WO2007055339A1 - Three-dimensional positioning table - Google Patents
Three-dimensional positioning table Download PDFInfo
- Publication number
- WO2007055339A1 WO2007055339A1 PCT/JP2006/322504 JP2006322504W WO2007055339A1 WO 2007055339 A1 WO2007055339 A1 WO 2007055339A1 JP 2006322504 W JP2006322504 W JP 2006322504W WO 2007055339 A1 WO2007055339 A1 WO 2007055339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- support plate
- rail
- linear
- table plate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
- G02B21/26—Stages; Adjusting means therefor
Definitions
- the present invention relates to positioning of a sample when observing with a microscope, positioning of a workpiece or tool when performing precision machining, or glass when bonding two glass substrates constituting a liquid crystal cell.
- the present invention relates to a three-dimensional positioning table that can be advantageously used for positioning a substrate.
- a positioning table is used for positioning a sample when observing with a microscope, positioning a workpiece or tool when performing precision machining, or glass when bonding two glass substrates constituting a liquid crystal cell. Used for substrate positioning.
- Patent Document 1 discloses a positioning stage (two-dimensional positioning table) having a configuration in which a plurality of support units are attached between a support base (base) and a stage (table plate). .
- Each of the above support units includes an inner support plate and two outer support plates joined together with the inner support plate interposed therebetween.
- a ball held by a holding member is disposed between the inner support plate and each outer support plate.
- Patent Document 2 discloses a six-degree-of-freedom fine movement stage (three-dimensional) including a stage (table plate) and a predetermined number of feed mechanisms that finely move the stage in each of the X, Y, and Z directions. Positioning table) is disclosed.
- this six-degree-of-freedom fine movement stage three-dimensional positioning is performed by controlling the fine movement of the stage in the X-axis, Y-axis, and z-axis directions and fine rotation around each axis by the above-mentioned feed mechanism.
- a floating pad air bearing
- the side of the stage is attached to the stage The panel is pressed against the floating pad.
- Patent Document 1 Japanese Patent Laid-Open No. 9-155666
- Patent Document 2 Japanese Patent Laid-Open No. 2-9550
- the two-dimensional positioning table of Patent Document 1 can position a positioning object in two dimensions with high accuracy. If further vertical positioning is required, the positioning tape for positioning in the vertical direction needs to be stacked on the table plate. When positioning tables are stacked, unnecessary vibrations are likely to occur on the table plate due to the height of the device, and high accuracy in three dimensions due to the effect of assembly accuracy when stacking positioning tables. It is difficult to position.
- the three-dimensional positioning table of Patent Document 2 requires a floating pad, a device that sends air to the floating pad, and a panel that presses the side of the table plate against the floating pad. is there.
- the panel that presses the side surface of the table plate against the floating pad of the Y feed mechanism is arranged obliquely with respect to the Y axis. Apply a driving force in the X direction to the table plate.
- An object of the present invention is to provide a three-dimensional positioning table that has a thin and simple configuration and can perform positioning with high accuracy.
- the present invention relates to a base, a lifting device installed on the base, a support plate fixed to the top of the lifting device, a table plate slidably disposed on the support plate, and a base It is arranged around the lifting device and is connected to the table plate via each connecting tool.
- the first linear bearing consisting of a slider mounted in a movable manner, a rail arranged in a direction perpendicular to the rail of the first reel bearing, and the rail moving along its length
- a second linear bearing composed of a slider that is operatively mounted, and a swinging tool having a movable part swingable about a direction perpendicular to the surface of the table plate in an arbitrary order; and
- the rails of the second linear bearings of the two connectors are arranged coaxially or parallel to each other and arranged in a direction perpendicular to the rails of the second linear bearings of the remaining connectors. 3D positioning In the table.
- Preferred embodiments of the three-dimensional positioning table of the present invention are as follows.
- a slide plate that is slidably arranged on a base, a linear drive device that has a drive shaft installed on the base and connected to the slide plate, and a slide plate
- the slide member has a slope inclined with respect to the surface of the table plate, and the top surface is fixed to the lower surface of the support plate and is slidably opposed to the slope of the slide member. It also has an elevating member.
- the table plate is slidably disposed on the support plate via small balls arranged along the surface of the support plate.
- a holding plate having a thickness smaller than the diameter of the small sphere and having a plurality of through holes formed along the surface is disposed between the table plate and the support plate. However, one is accommodated and held in each of the many through holes of the holding plate.
- Each of the table plate and the support plate has an opening at the center thereof.
- the three-dimensional positioning table of the present invention can be configured to be thin without stacking a plurality of positioning tables.
- the three-dimensional positioning table of the present invention has a devised connection method between the table plate and the linear drive device, so that the positioning object placed on the surface of the table plate can be moved while having a simple configuration. It can be positioned with high accuracy in three dimensions.
- FIG. 1 is a diagram showing a configuration example of a three-dimensional positioning table of the present invention.
- the description of the lifting device (FIG. 4:12) provided in the positioning table 10 is omitted.
- FIG. 2 is a view of the positioning table 10 shown in FIG. 1 as viewed from above.
- FIG. 3 is a diagram showing a configuration of the lifting device provided in the positioning table 10 shown in FIG.
- FIG. 4 is a view of the positioning table 10 shown in FIG. 2 as viewed from the lower side of the figure.
- the description of the linear motion drive devices 17a, 17b, and 17c included in the positioning table 10 and the connectors 15a, 15b, and 15c is omitted.
- a three-dimensional positioning table 10 shown in FIGS. 1 to 4 includes a base 11, a lifting device 12 installed on the base 11, a support plate 13 fixed to the top of the lifting device 12, and a support
- the table plate 14 is slidably disposed on the plate 13, and the table 15 is disposed around the lifting device 12 on the base 11. It is composed of three linear motion drive devices 17a, 17b, 17c and the like having drive shafts 16, 16, 16 connected to the bull plate 14.
- Each of the connecting tools 15a, 15b, 15c includes a rail 18a disposed in a direction perpendicular to the surface of the table plate 14, and a slider 18b attached to the rail 18a so as to be movable along the length direction thereof.
- a first linear bearing 18 composed of a rail 19a arranged in a direction perpendicular to the rail 18a of the first linear bearing 18, and a slider 19b attached to the rail 19a so as to be movable along its length direction.
- the second linear bearing 19 and the swinging tool 20 having a movable part 20a swingable about a direction perpendicular to the surface of the table plate 14 are connected in this order.
- the second linear bearings 19a, 15b of the two connectors 15a, 15b, 15b out of the above three connectors 15a, 15b, 15c are placed in parallel with each other and the remaining connections.
- the second linear bearing 19 of the tool 15c is arranged in a direction orthogonal to the rail 19a.
- a positioning object such as a sample to be observed with a microscope is arranged on the table plate 14 of the positioning table 10.
- the table plate 14 is moved in, for example, the X direction, the Y direction, the ⁇ direction indicated by arrows in FIG. 2, and the Z direction indicated by arrows in FIG.
- Positioning pair placed on 14 The figurine can be positioned in three dimensions.
- FIG. 5 is an enlarged view of the table plate 14 and the support plate 13 of the positioning table 10 shown in FIG.
- the table plate 14 is preferably slidably disposed on the support plate 13 via a small ball group 26 disposed along the surface of the support plate 13.
- the small ball group 26 is composed of a plurality of small balls 26 a disposed along the surface of the support plate 13.
- the small ball group 26 is annularly arranged along the surface of the support plate 13.
- a holding plate 27 having a thickness smaller than the diameter of the small sphere 26a and having many through holes formed along the surface is disposed. It is further preferable that each of the small spheres 26a is housed and held in each of the many through holes of the holding plate 27.
- the holding plate 27 it is possible to prevent the small sphere 26a from dropping downward from the inner peripheral edge or the outer peripheral edge of the support plate 13.
- a groove shallower than the diameter of the small sphere 26a is formed on the surface of the support plate 13, and the small sphere group 26 is disposed inside the groove. The above-mentioned small ball 26a can be prevented from falling
- a small ball group 28 and, for example, a disk-shaped plate material 29 are arranged below the support plate 13.
- the support plate 13 is preferably in a state of being previously pressurized by the table plate 14 and the plate material 29 via the small ball group 26 and the small ball group 28. Accordingly, the table plate 14 can be moved (slid) along the surface of the support plate 13 while maintaining the parallelism with the support plate 13 in a good state.
- the small ball group 28 is composed of a plurality of small balls 28 a arranged along the surface of the plate material 29.
- the small ball group 28 is arranged in an annular shape along the surface of the plate material 29, for example.
- a holding plate 30 having a thickness smaller than the diameter of the small sphere 28a and having many through holes formed along the surface is disposed.
- Each of the force holding plates 30 is preferably housed and held in each of a large number of through holes. As a result, the small balls 28a can be prevented from falling downward from the outer peripheral edge of the plate 29.
- the lifting device 12 that lifts and lowers the table plate 14 (moves in the Z direction) will be described.
- the lifting device 12 is installed on the base 11.
- the support plate 13 is fixed to the upper part of the lifting device 12.
- the lifting device 12 of the positioning table 10 is installed on the slide plate 21 slidably disposed on the base 11 and the base 11, and the slide plate A linear motion drive device 23 having a drive shaft 22 connected to 21, a slide member 24 fixed on the slide plate 21 and having an inclined surface 24 a inclined with respect to the surface of the table plate 14, and supported by the top surface
- the plate 13 is composed of an elevating member 25 having a slope 25a fixed to the lower surface of the plate 13 and slidably opposed to the slope 24a of the slide member 24.
- the slide plate 21 of the lifting device 12 is disposed in non-contact with the base 11 via, for example, a pair of linear bearings 31a and 3 lb disposed in parallel to each other.
- Each of the linear bearings 31a and 31b has a configuration in which a pair of rails 32a and 32b are slidably opposed to each other along the length direction via a plurality of small balls.
- Each linear bearing rail 32 a is fixed to the base 11, and the rail 32 b is fixed to the slide plate 21.
- the linear bearings 31a and 31b allow the slide plate 21 to slide along the length direction of the rail 32a of the linear bearing 31a (in the X direction).
- the linear drive device 23 includes a rotation drive device 33 and a ball screw 35 provided on the rotation shaft 34 of the rotation drive device 33.
- a nut 22 fitted to the screw shaft 36 of the ball screw 35 is used as the drive shaft of the linear drive device 23 .
- the drive shaft (nut) 22 is fixed to the slide plate 21. Therefore, by driving the rotational drive device 33 of the linear drive device 23, the slide plate 21 can be moved back and forth along the length direction of the rail 32a of the linear bearing 31a.
- a combination of a rotary drive device such as a stepping motor or a servo motor and a ball screw, or a known linear drive device represented by an ultrasonic linear motor can be used as the linear drive device.
