WO2007056952A1 - Moteur ultrasonique polyedrique entraine par filetage - Google Patents

Moteur ultrasonique polyedrique entraine par filetage Download PDF

Info

Publication number
WO2007056952A1
WO2007056952A1 PCT/CN2006/003088 CN2006003088W WO2007056952A1 WO 2007056952 A1 WO2007056952 A1 WO 2007056952A1 CN 2006003088 W CN2006003088 W CN 2006003088W WO 2007056952 A1 WO2007056952 A1 WO 2007056952A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
thread
ultrasonic motor
driven
Prior art date
Application number
PCT/CN2006/003088
Other languages
English (en)
French (fr)
Inventor
Tieying Zhou
Cunyue Lu
Yu Chen
Deyong Fu
Xiaoping Hu
Yi Li
Bin Tian
Zhengping Wang
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to EP06817834A priority Critical patent/EP1959511B1/en
Priority to JP2008540432A priority patent/JP4873269B2/ja
Priority to CA2629948A priority patent/CA2629948C/en
Priority to KR1020087014560A priority patent/KR101056693B1/ko
Priority to US12/094,029 priority patent/US7902723B2/en
Priority to ES06817834T priority patent/ES2399915T3/es
Publication of WO2007056952A1 publication Critical patent/WO2007056952A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0095Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing combined linear and rotary motion, e.g. multi-direction positioners
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Definitions

