WO2007058286A1 - 基板の洗浄方法及び洗浄装置 - Google Patents

基板の洗浄方法及び洗浄装置 Download PDF

Info

Publication number
WO2007058286A1
WO2007058286A1 PCT/JP2006/322922 JP2006322922W WO2007058286A1 WO 2007058286 A1 WO2007058286 A1 WO 2007058286A1 JP 2006322922 W JP2006322922 W JP 2006322922W WO 2007058286 A1 WO2007058286 A1 WO 2007058286A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chemical solution
cleaning
acid
foreign matter
Prior art date
Application number
PCT/JP2006/322922
Other languages
English (en)
French (fr)
Inventor
Ryuji Sotoaka
Keiichi Tanaka
Tomoyuki Azuma
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to JP2007545304A priority Critical patent/JPWO2007058286A1/ja
Publication of WO2007058286A1 publication Critical patent/WO2007058286A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern

Definitions

  • the present invention relates to a substrate cleaning method, a substrate cleaning apparatus, and a substrate obtained therefrom.
  • miniaturization of each electronic element constituting the electronic device is also progressing.
  • Such miniaturization of electronic elements is realized by forming a fine semiconductor device on an electronic substrate such as a semiconductor substrate.
  • aqueous solution having a strong acidity such as a hydrogen peroxide aqueous solution or an ozone aqueous solution and an acid or base selected according to the type of foreign matter to be removed are mixed.
  • a chemical was used.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-243085
  • the foreign matter is a metal.
  • a drug in which a base is added to a solution containing nitrous oxide (O) as a foreign matter in the substrate cleaning method for cleaning by removing foreign matter adhering to the electronic substrate, a drug in which a base is added to a solution containing nitrous oxide (O) as a foreign matter.
  • the liquid was brought into contact, and the chemical solution was irradiated with ultraviolet light to oxidize the foreign matter, and the oxidized foreign matter was removed from the electronic substrate by reacting with a base.
  • the substrate cleaning method described above is characterized in that both the electronic substrate and the foreign material are negatively charged with a base to generate a repulsive stress between the electronic substrate and the foreign material. .
  • the foreign matter in the substrate cleaning method for cleaning by removing the foreign matter adhering to the electronic substrate, includes nitrous oxide (N 2 O).
  • the substrate cleaning method described above is characterized in that the foreign matter is removed from the electronic substrate by combining the oxidized foreign matter and ions generated in the chemical solution.
  • An oxide film is formed on the surface of the electronic substrate.
  • a krypton-iodine (Krl) excimer lamp is used as the ultraviolet light source in the substrate cleaning method described above.
  • the method is characterized in that it is performed by spin-coating a chemical solution on the electronic substrate.
  • the present invention is characterized in that, in the substrate cleaning method described above, the irradiation direction of ultraviolet light is changed according to the shape of the electronic substrate.
  • nitrous oxide N 2 O
  • a chemical solution contact means for bringing a chemical solution containing acid and Z or base added to a solution containing 2 into contact with the electronic substrate, and a light source for irradiating the electronic substrate in contact with the chemical solution with ultraviolet light.
  • the chemical substrate is attached to the foreign matter attached to the substrate, and the foreign matter is oxidized by irradiating the chemical solution with ultraviolet light, and the oxidized foreign matter is reacted with an acid and Z or a base to react with the electronic substrate. It was decided to provide a substrate cleaning apparatus characterized by being removed from the substrate.
  • the light source may be krypton iodine.
  • the chemical solution contact means supports the electronic substrate and rotates it in the horizontal direction, and applies the chemical solution to the rotating electronic substrate.
  • a spin cord device provided with a chemical solution supply means for spraying.
  • the light source is configured to be able to change the irradiation direction of the ultraviolet light onto the electronic substrate.
  • a substrate cleaned by the above-described substrate cleaning method is provided.
  • nitrous oxide which does not contain compounds that adversely affect the human body, environment, and cleaning equipment such as hydrogen and ozone, is harmless, it can reduce the cost of waste liquid treatment and equipment for that purpose.
  • the metal contamination problem in the electronic substrate is preferably solved while cleaning using a chemical solution that has a low adverse effect on the human body, the environment, and the cleaning device. be able to.
  • the chemical solution obtained by adding a base to a solution containing nitrous oxide (N 2 O) is brought into contact with the foreign matter.
  • the waste solution treatment of the chemical solution used for cleaning is important. While reducing the cost, foreign substances such as silicon and silicon compounds adhering to the electronic substrate can be suitably removed.
  • the foreign material can be easily separated from the electronic substrate. Furthermore, it is possible to prevent the foreign matter that has been peeled off once from adhering to the electronic substrate again.
  • the chemical solution obtained by adding an acid and a base to a solution containing nitrous oxide (O) is contacted with the foreign matter.
  • the foreign matter In addition to touching and irradiating the chemical solution with ultraviolet light, the foreign matter is oxidized, and the oxidized foreign matter is removed from the electronic substrate by reacting with acid and Z or base. Multiple types of adhered foreign matter can be removed and cleaned at the same time.
  • the foreign matter is electrically charged by binding the oxidized foreign matter and ions generated in the chemical solution. Since it is characterized by removing the sub-board force, it is possible to easily separate the foreign matter that is difficult to separate from the electronic board force from the electronic board.
  • the oxide film formed on the surface of the electronic substrate functions as a protective film that protects the electronic substrate from the chemical solution.
  • the foreign matter can be reliably removed without damaging the surface of the electronic substrate.
  • the wavelength of the oxidant-nitrogen acid can be maximized by ultraviolet light irradiation.
  • Light can be irradiated.
  • the chemical solution can be brought into uniform contact with the entire surface of the electronic substrate. It is possible to reliably remove the foreign matter adhering to any position of the electronic substrate, and to appropriately remove the foreign matter separated from the electronic substrate by the centrifugal force of the electronic substrate rotating during the spin coating. it can.
  • the irradiation direction of the ultraviolet light is changed according to the shape of the electronic substrate, when cleaning the electronic substrate having a recess formed on the surface, the direction other than directly above the electronic substrate By irradiating the ultraviolet light from the direction, the surface of the electronic substrate other than the concave portion can be suitably cleaned.
  • a chemical solution contact means for bringing a chemical solution containing acid and Z or base added to a solution containing 2 to the electronic substrate, and a light source for irradiating the electronic substrate in contact with the chemical solution with ultraviolet light.
  • the chemical solution is attached to the foreign matter attached to the substrate, and the chemical solution is irradiated with ultraviolet light to oxidize the foreign matter, and the oxidized foreign matter is reacted with an acid and Z or a base to react with the acid. Since it was decided to provide a substrate cleaning device characterized by removal, the life of the device can be extended as much as possible without the piping for supplying and discharging the chemical solution being deteriorated by the chemical solution.
  • Nitrous acid nitrogen used as a chemical solution does not generate acid unless it is irradiated with ultraviolet light, so waste liquid treatment can be simplified, and the waste liquid treatment unit in the cleaning device has a simple structure and low cost. By real It can be.
  • the light source is a krypton iodine (Krl) excimer lamp
  • the chemical solution is irradiated with ultraviolet light having a wavelength capable of drawing out the highest amount of oxynitrite and nitrogen. And the efficiency of removing foreign matters can be increased.
  • the chemical contact means includes a rotating means for supporting and rotating the electronic substrate in the horizontal direction, and a chemical solution supply means for applying or spraying the chemical liquid on the rotating electronic substrate. Therefore, the chemical solution can be uniformly contacted with the entire surface of the electronic substrate, and foreign substances adhering to any position on the surface of the electronic substrate can be reliably removed.
  • the electronic substrate force can be suitably eliminated from the foreign matter separated from the electronic substrate force by the centrifugal force generated in the electronic substrate rotating during spin coating.
  • the light source is configured to be capable of changing the irradiation direction of the ultraviolet light to the electronic substrate, when cleaning the electronic substrate having a recess formed on the surface, the light source is directly above the electronic substrate. By irradiating the electronic substrate with ultraviolet light from other directions, the surface of the electronic substrate other than the recesses can be suitably cleaned.
  • the cost in the cleaning process can be reduced, and a substrate manufactured by an environmentally friendly cleaning process can be provided.
  • FIG. 1 is a schematic diagram of an experimental apparatus in which methylene blue was subjected to acid / sodium decomposition.
  • FIG. 2 is a graph showing the relationship between light irradiation time and methylene blue absorbance.
  • FIG. 3 is a graph showing the relationship between light irradiation time and methylene blue absorbance.
  • FIG. 4 is a graph showing the relationship between the standing time without light irradiation and the absorbance of methylene blue.
  • FIG. 5 is a graph showing the relationship between the elapsed time from the start of light irradiation and the absorbance of methylene blue.
  • FIG. 6 is a graph showing an absorption spectrum of an aqueous solution of nitrous acid and nitrogen when irradiated with ultraviolet light.
  • FIG. 7 is a table showing additives of nitrous acid / nitrogen aqueous solution corresponding to removal targets.
  • FIG. 8 is an explanatory diagram showing foreign matter adhering to the substrate.
  • FIG. 9 is a cross-sectional view of a substrate showing the first embodiment.
  • FIG. 10 is a cross-sectional view of the substrate showing the first embodiment.
  • FIG. 11 is a cross-sectional view of a substrate showing the first embodiment.
  • FIG. 12 is a cross-sectional view of a substrate showing a second embodiment.
  • FIG. 13 is a cross-sectional view of a substrate showing a second embodiment.
  • FIG. 14 is a cross-sectional view of a substrate showing a second embodiment.
  • FIG. 15 is a cross-sectional view of a substrate showing a third embodiment.
  • FIG. 16 is a cross-sectional view of a substrate showing a third embodiment.
  • FIG. 17 is a cross-sectional view of a substrate showing a third embodiment.
  • FIG. 18 is a cross-sectional view of a substrate showing a third embodiment.
  • FIG. 19 is a cross-sectional view of a substrate showing a third embodiment.
  • FIG. 20 is an explanatory view showing a substrate cleaning apparatus.
  • FIG. 21 is an explanatory view showing a substrate cleaning apparatus.
  • FIG. 22 is an explanatory diagram showing the characteristics of a KrI excimer lamp.
  • FIG. 23 is an explanatory diagram showing the characteristics of a KrI excimer lamp.
  • FIG. 24 is an explanatory view showing a modified example of the substrate cleaning apparatus.
  • FIG. 25 is a table showing experimental results related to particle removal.
  • FIG. 26 is a table showing the results of experiments on metal contamination removal.
  • FIG. 27 is a table showing experimental results related to particle and metal contamination removal. Explanation of symbols
  • the substrate cleaning method according to the present invention forms a semiconductor substrate for forming a semiconductor integrated circuit, a glass substrate constituting a display unit of a liquid crystal display or an organic EL (electroluminescence) display, and a normal electronic circuit.
  • Particles that can be applied to electronic substrates used in electronic devices such as printed circuit boards for the purpose of adhering to the surface of electronic substrates in the manufacturing process of electronic devices and degrading the characteristics of electronic devices.
  • Metal, organic matter, natural oxide film, and other types of foreign matters can be cleaned and removed without causing physical or chemical damage to the substrate surface.
  • the nitrous acid nitrogen contained in the chemical solution has a property of exciting the oxygen power only when irradiated with specific ultraviolet light.
  • the oxidizing power of the aqueous nitrous oxide solution will be described using a methylene blue acid-sodic decomposition method widely known as a method for evaluating the photocatalytic acid-decker.
  • Methylene blue exhibits a blue color in the form of an aqueous solution, and the blue color disappears and becomes colorless when oxidized.
  • a methylene blue (lOppm) aqueous solution In order to evaluate the oxidizing power of photocatalysts, it is common to measure the change in absorbance at 665 nm of a methylene blue (lOppm) aqueous solution.
  • lOppm methylene blue
  • photocatalysts generally require several tens of minutes to several hundred minutes.
  • FIG. 1 is a schematic diagram of an experimental apparatus in which methylene blue was oxidatively decomposed.
  • the experimental apparatus 11 includes a container 12 whose upper surface is open, and a high-pressure mercury lamp 13 as a light source disposed immediately above the container 12.
  • Container 12 is Teflon (R) processed.
  • the high-pressure mercury lamp 13 generates light containing at least a wavelength of 240 nm or less, and its output is 1200 W.
  • the high-pressure mercury lamp 13 is arranged close to the container 12 so that the light irradiates the entire surface of the container 12.
  • methylene blue (10 ppm) and nitrous acid nitrogen are dissolved, and V, methylene blue aqueous solution 14 is filled.
  • FIG. 2 is a graph showing the results of an acid-sodium decomposition experiment of methylene blue using the experimental apparatus 11, in which about 1OOOppm of nitrous acid-nitrogen is dissolved.
  • the horizontal axis indicates the light irradiation time (minutes)
  • the vertical axis indicates the 665 nm absorbance of the methylene blue aqueous solution.
  • the light transmittance (T) is expressed by Equation 1 where Ii is the intensity of the light incident on the material, and Io is the intensity of the light emitted from it.
  • the absorbance at that time is expressed by Equation 2.
  • Fig. 3 shows the results of an acid-sodium decomposition experiment of methylene blue using an aqueous solution in which methylene blue (lOppm) and helium (He) (content of about 16ppm) were dissolved in the experimental apparatus 11.
  • 3 is a graph showing the relationship between the light irradiation time (minutes) and the 665 nm absorbance of a methylene blue aqueous solution.
  • He is a well-known inert gas and has a component that does not absorb light at 665 nm. This time, in comparison with nitrous acid-nitrogen-dissolved water, in order to expel air components (N, O, CO, etc.) dissolved in the water used,
  • He Helium
  • FIG. 4 is a graph showing the relationship between the time during which the methylene blue aqueous solution 14 was left alone and the 665 nm absorbance of the methylene blue aqueous solution 14 in the experimental apparatus 11 with the high pressure mercury lamp 13 not turned on. It was confirmed that the absorbance at 665 nm did not change even when the methylene blue aqueous solution 14 was not irradiated with light having a wavelength of 240 nm or less in which methylene blue and nitrous acid were dissolved. In other words, it was confirmed from a comparison between FIG. 2 and FIG. 4 that methylene blue would not be decomposed by acid without irradiating light to nitrous acid nitrogen.
  • FIG. 5 shows that in the experimental apparatus 11, when 0.5 minutes have elapsed after the high-pressure mercury lamp 13 starts irradiating the methylene blue aqueous solution 14 with ultraviolet light, the ultraviolet light is applied to the methylene blue aqueous solution 14.
  • the ultraviolet light is applied to the methylene blue aqueous solution 14.
  • the methylene blue in the aqueous solution is decomposed when the ultraviolet light irradiation is started, but the methylene blue is also decomposed in one minute after the ultraviolet light irradiation is stopped. It was confirmed that the decomposition of methylene blue started at the same time when it returned to the state irradiated with ultraviolet light. From this, it was confirmed that the oxidation time of a substance can be controlled by selecting the irradiation time of ultraviolet light.
  • the high-pressure mercury lamp 13 was used as a light source for dissociating nitrous acid.
  • any lamp other than the high-pressure mercury lamp 13 can be used as long as it generates light having a wavelength of 240 nm or less. Can be used.
  • the power using 1200W as the lamp output.
  • the rate of acid decomposition is affected by the output. In other words, when the lamp output is small, the rate of oxidative decomposition decreases, and conversely, when the lamp output is large, the rate of acidification decomposition increases.
  • the lamp output may be appropriately selected according to the desired oxidation / decomposition rate.
  • FIG. 6 shows an absorption spectrum of a nitrous oxide aqueous solution (nitrogen oxynitride content of about 10 ppm) when the experimental apparatus 11 is used and irradiated with ultraviolet light. There is no methyl blue in the container 12.
  • the horizontal axis indicates the wavelength range of the measurement range 200 to 340 nm, and the vertical axis indicates the absorbance.
  • Curves C1 to C3 show the absorbance of nitrous acid nitrogen (N 2 O) and C3
  • the chemical solution containing nitrous acid nitrogen having such properties is applied to the electronic substrate, or sprayed, or attached to the electronic substrate by immersing the electronic substrate in the chemical solution.
  • the chemical solution is brought into contact with the foreign material, and the chemical solution is irradiated with ultraviolet light to excite the oxidizing power of the nitrous oxide in the chemical solution, and the foreign matter is oxidized by this oxidizing power.
  • the oxidized foreign matter was generated by ionization of acid or acid in the chemical solution, ion generated by ionization of base or base, or neutralization of acid and base.
  • ions generated by the ionization of the salt some or all of the foreign matter is dissolved and separated and removed from the electronic substrate.
  • nitrous acid nitrogen that does not exhibit acid is not used unless irradiated with ultraviolet light of a specific wavelength, the electronic substrate is used. If the ultraviolet light irradiation is stopped after cleaning, the nitrous acid and nitrogen will lose the acid and the human body and environment. It becomes harmless to the cleaning equipment.
  • the hydrogen peroxide and ozone are decomposed into the chemical solution after the cleaning of the electronic board as in the conventional case where hydrogen peroxide and ozone are used as the oxidizing agent.
  • nitrous oxide has a property of maintaining a relatively stable state in a state dissolved in water, it is decomposed in a relatively short time like ozone which has been conventionally used as an oxidizing agent. It can be stored for a long period of time without causing a decrease in acid strength.
  • the foreign matter to be removed in the case of using the chemical solution to which the acid is added is a particle such as a metal dust or a metal contaminant attached to the electronic substrate.
  • a particle such as a metal dust or a metal contaminant attached to the electronic substrate.
  • an appropriate selection from a plurality of acids such as hydrochloric acid, hydrofluoric acid, nitric acid and sulfuric acid may be added.
  • particles and metal contaminants can be dissolved (decomposed) with the above-described acid and effectively separated from the electronic substrate.
  • the type of base added to the chemical solution is appropriately selected according to the type of foreign matter to be removed.
  • FIG. As shown in the table, ammonia is added when the removal target is particles and organic matter, hydrochloric acid is added when the removal subject is metal contamination, and the removal target is organic contamination and metal contamination. If the removal target is a natural oxide film and metal contaminants, add hydrofluoric acid. If the removal target is an acid film, add hydrofluoric acid and fluorinated ammonia. Add um and add.
  • the particles in FIG. 7 are metals, organic substances, components of an electronic substrate, and oxides. There are several types of materials, such as particles, the shape of which indicates a particle-like foreign material, and the contaminant indicates an ion-level foreign material.
  • the chemical solution when cleaning an electronic substrate using a chemical solution in which a base is added to an aqueous solution containing nitrous oxide, the chemical solution is different from the surface of the electronic substrate because the chemical solution is a basic aqueous solution.
  • the values of the electrokinetic potential (zeta potential) on the surface of the object are both relatively large negative values.
  • both the electronic substrate and the foreign matter are negatively charged, and a repulsive force is generated between the electronic substrate and the foreign matter, and the foreign matter is easily separated from the electronic substrate by the action of the repulsive force. Also, the foreign matter once separated from the electronic substrate becomes difficult to reattach to the electronic substrate.
  • the electronic substrate when nitrous oxide is irradiated with ultraviolet light to oxidize foreign substances, the electronic substrate is oxidized at the same time so that a relatively thin oxide film is formed on the surface of the electronic substrate. To form.
  • a krypton iodine (Krl) excimer lamp is used as the ultraviolet light source for irradiating the nitrous acid nitrogen to excite the acid squid.
  • This Krypton Iodine (Krl) excimer lamp has good rising power characteristics from the unlit state to the lit state, and has a good falling characteristic from the lit state to the unlit state.
  • the acid-sodium reaction can be carried out only when desired.
  • the ultraviolet light irradiated by the Krl excimer lamp is easily absorbed by nitrous acid and nitrogen, and is not easily absorbed by oxygen. Therefore, the nitrous oxide has excellent resolution and the oxidation reaction is efficiently performed. Cleaning is performed with high efficiency with little generation of ozone, and the structure of the cleaning device that simplifies the construction of the cleaning device that does not require an ozone countermeasure is required. Small and low cost.
  • spin coating is performed as a method of bringing the foreign matter into contact with the cleaning chemical. That is, the chemical solution is applied or sprayed near the rotation axis of the surface of the electronic substrate while rotating the electronic substrate at a high speed on a horizontal plane. Then, using the centrifugal force of the rotating electronic substrate, the chemical solution is extended in the direction of the center side force of the rotating shaft toward the peripheral portion of the electronic substrate so that the chemical solution is brought into contact with the entire surface of the electronic substrate.
  • the chemical solution can be evenly spread over the entire surface of the electronic substrate to which foreign matter has adhered, and the occurrence of cleaning unevenness can be prevented, and furthermore, the electronic substrate can be separated by the centrifugal force of the rotating electronic substrate. Surface force The separated foreign matter is pushed toward the periphery of the electronic substrate, and then completely removed from the electronic substrate.
  • the chemical solution is supplied by spraying, the amount of the chemical solution used for one cleaning can be saved, and the cleaning cost can be reduced.
  • the method of bringing the foreign substance into contact with the chemical solution is not limited to the above-described spin coating, but may be performed by immersing the electronic substrate with the foreign substance attached in a cleaning tank filled with the chemical solution. In this case, unreacted chemical solution is sequentially supplied to the washing tank, and the reacted chemical solution is discharged from the washing tank.
  • the substrate cleaning method according to the present invention will be described by taking as an example a case where the present invention is applied to cleaning of a Si (silicon) substrate in a semiconductor device manufacturing process.
  • a semiconductor device is manufactured by laminating various layers of semiconductors, conductors, and insulators on a Si substrate, and applying an extremely fine pattern to each layer. Even if dust or contaminants adhere to the product, it can cause deterioration of the product characteristics and reduce the product yield.
  • semiconductor devices are usually manufactured from indoor air called a clean room. Performed in an air-conditioned space that eliminates dust and other contaminants whenever possible
  • Contaminants that adhere to the Si substrate during this manufacturing process are not a single type of substance.
  • metal contaminants 42 such as metals and metal ions on the Si substrate X, and Si substrate X
  • particles (particles) P such as polysilicon generated when the silicon is polished
  • organic contaminants Z due to resist film residues used when patterning the Si substrate X.