- the elevating device 12 is provided with, for example, four combinations of the slide member 24 and the elevating member 25. Between each pair of the slide member 24 and the lift member 25, for example, a rail 37a fixed to the inclined surface 25a of the lift member 25 and a slider 3 fixed to the inclined surface 24a of the slide member 24 A linear bearing 37 consisting of 7b is provided. The linear bearing 37 enables the elevating member 25 to move smoothly along the slope 24a of the slide member 24.
- Each of the two elevating members arranged side by side on the right side of FIG. 3 is based on a linear bearing different from the above and is movable only in the Z direction.
- the elevating member 25 arranged on the right side of FIG. 4 has a rail 38a fixed to the right side surface thereof and a rail 38a fitted to the rail 38a and fixed to the base 11, and also has a force with the slider 38b.
- the linear bearing 38 can be moved only in the Z direction. Accordingly, by driving the linear drive device 23 and moving the slide plate 21 shown in FIG. 4 together with the slide member 24, for example, to the right in the figure, the elevating member 25 is raised, and the support plate 13, Then, the table plate 14 can be moved upward.
- the lifting device 12 described above can be preferably used in the positioning table of the present invention because of its low height and high rigidity.
- the three linear drive devices 17 a, 17 b, 17 c are arranged around the lifting device 12 on the base 11.
- the linear drive devices 17a, 17b, and 17c include drive shafts 16, 16, and 16 that are connected to the table plate 14 via connecting members 15a, 15b, and 15c, respectively.
- the linear drive device 17a includes a rotational drive device 39 and a ball provided on the rotary shaft 40 of the rotary drive device 39 in the same manner as the linear motion drive device 23 described above. It consists of screws 41. A nut 16 fitted to the screw shaft 42 of the ball screw 41 is used as the drive shaft of the linear drive device 17a. The drive shaft (nut) 16 is connected to the table plate 14 via a connector 15a. Each configuration of the linear drive devices 17b and 17c is the same as that of the linear drive device 17a.
- each linear drive device For example, a combination of a rotary drive device such as a stepping motor or a servo motor and a ball screw, or a known linear motion drive device typified by an ultrasonic linear motor can be used. Use these linear motion drive units with different configurations.
- the connecting tool 15a also has a rail 18a arranged in a direction perpendicular to the surface of the table plate 14 and a slider 18b attached to the rail 18a so as to be movable along the length direction.
- the first linear bearing 18 and the first linear bearing 18 have a rail 19a arranged in a direction perpendicular to the rail 18a and a slider 19b attached to the rail 19a so as to be movable along the length direction. It has a configuration in which a second linear bearing 19 and a swinging tool 20 having a movable part 20a swingable around a direction perpendicular to the surface of the table plate 14 are connected in this order.
- the configuration of each of the connection tools 15b and 15c is the same as that of the connection tool 15a.
- the order of connecting the first linear bearing, the second linear bearing, and the swinging tool of each connecting tool is not particularly limited. Further, as these connecting tools, those having different structures (for example, those in which the order of connecting the first linear bearing, the second linear bearing and the swinging tool is different from each other! /) Are used. Moyo!
- the slider 18b of the first linear bearing 18 of the connector 15a is fixed to the slider support member 44 whose upper part is fixed to the side surface of the table plate 14 and extends downward of the table plate.
- the rail 18a is fixed to the rail support 45.
- the rail support 45 has an inverted T-shape when viewed from the right side of FIG. 1, and its lower part extends in the Y direction.
- the rail 19a of the second linear bearing 19 is fixed to the lower part of the rail support member 45 along the Y direction, and the slider 19b is fixed to the movable tool 20a.
- linear bearings having a configuration in which a slider is fitted to a rail via a plurality of small balls are used.
- the linear bearing having such a configuration is generally called a linear guide.
- a known linear bearing such as a cross roller guide may be used instead of the linear guide.
- a shaft attached with a bush (particularly a ball bush) is used as the rail described above and the bush as the slider described above.
- a hinge including a movable part 20a that can swing about a direction perpendicular to the surface of the table plate 14 is used.
- a known sliding bearing formed in an annular shape or a roller bearing can be used with its inner ring or outer ring as the movable part.
- a linear bearing having a rail curved in the shape of an arc can be used as the movable part.
- the second linear bearings 19 and 19 of the two connecting members 15a and 15b out of the three connecting members are placed in parallel with each other, and the remaining connecting members 15c
- the second linear bearing 19 is arranged in a direction orthogonal to the rail 19a. It should be noted that the second linear bearings 19a and 19b of the two connecting tools 15a and 15b may be placed on the same axis.
- FIG. 6 is a diagram showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the X direction.
- the position of the table plate before the movement is indicated by a two-dot chain line, and the table plate 14 is moved greatly beyond its movable distance.
- the support plate (Fig. 1: 13) is not shown (the same applies to Fig. 7 and Fig. 8 below).
- the movable distance in the X direction (left and right directions in the figure) of the table plate 14 is the distance D in the left direction and the distance D in the right direction.
- the drive shaft 16 of the linear drive device 17a is on the side opposite to the connection tool 15a side
- the drive shaft 16 of the linear drive device 17b is on the connection tool 15b side.
- the table plate 14 can be moved in the X direction by being driven by the same amount. At this time, the table plate 14 moves smoothly along the surface of the support plate (FIG. 1: 13) because the rail 19a of the second linear bearing 19 of the connector 15c moves in the X direction with respect to the slider 19b. To move Can do.
- the linear drive device 17c connected to the table plate 14 via the connector 15c or the lifting device connected to the support plate (Fig. 4: 12) may prevent the table plate from moving. Absent. Therefore, the positioning table 10 precisely moves the table plate 14 in the X direction (or the direction opposite to the X direction), and positions the positioning object placed on the surface in the X direction with high accuracy. be able to.
- FIG. 7 is a diagram showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the Y direction.
- the table plate 14 can be moved in the Y direction by driving the drive shaft 16 of the linear drive device 17c toward the connector 15c.
- the table plate 14 moves smoothly along the surface of the support plate because the rail 19a of the second linear bearing 19 of each of the connectors 15a and 15b moves in the Y direction with respect to the slider 19b. can do. That is, the linear motion drive devices 17a and 17b connected to the table plate 14 via the connection tools 15a and 15b or the lifting device connected to the support plate does not hinder the movement of the table plate. Therefore, the positioning table 10 precisely moves the table plate 14 in the Y direction (or the direction opposite to the Y direction), and positions the positioning object placed on the surface in the Y direction with high accuracy. be able to.
- FIG. 8 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is rotationally moved in the ⁇ direction.
- the table plate 14 can be rotated in the ⁇ direction around the center position of the surface.
- the table plate 14 supports the support plate because the movable portions 20a of the swinging tools 20 of the connecting tools 15a, 15b, and 15c swing with respect to the linear drive devices 17a, 17b, and 17c, respectively. Can smoothly rotate and move along the surface.
- the linear drive devices 17a, 17b, 17c connected to the table plate 14 via connecting members, or the lifting device connected to the support plate may prevent the table plate from rotating. Absent.
- the positioning table 10 precisely rotates and moves the table plate 14 in the ⁇ direction (or the direction opposite to the ⁇ direction), and positions the positioning object placed on the surface in the ⁇ direction with high accuracy. be able to.
- the positioning table 10 includes the drive shafts 16 of the linear drive devices 17a, 17b, and 17c. By adjusting the driving direction and driving amount, the table plate 14 can be rotated and moved in the ⁇ direction (or the direction opposite to the ⁇ direction) around an arbitrary position on the surface.
- FIG. 9 is a diagram showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 4 is moved in the Z direction.
- the slide plate 21 together with the slide member 24 is in the right direction in the figure.
- the elevating member 25 ascends together with the support plate 13, so that the table plate 14 can be moved (raised) in the Z direction.
- the table plate 14 rises smoothly because the slider 18b of the first linear bearing 18 of each of the connectors 15a, 15b, and 15b shown in FIG. 2 moves in the Z direction with respect to the rail 18a. can do.
- the linear motion drive devices 17a, 17b, and 17c connected to the table plate 14 via the connection tools 15a, 15b, and 15c do not hinder the movement of the table plate.
- the positioning table 10 precisely moves the table plate 14 in the Z direction (or the opposite direction to the Z direction) and positions the positioning object placed on the surface with high accuracy in the Z direction. be able to.
- the movement of the table plate in the X direction, the Y direction, the 0 direction, and the Z direction can be performed simultaneously by selecting any two to four directions.
- the three-dimensional positioning table of the present invention is arranged around the lifting device on the base, and is connected to the table plate via another connector having the same configuration as the above-described connector.
- Another linear motion drive device having a moving shaft may be provided.
- the other linear drive device is connected to the right side surface of the table plate 14 through the other connection tool.
- the rail 19a of the second linear bearing 19 of the connector 15c and the rail of the second linear bearing of the other connector are arranged coaxially or parallel to each other. ,.
- the table plate is moved in the Y direction in the same manner as when moving the table plate in the X direction described above, thereby improving the straightness when the table plate is moved in the Y direction. It is done. This further increases the positioning accuracy of the positioning table.
- the three-dimensional positioning table of the present invention stacks a plurality of positioning tables. Therefore, the height of the apparatus can be reduced, and the structure of the apparatus is simple. Furthermore, in the positioning table of the present invention, since the connection method between the table plate and the linear motion drive device is devised as described above, each linear motion drive device or lifting device can move the table plate smoothly. Will not be disturbed. Therefore, by using the positioning table of the present invention, the positioning object placed on the table plate can be positioned with high accuracy in three dimensions.
- the positioning table 10 is set, for example, to the length of the table plate 14 (Fig. 2: L) force 3 ⁇ 450mm, and repeated positioning accuracy force ⁇ 0.5 / ⁇ ⁇ in the X direction, in the Y direction Positioning can be performed with high accuracy of ⁇ 0.5 ⁇ m, ⁇ 0.6 seconds in the 0 direction, and ⁇ 1 m in the Z direction.
- FIG. 10 is a plan view showing another configuration example of the three-dimensional positioning table of the present invention.
- FIG. 11 is a side view of the table plate 54 and the support plate 53 of the positioning table 50 of FIG.
- FIG. 12 is a cross-sectional view of the table 54 plate and the support plate 53 cut along the cutting line II line entered in FIG.
- FIG. 13 is a plan view of the positioning table 50 shown in FIG. 10 to the linear motion drive devices 17a, 17b, and 17c, the connectors 15a, 15b, and 15c, the table plate 54, and a pair of support posts on the lower surface of the table plate 54 (FIG. 12: FIG. 12 is a plan view showing a state in which two plate members (FIG. 12: 59c, 59d) fixed by 51, 51) are removed.
- FIG. 14 is a diagram illustrating the shape of the holding plate 57a shown in FIG.
