WO2007057994A1 - 誘導フラーレン生成装置及び生成方法 - Google Patents

誘導フラーレン生成装置及び生成方法 Download PDF

Info

Publication number
WO2007057994A1
WO2007057994A1 PCT/JP2006/307241 JP2006307241W WO2007057994A1 WO 2007057994 A1 WO2007057994 A1 WO 2007057994A1 JP 2006307241 W JP2006307241 W JP 2006307241W WO 2007057994 A1 WO2007057994 A1 WO 2007057994A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
induction
plasma flow
substance
nitrogen atom
Prior art date
Application number
PCT/JP2006/307241
Other languages
English (en)
French (fr)
Inventor
Rikizo Hatakeyama
Toshiro Kaneko
Takamichi Hirata
Genta Sato
Yasuhiko Kasama
Kenji Omote
Original Assignee
Ideal Star Inc.
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc., Japan Science And Technology Agency filed Critical Ideal Star Inc.
Publication of WO2007057994A1 publication Critical patent/WO2007057994A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment

Definitions

  • the present invention relates to a generation apparatus and a generation method for induction fullerene such as heterofullerene and endohedral fullerene, which are expected to be applied to superconducting materials, nonlinear optical materials, quantum computers, and the like.
  • induction fullerene such as heterofullerene and endohedral fullerene
  • the intended induction fullerene is produced in a high yield.
  • the present applicant has produced heterofullerene CN in which a part of carbon atoms is substituted with a nitrogen atom by the following method. That is, a plasma flow is formed from the nitrogen gas column, and the plasma
  • Fullerene is sublimated in the ma stream.
  • a cylinder is disposed at the end of the plasma flow so as to surround the plasma flow.
  • a soot-like material containing heterofullerene is deposited on this cylinder. Disclosure of the invention
  • An object of the present invention is to provide an apparatus and a method that can select and generate a chemical-modified fullerene, a heterofullerene, or an endohedral fullerene by a simple operation.
  • the present invention (1) includes a plasma flow generation unit that generates a plasma flow by ionizing an object to be induced, a fullerene introduction unit that introduces fullerene into the plasma flow, and the fullerene downstream of the introduction unit. And an electric potential body for controlling the energy of the ionized induction object in the plasma flow.
  • the present invention (2) is the induction fullerene generator according to the present invention (1), characterized by having a grid on the upstream side of the fullerene introduction part.
  • the present invention (3) is the induction fullerene generator according to the present invention (1) or (2), wherein the potential body is cup-shaped and the opening is arranged toward the plasma flow.
  • the present invention (4) is characterized in that the object to be induced is nitrogen gas and generates a soot-like substance having nitrogen atom-substituted heterofullerene, nitrogen atom-containing fullerene, or nitrogen molecule-containing fullerene force ( Any one of (1) to (3) is an induced fullerene generator.
  • a negative voltage having a sheath potential difference of 10 to 50 V or 50 to 500 V is supplied to the potential body, and the rod-like substance mainly having a nitrogen atom-substituted heterofullerene force
  • the induction fullerene generator according to the present invention (4) is characterized in that a soot-like substance composed of nitrogen atom-containing fullerene is generated.
  • a negative voltage with a sheath potential difference of 10 to 50 V and 50 to 500 V is alternately supplied to the potential body, and is mainly composed of a nitrogen atom-substituted heterofullerene and a nitrogen atom-containing fullerene.
  • the induction fullerene generator according to the present invention (4) is characterized by generating a substance.
  • the present invention (7) is characterized in that the plasma flow generation section is a microwave plasma flow generation section by electron cyclotron resonance, a plasma flow generation section by RF discharge, or a plasma flow generation section by helicon waves.
  • the induction fullerene generator according to the invention (5) or (6) The invention (8) is characterized in that a voltage of ⁇ 6 to ⁇ 8 V is applied to the grid, according to the inventions (4) to (7) This is one induction fullerene generator.
  • the present invention (9) is characterized in that the induction object is hydrogen gas, and a soot-like substance having hydrogenated fullerene, hydrogen atom-containing fullerene, or hydrogen molecule-containing fullerene force is generated.
  • (1) to (3) are one induction fullerene generator.
  • the induction object is a halogen gas, and a soot-like substance composed of halogenated fullerene or halogen-encapsulated fullerene is produced.
  • Displacement force One induction fullerene generator.
  • the present invention (11) includes a step of ionizing an induction object to generate a plasma flow, and controlling fullerenes while controlling the energy of the ionized induction object in the plasma flow. And a process for producing a induced fullerene.
  • the present invention (12) is the induction fullerene production method according to the present invention (11), comprising a step of controlling the density of the plasma flow.
  • the present invention (13) is characterized in that the induction object is nitrogen gas, and a soot-like substance having nitrogen atom-substituted heterofullerene, nitrogen atom-containing fullerene, or nitrogen molecule-containing fullerene force is generated.
  • the induction object is nitrogen gas
  • a soot-like substance having nitrogen atom-substituted heterofullerene, nitrogen atom-containing fullerene, or nitrogen molecule-containing fullerene force is generated.
  • an electric potential body is arranged downstream of a plasma flow into which fullerene has been introduced, and a voltage is supplied to the electric potential body to thereby reduce the energy of an ionized induction object in the plasma flow.
  • the method for producing a induced fullerene according to the invention (13) is characterized by controlling.
  • a negative voltage with a sheath potential difference of 10 to 50 V or 50 to 500 V is supplied to the potential body, so that a rod-like substance mainly having nitrogen atom substitution heterofullerene force, or mainly nitrogen
  • the method for producing induced fullerene according to the invention (14) is characterized in that a soot-like substance having atomic inclusion fullerene force is produced.
  • a negative voltage having a sheath potential difference of 10 to 50 V and 50 to 500 V is alternately supplied to the potential body, and is mainly composed of a nitrogen atom-substituted heterofullerene and a nitrogen atom-containing fullerene.