  • the first to third embodiments of the method for cleaning the Si substrate in the manufacturing process of the semiconductor device will be described.
  • the entire electronic substrate including various layers laminated on the Si substrate is simply referred to as a substrate.
  • a contact hole is formed by performing predetermined pattern etching on an insulating film layer formed on a Si substrate, and a W (tungsten) wiring layer is formed in the contact hole.
  • a method for cleaning the foreign matter adhering to the substrate in the step of embedding is described with reference to schematic cross-sectional views of the substrate shown in FIGS.
  • FIG. 9 (a) shows a state in which an A1 (aluminum) -Cu (copper) wiring layer 2, a cap layer 3, and an insulating film layer 4 are sequentially laminated on the Si substrate 1. It is a cross-sectional schematic diagram.
  • a resist 5 is laminated on the surface of the substrate in the state shown in Fig. 9 (a) as shown in Fig. 9 (b), and the resist 5 is subjected to a photolithography process to obtain a predetermined pattern. Then, an opening is formed at a predetermined position of the resist 5 as shown in FIG. 9 (c).
  • a contact hole reaching the surface of the cap layer 3 is formed by performing a dry etching process on the insulating film layer 4 using the resist 5 as a mask.
  • the sidewall polymer 6 is formed on the inner peripheral surface of the contact hole and the cured resist layer 7 is formed on the surface of the resist 5 .
  • the resist 5 is peeled off from the substrate surface (the surface of the insulating film layer 4) by performing an ashing process on the resist 5.
  • the ashed resist residue (hereinafter referred to as “ashing residue 8”) generated by the ashing process adhered to the substrate surface, and adhered to the inner peripheral surface of the contact hole during the dry etching process.
  • Sidewall polymer 6 is attached as etching residue 9.
  • the ashing residue 8 and the etching residue 9 adhering to the substrate cause deterioration in the characteristics of the semiconductor device as described above, and thus must be removed. Therefore, the substrate is cleaned at this stage. Do.
  • a cleaning chemical solution is spin-coated on the entire surface of the substrate with the Krl (krypton 'iodine) excimer lamp 10 irradiated with ultraviolet light.
  • the chemical solution 16 is brought into contact with foreign matters such as the ashing residue 8 and the etching residue 9.
  • HSO which is an acid in a nitrous oxide solution
  • a chemical solution 16 to which (sulfuric acid) is added is used.
  • the ultraviolet light with which the chemical liquid 16 is irradiated is irradiated with ultraviolet light having a wavelength of 191 nm, which is suitable for increasing the acidity of nitrous acid and nitrogen, with a Krl excimer lamp.
  • the ashing residue 8 and the etching residue 9 are oxidized by the strong acid force of nitrous acid generated by ultraviolet light irradiation, and foreign substances adhere to the surface of the substrate.
  • An oxide film is formed on the substrate.
  • the substrate is rinsed with pure water for 30 seconds and then blown with nitrogen gas for 30 seconds. To dry the substrate.
  • the cap layer patterned in a predetermined shape on the W wiring layer 15 3a and an Al—Cu wiring layer 2a and a cap layer 3b are formed.
  • the cap layer 3a and the Al—Cu wiring layer 2a are formed on the entire surface of the substrate on which the W wiring layer 15 is formed. And the cap layer 3b are sequentially laminated at a predetermined thickness, and then a resist 5a is formed on the surface of the cap layer 3b.
  • a patterning process is performed so that the resist 5a remains only on the upper portion of the W wiring layer 15, and a dry etching process is performed using the remaining resist 5a as a mask, thereby removing unnecessary portions.
  • a dry etching process is performed using the remaining resist 5a as a mask, thereby removing unnecessary portions.
  • the etching residue 9a resulting from the etching process adheres to the side surface of the Al—Cu wiring layer 2a.
  • reference numeral 7a denotes a hardened resist layer generated by the etching process.
  • the resist 5a is removed again by the ashing process.
  • the etching residue 9a and the ashing residue 8a are removed from the substrate (A1 Cu wiring layer). 2a and the top surface of the cap layer 3b), the substrate is again cleaned here.
  • the entire surface of the substrate was spin-coated with ultraviolet light using the Krl (krypton 'iodine) excimer lamp 10 while the substrate surface was irradiated with ultraviolet light.
  • the chemical solution 16a is brought into contact with foreign matter such as the ashing residue 8a and the etching residue 9a.
  • the temperature of the chemical solution 16a is set to room temperature
  • the supply amount of the chemical solution 16a is set to 1 liter per minute
  • the rotation speed of the Si substrate 1 is set to lOOOrpm
  • cleaning is performed for 60 seconds.
  • the substrate is dried by blowing with nitrogen gas for 30 seconds.
  • the foreign matter to be cleaned is the same as the foreign matter shown in Fig. 9 (f). Since there are the thinning residue 8a and the etching residue 9a, the chemical solution 16a used for cleaning is also a chemical solution in which sulfuric acid is added to the solution containing nitrous acid and nitrogen shown in FIG. 9 (f).
  • the W wiring layer 15 is formed as shown on the right side of FIG.
  • the yield of products decreases, and problems arise.
  • nitrous acid nitrogen is used as an oxidizing agent, and this nitrous acid nitrogen does not exhibit acid squid unless it is irradiated with specific ultraviolet light. .
  • the surface of the W wiring layer 15 was dissolved even though it was slightly dissolved by irradiating ultraviolet light obliquely from above the substrate. Since ultraviolet light does not reach the inside of the W wiring layer 15 in part, the oxidation and dissolution reaction does not proceed any further, and excessive dissolution of the W wiring layer 15 can be prevented. Yield reduction can be prevented.
  • a polymetal gate is formed on a Si substrate.
  • a method of cleaning foreign matter adhering to the substrate when forming the gate electrode will be described with reference to schematic cross-sectional views of the substrate shown in FIGS.
  • FIG. 12 (a) shows that a gate oxide film 17, a polysilicon film 18, a tungsten nitride film 19, a tungsten film 20, and a silicon nitride film 21 are sequentially stacked on the Si substrate la. It is a cross-sectional schematic diagram of the substrate showing the state.
  • a resist 22 is laminated on the surface of the substrate in the state shown in FIG. 12 (a) as shown in FIG. 12 (b), and a predetermined patterning is performed by performing a photolithography process on the resist 22. As shown in FIG. 12C, the resist 22 is left only at a predetermined position on the substrate surface (the surface of the silicon nitride film 21).
  • a sidewall polymer 24 is formed on the side surface of the polymetal gate 23, as shown in FIG. 12 (e), and a cured resist layer 25 is formed on the surface of the resist 22.
  • the resist 22 remaining on the upper part of the polymetal gate 23 is removed by performing an ashing process.
  • the ashing residue 27 and the etching residue 26 adhering to the substrate cause deterioration of the characteristics of the semiconductor device as described above, and thus need to be removed. Therefore, the substrate is cleaned at this stage.
  • the cleaning solution 16b is spun over the entire substrate surface.
  • foreign substances such as ashing residue 27 and etching residue 26 are treated with chemical solution 16 Touch b.
  • the foreign matter to be removed is the ashing residue 27, which is a particle, and the etching residue 26, which is a silicon compound, so ammonia as a base is added to the nitrous oxide solution as a cleaning chemical.
  • the Krl excimer lamp 10a irradiates the ultraviolet light having a wavelength of 19 lnm which is suitable for increasing the acidity of nitrous acid and nitrogen. .
  • the ashing residue 27 and the etching residue 26 are oxidized by the strong acid force of nitrous acid nitrogen generated by ultraviolet light irradiation, and foreign matter adheres to the part.
  • An oxide film is formed on the substrate surface.
  • the oxidized ashing residue 27 and the etching residue 26 react with the ammonia in the chemical solution 16b to dissolve and are removed from the substrate cover to obtain the state shown in FIG. 13 (h).
  • the substrate is rinsed pure for 30 seconds, the substrate is dried by blowing with nitrogen gas for 30 seconds to form the polymetal gate 23.
  • the substrate cleaning method of the second embodiment when the substrate is irradiated with ultraviolet light by the Krl excimer lamp 10a, as shown in FIG. 13 (g), the substrate is irradiated with ultraviolet light. By irradiating from directly above, the tungsten film constituting the polymetal gate 23 is prevented from being eroded by the chemical solution 16b.
  • nitrous acid nitrogen is used as an oxidizing agent, and this nitrous acid nitrogen does not exhibit acid squid unless it is irradiated with specific ultraviolet light. . [0145] Therefore, by irradiating ultraviolet light from directly above the substrate, the dissolution rate of the etching residue 26 and the ashes residue 27 becomes faster in the vertical direction than in the horizontal direction. Difficult to dissolve in the direction ⁇ .
  • the silicon nitride film 21 formed on the tungsten film 20 protrudes from the tungsten film 20 into a slightly eaves-like shape. Therefore, the chemical solution 16b in contact with the tungsten film 20 is not exposed to ultraviolet light, so that nitrous oxide does not exert its oxidizing power, and the tandastene film 20 may be further dissolved in the lateral direction. As a result, excessive dissolution of the tungsten film 20 can be prevented, and a reduction in product yield can be prevented.
  • the dual damascene method refers to a via hole for connecting a buried wiring formed in advance on the lower layer side of the substrate and a wiring layer to be formed later on the upper layer side of the substrate, and wiring on the upper layer side of the substrate.
  • a method of forming a multilayer wiring layer while reducing the number of manufacturing steps by forming a trench (groove) for forming a layer connected to each other, and simultaneously filling the via hole and the trench with a conductive member. That is.
  • FIG. 15 (a) shows an insulating film layer 28, a first etching stagger layer 29a, a first low dielectric layer 30a, a first cap layer 32a, and a second etching stopper layer 29b on a Si substrate lc.
  • FIG. 3 is a schematic cross-sectional view of a substrate showing a state in which a second low dielectric constant insulating layer 30b, a third etching stopper layer 29c, a third low dielectric constant insulating layer 30c, and a second cap layer 32b are sequentially stacked, and the first etching Cu buried wiring 31 is formed at a predetermined position between the stagger layer 29a and the second etching stopper layer 29b.
  • an antireflection film 33 and a resist 34 are sequentially laminated as shown in Fig. 15 (b), and the resist 34 is subjected to a photolithography process. Place By applying a predetermined pattern and removing the unnecessary portion of the resist 34, an opening is formed at a predetermined position (via hole forming position) of the resist 34, as shown in FIG.
  • a via hole reaching the surface of the first etching stopper layer 29a is formed by performing a dry etching process using the resist 34 as a mask.
  • the side wall polymer 35 is formed on the inner peripheral surface of the via hole, and the resist hardened layer 36 is formed on the surface of the resist 34. .
  • the resist 34 is peeled off from the substrate surface (the surface of the antireflection film 33) by performing an ashing process on the resist 34.
  • the ashed resist residue (hereinafter referred to as “ashing residue 37”) generated by the ashing process adheres to the substrate surface, and the via holes adhere to the inner peripheral surface of the via hole during the dry etching process.
  • the polymer 35 is attached as an etching residue 38.
  • the ashing residue 37 and the etching residue 38 adhering to the substrate cause deterioration of the characteristics of the semiconductor device as described above, and thus must be removed. Therefore, the substrate is cleaned at this stage.
  • the cleaning solution 16c is sprinkled on the entire surface of the substrate with the Krl (krypton 'iodine) excimer lamp 10b irradiated with ultraviolet light.
  • the chemical solution 16c is brought into contact with foreign matter such as the ashing residue 37 and the etching residue 38.
  • the temperature of the chemical solution 16c is set to room temperature, and the supply amount of the chemical solution 16c is set to be per minute.
  • the foreign matter to be removed is the ashing residue 37 and the etching residue 38 containing metal contamination and silicon compound. Therefore, HF (which is an acid in the nitrous oxide solution is used as a cleaning chemical. Use chemical solution 16c to which hydrofluoric acid is added.
  • the Krl excimer lamp 10b irradiates ultraviolet light having a wavelength of 191 nm which is suitable for increasing the acidity of nitrous acid and nitrogen.
  • the surface of the Cu embedded wiring 31 is eroded by the chemical solution 16c by irradiating the substrate with ultraviolet light obliquely from above. as well as The second and third low dielectric constant insulating layers 30b and 30c on the inner peripheral surface of the via hole are prevented from deteriorating.
  • the conventional oxidizer always has an oxidizer, so the Cu embedded wiring 31 and the second and third low dielectric constant insulating layers 30b and 30c are in contact with the conventional chemical solution. Then, an oxidation reaction occurs continuously during substrate cleaning, and the oxidized Cu embedded wiring 31 is dissolved by the additive in the conventional chemical solution, and the second and third low dielectric constant insulating layers on the inner peripheral surface of the via hole This is because the characteristics of 30b and 30c are degraded.
  • the chemical solution 16c used in the present embodiment uses nitrous acid nitrogen as an oxidizing agent.
  • This nitrous acid nitrogen does not exhibit acidity unless it is irradiated with specific ultraviolet light.
  • the ultraviolet light is prevented from reaching the inside of the via hole, and is formed at the bottom of the via hole.
  • the product yield is suppressed by suppressing the characteristic deterioration of the second and third low dielectric constant insulating layers 30b and 30c on the inner peripheral surface of the via hole. A decrease can be prevented.
  • the substrate is rinsed pure for 30 seconds, and then blown with nitrogen gas for 30 seconds to dry the substrate.
  • a resist 34a is formed so as to cover the protective film 39 and the antireflection film 33.
  • a predetermined patterning is performed by performing a photolithography process on the resist 34a to remove an unnecessary portion of the resist 34a, as shown in FIG. 16 (j). Then, an opening is formed at a predetermined position (trench formation position) of the resist 34a.
  • a dry etching process is performed using the resist 34a as a mask to form a trench reaching the surface of the third etch stopper layer 29c, and then ashing (ash gray) is applied to the resist 34a and the protective film 39.
  • ashing ash gray
  • the resist 34a is peeled from the substrate surface (the surface of the antireflection film 33) as shown in FIG. 13 (k).
  • the residue of the ashed resist generated by the ashing process adheres to the substrate surface and forms on the inner peripheral surface of the trench.
  • the sidewall polymer attached during the dry etching process is attached as the etching residue 38a.
  • the ashing residue 37a and the etching residue 38a adhering to the substrate cause the deterioration of the characteristics of the semiconductor device as described above and need to be removed. Therefore, the substrate is cleaned at this stage.
  • the cleaning solution 16c was sprinkled over the entire surface of the substrate while the substrate surface was irradiated with ultraviolet light using a Krl (krypton 'iodine) excimer lamp 10b.
  • the chemical solution 16c is brought into contact with foreign matter such as the ashing residue 37a and the etching residue 38a.
  • the temperature of the chemical solution 16c is set to room temperature, and the supply amount of the chemical solution 16c is set to be per minute.
  • the cleaning process shown in Fig. 16 (g) is used as the cleaning chemical.
  • the Krl excimer lamp 10b is irradiated with ultraviolet light having a wavelength of 191 nm which is suitable for increasing the acidity of nitrous acid and nitrogen.
  • the ashing residue 37a and the etching residue 38a are oxidized by the strong acidity of nitrous acid-nitrogen generated by ultraviolet light irradiation, and no foreign matter is attached.
  • An oxide film (not shown) is formed on the surface of the substrate.
  • the substrate is rinsed pure for 30 seconds and then blown with nitrogen gas for 30 seconds to dry the substrate.
  • a noir layer 40 is formed on the inner peripheral surface of the via hole and the trench, and then the via hole in which the noir layer 40 is formed.
  • a Cu layer 41 serving as a wiring layer on the upper layer side of the substrate is formed.
  • CMP Chemical Mechanical Polishing
  • the polished Cu residue adheres to the substrate surface (the surfaces of the second cap layer 32b and the Cu layer 41) as metal contaminants 42. Since the residue of the abrasive used in CMP (hereinafter referred to as “slurry residue 43”) also adheres, the substrate is also cleaned here.
  • the cleaning solution 16d is sprinkled on the entire substrate surface with the Krl (krypton 'iodine) excimer lamp 10b irradiated with ultraviolet light.
  • the chemical solution 16d is brought into contact with foreign matter such as the ashing residue 37a and the etching residue 38a.
  • the foreign matter to be cleaned is a metal contaminant 42 and a slurry residue 43, and this slurry residue 43 is also a metal such as alumina.
  • a chemical solution 16d used for cleaning a chemical solution 16d in which sulfuric acid is added to a solution containing nitrous acid and nitrogen is used.
  • the Krl excimer lamp 10b irradiates ultraviolet light having a wavelength of 191 nm, which is suitable for increasing the acidity of nitrous acid and nitrogen.
  • the foreign matter on the substrate surface can be suitably removed by irradiating the substrate with ultraviolet light with an oblique upward force.
  • the metal fouling 42 and the slurry residue 43 are oxidized by the strong acidity of nitrous acid and nitrogen generated by the ultraviolet light irradiation, and foreign matter adheres to the rough part.
  • An oxide film (not shown) is formed on the surface of the substrate.
  • the substrate is rinsed pure for 30 seconds and then blown with nitrogen gas for 30 seconds to dry the substrate.
  • the substrate cleaning method of the present invention can be applied to various substrate cleaning processes in various semiconductor device manufacturing processes, and the configuration other than the foreign matter adhered to the substrate surface. Foreign matter can be effectively removed while suppressing deterioration of element characteristics.
  • the chemical solution used in the substrate cleaning method is not limited to an oxidant that has a heavy load on the substrate cleaning device, such as hydrogen peroxide or ozone, as in the case of conventional chemical solutions. Since nitrous oxide, which generates an oxidizing power only when irradiated, is used as an oxidizing agent, the life of the cleaning device can be extended as much as possible.
  • nitrous oxide is safe for the human body and the natural environment when it is not irradiated with ultraviolet light, it is necessary to perform waste treatment of the oxidizing agent on the chemical after washing. However, it is possible to reduce the cost required for waste liquid treatment.
  • FIG. 20 is a side sectional view showing the substrate cleaning apparatus 100
  • FIG. 21 is a plan view of the substrate cleaning apparatus 100 as viewed from above
  • FIGS. 22 and 23 are Krl excimer lamps.
  • FIG. 24 is a schematic cross-sectional view showing a modified example of the substrate cleaning apparatus.
  • the substrate cleaning apparatus 100 generates a negative pressure between the table 101 holding the Si substrate X, which is a semiconductor substrate, on the upper surface thereof, and the table 101 and the Si substrate X.
  • a suction means (not shown) that sucks the substrate X, a rotating shaft 102 that rotatably supports the table 101, a motor (not shown) that rotationally drives the rotating shaft 102, and an ultraviolet light having a predetermined wavelength on the Si substrate X held by the table 101.
  • a Krl excimer lamp L that functions as a light source for irradiating light, a chemical solution supply means 103 for supplying a chemical solution S for cleaning the Si substrate X to the Si substrate X on the table 101, and a table 101 are arranged to cover the table 101.
  • the chemical solution S applied to the Si substrate X by the chemical solution supply means 103 is prevented from scattering to the outside, and the container 104 for storing the excess chemical solution S and the waste solution for discharging the chemical solution S stored in the container 104 to the outside Pipe 105, waste liquid storage unit (not shown) with sufficient capacity to store chemical liquid S discharged through waste liquid pipe 105, and chemical liquid S in 104 disposed in waste liquid pipe 105 are discharged to the waste liquid storage part Turn off or not
  • the chemical solution supply means 103 includes a tank 107 as a chemical solution storage unit that stores a sufficient amount of the chemical solution S to clean the Si substrate X, and the chemical solution S in the tank 107 to the Si substrate X on the table 101. And a nozzle 108 to be coated. If the inside of the tank 107 is maintained at a pressure higher than the atmosphere, and the nozzle 108 is replaced with one having a small coating port diameter, the chemical solution S can be sprayed on the Si substrate X in the form of a mist. In this way, the amount of the chemical solution S used can be reduced, and the cost required for substrate cleaning can be further reduced.
  • the nozzle 108 is provided so as to be rotatable in parallel with the Si substrate X surface.
  • the tank 107 is added with an acid, Z, or base selected according to the type of foreign matter to be removed, as a chemical solution S for cleaning the Si substrate X, to the nitrous oxide solution.
  • the stored chemical S is stored.
  • only one tank 107 is provided.
  • a plurality of tanks 107 are provided, and different chemical solutions S are stored in the tanks 107, respectively.
  • the tank 107 is appropriately selected according to the type of foreign matter to be removed and sprayed onto the Si substrate X.
  • the suction means vacuum-sucks the Si substrate X, and the Si substrate X is held by the table 101 even when the table 101 rotates!
  • the suction means, the motor, the rotating shaft 102, and the te The table 101 functions as a rotating means for rotating the Si substrate X to be cleaned, and the Si substrate X can be rotated at a rotation speed of lOOOrpm.
  • the spin coater including the rotating means and the chemical solution supply means 103 functions as a chemical solution contact means for bringing the chemical solution S into contact with the Si substrate X.
  • the Krl excimer lamp L that functions as a light source irradiates ultraviolet light having a wavelength of 19 lnm, which can increase the oxidizing power of nitrous oxide to a very high level.
  • the Krl excimer lamp L is based on the characteristics of the UV absorption spectrum of an aqueous nitrous oxide solution (quoted from Brit. J. Anaesth., 44, 310 (1972)) shown in FIG. Was developed and used in the substrate cleaning device 100.
  • the UV absorption spectrum of the aqueous nitrous oxide solution shows a peak exceeding 0.7 at around 190 nm.
  • the horizontal axis represents wavelength and the vertical axis represents absorbance.
  • the UV absorption spectrum in this figure represents the absorption spectrum of water that has reached equilibrium with 100% nitrous acid, and water that is equilibrated with helium is used as the reference cell.
  • the emission wavelength of low-pressure mercury lamps that have been widely used in the past is centered on 185 nm, and the absorbance at the wavelength of 185 nm is the UV absorption spectrum of nitrous acid-nitrogen aqueous solution.
  • the efficiency is extremely low because it is about 0.05 that is well below the peak of 0.7.
  • a light source that emits light at a wavelength centered around 190 nm where the UV absorption spectrum of the nitrous oxide aqueous solution shows a peak
  • a dielectric barrier discharge lamp using argon-fluorine a so-called argon fluoride excimer lamp, Is known.
  • Argon fluoride excimer lamps emit at a wavelength centered at 193 nm.
  • an excimer lamp has characteristics suitable for the acid-oxidation reaction according to the present invention, such as good rise and fall.
  • the quartz tube is likely to be deteriorated by fluorine enclosed therein.
  • the argon fluoride excimer lamp has a problem that the compatibility between fluorine and the quartz tube is bad and the life is short.
  • the UV absorption spectrum of nitrous acid aqueous solution of nitrogen is steep near the peak, so it is close to 190 nm!
  • the absorbance is greatly reduced compared to the peak value.
  • Krl excimer lamp L that emits light at an ultraviolet wavelength of 191 nm, which is extremely close to 190 nm, and adopted it in the substrate cleaning apparatus 100.
  • Krl excimer lamp L is manufactured by vaporizing solid iodine, measuring a predetermined amount, and enclosing it in a quartz tube.
  • the absorbance of the nitrous oxide aqueous solution with an emission wavelength of 19 lnm of the Krl excimer lamp L is about 0.65, which is close to the absorbance at the peak of the UV absorption spectrum of the aqueous nitrous oxide solution, and is efficient. Therefore, considering the generation of oxygen atoms due to the photodissociation of nitrous acid and nitrogen, for example, the Krl excimer lamp L is less than the low pressure mercury lamp because the absorbance at the emission wavelength of 185 nm of the low pressure mercury lamp is about 0.05. Oxygen atoms can be generated with an efficiency exceeding 10 times, and the generation efficiency of oxygen atoms is extremely high compared to conventional light sources.