  • the invention belongs to the field of ultrasonic applications, and in particular relates to a structural design of a thread drive system for a polyhedral tubular ultrasonic motor. Background technique
  • Piezoelectric ultrasonic motor is a driving mechanism made of a specific structure by utilizing the inverse piezoelectric effect of piezoelectric material. It is generally composed of piezoelectric ceramics, stator, rotor, pre-pressure mechanism, transmission mechanism and other functional components. It utilizes the inverse piezoelectric effect of piezoelectric ceramics to generate ultrasonic vibrations on the stator surface and to drive the rotor motion by friction between the stator and the rotor. Ultrasonic motors have the following features superior to ordinary electromagnetic motors:
  • the start and stop response is fast, and the response time is less than 1 millisecond.
  • FIG. 1 is a structural view of a polyhedral tubular ultrasonic motor.
  • Fig. 1 (1) shows the structure of the core member, and includes a vibrating body composed of a stator 13 and electrostrictive elements (piezoelectric ceramic sheets) 11, 12 attached to the outer surface thereof. They may be piezoelectric tubes divided into multiple electrodes; or a plurality of piezoelectric sheets may be bonded to the outer surface of the piezoelectric tube (the polyhedral tube is made of a metal material or a metal conductive layer on the surface in contact with the piezoelectric sheet) )forming.
  • the inner surface of the vibrating body is a smooth torus.
  • the rotor employs a circular tube of a torus 15 with a slit 14.
  • the driving principle of the traveling wave ultrasonic motor is used to apply a corresponding driving voltage to the piezoelectric ceramic piece, and the traveling wave formed on the surface of the vibrating body can be rotated relative to the toroidal body.
  • the incision in the torus 15 is to add a pre-pressure to the contact surface of the rotor.
  • FIG. 1 (2) A threaded transmission system for this application is shown in Figure 1 (2).
  • the lens barrel 15 (corresponding to the above-described rotor structure) has a thread at its front end portion. It does not move in the device.
  • 13 is a polyhedral tubular ring, and the outer surface is bonded to the piezoelectric ceramic sheets 11, 12 (corresponding to the above-described vibrating body structure).
  • the front bracket 16 is bonded to the front end of the polyhedron tube 13, and is formed integrally with the piezoelectric ceramic sheets 11, 12. The front end portion of the front bracket 16 is threaded and engaged with the thread on the front end of the lens barrel 15.
  • the focus lens group is mounted and fixed to the front bracket by a fixing ring, and a thread is formed at the tail end of the front bracket, and the thread is engaged with the thread on the left end of the lens barrel.
  • the vibrating body is bonded to the end of the front bracket, and the inner surface of the vibrating body is in contact with the outer surface of the barrel.
  • the piezoelectric ceramic is excited by an electrical signal, the piezoelectric sheet 11 12,
  • the polyhedron 13 is driven to rotate relative to the lens barrel 15 and drives the front bracket 16 to rotate. Forming a toroidal drive with the outer surface of the barrel.
  • the left end of the lens barrel is engraved with a thread, and as a result of the relative rotation of the front bracket and the thread at the front end of the lens barrel, the front bracket can be moved in the axial direction. It becomes a linear motion and achieves the purpose of focusing.
  • This is called a threaded drive system.
  • the piezoelectric excitation signal is introduced through a contact switch.
  • Fig. 2 (1) (2) is a schematic structural view of an ultrasonic motor outputted by a polyhedral tubular taper shaft, wherein the inner surface of the stator 21 is a tapered tooth 22, and the outer surface thereof is adhered with a piezoelectric ceramic 23 to constitute a vibrating body.
  • the inside is a tapered shaft body that is in contact with the tapered teeth 22 as the rotor 24.
  • Figure 2 (3) is an assembly diagram of the structure for the robot joint.
  • a motor cover 27 is sheathed on the outer surface of the vibrating body, and a front end cover 25 and a rear end cover 26 are attached to the both ends of the vibrating pad 29, and the front end cap is fixed integrally with the motor cover 27 by a fastening screw 28.
  • This structure directly transmits the rotational motion of the vibrating body to the rotor.
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide a polyhedral tubular ultrasonic motor thread drive system, which has a simple structure, and the relative motion between the stator and the rotor is directly through the thread contact, and the rotary motion can be performed. Change to a linear motion.
  • Other transmission mechanisms can be omitted, the application structure is simpler and more compact, and it can be better adapted to miniaturization, and has broad application prospects in the fields of micro-mechanical and optical focusing.
  • the thread-driven polyhedral ultrasonic motor according to the present invention is composed of a stator, a rotor and a plurality of piezoelectric ceramic sheets integrally bonded to the stator or the rotor; wherein the surface of the stator in contact with the rotor is threaded
  • the rotor also has a thread that mates with the stator.
  • the stator may be clamped at both ends; it may also be clamped at one end.
  • the external or internal threads of the stator and the corresponding rotor may be all or part of the body (either upper or middle or lower).
  • the piezoelectric ceramic piece may be bonded to the stator as a vibrating body or bonded to the rotor to form a vibrating body, and the bonding surface of the stator or the rotor and the piezoelectric ceramic is a polyhedron.
  • the stator may be sleeved on the outside of the rotor or in the rotor.
  • the number of the piezoelectric ceramic sheets is a multiple of 3 or 4; or the number of arrays of in-plane curved traveling waves or standing waves 1, 2, 3 or multiples thereof, and corresponding excitation modes.
  • the invention has the advantages of simple structure, direct contact between the stator and the rotor through the thread, and the stator drives the rotor through the thread, which can save other transmission mechanisms, can be better suited for miniaturization, and has application prospects in the fields of micro-mechanical and optical focusing.
  • FIG. 1 is a schematic structural view of a conventional polyhedral tubular ultrasonic motor, wherein FIG. 1 (1) is a core component.
  • the structure of Figure 1 (2) is a schematic diagram of a threaded drive system to which the structure is applied.
  • FIG. 2 is a schematic structural view of an existing ultrasonic motor of a polyhedral tubular tapered shaft output, wherein FIG. 2(1), (2) are the structure of the core component, and FIG. 2 (3) is the structure for the robot Assembly diagram of the joint.
  • Embodiment 3 is a schematic structural view of Embodiment 1 of a thread drive system for a polyhedral tubular ultrasonic motor according to the present invention.
  • Fig. 4 is a structural schematic view showing the second embodiment of the tetrahedral tubular internal stator thread drive system of the present invention.
  • Fig. 5 is a structural schematic view showing the third embodiment of the octahedral tubular external stator screw drive system of the present invention.
  • Figure 6 is a cross-sectional view showing the structure of a system for driving an ultrasonic motor with a pretensioning (tension) force spring according to an embodiment of the present invention
  • Figure 7 is a cross-sectional view showing the structure of a system for driving an ultrasonic motor with a rotor cap and a pretensioning (tension) force spring according to an embodiment of the present invention
  • Figure 8 is a cross-sectional structural view showing a system for driving a double stator ultrasonic motor with a pretensioning (tension) force spring according to a sixth embodiment of the present invention
  • Figure 9 is a cross-sectional structural view showing a system for driving a double stator ultrasonic motor with a pretensioning (tension) force U-shaped elastic piece according to a seventh embodiment of the present invention.
  • Figure 10 is a cross-sectional structural view showing a double-rotor ultrasonic motor thread drive system with a pretensioning (tension) force spring according to an embodiment of the present invention
  • Figure 11 is a cross-sectional structural view showing the system of a double-rotor ultrasonic motor with a pre-tensioning (tension) force U-shaped elastic piece according to the embodiment of the present invention
  • Figure 12 is a schematic cross-sectional view showing the system of a double-rotor ultrasonic motor with a magnetic ring driven by a magnetic ring according to a tenth embodiment of the present invention.
  • Fig. 13 is a structural schematic view showing the thread drive of a single piezoelectric sheet excited standing wave ultrasonic motor according to Embodiment 11 of the present invention. Detailed ways
  • Embodiment 1 A 12-port tubular ultrasonic motor driven by a thread, the structure of which is shown in FIG. 3, comprising a total of 12 piezoelectric ceramic sheets 31 respectively attached to the outer surface of the 12-face tube 32 to constitute a vibrating body, and the piezoelectric sheet 311 , 312, 313,
  • Embodiment 2 A threaded drive tetrahedral tube type ultrasonic motor, the structure of which is shown in Fig.
  • Embodiment 3 A threaded driving octahedron tube type ultrasonic motor, the structure of which is shown in FIG. 5, including