  • the method for producing a induced fullerene according to the present invention (14) is characterized by producing a substance.
  • the present invention (17) is characterized in that the induction object is hydrogen gas, and a soot-like substance having hydrogenated fullerene, hydrogen atom-containing fullerene, or hydrogen molecule-containing fullerene force is produced.
  • the induction object is hydrogen gas
  • a soot-like substance having hydrogenated fullerene, hydrogen atom-containing fullerene, or hydrogen molecule-containing fullerene force is produced.
  • the induction of the present invention (11) or (12) is characterized in that the object to be induced is a halogen gas, and a halogen-like fullerene or a soot-like substance having a fullerene strength of a rogen is produced. This is a fullerene generation method.
  • a plasma flow including an ionized induction object and fullerene is formed.
  • the voltage supplied to the potential body it is possible to control the irradiation energy of the ionized induction object in the plasma flow to the potential body. That is, the fullerene that accumulates on the potential body and the object to be guided to the fullerene that moves near the potential body
  • the collision energy can be controlled.
  • any one or a plurality of chemically modified fullerenes, heterofullerenes, and endohedral fullerenes can be selected and generated.
  • the soot-like material containing these induction fullerenes is deposited on a potential body or the like.
  • the density of the plasma flow can be controlled by adjusting the voltage supplied to the grid. That is, the voltage supplied to the grid can be adjusted so that the formation efficiency of the desired induction fullerene is optimized.
  • the amount of the hollow fullerene deposited on the potential body can be reduced without reacting with the nitrogen gas.
  • Hollow fullerene C and endohedral fullerene N @ C are
  • Heterofullerene CN has a property that is difficult to dissolve.
  • Negative voltage with a sheath potential difference of 50 to 500V which mainly generates endohedral fullerene N @ C
  • Mouth fullerene C N remains as a residue, improving the production efficiency of endohedral fullerene.
  • a high-density plasma flow can be obtained.
  • the nitrogen molecule N and its ion N + are isolated to form the monoatomic ion N +
  • a plasma flow can be generated without reducing the density.
  • the production rate of nitrogen-containing fullerene N @ C can be improved.
  • a plasma flow containing an ionized induction object and fullerene is formed.
  • one or more of chemically modified fullerenes, heterofullerenes and endohedral fullerenes can be preferentially selected and generated.
  • FIG. 1 is a schematic view of an induced fullerene generator according to one embodiment of the present invention.
  • FIG. 2 is a graph showing the results of analysis by LD ToF-Mass and ESR of the soot-like material generated while changing the voltage supplied to the potential body 105 in the apparatus of FIG.
  • FIG. 3 A graph showing the results of analyzing the rod-shaped material generated with a sheath potential difference of 200 V using LD TOF-Mass.
  • Fiber is a hollow carbon cluster material represented by Cn (n is an integer), in which carbon atoms are arranged in a spherical shape.
  • “Induced fullerene” is a general term for compounds formed by combining fullerenes and atoms or molecules. Chemically modified fullerene in which atoms or molecules are added to some of the carbon atoms forming fullerene, heterofullerene in which some of the carbon atoms forming fullerene are replaced with atoms or molecules other than carbon, internal Endohedral fullerenes having atoms or molecules.
  • “Induction target” is a general term for atoms or molecules that combine with fullerene to form induced fullerene. Nitrogen N, hydrogen H, lithium Li, sodium, potassium K, etc.
  • the "plasma floating potential” is a potential of a conductor in which a positive charge and a negative charge flowing into a conductor inserted into the plasma are equal.
  • One end of the measuring terminal which is a conductor force, is inserted into the plasma and a voltage is supplied to the other end. While changing this voltage, the current flowing through the measurement terminal is measured.
  • the supply voltage when no current flows through the measurement terminal is a floating potential.
  • the floating potential of the plasma consisting of the nitrogen atom ion N + and the electron e is -6 to -8V.
  • a mesh grid is inserted into the plasma flow to supply floating potential. At this time, the density of the plasma flow passing through the grid can be maximized.
  • the “soil-like substance” is a solid substance produced by a plasma method or an arc discharge method using an induction object and fullerene as raw materials. This soot-like substance contains induced fullerene and hollow fullerene, and is one of “materials containing induced fullerene and hollow fullerene”.
  • the “sheath potential difference” is the difference between the voltage supplied to the electrode arranged in the plasma and the space potential of the plasma in the vicinity of this electrode. By controlling the sheath potential difference, the energy with which ions in the plasma collide with the electrode can be adjusted.
  • FIG. 1 shows a schematic diagram of an induced fullerene generator according to an embodiment of the present invention.
  • nitrogen is introduced from the induction object inlet 110.
  • a microwave transmitter is connected to the microwave inlet 101, for example, a 2.45 GHz microwave is introduced.
  • the introduced nitrogen gas is ionized by electrons accelerated by a microwave electric field.
  • a plasma flow consisting of N + and electron e- is formed.
  • An electromagnet 103 is disposed around the high-density plasma flow generation chamber 102.
  • a direct current is supplied to the electromagnet 103. Due to this direct current, lines of magnetic force are generated in the high-density plasma flow generation chamber 102. Ions and electrons in the plasma flow are constrained by the magnetic field lines and rotate around the magnetic field lines. Since a 2.45 GHz microwave that resonates with the period of rotation of the electrons is supplied, electron cyclotron resonance increases the energy of the electrons. For that purpose, nitrogen molecular ion N + present in the plasma flow and
  • Nitrogen molecule N is dissociated by high-energy electrons to become single atom N, and
  • the density of the magnetic lines of force in the high-density plasma flow generation chamber 102 is not uniform. For example, by increasing the density of magnetic field lines in the microwave introduction port 101 and the grid 104 near high Engineering energy electrons remains a long time in a high-density plasma flow generating chamber 10 2, to facilitate the generation of nitrogen atomic ions N +.