  • the Krl excimer lamp has the general characteristics of an excimer lamp that is suitable for the oxidation reaction according to the present invention, such that the rise and fall are good, and the quartz tube deteriorates due to the enclosed iodine. There is an advantage in that the life is long because the compatibility between KUGUI iodine and the quartz tube is good.
  • the ultraviolet light with a wavelength of 191 nm emitted by the Krl excimer lamp L is almost the same as the ultraviolet light with a wavelength of 185 nm emitted by the low-pressure mercury lamp, which is sufficiently large to decompose nitrous oxide and perform an oxidation reaction. Have energy.
  • the Krl excimer lamp L also has an excellent characteristic that it generates less ozone due to light emission.
  • FIG. 23 shows the UV absorption spectrum of oxygen (cited from J. Chem. Phys., 21, 1206 (1953)).
  • the powerful spectrum in the region from the wavelength of about 175 nm to the wavelength of about 200 nm, a very slight periodic fluctuation of the absorption coefficient is observed. Such a region is called the Syumanrunge band.
  • the wavelength of 191 nm emitted by the Krl excimer lamp L is included in the Syumann Runge band, which corresponds to the so-called valley portion between the 5-0 band and the 4-0 band, and has a small absorption coefficient. Therefore, dissociation of oxygen molecules with less absorption by oxygen molecules, and There is little generation of ozone.
  • the wavelength of 185 nm of ultraviolet light emitted by a low-pressure mercury lamp is located on the 8-0 band in the Schmannmannge band and has a large absorption coefficient. Therefore, if there is an atmosphere between the low-pressure mercury lamp and the nitrous oxide solution, ultraviolet energy is absorbed by oxygen molecules and a large amount of ozone is generated immediately. The efficiency of the oxidation reaction is low, and the structure of the apparatus equipped with this becomes complicated, design problems, large size, and high cost.
  • the Krl excimer lamp L has the following advantages.
  • the Krl excimer lamp L has a high degree of freedom because it is less affected by the atmosphere. It is possible to omit or simplify a device such as a sealing device such as a processing chamber for preventing ozone.
  • the structure of the substrate cleaning apparatus 100 with high efficiency of the oxidation reaction can be simplified, and the structure can be made small and inexpensive with high design flexibility.
  • the Krl excimer lamp L can arbitrarily change the irradiation angle of the ultraviolet light on the table 101.
  • the substrate cleaning apparatus 100 includes a guide rail 110 that slidably supports the Krl excimer lamp L, and the base end side of the guide rail 110 is the table 10.
  • the tip side is the Si substrate
  • the shape is bent so as to be parallel to the X mounting surface.
  • the Krl excimer lamp L is a lamp support means 10 that can slide on the guide rail 110.
  • the Krl excimer lamp L included in the substrate cleaning apparatus 100 of this embodiment can irradiate the Si substrate X with ultraviolet light from directly above the table 101.
  • the Si substrate X on the table 101 can be irradiated with ultraviolet light with an oblique upward force.
  • the position of the Krl excimer lamp L when irradiating with ultraviolet light is set in advance according to each manufacturing process of the semiconductor device.
  • the Si substrate X is placed on the table 101, the suction means is operated and held, and the nozzle 108 is installed.
  • Rotate to a predetermined position suitable for spraying chemical S apply chemical S from nozzle 108 and uniformly adhere to Si substrate X while rotating table 101.
  • Krl excimer lamp L emits ultraviolet light. Irradiate light.
  • the adhesion amount of the chemical solution S on the Si substrate X is adjusted by adjusting the injection amount and the injection time of the chemical solution S from the nozzle 108.
  • the Krl excimer lamp L irradiates the left half of the Si substrate X with ultraviolet light. Since the Si substrate X rotates together with the table 101 at a high speed, The entire surface can be irradiated with UV light evenly.
  • the position of the Krl excimer lamp L is such that at least the ultraviolet light can reach from one edge of the S substrate to the vicinity of the center of rotation. If this is set, the entire surface of the Si substrate can be irradiated with ultraviolet light obliquely from above.
  • the nitrous oxide is dissolved in the chemical solution S in the ultraviolet light irradiation region to generate atomic oxygen (O), and the atomic oxygen strongly removes the foreign matter adhering to the Si substrate.
  • the silicon substrate X is cleaned by oxidizing and decomposing the oxidized foreign matter by reacting with the acid or base added to the chemical solution S. This cleaning includes not only the case where the foreign matter is decomposed but also that the foreign matter is separated from the Si substrate X in the process of reacting with the additive in the chemical solution S.
  • the amount of the chemical solution S applied to the Si substrate X is adjusted according to the amount of nitrous oxide consumed in the cleaning process.
  • the cleaning is finished, and the cleaned Si substrate X is obtained. If there is a possibility that the decomposing force of the foreign material that has peeled off the Si substrate X during the process of being decomposed after the cleaning may have reattached to the Si substrate X, remove the decomposing waste from the Si substrate X completely. Clean the Si substrate X with chemical S or pure water as necessary for removal. Etc. Thereafter, if necessary, the chemical solution S adhering to the Si substrate X is removed by drying or blowing air. The blowing of air is also effective for removing the debris. The removal of the chemical solution S may be performed by rotating the table 101.
  • nitrous oxide is safe, it is not always necessary to treat nitrous oxide dissolved in the chemical solution S after washing.
  • the chemical S accumulated in the container 104 is discharged to the waste liquid storage section through the waste liquid pipe 105 by opening the waste liquid valve 106 at an appropriate time.
  • Nozzle 108 should be used when it is necessary not to interfere with the irradiation of ultraviolet light.
  • the predetermined position can be occupied.
  • this substrate cleaning apparatus 100 while the chemical solution S is continuously supplied to the Si substrate X by spin coating, the chemical solution S in contact with the Si substrate is irradiated with ultraviolet light to form Si. Since the cleaning of the substrate X is performed, the cleaning is performed while the chemical solution S is substantially exchanged. Even if the concentration of nitrous acid and nitrogen in the chemical solution S is reduced, sufficient cleaning performance is obtained. It is possible to secure this.
  • the substrate cleaning apparatus 100 is not limited to this, for example, a chemical solution such as a substrate cleaning apparatus 90 shown in FIG. It can be composed only of a chemical solution storage container 91 capable of storing S and a Krl excimer lamp L disposed above the container.
  • a chemical solution storage container 91 capable of storing S
  • a Krl excimer lamp L disposed above the container.
  • reference numeral 91a in FIG. 24 is a support that supports the substrate immersed in the chemical solution.
  • the substrate cleaning apparatus irradiates the substrate in a state where the chemical solution is in contact with the chemical solution contact means for contacting the substrate with a chemical solution in which at least an acid and Z or a base are added to the nitrous oxide solution, and irradiates the substrate with ultraviolet light.
  • a light source that irradiates the chemical solution to the foreign matter adhered to the substrate and irradiates the chemical solution with ultraviolet light to oxidize the foreign matter, and the oxidized foreign matter is removed from the chemical solution.
  • the structure can be removed from the substrate by reacting with the acid and Z or base added to the structure, the structure can be arbitrarily changed. wear.
  • the supply of nitrous oxide gas, the nitrous oxide dissolution method, concentration detection, and waste liquid treatment in the substrate cleaning apparatus according to the present invention can be performed as follows.
  • the nitrous oxide gas can be supplied by a gas cylinder of compressed gas such as liquid gas filled in the high-pressure vessel, and can be installed in the vicinity of the cleaning device. It can also be supplied from a large high-pressure vessel at a factory or factory using centralized piping. A small container such as a cassette-type gas cylinder may be installed and supplied to the cleaning device, or a nitrous oxide generator is installed in the cleaning device, in the vicinity of the cleaning device, or in the workplace, and the nitrous oxide generated by this generator is used. The element may be directly supplied to a tank or a processing tank in the cleaning apparatus.
  • nitrous acid nitrogen gas can be generated as follows.
  • ammonia oxidation method in which ammonia is produced by heating at 200 ° C to 500 ° C in the presence of a metal oxide catalyst using oxygen or air;
  • Splitting and supplying sulfamic acid in two or more stages, or adding sulfuric acid The method of reacting acid and nitric acid can be used on a practical scale.
  • a diffuser plate or a diffuser tube made of a porous material made of plastic or ceramic is placed so as to be immersed in the solvent;
  • (2) Pressurized using the ejector The solvent is ejected from the nozzle of the ejector and the generated negative pressure is used to suck and dissolve the nitrous oxide gas into the solvent, as well as pressurized tray tower, packed tower, shower tower, bubble tower, etc.
  • a method of dissolving a hydrophobic ⁇ such as (3) polytetramethylene full O b Ethylene Porous membrane hollow fiber dissolves gas in liquid using hydrophobicity of pores and gas permeability of pores, or non-porous gas permeable membrane hollow fiber absorbs gas inside
  • a hollow fiber membrane that dissolves the gas that has passed through the resin using a dissolution / diffusion mechanism to dissolve nitrous acid nitrogen gas in the solvent at any pressure without generating bubbles.
  • these methods can be used in combination with an ultrasonic wave or a magnetic field having a gradient to improve the amount and speed of dissolution of the nitrous acid-nitrogen gas in the solvent.
  • the nitrous acid nitrogen in the solvent is almost constant by dissolving the nitrous acid nitrogen gas in the solvent by the above-mentioned predetermined method, and controlling the solution time and the gas supply pressure. It is possible to maintain the concentration. Therefore, there is an advantage that it is not necessary to detect, record and manage the nitrous oxide concentration in the solvent in the cleaning device.
  • nitrous oxide concentration when it becomes necessary to strictly control the concentration, it is possible to detect and manage the nitrous oxide concentration as follows. (1) Using an electrolytic cell having two or more electrolytic electrodes, a working electrode and a counter electrode, and, if necessary, a regenerative electrode, an ion exchange membrane separating the electrodes, and an electrolytic solution containing halogen ions, nitrous oxide Electrolysis method using an electrolytic cell that measures the current flowing when electrolyzing the gas, or the total number of clones at that time, (2) Irradiating a cell stored in a nitrous oxide-containing solvent with ultraviolet light having a predetermined wavelength, A spectrophotometric method in which absorbance is measured by a light receiving system placed in a position facing the light source across the cell, (3) TN (total nitrogen) analysis method defined in JIS K0102, (4) Nitrous oxide dissolved in the solvent is transferred into the gas phase by, for example, pumping and inerting an inert gas into the nitrogen-containing solvent, and the non-
  • nitrous oxide inhibits these treatments. Therefore, it is possible to implement sludge treatment without treating nitrous oxide in the waste liquid. Furthermore, when transporting waste liquid containing nitrous oxide to other workplaces or waste disposal sites, nitrous oxide does not cause abnormal decomposition like oxidants such as hydrogen peroxide and hydrogen peroxide. Therefore, there is an advantage that it is not necessary to treat nitrous acid nitrogen in the waste liquid before transportation.
  • the nitrous acid-nitrogen solvent is not limited to the above-described water, and the function of generating atomic oxygen dissociated by ultraviolet light irradiation is not impaired, and the generated atomic oxygen is consumed. Otherwise, it may be an organic solvent such as methanol, ethanol, isopropanol, methylcyclohexane, cyclohexane, acetonitrile, hexane, dioxane, glycerin, n-pentane, dichloromethane and the like.
  • the maximum soluble amount of nitrous oxide varies depending on the type of solvent. Since it is preferable that the maximum soluble amount is large, it is necessary to select a solvent. Maximum soluble amount is also considered.
  • a thickening agent for improving the viscosity may be added to the solution.
  • a thickener the function of generating atomic oxygen is not impaired and the generated atomic oxygen is not consumed! A bowl is preferred.
  • Decomposition debris of organic substances peeled off from the Si substrate may occur during the cleaning process.
  • chemical solution S exhibits acidity in the entire irradiation area of ultraviolet light
  • decomposition debris is contained in chemical solution S. Even if it drifts, decomposition proceeds if it is within the ultraviolet light irradiation area.
  • the part of the Si substrate where the organic matter is to be removed is irradiated with ultraviolet light. Therefore, if it floats near the part where the debris is strong, it will be irradiated with ultraviolet light and decomposed by irradiation with ultraviolet light. As a result, re-deposition of debris on the Si substrate is suppressed.
  • the acid added to the chemical solution is exemplified by hydrochloric acid, sulfuric acid, hydrofluoric acid, etc., and ammonia as an example.
  • hydrochloric acid sulfuric acid, hydrofluoric acid, etc.
  • ammonia as an example.
  • the acid for example, sulfuric acid, orthophosphoric acid, condensed phosphoric acid, polyphosphoric acid, hydrochloric acid, boric acid, carbonic acid, hydrofluoric acid, nitric acid, hydrocyanic acid and the like, or formic acid, Carboxylic acids such as acetic acid, oxalic acid, malonic acid, succinic acid and phthalic acid, hydroxycarboxylic acids such as citrate, malic acid, tartaric acid, lactic acid, glycolic acid and salicylic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene
  • a solution containing any of organic acids such as sulfonic acids and sulfonic acids such as 2,4-toluenedisulfonic acid can be used.
  • alcohols include alkali metal or alkaline earth metal hydroxides such as ammonia, sodium hydroxide, potassium hydroxide and potassium hydroxide, sodium hydrogen carbonate, and sodium hydrogen carbonate.
  • Alkaline salts such as ammonium hydrogen carbonate, inorganic alkalis such as hydroxylamine and hydrazine, or monomethylamine, monoethylamine, monoethanolamine, diglycolamine, tris (hydroxymethyl) aminomethane, isopropylamine, isopropanol
  • Primary amines such as luamine, cyclohexylamine, arline, toluidine, ethylenediamine, dimethylamine, jetylamine, diethanolamine, diisopropylamine, morpholine, N-monomethyltoluidine (pyrazine), diisopropanolamine, etc.
  • Tertiary triamamines such as trimethylamine, triethylamine, triethanolamine, 1-methylimidazole, N-jettilidine, triisopropylamine, triisopropanolamine, etc., tetramethylammo-muhydride mouth oxide (TMAH), trimethylhydroxyethyl humide mouth oxide (choline), methyltrihydroxyethyl humide mouth oxide, dimethyldihydroxyethyl humum mouth mouth oxide, tetraethyl ammo humide mouth oxide, trimethyl ether humum mouth oxide
  • TMAH tetramethylammo-muhydride mouth oxide
  • TMAH trimethylhydroxyethyl humide mouth oxide
  • choline trimethylhydroxyethyl humide mouth oxide
  • dimethyldihydroxyethyl humum mouth mouth oxide tetraethyl ammo humide mouth oxide
  • trimethyl ether humum mouth oxide A solution containing any alkali of organic alkal
  • the acid or alkali solution is prepared by adding the above-mentioned acid and alkali base to a solution in which nitrous oxide is dissolved, and then adding the same or different acid or alkali, and adjusting the pH. I can get it.
  • the substrate Judging comprehensively from the cleanliness level required for the surface, cost, UV transparency, UV stability, etc., add any surfactant, complexing agent, organic solvent, etc. to the nitrous acid nitrogen solution. May be.
  • anionic, amphoteric, and nonionic surfactants are preferred among the forces that include anionic, cationic, amphoteric, and nonionic surfactants.
  • cation-based surfactants are preferred.
  • These surfactants may be used alone, or two or more different kinds may be used in appropriate combination. Among these, a combination of a ionic surfactant and a nonionic surfactant is preferable from the viewpoint of the contamination cleaning effect.
  • the ionic surfactants include carboxylic acid type, sulfonic acid type, sulfate ester type, phosphate ester type, etc.
  • the amphoteric surfactants include amino acid type, betaine type, etc.
  • Examples of the activator include polyethylene glycol type and polyhydric alcohol type.
  • sulfonic acid type having one S03 group
  • sulfate type -OS03-
  • S03-group or OS03 group Compounds having at least one of these are preferred. These may be used alone or in appropriate combination of two or more.
  • non-ionic surfactants polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene / polyoxypropylene are used as the polyethylene glycol type.
  • ⁇ Block polymers and polyoxyethylene 'polyoxybutylene block polymers examples of the polyhydric alcohol type include glycerin fatty acid ester and sorbitan fatty acid ester.
  • polyoxyethylene alkyl ether, polyoxyethylene 'polyoxypropylene' block polymer, polyoxyethylene ⁇ polyethylene are preferable because they are excellent in decontamination and biodegradability.
  • An oxybutylene block polymer or the like is used.
  • the concentration of the surfactant in the solution prepared by dissolving Asani ⁇ element used in the present invention is usually 0. 0001-0 against washing ⁇ . 5 wt 0/0, preferably ⁇ or is 0. 0003-0. 1 wt 0/0
  • the surfactant added to the solution in which nitrous acid nitrogen used in the present invention is dissolved may be added in any form of salt or acid.
  • the salt include alkali metal salts such as sodium and potassium, ammonium salts, primary, secondary, and tertiary amine salts.
  • the surfactant used does not contain metal salts, acid forms, or ammonium salts, Forms such as monoethanolamine salt and triethanolamine salt are preferred!
  • Examples of the complexing agent include the following.
  • Ethylenediaminedihydroxyphenylacetic acid [EDDHA] and its derivatives for example, ethylenediaminediol hydroxyphenylacetic acid [EDDHA], ethylenediamine-N, N, bis [(2-hydroxy-5-methylphenol) acetic acid] [EDDHMA], ethylenediamine-N, N, -bis [(2-hydroxy-1-chlorophenol) Aromatic nitrogen-containing rubonic acids such as [Acetic acid] [EDDHCA], Ethylenediamine N, N, and Bis [(2 Hydroxy-5-sulfophenyl) acetic acid] [EDDHSA]; Ethylenediamine-N, N, — Bis [( Aromatic nitrogen-containing phosphonic acids such as (2-hydroxy-5-methylphenol) phosphonic acid], ethylenediamine 1 N, N, 1 bis [(2 hydroxy-1 5 phosphophenylole) phosphonic acid].
  • These complexing agents may be used alone or in combination of two or more.
  • concentration of the complexing agent in the solution in which nitrous oxide is dissolved may be arbitrarily selected according to the type and amount of contaminating metal impurities and the level of cleanliness required for the substrate surface. 10 000 ppm by weight, especially 5: L000 ppm by weight, especially 10 to 200 ppm by weight.
  • the organic solvent in particular, when the solution in which nitrous oxide is dissolved is an aqueous solution, ethylenic glycolenoremonotinoreethenore, ethyleneglycololemonobutinoreethenore, jetylene glycolenoremonomethyle Noleyatenore, Diethyleneglycolenomonochinenoreethenore, Gethylene glycolenolemonobutenoatenore, Propyleneglycolenomonomethinoatenore, Propyleneglycolenomonoethylenore ether, Propyleneglycolenomonomonobutyl ether , Dipropylene glycolenomonomethino ether, dipropylene glycolenomonochinenoate Ether solvents such as dipropylene glycol monobutyl ether, diethylene glycol glycol dimethyl ether, dipropylene glycol dimethyl ether, form
  • N- methylpyrrolidone diethylene glycol monomethyl ether, Jechi Ren glycol Honoré monobutyl Honoré ether, dipropylene glycol Honoré mono- methylol Honoré ether, dipropylene glycol monobutyl ether are used.
  • organic solvents may be used alone or in combination of two or more.
  • concentration of the organic solvent is usually 1 to 45% by weight, but the use and concentration of the organic solvent depend on the type and amount of contaminants and the level required to suppress the etching of the wiring material. If you choose,
  • the alkaline detergent used in the present invention may further contain other components.
  • Other components include organic sulfur-containing compounds (2-mercaptothiazoline, 2-mercaptoimidazoline, 2-mercaptoethanol, thioglycerol, etc.), organic nitrogen-containing compounds (benzotriazole, 3-aminotriazole, N (R) 3 (R is an alkyl group having 1 to 4 carbon atoms), N (ROH) 3 (R is an alkyl group having 1 to 4 carbon atoms), urea, thiourea, etc., water-soluble polymer (polyethylene glycol, poly Anti-corrosive agents such as alkyl alcohol compounds (ROH (R is an alkyl group having 1 to 4 carbon atoms)), acids such as sulfuric acid and hydrochloric acid, reducing agents such as hydrazine, hydrogen, argon, nitrogen, etc. For example, dissolved gas.
  • organic sulfur-containing compounds (2-mercaptothiazoline, 2-mercaptoimidazoline, 2-mer
  • the classification of alkali, surfactant, complexing agent, etc. shows typical effects when added, but does not limit the effects of each substance when added to the form of the present invention. Above-mentioned thing The quality may include secondary cleaning effects.
  • the particles were removed by washing under the same conditions.
  • the rotation speed of the silicon wafer in the single wafer cleaning system is 1000 rpm
  • the cleaning liquid volume is 1 liter Z min
  • the cleaning time is 60 seconds
  • the liquid temperature is room temperature
  • rinsed with pure water for 30 seconds after cleaning and then blown with N2 for 30 seconds. Drying was performed.
  • Fig. 20 when "NH OH" is present, 28% ammonia water and water are stored.
  • the metal (Fe, Cr, Cu) on the silicon wafer was analyzed by total reflection X-ray fluorescence analysis, and both the contaminated silicon wafer and the cleaned silicon wafer were analyzed by the same method.
  • Cr 500 ⁇ 1000 X 10 10 atoms / cm 2
  • Cu was 3000 ⁇ 5000 X 10 1 (> atoms / cm 2 .
  • This metal-contaminated silicon wafer was cleaned using a single wafer cleaning apparatus under the conditions shown in Fig. 26 to remove the metal contamination.
  • the rotation speed of the silicon wafer is 1000 rpm
  • the cleaning liquid volume is 1 liter Z min
  • the cleaning time is 60 seconds
  • the liquid temperature is room temperature
  • N2 blow is performed for 30 seconds. While drying.
  • FIG. 21 when “HF” is present, 0.5% hydrofluoric acid is contained in the solution, and when “N 0” is present, lOOOppm nitrous acid is contained in the solution. Indicates that it contains nitrogen
  • Example 1 the force that could remove all of Fe, Cr, and Cu In Comparative Examples 1 to 3, not all elements could be removed, and in Comparative Example 4, the force that could remove Cr Fe, Cu could not be removed, and in Comparative Examples 5-7, Fe could remove Cr and Cu.
  • the same method was used for both contaminated silicon wafers and cleaned silicon wafers.
  • an aqueous solution containing 0.1 wt% hydrofluoric acid and 1 wt% hydrogen peroxide was brought into contact with the wafer surface for recovery.
  • ICP-MS inductively coupled plasma mass spectrometer
  • the amount of metal recovered was measured, converted into a substrate surface concentration (atoms / cm 2 ), and used as an analysis result. Further, the total concentration of these metals was defined as “total metal concentration (atoms / cm 2 )”.
  • the amount of metal contamination was Fe force l000-3000 ⁇ 1010 atoms / cm 2 and A1 force 400-600 ⁇ 1010 atoms / cm 2 .
  • a bare silicon wafer that was immersed in a 0.5% hydrofluoric acid solution at room temperature for 2 minutes and then washed with water for 1 minute was 0.05 to 3 ⁇ m and Si3N4 with an average particle size of about 0.3 ⁇ m.
  • the particles were immersed for 10 minutes in an acidic aqueous solution in which 0.05 mg ZL was dispersed.
  • the immersed silicon wafer was washed with water for 1 minute and dried using a spin dryer. After that, using an optical surface inspection device, the fine particles adhering to the surface of the silicon wafer were measured, and it was confirmed that the Z8 inch wafer adhered to 000 to 8000 Si3N4 particles with a force of 0.2 m or more.
  • the metal-contaminated silicon wafer and the silicon wafer to which Si3N4 particles adhered were cleaned using a single wafer cleaning apparatus under the conditions shown in the table to remove the metal contamination and particles.
  • the number of revolutions of the silicon wafer is 1000 rpm
  • the amount of cleaning liquid is 1 liter Z minutes
  • the cleaning time is 2 minutes
  • the liquid temperature is 60 ° C
  • time after preparation here means the time when each substance was mixed and stored in a state heated to 60 ° C. Irradiation of ultraviolet light to a solution containing nitrous acid and nitrogen is performed only during cleaning, and ultraviolet light is not irradiated during storage.
  • the present invention can be used for cleaning and removing impurities such as metals and organic substances adhering to the surface of a substrate used in semiconductors and electronic equipment, and is low in cost, has low stress, and has a low environmental impact. It can be washed away by the method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 電子基板を洗浄した後の廃液処理にかかる負荷の低い基板の洗浄方法、及び、基板洗浄装置、及び、これらにより得られる基板を提供する。  亜酸化窒素(N2O)を含む溶液に酸、及び/又は、塩基を添加した薬液を電子基板に接触させる薬液接触手段と、薬液を接触させた状態の電子基板に紫外光を照射する光源とを有する基板洗浄装置により、電子基板に付着した異物に、薬液を付着させると共に、薬液に紫外光を照射することにより、異物を酸化させ、当該酸化させた異物を酸、及び/又は、塩基、と反応させることにより電子基板から除去することとした。