- FIG. 15 is a plan view showing a state where the holding plates 57a, 57b, 57c, and 57d shown in FIG.
- the configuration of the three-dimensional positioning table 50 is the same as the three-dimensional positioning table described above except that the table plate 54 has an opening 54a in the center and the support plate 53 has an opening 53a in the center. Same as 10. That is, by driving the elevating device 12, the support plate 53 supported by the four elevating members 25 provided in the elevating device 12 is moved up and down together with the table plate 54 disposed thereon as shown in FIG. be able to.
- a CCD Charge Coupled
- An imaging device represented by a camera can be arranged.
- the object to be positioned arranged above the opening of the table plate can be moved.
- the position can be positioned with high accuracy while the position is detected by the imaging device.
- each glass substrate constituting a liquid crystal cell
- the arrangement of each glass substrate is detected by the imaging device (for example, on each glass substrate).
- the one glass substrate placed on the table plate 54 so as to cover the opening 54a is placed on the table plate 54 with a slight gap between them. After being positioned at a predetermined position with respect to the other glass substrate, it is raised.
- both glass substrates can be bonded together in a state of being positioned with high accuracy.
- the glass substrate placed on the table plate can also be arranged above the region inside the opening of the table plate in a state where the glass substrate is supported by an appropriate jig at the peripheral edge thereof.
- the table plate 54 passes through small ball groups 56a, 56b, 56c, and 56d disposed along the surface of the support plate 53.
- the support plate 53 is slidably disposed.
- four holding plates 57a each having a thickness smaller than the diameter of the small sphere and having a large number of through holes formed along the surface thereof.
- 57b, 57c and 57d are arranged.
- Each of the small spheres is housed and held in each of the through holes of the holding plates.
- the holding plates 57a, 57b, 57c, and 57d those having the same shape are used.
- the holding plate 57a holds a small ball group 56a as shown in FIG.
- a pair of openings 52, 52 are provided on each end side in the length direction of the holding plate 57a.
- a holding plate regulating pin 61 provided in a state in which the surface force of the supporting plate 53 protrudes is inserted inside each opening 52 of the holding plate 57a. .
- the holding plate regulating pin 61 prevents the holding plate 57a from protruding greatly from the inner or outer peripheral edge of the support plate 53, that is, the through hole of the holding plate 57a is supported.
- the movement of the holding plate is restricted so as not to be arranged inside or outside the plate 53, and the small balls of the through hole cap of the holding plate 57a are prevented from falling.
- a plate material 59c is disposed below the support plate 53 and below the holding plate 57c via a small ball group 58c held by the holding plate 60c. ing.
- the holding plate 60d holds the lower side of the support plate 53 and below the holding plate 57d.
- a plate material 59d is arranged through a small ball group 58d.
- Each of these plate materials 59c, 59d is fixed to the lower surface of the table plate 54 via a pair of support columns 51, 51. Thereby, the support plate 53 is pre-pressurized by the table plate 54 and the plate material 59c through the small ball groups 56c and 58c.
- the support plate 53 is previously pressurized by the table plate 54 and the plate material 59d through the small ball groups 56d and 58d. Accordingly, the positioning device 50 shown in FIG. 10 can also move (slide) the table plate 54 along the surface of the support plate 53 while maintaining the parallelism with the support plate 53 in a good state. .
- each of the table plate 54 and the support plate 53 is provided with an opening, and when the imaging device is used for positioning as described above, a support is provided.
- the configuration of the holding plate arranged on the plate 53 is not particularly limited as long as it does not prevent the detection of the arrangement of the positioning object by the imaging device.
- a holding plate having a shape corresponding to the support plate 53 can be used as the holding plate disposed on the support plate 53.
- the configuration of the holding plate disposed under the support plate 53 is not particularly limited as long as it does not prevent detection of the positioning object by the imaging device, but as shown in FIG. It is necessary to dispose the holding plate in the surface region supported by the lifting member 25 of the lifting device 12 on the lower surface of 53.
- the three-dimensional positioning table 50 can also be configured without stacking a plurality of positioning tables, so that the height of the apparatus can be reduced.
- the positioning object placed above the opening 54a can be positioned with high accuracy in three dimensions while detecting the placement by an imaging device placed inside or below the opening of the table plate, for example.
- FIG. 1 is a diagram showing a configuration example of a three-dimensional positioning table of the present invention. However, the lifting device (Fig. 4:12) provided in the positioning table is omitted.
- FIG. 2 is a view of the positioning table 10 shown in FIG.
- FIG. 3 is a diagram showing a configuration of a lifting device provided in the positioning table 10 shown in FIG.
- FIG. 4 is a view of the positioning table 10 shown in FIG. However, the description of the linear motion drive devices 17a, 17b, 17c and the connectors 15a, 15b, 15c is omitted.
- FIG. 5 is an enlarged view of the table plate 14 and the support plate 13 of the positioning table 10 shown in FIG. However, each of the small spheres 26a and 28a is not shown as a cross section.
- FIG. 6 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the X direction. However, the description of the support plate (Fig. 1: 13) is omitted.
- FIG. 7 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the Y direction. However, the description of the support plate (Fig. 1: 13) is omitted.
- FIG. 8 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is rotationally moved in the ⁇ direction. However, the description of the support plate (Fig. 1: 13) is omitted.
- FIG. 9 is a view showing a state where the table plate 14 of the positioning table 10 shown in FIG. 4 is moved in the Z direction.
- FIG. 10 is a plan view showing another configuration example of the three-dimensional positioning table of the present invention.
- FIG. 11 is a side view of the table plate 54 and the support plate 53 of the positioning table 50 of FIG. 10 viewed from the right side of the drawing.
- FIG. 12 is a cross-sectional view of the table plate 54 and the support plate 53 cut along the cutting line I-I entered in FIG. However, each of the small spheres is not filled in as a cross section.
- FIG. 12 is a plan view showing a state in which two plate members (FIG. 12: 59c, 59d) fixed by 51, 51) are removed.
- FIG. 14 is a diagram illustrating the shape of the holding plate 57a shown in FIG.
- FIG. 15 is a plan view showing a state in which the holding plates 57a, 57b, 57c, 57d shown in FIG. 13 are removed from the support plate 53.
- FIG. 15 is a plan view showing a state in which the holding plates 57a, 57b, 57c, 57d shown in FIG. 13 are removed from the support plate 53.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Machine Tool Units (AREA)
- Details Of Measuring And Other Instruments (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
A three-dimensional positioning table which has a thin and simple structure and can make a high-precision positioning, and which comprises a base table (11), an elevating device installed on the base table, a support plate fixed to the upper part of the elevating device, a table plate (14) disposed on the support plate, and at least three direct-acting drive devices (17a, 17b, 17c) disposed around the elevating device on the base table and provided with drive shafts respectively connected with the table plate via connectors (15a, 15b, 15c), wherein each of the above connectors comprises, linked in an arbitrary sequence, a first linear bearing (18) consisting of a rail and a slider disposed vertically to the table plate, a second linear bearing (19) consisting of a rail and a slider disposed in a direction perpendicular to the rail of the first bearing, and a swinging unit (20) provided with a movable unit capable of swinging with a direction vertical to the table plate as an axis, wherein the rails of the second linear bearings of at least two connectors out of the above three connectors are disposed to be coaxial or parallel with each other, and are disposed in a direction perpendicular to the rail of the second linear bearing of the remaining connector.
Description
明 細 書 Specification
三次元位置決めテーブル 3D positioning table
技術分野 Technical field
[0001] 本発明は、顕微鏡で観察を行なう際の試料の位置決め、精密機械加工を行なう際 の加工対象物もしくは工具の位置決め、あるいは液晶セルを構成する二枚のガラス 基板を貼り合わせる際のガラス基板の位置決めに有利に用いることができる三次元 位置決めテーブルに関する。 [0001] The present invention relates to positioning of a sample when observing with a microscope, positioning of a workpiece or tool when performing precision machining, or glass when bonding two glass substrates constituting a liquid crystal cell. The present invention relates to a three-dimensional positioning table that can be advantageously used for positioning a substrate.
背景技術 Background art
[0002] 位置決めテーブルは、顕微鏡で観察を行なう際の試料の位置決め、精密機械加工 を行なう際の加工対象物もしくは工具の位置決め、あるいは液晶セルを構成する二 枚のガラス基板を貼り合わせる際のガラス基板の位置決めなどに用いられている。 [0002] A positioning table is used for positioning a sample when observing with a microscope, positioning a workpiece or tool when performing precision machining, or glass when bonding two glass substrates constituting a liquid crystal cell. Used for substrate positioning.
[0003] 特許文献 1には、支持台(基台)とステージ (テーブル板)との間に、複数個の支持 ユニットを取り付けた構成の位置決めステージ(二次元位置決めテーブル)が開示さ れている。上記の支持ユニットの各々は、内側支持板と、この内側支持板を挟んで一 体に結合した二枚の外側支持板とから構成されている。この内側支持板と各々の外 側支持板との間には、保持部材に保持されたボールが配置される。これにより、支持 ユニットの内側支持板と外側支持板とは、平面上にて相対的に自由運動が可能とさ れている。そして、各々の支持ユニットの内側支持板及び外側支持板の一方を支持 台に、そして他方をステージに固定することにより、ステージの縦横への移動及び旋 回が可能とされている。 [0003] Patent Document 1 discloses a positioning stage (two-dimensional positioning table) having a configuration in which a plurality of support units are attached between a support base (base) and a stage (table plate). . Each of the above support units includes an inner support plate and two outer support plates joined together with the inner support plate interposed therebetween. A ball held by a holding member is disposed between the inner support plate and each outer support plate. Thereby, the inner support plate and the outer support plate of the support unit can be relatively freely moved on a plane. Then, by fixing one of the inner support plate and the outer support plate of each support unit to the support base and the other to the stage, the stage can be moved and rotated vertically and horizontally.
[0004] 特許文献 2には、ステージ (テーブル板)と、このステージを X方向、 Y方向及び Z方 向の各々に微動させる所定の数の送り機構とを備える六自由度微動ステージ (三次 元位置決めテーブル)が開示されている。この六自由度微動ステージにおいては、 上記の送り機構によりステージの X軸、 Y軸及び z軸方向の微動、そして各々の軸周 りの微回転を制御して三次元の位置決めが行なわれる。上記のステージを X方向に 微動させる X送り機構、そして Y方向に移動させる Y送り機構の各々には、例えば、浮 遊パッド (空気軸受)が用いられている。そして、ステージの側面は、ステージに付設
されたパネによって前記浮遊パッドに押し付けられている。 [0004] Patent Document 2 discloses a six-degree-of-freedom fine movement stage (three-dimensional) including a stage (table plate) and a predetermined number of feed mechanisms that finely move the stage in each of the X, Y, and Z directions. Positioning table) is disclosed. In this six-degree-of-freedom fine movement stage, three-dimensional positioning is performed by controlling the fine movement of the stage in the X-axis, Y-axis, and z-axis directions and fine rotation around each axis by the above-mentioned feed mechanism. For example, a floating pad (air bearing) is used for each of the X feed mechanism that finely moves the stage in the X direction and the Y feed mechanism that moves the stage in the Y direction. And the side of the stage is attached to the stage The panel is pressed against the floating pad.