  • the outer tube type stator 51 has a boss on the inner surface of the stator, and the inner surface of the boss portion has an internal thread, and the bottom end of the stator is fixedly supported; the outer surface of the stator is an octahedron, and the piezoelectric piece 52 (521, 522) A total of 8 pieces of 523, 524, 525, 526, 527, and 528 are attached to the octahedron to form a vibrating body, and an inner tubular rotor 53 having an external thread is fitted over the inside of the stator 51 to match the internal thread of the stator.
  • the piezoelectric sheets bonded to the stator are all positively polarized, the piezoelectric sheets 521, 522, 523, 524, 525, 526, 527, 528 are separated (J sequential force port sin tyt, cos tyt, - sin) Cot , - cos cjt, si please t, cos ⁇ , - sin ot , -cos iot
  • the upper end portion of the stator 51 generates a curved traveling wave, which drives the rotation and axial movement of the rotor 53.
  • the polyhedral ultrasonic motor thread drive system with a pretensioning (tension) force spring of the embodiment includes an ultrasonic motor, a driven component embedded in the ultrasonic motor, and a pretensioning (tension) spring.
  • the ultrasonic motor includes a rotor 61 and a stator 63, and the stator 63 is attached with 12 piezoelectric elements 62 (the piezoelectric elements 62 may be in the form of a sheet, a curved piece, a column or a variety of polyhedrons, a whole ring or a cone). Piezoelectric element).
  • the stator and the rotor have mutually cooperating threads, and the cross section of the thread may be various forms such as a triangle, a trapezoid, a rectangle, and a convex surface, and a combination thereof, and the form of the thread may be a continuous, segmented or specific trajectory curve.
  • the threaded surface can be abraded or coated with a wear resistant material.
  • the driven element can optionally be arranged in the cavity 69 of the stator 63 or/and in the cavity 67 of the rotor 61.
  • One end of the stator is provided with a thin wall spacer 65, one end of which is fixed on the base 64, and the function of the spacer is to weaken the influence of the base on the vibration of the stator.
  • a compression spring 68 is utilized to add an axial pretensioning force between the rotor 67 and the base 64.
  • the presence of the axial preloading force causes the teeth of the thread to always contact in one direction.
  • the backlash is eliminated, and the presence of preloading force also provides a means of adjusting the magnitude of the frictional driving force.
  • the bearing 66 with steel balls may be disposed on the base or may be disposed on the stator for reducing friction when the rotor rotates.
  • the spring may also be in the form of an elastic piece, and the bearing may also be in the form of a groove or a sliding piece that accommodates the ball.
  • Elements 66 and 68 can be replaced with two magnetic rings, or one is a magnetic ring and the other is a ferromagnetic ring. This produces magnetic attraction and provides a pre-tensioning force.
  • the stator 63 directly drives the rotor 61 to rotate by friction, and the rotational motion of the rotor 61 is converted into a relative linear motion in the axial direction by the transmission of the thread, and the driven component is mounted on Linear motion along the axial direction is obtained on the rotor. If the optical lens body (group) is moved, it plays an optical focusing effect.
  • Example 5 Ultrasonic motor thread drive system with rotor cap and preloaded (tension) force spring
  • the pretensioning (tension) force spring 712 is placed outside the stator 73, and the two supporting ends of the spring 712 are at the rotor.
  • the bearing 74 On the cap 711, one on the bearing 74, the bearing 74 may be disposed on the base 79 or may be disposed on the stator 73 for reducing the return clearance and friction when the rotor 711 is rotated.
  • the spring may also be in the form of an elastic piece, and the bearing may also be in the form of a groove or a sliding piece that accommodates the ball.
  • 77 is an abrasion resistant coating.
  • two magnetic rings can be used instead; or one is a magnetic ring and the other is a ferromagnetic ring. This produces a magnetic attraction that provides a preload (tension) force.
  • a double stator structure with a pretensioning (tension) spring is used.
  • the stators 82 and 86 simultaneously drive the movement of the rotor 810.
  • One end of the stator 86 is fixed to the base 89 via the spacer 88, and a spring 83 is used to provide a preloading force between the two stators, so that the threads between the stator and the rotor are mutually Press tight.
  • Blocks 81 and 87 are attached to the stators 82, 86 and are blocked at the ends of the spring.
  • the material of the block can be metal or non-metal.
  • the two stators are positioned by the card slot 813 so that the stator 82 does not rotate.
  • the stators 82 and 86 After applying an alternating voltage to the piezoelectric elements 84, 85, the stators 82 and 86 simultaneously drive the rotor motion. A linear motion in the axial direction is obtained by mounting the driven component on the rotor. If the optical lens body (group) is moved, it plays an optical focusing effect.
  • the optical lens assembly can be mounted in the rotor cavity 811 and/or the stator cavity, such as 812, to drive the optical lens assembly for optical focusing.
  • Embodiment 7 Double-stator polyhedral ultrasonic motor thread drive system with pre-tensioned (tension) force U-shaped elastic piece
  • U-shaped bullet The blade 94 connects the two stators 91 and 96 so that the stator 91 does not rotate, but the support provides a pre-tensioning force between the stators 91 and 96, so that the threads between the stator and the rotor are pressed against each other.
  • Example 8 Double-rotor ultrasonic motor thread drive system with preloaded (tension) force spring
  • a double rotor structure with a pretensioning (tension) spring is employed in this embodiment.
  • two rotors 103 and 105 are used, and a spring 104 is used to provide a pre-tensioning force between the two rotors 103 and 105, so that the threads between the rotors and the rotors are pressed against each other.
  • the two rotors are positioned by the slot 109 so that they do not rotate relative to each other.
  • the stator 101 simultaneously drives the rotors 103 and 105 to move.
  • One end of the stator 101 is directly fixed to the base 107.
  • the stator can also be used with the spacer used in the embodiment 5. The method is fixed on the base.
  • the driven component is mounted on the rotor to obtain linear motion in the axial direction. If the optical lens body (set) is mounted in the rotor cavity 1010 and/or the stator cavity such as 108. After the alternating voltage is applied to the piezoelectric element 102, the rotors 103 and 105 move simultaneously, and the optical lens group is moved to perform optical focusing.
  • two magnetic rings can also be used instead; or one is a magnetic ring and the other is a ferromagnetic ring. This produces a magnetic attraction that provides a preload (tension) force.
  • Example 9 Double-rotor ultrasonic motor thread drive system with pre-tensioning (tension) force U-shaped elastic piece
  • the U-shaped elastic piece 114 is used to connect the two rotors 113 and 115 so as not to rotate relative thereto, but supported on the rotor.
  • a pre-tensioning force is applied between 113 and 115 so that the threads between the stator and the rotor are pressed against each other.
  • two magnetic rings can also be used instead; or one is a magnetic ring and the other is a ferromagnetic ring. This produces a magnetic attraction that provides a preload (tension) force.
  • the main difference between this embodiment and the embodiment 8 is that: in the present embodiment, two magnetic rings 1212 are used to provide a pre-tensioning force between the rotors 123 and 125, so that the stator and the rotor are The threads between them are pressed against each other. At the same time, the two slots 123 and 125 are connected by the card slot 129 so that they do not rotate relative to each other.
  • the 1212 two magnetic rings can also be a magnetic ring and the other is a ferromagnetic body.
  • the 1212 can also be applied between the rotor and the base (or stator) or between the double (multiple) stators.
  • Embodiment 11 As shown in Fig. 13, the rotor 133 is solid, and only one piezoelectric piece 1321 (may also be used with 2.3 and a multiple of piezoelectric pieces) is attached to the stator 131, and the single-phase signal voltage excites the stator to generate in-plane Standing wave, the standing wave drives the rotation and linear motion of the rotor through the fixed frictional relationship between the rotors.
  • the rotor or stator may also be a single, double, multiple rotor or stator, as in Examples 4-12 plus preload. The rotor can drive a micropositioning or micropump.
  • the threads between the stator and the rotor are pressed against each other, eliminating The return gap increases the driving force to cause relative axial movement between the stator and the rotor.
  • the driven component is mounted on the rotor, linear motion in the axial direction can be obtained. If the optical lens body (group) is moved, it plays an optical focusing effect. The distance between the optical lens body (group) and the imaging element is changed, and simple or composite optical focusing, zooming, and the like are realized.
  • the method of providing the pre-tightening force is also to attach the double stator (or the double rotor) to the small angle coaxially, and to pre-tighten the thread pair.
  • preloading methods are also suitable for multi-stator, multi-rotor ultrasonic motor threaded optical focusing/zooming systems with integrated structure.