Description

明 細 書
基板の洗浄方法及び洗浄装置
技術分野
[0001] 本発明は、基板の洗浄方法、及び、基板洗浄装置、及び、これらにより得られる基 板に関するものである。
背景技術
[0002] 近年の電子機器の小型化に伴! ヽ、電子機器を構成する各電子素子も微細化が進 んでいる。このような電子素子の微細化は、半導体基板などの電子基板上に微細な 半導体装置を形成することにより実現されている。
[0003] このような半導体装置は、その構造が微細かつ複雑であるため、製造工程中に発 生したパーティクル (粒子状異物)や、金属、有機物などの微小な物質やイオンが半 導体基板に付着しただけでも、半導体装置の特性が劣化するおそれがある。
[0004] そのため従来より、半導体装置の製造工程中には、半導体基板の表面力 これら パーティクル、金属不純物、有機物などを除去するための洗浄工程が複数回設けら れていた。
[0005] この洗浄工程では、上記したパーティクルなどの異物を溶解除去可能な性質を有 する薬液に半導体基板を浸漬した後、純水などにより薬液と異物とを洗い流すように していた。
[0006] このとき用いる薬液としては、一般に過酸ィ匕水素水溶液やオゾン水溶液などの酸ィ匕 力の強い水溶液と、除去する異物の種類に応じて選択した酸や塩基などとを混合し た薬液を用いていた。
[0007] そして、洗浄を行う際には、まず過酸ィ匕水素やオゾンなどにより異物を酸ィ匕させ、そ の後、酸化させた異物を酸又は塩基により溶解させることにより半導体基板の洗浄を 行っていた。(たとえば、特許文献 1参照。)
特許文献 1:特開平 11― 243085号公報
発明の開示
発明が解決しょうとする課題 [0008] ところが、上記従来の基板の洗浄工程では、以下に記載するような問題が生じるお それがあった。
[0009] すなわち、過酸化水素水溶液やオゾン水溶液に酸や塩基などを添加した薬液を用 いた場合、過酸ィ匕水素やオゾンは人体や環境に対して有害であるため、洗浄後の廃 液に対して過酸化水素やオゾンを分解して無害な状態にする廃液処理を行わなけ ればならず、この廃液処理や、そのための設備に力かる費用により基板洗浄に要す るコストが増大するおそれがあった。
[0010] また、特に薬液にオゾン水溶液を用いた場合には、オゾンの酸ィ匕力の強さにより薬 液を供給及び排出するための配管や、洗浄装置自体が腐食劣化してしまうため、洗 浄設備の定期的な補修や装置交換などを行わなければならず、これによつても基板 洗浄要するコストが増大するおそれがあった。
課題を解決するための手段
[0011] そこで、本発明では、電子基板に付着した異物を除去することにより洗浄を行う基 板の洗浄方法において、異物に、亜酸化窒素
2 o)を含む溶液に酸を添加した薬 液を接触させると共に、薬液に紫外光を照射することにより、異物を酸化させ、当該 酸化させた異物を前記酸と反応させることにより電子基板から除去することとした。
[0012] また、前記記載の基板の洗浄方法において、異物は、金属であることを特徴とする
[0013] また、本発明では、電子基板に付着した異物を除去することにより洗浄を行う基板 の洗浄方法において、異物に、亜酸化窒素 O)を含む溶液に塩基を添加した薬
2
液を接触させると共に、薬液に紫外光を照射することにより、異物を酸化させ、当該 酸化させた異物を塩基と反応させることにより電子基板から除去することとした。
[0014] また、前記記載の基板の洗浄方法にお!、て、塩基により電子基板と異物とを共に 負に帯電させ、電子基板と異物との間に反発応力を生じさせることを特徴とする。
[0015] また、本発明では、電子基板に付着した異物を除去することにより洗浄を行う基板 の洗浄方法において、異物に、亜酸化窒素 (N O)
2 を含む溶液に酸及び塩基を添加 した薬液を接触させると共に、薬液に紫外光を照射することにより、異物を酸化させ、 当該酸化させた異物を酸、及び Z又は、塩基と反応させることにより電子基板から除 去することとした。
[0016] また、前記記載の基板の洗浄方法において、酸化された異物と、薬液中に生じたィ オンとを結合させることにより、異物を電子基板力 除去することを特徴とする。
[0017] また、本発明では、前記記載の基板の洗浄方法において、異物を酸化させる際に
、電子基板表面に酸化膜を形成することを特徴とする。
[0018] また、本発明では、前記記載の基板の洗浄方法にお!、て、紫外光の光源として、ク リプトン一ヨウ素 (Krl)エキシマランプを用いることを特徴とする。
[0019] また、本発明では、前記記載の基板の洗浄方法において、異物と薬液との接触は
、電子基板に薬液をスピンコートすることにより行うことを特徴とする。
[0020] また、本発明では、前記記載の基板の洗浄方法にお!、て、電子基板の形状に応じ て紫外光の照射方向を変更することを特徴とする。
[0021] また、本発明では、亜酸化窒素 (N O)
2 を含む溶液に酸、及び Z又は、塩基を添加 した薬液を電子基板に接触させる薬液接触手段と、薬液を接触させた状態の電子基 板に紫外光を照射する光源とを有し、電子基板に付着した異物に、薬液を付着させ ると共に、薬液に紫外光を照射することにより、異物を酸化させ、当該酸化させた異 物を酸、及び Z又は、塩基と反応させることにより電子基板から除去することを特徴と する基板洗浄装置を提供することとした。
[0022] また、本発明では、前記記載の基板洗浄装置において、光源は、クリプトン ヨウ素
(Krl)エキシマランプであることを特徴とする。
[0023] また、本発明では、前記記載の基板洗浄装置にお!ヽて、薬液接触手段は、電子基 板を支持すると共に水平方向に回転させる回転手段と、回転する電子基板に薬液を 塗布、又は、噴霧する薬液供給手段とを備えたスピンコード装置により構成したことを 特徴とする。
[0024] また、本発明では、前記記載の基板洗浄装置において、光源は、電子基板への紫 外光の照射方向を変更可能に構成したことを特徴とする。
[0025] また、本発明では、前記記載の基板の洗浄方法により洗浄した基板を提供すること とした。
発明の効果 [0026] 本発明によれば、以下に記載するような効果を奏する。
[0027] すなわち、電子基板に付着した異物を除去することにより洗浄を行う基板の洗浄方 法において、異物に、亜酸化窒素 O)を含む溶液に酸を添加した薬液を接触さ
2
せると共に、薬液に紫外光を照射することにより、異物を酸化させ、当該酸化させた 異物を酸と反応させることにより電子基板から除去することとしたため、電子基板洗浄 後の廃液には、過酸化水素やオゾンといった人体や環境、洗浄設備に対する悪影 響を及ぼすような化合物が含まれることがなぐ亜酸化窒素は無害なので、廃液処理 やそのための設備に要するコストを削減することができる。
[0028] また、異物は、金属であることを特徴とするため、人体、環境、洗浄装置への悪影響 が低い薬液を用いた洗浄でありながら、電子基板における金属汚染問題を好適に解 消することができる。
[0029] また、電子基板に付着した異物を除去することにより洗浄を行う基板の洗浄方法に おいて、異物に、亜酸化窒素 (N O)を含む溶液に塩基を添加した薬液を接触させる
2
と共に、薬液に紫外光を照射することにより、異物を酸化させ、当該酸化させた異物 を塩基と反応させることにより電子基板から除去することとしたため、洗浄に用いた薬 液の廃液処理にカゝかるコストを低減しながらも、電子基板に付着した有機物ゃシリコ ン、シリコンィ匕合物などの異物を好適に除去することができる。
[0030] また、塩基により電子基板と異物とを共に負に帯電させ、電子基板と異物との間に 反発応力を生じさせることを特徴とするため、電子基板から異物を容易に分離するこ とができ、さらに、一端剥離した異物が電子基板に再度付着することを防止すること ができる。
[0031] また、電子基板に付着した異物を除去することにより洗浄を行う基板の洗浄方法に おいて、異物に、亜酸化窒素 O)を含む溶液に酸及び塩基を添加した薬液を接
2
触させると共に、薬液に紫外光を照射することにより、異物を酸化させ、当該酸化さ せた異物を酸、及び Z又は、塩基と反応させることにより電子基板から除去することと したため、電子基板に付着した複数種類の異物を同時に除去、洗浄することができ る。
[0032] また、酸化された異物と、薬液中に生じたイオンとを結合させることにより、異物を電 子基板力も除去することを特徴とするため、電子基板力も分離しにくい異物を容易に 電子基板から分離することができる。
[0033] また、異物を酸化させる際に、電子基板表面に酸化膜を形成することを特徴とする ため、電子基板表面に形成される酸化膜が薬液から電子基板を守る保護膜として機 能し、電子基板表面を傷つけることなく異物を電子基板力 確実に除去することがで きる。
[0034] また、紫外光の光源として、クリプトン ヨウ素 (Krl)エキシマランプを用いることを 特徴とするため、紫外光照射による亜酸ィ匕窒素の酸ィ匕カを最も高めることができる波 長の光を照射することができる。
[0035] また、異物と薬液との接触は、電子基板に薬液をスピンコートすることにより行うこと を特徴とするため、電子基板表面全体に均等に薬液を接触させることができるので、 電子基板上の任意の位置に付着している異物を確実に除去することができ、さらに、 スピンコート時に回転する電子基板の遠心力によって、電子基板から分離した異物 を好適に電子基板表面力 排除することができる。
[0036] また、電子基板の形状に応じて紫外光の照射方向を変更することを特徴とするため 、表面に凹部が形成された電子基板を洗浄する際に、電子基板の真上方以外の方 向から紫外光を照射することにより、凹部以外の電子基板表面を好適に洗浄すること ができる。
[0037] また、亜酸化窒素 (N O)
2 を含む溶液に酸、及び Z又は、塩基を添加した薬液を電 子基板に接触させる薬液接触手段と、薬液を接触させた状態の電子基板に紫外光 を照射する光源とを有し、電子基板に付着した異物に、薬液を付着させると共に、薬 液に紫外光を照射することにより、異物を酸化させ、当該酸化させた異物を酸、及び Z又は、塩基と反応させることにより電子基板から除去することを特徴とする基板洗 浄装置を提供することとしたため、薬液を供給及び排出するための配管が薬液により 劣化することがなぐ装置寿命を可及的に延長することができ、さらに、薬液として用 いる亜酸ィ匕窒素は紫外光を照射しない限り酸ィ匕カを発生しないので、廃液処理を簡 略ィ匕することができ、洗浄装置における廃液処理部を簡易な構造及び低コストにより 実現することができる。 [0038] また、光源は、クリプトン ヨウ素 (Krl)エキシマランプであることを特徴とするため、 亜酸ィ匕窒素の酸ィ匕カを最も高く引き出すことができる波長の紫外光を薬液に照射す ることができ、異物除去の効率を高めることができる。
[0039] また、薬液接触手段は、電子基板を支持すると共に水平方向に回転させる回転手 段と、回転する電子基板に薬液を塗布、又は、噴霧する薬液供給手段とを備えたス ピンコード装置により構成したことを特徴とするため、電子基板表面全体に均等に薬 液を接触させることができ、電子基板表面の任意の位置に付着して ヽる異物を確実 に除去することができ、し力も、スピンコート時に回転する電子基板に生じる遠心力に よって、電子基板力も分離した異物を好適に電子基板力も排除することができる。
[0040] また、光源は、電子基板への紫外光の照射方向を変更可能に構成したことを特徴 とするため、表面に凹部が形成された電子基板を洗浄する際に、電子基板の真上以 外の方向から電子基板に対して紫外光を照射することによって、凹部以外の電子基 板表面を好適に洗浄することができる。
[0041] また、洗浄工程におけるコストを削減できると共に、環境に易しい洗浄工程により製 造した基板を提供することができる。
図面の簡単な説明
[0042] [図 1]メチレンブルーの酸ィ匕分解を行った実験装置の模式図である。
[図 2]光照射時間とメチレンブルーの吸光度との関係を示すグラフである。
[図 3]光照射時間とメチレンブルーの吸光度との関係を示すグラフである。
[図 4]光照射なしでの放置時間とメチレンブルーの吸光度との関係を示すグラフであ る。
[図 5]光照射を開始してからの経過時間とメチレンブルーの吸光度との関係を示すグ ラフである。
[図 6]紫外線光を照射したときの亜酸ィ匕窒素水溶液の吸収スペクトルを示すグラフで ある。
[図 7]除去対象に対応する亜酸ィ匕窒素水溶液の添加物を示す表である。
[図 8]基板に付着する異物を示す説明図である。
[図 9]第 1実施形態を示す基板の断面図である。 [図 10]第 1実施形態を示す基板の断面図である。
[図 11]第 1実施形態を示す基板の断面図である。
[図 12]第 2実施形態を示す基板の断面図である。
[図 13]第 2実施形態を示す基板の断面図である。
[図 14]第 2実施形態を示す基板の断面図である。
[図 15]第 3実施形態を示す基板の断面図である。
[図 16]第 3実施形態を示す基板の断面図である。
[図 17]第 3実施形態を示す基板の断面図である。
[図 18]第 3実施形態を示す基板の断面図である。
[図 19]第 3実施形態を示す基板の断面図である。
[図 20]基板洗浄装置を示す説明図である。
[図 21]基板洗浄装置を示す説明図である。
[図 22]KrIエキシマランプの特性を示す説明図
[図 23]KrIエキシマランプの特性を示す説明図
[図 24]基板洗浄装置の変形例を示す説明図である。
[図 25]パーティクル除去に関する実験結果を示す表である。
[図 26]金属汚染除去に関する実験結果を示す表である。
[図 27]パーティクルと金属汚染除去に関する実験結果を示す表である。 符号の説明
1 Si基板
la Si基板
lb Si基板
lc Si基板
2 Al— Cu配線層
2a Al— Cu配線層
3 キャップ層
3a キャップ層
3b キャップ層 絶縁膜層
レジスト
サイドウォールポリマー レジスト硬化層
a レジスト硬化層
アツシング残渔
a アツシング残渔
エッチング残渣
a エッチング残渣
0 エキシマランプ
0a エキシマランプ
0b エキシマランプ
1 実験装置
2 容器
3 高圧水銀ランプ
4 メチレンブルー水溶液5 W配線層
6 薬液
6a 薬液
6b 薬液
6c 薬液
6d 薬液
7 ゲート酸ィ匕膜
ポリシリコン膜
9 タングステンナイトライド膜 タングステン膜
1 シリコン窒化膜
レジスト ポリメタルゲート サイドウォールポリマー レジスト硬化層 エッチング残渣 アツシング残渣 絶縁膜層
a 第 1エッチングストッパ層b 第 2エッチングストッパ層c 第 3エッチングストッパ層a 第 1低誘電率層b 第 2低誘電率絶縁層c 第 3低誘電率絶縁層 Cu埋込配線
a 第 1キャップ層b 第 2キャップ層
反射防止膜
レジスト
サイドウォールポリマー レジスト硬化層 アツシング残渔a アツシング残渣
エッチング残渣a エッチング残渣
保護膜
ノ リヤー層
Cu層
金属汚染物
スラリー残渣 44 低誘電膜劣化部
90 基板洗浄装置
91 薬液貯留容器
91a 支持体
100 基板洗浄装置
101 テーブル
102 回転軸
103 薬液供給手段
104 容器
105 廃液管
106 廃液ノ ノレブ
107 タンク
108 ノズル
109 ランプ支持手段
110 ガイドレール
X Si基板
L Krlエキシマランプ
S 薬液
発明を実施するための最良の形態
[0044] 本発明に係る基板の洗浄方法は、半導体集積回路を形成するための半導体基板 、液晶ディスプレイや有機 EL (electroluminescence)ディスプレイの表示部を構成す るガラス基板、通常の電子回路を形成するためのプリント基板など、電子機器に用い られる電子基板に対して適用できるものであり、電子機器の製造工程において電子 基板表面に付着して、電子機器の特性を劣化させるようなパーティクル (粒子状異物 )、金属、有機物、自然酸化膜、などといった複数種類の異物を、基板表面に物理的 •化学的損傷を与えることなく洗浄 ·除去ことができるものである。
[0045] すなわち、本発明に係る基板の洗浄方法では、亜酸化窒素 (N O)を含む溶液に、
2
基板に付着している異物の種類に応じて選択した酸、及び Z又は、塩基を添加した 薬液を用意する。
[0046] この薬液に含まれている亜酸ィ匕窒素は、特定の紫外光を照射したときにだけ酸ィ匕 力を励起する性質を備えている。
[0047] ここで、光触媒の酸ィ匕カ評価方法として広く知られているメチレンブルーの酸ィ匕分 解法を用いて、亜酸化窒素水溶液の酸化力につ!、て説明する。
[0048] メチレンブルーは水溶液の状態で青色を呈し、酸ィ匕されることで青色が消失して無 色になる。光触媒の酸化力評価ではメチレンブルー(lOppm)水溶液の 665nmの吸 光度変化を測定するのが一般的である。また、メチレンブルー(lOppm)水溶液の 66 5nmの吸光度が初期の 1割程度にまで減少するためには、光触媒では数十分〜数 百分程度の時間を要するのが一般的である。
[0049] 図 1は、メチレンブルーの酸化分解を行った実験装置の模式図である。実験装置 1 1は、上方の一面が開放された容器 12と、容器 12の真上に配置される光源としての 高圧水銀ランプ 13とを含む。容器 12はテフロン (登録商標)加工されている。高圧水 銀ランプ 13は、少なくとも 240nm以下の波長を含む光を発生し、出力は 1200Wで ある。高圧水銀ランプ 13は、その光が容器 12の全面を照射するように、容器 12に近 接して配置される。容器 12内に、メチレンブルー(lOppm)と亜酸ィ匕窒素が溶解して V、るメチレンブルー水溶液 14が充填される。
[0050] 図 2は、実験装置 11によるメチレンブルーの酸ィ匕分解実験結果を示すグラフであり 、亜酸ィ匕窒素が約 lOOOppm溶解している。該グラフは、横軸に光照射時間(分)、縦 軸にメチレンブルー水溶液の 665nm吸光度を示す。ここである物質に入射された光 の強度を Ii、そこから出射された光の強度を Ioとすると、光の透過率 (T)は数式 1によ つて表される。そして、そのときの吸光度は数式 2によって表される。
[0051] [数 1] χ ΐ οο = τ (透過率) ■ ■ ■数式 1
I I
[0052] [数 2] - log― = A (吸光度) ■ ■ ■数式 2
[0053] 図 2のグラフから、 1分間の照射時間で約 5割程度のメチレンブルーが分解され、 3 分間の照射時間で約 9割程度のメチレンブルーが分解していることが確認された。
[0054] 図 3は、実験装置 11において、メチレンブルー(lOppm)とヘリウム(He) (含有量 約 16ppm)が溶解して 、る水溶液を用いてメチレンブルーの酸ィ匕分解実験を行った 結果を示した、光照射時間 (分)とメチレンブルー水溶液の 665nm吸光度の関係を示 すグラフである。
[0055] ヘリウム(He)は、よく知られた不活性ガスであり、 665nmにおいて光を吸収しない ことが分力 ている。今回は、亜酸ィ匕窒素溶解水との比較を行う上で、使用する水中 に溶解してしまっている空気成分 (N , O , COなど)を追い出すために、水中に強
2 2 2
制的にヘリウム (He)を溶解させた。
[0056] 図 3に示したグラフからも明らかなように、亜酸化窒素を溶解している水を使った場 合の図 2に示した結果とは異なり、 1分間の照射時間ではほとんど分解が認められず 、 3分間の照射時間でもメチレンブルーはあまり分解していないことが確認された。つ まり、図 2と図 3との比較から、亜酸ィ匕窒素に対して光を照射することで、メチレンブル 一を酸ィ匕分解できることが確認された。
[0057] 図 4は、実験装置 11において、高圧水銀ランプ 13を点灯しない状態で、メチレンブ ルー水溶液 14をただ放置した時間とメチレンブルー水溶液 14の 665nm吸光度との 関係を示すグラフである。メチレンブルー水溶液 14にはメチレンブルーと亜酸ィ匕窒 素が溶解している力 240nm以下の波長の光を照射しない状態では、 60分間放置 しても、 665nm吸光度は変化しないことが確認された。つまり、図 2と図 4との比較か ら、亜酸ィ匕窒素に対して光を照射しなければ、メチレンブルーは酸ィ匕分解されないこ とが確認された。
[0058] 図 5は、実験装置 11において、高圧水銀ランプ 13によってメチレンブルー水溶液 1 4に紫外光の照射を開始した後、 0. 5分が経過した時点で、メチレンブルー水溶液 1 4への紫外光の照射を停止した状態とし、その時点から更に 1分間が経過した時点で 再びメチレンブルー水溶液 14に紫外光が照射した状態へと戻した場合のメチレンブ ルー水溶液 14の 665nm吸光度の変化を示すグラフである。
[0059] 図 5に示したグラフから、紫外光の照射を開始するとともに水溶液中のメチレンブル 一が分解するが、紫外光の照射を停止した状態にしてからの 1分間にはメチレンブル 一の分解も停止した状態となっており、その後、紫外光が照射した状態に戻ると同時 にメチレンブルーの分解の始まることが確認された。このことから、紫外光の照射時間 を選択することによって、物質の酸ィ匕時間を制御することが可能であることが確認さ れた。
[0060] 以上の実験は、全て 24°C付近の室温にて実施したものである。この結果から、紫外 光の照射時間を選択することで、物質の酸ィ匕時間を制御することが可能なことが確 認された。なお、原子状酸素の寿命は極めて短ぐまた紫外光の照射を停止すると 同時に原子状酸素の発生は停止するため、実質的には、紫外光の照射を停止する ことが酸ィ匕を停止することを意味して 、る。
[0061] また実験では、亜酸ィ匕窒素を解離するための光源として、高圧水銀ランプ 13を使 用したが、 240nm以下の波長の光を発生するものであれば、高圧水銀ランプ 13以 外の光源を使用することが可能である。ランプ出力として 1200Wを用いた力 これ以 外の出力で行っても酸ィ匕分解は可能である。一般に同一のランプを用いた場合、出 力によって酸ィ匕分解の速度が影響を受ける。つまり、ランプ出力が小さいと酸化分解 の速度は低下し、逆にランプ出力が大きいと酸ィ匕分解の速度は上昇する。所望の酸 化分解速度に応じて、適宜ランプ出力を選択するようにしてもよい。
[0062] 図 6は、実験装置 11を用い、紫外線光を照射したときの亜酸化窒素水溶液 (亜酸 化窒素含有量約 lOOOppm)の吸収スペクトルを示したものである。容器 12内にメチ レンブルーは入っていない。横軸は、測定範囲 200〜340nmの波長帯域を示し、縦 軸は吸光度を示している。曲線 C1〜C3は亜酸ィ匕窒素 (N O)の吸光度を示し、 C3
2
力 S3分間照射、 C2が 1分間照射、 C1が照射なしを示している。グラフからも明らかな ように、 240nm以上の波長の光では、吸光度がゼロであり、光が全く吸収されていな い。言い換えれば、光エネルギーの照射による亜酸ィ匕窒素の解離が行われないこと がわカゝる。 [0063] 表 1は、図 6に示した波長 205nmにおける吸光度から求めた亜酸ィ匕窒素の濃度変 化を示すものである。なお、照射時間がゼロの濃度を飽和濃度 (水温 25°Cでの値)と して、各々の吸光度の相対値を掛け算にて算出したものである。 3分間の照射により 亜酸ィ匕窒素の濃度がかなり減少しているのがわかる。
[0064] [表 1] λ =205nmの吸光度より求めた N20濃度の変化
照射時間 吸光度(相対値) N20濃度※
Omin 0.1 1 855 ( 1 00.0%) 1 0o8ppm
1 mm 0.06427 ( 54.2%) o /9ppm
3msn 0.02227 ( 1 8.8%) 201 ppm
Ominの濃度を飽和濃度(水温 25°Cで計算により求めた)として、 各々の吸光度の相対値を掛けて算出。
[0065] また、図 6に示した実験結果から、実質的にオゾン (03)の副生物の検出はされな かった。すなわち、オゾンの最大波長( λ max)は 260nmである力 そこでの吸光度 は検出限界以下であった。
[0066] そして、このような性質を持つ亜酸ィ匕窒素を含んだ薬液を電子基板に塗布、又は、 噴霧、又は、薬液中に電子基板を浸漬することによって、電子基板に付着している異 物に薬液を接触させると共に、薬液に紫外光を照射することによって薬液中の亜酸 化窒素に酸化力を励起させ、この酸化力により異物を酸化する。
[0067] その後、酸化させた異物を、薬液中の酸や酸が電離して生じたイオン、又は、塩基 や塩基が電離して生じたイオン、又は、酸と塩基との中和により生じた塩が電離して 生じたイオンと反応させることにより、異物の一部若しくは全部を溶解させて電子基板 から分離 ·除去するようにして 、る。
[0068] このとき、上記したイオンと異物とを反応させる場合には、異物とイオンとが結合する ことにより電子基板から異物が分離される。
[0069] このように、本発明の基板の洗浄方法では、特定波長の紫外光を照射しなければ 酸ィ匕カを発揮しない亜酸ィ匕窒素を酸化剤として用いるようにしたため、電子基板を洗 浄した後に紫外光の照射を停止すれば、亜酸ィ匕窒素は酸ィ匕カを失い、人体や環境 、洗浄設備に対して無害な状態となる。
[0070] これにより、酸化剤として過酸ィ匕水素やオゾンを使用していた従来のように、電子基 板の洗浄を行った後の薬液に対して、過酸ィ匕水素やオゾンを分解して無害な状態に するための廃液処理が不要となり、廃液処理に要するコストや廃液処理を行うための 処理装置に要するコストを削減することができるので、基板洗浄工程を比較的低コス トにて実現することができる。
[0071] また、亜酸化窒素は、水に溶解した状態で比較的安定な状態を保つ性質を備えて いるため、従来酸化剤として使用されていたオゾンのように、比較的短時間で分解し 酸ィ匕力が低下することがなぐ容易に長期間保管しておくことができる。
[0072] また、上記のように紫外光を照射しなければ酸ィ匕カを生じな 、ので、オゾンを酸ィ匕 剤として使用していた従来の薬液のように、薬液を電子基板に供給するための配管 や、洗浄後の薬液を排出するための配管を劣化させることがな 、。
[0073] そのため、配管を定期的に交換する必要もなぐ基板洗浄装置の耐用年数を可及 的に延長することができる。
