ底面に沿ってデンドライト結晶が伸びるため上面は、 { 110}面又は { 1 12}面と結晶粒方位を揃えることが可能となり、さらには結晶粒サイズも 3cm以上と巨 大サイズに揃えることが可能となり、バルタ多結晶でもテクスチャー構造の作製が可 能となるとともに、結晶粒界の少ないライフタイムの大きな極めて品質の高いバルタ多 結晶が得られる。
図面の簡単な説明
[0016] [図 1]ルツボ底面に沿って成長するデンドライト結晶の様子 (左)とデンドライト結晶の 方位解析結果図 (右)である。
[図 2]ルツボ底面に沿って成長するデンドライト結晶の方位関係を示す図である。
[図 3]ルツボの配置と炉内の温度分布を示す図である。
[図 4]成長初期のルツボ底面近傍の温度勾配を示す図である。
[図 5]ルツボ底面に沿ってデンドライト結晶が成長したバルタ多結晶と、デンドライト結 晶がルツボ底面に沿わずに成長したバルタ多結晶の方位分布を示す図である。
[図 6]方位の揃った半導体バルタ多結晶を得るための結晶成長のイメージ図である。
[図 7]成長初期のルツボ底面に沿ったデンドライト成長を利用して方位制御した Siバ ルク多結晶(左)及び方位制御して 、な 、Siバルタ多結晶(右)の成長方向の方位解 析結果を示す図である。
[図 8]成長初期のルツボ底面に沿ったデンドライト成長を利用して方位制御した Siバ ルク多結晶と方位制御せずに成長した Siバルタ多結晶の太陽電池特性の比較を示 す図である。
[図 9]150mm φのルツボを用いて本発明により作製した Siバルタ多結晶の断面写真 である。 [図 10]様々なルツボサイズを用いて本発明により作製した Siバルタ多結晶の変換効 率の比較を示す図である。
[図 11]本発明と特許文献 5記載の作製方法との比較を示す図である。
発明を実施するための最良の形態
[0017] 本発明は、高効率太陽電池用結晶の主たる作製技術であるキャスト成長法で、結 晶成長の方位が揃 、、結晶粒サイズを大きく制御した高品質な半導体バルタ結晶を 得ることを目的としている。以下に、実施の形態について、図面を用いて説明する。 まず、本発明で実現される良質な半導体バルタ結晶を得るために、どのような条件 でデンドライト成長が起こるかについての確認を行った。融液が結晶化する際の挙動 については、発明者らが開発した融液成長過程のその場観察装置 (J. of Crystal Gr owth262 (2004) 124-129参照)を用いて観察を行った。
[0018] 石英ルツボに入れた原料 Siを 1450°Cで完全に融解し、 30°CZminで冷却を行な い、ルツボ底面に沿って、デンドライト結晶が成長する様子を観察したところ、融液を 急冷することにより、ルツボ底面に沿って、デンドライト結晶が成長することが観測さ れた。(図 1左)
結晶化後、これらのデンドライト結晶の方位解析を行ったところ、デンドライト結晶が ルツボ底面に沿つて伸びる方向は、く 112 >若しくはその直交方向であるく 110 > 方向であり、デンドライトの上面は、く 110 >若しくはく 112 >の方位を持つことがわ 力る。(図 1右)
また、このようにルツボ底面に沿って成長するデンドライトの中心部には、必ず { 111 }双晶面がデンドライト上面に対して垂直方向に導入され、デンドライト上面は必ず { 1 10 }面又は { 112 }面になり、決して物理的にデンドライト上面が { 111 }面になることは ない。
[0019] このようなデンドライト結晶は融液に 5°C以上の過冷却が力かっている状態で成長 することが観察され、デンドライト結晶の厚さは 2〜5mm程度であった。つまり、キャス ト法にお!/、て、成長初期過程にルツボ底面に沿ってデンドライト成長を発現させるた めには、ルツボ底面力も上方向 10mm以内の融液温度を融点より 5°C以下になるよう に制御する必要があることが示された。 [0020] 図 2に、成長初期にルツボ底面に沿って成長するデンドライトの方位関係を模式的 に示した。デンドライトが成長する方位がく 112>の場合は上面がく 110>方向、成 長する方位がく 110>の場合は上面がく 112>方向になる。 {111}面は、どちらの 場合も、デンドライトの成長方向及びデンドライト上面に直交した結晶面となる。 このデンドライトの成長は、ルツボ底面近傍の融液のみを急激に冷却し、ルツボ底 面に沿って過冷却の状態を作ることが条件であることが見出された。実験では 30°C Zmin程度の急冷を行っており、過冷却度を上げると優先成長方向が < 112>方向 よりも、く 110>方向が多くなる傾向は見られた力 それ以外の方向へのデンドライト の成長は起こらない。