  • Fullerene is introduced into the plasma flow generated in the high-density plasma flow generation chamber 102.
  • fullerene is introduced from the fullerene sublimation oven 106 by sublimation.
  • the grid 104 may be disposed upstream of the fullerene sublimation oven 106. By supplying a voltage from the voltage source 107 to the grid 104, the amount of ions passing through the grid is adjusted.
  • This grid 104 is made of, for example, mesh-like stainless steel. Further, by supplying a voltage of ⁇ 6 to ⁇ 8 V, which is a floating potential of the plasma consisting of nitrogen atom ion N + and electron e, the density of the plasma flow passing through the grid can be maximized.
  • An electric potential body 105 is disposed on the downstream side of the fullerene sublimation oven 106.
  • Potential body 1 05 Fullerene accumulates in this body.
  • Induction fullerenes such as @C and N @C are generated.
  • nitrogen atom ions N + collide with the moving fullerene to generate induced fullerene, which is deposited on the potential body 105.
  • a negative voltage is supplied to the potential body 105 to attract. Further, the difference between the sheath potential difference, that is, the space potential of the plasma near the potential body 105 and the voltage supplied to the potential body 105 is set to 10 to 50V.
  • the space potential of the plasma can be controlled in the high-density plasma flow generation chamber 102.
  • an electrode may be arranged in the plasma flow path, and the voltage may be supplied to this electrode for control.
  • a negative voltage of 60 to 500 V is supplied to the potential body 105.
  • Hollow fullerene C and endohedral fullerene N®C are soluble in toluene and immediately heterofullerene.
  • Len C N is difficult to dissolve. Moreover, the generation rate of endohedral fullerene N @ C is low
  • the potential difference between the potential body 105 and the sheath potential difference is 10 to 50 V, mainly heterofullerene C N
  • the negative voltage at which 60 is generated, and the sheath potential difference is 50 to 500 V, and the endohedral fullerene N @ C
  • the rod-like substance deposited on the body 105 may be ultrasonically stirred in, for example, toluene.
  • the endohedral fullerene N®C force S dissolves in toluene, leaving the heterofullerene C N as a residue.
  • the frequency of the pulse voltage is preferably 40 to 60 Hz.
  • the sheath potential difference in which the endohedral fullerene is mainly generated is 50 to 500 V
  • the fullerene is dimerized.
  • the potential body 105 may be a force cup type shown in a plane type, and the opening may be directed to the plasma flow. At this time, hollow fullerene C, induction fullerene, etc. Even if it collides with a certain part on the inner surface of 105 and is reflected, it accumulates on the other part of the potential body 105 and becomes easy to collect.
  • the sheath potential difference is preferably 100 to 300 V! / ⁇ . Furthermore, it is preferable to adjust the voltage supplied to the grid 104 so that the current flowing through the potential body becomes 2 to 8 mA. At this time, both the amount of the produced soot-like substance dissolved in a solvent such as toluene and the amount of endohedral fullerene N @ C contained in the soot-like substance are increased.
  • An electromagnet 109 is disposed around the downstream side of the high-density plasma flow generation chamber 102. By arranging the magnetite, the plasma flow flowing out from the high-density plasma flow generation chamber 102 is controlled to flow downstream without being diffused. Instead of the electromagnet 109, a permanent magnet may be arranged.
  • Means for generating a high-density plasma flow is not limited to that by electron cyclotron resonance.
  • RF discharge high frequency discharge
  • helicon wave may be used.
  • hydrogen gas When generating hydrogen atom-induced fullerene, hydrogen gas may be introduced from the induction target inlet 110.
  • a hydrogenated fullerene in which hydrogen atoms are attached to a part of carbon atoms forming the fullerene, a hydrogen atom-containing fullerene, a hydrogen molecule-containing fullerene, or the like is generated.
  • a gas containing a halogen atom is introduced from the induction target inlet 110.
  • a gas containing a halogen atom is introduced from the induction target inlet 110.
  • carbon tetrafluoride CF is introduced. Carbon tetrafluoride CF generates high-density plasma
  • Nitrogen gas was introduced from the guidance object introduction port 110 using the apparatus shown in Fig. 1, and a constant voltage of -7V was supplied to the grid 104.
  • a cage-like substance was generated.
  • LD TOF-Mass time-of-flight mass separation device by laser desorption ionization method
  • ESR electron spin resonance device
  • FIG. 2 shows the graph.
  • (A) is measured using LD TOF_Mass. Ratio of signal intensity of heterofullerene NC (mass number 722) to hollow fullerene C (mass number 720).
  • the unit of the vertical axis in (a) depends on the apparatus and does not indicate the weight ratio, molar ratio, or the like.
  • (B) is measured using ESR, for hollow fullerene C.
  • heterofullerene NC is often generated when the sheath potential difference is about 30V.
  • Fig. 3 is a graph showing the results of analyzing the rod-shaped material generated with a sheath potential difference of 200 V using LD TOF-Mass.
  • a suspension in which a powder of CHCA-cyan-4-hydroxycinnamic acid) was dissolved in toluene was used as a matrix.
  • the horizontal axis of the graph is the mass number
  • the vertical axis is the signal intensity
  • the signal intensity of the hollow fullerene (mass number 720) is 100. From this graph, nitrogen atom substitution heterofullerene NC (mass number 722), nitrogen atom inclusion
  • the present invention by adjusting the voltage supplied to the potential body, it is possible to control the collision energy of the ionized induction object in the plasma flow with the fullerene. As a result, it is possible to preferentially select one or more of chemically modified fullerenes, heterofullerenes, and endohedral fullerenes.
  • the yield can be improved. In particular, improved yields of nitrogen atom-derived fullerenes can be expected to be applied to superconducting materials, nonlinear optical materials, quantum computers, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 簡単な操作で、化学修飾フラーレン、ヘテロフラーレン、内包フラーレンのいずれかを選択して生成できる装置及び方法を提供する。  マイクロ波導入口101から、例えば磁力線の回りで回転運動している電子に共鳴する2.45GHzのマイクロ波を導入すると共に、誘導対象物導入口110から窒素ガスを導入する。そして高密度プラズマ流発生室102で窒素イオンN+から成るプラズマ流を形成する。このプラズマ流中に、フラーレン昇華オーブン106からフラーレンを導入する。フラーレン昇華オーブン106の下流側には電位体105を配置している。この電位体に供給する電圧を制御することにより、ヘテロフラーレンC60-XNX又は内包フラーレンN@C60を選択的に生成する。或いは両方の誘導フラーレンを生成して、中空のフラーレンが未反応のまま電位体に堆積する量を少なくする。両方の誘導フラーレンを生成した後は、化学処理等を施していずれか一方の誘導フラーレンを抽出して、その含有率を高めるようにしてもよい。