[0074] また、この基板の洗浄方法では、酸を添加した薬液を用いる場合の除去対象となる 異物は、金属カゝらなるパーティクルや、電子基板に付着した金属汚染物としており、 異物を構成する金属の種類に応じて、塩酸、フッ酸、硝酸、硫酸などの複数種類の 酸から適宜選択して添加するようにして ヽる。
[0075] これにより、パーティクルや金属汚染物を上記した酸により溶解 (分解)して効果的 に電子基板から分離することができる。
[0076] また、酸と同様に、薬液に添加する塩基の種類に関しても、除去対象となる異物の 種類に応じて適宜選択するようにしており、これら、酸や塩基の選択に関しては、図 7 の表に示すように、除去対象がパーティクルと有機物である場合にはアンモニアを添 加し、除去対象が金属汚染物である場合には塩酸を添加し、除去対象が有機汚染 物と金属汚染物である場合には硫酸を添加し、除去対象が自然酸化膜と金属汚染 物である場合にはフッ酸を添加し、除去対象が酸ィ匕膜である場合にはフッ酸とフッ化 アンモ-ゥムとを添加するようにして 、る。
[0077] なお、図 7におけるパーティクルとは、金属、有機物、電子基板の構成部材、酸ィ匕 物など複数種類のものがあり、その形状が粒形状の異物を示し、汚染物とはイオンレ ベルの異物を示している。
[0078] また、亜酸化窒素を含んだ水溶液に塩基を添加した薬液を用いて電子基板の洗浄 を行う場合には、薬液が塩基性水溶液であることに由来して、電子基板の表面と異 物の表面における界面動電位 (ゼータ電位)の値が、共に比較的大きな負の値となる
[0079] すなわち、電子基板と異物とが共に負に帯電することとなり、電子基板と異物との間 に反発力が生じ、この反発力の作用によって異物は電子基板から分離しやすい状態 になり、し力も、一旦電子基板から分離した異物は電子基板に再付着しにくい状態と なるのである。
[0080] また、この基板の洗浄方法では、亜酸化窒素に紫外光を照射して異物を酸化させ る際に、同時に電子基板を酸化させることにより電子基板の表面に比較的薄い酸ィ匕 膜を形成するようにしている。
[0081] このように電子基板の表面に酸ィ匕膜を形成することによって、薬液中の酸や塩基で 異物を溶解する際に、酸や塩基の溶解作用により電子基板の表面が侵食されること を防止することができる。
[0082] また、亜酸ィ匕窒素に酸ィ匕カを励起させるために照射する紫外光の光源としては、ク リプトン ヨウ素(Krl)エキシマランプを用いるようにして 、る。
[0083] このクリプトン ヨウ素 (Krl)エキシマランプは、消灯状態から点灯状態への立ち上 力 Sり特性、また、点灯状態から消灯状態への立下り特性が良好であり、点灯と消灯を 切替えることによって酸ィ匕反応を所望のときのみ行うことができる。
[0084] また、 Krlエキシマランプによって照射される紫外光は、亜酸ィ匕窒素によって吸収さ れ易く酸素によって吸収されにくいので、亜酸化窒素の分解能に優れ、酸化反応が 効率よく行われるとともに、オゾンの発生が少なぐ高効率で洗浄が行われ、またォゾ ン対策のための装置が必須でなぐ洗浄装置の構造が容易化され、洗浄装置の設 計上の自由度が高ぐ洗浄装置が小型で低コストとされる。
[0085] また、異物と洗浄用の薬液とを接触させる方法としては、スピンコートにより行うよう にしている。 [0086] すなわち、電子基板を水平面上で高速に回転させながら、電子基板表面の回転軸 近傍に薬液を塗布、又は、噴霧する。そして、回転する電子基板の遠心力を利用し て薬液を回転軸の中心側力 電子基板の周縁部の方向へ延ばすことにより電子基 板表面全体に薬液を接触させるようにして ヽる。
[0087] こうすること〖こより、異物の付着した電子基板表面全体に均等に薬液を伸ばすこと ができ、洗浄むらの発生を防止することができ、さらに、回転する電子基板の遠心力 により電子基板表面力 分離した異物が電子基板の周縁部側へ押しやられ、その後 、電子基板から完全に除去される。
[0088] また、スピンコートにより電子基板の表面に薬液を接触させた後、洗浄が終了する までの間、電子基板表面へ継続的に薬液の供給を行えば、電子基板へ順次未反応 の亜酸ィ匕窒素を供給し続けることができるので洗浄効率が向上する。
[0089] また、薬液の供給を噴霧により行えば、 1回の洗浄に用いる薬液の量を節約するこ とができ、洗浄コストを削減することができる。
[0090] また、異物と薬液とを接触させる方法としては、上記したスピンコートに限定するもの ではなぐ薬液を満たした洗浄槽に異物の付着した電子基板を浸漬させることにより 行ってもよぐ好適には、洗浄槽へ未反応の薬液を順次供給し、反応済みの薬液を 洗浄槽から排出するようにする。
[0091] このようにして電子基板の洗浄を行う場合には、洗浄に要する薬液の量が増加する 力 1度の洗浄により複数枚の電子基板の洗浄を行うことができるので、電子基板 1 枚に要する洗浄コストに換算すると多大なコスト増にはならない。
[0092] 以下、半導体装置の製造プロセスにおける Si (シリコン)基板の洗浄に本発明を適 用した場合を例に挙げ、本発明に係る基板の洗浄方法の具体的な実施形態を説明 する。
[0093] 一般に、半導体装置は、 Si基板上に様々な半導体や導体、絶縁体などの層を積層 し、各層に極めて微細なパターユングを施すことによって製造するものであるため、 基板上に微細な埃や汚染物質が付着しただけでも、それが製品の特性を劣化させる 原因となり、製品の歩留まりを低下させてしまうおそれがある。
[0094] そのため、半導体装置の製造は、通常、クリーンルームと呼ばれる室内の空気から 可能な限り埃などの汚染物質を排除するような空調管理がなされた空間で行われる
[0095] しかし、クリーンルームといえども完全に室内への汚染物質の進入を除去することは 不可能であり、また、製造プロセス中にクリーンルーム内で発生した汚染物質などを 完全に室外へ排出することは不可能であり、除去し切れなかった汚染物質が Si基板 に付着することがある。
[0096] この製造プロセス中で Si基板に付着する汚染物質は、単一種類の物質ではなぐ 図 8に示すように、 Si基板 Xに金属や金属イオンなどの金属汚染物質 42や、 Si基板 Xを研磨した際に生じたポリシリコンなどの粒 (パーティクル) P、 Si基板 Xにパター- ング処理を施す際に用いるレジスト膜の残渣などによる有機汚染物 Zなどがある。
[0097] そのため、半導体装置の製造プロセスでは、汚染物質の発生が予想される各製造 プロセスの後には、その都度 Si基板を洗浄する工程が設けられている。
[0098] ここで、半導体装置の製造プロセスにおける Si基板の洗浄方法の第 1〜第 3実施 形態を説明する。なお、以下の説明では、 Si基板上に積層した各種層を含めた電子 基板全体を単に基板と称することとする。
[0099] (第 1実施形態)
第 1実施形態では、半導体装置の製造プロセスにおいて、 Si基板上に形成した絶 縁膜層に所定のパターンエッチングを行うことによりコンタクトホールを形成し、このコ ンタクトホールに W (タングステン)の配線層を埋め込む工程で基板に付着した異物 を洗浄する方法について、図 9及び図 10に示す基板の断面模式図を参照して説明 する。
[0100] 図 9 (a)は、 Si基板 1上に A1 (アルミニウム)—Cu (銅)配線層 2と、キャップ層 3と、絶 縁膜層 4とが順に積層された状態を示す基板の断面模式図である。
[0101] この図 9 (a)に示す状態の基板の表面に、図 9 (b)に示すようにレジスト 5を積層し、 このレジスト 5に対してフォトリソグラフィー処理を行うことにより所定のパターユングを 施して、図 9 (c)に示すように、レジスト 5の所定位置に開口を形成する。
[0102] 次に、図 9 (d)に示すように、レジスト 5をマスクとして絶縁膜層 4にドライエッチング 処理を行うことにより、キャップ層 3の表面まで達するコンタクトホールを形成する。 [0103] このときのドライエッチングにより、図 9 (e)に示すように、コンタクトホールの内周面 にサイドウォールポリマー 6が形成されると共に、レジスト 5の表面にレジスト硬化層 7 が形成される。
[0104] 次に、レジスト 5に対してアツシング (灰化)処理を行うことにより、レジスト 5を基板表 面 (絶縁膜層 4の表面)から剥離するが、このとき、図 9 (f)に示すように、アツシング処 理により生じた灰化したレジストの残渣 (以下「アツシング残渣 8」という。 )が基板表面 に付着し、コンタクトホールの内周面には、ドライエッチング処理の際に付着したサイ ドウオールポリマー 6がエッチング残渣 9として付着した状態となる。
[0105] ここで基板に付着したアツシング残渣 8やエッチング残渣 9は、上記したように半導 体装置の特性を劣化させる原因となるので除去する必要があるため、この段階で基 板の洗浄を行う。
[0106] このとき、図 9 (g)に示すように、 Krl (クリプトン 'ヨウ素)エキシマランプ 10を用いて 基板表面に紫外光を照射した状態で、基板表面全体に洗浄用の薬液をスピンコート することにより、アツシング残渣 8やエッチング残渣 9などの異物に薬液 16を接触させ る。
[0107] このときのスピンコートでは、薬液 16の温度を室温とし、薬液 16の供給量を毎分 1リ ットルとし、 Si基板 1の回転数を lOOOrpmとして、 60秒間洗浄を行う。
[0108] また、ここでは除去対象となる異物が金属汚染と有機物レジスト成分を含んだアツシ ング残渣 8やエッチング残渣 9であるため、洗浄用の薬液として、亜酸化窒素溶液に 酸である H SO (硫酸)を添加した薬液 16を用いるようにしている。
2 4
[0109] 薬液 16に照射する紫外光としては、亜酸ィ匕窒素の酸ィ匕カを高めるために好適な波 長 191nmの紫外光を Krlエキシマランプにより照射するようにしている。
このとき、紫外光照射によって生じた亜酸ィ匕窒素の強力な酸ィ匕力によってアツシン グ残渣 8及びエッチング残渣 9を酸ィ匕させると共に、異物の付着して 、な 、部分の基 板表面に酸化被膜を形成する。
[0110] その後、酸化したアツシング残渣 8及びエッチング残渣 9が薬液 16中の硫酸と反応 して溶解し、基板から除去されて図 9 (h)に示す状態となる。
[0111] この状態で、基板を 30秒間純水でリンスした後、 30秒間窒素ガスでブローすること により基板を乾燥させる。
[0112] 次に、図 10 (i)に示すように、洗浄後のコンタクトホールに W (タングステン)配線層 15を形成した後、この W配線層 15上に所定形状にパターユングされたキャップ層 3a と Al— Cu配線層 2aと、キャップ層 3bとを形成する。
[0113] このように W配線層 15上に Al—Cu配線層 2aを形成する場合には、まず、 W配線 層 15を形成した基板の表面全体にキャップ層 3aと、 Al—Cu配線層 2aと、キャップ層 3bとを順次所定の厚さで積層し、その後、キャップ層 3bの表面にレジスト 5aを形成す る。
[0114] そして、 W配線層 15の上部にのみレジスト 5aが残るように位置合わせをしたパター ユング処理を行 、、この残したレジスト 5aをマスクとしてドライエッチング処理を行うこ とにより、不要な部分のキャップ層 3a、 3b、 Al—Cu配線層 2aを除去することによって 、図 10 (i)に示すような Al—Cu配線層 2aを形成するようにしている。
[0115] また、この工程においても、図 10 (i)に示すように、エッチング処理によるエッチング 残渣 9aが Al—Cu配線層 2aの側面に付着する。なお、図中の符号 7aは、エッチング 処理により生じたレジスト硬化層である。
[0116] ここで、再度アツシング処理によりレジスト 5aの除去を行うが、レジスト 5aを除去した 後には、図 10 (j)に示すように、エッチング残渣 9a及びアツシング残渣 8aが基板 (A1 Cu配線層 2aの側面と、キャップ層 3b上面)に付着した状態となるため、ここでも再 度基板の洗浄を行う。
[0117] このとき、図 10 (k)に示すように、 Krl (クリプトン 'ヨウ素)エキシマランプ 10を用いて 基板表面に紫外光を照射した状態で、基板表面全体に洗浄用の薬液をスピンコート することにより、アツシング残渣 8aやエッチング残渣 9aなどの異物に薬液 16aを接触 させる。
[0118] このときのスピンコートでは、薬液 16aの温度を室温とし、薬液 16aの供給量を毎分 1リットルとし、 Si基板 1の回転数を lOOOrpmとして、 60秒間洗浄を行い、その後、基 板を 30秒間純水でリンスした後、 30秒間窒素ガスでブローすることにより基板を乾燥 させる。
[0119] また、ここで行う洗浄では、洗浄対象となる異物が図 9 (f)に示した異物と同様のアツ シング残渣 8aとエッチング残渣 9aであるため、洗浄に用いる薬液 16aも図 9 (f)に示し た亜酸ィ匕窒素を含んだ溶液に硫酸を添加した薬液を用いるようにして 、る。
[0120] ただし、ここでは、図 9 (f)で示した洗浄工程とことなり、図 10 (k)に示すように、基板 に対して紫外光を斜め上方から照射することによって、 Al—Cu配線層 2aの形成位 置が多少ずれている場合であっても、 W配線層 15が薬液 16aにより侵食されることを 防止するようにしている。
[0121] すなわち、上記したように、 W配線層 15上に Al—Cu配線層 2aを形成する場合に は、図 9 (i)に示すように、レジスト 5aと W配線層 15とを正確に位置合わせする必要が あるが、このとき、図 11における左側の基板のように、多少の位置合わせずれが生じ る場合がある。
[0122] この場合、従来のように酸化剤として過酸ィ匕水素やオゾンを含んだ薬液を使用して 基板の洗浄を行うと、図 11における右側の基板のように、 W配線層 15が侵食されて 配線層としての機能を失い製品の歩留まりが低下するといつた問題が生じる。
[0123] これは、従来の酸化剤が常時酸ィ匕カを持っているため、 W配線層 15と従来の薬液 との接触面では酸ィ匕反応が継続し、酸ィ匕した部分の W配線層 15が従来の薬液中の 添加剤により溶解されてしまうためである。なお、図 11では、説明を簡単にするため、 絶縁膜層 4よりも下層側の各層については、説明を省略している。
[0124] しかし、本実施形態で用いる薬液 16aでは、酸化剤として亜酸ィ匕窒素を用いており 、この亜酸ィ匕窒素は特定の紫外光を照射しなければ酸ィ匕カを発揮しない。
[0125] そのため、図 10 (k)に示すように、紫外光を基板の斜め上方から照射させることによ つて、 W配線層 15の表面は若干酸ィ匕溶解されたとしても、溶解された部分の W配線 層 15の内部までは紫外光が到達しな 、ため、酸化及び溶解反応がそれ以上進行す ることがなく、 W配線層 15の過剰な溶解を防止することができ、製品の歩留まり低下 を防止することができる。
[0126] こうして図 10 (k)に示すような基板の洗浄を行うことにより、図 10 (1)に示すような異 物のな 、基板にすることができる。
[0127] (第 2実施形態)
第 2実施形態では、半導体装置の製造プロセスにおいて、 Si基板上にポリメタルゲ ート電極を形成する際に、基板に付着した異物を洗浄する方法について、図 12及び 図 14に示す基板の断面模式図を参照して説明する。
[0128] 図 12 (a)は、 Si基板 la上に、ゲート酸化膜 17と、ポリシリコン膜 18と、タングステン ナイトライド膜 19と、タングステン膜 20と、シリコン窒化膜 21とが順に積層された状態 を示す基板の断面模式図である。
[0129] この図 12 (a)に示す状態の基板の表面に、図 12 (b)に示すようにレジスト 22を積層 し、このレジスト 22に対してフォトリソグラフィー処理を行うことにより所定のパターニン グを施して不要な部分のレジスト 22を除去することによって、図 12 (c)に示すように、 基板表面 (シリコン窒化膜 21の表面)の所定位置にのみレジスト 22を残す。
[0130] 次に、この基板上に残したレジスト 22をマスクとしてドライエッチング処理を行うこと により、図 12 (d)に示すように、不要な部分のゲート酸ィ匕膜 17と、ポリシリコン膜 18と 、タングステンナイトライド膜 19と、タングステン膜 20と、シリコン窒化膜 21とを除去す ることにより、ポリメタルゲート 23の上部にレジスト 22を残した状態の構造を形成する
[0131] このとき行うエッチング処理により、ポリメタルゲート 23の側面には、図 12 (e)に示す ように、サイドウォールポリマー 24が形成され、レジスト 22の表面にはレジスト硬化層 25が形成される。
[0132] 次に、アツシング処理を行うことにより、ポリメタルゲート 23の上部に残ったレジスト 2 2を除去する。
[0133] このとき、図 12 (f)に示すように、アツシング処理により生じたアツシング残渣 27が基 板表面に付着し、ポリメタルゲート 23の周面には、ドライエッチング処理の際に付着 したサイドウォールポリマー 24がエッチング残渣 26として付着した状態となる。
[0134] ここで基板に付着したアツシング残渣 27やエッチング残渣 26は、上記したように半 導体装置の特性を劣化させる原因となるので除去する必要があるため、この段階で 基板の洗浄を行う。
[0135] このとき、図 13 (g)に示すように、 Krl (クリプトン 'ヨウ素)エキシマランプ 10aを用い て基板表面に紫外光を照射した状態で、基板表面全体に洗浄用の薬液 16bをスピ ンコートすることにより、アツシング残渣 27やエッチング残渣 26などの異物に薬液 16 bを接触させる。
[0136] このときのスピンコートでは、薬液 16bの温度を室温とし、薬液 16bの供給量を毎分 1リットルとし、 Si基板 laの回転数を lOOOrpmとして、 60秒間洗浄を行う。
[0137] ここでは、除去対象となる異物がパーティクルであるアツシング残渣 27やシリコンィ匕 合物であるエッチング残渣 26であるため、洗浄用の薬液として、亜酸化窒素溶液に 塩基であるアンモニアを添カ卩した薬液 16bを用いるようにして 、る。
[0138] また、薬液 16bに照射する紫外光としては、亜酸ィ匕窒素の酸ィ匕カを高めるために好 適な波長 19 lnmの紫外光を Krlエキシマランプ 10aにより照射するようにしている。
[0139] このとき、紫外光照射によって生じた亜酸ィ匕窒素の強力な酸ィ匕力によってアツシン グ残渣 27及びエッチング残渣 26を酸ィ匕させると共に、異物の付着して ヽな 、部分の 基板表面に酸化被膜を形成する。
[0140] その後、酸化したアツシング残渣 27及びエッチング残渣 26が薬液 16b中のアンモ ユアと反応して溶解し、基板カゝら除去されて図 13 (h)に示す状態とし、この状態で、 基板を 30秒間純粋でリンスした後、 30秒間窒素ガスでブローすることにより基板を乾 燥させてポリメタルゲート 23を形成するようにして 、る。
[0141] また、この第 2実施形態における基板の洗浄方法では、 Krlエキシマランプ 10aによ り基板へ紫外光を照射する際、図 13 (g)に示すように、基板に対して紫外光を真上 方向から照射することによって、ポリメタルゲート 23を構成しているタングステン膜が 薬液 16bにより侵食されることを防止するようにして 、る。
[0142] すなわち、上記した方法により基板の洗浄を行う場合に、従来のように酸化剤として 過酸化水素やオゾンを含んだ薬液を使用して基板の洗浄を行うと、図 14に示すよう に、タングステン膜 20が侵食されてポリメタルゲートの抵抗値が増大して低抵抗ゲー トとしての機能を失い製品の歩留まりが低下するといつた問題が生じる。
[0143] これは、従来の酸化剤が常時酸ィ匕カを持っているため、タングステン膜 20と従来の 薬液との接触面では酸ィ匕反応が継続し、酸ィ匕した部分のタングステン膜 20が従来の 薬液中の添加剤により縦方向と横方向とで同じ速度で溶解されてしまうためである。
[0144] しかし、本実施形態で用いる薬液 16bでは、酸化剤として亜酸ィ匕窒素を用いており 、この亜酸ィ匕窒素は特定の紫外光を照射しなければ酸ィ匕カを発揮しない。 [0145] そのため、紫外光を基板の真上方向から照射させることによって、エッチング残渣 2 6及びアツシング残渣 27の溶解速度は縦方向の方が横方向よりも早くなるため、タン ダステン膜 20が横方向に溶解しにく ヽ。
[0146] また、たとえばタングステン膜 20が多少横方向に溶解されたとしても、そのときには 、タングステン膜 20の上に形成しているシリコン窒化膜 21がタングステン膜 20から若 干ひさし状にせり出すことになるため、タングステン膜 20に接触している部分の薬液 16bには紫外光が当たらないため、亜酸化窒素は酸化力を発揮せず、それ以上タン ダステン膜 20が横方向に溶解されることがな 、ので、タングステン膜 20の過剰な溶 解を防止され、製品の歩留まり低下を防止することができる。
[0147] こうして図 13 (g)に示すような基板の洗浄を行うことにより、図 13 (h)に示すような異 物のな 、基板にすることができる。
[0148] (第 3実施形態)
第 3実施形態では、半導体装置の製造プロセスにおいて、 Si基板上にデュアルダマ シン法を用いて配線層を形成する際に、基板に付着した異物を洗浄する方法にっ ヽ て、図 15及び図 19に示す基板の断面模式図を参照して説明する。
[0149] ここで、デュアルダマシン法とは、基板の下層側に予め形成した埋込配線と、後に 基板の上層側に形成する配線層とを接続するためのビアホールと、基板の上層側に 配線層を形成するためのトレンチ (溝)とを連結させて形成し、ビアホールとトレンチと の内部に同時に導電部材を充填することによって製造工程数を減少させながら多層 配線層を形成することができる方法のことである。
[0150] 図 15 (a)は、 Si基板 lc上に、絶縁膜層 28、第 1エッチングストツバ層 29a、第 1低誘 電率層 30a、第 1キャップ層 32a、第 2エッチングストッパ層 29b、第 2低誘電率絶縁層 30b、第 3エッチングストッパ層 29c、第 3低誘電率絶縁層 30c、第 2キャップ層 32bが 順次積層された状態を示す基板の断面模式図であり、第 1エッチングストツバ層 29a と第 2エッチングストッパ層 29bとの間の所定位置には、 Cu埋込配線 31が形成されて いる。
[0151] この図 15 (a)に示す状態の基板に、図 15 (b)に示すように反射防止膜 33とレジスト 34と順次積層し、このレジスト 34に対してフォトリソグラフィー処理を行うことにより所 定のパター-ングを施して不要な部分のレジスト 34除去することによって、図 15 (c) に示すように、レジスト 34の所定位置(ビアホール形成位置)に開口を形成する。
[0152] 次に、図 15 (d)に示すように、レジスト 34をマスクとしてドライエッチング処理を行うこ とにより、第 1エッチングストッパ層 29aの表面にまで達するビアホールを形成する。
[0153] このときのドライエッチングにより、図 15 (e)に示すように、ビアホールの内周面にサ イドウォールポリマー 35が形成されると共に、レジスト 34の表面にレジスト硬化層 36 が形成される。
[0154] 次に、レジスト 34に対してアツシング (灰ィ匕)処理を行うことにより、レジスト 34を基板 表面 (反射防止膜 33の表面)から剥離するが、このとき、図 15 (f)に示すように、アツ シング処理により生じた灰化したレジストの残渣 (以下「アツシング残渣 37という。 )が 基板表面に付着し、ビアホールの内周面には、ドライエッチング処理の際に付着した サイドウォールポリマー 35がエッチング残渣 38として付着した状態となる。
[0155] ここで基板に付着したアツシング残渣 37やエッチング残渣 38は、上記したように半 導体装置の特性を劣化させる原因となるので除去する必要があるため、この段階で 基板の洗浄を行う。
[0156] このとき、図 16 (g)に示すように、 Krl (クリプトン 'ヨウ素)エキシマランプ 10bを用い て基板表面に紫外光を照射した状態で、基板表面全体に洗浄用の薬液 16cをスピ ンコートすることにより、アツシング残渣 37やエッチング残渣 38などの異物に薬液 16 cを接触させる。
[0157] このときのスピンコートでは、薬液 16cの温度を室温とし、薬液 16cの供給量を毎分
1リットルとし、 Si基板 lcの回転数を lOOOrpmとして、 60秒間洗浄を行う。
[0158] ここでは、除去対象となる異物が金属汚染とシリコンィ匕合物を含んだアツシング残 渣 37やエッチング残渣 38であるため、洗浄用の薬液として、亜酸化窒素溶液に酸で ある HF (フッ酸)を添加した薬液 16cを用いるようにして 、る。
[0159] また、薬液 16cに照射する紫外光としては、亜酸ィ匕窒素の酸ィ匕カを高めるために好 適な波長 191nmの紫外光を Krlエキシマランプ 10bにより照射するようにしている。
[0160] そして、特にここでは、図 16 (g)に示すように、基板に対して紫外光を斜め上方から 照射することによって、 Cu埋込配線 31の表面が薬液 16cにより侵食されること、及び 、ビアホール内周面における第 2、第 3低誘電率絶縁層 30b、 30cが劣化することを 防止するようにしている。
[0161] すなわち、従来のように酸化剤として過酸ィ匕水素やオゾンを含んだ薬液を使用して 基板の洗浄を行うと、図 14に示すように、 Cu埋込配線 31が侵食され、後に基板の上 層側に形成する配線層との間にコンタクト不良が発生ると共に、ビアホール内周面に おける第 2低誘電率絶縁層 30bと第 3低誘電率絶縁層 30cに低誘電膜劣化部 44が 形成されて製品の歩留まりが低下してしまう。