[0021] これまでに、シリコンなどの半導体材料でデンドライト結晶が観察されな力つた理由 は、シリコンの単結晶引き上げ、もしくは多結晶インゴット成長を行う際の成長速度が 、 ImmZmin以下の非常にゆっくりとしたものであり、デンドライトが成長する条件に はな力 たためと推測される。
実施例
[0022] この知見を基にシリコン材料を用いてキャスト成長を行った。 Siの原料約 lOOgを、 内径 50mmの石英製のルツボに入れ、 Ar雰囲気中で 1450°Cまで昇温して完全に 溶解させて、 Si融液を作製した。ルツボはカーボン製の受け台の上に置かれており、 この受け台力も抜熱される。次にこの融液の入ったルツボを、図 3に示す温度勾配中 を下方に移動させた。温度勾配は図 3の右図に示すように、 10°CZcmから 100°CZ cmの間で実施した。また、成長初期過程において、ルツボの下部から冷却水又は冷 却ガスを導入した冷媒管をルツボ底面に近づけることも可能であり、カーボン製の受 け台からの抜熱又は冷媒管の導入により、ルツボ底面近傍に局部的に 10°CZcm〜 150°CZcmの温度勾配を付けた。(図 4参照)
[0023] 次に例えば、温度勾配を 20°CZcmに設定した場合で、 Siの融点である 1414°Cよ りも 24°C低い 1390°Cの位置にルツボ底面が到達するまで、 5mmZminで移動させ る。温度勾配と移動速度からルツボ底面の冷却速度は 10°CZminとなる。この冷却 速度がそのまま結晶の成長速度と等しくなるわけではないが、デンドライト結晶が成 長するのに十分な過冷却の状態を作り出すことができる。 この場合の冷却速度は温度勾配と移動速度によって決まるもので、多くの実験を行 つた結果、ルツボ移動速度が 0.5mmZmin〜10mmZminで、ルツボ底面の冷却速 度が 5°CZmin〜100°CZminの時にデンドライト結晶は成長する。
[0024] デンドライト結晶が、デンドライト結晶面とルツボ底面の角度が 10° 以下でルツボ底 面に沿って成長すると、成長軸方向の方位が { 112}面又は { 110}面に制御される。 (図 5左)
しかし、デンドライト結晶がルツボ底面で成長しても、底面より上方向の融液側へ成 長すると、成長軸方向の方位が制御できなくなる。(図 5右)
このように、ルツボ底面の形状が平坦である場合、デンドライト結晶がルツボ底面に 沿つて成長すると、成長軸方向は { 112 }面又は { 110 }面に制御される。
これ以外の面に方位を揃える場合は、ルツボ底面の形状をくさび形や円錐形にし てこのルツボ底面に沿ってデンドライト結晶を成長させることで、成長軸方向の方位 を自由に制御できる。
[0025] また融点以下に下げる温度についても、実施例では 1390°Cとしている力 融点以 下 5°C (シリコンの場合は 1409°C)程度まで下げれば、デンドライト結晶が成長するこ とを見出している。
なお融点直下では、デンドライト結晶の成長と結晶の溶融の状態が均衡するため、 必要とする底面全体へのデンドライト結晶の成長に時間が力かることになる。逆に、 更に低い温度まで底面の温度を下げた場合は、融液自体の温度が下がり、側面から 目的としない結晶成長の開始ゃ融液中心に向力つてのデンドライト結晶の不所望な 成長が起こる。すなわち、融点より 30°C低い温度以下では、本発明の実施は適当で はない。