Description

明 細 書
誘導フラーレン生成装置及び生成方法
技術分野
[0001] 本発明は、超伝導材料、非線型光学材料、量子コンピュータなどへの応用が期待 されるヘテロフラーレン、内包フラーレンなどの誘導フラーレンの生成装置及び生成 方法に関する。特に誘導対象物力も成るプラズマ流をフラーレンに照射するときのェ ネルギーを調整することにより、目的とする誘導フラーレンを高収率に生成しょうとす るものである。
背景技術
[0002] 本出願人は、以下の方法で炭素原子の一部が窒素原子に置換したヘテロフラーレ ン C Nを生成していた。すなわち、窒素ガスカゝらプラズマ流を形成し、そのプラズ
60-X X
マ流中にフラーレンを昇華させる。プラズマ流の末端には、該プラズマ流を囲むよう に円筒を配置する。この円筒に、ヘテロフラーレンを含む煤状物質が堆積する。 発明の開示
発明が解決しょうとする課題
[0003] この方法よればへテロフラーレンと一緒に窒素原子内包フラーレン N@C も生成さ
60 れるが、その含有率は極めて低くなつている。すなわち、内包フラーレンの大量生産 には向かないという問題がある。
本発明は、簡単な操作でィ匕学修飾フラーレン、ヘテロフラーレン、内包フラーレン の!、ずれかを選択して生成できる装置及び方法を提供することを目的とする。
課題を解決するための手段
[0004] 本発明(1)は、誘導対象物をイオンィ匕してプラズマ流を発生するプラズマ流発生部 と、該プラズマ流にフラーレンを導入するフラーレン導入部と、該フラーレンが導入部 の下流側に配置され、プラズマ流中のイオンィ匕された誘導対象物のエネルギーを制 御する電位体とを有することを特徴とする誘導フラーレン生成装置である。
本発明(2)は、前記フラーレン導入部の上流側にグリッドを有することを特徴とする 本発明(1)の誘導フラーレン生成装置である。 本発明(3)は、前記電位体がカップ型であり、開口部がプラズマ流に向けて配置さ れることを特徴とする本発明(1)又は(2)の誘導フラーレン生成装置である。
本発明(4)は、前記誘導対象物が窒素ガスであり、窒素原子置換へテロフラーレン 、窒素原子内包フラーレン、又は窒素分子内包フラーレン力 成る煤状物質を生成 することを特徴とする本発明(1)乃至(3)の 、ずれか 1つの誘導フラーレン生成装置 である。
[0005] 本発明(5)は、シース電位差が 10〜50V又は 50〜500Vとなる負の電圧を前記電位 体に供給して、主に窒素原子置換へテロフラーレン力 成る煤状物質、又は主に窒 素原子内包フラーレンから成る煤状物質を生成することを特徴とする本発明(4)の誘 導フラーレン生成装置である。
本発明(6)は、シース電位差が 10〜50V、 50〜500Vとなる負の電圧を前記電位体 に交互に供給して、主に窒素原子置換へテロフラーレンと窒素原子内包フラーレン から成る煤状物質を生成することを特徴とする本発明 (4)の誘導フラーレン生成装置 である。
本発明(7)は、前記プラズマ流発生部が電子サイクロトロン共鳴によるマイクロ波プ ラズマ流発生部、 RF放電によるプラズマ流発生部、又はへリコン波によるプラズマ流 発生部であることを特徴とする本発明(5)又は (6)の誘導フラーレン生成装置である 本発明(8)は、前記グリッドに- 6〜- 8Vの電圧を印加することを特徴とする本発明( 4)乃至(7)の 、ずれか 1つの誘導フラーレン生成装置である。
[0006] 本発明(9)は、前記誘導対象物が水素ガスであり、水素化フラーレン、水素原子内 包フラーレン、又は水素分子内包フラーレン力 成る煤状物質を生成することを特徴 とする本発明(1)乃至(3)の 、ずれ力 1つの誘導フラーレン生成装置である。
本発明(10)は、前記誘導対象物がハロゲンガスであり、ハロゲンィ匕フラーレン又は ハロゲン内包フラーレンから成る煤状物質を生成することを特徴とする本発明(1)乃 至(3)の!、ずれ力 1つの誘導フラーレン生成装置である。
[0007] 本発明(11)は、誘導対象物をイオンィ匕してプラズマ流を発生する工程と、該プラズ マ流中のイオンィ匕された誘導対象物のエネルギーを制御しながら、フラーレンを導人 する工程とを有することを特徴とする誘導フラーレン生成方法である。
本発明(12)は、前記プラズマ流の密度を制御する工程を有することを特徴とする 本発明(11)の誘導フラーレン生成方法である。
本発明(13)は、前記誘導対象物が窒素ガスであり、窒素原子置換へテロフラーレ ン、窒素原子内包フラーレン、又は窒素分子内包フラーレン力も成る煤状物質を生 成することを特徴とする本発明(11)又は(12)の誘導フラーレン生成方法である。
[0008] 本発明(14)は、フラーレンを導入したプラズマ流の下流に電位体を配置し、該電 位体に電圧を供給することによりプラズマ流中のイオン化された誘導対象物のエネル ギーを制御することを特徴とする本発明(13)の誘導フラーレン生成方法である。 本発明(15)は、シース電位差が 10〜50V又は 50〜500Vとなる負の電圧を前記電 位体に供給して、主に窒素原子置換へテロフラーレン力 成る煤状物質、又は主に 窒素原子内包フラーレン力 成る煤状物質を生成することを特徴とする本発明(14) の誘導フラーレン生成方法である。
本発明(16)は、シース電位差が 10〜50V、 50〜500Vとなる負の電圧を前記電位体 に交互に供給して、主に窒素原子置換へテロフラーレンと窒素原子内包フラーレン から成る煤状物質を生成することを特徴とする本発明(14)の誘導フラーレン生成方 法である。
[0009] 本発明(17)は、前記誘導対象物が水素ガスであり、水素化フラーレン、水素原子 内包フラーレン、又は水素分子内包フラーレン力 成る煤状物質を生成することを特 徴とする本発明(11)又は(12)の誘導フラーレン生成方法である。
本発明(18)は、前記誘導対象物がハロゲンガスであり、ハロゲンィ匕フラーレン又は ノ、ロゲン内包フラーレン力 成る煤状物質を生成することを特徴とする本発明(11) 又は(12)の誘導フラーレン生成方法である。
発明の効果
[0010] 本発明(1)によれば、イオンィ匕された誘導対象物とフラーレンとを含むプラズマ流が 形成される。電位体に供給する電圧を調整することにより、プラズマ流中のイオン化さ れた誘導対象物の、電位体への照射エネルギーを制御できる。すなわち、電位体に 堆積して ヽるフラーレン、及び電位体近傍を移動して ヽるフラーレンへの誘導対象物 の衝突エネルギーを制御することができる。このことにより、化学修飾フラーレン、へ テロフラーレン、内包フラーレンのいずれか一つ、或いは複数を優先的に選択して生 成することができる。これらの誘導フラーレンを含む煤状物質は、電位体等に堆積す る。
[0011] 本発明(2)によれば、グリッドに供給する電圧を調整することにより、プラズマ流の 密度を制御することができる。すなわち、目的とする誘導フラーレンの形成効率が最 適になるように、グリッドに供給する電圧を調整できる。
[0012] 本発明(3)によれば、中空のフラーレン、生成された誘導フラーレン等が電位体内 面のある部分に衝突して反射しても、電位体の他の部分に堆積し、それらの回収が 容易になる。
[0013] 本発明(4)〜(10)のように、本発明による誘導フラーレン生成装置により、様々な 誘導フラーレンを生成することができる。
[0014] 本発明(6)によれば、中空のフラーレンが窒素ガスと反応しな 、で電位体に堆積す る量を少なくすることができる。中空のフラーレン C と内包フラーレン N@C はトノレエ
60 60