[0162] これは、従来の酸化剤が常時酸ィ匕カを持っているため、 Cu埋込配線 31及び第 2、 第 3低誘電率絶縁層 30b、 30cと、従来の薬液との接触面では基板の洗浄中に継続 的に酸化反応が起こり、酸化した部分の Cu埋込配線 31が従来の薬液中の添加剤 により溶解され、ビアホール内周面の第 2、第 3低誘電率絶縁層 30b、 30cの特性が 劣化されてしまうためである。
[0163] しかし、本実施形態で用いる薬液 16cでは、酸化剤として亜酸ィ匕窒素を用いており
、この亜酸ィ匕窒素は特定の紫外光を照射しなければ酸ィ匕カを発揮しない。
[0164] そのため、図 16 (g)に示すように、紫外光を基板の斜め上方から照射させることによ つて、紫外光がビアホールの内部部まで到達することを防止し、ビアホール底部に形 成されている Cu埋込配線 31の表面における酸化及び溶解反応を抑制すると共に、 ビアホールの内周面における第 2、第 3低誘電率絶縁層 30b、 30cの特性劣化を抑 制して製品の歩留まり低下を防止することができる。
[0165] こうして図 16 (g)に示すような基板の洗浄を行うことにより、酸ィ匕したアツシング残渣
37及びエッチング残渣 38が薬液 16c中の HF (フッ酸)と反応して溶解し、基板から 除去されて図 16 (h)に示す状態となる。
[0166] この状態で、基板を 30秒間純粋でリンスした後、 30秒間窒素ガスでブローすること により基板を乾燥させる。
[0167] その後、図 16 (i)に示すように、 Cu埋込配線 31の表面を保護する保護膜 39を形成 した後、この保護膜 39及び反射防止膜 33を被覆するようにレジスト 34aを形成する。
[0168] 次に、レジスト 34aに対してフォトリソグラフィー処理を行うことにより所定のパター- ングを施して不要な部分のレジスト 34aを除去することによって、図 16 (j)に示すよう に、レジスト 34aの所定位置(トレンチ形成位置)に開口を形成する。
[0169] 次に、レジスト 34aをマスクとしてドライエッチング処理を行うことにより、第 3エツチン ダストッパ層 29cの表面にまで達するトレンチを形成し、その後、レジスト 34a及び保 護膜 39に対してアツシング (灰化)処理を行うことにより、図 13 (k)に示すようにレジス ト 34aを基板表面 (反射防止膜 33の表面)から剥離する。
[0170] このとき、図 16 (k)に示すように、アツシング処理により生じた灰化したレジストの残 渣 (以下「アツシング残渣 37aという。)が基板表面に付着し、トレンチの内周面には、 ドライエッチング処理の際に付着したサイドウォールポリマーがエッチング残渣 38aと して付着した状態となる。
[0171] ここで基板に付着したアツシング残渣 37aやエッチング残渣 38aは、上記したように 半導体装置の特性を劣化させる原因となるので除去する必要があるため、この段階 で基板の洗净を行う。
[0172] このとき、図 17 (1)に示すように、 Krl (クリプトン 'ヨウ素)エキシマランプ 10bを用い て基板表面に紫外光を照射した状態で、基板表面全体に洗浄用の薬液 16cをスピ ンコートすることにより、アツシング残渣 37aやエッチング残渣 38aなどの異物に薬液 1 6cを接触させる。
[0173] このときのスピンコートでは、薬液 16cの温度を室温とし、薬液 16cの供給量を毎分
1リットルとし、 Si基板 lcの回転数を lOOOrpmとして、 60秒間洗浄を行う。
[0174] ここでは、除去対象となる異物が金属汚染とシリコンィ匕合物を含んだアツシング残 渣 37aやエッチング残渣 38aであるため、洗浄用の薬液として、図 16 (g)にしめす洗 浄工程で用いた薬液と同様の薬液 16c、すなわち、亜酸ィ匕窒素溶液に酸である HF ( フッ酸)を添加した薬液 16cを用いるようにして 、る。
[0175] また、薬液 16cに照射する紫外光としては、亜酸ィ匕窒素の酸ィ匕カを高めるために好 適な波長 191nmの紫外光を Krlエキシマランプ 10bにより照射するようにしている。
[0176] そして、ここでも基板に対して紫外光を斜め上方力も照射することによって、基板表 面の異物だけを好適に除去できるようにして 、る。
[0177] このとき、紫外光照射によって生じた亜酸ィ匕窒素の強力な酸ィ匕力によってアツシン グ残渣 37a及びエッチング残渣 38aを酸ィ匕させると共に、異物の付着していない部分 の基板表面に酸化被膜 (図示略)を形成する。
[0178] その後、酸化したアツシング残渣 37a及びエッチング残渣 38aが薬液 16c中のフッ 酸と反応して溶解し、基板から除去されて図 17 (m)に示す状態となる。
この状態で、基板を 30秒間純粋でリンスした後、 30秒間窒素ガスでブローすること により基板を乾燥させる。
[0179] 次に、図 17 (n)に示すように、保護膜 39を除去した後に、ビアホール及びトレンチ の内周面にノ リヤー層 40を形成し、その後、ノ リヤー層 40を形成したビアホールとト レンチとに同時に Cuを充填することにより、基板上層側の配線層となる Cu層 41を形 成する。
[0180] 次に、 Cu層 41の表面に対して CMP (Chemical Mechanical Polishing)を行うこと により、第 2キャップ層 32bの表面を露出させると共に、 Cu層 41の表面を平坦ィ匕する
[0181] このとき、図 17 (o)に示すように、基板表面(第 2キャップ層 32b及び Cu層 41の表 面)には、研磨された Cuの残渣が金属汚染物 42として付着すると共に、 CMPで用 いる研磨剤の残渣 (以下「以下、スラリー残渣 43」という。)も付着するため、ここでも 基板の洗浄を行う。
[0182] このとき、図 18 (p)に示すように、 Krl (クリプトン 'ヨウ素)エキシマランプ 10bを用い て基板表面に紫外光を照射した状態で、基板表面全体に洗浄用の薬液 16dをスピ ンコートすることにより、アツシング残渣 37aやエッチング残渣 38aなどの異物に薬液 1 6dを接触させる。
[0183] このときのスピンコートでは、薬液 16dの温度を室温とし、薬液 16dの供給量を毎分 1リットルとし、 Si基板 lcの回転数を lOOOrpmとして、 60秒間洗浄を行う。
[0184] ここで行う洗浄では、洗浄対象となる異物が図 18 (o)に示すように、金属汚染物 42 と、スラリー残渣 43であり、このスラリー残渣 43もアルミナなどの金属であるため、洗 浄に用いる薬液 16dとして、亜酸ィ匕窒素を含んだ溶液に硫酸を添加した薬液 16dを 用いるようにしている。
[0185] また、薬液 16cに照射する紫外光としては、亜酸ィ匕窒素の酸ィ匕カを高めるために好 適な波長 191nmの紫外光を Krlエキシマランプ 10bにより照射するようにしている。 [0186] そして、ここでも基板に対して紫外光を斜め上方力も照射することによって、基板表 面の異物だけを好適に除去できるようにして 、る。
[0187] このとき、紫外光照射によって生じた亜酸ィ匕窒素の強力な酸ィ匕力によって金属汚 染物 42及びスラリー残渣 43を酸ィ匕させると共に、異物の付着して ヽな ヽ部分の基板 表面に酸化被膜 (図示略)を形成する。
[0188] その後、酸ィ匕した金属汚染物 42及びスラリー残渣 43が薬液 16d中の硫酸と反応し て溶解し、基板カゝら除去されて図 18 (q)に示す状態となる。
[0189] この状態で、基板を 30秒間純粋でリンスした後、 30秒間窒素ガスでブローすること により基板を乾燥させる。
[0190] このように、本発明に係る基板の洗浄方法によれば、様々な半導体装置の製造プ ロセスにおける様々な基板洗浄工程に適用することができ、基板表面に付着した異 物以外の構成要素の特性劣化を抑制しながら、異物を効果的に除去できる。
[0191] し力も、本基板の洗浄方法に用いる薬液は、従来用いていた薬液のように過酸ィ匕 水素やオゾンといった基板洗浄装置に対する負荷の大きな酸化剤の代わりに、特定 波長の紫外光を照射したときのみ酸化力を発生する亜酸化窒素を酸化剤として用い るようにしたため、洗浄装置の寿命を可及的に延長することができる。
[0192] さらに、亜酸化窒素は、紫外光を照射していない状態では、人体や自然環境に対 して安全な性質であるため、洗浄後の薬液に対して酸化剤の廃液処理を行う必要が なぐこれまで廃液処理に要して 、た費用を削減することができる。
[0193] (洗浄装置の説明)
ここで、第 1〜第 3実施形態における基板の洗浄方法を実現するための本発明に 係る基板洗浄装置の一実施形態について図 20〜図 24を参照して説明する。
[0194] ここで、図 20は、基板洗浄装置 100を示す側面部分断面図であり、図 21は、基板 洗浄装置 100を上方からみた平面図であり、図 22及び図 23は、 Krlエキシマランプ の特性を示す説明図であり、図 24は、基板洗浄装置の変形例を示す断面模式図で ある。
[0195] 図 20に示すように、基板洗浄装置 100は、半導体基板である Si基板 Xをその上面 に保持するテーブル 101と、テーブル 101と Si基板 Xとの間に負圧を発生させて Si 基板 Xを吸着する図示しない吸着手段と、テーブル 101を回転可能に支持する回転 軸 102と、回転軸 102を回転駆動する図示しないモータと、テーブル 101に保持され た Si基板 Xに所定波長の紫外光を照射する光源として機能する Krlエキシマランプ L と、テーブル 101上の Si基板 Xに、当該 Si基板 Xを洗浄するための薬液 Sを供給する 薬液供給手段 103と、テーブル 101を覆うように配設され薬液供給手段 103によって Si基板 Xに塗布される薬液 Sが外部に飛散することを防止するとともに余剰の薬液 S を貯める容器 104と、容器 104に貯められた薬液 Sを外部に排出する廃液管 105と、 廃液管 105を通じて排出された薬液 Sを貯えるのに十分な容量を持っている図示し ない廃液貯蔵部と、廃液管 105に配設され 104内の薬液 Sを廃液貯蔵部に排出する か否かを切り換える廃液バルブ 106とを有しており、半導体装置の製造プロセス中に おいて Si基板 Xに付着する金属汚染物質、有機物汚染物質、パーティクル、などの 様々な異物を洗浄除去するための装置である。
[0196] 薬液供給手段 103は、薬液 Sを、 Si基板 Xを洗浄するのに十分な量貯える薬液貯 蔵部としてのタンク 107と、タンク 107内の薬液 Sをテーブル 101上の Si基板 Xに塗 布するノズル 108とを有している。なお、タンク 107内部を雰囲気よりも高圧に維持し ておくと共に、ノズル 108を塗布口の径が微小なものに交換すれば、 Si基板 Xに対し て薬液 Sを霧状にして噴霧することができ、こうすることによって使用する薬液 Sの量 を減少させ、基板洗浄に要するコストをさらに低減することができる。また、ノズル 108 は、 Si基板 X面と平行に回動自在に設けるようにして 、る。
[0197] また、タンク 107〖こは、 Si基板 Xを洗浄するための薬液 Sとして、亜酸化窒素溶液に 、除去対象となる異物の種類に応じて選択した酸、及び Z又は、塩基を添加した薬 液 Sを貯蔵するようにしている。なお、ここでは、タンク 107を 1個だけ設けるようにして いるが、複数種類の薬液 Sを用いる場合には、複数個のタンク 107を設け、各タンク 1 07にそれぞれ異なる薬液 Sを貯蔵し、除去する異物に種類に応じて適宜タンク 107 を選択して Si基板 Xに噴霧するようにする。
[0198] また、吸着手段は Si基板 Xを真空吸着し、テーブル 101が回転する際にも Si基板 X がテーブル 101に保持されるようになって!/、る。
[0199] このように、この基板洗浄装置 100では、吸着手段と、モータと、回転軸 102と、テ 一ブル 101とが、洗浄対象となる Si基板 Xを回転させる回転手段として機能し、 Si基 板 Xを lOOOrpmの回転数で回転させることができるように構成している。
[0200] そして、これら回転手段と薬液供給手段 103とからなるスピンコート装置は、 Si基板 Xに薬液 Sを接触させる薬液接触手段として機能する。
[0201] また、光源として機能する Krlエキシマランプ Lは、亜酸化窒素の酸化力を非常に 高いレベルまで高めることができる 19 lnmの波長の紫外光を照射するものである。
[0202] 特に、この Krlエキシマランプ Lは、図 17に示す亜酸化窒素水溶液の UV吸収スぺ タトル(Brit.J.Anaesth.,44,310(1972)より引用)の特徴に基づいて本発明者らが開発し たものであり、これを基板洗浄装置 100に採用したものである。
[0203] 図 22から分かるように、亜酸化窒素水溶液の UV吸収スペクトルは、 190nm付近 において吸光度で 0. 7を超えるピークを示す。なお、図 22において、横軸が波長を 表し縦軸が吸光度を示す。同図の UV吸収スペクトルは、 100%亜酸ィ匕窒素により平 衡に達した水の吸収スペクトルを表し、参照セルとしてヘリウムにより平衡された水を 用いている。
[0204] これに対して、従来より広く使用されている低圧水銀ランプの発光波長は 185nmを 中心とするものであり、 185nmの波長での吸光度は、亜酸ィ匕窒素水溶液の UV吸収 スペクトルのピークである 0. 7を大きく下回る約 0. 05となるため、効率が極めて低い
[0205] 一方、亜酸化窒素水溶液の UV吸収スペクトルがピークを示す 190nm付近を中心 とした波長で発光する光源としては、アルゴン フッ素を用いた誘電体バリア放電ラ ンプ 、わゆるフッ化アルゴンエキシマランプが知られて 、る。フッ化アルゴンエキシマ ランプは 193nmを中心とした波長で発光する。
[0206] 一般に、エキシマランプは、立ち上がり、立下りがよいという、本発明にかかる酸ィ匕 反応に適した特性を有して 、る。
[0207] し力しながら、フッ化アルゴンエキシマランプは、石英管が、これに封入されるフッ素 によって劣化しやすい。すなわちフッ化アルゴンエキシマランプは、フッ素と石英管と の相性が悪ぐ寿命が短いという問題がある。また、図 22から明らかなように、亜酸ィ匕 窒素水溶液の UV吸収スペクトルはピーク付近で急峻であるため、 190nmに近!、と いえども、 193nmの波長では、吸光度がピークの値に比べて大きく低下する。
[0208] そこで、本発明者等は、 190nmに極めて近い 191nmの紫外波長で発光する Krl エキシマランプ Lを開発し、基板洗浄装置 100に採用したものである。 Krlエキシマラ ンプ Lは、固体のヨウ素を気化させて所定量を量り取り石英管に封入する方法により 製造したものである。
[0209] Krlエキシマランプ Lの発光波長 19 lnmの亜酸化窒素水溶液の吸光度は、亜酸 化窒素水溶液の UV吸収スペクトルのピークにおける吸光度に近い約 0. 65となるた め、効率が良い。したがって、亜酸ィ匕窒素の光解離による酸素原子の発生を考えると 、たとえば低圧水銀ランプの発光波長 185nmにおける吸光度が約 0. 05であること から、 Krlエキシマランプ Lは低圧水銀ランプに比べると 10倍を超える効率で酸素原 子を発生させることが可能であって、従来の光源に比べて酸素原子の発生効率が極 めて高い。
[0210] Krlエキシマランプは、立ち上がり、立下りがよいという、本発明にかかる酸化反応 に適した、エキシマランプに一般の特性を有しているうえ、石英管が、封入したヨウ素 によって劣化しにくぐヨウ素と石英管との相性が良いため、寿命が長いという利点が ある。
[0211] また、 Krlエキシマランプ Lによって発せられる波長 191nmの紫外光は、低圧水銀 ランプによって発せられる波長 185nmの紫外光とほぼ同一の、亜酸化窒素を分解し て酸化反応を行うのに十分大きなエネルギーを持つ。
[0212] さらに、 Krlエキシマランプ Lは、発光によるオゾンの発生が少ないという優れた特 性を持つことも分力つた。
[0213] 図 23に、酸素の UV吸収スペクトル (J.Chem.Phys., 21, 1206(1953)より引用)を示す 。力かるスペクトルにおいて、波長 175nm付近から波長 200nm付近の領域では、非 常に細力な吸収係数の周期的変動が見られる。かかる領域は、シユーマンルンゲ帯 と呼ばれるちのである。
[0214] Krlエキシマランプ Lによって発せられる 191nmの波長は、シユーマンルンゲ帯中 に含まれており、 5— 0バンドと 4— 0バンドとの間のいわば谷の部分に相当し、吸収 係数が小さい。よって、酸素分子による吸収が少なぐ酸素分子の解離、及びそれに 引き続くオゾンの発生が少ない。
[0215] 環境負荷となるオゾンの発生が少な 、ため、 Krlエキシマランプ Lの取り扱いは容 易である。
[0216] この点、例えば、低圧水銀ランプによって発せられる紫外光の波長 185nmは、シュ 一マンルンゲ帯中の 8— 0バンド上に位置し、吸収係数が大きい。よって、低圧水銀 ランプと亜酸化窒素溶液との間に大気が存在すると、紫外光のエネルギーが酸素分 子に吸収されやすぐ多量にオゾンが発生するため、オゾン対策のための装置を要し 、酸化反応の効率が低ぐこれを備えた装置の構造の複雑化、設計上の問題、大型 ィ匕、高価格ィ匕を招くこととなる。
[0217] これに対し、 Krlエキシマランプ Lには次のような利点がある。
[0218] すなわち、 Krlエキシマランプ Lと亜酸ィ匕窒素溶液との間に大気が存在しても、 Krl エキシマランプ L力 発せられた紫外光のエネルギーが酸素分子に吸収されにくく、 よって紫外光が亜酸ィ匕窒素溶液に至るまでに弱まりにくぐ高効率で亜酸ィ匕窒素を 分解できる。また大気による影響が少ないから Krlエキシマランプ Lの配設位置の自 由度が高い。オゾン対策のための処理チャンバ一等の密閉装置などの装置を省略ま たは簡略ィ匕できる。
[0219] よって、基板洗浄装置 100の酸化反応の効率が高ぐ構造が簡単で設計の自由度 が高ぐ小型で低廉なものとすることができる。
[0220] また、この Krlエキシマランプ Lは、テーブル 101に対する紫外光の照射角度を任 意に変更することができる。
[0221] すなわち、この基板洗浄装置 100は、 Krlエキシマランプ Lを摺動自在に支持する ガイドレール 110を備えており、このガイドレール 110は、その基端側がテーブル 10
1における Si基板 Xの載置面と直交する方向に立設された状態で、先端側が Si基板
Xの載置面に並行となるように屈曲した形状となって 、る。
[0222] そして、 Krlエキシマランプ Lは、ガイドレール 110に摺動自在なランプ支持手段 10
9を介してガイドレール 110に取付けられて!/、る。
[0223] このように構成したことにより、本実施形態の基板洗浄装置 100が備える Krlエキシ マランプ Lは、テーブル 101の真上方向から Si基板 Xへ紫外光を照射することができ る他、テーブル 101上の Si基板 Xに対して斜め上方力も紫外光を照射することができ る。なお、紫外光を照射する際の Krlエキシマランプ Lの位置は、半導体装置の各製 造プロセスに応じて、それぞれ好適な位置を予め設定しておくようにする。
[0224] このような構成の基板洗浄装置 100にあっては、図 21に示すように、 Si基板 Xをテ 一ブル 101上に載置して吸着手段を作動させて保持し、ノズル 108を薬液 Sの吹き 付けに適した所定位置まで回転させ、テーブル 101を回転させながら薬液 Sをノズル 108から塗布して Si基板 Xに均一に付着させると同時に、 Krlエキシマランプ Lを発 光させて紫外光を照射する。 Si基板 Xにおける薬液 Sの付着量は、ノズル 108からの 薬液 Sの噴射量、噴射時間を調整することで調整される。
[0225] ここで、 Krlエキシマランプ Lは、 Si基板 Xの左半分に対して紫外光を照射して 、る 力 Si基板 Xは、テーブル 101と共に高速で回転しているため、 Si基板 Xの表面全体 に対して均等に紫外光を照射することができる。
[0226] また、 Si基板 Xに対して、斜め上方力も紫外光を照射する場合も、少なくとも、 S基 板の一端縁から回転の中心付近まで紫外光が到達できるように Krlエキシマランプ L の位置を設定しておけば、 Si基板の表面全体に対して、斜め上方から紫外光を照射 することができる。
[0227] そして、紫外光照射領域の薬液 S中に溶存して 、る亜酸化窒素が解離して原子状 酸素 (O)が生成され、この原子状酸素が Si基板に付着した異物を強力に酸化すると 共に、この酸化させた異物を薬液 Sに添加した酸や塩基と反応させて分解すること〖こ よって Si基板 Xの洗浄が行われる。この洗浄には、異物が分解される場合のみならず 、異物が薬液 S中の添加物と反応する過程において Si基板 Xからはがれる等して分 離されることも含む。
[0228] また、 Si基板 Xに塗布する薬液 Sの量は、洗浄の過程で消費される亜酸化窒素の 量等に応じて調整するようにして 、る。
[0229] また、異物がすべて Si基板 Xから除去されると洗浄が終了し、洗浄された Si基板 X が得られる。洗浄後、分解される過程において Si基板 Xからはがれた異物の分解力 スが Si基板 Xに再付着している可能性がある場合等には、カゝかる分解カスを Si基板 Xから完全に除去するなどのために必要に応じて Si基板 Xを薬液 Sや純水等で洗浄 等する。その後、必要に応じて Si基板 Xに付着している薬液 Sを乾燥したり、エアを吹 き付けたりする等して除去する。エアの吹き付けは、分解カスの除去にも有効である。 薬液 Sの除去は、テーブル 101の回転によって行っても良い。
[0230] 力かる洗浄により、 Si基板 Xの表面上に付着していた、単に水で洗ったり、布で拭つ たりするだけでは洗浄することが困難な金属汚染物や有機汚染物、パーティクルなど 、つた汚れが完全に分解され、高度な洗浄が行われる。
[0231] また、亜酸ィ匕窒素は安全であるため、洗浄後に薬液 Sに溶存している亜酸化窒素 を必ずしも処理する必要はな 、。
[0232] 容器 104に溜まった薬液 Sは、適時、廃液バルブ 106を開くことで、廃液管 105を 通じて廃液貯蔵部に排出される。
[0233] ノズル 108は、紫外光の照射の妨げにならないように配慮する必要がある場合には
、薬液 Sの噴霧に必要なときだけ所定位置を占める状態とすることができる。
[0234] このように、この基板洗浄装置 100では、スピンコートにより Si基板 Xに対して継続 的に薬液 Sを供給しながら、 Si基板に接触している薬液 Sに紫外光を照射して Si基 板 Xの洗浄を行うようにしているため、薬液 Sが実質的に交換されながら洗浄を行うこ ととなり、薬液 S中の亜酸ィ匕窒素の濃度を低くしても、十分な洗浄性能を担保すること が可能である。
[0235] 以上、基板洗浄装置 100の一実施形態について説明したが、本発明に係る基板 洗浄装置は、これに限定されるものではなぐ例えば、図 24に示す基板洗浄装置 90 のように、薬液 Sを貯留可能な薬液貯留容器 91と、その上方に配設した Krlエキシマ ランプ Lとのみより構成することができる。なお、図 24中の符号 91aは、薬液に浸漬し た基板を支持する支持体である。
[0236] すなわち、基板洗浄装置は、少なくとも亜酸化窒素溶液に酸、及び Z又は、塩基を 添加した薬液を基板に接触させる薬液接触手段と、薬液を接触させた状態の基板に 紫外光を照射する光源とを備えて 、れば実現することができ、基板に付着した異物 に、薬液を付着させると共に、薬液に紫外光を照射することにより、異物を酸化させ、 当該酸化させた異物を薬液に添加した酸、及び Z又は、塩基と反応させることにより 基板から除去することができる構造であれば、その構造は、任意に変更することがで きる。
[0237] また、本発明による基板洗浄装置における亜酸化窒素ガスの供給、亜酸化窒素の 溶解方法、濃度検出、廃液処理は次のようにすることができる。
[0238] 亜酸化窒素ガスは、高圧容器に充填された液ィ匕ガス等の圧縮ガスのガスボンベに より供給可能であり、これを洗浄装置近傍に設置することができる。工場や製造所の 大型高圧容器から集中配管を利用して供給することもできる。洗浄装置にカセット式 ガスボンベのような小型容器を装着し供給しても良いし、洗浄装置内や洗浄装置近 傍又は作業場内に亜酸化窒素生成装置を設け、この生成装置で生成した亜酸化窒 素を直接、洗浄装置内のタンクや処理槽に供給しても良い。
[0239] また、亜酸ィ匕窒素ガスは次のようにして生成することができる。工業的な方法として 、(1)酸素あるいは空気を使用して金属酸ィ匕物触媒存在下でアンモニアを 200°C〜 500°Cで加熱し生成するアンモニア酸化法、(2)硝酸アンモ-ゥムを熱分解する、も しくは硝酸ソーダを硫酸アンモニゥムの混合物を加熱し生成する硝酸アンモニゥム分 解法、(3)スルフアミン酸を二段階以上に分割し供給したり、硫酸を添加しながら、ス ルファミン酸と硝酸を反応させる方法を、実用的な規模で用いることができる。
[0240] また、少量生産の場合は、ガスクロマトグラフィ等に用いられるガラスキヤビラリ内に オゾンガスと窒素ガスを通すことにより亜酸ィ匕窒素を生成させることができ、少量の亜 酸ィ匕窒素ガスを効率よく生成するのに適している。
[0241] 亜酸ィ匕窒素ガスを溶媒中へ溶解する方法としては、(1)プラスチック製ないしはセラ ミック製の多孔材よりなる散気板または散気管を溶媒中に没するように設置し、前述 のガスボンベや発生装置などから、この散気板または散気管に亜酸ィ匕窒素ガスを供 給し、溶媒中にパブリングさせる方法、(2)ェジ クタ一を使用し、加圧された溶媒を ェジェクタ一のノズルより噴出させ、発生した負圧を利用して亜酸化窒素ガスを溶媒 中に吸込ませ溶解させるもの、加圧された棚段塔、充填塔、シャワー塔、気泡塔など を用いて亜酸ィ匕窒素ガスと溶媒を接触させ溶解させるもの、耐圧容器中で加圧され た亜酸ィ匕窒素ガスに接した溶媒を攪拌し、溶解させるもの、小型耐圧容器中で加圧 された溶媒と亜酸化窒素ガスを高速攪拌混合し、溶解させるもの等のように機械的に 混合し、溶解する方法、(3)ポリテトラフルォロエチレンのような疎水性榭脂からなる 多孔質膜中空糸にて、榭脂の疎水性と孔の気体透過性を利用して気体を液体に溶 解させる、または非多孔質ガス透過膜中空糸にて、榭脂内部にて気体の溶解 ·拡散 機構を利用して榭脂を透過した気体を液体に溶解させることにより、任意の圧力で、 気泡を発生させることなく亜酸ィ匕窒素ガスを溶媒中に溶解させる中空糸膜を用いた 溶解方法等がある。