[0026] ここで、冷却にっ 、ては、本実施例では温度勾配を設けたルツボ中を移動させると いう手段を用いて行っているが、本発明の実施に適当な冷却方法や温度制御方法 を用いて本発明を実施できることは明らかである。例えば、ルツボを移動させずに周 囲の加熱体の温度を制御して同様の効果をもたらす。また、ルツボの下部に、冷却を 行う水などの媒質を接近'接触させてもよい。
[0027] 上記の手段により融点以下の温度まで過冷却を行うことで、デンドライト結晶の成長 が起こる。この状態を十分保持することで、底面全体にデンドライト結晶を成長させる ことができる。必要な時間は、保持する底面の温度'融液の温度及びその温度勾配 で決まるものである力 本実施例では、 40分間保持したところ、ルツボ底面に沿って デンドライト結晶の成長を発現させることができた。なおデンドライト結晶が底面全体 を覆ってもなおこの状態で保持した場合は、融液の温度がある程度高 、状態にある ためにそれ以上の結晶成長は起こらず、平衡状態となる。したがって、保持する時間 に長い方の制約はない。
[0028] その後、 0. 2mmZminでルツボを下方に移動させ、融液全体を結晶化させる。こ の移動速度は、冷却速度として換算した場合 0. 4°CZminとなり、通常のキャスト成長 法でシリコン結晶を成長させる場合と同等である。なお、冷却速度の上限は、 5°C/m inで & 。
デンドライト結晶の成長に関しては底面全体に成長させるという新規な温度制御が 必要であるが、融液全体の結晶化については、従来のキャスト成長法の技術がその まま適用できる。
[0029] 図 6は、本発明の方位の揃った半導体バルタ多結晶を得るための結晶成長のィメ 一ジ図を示している。ルツボの底部に特定の条件で成長するデンドライト(< 112 > 方向若しくはく 110>方向の面を持つ結晶)を底部全体に成長させ、その後そのデ ンドライトの結晶性を維持しつつ融液全体が良質な結晶性を有するインゴットとなる。
[0030] 得られた半導体バルタ多結晶の特性を調べるため、切断'研磨し、結晶方位を観測 する方法である EBSP法で方位解析したところ、成長方向がく 112 >方向に揃った 結晶粒を有するバルタ多結晶となつて 、た。(図 7左)
比較のためにデンドライト結晶を発現させずに作製した半導体バルタ多結晶の方 位解析結果を示す。(図 7右)
図 7からも明らかなように、成長初期にルツボ底面に沿ってデンドライト結晶を成長 させることによって、方位の揃った Siバルタ多結晶が得られる。
[0031] 図 8は、成長初期のルツボ底面に沿ったデンドライト成長を利用して方位制御した S iバルタ多結晶と方位制御せずに成長した Siバルタ多結晶の太陽電池特性の比較を 示す図である。同図に示すように、得られた結晶を切り出して作製した太陽電池の変 換効率は、ほぼバルタ多結晶全体に渡って高ぐ均一になっている。得られたインゴ ットの高さは 25mm程度であるため、インゴットの底面力も上部まで有効な太陽電池 用の材料として利用できることが推測される。比較例として、同一ルツボと同一 Si原料 を用いて通常の冷却法で、方位制御せずに成長させた Siバルタ多結晶について同 様の測定を行ったところ、インゴット上部において変換効率が大きく低下している。
[0032] なお本実施例においては、材料としてシリコンを用いた力 結晶成長において同様 の挙動を示すゲルマニウム(Ge)、シリコンゲルマ(SiGe)の材料にぉ 、ても適用でき ることは明らかである。
[0033] 次に実用的には、大きなルツボを用いて結晶を作製する必要があるため、 80mm φ及び 150mm φのルツボを用いて、本発明方法により Siバルタ多結晶を作製した。 図 9に 150mm φのルツボを用いて作製した Siバルタ多結晶の断面写真を示す。結 晶粒サイズは最大のもので 60mm程度と非常に大きくなつている。このように、成長 初期にデンドライト結晶をルツボ底面に沿って成長させることで、結晶粒サイズを非 常に大きくすることができる。
図 10はルツボサイズを変えて、本発明方法によって作製した Siバルタ多結晶太陽 電池の変換効率の比較を示すものである。同図より、ルツボサイズを大きくすることに よって、太陽電池特性が向上することがわかる。