ンに溶けやすぐヘテロフラーレン C Nは溶けにくい性質を有する。本発明では、
60-X X
主にへテロフラーレン C Nが生成されるシース電位差が 10〜50Vとなる負の電圧と
60
、主に内包フラーレン N@C が生成されるシース電位差が 50〜500Vとなる負の電圧
60
を、電位体に交互に供給する。そのことにより、中空のフラーレンが未反応のまま堆 積するのを、少なくすることができる。その後、電位体に堆積した煤状物質を、トルェ ンに入れて超音波撹拌する。このとき、内包フラーレン N@C 力トルエンに溶け、へテ
60
口フラーレン C Nが残渣として残るので、内包フラーレンの生成効率を向上させるこ
60
とがでさる。
[0015] 本発明(7)によれば、高密度のプラズマ流が得られる。高密度プラズマ流中では、 窒素分子 Nとそのイオン N +が単離して単原子イオン N+となり、窒素原子内包フラーレ
2 2
ン N@C を生成することができる。
60
[0016] 本発明(8)によれば、密度を減少させることなくプラズマ流を発生できる。本発明(6 )と組み合わせることにより、窒素原子内包フラーレン N@C の生成率を向上させるこ
60
とがでさる。 [0017] 本発明(11)によれば、イオンィ匕された誘導対象物とフラーレンとを含むプラズマ流 が形成される。プラズマ流中のイオンィ匕された誘導対象物のエネルギーを制御するこ とにより、化学修飾フラーレン、ヘテロフラーレン、内包フラーレンのいずれか一つ、 或いは複数を優先的に選択して生成することができる。
[0018] 本発明(12)によれば、密度を減少させることなくプラズマ流の発生が可能となり、 誘導フラーレンの生成効率を向上させることができる。
[0019] 本発明(13)〜(18)のように、本発明による誘導フラーレン生成方法により、様々な 誘導フラーレンを生成することができる。
[0020] 本発明(14)によれば、プラズマ流中のイオン化された誘導対象物のエネルギーの 制御を容易に行なうことができる。すなわち、優先して生成しょうとする誘導フラーレ ンの選択を、容易に行なうことができる。
図面の簡単な説明
[0021] [図 1]本発明の一実施例である誘導フラーレン生成装置の概略図である。
[図 2]図 1の装置で、電位体 105に供給する電圧を変えながら生成した煤状物質を、 LD ToF-Mass及び ESRで分析した結果を示すグラフである。
[図 3]シース電位差 200Vで生成した煤状物質を LD TOF-Massで分析した結果を示 すグラフである。
符号の説明
[0022] 101 :マイクロ波導入口
102:高密度プラズマ流発生室
103 :電磁石
104 :グリッド、
105 :電位体
106:フラーレン昇華オーブン
107、 108 :電圧源
109 :電磁石
110 :誘導対象物導入口
発明を実施するための最良の形態 [0023] 以下、本発明に依る各用語の意義について明らかにすると共に、本発明の最良形 態について説明する。
[0024] 「フラーレン」とは、 Cn (nは整数)で示され、炭素原子が球状に配置して 、る中空の 炭素クラスター物質である。
「誘導フラーレン」とは、フラーレンと、原子又は分子とが結合してできたィ匕合物の総 称である。フラーレンを形成している炭素原子の一部に原子又は分子が付加した化 学修飾フラーレン、フラーレンを形成して ヽる炭素原子の一部が炭素以外の原子又 は分子に置換したヘテロフラーレン、内部に原子又は分子を有する内包フラーレン 等がある。
「誘導対象物」とは、フラーレンと結合して誘導フラーレンを形成する原子又は分子 の総称である。窒素 N、水素 H、リチウム Li、ナトリウムお、カリウム K等がある。
2 2
[0025] 「プラズマの浮遊電位」とは、プラズマ中に挿入した導体に流れ込む正電荷と負電 荷量が等しくなる導体の電位である。導体力 成る測定端子の一端をプラズマ中に 挿入し、他端に電圧を供給する。この電圧を変えながら、該測定端子に流れる電流 を測定する。この測定端子に電流が流れないときの供給電圧が、浮遊電位である。 窒素原子イオン N+と電子 e一力 成るプラズマの浮遊電位は、 -6〜- 8Vである。このプ ラズマ流中にメッシュ状のグリッドを挿入し、浮遊電位を供給する。このとき、該グリッド を通過するプラズマ流の密度を最大にすることができる。
「煤状物質」とは、誘導対象物及びフラーレンを原料に用いて、プラズマ法又はァ ーク放電法等により生成される固形物質である。この煤状物質には、誘導フラーレン 、中空のフラーレンが含まれており、「誘導フラーレンと中空のフラーレンとを含む材 料」の一つである。
「シース電位差」とは、プラズマ中に配置された電極に供給する電圧と、この電極近 辺のプラズマの空間電位との差である。シース電位差を制御することによって、プラ ズマ中のイオンが電極に衝突するエネルギーを調整することができる。
[0026] (窒素原子誘導フラーレン生成方法及び生成装置)
図 1に、本発明の一実施例である誘導フラーレン生成装置の概略図を示す。
誘導フラーレン生成装置を真空引きした後、誘導対象物導入口 110から例えば窒 素ガスを導入する。マイクロ波導入口 101にはマイクロ波発信器が接続されており、 例えば 2.45GHzのマイクロ波が導入される。導入された窒素ガスは、マイクロ波電場 により加速された電子で、イオンィ匕される。そして窒素分子イオン N +、窒素原子ィォ
2
ン N+、電子 e—から成るプラズマ流が形成される。
[0027] 高密度プラズマ流発生室 102の回りには、電磁石 103を配置している。電磁石 103 には、直流電流を供給する。この直流電流により、高密度プラズマ流発生室 102に 磁力線が発生する。プラズマ流中のイオンと電子は、この磁力線に束縛されて、磁力 線の回りを回転する。この電子の回転運動の周期と共鳴する 2.45GHzのマイクロ波を 供給しているので、電子サイクロトロン共鳴により、電子のエネルギーは高められる。 そのために、プラズマ流中に存在する窒素分子イオン N +や、イオンィ匕していな力つた
2
窒素分子 Nは、高エネルギー電子により解離して単原子 Nになると共に、窒素原子ィ
2
オン N+になる。
[0028] 高密度プラズマ流発生室 102内の磁力線の密度は、均一ではない。例えば、マイ クロ波導入口 101及びグリッド 104近傍での磁力線の密度を高くすることにより、高工 ネルギー電子は高密度プラズマ流発生室 102に長い時間留まり、窒素原子イオン N+ の発生を促進する。
[0029] 高密度プラズマ流発生室 102で発生したプラズマ流に、フラーレンを導入する。例 えば、フラーレン昇華オーブン 106からフラーレンを昇華することにより、導入する。
[0030] フラーレン昇華オーブン 106の上流側に、グリッド 104を配置してもよい。電圧源 10 7からグリッド 104に電圧を供給することにより、該グリッドを通過するイオン量を調整 する。このグリッド 104は、例えばメッシュ状のステンレスで作る。そして、窒素原子ィ オン N+と電子 e一力 成るプラズマの浮遊電位である- 6〜- 8Vの電圧を供給することに より、該グリッドを通過するプラズマ流の密度を最大にすることができる。
[0031] フラーレン昇華オーブン 106の下流側には、電位体 105を配置している。電位体 1 05〖こは、フラーレンが堆積する。そこにプラズマ流中の窒素原子イオン N+が衝突する ことにより、フラーレンを形成している炭素原子の一部を窒素原子に置換したヘテロ フラーレン C N、窒素原子又は窒素分子がフラーレンに内包した内包フラーレン N
60