[0242] 更にこれらの方法に、超音波や勾配を有する磁場を併用し、亜酸ィ匕窒素ガスの溶 媒中への溶解量、溶解速度を向上させることができる。
[0243] 本発明にかかる洗浄装置に必要な亜酸化窒素ガスの濃度や亜酸化窒素含有液の 量を考慮すると、亜酸化窒素ガスを無駄なぐ効率よぐ短時間で溶媒中に溶解する 方法として中空糸膜を使用するのが好ましい。
[0244] ここで、溶媒中の亜酸化窒素の濃度管理、検知法について説明する。
[0245] 溶媒中の亜酸ィ匕窒素は、前述の所定の方法により亜酸ィ匕窒素ガスを溶媒に溶かし 込み、その溶力しこみ時間やガスの供給圧力などを管理することで概ね一定の濃度 を維持することが可能である。そのため、洗浄装置内に溶媒中の亜酸化窒素濃度を 検出し、記録、管理する必要がないという利点がある。
[0246] しかし、濃度を厳密に管理する必要が生じた場合、次のように亜酸化窒素濃度の 検出、管理等を行うことができる。(1)作用極と対極、必要に応じて再生極の 2つ以上 の電解電極と、電極間を仕切るイオン交換膜と、ハロゲンイオンを含む電解液を有す る電解セルを用い、亜酸化窒素を電解するときに流れる電流、あるいはその時の全ク 一ロン数を測定する電解セルによる電解法、(2)所定波長を有する紫外光を、亜酸 化窒素含有溶媒に貯留したセルに照射し、セルを挟んで光源に対向する位置に配 置された受光系によって吸光度を測定する分光測定法、(3)JISの K0102に規定さ れて ヽる TN (全窒素)分析法、(4)亜酸化窒素含有溶媒中に不活性ガスを圧送散 気させる等して、溶媒内に溶存する亜酸化窒素を気相中へ移動させて、非分散型赤 外線吸収法、紫外光吸光高度法や酸素イオン伝導性の固体分解質による電気化学 式の測定センサを用いて気相中の亜酸化窒素濃度を測定する方法、などを使用す ることができる。本発明の基板洗浄装置の溶液を供給する際、あるいは、 Si基板を浸 漬している容器内の溶液管理に使用することができる。 [0247] また、亜酸化窒素の廃液処理に関して説明すると、処理後の溶媒中には、多くとも 数百 ppm程度の亜酸ィ匕窒素が残留するのみであり、処理後のリンス水や他の工程の 廃水との混合により、廃液中の亜酸ィ匕窒素はきわめて少なくなる。そのために、基本 的には、洗浄装置内に亜酸化窒素を分解、除外するための機構を設ける必要がな いという利点がある。
[0248] また、廃液中の亜酸化窒素以外の成分を処理するために、中和処理、活性汚泥処 理、電解処理などを実施する場合には、亜酸ィ匕窒素がこれらの処理を阻害すること はないことから、廃液中の亜酸化窒素を処理することなく汚泥処理等を実施すること が可能である。更に、亜酸化窒素を含有した廃液を他の作業場や廃棄物処理場など に輸送する場合にも、亜酸化窒素は、過酸ィ匕水素などの酸化剤のような異常分解を 起こすことがないため、廃液中の亜酸ィ匕窒素を輸送前に処理する必要はないという 利点を有する。
[0249] ただし、他の工程との関係や作業場全体の環境管理との関係により、洗浄装置内 にて亜酸化窒素を分解し、洗浄装置からの亜酸化窒素の排出量を低減する必要が ある場合には、排水中の亜酸ィ匕窒素の分解法としては、次のようなものがある。(1) 廃水に一定時間紫外光を照射して分解する方法、 (2)白金などの貴金属をアノード として電気分解する方法、(3)触媒存在下での水素ガスとの反応により還元分解する 方法、(4)嫌気状態で亜酸化窒素内の酸素を用いて呼吸する微生物を利用して微 生物分解、などであり、必要に応じてこれらの方法を洗浄装置に適用することができ る。
[0250] また、本発明は係る特定の実施形態に限定されるものではなぐ特許請求の範囲 に記載された本発明の要旨の範囲内において、種々の変形 ·変更が可能である。
[0251] たとえば、亜酸ィ匕窒素の溶媒は、上述の水に限るものでなぐ紫外光照射によって 解離された原子状酸素が生成される機能が損なわれず、生成された原子状酸素を 消費しなければ、メタノール、エタノール、イソプロパノール、メチルシクロへキサン、 シクロへキサン、ァセトニトリル、へキサン、ジ才キサン、グリセリン、 n—ペンタン、ジク ロルメタン等の有機溶媒であっても良い。溶媒の種類によって、亜酸化窒素の最大 可溶量が異なる。最大可溶量は大きいほうが好ましいため、溶媒の選択にはかかる 最大可溶量も考慮される。
[0252] また、 Si基板に対する亜酸ィ匕窒素溶液の付着性向上の観点から、同溶液に粘性を 向上させる増粘剤を添加しても良い。増粘剤としては、原子状酸素が生成される機能 が損なわれず、生成された原子状酸素を消費しな!ヽものが好適である。
[0253] なお、洗浄の過程で Si基板からはがれた有機物の分解カスが生じることがあるが、 薬液 Sは紫外光の照射領域全体で酸ィ匕性能を発揮するため、分解カスが薬液 S中を 漂っても、紫外光の照射領域内であれば分解が進む。一方、 Si基板の、有機物を除 去したい部位には紫外光が照射されている。そのため、分解カスが力かる部位近くを 漂う場合には紫外光が照射されることとなり、紫外光の照射によって分解される。その ため、分解カスが Si基板に再付着することは抑制されている。
[0254] また、上記第 1〜第 3実施形態では、説明を簡単にするため、薬液に添加する酸と して、塩酸、硫酸、フッ酸など、塩基としてアンモニアなどを例に挙げて説明したが、 実際には洗浄対象となる異物の種類に応じて適宜、少なくとも酸又は塩基の一つ以 上を添加する必要がある。
[0255] 具体的に列挙すると、酸としては、例えば、硫酸、オルトリン酸、縮合リン酸、ポリリン 酸、塩酸、ホウ酸、炭酸、フッ化水素酸、硝酸、青酸などの無機酸、もしくは蟻酸、酢 酸、シユウ酸、マロン酸、コハク酸、フタル酸などのカルボン酸類、クェン酸、リンゴ酸 、酒石酸、乳酸、グリコール酸、サリチル酸などのヒドロキシカルボン酸、メタンスルホ ン酸、エタンスルホン酸、 p—トルエンスルホン酸、 2, 4—トルエンジスルホン酸などの スルホン酸類などの有機酸のいずれかの酸を含む溶液とすることができる。
[0256] ァノレカリとしては、例えば、アンモニア、水酸化ナトリウム、水酸ィ匕カリウム、水酸化力 ルシゥム等のアルカリ金属またはアルカリ土類金属の水酸ィ匕物、炭酸水素ナトリウム
、炭酸水素アンモ-ゥム等のアルカリ性塩類、ヒドロキシルァミン、ヒドラジンなどの無 機アルカリ、もしくはモノメチルァミン、モノェチルァミン、モノエタノールァミン、ジグリ コールァミン、トリス(ヒドロキシメチル)ァミノメタン、イソプロピルァミン、イソプロパノー ルァミン、シクロへキシルァミン、ァ-リン、トルイジン、エチレンジァミン等の第 1級アミ ン、ジメチルァミン、ジェチルァミン、ジエタノールァミン、ジイソプロピルァミン、モル ホリン、 N—モノメチルトルイジン(ピラジン)、ジイソプロパノールァミン等の第 2級アミ ン、トリメチルァミン、トリエチルァミン、トリエタノールァミン、 1—メチルイミダゾール、 N ジェチルトルイジン、トリイソプロピルァミン、トリイソプロパノールァミン、等の第 3 級ァミン、テトラメチルアンモ -ゥムハイド口オキサイド (TMAH)、トリメチルヒドロキシ ェチルアンモ -ゥムハイド口オキサイド(コリン)、メチルトリヒドロキシェチルアンモ-ゥ ムハイド口オキサイド、ジメチルジヒドロキシェチルアンモ -ゥムハイド口オキサイド、テ トラェチルアンモ -ゥムハイド口オキサイド、トリメチルェチルアンモ -ゥムハイドロォキ サイド等の第 4級アンモ-ゥム水酸ィ匕物、ジエチレントリァミン、トリエチレンテトラミン、 テトラエチレンペンタミン等のポリアミンなどの有機アルカリのいずれかのアルカリを含 む溶液とすることができる。
[0257] 酸やアルカリの溶液は、上述の酸とアルカリからなる塩基を、亜酸化窒素を溶解し た溶液に添加した後、同じもしくは異なる酸またはアルカリを添加し、 pHを調整する ことにより、得ることち出来る。
[0258] 更に基板の表面あれやエッチングの制御、濡れ性向上、油性汚染やパーティクル 汚染の除去性向上、金属汚染の低減を目的として、基板表面の汚染レベル、パーテ イタルや有機物汚染の種類、基板表面に要求される清浄度レベル、コスト、紫外線透 過性、紫外線安定性等から総合的に判断し、亜酸ィヒ窒素溶液に任意の界面活性剤 、錯化剤、有機溶剤等を添加しても良い。
[0259] 界面活性剤としては、ァニオン系、カチオン系、両性、ノニオン系の界面活性剤が 挙げられる力 中でもァ-オン系、両性、ノ-オン系の界面活性剤が好ましい。特に ァ-オン系の界面活性剤が好ま 、。これらの界面活性剤は単独で用いても良 、し 、異種の 2種以上を適宜組み合わせて用いても良い。中でもァ-オン系界面活性剤 とノ-オン系界面活性剤の組み合わせは汚染洗浄効果の点から好ましい。
[0260] ァ-オン系界面活性剤としては、カルボン酸型、スルホン酸型、硫酸エステル型、リ ン酸エステル型など、両性界面活性剤としてはアミノ酸型、ベタイン型など、ノ-オン 系界面活性剤としては、ポリエチレングリコール型、多価アルコール型などが挙げら れる。
[0261] また、ァ-オン系界面活性剤の中ではスルホン酸型(一 S03 基を有する)、硫酸 エステル型 (-OS03-)が好まし 、。具体的には S03 -基または OS03 基 を少なくとも 1つ有する化合物が好ましぐこれらは単独で使用しても、 2種以上を適 宜組み合わせて用いてもょ 、。
[0262] ノ-オン系界面活性剤の中では、ポリエチレングリコール型としてはポリオキシェチ レンアルキルフエニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシェ チレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシェ チレン ·ポリオキシプロピレン ·ブロックポリマー、ポリオキシエチレン 'ポリオキシブチレ ンブロックポリマーなどが挙げられる。多価アルコール型としてはグリセリン脂肪酸ェ ステル、ソルビタン脂肪酸エステルなどが挙げられる。これらの界面活性剤のうち、汚 染除去性に優れ、なおかつ、生分解性が優れる点で、好ましくは、ポリオキシェチレ ンアルキルエーテル、ポリオキシエチレン 'ポリオキシプロピレン 'ブロックポリマー、ポ リオキシエチレン ·ポリオキシブチレンブロックポリマーなどが用いられる。
[0263] また、本発明に用いる亜酸ィ匕窒素を溶解させた溶液中の界面活性剤の濃度は、洗 净剤に対して通常 0. 0001-0. 5重量0 /0、好ましく ίま 0. 0003-0. 1重量0 /0である
[0264] また、本発明に用いる亜酸ィ匕窒素を溶解させた溶液へ添加する界面活性剤は、塩 又は酸、いずれの形態で添加してもよい。塩としてはナトリウム、カリウム等のアルカリ 金属塩、アンモニゥム塩、第一、第二、もしくは第三アミン塩等を挙げることができる。 半導体デバイスやディスプレイデバイス製造工程における基板表面の洗浄において は、金属汚染がトランジスタ性能に悪影響を与えることを考慮すると、使用する界面 活性剤においても金属塩を含まない、酸の形態、あるいはアンモニゥム塩、モノエタ ノールアミン塩、トリエタノールアミン塩等の形態が好まし!/、。
[0265] 錯化剤としては、例えば、以下に示すものが挙げられる。
[0266] (1)ドナー原子である窒素とカルボキシル基及び Ζ又はホスホン酸基を有する化合 物例えば、グリシン等のアミノ酸類;ィミノ 2酢酸、二トリ口 3酢酸、エチレンジァミン 4酢 酸 [EDTA]、トランス一 1, 2—ジアミノシクロへキサン 4酢酸 [CyDTA]、ジエチレント リアミン 5酢酸 [DTP A]、トリエチレンテトラミン 6酢酸 [TTHA]等の含窒素カルボン 酸類;エチレンジアミンテトラキス (メチレンホスホン酸) [EDTPO]、二トリロトリス (メチ レンホスホン酸) [NTPO]、プロピレンジアミンテトラ(メチレンホスホン酸) [PDTMP] 等の含窒素ホスホン酸類などが挙げられる。
[0267] (2)芳香族炭化水素環を有し、且つ該環を構成する炭素原子に直接結合した OH 基及び Z又は O 基を二つ以上有する化合物例えば、カテコール、レゾルシノール 、タイロン等のフエノール類及びその誘導体などが挙げられる。
[0268] (3)上記(1)、 (2)の構造を併せ持った化合物(3— 1)エチレンジァミンジォルトヒド ロキシフエ-ル酢酸 [EDDHA]及びその誘導体例えば、エチレンジアミンジオルトヒ ドロキシフエ-ル酢酸 [EDDHA]、エチレンジァミン一 N, N,一ビス〔(2—ヒドロキシ —5—メチルフエ-ル)酢酸〕 [EDDHMA]、エチレンジァミン— N, N,—ビス〔(2— ヒドロキシ一 5—クロルフエ-ル)酢酸〕 [EDDHCA]、エチレンジァミン一 N, N,一ビ ス〔(2 ヒドロキシ— 5 スルホフヱ-ル)酢酸〕 [EDDHSA]などの芳香族含窒素力 ルボン酸類;エチレンジァミン— N, N,—ビス〔(2 ヒドロキシ— 5—メチルフエ-ル) ホスホン酸〕、エチレンジァミン一 N, N,一ビス〔(2 ヒドロキシ一 5 ホスホフェニノレ) ホスホン酸〕などの芳香族含窒素ホスホン酸類が挙げられる。
(3— 2) N, N, 一ビス(2 ヒドロキシベンジル)エチレンジァミン N, N,一二酢酸 [ HBED]及びその誘導体例えば、 N, N, 一ビス(2—ヒドロキシベンジル)エチレンジ ァミン一 N, N,一二酢酸 [HBED]、 N, N,一ビス(2 ヒドロキシ一 5—メチルベンジ ル)エチレンジァミン一 N, N,一二酢酸 [HMBED]、 N, N,一ビス(2—ヒドロキシ一 5—クロルベンジル)エチレンジァミン一 N, N,一二酢酸などが挙げられる。
[0269] これらの錯化剤は単独、または 2種以上を任意の割合で使用してもよい。亜酸化窒 素を溶解させた溶液中の錯化剤の濃度は汚染金属不純物の種類と量、基板表面に 要求される清浄度レベルによって任意に選択すればよいが、一般的には通常 1〜10 000重量 ppm、中でも 5〜: L000重量 ppm、特に 10〜200重量 ppm力 ^好まし!/ヽ。
[0270] 有機溶剤としては、特に亜酸化窒素を溶解させた溶液が水溶液である場合、ェチ レングリコーノレモノェチノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、ジェチ レングリコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジェ チレングリコーノレモノブチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロ ピレングリコーノレモノェチノレエーテル、プロピレングリコーノレモノブチノレエーテル、ジ プロピレングリコーノレモノメチノレエーテル、ジプロピレングリコーノレモノェチノレエーテ ル、ジプロピレングリコールモノブチルエーテル、ジエチレングリコーノレジメチノレエ一 テル、ジプロピレングリコールジメチルエーテル等のエーテル系溶剤、ホルムアミド、 モノメチルホルムアミド、ジメチルホルムアミド、モノェチルホルムアミド、ジェチルホル ムアミド、ァセトアミド、モノメチルァセトアミド、ジメチルァセトアミド、モノェチルァセト アミド、ジェチルァセトアミド、 N—メチルピロリドン、 N—ェチルピロリドン等のアミド系 溶剤、ジメチルスルホキシド、ジメチルスルホン、ジェチルスルホン、ビス(2—ヒドロキ シスルホン、テトラメチレンスルホン等の硫黄ィ匕合物系溶剤が挙げられる。これらの中 で好ましくは、ジメチルスルホキシド、 N, N—ジメチルホルムアルド、 N, N—ジメチル ァセトアミド、 N—メチルピロリドン、ジエチレングリコールモノメチルエーテル、ジェチ レングリコーノレモノブチノレエーテル、ジプロピレングリコーノレモノメチノレエーテル、ジ プロピレングリコールモノブチルエーテルが使用される。
[0271] 上記有機溶剤は、単独でも 2種類以上組み合わせても使用できる。上記有機溶剤 の濃度は、通常 1〜45重量%の濃度で使用されるが、有機溶剤の使用及び濃度に ついては、汚染物の種類と量、配線材料のエッチング抑制の要求されるレベルによ つて任意に選択すればょ 、。
[0272] また、本発明に用いるアルカリ性洗浄剤においては、更にその他の成分を含有して いてもよい。他の成分としては、有機硫黄含有ィ匕合物(2—メルカプトチアゾリン、 2- メルカプトイミダゾリン、 2—メルカプトエタノール、チォグリセロール等)、有機窒素含 有化合物(ベンゾトリァゾール、 3—アミノトリアゾール、 N (R) 3 (Rは炭素数 1〜4のァ ルキル基)、 N (ROH) 3 (Rは炭素数 1〜4のアルキル基)、ゥレア、チォゥレア等)、水 溶性ポリマー(ポリエチレングリコール、ポリビュルアルコール等)、アルキルアルコー ル系化合物 (ROH (Rは炭素数 1〜4のアルキル基))などの防食剤、硫酸、塩酸など の酸、ヒドラジンなどの還元剤、水素、アルゴン、窒素などの溶存ガスなどが挙げられ る。
[0273] なお、酸やアルカリの中にも青酸やアンモニアなどのように錯化剤として作用するも のもあり、また界面活性剤の中には有機酸であるものも多ぐ上述の酸、アルカリ、界 面活性剤、錯化剤などの分類は、添加した際の代表的な効果を示すものではあるが 、本発明の形態に添加された際の各物質の効果を限定するものではなぐ上述の物 質には、副次的な洗浄効果が含まれる場合がある。
[0274] 以下、本発明に係る基板洗浄装置及び基板の洗浄方法を適用した、パーティクル
(粒子)除去、金属汚染除去、パーティクルと金属汚染除去の実験結果について説 明する。
[0275] ( 1)パーティクル除去
ここでは、「亜酸化窒素のみ」と「亜酸化窒素 +紫外光照射」と「亜酸化窒素 +水酸 化アンモ-ゥム +紫外光照射」とによる基板の洗浄結果を比較し、亜酸化窒素溶液 に塩基を添加した状態で紫外光を照射する基板洗浄の優位性について示す。
[0276] この実験では、 0. 5%のフッ酸溶液に室温、 2分間浸漬した後、 1分間水洗したベ ァシリコンウエノ、を 0. 05 μ m〜3 μ mで平均粒径約 0. 3 μ mの Si N粒子を 0. 05m
3 4
gZL分散させた酸性水溶液に 10分浸漬した。浸漬後のシリコンウェハを 1分間水洗 し、スピン乾燥機を用いて乾燥させた。その後、光学式表面検査装置により、シリコン ウェハ表面に付着した微粒子を測定し、 0. 2 μ m以上の Si N粒子力 000〜8000
3 4
個 /8インチウェハ付着して 、ることを確認した。
[0277] この Si N粒子が付着したシリコンウェハを、枚葉式洗浄装置を用いて、図 25に示
3 4
す通りの条件で洗浄し、パーティクルの除去を行った。枚葉式洗浄装置におけるシリ コンウェハの回転数は 1000rpm、洗浄液量は 1リットル Z分、洗浄時間は 60秒、液 温は室温とし、洗浄後に 30秒間純水でリンスした後、 30秒間 N2ブローしながら乾燥 を行った。なお図 20において、「NH OH」有りの場合は 28%アンモニア水と水を容
4
量比 1 : 20で混合した水溶液を使用したことを、「N 0」有りの場合は液中に ΙΟΟΟρρ
2
mの亜酸ィ匕窒素が含まれていることを、また界面活性剤有りの場合は液中に 50ppm のポリオキシエチレンラウリルエーテルを添カ卩したことを示している。
[0278] 洗浄後に得られた洗浄済みシリコンウェハ表面の面あれ状態とシリコンウェハ表面 に残留するパーティクル数の測定カゝら求めた除去率より、洗浄効果を評価した。実施 例 1、 2においては、シリコンウェハ表面に面あれも発生せず、パーティクルの除去が 確認されたが、比較例 1〜5においては、パーティクルは除去されず、また比較例 6〜 9においては、激しい面あれが発生し、パーティクルの除去率を評価することは出来 なかった。 [0279] (2)金属汚染除去
ここでは、「亜酸化窒素のみ」と「亜酸化窒素 +紫外光照射」と「亜酸化窒素 +フッ 酸 +紫外光照射」とによる基板の洗浄結果を比較し、亜酸化窒素溶液に酸を添加し た状態で紫外光を照射する基板洗浄の優位性について示す。
[0280] この実験では、 0. 5%のフッ酸溶液に室温、 2分間浸漬した後、 1分間水洗した 8ィ ンチベアシリコンウェハを、金属イオン (Fe、 Cr、 Cu)を含有した APM洗浄剤に浸漬 した。この APM洗浄剤は、 28重量%のアンモニア水、 31重量%の過酸化水素水、 及び水を、容量比 1: 1: 5の割合で混合したものに、金属イオン含有水溶液を添加し て、 Feを 20ppb、 Crを 10ppb、そして Cuを lppm含有する金属イオン含有 APM洗 浄剤を調整した。浸漬後のシリコンウェハを超純水で 10分間水洗し、スピン乾燥機 により乾燥し、金属で汚染されたシリコンウェハを作成した。このシリコンウェハ上にあ る金属 (Fe、 Cr、 Cu)の分析は全反射蛍光 X線分析法により実施し、汚染されたシリ コンウェハ及び洗浄後のシリコンウェハ共に同じ方法で行った。各金属の汚染量は、 Fe : lOOO〜3OOO X lO10atoms/cm2、 Cr: 500〜1000 X 1010atoms/cm2、 Cu: 3000 〜5000 X 101(>atoms/cm2であった。
[0281] この金属汚染されたシリコンウェハを、枚葉式洗浄装置を用いて、図 26に示す通り の条件で洗浄し、金属汚染の除去を行った。枚葉式洗浄装置におけるシリコンゥェ ハの回転数は 1000rpm、洗浄液量は 1リットル Z分、洗浄時間は 60秒、液温は室温 とし、洗浄後に 30秒間純水でリンスした後、 30秒間 N2ブローしながら乾燥を行った 。なお、図 21中、「HF」有りの場合は溶液中に 0. 5%フッ化水素酸が含まれているこ とを、「N 0」有りの場合は液中に lOOOppmの亜酸ィ匕窒素が含まれていることを示し
2
ている。
[0282] 洗浄後に得られた洗浄済みシリコンウェハ表面に残留する金属量の測定力 求め た除去率より、洗浄効果を評価した。
[0283] 実施例 1においては、 Fe、 Cr、 Cuの全てを除去することができた力 比較例 1〜3 では全ての元素が除去できず、比較例 4では Crが除去できた力 Fe、 Cuが除去で きず、比較例 5〜7では Feが除去できた力 Cr、 Cuは除去できなかった。
[0284] (3)パーティクルと金属汚染除去 この実験では、 0. 5%のフッ酸溶液に室温、 2分間浸漬した後、 1分間水洗した 8ィ ンチベアシリコンウェハを、金属イオン (Fe、 A1)を含有した APM洗浄剤に浸漬した 。この APM洗浄剤は、 28重量%のアンモニア水、 31重量%の過酸化水素水、及び 水を、容量比 1: 1: 5の割合で混合したものに、金属イオン含有水溶液を添加して、 F eを 20ppb、 A1を lppb含有する金属イオン含有 APM洗浄剤を調整した。浸漬後の シリコンウェハを超純水で 10分間水洗し、スピン乾燥機により乾燥し、金属で汚染さ れたシリコンウェハを作成した。汚染されたシリコンウェハ及び洗浄後のシリコンゥェ ハ共に同じ方法で行った。その方法は、ウェハ表面に、 0. 1重量%のフッ酸と 1重量 %の過酸ィ匕水素を含む水溶液を接触させて回収した。そして誘導結合プラズマ質量 分析計 (ICP— MS)を用 、て回収した金属量を測定し、基板表面濃度 (atoms/cm2) に換算し、分析結果とした。更に、これら金属の濃度を全て合計した値を「全金属濃 度(atoms/cm2)」とした。金属の汚染量は、 Fe力 l000〜3000 X 1010atoms/cm2、 A1力400〜600 X 1010atoms/cm2であった。
[0285] また 0. 5%のフッ酸溶液に室温、 2分間浸漬した後、 1分間水洗したベアシリコンゥ ェハを 0. 05 μ m〜3 μ mで平均粒径約 0. 3 μ mの Si3N4粒子を 0. 05mgZL分散 させた酸性水溶液に 10分浸漬した。浸漬後のシリコンウェハを 1分間水洗し、スピン 乾燥機を用いて乾燥させた。その後、光学式表面検査装置により、シリコンウェハ表 面に付着した微粒子を測定し、 0. 2 m以上の Si3N4粒子力 000〜8000個 Z8ィ ンチウェハ付着して 、ることを確認した。
[0286] この金属汚染されたシリコンウェハと Si3N4粒子が付着したシリコンウェハを、枚葉 式洗浄装置を用いて、表に示す通りの条件で洗浄し、金属汚染とパーティクルの除 去を行った。枚葉式洗浄装置におけるシリコンウェハの回転数は 1000rpm、洗浄液 量は 1リットル Z分、洗浄時間は 2分、液温は 60°Cとし、洗浄後に 30秒間純水でリン スした後、 30秒間 N2ブローしながら乾燥を行った。
[0287] なお、図 27中、「NH OH」有りの場合は 28%アンモニア水と水を容量比 1: 20で
4
混合した水溶液を使用したことを、「N 0」有りの場合は液中に lOOOppmの亜酸ィ匕
2
窒素が含まれていることを、「H O」有りの場合は液中に 1. 5wt%の過酸化水素が
2 2
含まれて!/、ることを、更に「錯化剤」有りの場合は液中に 40ppmの EDDHAが添加さ れていることを示している。
[0288] また、ここでの「調合後時間」とは各物質を混ぜた後 60°Cに加温した状態で保管し た時間を示す。なお亜酸ィ匕窒素を溶解させた溶液への紫外光照射は洗浄時のみ実 施され、保管時には紫外光は照射されない。
[0289] また、実施例にお!、ては調合直後の効果力 調合後 30分経過しても維持されて 、 るのに対し、比較例においては調合後 30分が経過した段階で金属汚染除去能が失 われている。
[0290] 本発明の実施の形態に記載された効果は、本発明から生じる最も好適な効果を列 挙したに過ぎず、本発明による効果は、本発明の実施の形態に記載されたものに限 定されるものではない。
産業上の利用可能性
[0291] 本発明は、半導体や電子機器に用いられる基板の表面に付着した金属や有機物 等の不純物を洗浄除去する際に利用可能であり、低コストで、し力も、環境負荷の少 な 、方法にて洗浄除去が可能である。