特許文献 1:特開平 9— 155666号公報 Patent Document 1: Japanese Patent Laid-Open No. 9-155666
特許文献 2:特開平 2— 9550号公報 Patent Document 2: Japanese Patent Laid-Open No. 2-9550
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 特許文献 1の二次元位置決めテーブルは、位置決め対象物を二次元にて高い精 度で位置決めすることができる。し力しながら、更に上下方向の位置決めが必要な場 合には、例えば、テーブル板の上に、上下方向に位置決めを行なう位置決めテープ ルを重ねて配置する必要がある。位置決めテーブルを重ねて配置すると、装置の高 さが高くなるためにテーブル板に不要な振動を生じ易ぐそして位置決めテーブルを 積み重ねる際の組み立ての精度の影響を受けるために三次元にて高精度の位置決 めを行なうことは難しい。 [0005] The two-dimensional positioning table of Patent Document 1 can position a positioning object in two dimensions with high accuracy. If further vertical positioning is required, the positioning tape for positioning in the vertical direction needs to be stacked on the table plate. When positioning tables are stacked, unnecessary vibrations are likely to occur on the table plate due to the height of the device, and high accuracy in three dimensions due to the effect of assembly accuracy when stacking positioning tables. It is difficult to position.
[0006] 特許文献 2の三次元位置決めテーブルは、浮遊パッド、浮遊パッドに空気を送り込 む装置、そしてテーブル板の側面を浮遊パッドに押し付けるパネなどが必要であるた め、その構成が複雑である。また、例えば、 X送り機構によりテーブル板を X方向にの み移動させた場合に、テーブル板の側面を Y送り機構の浮遊パッドに押し付けて ヽ るパネが、 Y軸に対して斜めに配置されてテーブル板に X方向の駆動力を付与する 。同様に、 Y送り機構によりテーブル板を Y方向にのみ移動させた場合に、テーブル 板の側面を X送り機構の浮遊パッドに押し付けているパネが、 X軸に対して斜めに配 置されてテーブル板に Y方向の駆動力を付与する。すなわち、 X送り機構と Y送り機 構が相互に影響し合うため、位置決めの精度をある程度以上に高くすることが難しい [0006] The three-dimensional positioning table of Patent Document 2 requires a floating pad, a device that sends air to the floating pad, and a panel that presses the side of the table plate against the floating pad. is there. In addition, for example, when the table plate is moved only in the X direction by the X feed mechanism, the panel that presses the side surface of the table plate against the floating pad of the Y feed mechanism is arranged obliquely with respect to the Y axis. Apply a driving force in the X direction to the table plate. Similarly, when the table plate is moved only in the Y direction by the Y feed mechanism, the panel that presses the side of the table plate against the floating pad of the X feed mechanism is placed obliquely with respect to the X axis. Apply Y direction driving force to the plate. In other words, since the X-feed mechanism and Y-feed mechanism interact with each other, it is difficult to increase the positioning accuracy beyond a certain level.
[0007] 本発明の課題は、薄型且つ簡単な構成を有し、そして高い精度にて位置決めを行 なうことができる三次元位置決めテーブルを提供することにある。 An object of the present invention is to provide a three-dimensional positioning table that has a thin and simple configuration and can perform positioning with high accuracy.
課題を解決するための手段 Means for solving the problem
[0008] 本発明は、基台、基台上に設置されている昇降装置、昇降装置の上部に固定され ている支持板、支持板上に滑動可能に配置されているテーブル板、および基台上の 昇降装置の周囲に配設されて 、る、各々接続具を介してテーブル板に接続されて ヽ
る駆動軸を備えた少なくとも三個の直動駆動装置を含み、上記接続具の各々が、テ 一ブル板の表面に垂直な方向に配置されたレールと、このレールにその長さ方向に 沿って移動可能に取り付けられているスライダとからなる第一のリニア軸受、第一のリ -ァ軸受のレールに直交する方向に配置されたレールと、このレールにその長さ方 向に沿って移動可能に取り付けられているスライダとからなる第二のリニア軸受、及 びテーブル板の表面に垂直な方向を軸に揺動可能な可動部を備える揺動具を任意 の順に連結してなり、そして上記の三つの接続具のうちの二つの接続具の第二のリ ユア軸受のレールが互いに同軸もしくは平行に配置され、且つ残りの接続具の第二 のリニア軸受のレールと直交する方向に配置されて 、る三次元位置決めテーブルに ある。 [0008] The present invention relates to a base, a lifting device installed on the base, a support plate fixed to the top of the lifting device, a table plate slidably disposed on the support plate, and a base It is arranged around the lifting device and is connected to the table plate via each connecting tool. At least three linear motion drive units with drive shafts, each of which is provided with a rail disposed in a direction perpendicular to the surface of the table plate, and the rail along the length direction thereof. The first linear bearing consisting of a slider mounted in a movable manner, a rail arranged in a direction perpendicular to the rail of the first reel bearing, and the rail moving along its length A second linear bearing composed of a slider that is operatively mounted, and a swinging tool having a movable part swingable about a direction perpendicular to the surface of the table plate in an arbitrary order; and Of the above three connectors, the rails of the second linear bearings of the two connectors are arranged coaxially or parallel to each other and arranged in a direction perpendicular to the rails of the second linear bearings of the remaining connectors. 3D positioning In the table.
[0009] 本発明の三次元位置決めテーブルの好ましい態様は、次の通りである。 [0009] Preferred embodiments of the three-dimensional positioning table of the present invention are as follows.
(1)昇降装置が、基台上に滑動可能に配置されているスライド板、基台上に設置さ れ、スライド板に接続されている駆動軸を備えた直動駆動装置、スライド板の上に固 定され、上記テーブル板の表面に対して傾斜した斜面を持つスライド部材、そして頂 面が上記支持板の下面に固定され、スライド部材の斜面に滑動可能に対向配置され て 、る斜面を持つ昇降部材カもなる。 (1) A slide plate that is slidably arranged on a base, a linear drive device that has a drive shaft installed on the base and connected to the slide plate, and a slide plate The slide member has a slope inclined with respect to the surface of the table plate, and the top surface is fixed to the lower surface of the support plate and is slidably opposed to the slope of the slide member. It also has an elevating member.
(2)テーブル板が、支持板の表面に沿って配設された小球群を介して前記の支持 板の上に滑動可能に配置されている。 (2) The table plate is slidably disposed on the support plate via small balls arranged along the surface of the support plate.
(3)テーブル板と支持板との間に、上記小球の直径よりも小さい厚みを有し、表面 に沿って多数の透孔が形成されている保持板が配置され、上記小球の各々が、保持 板の多数の透孔の各々に一つずつ収容され保持されている。 (3) A holding plate having a thickness smaller than the diameter of the small sphere and having a plurality of through holes formed along the surface is disposed between the table plate and the support plate. However, one is accommodated and held in each of the many through holes of the holding plate.
(4)テーブル板及び支持板の各々が、その中央に開口部を備える。 (4) Each of the table plate and the support plate has an opening at the center thereof.
発明の効果 The invention's effect
[0010] 本発明の三次元位置決めテーブルは、複数の位置決めテーブルを積み重ねること なく薄型に構成することができる。そして本発明の三次元位置決めテーブルは、テー ブル板と直動駆動装置との接続方法が工夫されているため、構成も簡単でありなが ら、テーブル板の表面に置かれた位置決め対象物を三次元にて高 、精度で位置決 めすることができる。
発明を実施するための最良の形態 [0010] The three-dimensional positioning table of the present invention can be configured to be thin without stacking a plurality of positioning tables. The three-dimensional positioning table of the present invention has a devised connection method between the table plate and the linear drive device, so that the positioning object placed on the surface of the table plate can be moved while having a simple configuration. It can be positioned with high accuracy in three dimensions. BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の三次元位置決めテーブルを、添付の図面を用いて説明する。図 1は、本 発明の三次元位置決めテーブルの構成例を示す図である。但し、図 1においては、 位置決めテーブル 10が備える昇降装置(図 4 : 12)の記載は省略してある。図 2は、 図 1に示す位置決めテーブル 10を図の上側から見た図である。図 3は、図 2に示す 位置決めテーブル 10が備える昇降装置の構成を示す図である。そして図 4は、図 2 に示す位置決めテーブル 10を図の下側から見た図である。但し、図 4においては、 位置決めテーブル 10が備える直動駆動装置 17a、 17b、 17c、および接続具 15a、 1 5b、 15cの記載は省略してある。 [0011] A three-dimensional positioning table of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing a configuration example of a three-dimensional positioning table of the present invention. However, in FIG. 1, the description of the lifting device (FIG. 4:12) provided in the positioning table 10 is omitted. FIG. 2 is a view of the positioning table 10 shown in FIG. 1 as viewed from above. FIG. 3 is a diagram showing a configuration of the lifting device provided in the positioning table 10 shown in FIG. FIG. 4 is a view of the positioning table 10 shown in FIG. 2 as viewed from the lower side of the figure. However, in FIG. 4, the description of the linear motion drive devices 17a, 17b, and 17c included in the positioning table 10 and the connectors 15a, 15b, and 15c is omitted.