@C 、N @C 等の誘導フラーレンが生成される。 [0032] 或いは移動中のフラーレンに窒素原子イオン N+が衝突して誘導フラーレンが生成 され、電位体 105に堆積する。
[0033] 電圧源 108から電位体 105に電圧を供給することにより、窒素原子イオン N+カ^ラ 一レンに衝突するエネルギーを調整して、優先して生成する誘導フラーレンを選択 する。
[0034] 例えばへテロフラーレン C Nを優先的に生成する場合は、窒素原子イオン N+を引
60
き寄せるために電位体 105に負の電圧を供給する。更に、シース電位差、すなわち 電位体 105近辺のプラズマの空間電位と、電位体 105に供給する電圧との差が 10〜 50Vとなるようにする。プラズマの空間電位は、高密度プラズマ流発生室 102で制御 することができる。或いはプラズマ流路中に電極を配置し、この電極に電圧を供給す ることにより ff¾御するようにしてもよ 、。
[0035] 内包フラーレン N@C を優先的に生成する場合は、シース電位差が 50
60 〜500Vとな る負の電圧を、電位体 105に供給する。
[0036] 中空のフラーレン C と内包フラーレン N®C はトルエンに溶けやすぐヘテロフラー
60 60
レン C Nは溶けにくい性質を有する。しかも内包フラーレン N@C の生成率は低い
60 60
。そこで電位体 105に、シース電位差が 10〜50Vとなって主にへテロフラーレン C N
60 が生成される負の電圧と、シース電位差が 50〜500Vとなって主に内包フラーレン N@ C
60が生成される負の電圧に、交互に変わるパルス電圧を供給する。そして、フラーレ ン C が中空のまま電位体 105に堆積するのをできるだけ少なくする。その後、電位
60
体 105に堆積した煤状物質を、例えばトルエンに入れて超音波撹拌するようにしても よい。このとき、内包フラーレン N®C 力 Sトルエンに溶け、ヘテロフラーレン C Nが残
60 60 渣として残るので、内包フラーレンの含有率を向上させることができる。
[0037] パルス電圧の周波数は 40〜60Hzであることが好ましい。また主に内包フラーレンが 生成されるシース電位差 50〜500Vの時間が長いと、フラーレンをダイマー化が起こる 。ダイマー化を防ぐために、シース電位差が 50〜500Vになっているパルス時間を短く した方がょ 、。 30%以下にすることが好まし 、。
[0038] 図 1では電位体 105を平面型で示している力 カップ型にして開口部をプラズマ流 に向けるようにしてもよい。このとき中空のフラーレン C 、誘導フラーレン等が電位体 105内面のある部分に衝突して反射しても、電位体 105の他の部分に堆積し、回収 が容易になる。
カップ型の電位体を使用したとき、シース電位差は 100〜300Vであることが好まし!/ヽ 。更に、グリッド 104に供給する電圧等を調整して、電位体に流れる電流が 2〜8mA になるようにすることが好ましい。このとき、生成された煤状物質がトルエン等の溶媒 に溶ける量、及び煤状物質に含まれる内包フラーレン N@C の量が共に多くなる。ま
60
た電位体に流れる電流が 10mAを超えると溶解度が急激に減少する力 これはフラー レンがダイマー化するためと考えられる。
[0039] 高密度プラズマ流発生室 102の下流側の回りには、電磁石 109を配置する。電磁 石を配置することにより、高密度プラズマ流発生室 102から流出したプラズマ流は、 拡散しないで、下流側に流れるように制御される。電磁石 109の代わりに、永久磁石 を配置してもよい。
[0040] 高密度プラズマ流を発生する手段は、電子サイクロトロン共鳴によるものに限定され ない。例えば RF放電 (高周波放電)によるもの、ヘリコン波によるもの等を用いてもよ い。
[0041] (その他の誘導フラーレン生成方法及び生成装置)
水素原子誘導フラーレンを生成する場合は、誘導対象物導入口 110から水素ガス を導入すればよい。電位体 105に供給する電圧を調整することにより、フラーレンを 形成している炭素原子の一部に水素原子が付着した水素化フラーレン、水素原子内 包フラーレン、水素分子内包フラーレン等を生成する。
[0042] ノ、ロゲン原子誘導フラーレンを生成する場合は、誘導対象物導入口 110からハロ ゲン原子を含むガスを導入すればょ 、。例えばフッ素原子誘導フラーレンを生成す る場合は、四フッ化炭素 CFを導入する。四フッ化炭素 CFは、高密度プラズマ発生
4 4
室 102で解離、電離する。そして、電子を放出した三フッ化炭素イオン CF +、又は電
3 子を付着したフッ素イオン F—になる。グリッド 104に供給する電圧を調整することによ り、フッ素イオン F—力 成るプラズマ流を形成する。このプラズマ流にフラーレンを導 入して、電位体 105に供給する電圧を調整することにより、フッ化フラーレン、フッ素 原子内包フラーレン等を生成する。 [0043] またアルカリ金属から誘導フラーレンを生成する場合は、アルカリ金属の蒸気を高 温の金属板に吹き付けることにより、プラズマ流を発生させるようにしてもよい。
実施例
[0044] 図 1に示した装置で誘導対象物導入口 110から窒素ガスを導入し、グリッド 104〖こ は一定の電圧- 7Vを供給した。また電位体 105に供給する電圧を変えながら、煤状 物質を生成した。そして、 LD TOF-Mass (レーザー脱離イオンィ匕法による飛行時間 型質量分離装置)と、 ESR (電子スピン共鳴装置)とを用いて、各電圧で生成された煤 状物質に含まれる成分を調べた。
[0045] 図 2にそのグラフを示す。(a)は LD TOF_Massを用いて測定したもので、中空のフラ 一レン C (質量数 720)に対するヘテロフラーレン NC (質量数 722)の信号強度の比
60 59
の変化を示している。(a)の縦軸の単位は装置に依存しており、重量比、モル比等を 示すものではない。(b)は ESRを用いて測定したもので、中空のフラーレン C に対する
60 内包フラーレン N@C の重量比の変化を示している。横軸は、共にシース電位差であ
60
る。
[0046] これらのグラフ力ら、ヘテロフラーレン NC はシース電位差が約 30Vのときに多く生
59
成され、内包フラーレンは 50Vを超えたときに多く生成されることが分かる。
[0047] また図 3は、シース電位差 200Vで生成した煤状物質を LD TOF-Massで分析した結 果を示すグラフである。分析する際、 CHCA —シァノ— 4—ヒドロキシけい皮酸)の 粉末をトルエンの溶力した懸濁液を、マトリクスとして用いた。グラフの横軸は質量数 、縦軸は信号強度であり、中空のフラーレン (質量数 720)の信号強度を 100としている 。このグラフから、窒素原子置換へテロフラーレン NC (質量数 722)、窒素原子内包
59
フラーレン N@C (質量数 734)、窒素分子内包フラーレン N @C60 (質量数 748)が生
60 2
成されていることが分かる。
産業上の利用可能性
[0048] 本発明によれば、電位体に供給する電圧を調整することにより、プラズマ流中のィ オンィ匕された誘導対象物のフラーレンへの衝突エネルギーを制御することができる。 このことにより、化学修飾フラーレン、ヘテロフラーレン、内包フラーレンのいずれか一 つ、或いは複数を優先的に選択して生成することができ、希望する誘導フラーレンの 収率を向上させることができる。特に窒素原子誘導フラーレンの収率が向上すること により、超伝導材料、非線型光学材料、量子コンピュータ等への応用が期待できる。