Claims

請求の範囲
[1] ルツボを用いた融液力 のバルタ多結晶の成長において、成長初期にルツボ底面 に沿って制御された成長方位を有するデンドライト結晶を成長させ、しかる後に前記 デンドライト結晶の制御された面方位を有する上面にバルタ多結晶を成長させること を特徴とする半導体バルタ多結晶の作製方法。
[2] ノ レク多結晶を構成する主たる元素を Siとすることを特徴とする請求項 1記載の半 導体バルタ多結晶の作製方法。
[3] デンドライト結晶の成長する方位をく 112>又はく 110>に制御することにより、デ ンドライト結晶上面を { 110}又は { 112}に限定することを特徴とする請求項 1又は 2 記載の半導体バルタ多結晶の作製方法。
[4] ルツボ底面に対してデンドライト結晶面がなす角度を 10° 以下とすることを特徴と する請求項 1から 3のいずれか 1項記載の半導体バルタ多結晶の作製方法。
[5] ルツボ底面が平坦であることを特徴とする請求項 1から 4の 、ずれか 1項記載の半 導体バルタ多結晶の作製方法。
[6] ルツボ底面がくさび形、円錐形の凹凸を有し、この凹凸を有するルツボ底面に沿つ てデンドライト結晶を成長させることにより、バルタ多結晶の粒方位を成長軸に対して 自由に制御することを特徴とする請求項 1から 5のいずれか 1項記載の半導体バルタ 多結晶の作製方法。
[7] Si、 Ge及び SiGeから選択された半導体の融液をルツボ内に保持する工程、ルツ ボの底部を冷却して温度勾配を付け、成長初期にルツボ底面の直上の融液を急速 に冷却してルツボ底面近傍の融液に過冷却を付ける工程、ルツボを冷却してルツボ 底面近傍の融液に付けた過冷却によりルツボ底面上で核生成させ、ルツボ底面に沿 つてデンドライト結晶を成長させる工程、し力る後に前記デンドライト結晶の上面に上 記半導体のバルタ多結晶を成長させる工程を含む半導体バルタ多結晶の作製方法
[8] Siを主体とした半導体の融液をルツボ内に保持し、ルツボ内の融液中に縦方向に 温度勾配をつけてルツボを冷却し、前記デンドライト結晶上面に上記半導体のバル ク多結晶を一方向に成長させる工程を含む請求項 7記載の半導体バルタ多結晶の 作製方法。
[9] Siを主体とした半導体の融液をルツボ内に保持し、成長初期にルツボ底面の直上 の融液を急速に冷却してルツボ底面近傍の融液の過冷却度を制御し、過冷却により ルツボ底面に沿って成長するデンドライト結晶の方位をく 112>方向又はく 110> 方向に制御する工程、成長方向の制御によりデンドライト結晶の上面を { 110}面又 は { 112}面に制御する工程、し力る後に前記デンドライト結晶の上面に上記半導体 のバルタ多結晶を一方向に凝固成長させる工程を含む半導体バルタ多結晶の作製 方法。
[10] ルツボ底面の温度勾配を 10°CZcm〜150°CZcmの範囲で制御し、ルツボ底面 近傍の融液中に過冷却をつけ、成長初期にルツボを 5°CZmin〜100°CZminの範 囲で冷却してデンドライト結晶をルツボ底面に沿って成長させることを特徴とする請 求項 7から 9のいずれか 1項記載の半導体バルタ多結晶の作製方法。
[11] 前記温度勾配中を、成長初期に、 0.5mmZmin〜10mmZminの範囲でルツボを 低温側へ移動し、ルツボ底面近傍の融液中に過冷却をつけ、ルツボ底面に沿って デンドライト結晶を成長させることを特徴とする請求項 7から 10のいずれか 1項記載の 半導体バルタ多結晶の作製方法。
[12] 前記成長初期のルツボ底面近傍の融液中の温度勾配を制御し、ルツボ底面から 上方向 10mm以内の融液温度を融点より 5°C以下になるように保持 '制御することに より、デンドライト結晶をルツボ底面に沿ってのみ成長させることを特徴とする請求項 7から 11のいずれか 1項記載の半導体バルタ多結晶の作製方法。
[13] 融液の入ったルツボ全体の温度勾配を 10°CZcm〜100°CZcmの範囲で制御し 、この温度勾配中を、成長初期にルツボを 5°CZmin〜100°CZminの範囲で冷却し てデンドライト結晶をルツボ底面に沿って成長し、しかる後 0. 4°CZmin〜5°CZmin で冷却してデンドライト結晶上面にバルタ多結晶を成長させる、 2段階の冷却速度の 制御を行なうことを特徴とする請求項 7から 12のいずれ力 1項記載の半導体バルタ多 結晶の作製方法。
[14] 成長初期のルツボ底面の温度制御のために、ルツボ底面に冷媒管を配置すること により、ルツボ底面を強制的に冷却し、ルツボ底面からのみ熱を逃がすことを特徴と する請求項 7から 13のいずれか 1項記載の半導体バルタ多結晶の作製方法。 ノ レク多結晶の成長用の融液を入れるルツボの材質を石英とした請求項 1から 14 のいずれか 1項記載の半導体バルタ多結晶の作製方法。
PCT/JP2006/318918 2005-11-30 2006-09-25 半導体バルク多結晶の作製方法 WO2007063637A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007547862A JP4203603B2 (ja) 2005-11-30 2006-09-25 半導体バルク多結晶の作製方法
US12/130,863 US8404043B2 (en) 2005-11-30 2008-05-30 Process for producing polycrystalline bulk semiconductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-345042 2005-11-30
JP2005345042 2005-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/130,863 Continuation US8404043B2 (en) 2005-11-30 2008-05-30 Process for producing polycrystalline bulk semiconductor