[0012] 図 1から図 4に示す三次元位置決めテーブル 10は、基台 11、基台 11の上に設置 されている昇降装置 12、昇降装置 12の上部に固定されている支持板 13、支持板 1 3の上に滑動可能に配置されているテーブル板 14、および基台 11の上の昇降装置 12の周囲に配設されている、各々接続具 15a、 15b、 15cのそれぞれを介してテー ブル板 14に接続されている駆動軸 16、 16、 16を備えた三個の直動駆動装置 17a、 17b、 17cなどから構成されている。そして上記の接続具 15a、 15b、 15cの各々は、 テーブル板 14の表面に垂直な方向に配置されたレール 18aとレール 18aにその長さ 方向に沿って移動可能に取り付けられているスライダ 18bとからなる第一のリニア軸 受 18、第一のリニア軸受 18のレール 18aに直交する方向に配置されたレール 19aと レール 19aにその長さ方向に沿って移動可能に取り付けられているスライダ 19bとか らなる第二のリニア軸受 19、及びテーブル板 14の表面に垂直な方向を軸に揺動可 能な可動部 20aを備える揺動具 20をこの順に連結した構成を有して 、る。更に上記 の三つの接続具 15a、 15b、 15cのうちの二つの接続具 15a、 15bの第二のリニア軸 受 19、 19のレーノレ 19aゝ 19aは互いに平行に酉己置され、且つ残りの接続具 15cの第 二のリニア軸受 19のレール 19aと直交する方向に配置されている。 A three-dimensional positioning table 10 shown in FIGS. 1 to 4 includes a base 11, a lifting device 12 installed on the base 11, a support plate 13 fixed to the top of the lifting device 12, and a support The table plate 14 is slidably disposed on the plate 13, and the table 15 is disposed around the lifting device 12 on the base 11. It is composed of three linear motion drive devices 17a, 17b, 17c and the like having drive shafts 16, 16, 16 connected to the bull plate 14. Each of the connecting tools 15a, 15b, 15c includes a rail 18a disposed in a direction perpendicular to the surface of the table plate 14, and a slider 18b attached to the rail 18a so as to be movable along the length direction thereof. A first linear bearing 18 composed of a rail 19a arranged in a direction perpendicular to the rail 18a of the first linear bearing 18, and a slider 19b attached to the rail 19a so as to be movable along its length direction. The second linear bearing 19 and the swinging tool 20 having a movable part 20a swingable about a direction perpendicular to the surface of the table plate 14 are connected in this order. Furthermore, the second linear bearings 19a, 15b of the two connectors 15a, 15b, 15b out of the above three connectors 15a, 15b, 15c are placed in parallel with each other and the remaining connections. The second linear bearing 19 of the tool 15c is arranged in a direction orthogonal to the rail 19a.
[0013] 位置決めテーブル 10のテーブル板 14の上には、例えば、顕微鏡で観察を行なう 試料などの位置決め対象物が配置される。後に説明するように、テーブル板 14を、 例えば、図 2に矢印で示した X方向、 Y方向、 Θ方向、そして図 4に矢印で示した Z方 向のそれぞれに移動させることにより、テーブル板 14の上に配置された位置決め対
象物を三次元にて位置決めすることができる。 [0013] On the table plate 14 of the positioning table 10, for example, a positioning object such as a sample to be observed with a microscope is arranged. As will be described later, the table plate 14 is moved in, for example, the X direction, the Y direction, the Θ direction indicated by arrows in FIG. 2, and the Z direction indicated by arrows in FIG. Positioning pair placed on 14 The figurine can be positioned in three dimensions.
[0014] 図 5は、図 1に示す位置決めテーブル 10のテーブル板 14及び支持板 13の拡大図 である。図 5に示すように、テーブル板 14は、支持板 13の表面に沿って配設された 小球群 26を介して支持板 13の上に滑動可能に配置されていることが好ましい。これ により、テーブル板 14を支持板 13の表面に沿って、 X方向、 Y方向、そして Θ方向の それぞれに円滑に移動(滑動)させることが可能になる。小球群 26は、支持板 13の 表面に沿って配設された小球 26aの複数個から構成されている。小球群 26は、例え ば、支持板 13の表面に沿って環状に配設される。 FIG. 5 is an enlarged view of the table plate 14 and the support plate 13 of the positioning table 10 shown in FIG. As shown in FIG. 5, the table plate 14 is preferably slidably disposed on the support plate 13 via a small ball group 26 disposed along the surface of the support plate 13. As a result, the table plate 14 can be smoothly moved (slided) along the surface of the support plate 13 in each of the X direction, the Y direction, and the Θ direction. The small ball group 26 is composed of a plurality of small balls 26 a disposed along the surface of the support plate 13. For example, the small ball group 26 is annularly arranged along the surface of the support plate 13.
[0015] テーブル板 14と支持板 13との間には、上記小球 26aの直径よりも小さい厚みを有 し、表面に沿って多数の透孔が形成されている保持板 27が配置され、小球 26aの各 々力 保持板 27の多数の透孔の各々に一つずつ収容され保持されていることが更 に好ましい。保持板 27を用いることにより、小球 26aが支持板 13の内側周縁あるい は外側周縁から下方に落下することを防止できる。なお、保持板 27を用いない場合 には、例えば、支持板 13の表面に小球 26aの径よりも浅い溝を形成し、この溝の内 部に小球群 26を配設することにより、上記の小球 26aの落下を防止することができる [0015] Between the table plate 14 and the support plate 13, a holding plate 27 having a thickness smaller than the diameter of the small sphere 26a and having many through holes formed along the surface is disposed. It is further preferable that each of the small spheres 26a is housed and held in each of the many through holes of the holding plate 27. By using the holding plate 27, it is possible to prevent the small sphere 26a from dropping downward from the inner peripheral edge or the outer peripheral edge of the support plate 13. When the holding plate 27 is not used, for example, a groove shallower than the diameter of the small sphere 26a is formed on the surface of the support plate 13, and the small sphere group 26 is disposed inside the groove. The above-mentioned small ball 26a can be prevented from falling
[0016] 図 5に示すように、支持板 13の下側には、小球群 28と、例えば、円盤状の板材 29 とが配置されている。支持板 13は、テーブル板 14と板材 29とにより、小球群 26及び 小球群 28を介して予め加圧された状態にあることが好ましい。これにより、テーブル 板 14を、支持板 13との平行度を良好な状態に維持したまま、支持板 13の表面に沿 つて移動(滑動)させることができる。 As shown in FIG. 5, a small ball group 28 and, for example, a disk-shaped plate material 29 are arranged below the support plate 13. The support plate 13 is preferably in a state of being previously pressurized by the table plate 14 and the plate material 29 via the small ball group 26 and the small ball group 28. Accordingly, the table plate 14 can be moved (slid) along the surface of the support plate 13 while maintaining the parallelism with the support plate 13 in a good state.
[0017] 前記の小球群 28は、板材 29の表面に沿って配設された小球 28aの複数個から構 成されている。小球群 28は、例えば、板材 29の表面に沿って環状に配設される。支 持板 13と板材 29との間には、上記小球 28aの直径よりも小さい厚みを有し、表面に 沿って多数の透孔が形成されている保持板 30が配置され、小球 28aの各々力 保 持板 30の多数の透孔の各々に一つずつ収容され保持されていることが好ましい。こ れにより、小球 28aが板材 29の外側周縁から下方に落下することを防止できる。 The small ball group 28 is composed of a plurality of small balls 28 a arranged along the surface of the plate material 29. The small ball group 28 is arranged in an annular shape along the surface of the plate material 29, for example. Between the support plate 13 and the plate material 29, a holding plate 30 having a thickness smaller than the diameter of the small sphere 28a and having many through holes formed along the surface is disposed. Each of the force holding plates 30 is preferably housed and held in each of a large number of through holes. As a result, the small balls 28a can be prevented from falling downward from the outer peripheral edge of the plate 29.
[0018] 次に、位置決めテーブル 10のテーブル板 14の駆動装置について説明する。先ず
、テーブル板 14を昇降させる (Z方向に移動させる)昇降装置 12について説明する。 昇降装置 12は、基台 11の上に設置される。この昇降装置 12の上部には、前記の支 持板 13が固定される。 Next, a drive device for the table plate 14 of the positioning table 10 will be described. First Next, the lifting device 12 that lifts and lowers the table plate 14 (moves in the Z direction) will be described. The lifting device 12 is installed on the base 11. The support plate 13 is fixed to the upper part of the lifting device 12.
[0019] 図 3及び図 4に示すように、位置決めテーブル 10の昇降装置 12は、基台 11の上に 滑動可能に配置されているスライド板 21、基台 11の上に設置され、スライド板 21に 接続されている駆動軸 22を備えた直動駆動装置 23、スライド板 21の上に固定され、 テーブル板 14の表面に対して傾斜した斜面 24aを持つスライド部材 24、そして頂面 が支持板 13の下面に固定され、スライド部材 24の斜面 24aに滑動可能に対向配置 されて 、る斜面 25aを持つ昇降部材 25から構成されて 、ることが好ま 、。 As shown in FIG. 3 and FIG. 4, the lifting device 12 of the positioning table 10 is installed on the slide plate 21 slidably disposed on the base 11 and the base 11, and the slide plate A linear motion drive device 23 having a drive shaft 22 connected to 21, a slide member 24 fixed on the slide plate 21 and having an inclined surface 24 a inclined with respect to the surface of the table plate 14, and supported by the top surface Preferably, the plate 13 is composed of an elevating member 25 having a slope 25a fixed to the lower surface of the plate 13 and slidably opposed to the slope 24a of the slide member 24.
[0020] 昇降装置 12のスライド板 21は、例えば、互いに平行に配置された一対のリニア軸 受 31a、 3 lbを介して基台 11に非接触に配置されている。リニア軸受 31a、 31bの各 々は、複数個の小球を介して一対のレール 32a、 32bがその長さ方向に沿って互い に滑動可能に対向配置された構成を有している。各々のリニア軸受のレール 32aは 基台 11に固定され、そしてレール 32bはスライド板 21に固定されている。リニア軸受 31a、 31bにより、スライド板 21は、リニア軸受 31aのレール 32aの長さ方向に沿って( X方向に)滑動可能とされて ヽる。 [0020] The slide plate 21 of the lifting device 12 is disposed in non-contact with the base 11 via, for example, a pair of linear bearings 31a and 3 lb disposed in parallel to each other. Each of the linear bearings 31a and 31b has a configuration in which a pair of rails 32a and 32b are slidably opposed to each other along the length direction via a plurality of small balls. Each linear bearing rail 32 a is fixed to the base 11, and the rail 32 b is fixed to the slide plate 21. The linear bearings 31a and 31b allow the slide plate 21 to slide along the length direction of the rail 32a of the linear bearing 31a (in the X direction).
[0021] 直動駆動装置 23は、回転駆動装置 33、そして回転駆動装置 33の回転軸 34に備 えられたボールねじ 35から構成されている。直動駆動装置 23の駆動軸としては、ボ ールねじ 35のねじ軸 36に嵌め合わされたナット 22が用いられている。この駆動軸( ナット) 22はスライド板 21に固定されている。このため、直動駆動装置 23の回転駆動 装置 33を駆動することにより、スライド板 21をリニア軸受 31aのレール 32aの長さ方 向に沿って前後に移動(滑動)させることができる。直動駆動装置としては、ステツピ ングモータやサーボモータなどの回転駆動装置とボールねじとを組み合わせたもの、 あるいは超音波リニアモータに代表される公知の直動駆動装置を用いることができる The linear drive device 23 includes a rotation drive device 33 and a ball screw 35 provided on the rotation shaft 34 of the rotation drive device 33. As the drive shaft of the linear drive device 23, a nut 22 fitted to the screw shaft 36 of the ball screw 35 is used. The drive shaft (nut) 22 is fixed to the slide plate 21. Therefore, by driving the rotational drive device 33 of the linear drive device 23, the slide plate 21 can be moved back and forth along the length direction of the rail 32a of the linear bearing 31a. As the linear drive device, a combination of a rotary drive device such as a stepping motor or a servo motor and a ball screw, or a known linear drive device represented by an ultrasonic linear motor can be used.