Description

螺紋驱动多面体超声电机 技术领域
本发明属于超声应用领域,特别涉及一种多面体管式超声电机螺紋驱动系统的结构 设计。 背景技术
压电超声电机是利用压电材料的逆压电效应,釆取特定的结构制成的驱动机构, 它 一般由压电陶瓷、 定子、 转子以及预压力机构, 传动机构等功能部件构成。 它利用压电 陶瓷的逆压电效应, 在定子表面产生超声振动, 并由定子与转子之间的摩擦力驱动转子 运动。 超声电机具有以下优于普通电磁电机的特点:
1、 低转速、 大转矩, 不需要减速机构可直接驱动负载。
2、 体积小、 结构灵活, 功率体积比是电磁电机的 3- 10倍。
3、 起动停止响应快, 响应时间小于 1毫秒。
4、 不产生电磁干扰, 也不受电磁干扰。
5、 有自保持力矩, 无齿轮间隙, 可精密定位。
6、 运行安静无噪声。
已经有的压电超声电机如图 1和图 2所示。
图 1是多面体管式超声电机的结构图。 其中图 1 ( 1 ) 为核心部件的结构, 包括 由定子 13和在其外表面粘贴的电致伸缩元件 (压电陶瓷片) 11, 12构成振动体。 他们 可以是压电管分割成多电极; 也可以是多个压电片粘结到压电管外表面 (该多面体管为 金属材料制成或在与压电片接触的表面为金属'导电层)成型。 该振动体的内表面是光滑 环面。转子采用由带切口 14的圆环体 15的圆管。 它安装在振动体内表面, 利用行波超 声电机的驱动原理, 给压电陶瓷片加上相应的驱动电压, 在振动体内表面形成的行波就 可以与圆环体相对转动。在圆环体 15上切口是为了给定、转子的接触表面增加预压力。
该电机希望用于镜头调焦系统,这种应用的一个螺紋传动系统结构如图 1 (2)所示。 图中, 镜筒 15 (相当于上述的转子结构), 其前端部刻有螺紋。 在该装置里它不运动。 13是多面体管式环, 外表面粘结压电陶瓷片 11、 12 (相当于上述的振动体结构)。 前支 架 16粘结到多面体管 13的前端, 与压电陶瓷片 11、 12形成一体。 前支架 16的前端部 刻有螺紋, 咬合在镜筒 15前端的螺紋上。用固定环把调焦透镜群安装固定在前支架上, 在前支架的尾端形成螺紋, 该螺紋咬合在镜筒左端的螺纹上。振动体粘结在前支架的端 部,振动体的内表面和镜筒的外表面接触。当压电陶瓷受到电信号激励时,压电片 11 12, 多面体 13相对于镜筒 15被驱动旋转, 并带动前支架 16旋转。 与镜筒外表面形成环面 驱动。镜筒的左端刻有螺纹, 前支架与镜筒前端的螺纹相对传动的结果, 可使得前支架 沿轴向运动。 变成直线运动, 达到调焦目的。 这称之为螺纹传动系统。 在该系统中, 压 电激励信号需通过接触开关引入。
图 2 ( 1 ) (2)是多面体管式锥形轴输出的超声电机的结构示意图, 其中定子 21, 的 内表面为锥形齿 22, 其外表面粘有压电陶瓷 23组成振动体, 其内为与锥形齿 22相接触的 锥形轴体作为转子 24。 图 2 (3)是该结构用于机器人关节的组装图。 图中, 在振动体外 面套有电机外罩 27, 其两端的通过胶垫 29加有前端盖 25和后端盖 26, 前后端盖通过紧固 螺钉 28与电机外罩 27固定成一体。 这种结构直接把振动体的旋转运动传给转子。
以上结构的不足在于在实际应用中需要通过其他传动机构 (螺紋传动或螺杆传动) 才能把旋转运动转变为直线运动。 发明内容
本发明的目的是为克服已有技术的不足之处,提出一种多面体管式超声电机螺纹驱 动系统, 使其结构简单, 定子和转子之间直接通过螺紋接触产生相对运动, 并可将旋转 运动转变为直线运动。 可省去其他传动机构, 使其应用结构更加简单紧凑, 能更好地适 合微型化, 在微机械、 光学调焦等领域有广阔的应用前景。
本发明提出的螺纹驱动多面体超声电机, 它由定子、转子以及与定子或转子粘接成 一体的多个压电陶瓷片构成; 其特征在于, 所说的定子与转子相接触的表面带有螺纹, 所说的转子也带有与定子相配合的螺紋。
所述定子可以两端夹持; 也可以一端夹持。定子和相应的转子的外螺紋或内螺纹可 以是管体的全部, 也可以是部分(可以是上部, 也可以是中部或者下部)。
所述压电陶瓷片可以与定子粘接成振动体或与转子粘接成振动体,定子或转子与压 电陶瓷的粘接表面为多面体。
所述定子可套于转子外面, 也可套于转子内。
所述的压电陶瓷片的数目为 3或 4的倍数;或能形成面内弯曲行波或驻波的排列数 目 1, 2, 3或其倍数, 和相应激励方式。
本发明结构简单, 定子和转子之间直接通过螺纹接触, 定子通过螺紋驱动转子, 可 省去其他传动机构, 能更好地适合微型化, 在微机械、 光学调焦等领域具有应用前景。 附图说明
图 1为已有的一种多面体管式超声电机的结构示意图, 其中, 图 1 ( 1 )为核心部件 的结构, 图 1 ( 2 ) 为应用该结构的一个螺紋传动系统简图。
图 2为已有的一种多面体管式锥形轴输出的超声电机的结构示意图,其中,图 2( 1 )、 ( 2 ) 为核心部件的结构, 图 2 ( 3) 为该结构用于机器人关节的组装图。
图 3 为本发明的多面体管式超声电机螺紋驱动系统实施例 1结构示意图。
图 4为本发明的四面体管式内定子螺紋驱动系统实施例 2结构示意图。
图 5 为本发明的八面体管式外定子螺纹驱动系统实施例 3结构示意图。
图 6为本发明实施例 4带预紧(张)力弹簧的超声电机螺紋驱动的系统剖面结构示 意图;
图 7为本发明实施例 5带转子帽和预紧(张)力弹簧的超声电机螺紋驱动的系统剖 面结构示意图;
图 8为本发明实施例 6带预紧(张)力弹簧的双定子超声电机螺紋驱动的系统剖面 结构示意图;
图 9为本发明实施例 7带预紧(张)力 U型弹性片的双定子超声电机螺紋驱动的系 统剖面结构示意图;
图 10为本发明实施例 8带预紧(张)力弹簧的双转子超声电机螺纹驱动系统剖面 结构示意图;
图 11为本发明实施例 9带预紧 (张) 力 U型弹性片的双转子超声电机螺紋驱动的 系统剖面结构示意图;
图 12为本发明实施例 10带磁性环的双转子超声电机螺紋驱动的系统剖面结构示意 图。
图 13为本发明实施例 11单压电片激励驻波超声电机螺紋驱动的结构示意图。 具体实施方式
实施例 1 : 为螺紋驱动 12面体管式超声电机, 其结构如图 3所示, 包括共有 12片 压电陶瓷片 31,分别粘贴在 12面体管 32的外表面构成振动体,压电片 311、 312、 313、
314、 315、 316、 317、 318、 319、 3110、 3111、 3112依次顺序排列。 12面体管 32的内 表面带有螺紋, 其内套有圆管 33, 圆管的外表面带有与 12面体管 32相配合的外螺紋。 圆管 33—端被固定支撑作为定子, 振动体作为转子。 若压电片 311、 312、 315、 316、 319、 3110正向极化, 而 313、 314、 317、 318、 3111、 3112反向极化, 则当 311、 313、
315、 317、 319、 3111加 sin ot , 312、 314、 316、 318、 3110、 3112加 cos «t信号激励 时,转子 32中可以产生弯曲行波,并相对于定子 33运动。如果,全部压电片正向极化, 贝 ij需依次力口信号 sin cjt , cos a)t, ― sin iot , 一 cos iot。 实施例 2: 为螺紋驱动四面体管式超声电机, 其结构如图 4所示, 包括上部有凸台 的内管式定子 41, 凸台部分的外表面带有外螺紋, 定子的下部的外表面为四面体,压电 片 42 (共有四片: 421、 422、 423、 424 )分别粘贴在四面体上构成振动体, 具有内螺紋 的外管式转子 43套在定子 41的外面, 与定子的外螺紋相配合; 定子内插有一固定的管 件 44, 管件 44的底端与定子的底端被固定支撑在一起。
当粘结到定子上的压电片均正向极化时, 421、 422、 423、 424 分别依次加 sin tyt , cos iyt , -sin iyt , -cos iyt , 信号激励时, 定子 41中可以产生弯曲行波, 驱动转子 43旋转和轴向运动。 管件 44内可以安放镜头组或其它器件。
当 421、 422正向极化, 而 423、 424反向极化时, 则 421、 423加 sin ot , 422、 424 加 cos 两路信号即可驱动。
实施例 3: 为螺纹驱动八面体管式超声电机, 其结构如图 5所示, 包括