Publications (1)

Publication Number Publication Date
WO2007063637A1 true WO2007063637A1 (ja) 2007-06-07

Family

ID=38091977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318918 WO2007063637A1 (ja) 2005-11-30 2006-09-25 半導体バルク多結晶の作製方法

Country Status (3)

Country Link
US (1) US8404043B2 (ja)
JP (1) JP4203603B2 (ja)
WO (1) WO2007063637A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017201A1 (ja) * 2007-08-02 2009-02-05 National University Corporation Tohoku University Siバルク多結晶インゴットの製造方法
JP2009040641A (ja) * 2007-08-10 2009-02-26 Tohoku Univ Siバルク多結晶インゴット
JP2009051720A (ja) * 2007-08-02 2009-03-12 Tohoku Univ Siバルク多結晶インゴットの製造方法
JP2009084145A (ja) * 2007-09-10 2009-04-23 Tohoku Univ Si多結晶インゴット、Si多結晶インゴットの製造方法およびSi多結晶ウェハー
JP2009173518A (ja) * 2007-12-27 2009-08-06 Tohoku Univ Si結晶インゴットの製造方法
JP2011088798A (ja) * 2009-10-26 2011-05-06 Sino-American Silicon Products Inc シリコン結晶体成形装置
CN103422165A (zh) * 2013-07-22 2013-12-04 湖南红太阳光电科技有限公司 一种多晶硅及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100101387A1 (en) * 2008-10-24 2010-04-29 Kedar Prasad Gupta Crystal growing system and method thereof
JP2010269943A (ja) * 2009-05-19 2010-12-02 Tohoku Univ シリコン多結晶インゴットおよびシリコン多結晶ウェハー
DE102009044893B4 (de) * 2009-12-14 2014-10-30 Hanwha Q.CELLS GmbH Herstellungsverfahren zur Herstellung eines Kristallkörpers aus einem Halbleitermaterial
US9109301B2 (en) * 2009-12-14 2015-08-18 Sino-American Silicon Products, Inc. Crystalline silicon formation apparatus
NO341320B1 (no) * 2010-02-09 2017-10-09 Offshore Tech Partner As Støtdempingsanordning på lastbærer
CN103088418B (zh) * 2011-11-01 2015-07-08 昆山中辰矽晶有限公司 硅晶铸锭及其制造方法
US9493357B2 (en) 2011-11-28 2016-11-15 Sino-American Silicon Products Inc. Method of fabricating crystalline silicon ingot including nucleation promotion layer
US10087080B2 (en) * 2011-11-28 2018-10-02 Sino-American Silicon Products Inc. Methods of fabricating a poly-crystalline silcon ingot from a nucleation promotion layer comprised of chips and chunks of silicon-containing particles
TW201402885A (zh) * 2012-07-06 2014-01-16 Motech Ind Inc 多晶矽晶塊的製造方法
BR102013032779A2 (pt) * 2013-12-19 2015-12-08 Cia Ferroligas Minas Gerais Minasligas processo e equipamento para purificação de silício por solidificação direcional
KR101484961B1 (ko) * 2014-08-08 2015-01-22 한국기계연구원 생체 영감의 표면 구조를 갖는 수지상 3차원 나노 구조체 및 그 제조 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132671A (ja) * 2003-10-30 2005-05-26 Jfe Steel Kk 高品質多結晶シリコンの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759310A (en) * 1971-08-30 1973-09-18 United Aircraft Corp Nsumable electrode method and apparatus for providing single crystal castings using a co
US6887441B2 (en) * 2002-09-30 2005-05-03 The Regents Of The University Of California High resistivity aluminum antimonide radiation detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132671A (ja) * 2003-10-30 2005-05-26 Jfe Steel Kk 高品質多結晶シリコンの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJIWARA K. ET AL: "Directional growth method to obtain high quality polycrystalline silicon from its melt", JOURNAL OF CRYSTAL GROWTH, vol. 292, 26 May 2006 (2006-05-26), pages 282 - 285, XP003013639 *
NAGASHIO K. ET AL: "Growth mechanism of twin-related and twin-free facet Si dentrites", ACTA MATERIALIA, vol. 53, 25 April 2005 (2005-04-25), pages 3021 - 3029, XP003013640 *
NAKAJIMA K. ET AL: "Kessho Si Taiyo Denchi no Kokoritsuka ni okeru Zairyogakuteki Approach", INSTITUTE FOR MATERIALS RESEARCH, TOHOKO UNIVERSITY WORKSHOP, 26 September 2005 (2005-09-26), XP003013638, Retrieved from the Internet <URL:http://www.google.com/search?q=cache:TnFBiy8BnB8J:www.imr.tohoku.ac.jp/Jpn/event/report/kenkyubu/pdf17/01handoutai.pdf+%E3%83%AF%E3%83%BC%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%83%E3%83%97&hl=ja&gl=jp&ct=clnk&cd=18&inlang=ja,http://www.imr.tohoku.ac.jp/jpn/event/kouen/pdf/2005/ws050926.pdf> [retrieved on 20061102] *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017201A1 (ja) * 2007-08-02 2009-02-05 National University Corporation Tohoku University Siバルク多結晶インゴットの製造方法
JP2009051720A (ja) * 2007-08-02 2009-03-12 Tohoku Univ Siバルク多結晶インゴットの製造方法
US8187563B2 (en) 2007-08-02 2012-05-29 Tohoku Technoarch Co., Ltd. Method for producing Si bulk polycrystal ingot
JP2009040641A (ja) * 2007-08-10 2009-02-26 Tohoku Univ Siバルク多結晶インゴット
JP2009084145A (ja) * 2007-09-10 2009-04-23 Tohoku Univ Si多結晶インゴット、Si多結晶インゴットの製造方法およびSi多結晶ウェハー
JP2009173518A (ja) * 2007-12-27 2009-08-06 Tohoku Univ Si結晶インゴットの製造方法
JP2011088798A (ja) * 2009-10-26 2011-05-06 Sino-American Silicon Products Inc シリコン結晶体成形装置
CN103422165A (zh) * 2013-07-22 2013-12-04 湖南红太阳光电科技有限公司 一种多晶硅及其制备方法