[0022] 昇降装置 12には、スライド部材 24と昇降部材 25との組力 例えば、四組備えられ ている。各組のスライド部材 24と昇降部材 25との間には、例えば、昇降部材 25の斜 面 25aに固定されたレール 37aと、スライド部材 24の斜面 24aに固定されたスライダ 3
7bとからなるリニア軸受 37が備えられている。リニア軸受 37により、昇降部材 25がス ライド部材 24の斜面 24aに沿って円滑に移動可能となる。 [0022] The elevating device 12 is provided with, for example, four combinations of the slide member 24 and the elevating member 25. Between each pair of the slide member 24 and the lift member 25, for example, a rail 37a fixed to the inclined surface 25a of the lift member 25 and a slider 3 fixed to the inclined surface 24a of the slide member 24 A linear bearing 37 consisting of 7b is provided. The linear bearing 37 enables the elevating member 25 to move smoothly along the slope 24a of the slide member 24.
[0023] また、図 3の右側にて上下に並んで配置されている二つの昇降部材の各々は、上 記とは別のリニア軸受を介して、 Z方向にのみ移動可能な状態にて基台 11に取り付 けられている。例えば、図 4の右側に配置されている昇降部材 25は、その右側の側 面に固定されているレール 38aと、レール 38aに嵌め合わされ、基台 11に固定されて V、るスライダ 38bと力もなるリニア軸受 38により、 Z方向にのみ移動可能とされて 、る。 従って、直動駆動装置 23を駆動して、図 4に示すスライド板 21をスライド部材 24と共 に、例えば、図の右方向に移動させることにより、昇降部材 25が上昇し、支持板 13、 そしてテーブル板 14を上方に移動させることができる。 [0023] Each of the two elevating members arranged side by side on the right side of FIG. 3 is based on a linear bearing different from the above and is movable only in the Z direction. Mounted on stand 11. For example, the elevating member 25 arranged on the right side of FIG. 4 has a rail 38a fixed to the right side surface thereof and a rail 38a fitted to the rail 38a and fixed to the base 11, and also has a force with the slider 38b. The linear bearing 38 can be moved only in the Z direction. Accordingly, by driving the linear drive device 23 and moving the slide plate 21 shown in FIG. 4 together with the slide member 24, for example, to the right in the figure, the elevating member 25 is raised, and the support plate 13, Then, the table plate 14 can be moved upward.
[0024] なお、上記の昇降装置 12は、その高さが低く高剛性を示すため、本発明の位置決 めテーブルに好ましく用いることができる。なお、昇降装置の構成に特に制限はない 。例えば、駆動装置とリンク装置もしくはカム装置とを組み合わせた構成の昇降装置 を用いることちでさる。 [0024] It should be noted that the lifting device 12 described above can be preferably used in the positioning table of the present invention because of its low height and high rigidity. In addition, there is no restriction | limiting in particular in the structure of a raising / lowering apparatus. For example, it is possible to use a lifting device having a configuration in which a driving device and a link device or a cam device are combined.
[0025] 次に、図 2に示す位置決めテーブル 10のテーブル板 14を、例えば、 X方向、 Y方 向、そして Θ方向のそれぞれに移動させるために用いる三個の直動駆動装置 17a、 17b、 17cと、各々の直動駆動装置をテーブル板に接続するために用いる接続具 15 a、 15b、 15cとにつ!/、て説明する。 Next, three linear drive devices 17a, 17b used to move the table plate 14 of the positioning table 10 shown in FIG. 2 in, for example, the X direction, the Y direction, and the Θ direction, respectively. 17c and the connecting tools 15a, 15b and 15c used to connect each of the linear drive devices to the table plate will be described.
[0026] 図 3に示すように、三個の直動駆動装置 17a、 17b、 17cは、基台 11の上の昇降装 置 12の周囲に配設されている。直動駆動装置 17a、 17b、 17cは、各々接続具 15a、 15b、 15cを介してテーブル板 14に接続されている駆動軸 16、 16、 16を備えている As shown in FIG. 3, the three linear drive devices 17 a, 17 b, 17 c are arranged around the lifting device 12 on the base 11. The linear drive devices 17a, 17b, and 17c include drive shafts 16, 16, and 16 that are connected to the table plate 14 via connecting members 15a, 15b, and 15c, respectively.
[0027] 図 1及び 2に示すように、直動駆動装置 17aは、上記の直動駆動装置 23の場合と 同様に回転駆動装置 39、そして回転駆動装置 39の回転軸 40に備えられたボール ねじ 41から構成されている。そして直動駆動装置 17aの駆動軸としては、ボールねじ 41のねじ軸 42に嵌め合わされたナット 16が用いられている。この駆動軸(ナット) 16 は、接続具 15aを介してテーブル板 14に接続されている。直動駆動装置 17b、 17c の各々の構成は、直動駆動装置 17aと同様である。なお、各々の直動駆動装置とし
ては、ステッピングモータやサーボモータなどの回転駆動装置とボールねじとを組み 合わせたもの、あるいは超音波リニアモータに代表される公知の直動駆動装置を用 いることができる。これらの直動駆動装置としては、互いに構成が異なるものを用いて ちょい。 As shown in FIGS. 1 and 2, the linear drive device 17a includes a rotational drive device 39 and a ball provided on the rotary shaft 40 of the rotary drive device 39 in the same manner as the linear motion drive device 23 described above. It consists of screws 41. A nut 16 fitted to the screw shaft 42 of the ball screw 41 is used as the drive shaft of the linear drive device 17a. The drive shaft (nut) 16 is connected to the table plate 14 via a connector 15a. Each configuration of the linear drive devices 17b and 17c is the same as that of the linear drive device 17a. Note that each linear drive device For example, a combination of a rotary drive device such as a stepping motor or a servo motor and a ball screw, or a known linear motion drive device typified by an ultrasonic linear motor can be used. Use these linear motion drive units with different configurations.
[0028] そして、接続具 15aは、テーブル板 14の表面に垂直な方向に配置されたレール 18 aとレール 18aにその長さ方向に沿って移動可能に取り付けられているスライダ 18bと 力もなる第一のリニア軸受 18、第一のリニア軸受 18のレール 18aに直交する方向に 配置されたレール 19aとレール 19aにその長さ方向に沿って移動可能に取り付けら れているスライダ 19bと力もなる第二のリニア軸受 19、及びテーブル板 14の表面に 垂直な方向を軸に揺動可能な可動部 20aを備える揺動具 20をこの順に連結した構 成を有している。接続具 15b、 15cの各々の構成は、接続具 15aと同様である。なお 、各々の接続具の第一のリニア軸受、第二のリニア軸受、そして揺動具を連結する順 序に特に制限はない。また、これらの接続具として、互いに構成が異なるもの(例えば 、上記の第一のリニア軸受、第二のリニア軸受及び揺動具を連結する順序が互いに 異なって!/、るもの)を用いてもよ!、。 [0028] The connecting tool 15a also has a rail 18a arranged in a direction perpendicular to the surface of the table plate 14 and a slider 18b attached to the rail 18a so as to be movable along the length direction. The first linear bearing 18 and the first linear bearing 18 have a rail 19a arranged in a direction perpendicular to the rail 18a and a slider 19b attached to the rail 19a so as to be movable along the length direction. It has a configuration in which a second linear bearing 19 and a swinging tool 20 having a movable part 20a swingable around a direction perpendicular to the surface of the table plate 14 are connected in this order. The configuration of each of the connection tools 15b and 15c is the same as that of the connection tool 15a. The order of connecting the first linear bearing, the second linear bearing, and the swinging tool of each connecting tool is not particularly limited. Further, as these connecting tools, those having different structures (for example, those in which the order of connecting the first linear bearing, the second linear bearing and the swinging tool is different from each other! /) Are used. Moyo!
[0029] 位置決めテーブル 10の場合、接続具 15aの第一のリニア軸受 18のスライダ 18bは 、上部がテーブル板 14の側面に固定され、テーブル板の下方へと伸びるスライダ支 持材 44に固定されており、そしてレール 18aは、レール支持材 45に固定されている 。レール支持材 45は、図 1の右側力も見ると逆 T字形をしており、その下側部分は Y 方向に伸びている。そして第二のリニア軸受 19のレール 19aは、レール支持材 45の 下側部分に Y方向に沿って固定されており、そしてスライダ 19bは揺動具 20の可動 咅 20a【こ固定されて!ヽる。 [0029] In the case of the positioning table 10, the slider 18b of the first linear bearing 18 of the connector 15a is fixed to the slider support member 44 whose upper part is fixed to the side surface of the table plate 14 and extends downward of the table plate. The rail 18a is fixed to the rail support 45. The rail support 45 has an inverted T-shape when viewed from the right side of FIG. 1, and its lower part extends in the Y direction. The rail 19a of the second linear bearing 19 is fixed to the lower part of the rail support member 45 along the Y direction, and the slider 19b is fixed to the movable tool 20a. The
[0030] 位置決めテーブル 10の第一のリニア軸受 18、そして第二のリニア軸受 19としては 、レールに複数個の小球を介してスライダが嵌め合わされた構成のリニア軸受が用い られている。このような構成を持つリニア軸受は、一般に、リニアガイドと呼ばれている 。リニアガイドに代えて、クロスローラーガイドなどの公知のリニア軸受を用いることも できる。また、ブッシュ(特にボールブッシュ)を取り付けた軸を、この軸を上記のレー ルとして、そしてブッシュを上記のスライダとして用いることもできる。
[0031] 位置決めテーブル 10の揺動具 20としては、テーブル板 14の表面に垂直な方向を 軸に揺動可能な可動部 20aを備えるヒンジが用いられている。ヒンジに代えて、環状 に形成されている公知のスベリ軸受ゃコロガリ軸受を、その内輪もしくは外輪を可動 部として用いることもできる。また、円弧の形状に湾曲したレールを持つリニア軸受を 、そのレールもしくはスライダを上記の可動部として用いることもできる。 [0030] As the first linear bearing 18 and the second linear bearing 19 of the positioning table 10, linear bearings having a configuration in which a slider is fitted to a rail via a plurality of small balls are used. The linear bearing having such a configuration is generally called a linear guide. A known linear bearing such as a cross roller guide may be used instead of the linear guide. It is also possible to use a shaft attached with a bush (particularly a ball bush) as the rail described above and the bush as the slider described above. [0031] As the swinging tool 20 of the positioning table 10, a hinge including a movable part 20a that can swing about a direction perpendicular to the surface of the table plate 14 is used. Instead of the hinge, a known sliding bearing formed in an annular shape or a roller bearing can be used with its inner ring or outer ring as the movable part. Further, a linear bearing having a rail curved in the shape of an arc can be used as the movable part.