Claims

請求の範囲
[1] 誘導対象物をイオンィ匕してプラズマ流を発生するプラズマ流発生部と、該プラズマ流 にフラーレンを導入するフラーレン導入部と、該フラーレンが導入部の下流側に配置 され、プラズマ流中のイオンィ匕された誘導対象物のエネルギーを制御する電位体と を有することを特徴とする誘導フラーレン生成装置。
[2] 前記フラーレン導入部の上流側にグリッドを有することを特徴とする請求項 1記載の 誘導フラーレン生成装置。
[3] 前記電位体はカップ型であり、開口部がプラズマ流に向けて配置されることを特徴と する請求項 1又は 2記載の誘導フラーレン生成装置。
[4] 前記誘導対象物は窒素ガスであり、窒素原子置換へテロフラーレン、窒素原子内包 フラーレン、又は窒素分子内包フラーレン力 成る煤状物質を生成することを特徴と する請求項 1乃至 3のいずれか 1項記載の誘導フラーレン生成装置。
[5] シース電位差が 10〜50V又は 50〜500Vとなる負の電圧を前記電位体に供給して、主 に窒素原子置換へテロフラーレン力 成る煤状物質、又は主に窒素原子内包フラー レンから成る煤状物質を生成することを特徴とする請求項 4記載の誘導フラーレン生 成装置。
[6] シース電位差が 10〜50V、 50〜500Vとなる負の電圧を前記電位体に交互に供給して 、主に窒素原子置換へテロフラーレンと窒素原子内包フラーレン力 成る煤状物質 を生成することを特徴とする請求項 4記載の誘導フラーレン生成装置。
[7] 前記プラズマ流発生部は電子サイクロトロン共鳴によるマイクロ波プラズマ流発生部 、 RF放電によるプラズマ流発生部、又はへリコン波によるプラズマ流発生部であるこ とを特徴とする請求項 5又は 6記載の誘導フラーレン生成装置。
[8] 前記グリッドに- 6〜- 8Vの電圧を印加することを特徴とする請求項 4乃至 7の 、ずれ 力 1項記載の誘導フラーレン生成装置。
[9] 前記誘導対象物は水素ガスであり、水素化フラーレン、水素原子内包フラーレン、又 は水素分子内包フラーレン力 成る煤状物質を生成することを特徴とする請求項 1乃 至 3の 、ずれか 1項記載の誘導フラーレン生成装置。
[10] 前記誘導対象物はハロゲンガスであり、ハロゲンィ匕フラーレン又はハロゲン内包フラ 一レン力 成る煤状物質を生成することを特徴とする請求項 1乃至 3のいずれ力 1項 記載の誘導フラーレン生成装置。
[11] 誘導対象物をイオンィ匕してプラズマ流を発生する工程と、該プラズマ流中のイオンィ匕 された誘導対象物のエネルギーを制御しながら、フラーレンを導入する工程とを有す ることを特徴とする誘導フラーレン生成方法。
[12] 前記プラズマ流の密度を制御する工程を有することを特徴とする請求項 11記載の誘 導フラーレン生成方法。
[13] 前記誘導対象物は窒素ガスであり、窒素原子置換へテロフラーレン、窒素原子内包 フラーレン、又は窒素分子内包フラーレン力 成る煤状物質を生成することを特徴と する請求項 11又は 12記載の誘導フラーレン生成方法。
[14] フラーレンを導入したプラズマ流の下流に電位体を配置し、該電位体に電圧を供給 することによりプラズマ流中のイオンィ匕された誘導対象物のエネルギーを制御するこ とを特徴とする請求項 13記載の誘導フラーレン生成方法。
[15] シース電位差が 10〜50V又は 50〜500Vとなる負の電圧を前記電位体に供給して、主 に窒素原子置換へテロフラーレン力 成る煤状物質、又は主に窒素原子内包フラー レンから成る煤状物質を生成することを特徴とする請求項 14記載の誘導フラーレン 生成方法。
[16] シース電位差が 10〜50V、 50〜500Vとなる負の電圧を前記電位体に交互に供給して 、主に窒素原子置換へテロフラーレンと窒素原子内包フラーレン力 成る煤状物質 を生成することを特徴とする請求項 14記載の誘導フラーレン生成方法。
[17] 前記誘導対象物は水素ガスであり、水素化フラーレン、水素原子内包フラーレン、又 は水素分子内包フラーレン力 成る煤状物質を生成することを特徴とする請求項 11 又は 12記載の誘導フラーレン生成方法。
[18] 前記誘導対象物はハロゲンガスであり、ハロゲンィ匕フラーレン又はハロゲン内包フラ 一レンから成る煤状物質を生成することを特徴とする請求項 11又は 12記載の誘導フ ラーレン生成方法。
PCT/JP2006/307241 2005-11-16 2006-04-05 誘導フラーレン生成装置及び生成方法 WO2007057994A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-331145 2005-11-16
JP2005331145 2005-11-16