外管式定子 51, 定子的内表面上部有凸台, 凸台部分的内表面带有内螺紋, 定子的 底端被固定支撑; 定子的外表面为八面体, 压电片 52 ( 521、 522、 523、 524、 525、 526、 527、 528共 8片) 分别粘贴在八面体上构成振动体, 具有外螺紋的内管式转子 53套在 定子 51的里面, 与定子的内螺紋相配合。
当粘结到定子上的压电片均正向极化时, 压电片 521、 522、 523、 524、 525、 526、 527、 528分另 (J依次力口 sin tyt , cos tyt , - sin cot , - cos cjt, si請 t, cos ωί , - sin ot , -cos iot信 号激励时, 定子 51的上端部产生弯曲行波, 驱动转子 53旋转和轴向运动。
当粘结到定子上的压电片极化方向 521、 522、 525、 526正向极化, 而 523、 524、 527、 528反向极化时,则在 521、 523、 525、 527加 si請 t, 522、 524、 526、 528加 cos ^t 两路信号即可驱动转子 53旋转和轴向运动; 或能形成面内弯曲行波或驻波的其他排列 的压电片数目 1, 2, 3或其倍数, 和相应激励方式。
实施例 4: 带预紧(张) 力弹簧的超声电机螺紋驱动系统
本实施例的带预紧 (张) 力弹簧的多面体超声电机螺紋驱动系统, 包括超声电机, 超声电机内嵌的被驱动元件和预紧(张) 力弹簧。 如图 6所示, 超声电机包括转子 61 和定子 63, 定子 63上贴有 12块压电元件 62 (压电元件 62可以是片状、 弧形片、 柱状 或各种多面体、 整体环形或锥形压电元件)。 定子和转子上有相互配合的螺纹, 螺紋的 截面可以是三角形、梯形、矩形以及凸面等各种形式及其组合, 螺紋的形式可以是连续 的、分段的或特定轨迹的曲线的规定。 螺紋表面可进行耐磨处理或涂耐磨材料。被驱动 元件可以选择设置在定子 63的空腔 69或 /和转子 61的空腔 67中。 定子的一端设有一 薄壁隔离带 65, 隔离带的一端固定在基座 64上, 隔离带的作用是减弱基座对定子振动 的影响。普通的螺紋接触对之间存在螺紋间隙。而且往复运动时会产生回程间隙, 影响 运动精度。 为此有必要对螺紋副进行预紧(张)。 图 6中利用了压缩弹簧 68, 在转子 67 和基座 64之间增加一个轴向预紧(张)力, 轴向预紧(张) 力的存在使得螺紋的齿总 是在一个方向接触, 消除了回程间隙, 同时预紧(张)力的存在, 也为调节摩擦驱动力 的大小提供了一个手段。 带钢珠的轴承 66可以设置在底座上, 也可以设置在定子上, 用于在转子转动时减小摩擦力。弹簧的形式也可以是弹性片, 轴承的形式也可以是容纳 有滚珠的凹槽或者滑动片。
元件 66和 68可以改用两个磁性环, 或者一个是磁性环, 另一个是铁磁环。 由此产 生磁性吸力, 提供预紧 (张)力。
在压电元件 62上施加交变电压后, 定子 63通过摩擦直接驱动转子 61旋转, 并通 过螺紋的传动作用将转子 61的旋转运动转化为相对的沿轴向的直线运动, 被驱动元件 安装在转子上则可获得沿轴向的直线运动。如果带动光学透镜体(组)运动, 则起到光 学调焦作用。
实施例 5: 带转子帽和预紧 (张)力弹簧的超声电机螺紋驱动系统
如图 7所示, 本实施例与实施例 4的主要区别在于: 在本实施例中, 预紧(张)力 弹簧 712放在了定子 73的外部, 弹簧 712的两个支撑端一个在转子帽 711上, 一个在 轴承 74上, 轴承 74可以设置在底座 79上, 也可以设置在定子 73上, 用于在转子 711 转动时减小回程间隙和摩擦力。弹簧的形式也可以是弹性片, 轴承的形式也可以是容纳 有滚珠的凹槽或者滑动片。 77是耐磨涂层。
定子 73和转子 711之间的断面处, 可以改用两个磁性环; 或者一个是磁性环, 另 一个是铁磁环。 由此产生磁性吸力, 提供预紧(张)力。
实施例 6: 带预紧(张)力弹簧的双定子超声电机螺紋驱动系统
如图 8所示, 本实施例中釆用了带预紧(张) 力弹簧的双定子结构。 定子 82和 86 同时驱动转子 810运动, 定子 86的一端通过隔离带 88固定在底座上 89上, 两个定子 之间用弹簧 83提供预紧(张) 力, 使得定、 转子之间的螺紋相互压紧。 堵块 81和 87 粘贴在定子 82、 86上, 挡在弹簧的两端。 堵块的材料可为金属或者非金属。 两个定子 通过卡槽 813定位, 使定子 82不发生转动。 向压电元件 84、 85施加交变电压后, 定子 82和 86同时驱动转子运动。 被驱动元件安装在转子上则可获得沿轴向的直线运动。 如 果带动光学透镜体(组)运动, 则起到光学调焦作用。 光学透镜组可以安装在转子空腔 811和 /或定子空腔如 812中带动光学透镜组运动, 起到光学调焦作用。
其它部分结构和使用方法与实施例 4或 5所述相同或相似, 此处不再赘述。
实施例 7: 带预紧(张)力 U型弹性片的双定子多面体超声电机螺紋驱动系统 如图 9所示, 本实施例与实施例 6的主要区别在于: 在本实施例中, 采用了 U型弹 性片 94连接两个定子 91和 96, 使得定子 91不发生转动, 但支撑在定子 91和 96之间 提供预紧(张)力, 使得定、 转子之间的螺纹相互压紧。
其它部分结构和使用方法与实施例 5或 4所¾相同或相似, 此处不再赘述。
实施例 8: 带预紧(张) 力弹簧的双转子超声电机螺紋驱动系统
如图 10所示, 本实施例中采用了带预紧(张) 力弹簧的双转子结构。 本实施例采 用了两个转子 103和 105, 两个转子 103和 105之间用弹簧 104提供预紧(张)力, 使 得定、 转子之间的螺紋相互压紧。 两个转子通过卡槽 109定位, 使其不发生相对转动, 定子 101同时驱动转子 103和 105运动, 定子 101的一端直接固定在底座 107上; 定子 也可以采用实施例 5中采用的隔离带的方式固定在底座上。被驱动元件安装在转子上则 可获得沿轴向的直线运动。 如果光学透镜体(组)安装在转子空腔 1010和 /或定子空腔 如 108中。 向压电元件 102施加交变电压后, 转子 103和 105同时运动, 带动光学透镜 组运动, 可起到光学调焦作用。
两转子之间, 也可以改用两个磁性环; 或者一个是磁性环, 另一个是铁磁环。 由此 产生磁性吸力, 提供预紧(张) 力。
实施例 9: 带预紧(张) 力 U型弹性片的双转子超声电机螺紋驱动系统
如图 11所示, 本实施例与实施例 8的主要区别在于: 在本实施例中, 采用了 U型 弹性片 114连接两个转子 113和 115, 使其不发生相对转动, 但支撑在转子 113和 115 之间提供预紧(张)力, 使得定、 转子之间的螺紋相互压紧。
两转子之间, 也可以改用两个磁性环; 或者一个是磁性环, 另一个是铁磁环。 由此 产生磁性吸力, 提供预紧(张) 力。
其它部分结构和使用方法与实施例 8所述相同或相似, 此处不再赘述。
实施例 10: 带磁性环的双转子超声电机螺紋驱动系统
如图 12所示, 本实施例与实施例 8的主要区别在于: 在本实施例中, 采用两个磁 性环 1212在转子 123和 125之间提供预紧(张)力, 使得定、 转子之间的螺纹相互压 紧。 同时采用了卡槽 129连接两个转子 123和 125, 使其不发生相对转动。 1212两个磁 性环也可一个是磁性环, 另一个是铁磁体。 1212也可以施加在转子和底座(或定子)之 间或双(多) 定子之间。
其它部分结构和使用方法与实施例 8所述相同或相似, 此处不再赘述。
实施例 11 : 如图 13, 转子 133是实心的, 只用一个压电片 1321 (也可用 2. 3及其 倍数个压电片)粘贴在定子 131上, 单相信号电压激励定子产生面内驻波, 该驻波通过 定、 转子间螺紋接触摩擦驱动转子旋转和直线运动。 转子或定子也可是单、 双、 多转子 或定子, 如实施例 4-12加预紧力。 该转子可驱动微定位或微泵。 根据上述实施例, 通过采用单定转子或双定子或双转子结构, 以及采用弹簧、 U型 弹性片以及磁性元件提供^紧(张)力, 使得定、 转子之间的螺紋相互压紧, 消除回程 间隙, 增大驱动力, 使定子与转子之间产生相对的轴向运动, 被驱动元件安装在转子上 则可获得沿轴向的直线运动。 如果带动光学透镜体(组)运动, 则起到光学调焦作用。 光学透镜体(组)和成像元件的距离发生变化, 实现简单或复合的光学调焦、 变焦作用 等。
提供预紧(张)力的办法还有将双定子 (或双转子)错一个小角度同轴粘在一起, 起到对螺紋副预紧的目的。
这些预紧力的施加办法同样适合一体化结构的多定子、多转子的超声电机螺纹驱动 光学调焦 /变焦系统。