[0032] そして、前記の三つの接続具のうちの二つの接続具 15a、 15bの第二のリニア軸受 19、 19のレーノレ 19aゝ 19aは互いに平行に酉己置され、且つ残りの接続具 15cの第二 のリニア軸受 19のレール 19aと直交する方向に配置されている。なお、前記の二つ の接続具 15a、 15bの第二のリニア軸受 19、 19のレーノレ 19a、 19aiま互!ヽ【こ同軸【こ 酉己置することちでさる。 [0032] The second linear bearings 19 and 19 of the two connecting members 15a and 15b out of the three connecting members are placed in parallel with each other, and the remaining connecting members 15c The second linear bearing 19 is arranged in a direction orthogonal to the rail 19a. It should be noted that the second linear bearings 19a and 19b of the two connecting tools 15a and 15b may be placed on the same axis.
[0033] このように、三個の直動駆動装置 17a、 17b、 17cの各々を上記の接続具 15a、 15 b、 15cを介してテーブル板 14に接続することにより、直動駆動装置 17a、 17b、 17c 及び昇降装置 12を用いて、テーブル板 14を、例えば、 X方向、 Y方向、 Θ方向、そ して Z方向のそれぞれに移動させ、その表面に置かれた対象物を高い精度で位置決 めすることができる。以下に、位置決めテーブル 10のテーブル板 14の移動方法の例 について説明する。 [0033] In this way, by connecting each of the three linear drive devices 17a, 17b, and 17c to the table plate 14 via the connection tools 15a, 15b, and 15c, the linear drive device 17a, Using the 17b, 17c and the lifting device 12, the table plate 14 is moved, for example, in each of the X direction, the Y direction, the Θ direction, and the Z direction, and the object placed on the surface is moved with high accuracy. Can be positioned. Hereinafter, an example of a method for moving the table plate 14 of the positioning table 10 will be described.
[0034] 図 6は、図 2に示す位置決めテーブル 10のテーブル板 14を X方向に移動させた状 態を示す図である。但し、図 6においては、テーブル板 14の移動方向を明確にする ため、移動前のテーブル板の位置を二点鎖線で示し、テーブル板 14をその可動距 離を超えて大きく移動させた状態にて実線で示し、そして支持板(図 1 : 13)の記載は 省略してある(以下に示す図 7及び図 8も同様である)。なお、図 5に示すように、例え ば、テーブル板 14の X方向(図の左右の方向)の可動距離は、図の左側の方向に距 離 D、そして右側の方向に距離 Dである。 FIG. 6 is a diagram showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the X direction. However, in FIG. 6, in order to clarify the moving direction of the table plate 14, the position of the table plate before the movement is indicated by a two-dot chain line, and the table plate 14 is moved greatly beyond its movable distance. The support plate (Fig. 1: 13) is not shown (the same applies to Fig. 7 and Fig. 8 below). As shown in FIG. 5, for example, the movable distance in the X direction (left and right directions in the figure) of the table plate 14 is the distance D in the left direction and the distance D in the right direction.
1 2 1 2
[0035] 図 6に示すように、例えば、直動駆動装置 17aの駆動軸 16を接続具 15aの側とは 逆側に、そして直動駆動装置 17bの駆動軸 16を接続具 15bの側に互 、に等 、量 で駆動することにより、テーブル板 14を X方向に移動させることができる。この際に、 テーブル板 14は、接続具 15cの第二のリニア軸受 19のレール 19aがスライダ 19bに 対して X方向に移動するため、支持板(図 1: 13)の表面に沿って円滑に移動すること
ができる。すなわち、テーブル板 14に接続具 15cを介して接続されている直動駆動 装置 17c、あるいは支持板に接続されて!ヽる昇降装置(図 4: 12)がテーブル板の移 動を妨げることがない。このため、位置決めテーブル 10は、テーブル板 14を X方向( あるいは X方向とは逆の方向)に精密に移動させ、その表面に配置された位置決め 対象物を X方向にて高 、精度で位置決めすることができる。 As shown in FIG. 6, for example, the drive shaft 16 of the linear drive device 17a is on the side opposite to the connection tool 15a side, and the drive shaft 16 of the linear drive device 17b is on the connection tool 15b side. The table plate 14 can be moved in the X direction by being driven by the same amount. At this time, the table plate 14 moves smoothly along the surface of the support plate (FIG. 1: 13) because the rail 19a of the second linear bearing 19 of the connector 15c moves in the X direction with respect to the slider 19b. To move Can do. In other words, the linear drive device 17c connected to the table plate 14 via the connector 15c or the lifting device connected to the support plate (Fig. 4: 12) may prevent the table plate from moving. Absent. Therefore, the positioning table 10 precisely moves the table plate 14 in the X direction (or the direction opposite to the X direction), and positions the positioning object placed on the surface in the X direction with high accuracy. be able to.
[0036] 図 7は、図 2に示す位置決めテーブル 10のテーブル板 14を Y方向に移動させた状 態を示す図である。図 7に示すように、例えば、直動駆動装置 17cの駆動軸 16を接 続具 15cの側に駆動することにより、テーブル板 14を Y方向に移動させることができ る。この際に、テーブル板 14は、接続具 15a、 15bの各々の第二のリニア軸受 19の レール 19aがスライダ 19bに対して Y方向に移動するため、支持板の表面に沿って円 滑に移動することができる。すなわち、テーブル板 14に接続具 15a、 15bの各々を介 して接続されている直動駆動装置 17a、 17b、あるいは支持板に接続されている昇降 装置がテーブル板の移動を妨げることがない。このため、位置決めテーブル 10は、 テーブル板 14を Y方向(あるいは Y方向とは逆の方向)に精密に移動させ、その表面 に配置された位置決め対象物を Y方向にて高 、精度で位置決めすることができる。 FIG. 7 is a diagram showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the Y direction. As shown in FIG. 7, for example, the table plate 14 can be moved in the Y direction by driving the drive shaft 16 of the linear drive device 17c toward the connector 15c. At this time, the table plate 14 moves smoothly along the surface of the support plate because the rail 19a of the second linear bearing 19 of each of the connectors 15a and 15b moves in the Y direction with respect to the slider 19b. can do. That is, the linear motion drive devices 17a and 17b connected to the table plate 14 via the connection tools 15a and 15b or the lifting device connected to the support plate does not hinder the movement of the table plate. Therefore, the positioning table 10 precisely moves the table plate 14 in the Y direction (or the direction opposite to the Y direction), and positions the positioning object placed on the surface in the Y direction with high accuracy. be able to.
[0037] 図 8は、図 2に示す位置決めテーブル 10のテーブル板 14を Θ方向に回転移動さ せた状態を示す図である。図 8に示すように、例えば、直動駆動装置 17a、 17b、 17c の各々の駆動軸 16を、接続具 15a、 15b、 15cの各々の側とは逆側に互いに等しい 量で駆動することにより、テーブル板 14をその表面の中央の位置を中心として Θ方 向に回転移動させることができる。この際に、テーブル板 14は、接続具 15a、 15b、 1 5cの各々の揺動具 20の可動部 20aが、それぞれ直動駆動装置 17a、 17b、 17cに 対して揺動するため、支持板の表面に沿って円滑に回転移動することができる。すな わち、テーブル板 14に各々接続具を介して接続されている直動駆動装置 17a、 17b 、 17c,あるいは支持板に接続されている昇降装置がテーブル板の回転移動を妨げ ることがない。このため、位置決めテーブル 10は、テーブル板 14を Θ方向(あるいは Θ方向とは逆の方向)に精密に回転移動させ、その表面に配置された位置決め対象 物を Θ方向にて高い精度で位置決めすることができる。 FIG. 8 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is rotationally moved in the Θ direction. As shown in FIG. 8, for example, by driving the drive shafts 16 of the linear drive devices 17a, 17b, and 17c on the opposite side to the sides of the connection tools 15a, 15b, and 15c by the same amount as each other. The table plate 14 can be rotated in the Θ direction around the center position of the surface. At this time, the table plate 14 supports the support plate because the movable portions 20a of the swinging tools 20 of the connecting tools 15a, 15b, and 15c swing with respect to the linear drive devices 17a, 17b, and 17c, respectively. Can smoothly rotate and move along the surface. In other words, the linear drive devices 17a, 17b, 17c connected to the table plate 14 via connecting members, or the lifting device connected to the support plate may prevent the table plate from rotating. Absent. For this reason, the positioning table 10 precisely rotates and moves the table plate 14 in the Θ direction (or the direction opposite to the Θ direction), and positions the positioning object placed on the surface in the Θ direction with high accuracy. be able to.
[0038] なお、位置決めテーブル 10は、直動駆動装置 17a、 17b、 17cの各々の駆動軸 16
の駆動方向や駆動量を調節することによって、テーブル板 14をその表面の任意の位 置を中心として Θ方向(あるいは Θ方向とは逆の方向)に回転移動させることができる [0038] Note that the positioning table 10 includes the drive shafts 16 of the linear drive devices 17a, 17b, and 17c. By adjusting the driving direction and driving amount, the table plate 14 can be rotated and moved in the Θ direction (or the direction opposite to the Θ direction) around an arbitrary position on the surface.
[0039] 図 9は、図 4に示す位置決めテーブル 10のテーブル板 14を Z方向に移動させた状 態を示す図である。図 9に示すように、例えば、昇降装置 12が備える直動駆動装置 2 3の駆動軸 22を図の右側の方向に駆動することにより、スライド板 21がスライド部材 2 4と共に図の右側の方向に移動し、これと同時に昇降部材 25が支持板 13と共に上 昇するため、テーブル板 14を Z方向に移動(上昇)させることができる。この際に、テ 一ブル板 14は、図 2に示す接続具 15a、 15b、 15bの各々の第一のリニア軸受 18の スライダ 18bがレール 18aに対して Z方向に移動するため、円滑に上昇することがで きる。すなわち、テーブル板 14に接続具 15a、 15b、 15cの各々を介して接続されて いる直動駆動装置 17a、 17b、 17cがテーブル板の移動を妨げることがない。このた め、位置決めテーブル 10は、テーブル板 14を Z方向(あるいは Z方向とは逆の方向) に精密に移動させ、その表面に配置された位置決め対象物を Z方向にて高い精度 で位置決めすることができる。 FIG. 9 is a diagram showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 4 is moved in the Z direction. As shown in FIG. 9, for example, by driving the drive shaft 22 of the linear drive device 23 provided in the lifting device 12 in the right direction in the figure, the slide plate 21 together with the slide member 24 is in the right direction in the figure. At the same time, the elevating member 25 ascends together with the support plate 13, so that the table plate 14 can be moved (raised) in the Z direction. At this time, the table plate 14 rises smoothly because the slider 18b of the first linear bearing 18 of each of the connectors 15a, 15b, and 15b shown in FIG. 2 moves in the Z direction with respect to the rail 18a. can do. That is, the linear motion drive devices 17a, 17b, and 17c connected to the table plate 14 via the connection tools 15a, 15b, and 15c do not hinder the movement of the table plate. For this reason, the positioning table 10 precisely moves the table plate 14 in the Z direction (or the opposite direction to the Z direction) and positions the positioning object placed on the surface with high accuracy in the Z direction. be able to.