Publications (1)

Publication Number Publication Date
WO2007057994A1 true WO2007057994A1 (ja) 2007-05-24

Family

ID=38048385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307241 WO2007057994A1 (ja) 2005-11-16 2006-04-05 誘導フラーレン生成装置及び生成方法

Country Status (1)

Country Link
WO (1) WO2007057994A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2509721C1 (ru) * 2012-07-05 2014-03-20 Закрытое акционерное общество "Инновационный центр "С & С" Способ получения материала, содержащего фуллерен и кремний

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001970A (ja) * 2003-06-16 2005-01-06 Sony Corp 窒素含有炭素系材料及びその製造方法
JP2005097708A (ja) * 2003-09-26 2005-04-14 Ideal Star Inc 薄膜堆積装置、薄膜評価方法、及び薄膜堆積方法
JP2005179090A (ja) * 2003-12-17 2005-07-07 Ideal Star Inc 内包フラーレンの製造装置、及び、内包フラーレンの製造方法
JP2005206408A (ja) * 2004-01-21 2005-08-04 Ideal Star Inc 内包フラーレンの製造装置、及び、内包フラーレンの製造方法
JP2005272159A (ja) * 2004-03-23 2005-10-06 Sony Corp 内包フラーレンの製造方法及び製造装置
JP2006111460A (ja) * 2004-10-12 2006-04-27 Ideal Star Inc 内包フラーレンの製造方法、及び、内包フラーレンの製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001970A (ja) * 2003-06-16 2005-01-06 Sony Corp 窒素含有炭素系材料及びその製造方法
JP2005097708A (ja) * 2003-09-26 2005-04-14 Ideal Star Inc 薄膜堆積装置、薄膜評価方法、及び薄膜堆積方法
JP2005179090A (ja) * 2003-12-17 2005-07-07 Ideal Star Inc 内包フラーレンの製造装置、及び、内包フラーレンの製造方法
JP2005206408A (ja) * 2004-01-21 2005-08-04 Ideal Star Inc 内包フラーレンの製造装置、及び、内包フラーレンの製造方法
JP2005272159A (ja) * 2004-03-23 2005-10-06 Sony Corp 内包フラーレンの製造方法及び製造装置
JP2006111460A (ja) * 2004-10-12 2006-04-27 Ideal Star Inc 内包フラーレンの製造方法、及び、内包フラーレンの製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HATAKEYAMA R.: "Plasma o Katsuyo shite Shinki Nano Kozo o Tsukuru", BUTSURI, vol. 57, no. 11, 2002, pages 804 - 812, XP003009696 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2509721C1 (ru) * 2012-07-05 2014-03-20 Закрытое акционерное общество "Инновационный центр "С & С" Способ получения материала, содержащего фуллерен и кремний

Similar Documents

Publication Publication Date Title
JP4814986B2 (ja) カーボンナノチューブ成長方法
JP2007511064A (ja) カーボンナノチューブ電子イオン化装置
RU2455119C2 (ru) Способ получения наночастиц
JP5860519B2 (ja) 材料膜の製造方法
JP2008280195A (ja) Cnt成長方法
JP2008112580A (ja) イオンフロー制御型プラズマ源、及び、誘導フラーレンの製造方法
JP2003282298A (ja) ドーピング装置
JP2010277871A (ja) 電子サイクロトロン共鳴イオン源装置
WO2007057994A1 (ja) 誘導フラーレン生成装置及び生成方法
Rahman Ion sources for use in research and low energy accelerators
JP2007005021A (ja) プラズマ源、フラーレンベース材料の製造方法及び製造装置
JP5065681B2 (ja) 誘導フラーレン製造装置及び製造方法並びに誘導フラーレン
JPH05116925A (ja) フラーレン類の製造装置
CN114540783A (zh) 一种高效离化的离子注入方法
JP6371712B2 (ja) プラズマ生成方法及び内包フラーレンの生成方法
TWI321810B (en) Plasma enhanced sputtering method and apparatus
WO2005054127A1 (ja) 誘導フラーレンの製造装置及び製造方法
JPH0578849A (ja) 有磁場マイクロ波プラズマ処理装置
AU602109B2 (en) Improvements in plasma generators
JP2007161495A (ja) フラーレンベース材料の製造方法及び製造装置
JP2007207503A (ja) プラズマ流源及びプラズマ流発生方法、並びに前記プラズマ流を用いた誘導フラーレン製造方法及び製造装置
Zykov et al. Magnetron sputtering system for synthesis of dielectric coatings
Kohno et al. Heavy ion acceleration in the IPCR 160 cm cyclotron
WO2006013974A1 (ja) 金属内包炭素クラスター製造装置用プラズマイオン源
JP2007331953A (ja) 原子内包シリコンクラスター、及び、その製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06731189

Country of ref document: EP

Kind code of ref document: A1