Claims

权利要求
1、一种螺紋驱动多面体超声电机,它由定子、转子以及与定子或转子粘接成一体的 多个压电陶瓷片构成; 其特征在于, 所说的定子与转子相接触的表面带有螺紋, 所说的 转子也带有与定子相配合的螺纹。
2、如权利要求 1所述的螺纹驱动多面体超声电机,其特征在于,所述转子为多面管 体, 所述压电陶瓷片分别粘贴在该多面体上构成振动体, 该转子的内表面带有螺紋, 所 述定子为套于转子内的管体, 该定子的外表面带有与转子相配合的外螺紋, 该定子一端 被固定支撑。
3、如权利要求 1所述的螺紋驱动多面体超声电机,其特征在于,所述定子为上部有 凸台的管体, 该凸台的外表面带有外螺紋, 该定子的下部的外表面为多面体, 所述压电 陶瓷片分别粘贴在该多面体上构成振动体, 所述的转子为具有内螺紋的管体, 套在所述 定子的外面, 与定子的外螺紋相配合; 定子内插有一个内管, 该内管的底端与定子的底 端被固定支撑在一起。
4、如权利要求 2所述的螺紋驱动多面体超声电机,其特征在于, 所述定子为内表面 上部有凸台的管体, 该凸台的内表面带有内螺紋, 该定子的底端被固定支撑; 该定子的 外表面为多面体, 所述压电陶瓷片分别粘贴在多面体上构成振动体, 所述转子为具有外 螺紋的管体, 该转子套在定子的里面, 与定子的内螺纹相配合。
5、如权利要求 1、 2、 3或 4所述的螺紋驱动多面体超声电机, 其特征在于, 所述的 压电片的数目为 3或 4的倍数, 或能形成面内弯曲行波或驻波的压电片数目为 1、 2、 3 或其倍数。
6、如权利要求 1所述的螺紋驱动多面体超声电机,其特征在于:所述的定子为单定 子、双定子或多定子结构, 釆用弹簧或 U形弹性片或磁性元件的方式提供预紧力, 使得 定、 转子之间的螺纹相互压紧。 螺紋的截面是三角形、 梯形、 矩形、 凸面及其组合, 螺 纹的形式是连续的、分段的或特定轨迹的曲线;螺紋表面进行耐磨处理或采用涂耐磨材 料。
7、根据权利要求 6所述的螺紋驱动多面体超声电机, 其特征在于: 所述的单定子、 双定子或多定子中的一个, 其一端通过薄壁的振动隔离带固定在底座上。
8、 根据权利要求 6螺紋驱动多面体超声电机, 其特征在于: 所述的单定子、 双定 子或多定子中的一个, 其一端直接固定在底座上。
9、 根据权利要求 1、 2或 3所述的螺紋驱动多面体超声电机, 其特征在于: 所述的 转子为双或多转子结构, 采用弹簧或 u形弹性片或磁性元件提供预紧力, 使得定、转子 之间的螺纹相互压紧。 转子是实心的或空心的。
10、 根据权利要求 1、 2或 3所述的螺紋驱动多面体超声电机, 其特征在于: 所述 的转子为双或多转子结构, 所述的定子为双或多走子结构, 将双定子或双转子错一个小 角度同轴粘在一起提供预紧力, 对定、 转子之间的螺紋副预紧。
PCT/CN2006/003088 2005-11-18 2006-11-16 Moteur ultrasonique polyedrique entraine par filetage WO2007056952A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06817834A EP1959511B1 (en) 2005-11-18 2006-11-16 A thread driven polyhedron ultrasonic motor
JP2008540432A JP4873269B2 (ja) 2005-11-18 2006-11-16 ネジ山駆動多面体超音波モータ
CA2629948A CA2629948C (en) 2005-11-18 2006-11-16 A screw thread driving polyhedral ultrasonic motor
KR1020087014560A KR101056693B1 (ko) 2005-11-18 2006-11-16 나사산 구동식 다면체 초음파 모터
US12/094,029 US7902723B2 (en) 2005-11-18 2006-11-16 Screw thread driving polyhedral ultrasonic motor
ES06817834T ES2399915T3 (es) 2005-11-18 2006-11-16 Motor ultrasónico poliédrico accionado por rosca

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510114849.2 2005-11-18
CNB2005101148492A CN100438307C (zh) 2005-11-18 2005-11-18 螺纹驱动多面体超声电机

Publications (1)

Publication Number Publication Date
WO2007056952A1 true WO2007056952A1 (fr) 2007-05-24

Family

ID=36743007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003088 WO2007056952A1 (fr) 2005-11-18 2006-11-16 Moteur ultrasonique polyedrique entraine par filetage