Also Published As

Publication number Publication date
US8404043B2 (en) 2013-03-26
US20090000536A1 (en) 2009-01-01
JPWO2007063637A1 (ja) 2009-05-07
JP4203603B2 (ja) 2009-01-07

Similar Documents

Publication Publication Date Title
JP4203603B2 (ja) 半導体バルク多結晶の作製方法
US7918936B2 (en) System and method for crystal growing
TWI541394B (zh) 多晶矽晶鑄錠之製造方法及其多晶矽晶棒
JP4528995B2 (ja) Siバルク多結晶インゴットの製造方法
KR20110038040A (ko) 일방향성 응고에 의한 단결정 실리콘 잉곳 성장 시스템 및 방법
US20050223971A1 (en) Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
TW201033412A (en) Methods and pulling assemblies for pulling a multicrystalline silicon ingot from a silicon melt
WO2005007938A1 (ja) Si系結晶の成長方法、Si系結晶、Si系結晶基板及び太陽電池
JP7394332B2 (ja) 鉄ガリウム合金の単結晶インゴットの育成方法およびその加工方法、鉄ガリウム合金の単結晶インゴット
CN110205672B (zh) 一种类单晶硅晶体生长方法和热场结构
JP6719718B2 (ja) Siインゴット結晶の製造方法及びその製造装置
JP4060106B2 (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
JP4748187B2 (ja) Si結晶インゴットの製造方法
TWI451007B (zh) 用於生產矽錠的方法
JP4292300B2 (ja) 半導体バルク結晶の作製方法
US4561930A (en) Process for the production of coarsely crystalline silicon
JP5398775B2 (ja) Siインゴット結晶の製造方法
JP4923253B2 (ja) Siバルク多結晶の作製方法
JP2007045640A5 (ja)
JP2004277266A (ja) 化合物半導体単結晶の製造方法
JP4141467B2 (ja) 球状シリコン単結晶の製造方法及び装置
JP5721207B2 (ja) Si多結晶インゴットの製造装置、Si多結晶インゴットおよびSi多結晶ウェハー
TWI304844B (ja)
JPH0977587A (ja) 単結晶の成長方法
JPH07165486A (ja) 化合物半導体単結晶の縦型容器内成長方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007547862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810486

Country of ref document: EP

Kind code of ref document: A1