Claims

請求の範囲
[1] 電子基板に付着した異物を除去することにより洗浄を行う基板の洗浄方法におい て、前記異物に、亜酸化窒素 (N O)を含む溶液に酸を添加した薬液を接触させると
2
共に、前記薬液に紫外光を照射することにより、前記異物を酸化させ、当該酸化させ た異物を前記酸と反応させることにより前記電子基板力 除去することを特徴とする 基板の洗浄方法。
[2] 前記異物は、金属であることを特徴とする請求項 1に記載の基板の洗浄方法。
[3] 電子基板に付着した異物を除去することにより洗浄を行う基板の洗浄方法におい て、
前記異物に、亜酸化窒素 (N O)を含む溶液に塩基を添加した薬液を接触させると
2
共に、前記薬液に紫外光を照射することにより、前記異物を酸化させ、当該酸化させ た異物を前記塩基と反応させることにより前記電子基板から除去することを特徴とす る基板の洗浄方法。
[4] 前記塩基により前記電子基板と前記異物とを共に負に帯電させ、前記電子基板と 前記異物との間に反発応力を生じさせることを特徴とする請求項 3に記載の基板の 洗浄方法。
[5] 電子基板に付着した異物を除去することにより洗浄を行う基板の洗浄方法におい て、
前記異物に、亜酸化窒素 O)を含む溶液に酸及び塩基を添加した薬液を接触
2
させると共に、前記薬液に紫外光を照射することにより、前記異物を酸化させ、当該 酸化させた異物を前記酸、及び Z又は、塩基と反応させることにより前記電子基板か ら除去することを特徴とする基板の洗浄方法。
[6] 前記酸化された異物と、前記薬液中に生じたイオンとを結合させることにより、前記 異物を前記電子基板から除去することを特徴とする請求項 1〜5のいずれか 1項に記 載の基板の洗浄方法。
[7] 前記異物を酸化させる際に、前記電子基板表面に酸化膜を形成することを特徴と する請求項 1〜6のいずれ力 1項に記載の基板の洗浄方法。
[8] 前記紫外光の光源として、クリプトン一ヨウ素 (Krl)エキシマランプを用いることを特 徴とする請求項 1〜7のいずれ力 1項に記載の基板の洗浄方法。
[9] 前記異物と前記薬液との接触は、前記電子基板に前記薬液をスピンコートすること により行うことを特徴とする請求項 1〜8のいずれか 1項に記載の基板の洗浄方法。
[10] 前記電子基板の形状に応じて前記紫外光の照射方向を変更することを特徴とする 請求項 1〜9のいずれか 1項に記載の基板の洗浄方法。
[11] 亜酸化窒素 (N O)
2 を含む溶液に酸、及び Z又は、塩基を添加した薬液を電子基 板に接触させる薬液接触手段と、前記薬液を接触させた状態の前記電子基板に紫 外光を照射する光源とを有し、前記電子基板に付着した異物に、前記薬液を付着さ せると共に、前記薬液に紫外光を照射することにより、前記異物を酸化させ、当該酸 ィ匕させた異物を前記酸、及び Z又は、前記塩基、と反応させることにより前記電子基 板から除去することを特徴とする基板洗浄装置。
[12] 前記光源は、クリプトン ヨウ素 (Krl)エキシマランプであることを特徴とする請求項
11に記載の基板洗浄装置。
[13] 前記薬液接触手段は、前記電子基板を支持すると共に水平方向に回転させる回 転手段と、前記回転する電子基板に前記薬液を塗布、又は、噴霧する薬液供給手 段とを備えたスピンコード装置により構成したことを特徴とする請求項 11又は請求項
12に記載の基板洗浄装置。
[14] 前記光源は、前記電子基板への前記紫外光の照射方向を変更可能に構成したこ とを特徴とする請求項 11〜13のいずれか 1項に記載の基板洗浄装置。
[15] 請求項 1〜10のいずれか 1項に記載の基板の洗浄方法により洗浄した基板。
PCT/JP2006/322922 2005-11-18 2006-11-17 基板の洗浄方法及び洗浄装置 WO2007058286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007545304A JPWO2007058286A1 (ja) 2005-11-18 2006-11-17 基板の洗浄方法及び洗浄装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-335050 2005-11-18
JP2005335050 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007058286A1 true WO2007058286A1 (ja) 2007-05-24

Family

ID=38048670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322922 WO2007058286A1 (ja) 2005-11-18 2006-11-17 基板の洗浄方法及び洗浄装置

Country Status (3)

Country Link
JP (1) JPWO2007058286A1 (ja)
TW (1) TW200729327A (ja)
WO (1) WO2007058286A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122543A (ja) * 2008-11-21 2010-06-03 Hoya Corp フォトマスクの製造方法及びそのフォトマスクを用いたパターン転写方法
WO2011027772A1 (ja) * 2009-09-02 2011-03-10 和光純薬工業株式会社 半導体表面用処理剤組成物及びそれを用いた半導体表面の処理方法
JP2012503328A (ja) * 2008-09-17 2012-02-02 ラム リサーチ コーポレーション 化学物質の順次適用を使用した半導体基板の表面処理のための方法及び装置
JP2018101798A (ja) * 2018-02-13 2018-06-28 株式会社ニコン 湿式処理方法
CN114798587A (zh) * 2022-04-07 2022-07-29 武汉华星光电半导体显示技术有限公司 掩膜板异物清除方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543633B2 (ja) 2012-11-26 2014-07-09 東京エレクトロン株式会社 基板洗浄システム、基板洗浄方法および記憶媒体
CN115498329B (zh) * 2022-10-13 2024-04-09 东北大学 一种镁电池复配电解液及其制备与使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252631A (ja) * 2000-03-10 2001-09-18 Uct Kk 表面浄化装置及び表面浄化方法
WO2002101808A1 (fr) * 2001-06-11 2002-12-19 Kabushikikaisha Tsukuba Semi Technology Dispositif de nettoyage/traitement pour element non traite et procede de nettoyage/traitement
JP2003224084A (ja) * 2001-11-22 2003-08-08 Semiconductor Energy Lab Co Ltd 半導体製造装置
JP2004141704A (ja) * 2002-10-22 2004-05-20 Sony Corp 洗浄装置および洗浄方法
JP2004307634A (ja) * 2003-04-07 2004-11-04 Tosoh Corp 洗浄液及びそれを用いた洗浄方法
JP2005064269A (ja) * 2003-08-13 2005-03-10 Kobe Steel Ltd 高圧処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252631A (ja) * 2000-03-10 2001-09-18 Uct Kk 表面浄化装置及び表面浄化方法
WO2002101808A1 (fr) * 2001-06-11 2002-12-19 Kabushikikaisha Tsukuba Semi Technology Dispositif de nettoyage/traitement pour element non traite et procede de nettoyage/traitement
JP2003224084A (ja) * 2001-11-22 2003-08-08 Semiconductor Energy Lab Co Ltd 半導体製造装置
JP2004141704A (ja) * 2002-10-22 2004-05-20 Sony Corp 洗浄装置および洗浄方法
JP2004307634A (ja) * 2003-04-07 2004-11-04 Tosoh Corp 洗浄液及びそれを用いた洗浄方法
JP2005064269A (ja) * 2003-08-13 2005-03-10 Kobe Steel Ltd 高圧処理方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503328A (ja) * 2008-09-17 2012-02-02 ラム リサーチ コーポレーション 化学物質の順次適用を使用した半導体基板の表面処理のための方法及び装置
JP2010122543A (ja) * 2008-11-21 2010-06-03 Hoya Corp フォトマスクの製造方法及びそのフォトマスクを用いたパターン転写方法
WO2011027772A1 (ja) * 2009-09-02 2011-03-10 和光純薬工業株式会社 半導体表面用処理剤組成物及びそれを用いた半導体表面の処理方法
JPWO2011027772A1 (ja) * 2009-09-02 2013-02-04 和光純薬工業株式会社 半導体表面用処理剤組成物及びそれを用いた半導体表面の処理方法
JP5652399B2 (ja) * 2009-09-02 2015-01-14 和光純薬工業株式会社 半導体表面用処理剤組成物及びそれを用いた半導体表面の処理方法
US9034810B2 (en) 2009-09-02 2015-05-19 Wako Pure Chemical Industries, Ltd. Processing agent composition for semiconductor surface and method for processing semiconductor surface using same
JP2018101798A (ja) * 2018-02-13 2018-06-28 株式会社ニコン 湿式処理方法
CN114798587A (zh) * 2022-04-07 2022-07-29 武汉华星光电半导体显示技术有限公司 掩膜板异物清除方法
CN114798587B (zh) * 2022-04-07 2024-01-30 武汉华星光电半导体显示技术有限公司 掩膜板异物清除方法

Also Published As

Publication number Publication date
TW200729327A (en) 2007-08-01
JPWO2007058286A1 (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
KR100707126B1 (ko) 표면 부착 오염 물질의 제거방법 및 이에 사용되는 장치
KR100806476B1 (ko) 유기 피막의 제거 장치
US6551409B1 (en) Method for removing organic contaminants from a semiconductor surface
WO2007058286A1 (ja) 基板の洗浄方法及び洗浄装置
EP2166564B1 (en) Method for removing a hardened photoresist from a semiconductor substrate
EP2602309B1 (en) Method of cleaning an electronic device with an alkaline liquid composition comprising a phosphonic acid derivative chelating agent
EP0867924B1 (en) Method for removing organic contaminants from a semiconductor surface
JPH1027771A (ja) 洗浄方法及び洗浄装置
JP2005522027A (ja) 半導体基板洗浄のためのph緩衝組成物
US20090258159A1 (en) Novel treatment for mask surface chemical reduction
JP5975527B2 (ja) フォトマスク関連基板の洗浄方法及びフォトマスク関連基板の製造方法
US20060070979A1 (en) Using ozone to process wafer like objects
KR100505693B1 (ko) 미세 전자 소자 기판으로부터 포토레지스트 또는 유기물을세정하는 방법
JP4477704B2 (ja) 半導体基板表面からの有機汚染物の除去方法
De Gendt et al. A novel resist and post-etch residue removal process using ozonated chemistries
JP6969750B2 (ja) 炭酸水素水及びこれを使用する洗浄方法
KR101972212B1 (ko) Euv 마스크 세정 용액 및 그 세정 방법
US20090095320A1 (en) Composition for Removing Photresist Layer and Method for Using it
JP4883975B2 (ja) 基体表面上の付着物の除去方法、除去用処理液および除去装置
US20150007856A1 (en) Method for treating a substrate surface using ozonated solvent and ultraviolet light
JP3445765B2 (ja) 半導体素子形成用基板表面処理方法
JP2004296463A (ja) 洗浄方法および洗浄装置
JP4555729B2 (ja) レジスト除去方法及びレジスト除去装置
KR102566723B1 (ko) 반도체의 리소그래피용 포토 마스크에 이용되는 오존수를 이용한 스핀 세정방법
JP2003316028A (ja) レジスト残渣除去剤および洗浄剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007545304

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832801

Country of ref document: EP

Kind code of ref document: A1