Country Status (8)

Country Link
US (1) US7902723B2 (zh)
EP (1) EP1959511B1 (zh)
JP (1) JP4873269B2 (zh)
KR (1) KR101056693B1 (zh)
CN (1) CN100438307C (zh)
CA (1) CA2629948C (zh)
ES (1) ES2399915T3 (zh)
WO (1) WO2007056952A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219325A (ja) * 2008-03-12 2009-09-24 Nikon Corp 振動アクチュエータ、レンズユニット、及び撮像装置
JP2009219324A (ja) * 2008-03-12 2009-09-24 Nikon Corp 振動アクチュエータ、レンズユニット、及び撮像装置
US7697828B2 (en) 2006-04-14 2010-04-13 Boly Media Communications (Shenzhen) Co., Ltd. Integrated optical focusing/zooming system
JP5434596B2 (ja) * 2007-12-07 2014-03-05 株式会社ニコン 振動アクチュエータ
CN112953298A (zh) * 2021-03-26 2021-06-11 重庆第二师范学院 一种扁平化超声电机

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874134B (zh) * 2006-04-14 2011-03-16 博立码杰通讯(深圳)有限公司 一种超声电机及其驱动方法
CN1964175B (zh) * 2006-11-24 2010-07-21 清华大学 带有预压力机构的螺纹驱动多面体超声微电机
CN101026343B (zh) * 2007-03-28 2011-07-27 哈尔滨工业大学 多行波弯曲旋转超声电机
KR100891851B1 (ko) * 2007-07-27 2009-04-07 삼성전기주식회사 고정자와 이를 갖는 압전 초음파 모터
CN101162877B (zh) * 2007-08-30 2010-06-02 南京航空航天大学 圆环形多自由度超声电机及电激励方法
CN101170290B (zh) * 2007-09-26 2010-09-15 哈尔滨工业大学 使用磁力加压的预压力装置的微型弯曲超声电机
CN101420190B (zh) * 2007-10-26 2011-02-16 博立码杰通讯(深圳)有限公司 超声电机的驱动方法
CN101364775B (zh) * 2008-09-28 2012-05-30 浙江大学 一种扁平化带螺纹副预紧的双定子螺纹驱动超声微电机
KR101239308B1 (ko) * 2008-11-25 2013-03-05 가부시키가이샤 무라타 세이사쿠쇼 압전 진동자 및 초음파 모터
JP5722231B2 (ja) * 2008-12-18 2015-05-20 ディスカバリー テクノロジー インターナショナル,インク. 組み合わせた共振器を備えて音響定在波に基づく圧電疑似共振モータ
CN102097971A (zh) * 2009-12-15 2011-06-15 精拓丽音科技(北京)有限公司 可用于手机光学聚焦与变焦的压电陶瓷驱动器
CN101847917B (zh) * 2010-03-29 2011-12-21 燕山大学 轴转动等宽曲线双定子多速马达
WO2012090642A1 (ja) * 2010-12-27 2012-07-05 Hoya株式会社 ファイバ走査型内視鏡
CN102242769B (zh) * 2011-05-27 2013-02-20 大连交通大学 径向包容挤压膜气体静压轴承
KR101321572B1 (ko) * 2012-03-19 2013-10-28 창원대학교 산학협력단 초음파 모터 및 그 진동자
CN103107734B (zh) * 2013-02-06 2015-05-20 清华大学 一种管状压电振动器
JP6053576B2 (ja) * 2013-03-01 2016-12-27 キヤノン株式会社 振動型駆動装置、および撮像装置
CN103148082B (zh) * 2013-03-12 2015-02-18 哈尔滨工业大学 贴片式自由梁复合弯振工作模式的可解锁螺母
CN103133495B (zh) * 2013-03-12 2015-04-01 哈尔滨工业大学 贴片式自由梁纵向振动工作模式的可解锁螺母
CN103195772B (zh) * 2013-04-17 2016-05-04 哈尔滨工业大学 压电致缸筒弯曲振动的低摩擦特性气缸
KR101478710B1 (ko) * 2013-05-24 2015-01-02 창원대학교 산학협력단 초음파 모터
CN103580533B (zh) * 2013-09-02 2015-12-23 上海大学 双翼形直线超声电机
JP6351620B2 (ja) * 2013-11-26 2018-07-04 アダマンド並木精密宝石株式会社 振動アクチュエータ
CN104678532B (zh) * 2013-12-03 2017-08-08 博立码杰通讯(深圳)有限公司 变焦对焦装置和变焦镜头
CN103856101B (zh) * 2014-03-26 2017-01-11 长春工业大学 贴片式盘形结构超声波啮合马达
CN103944444B (zh) * 2014-04-24 2017-02-15 长春工业大学 轮形结构螺纹副驱动型超声电机及其激励方法
MY178803A (en) * 2014-05-30 2020-10-20 Bolymedia Holdings Co Ltd Zoom lens
CN104506081B (zh) * 2015-01-05 2017-02-22 北京大学 一种产生螺旋直线运动的圆筒状压电马达
CN105872326B (zh) * 2016-04-12 2019-03-29 信利光电股份有限公司 一种摄像模组底座及其摄像模组
CN106992713A (zh) * 2017-04-19 2017-07-28 西北农林科技大学 一种压电作动直线平台及其操作方法
CN108547768B (zh) * 2018-05-21 2023-08-01 南京航空航天大学 一种压电螺杆泵及其工作方法
CN112024342B (zh) * 2020-07-09 2021-05-25 江苏大学 一种可切换振动模态的超声装置及方法
CN112008710B (zh) * 2020-10-22 2021-01-05 中国科学院宁波材料技术与工程研究所 单自由度气电混合力控末端执行器及工业机器人
CN113517825A (zh) * 2021-05-31 2021-10-19 吉林大学 一种基于纵振模态的微小型超声电机及其驱动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113570A (ja) * 1992-09-29 1994-04-22 Alps Electric Co Ltd 直動装置
WO2005027190A2 (en) * 2003-09-08 2005-03-24 New Scale Technologies, Inc. Ultrasonic lead screw motor
CN1207839C (zh) * 2002-07-31 2005-06-22 清华大学 通用的中空结构大力矩环形压电超声波电机

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH435872A (de) * 1965-09-20 1967-05-15 Zeiss Jena Veb Carl Präzisions-Schraubentrieb
US4087715A (en) * 1976-11-18 1978-05-02 Hughes Aircraft Company Piezoelectric electromechanical micropositioner
US4630941A (en) * 1984-02-21 1986-12-23 International Business Machines Corp. Tubular squeeze bearing apparatus with rotational restraint
JPH0740791B2 (ja) * 1986-03-25 1995-05-01 キヤノン株式会社 振動波モ−タ
US4734610A (en) * 1986-03-25 1988-03-29 Canon Kabushiki Kaisha Vibration wave motor
JPS62285679A (ja) * 1986-06-02 1987-12-11 Canon Inc 微動直線送り装置
JP2690907B2 (ja) * 1987-09-25 1997-12-17 株式会社日立製作所 複合型圧電モータ
JPH01255478A (ja) * 1988-04-01 1989-10-12 Rion Co Ltd 超音波リニアモータ
JPH03198672A (ja) * 1989-12-26 1991-08-29 Fuji Elelctrochem Co Ltd 超音波モータ
FR2657403B1 (fr) * 1990-01-19 1992-04-17 Gravograph Ecrou anti-jeu.
US5303606A (en) * 1993-04-15 1994-04-19 Kokinda Mark A Anti-backlash nut having a free floating insert for applying an axial force to a lead screw
IL106296A0 (en) * 1993-07-09 1993-12-28 Nanomotion Ltd Ceramic motor
JPH11289780A (ja) * 1998-03-31 1999-10-19 Minolta Co Ltd 電気機械変換素子を用いた駆動装置
CN1156068C (zh) * 2001-02-28 2004-06-30 清华大学 基于压电柱的弯曲振动超声波微电机
US6799483B2 (en) * 2001-05-15 2004-10-05 Patrick Andreas Petri Method and mechanism for converting vibration induced rotation into translational motion
CN1258864C (zh) * 2002-02-22 2006-06-07 清华大学 带导电轴的压电柱的超声微电机
JP3968284B2 (ja) 2002-09-13 2007-08-29 株式会社東芝 音声通話システム
EP1570705A1 (en) 2002-12-04 2005-09-07 Koninklijke Philips Electronics N.V. Stereo signal communication using bluetooth transceivers in earpieces
DE10314810A1 (de) * 2003-01-08 2004-08-05 Physik Instrumente (Pi) Gmbh & Co. Kg Verfahren zum Betreiben eines piezoelektrischen Motors sowie piezoelektrischer Motor mit einem Stator in Form eines hohlzylindrischen Oszillators
KR100548054B1 (ko) * 2003-07-12 2006-01-31 킹스테이트 일렉트로닉스 코포레이션 피에조세라믹 축 구동 타입의 초음파 모터
US7309943B2 (en) * 2003-09-08 2007-12-18 New Scale Technologies, Inc. Mechanism comprised of ultrasonic lead screw motor
US7170214B2 (en) * 2003-09-08 2007-01-30 New Scale Technologies, Inc. Mechanism comprised of ultrasonic lead screw motor
JP4288349B2 (ja) * 2003-12-24 2009-07-01 国立大学法人山口大学 超音波モータとこれを用いた穿刺システム
KR100704990B1 (ko) * 2005-08-08 2007-04-10 삼성전기주식회사 고정자 및 이를 이용한 세라믹스 튜브형 초음파 모터
KR20070062311A (ko) * 2005-12-12 2007-06-15 기아자동차주식회사 차량용 모터 구동 브레이크 구조
CN1874134B (zh) * 2006-04-14 2011-03-16 博立码杰通讯(深圳)有限公司 一种超声电机及其驱动方法
CN100394238C (zh) * 2006-04-14 2008-06-11 博立码杰通讯(深圳)有限公司 一种一体化光学设备调焦/变焦系统
JPWO2008038817A1 (ja) * 2006-09-25 2010-01-28 国立大学法人東京農工大学 超音波操作装置および微細管内検査システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113570A (ja) * 1992-09-29 1994-04-22 Alps Electric Co Ltd 直動装置
CN1207839C (zh) * 2002-07-31 2005-06-22 清华大学 通用的中空结构大力矩环形压电超声波电机
WO2005027190A2 (en) * 2003-09-08 2005-03-24 New Scale Technologies, Inc. Ultrasonic lead screw motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1959511A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697828B2 (en) 2006-04-14 2010-04-13 Boly Media Communications (Shenzhen) Co., Ltd. Integrated optical focusing/zooming system
JP5434596B2 (ja) * 2007-12-07 2014-03-05 株式会社ニコン 振動アクチュエータ
JP2009219325A (ja) * 2008-03-12 2009-09-24 Nikon Corp 振動アクチュエータ、レンズユニット、及び撮像装置
JP2009219324A (ja) * 2008-03-12 2009-09-24 Nikon Corp 振動アクチュエータ、レンズユニット、及び撮像装置
CN112953298A (zh) * 2021-03-26 2021-06-11 重庆第二师范学院 一种扁平化超声电机

Also Published As

Publication number Publication date
KR101056693B1 (ko) 2011-08-12
ES2399915T3 (es) 2013-04-04
JP4873269B2 (ja) 2012-02-08
US7902723B2 (en) 2011-03-08
CN100438307C (zh) 2008-11-26
EP1959511B1 (en) 2013-01-09
JP2009516491A (ja) 2009-04-16
EP1959511A1 (en) 2008-08-20
US20080238254A1 (en) 2008-10-02
CA2629948C (en) 2012-07-17
CA2629948A1 (en) 2007-05-24
KR20080074985A (ko) 2008-08-13
CN1767347A (zh) 2006-05-03
EP1959511A4 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
WO2007056952A1 (fr) Moteur ultrasonique polyedrique entraine par filetage
JP5312317B2 (ja) 一種類の一体化光学設備フォーカス・コントロール/ズームシステム
CN1964175B (zh) 带有预压力机构的螺纹驱动多面体超声微电机
WO2008124457A1 (en) Miniature piezoelectric motor and method of driving elements using same
CN100428618C (zh) 开槽金属方柱压电片复合超声微电机
JP3107933B2 (ja) 振動波駆動装置および振動波駆動装置を備えた装置
JPH04112686A (ja) 振動波モータ
EP1531500A2 (en) Vibration wave driving apparatus
JPWO2009034885A1 (ja) 振動アクチュエータおよび撮像装置
JP4896020B2 (ja) 超音波リードスクリューモータを含む機構
CN101364775B (zh) 一种扁平化带螺纹副预紧的双定子螺纹驱动超声微电机
JP6025446B2 (ja) 振動型アクチュエータ、撮像装置および、振動型アクチュエータを備えた装置
WO2013031983A1 (ja) 振動アクチュエータ及び光学機器
CN100461609C (zh) 空心金属方柱压电片复合超声微电机
JPH06113570A (ja) 直動装置
JP3164857B2 (ja) 振動波駆動装置および振動波駆動装置を備えた機器
JP2006180589A (ja) 超音波モータ
JP2001145376A (ja) 振動波駆動装置
JPH04236173A (ja) 超音波モーター
JPH112752A (ja) 振動アクチュエータ駆動装置とレンズ鏡筒
CN100384077C (zh) 金属方柱和压电陶瓷片复合超声微电机
CN116317686A (zh) 一种中空型旋转压电电机及其工作方法
CN115224974A (zh) 一种旋转型压电超声电机及其驱动方法
JP2010193591A (ja) 超音波モータ
JPH08111990A (ja) 超音波モータの出力伝達機構および光学機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006817834

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2629948

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2008540432

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12094029

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4546/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087014560

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006817834

Country of ref document: EP