[0040] なお、上記のようなテーブル板の X方向、 Y方向、 0方向、そして Z方向への移動は 、任意の 2〜4つの方向を選択して同時に行なうこともできる。 [0040] The movement of the table plate in the X direction, the Y direction, the 0 direction, and the Z direction can be performed simultaneously by selecting any two to four directions.
[0041] 本発明の三次元位置決めテーブルには、基台上の昇降装置の周囲に配設され、 上記の接続具と同様の構成の別の接続具を介してテーブル板に接続されている駆 動軸を備えた別の直動駆動装置が備えられていてもよい。例えば、図 2に示す位置 決めテーブル 10の場合には、上記の別の直動駆動装置を、テーブル板 14の図の右 側の側面に上記の別の接続具を介して接続する。この場合には、接続具 15cの第二 のリニア軸受 19のレール 19aと、上記の別の接続具の第二のリニア軸受のレールと が互いに同軸または平行に配置されて 、ることが好まし 、。これらの二個の直動駆動 装置を用いて、テーブル板を上記の X方向に移動させる場合と同様にして Y方向に 移動させることにより、テーブル板を Y方向に移動させる際の直進性が高められる。こ のため、位置決めテーブルの位置決めの精度が更に高くなる。 [0041] The three-dimensional positioning table of the present invention is arranged around the lifting device on the base, and is connected to the table plate via another connector having the same configuration as the above-described connector. Another linear motion drive device having a moving shaft may be provided. For example, in the case of the positioning table 10 shown in FIG. 2, the other linear drive device is connected to the right side surface of the table plate 14 through the other connection tool. In this case, it is preferable that the rail 19a of the second linear bearing 19 of the connector 15c and the rail of the second linear bearing of the other connector are arranged coaxially or parallel to each other. ,. Using these two linear motion drive units, the table plate is moved in the Y direction in the same manner as when moving the table plate in the X direction described above, thereby improving the straightness when the table plate is moved in the Y direction. It is done. This further increases the positioning accuracy of the positioning table.
[0042] 本発明の三次元位置決めテーブルは、複数の位置決めテーブルを積み重ねること
なく構成できるので装置の高さを低くすることができ、また装置の構成も簡単である。 更に本発明の位置決めテーブルにおいては、上記のようにテーブル板と直動駆動装 置との接続方法が工夫されているため、各々の直動駆動装置あるいは昇降装置がテ 一ブル板の円滑な移動を妨げることがない。従って、本発明の位置決めテーブルを 用いることにより、テーブル板の上に置かれた位置決め対象物を三次元にて高い精 度で位置決めすることができる。 [0042] The three-dimensional positioning table of the present invention stacks a plurality of positioning tables. Therefore, the height of the apparatus can be reduced, and the structure of the apparatus is simple. Furthermore, in the positioning table of the present invention, since the connection method between the table plate and the linear motion drive device is devised as described above, each linear motion drive device or lifting device can move the table plate smoothly. Will not be disturbed. Therefore, by using the positioning table of the present invention, the positioning object placed on the table plate can be positioned with high accuracy in three dimensions.
[0043] 上記の位置決めテーブル 10は、例えば、テーブル板 14の長さ(図 2 : L)力 ¾50mm に設定され、繰返し位置決め精度力 X方向にて ± 0. 5 /ζ πι、 Y方向にて ± 0. 5 μ m、 0方向にて ± 0. 6秒、そして Z方向にて ± 1 mという高い精度での位置決めを 行なうことができる。 [0043] The positioning table 10 is set, for example, to the length of the table plate 14 (Fig. 2: L) force ¾50mm, and repeated positioning accuracy force ± 0.5 / ζ πι in the X direction, in the Y direction Positioning can be performed with high accuracy of ± 0.5 μm, ± 0.6 seconds in the 0 direction, and ± 1 m in the Z direction.
[0044] 図 10は、本発明の三次元位置決めテーブルの別の構成例を示す平面図である。 FIG. 10 is a plan view showing another configuration example of the three-dimensional positioning table of the present invention.
図 11は、図 10の位置決めテーブル 50のテーブル板 54及び支持板 53を図の右側 力 見た側面図である。図 12は、図 11に記入した切断線 I—I線に沿って切断したテ 一ブル 54板及び支持板 53の断面図である。図 13は、図 10の位置決めテーブル 50 から、直動駆動装置 17a、 17b、 17c、接続具 15a、 15b、 15c、テーブル板 54、そし てテーブル板 54の下面に各々一対の支柱(図 12 : 51、 51)によって固定された二枚 の板材(図 12 : 59c、 59d)を取り除いた状態を示す平面図である。図 14は、図 13に 示す保持板 57aの形状を説明する図である。そして図 15は、図 13に示す保持板 57 a、 57b、 57c、 57dを、支持板 53の上から取り除いた状態を示す平面図である。 FIG. 11 is a side view of the table plate 54 and the support plate 53 of the positioning table 50 of FIG. FIG. 12 is a cross-sectional view of the table 54 plate and the support plate 53 cut along the cutting line II line entered in FIG. FIG. 13 is a plan view of the positioning table 50 shown in FIG. 10 to the linear motion drive devices 17a, 17b, and 17c, the connectors 15a, 15b, and 15c, the table plate 54, and a pair of support posts on the lower surface of the table plate 54 (FIG. 12: FIG. 12 is a plan view showing a state in which two plate members (FIG. 12: 59c, 59d) fixed by 51, 51) are removed. FIG. 14 is a diagram illustrating the shape of the holding plate 57a shown in FIG. FIG. 15 is a plan view showing a state where the holding plates 57a, 57b, 57c, and 57d shown in FIG.
[0045] 三次元位置決めテーブル 50の構成は、テーブル板 54がその中央に開口部 54aを 、そして支持板 53がその中央部に開口部 53aをそれぞれ備えていること以外は上記 の三次元位置決めテーブル 10と同様である。すなわち、昇降装置 12を駆動すること により、図 15に示すように昇降装置 12が備える四個の昇降部材 25に支持された支 持板 53を、その上に配置されたテーブル板 54と共に昇降させることができる。 [0045] The configuration of the three-dimensional positioning table 50 is the same as the three-dimensional positioning table described above except that the table plate 54 has an opening 54a in the center and the support plate 53 has an opening 53a in the center. Same as 10. That is, by driving the elevating device 12, the support plate 53 supported by the four elevating members 25 provided in the elevating device 12 is moved up and down together with the table plate 54 disposed thereon as shown in FIG. be able to.
[0046] このように、三次元位置決めテーブルのテーブル板及び支持板の各々の中央に開 口部が備えられていると、テーブル板の開口部の内側あるいはその下方に、例えば 、 CCD (Charge Coupled Device)カメラに代表される撮像装置を配置することができ る。これにより、テーブル板の開口部の上方に配置された位置決め対象物を、その配
置を撮像装置によって検出しながら高い精度にて位置決めすることができる。 As described above, when the opening is provided at the center of each of the table plate and the support plate of the three-dimensional positioning table, for example, a CCD (Charge Coupled) is formed inside or below the opening of the table plate. Device) An imaging device represented by a camera can be arranged. As a result, the object to be positioned arranged above the opening of the table plate can be moved. The position can be positioned with high accuracy while the position is detected by the imaging device.
[0047] 例えば、液晶セルを構成する二枚のガラス基板を接着剤を介して互いに貼り合わ せる際に、前記の撮像装置により各々のガラス基板の配置を検出(例えば、各々のガ ラス基板に付された位置決め用のマーク等の配置を検出)しながら、テーブル板 54 の上に開口部 54aを覆うようにして置かれた一方のガラス基板を、その上に僅かに間 隔をあけて配置された他方のガラス基板に対して所定の位置に位置決めした後に上 昇させる。このような操作によって、両者のガラス基板を高精度に位置決めした状態 にて互いに貼り合わせることができる。なお、テーブル板の上に置かれるガラス基板 は、その周縁部にて適当な治具により支持された状態にて、テーブル板の開口部の 内側の領域の上方に配置することもできる。 [0047] For example, when two glass substrates constituting a liquid crystal cell are bonded to each other via an adhesive, the arrangement of each glass substrate is detected by the imaging device (for example, on each glass substrate). The one glass substrate placed on the table plate 54 so as to cover the opening 54a is placed on the table plate 54 with a slight gap between them. After being positioned at a predetermined position with respect to the other glass substrate, it is raised. By such an operation, both glass substrates can be bonded together in a state of being positioned with high accuracy. Note that the glass substrate placed on the table plate can also be arranged above the region inside the opening of the table plate in a state where the glass substrate is supported by an appropriate jig at the peripheral edge thereof.
[0048] 位置決めテーブル 50の場合には、図 11〜図 13に示すように、テーブル板 54は、 支持板 53の表面に沿って配設された小球群 56a、 56b、 56c、 56dを介して支持板 5 3の上に滑動可能に配置されている。また、テーブル板 54と支持板 53との間には、 各々上記の小球の直径よりも小さい厚みを有し、表面に沿って多数の透孔が形成さ れている四個の保持板 57a、 57b、 57c、 57dが配置されている。上記の小球の各々 は、これらの保持板の透孔の各々に一つずつ収容され保持されている。 [0048] In the case of the positioning table 50, as shown in FIGS. 11 to 13, the table plate 54 passes through small ball groups 56a, 56b, 56c, and 56d disposed along the surface of the support plate 53. The support plate 53 is slidably disposed. In addition, between the table plate 54 and the support plate 53, four holding plates 57a each having a thickness smaller than the diameter of the small sphere and having a large number of through holes formed along the surface thereof. 57b, 57c and 57d are arranged. Each of the small spheres is housed and held in each of the through holes of the holding plates.
[0049] 上記の保持板 57a、 57b、 57c、 57dとしては、互いに同一の形状のものが用いられ ている。例えば、保持板 57aは、図 14に示すように小球群 56aを保持している。そし て保持板 57aの長さ方向の各々の端部の側には、一対の開口部 52、 52が備えられ ている。図 11及び図 14に示すように、保持板 57aの各々の開口部 52の内側には、 支持板 53にその表面力も突き出した状態にて備えられた保持板規制用のピン 61が 挿入される。保持板規制用のピン 61は、テーブル板 54の移動を繰り返した場合に、 保持板 57aが支持板 53の内側周縁あるいは外側周縁から大きく突き出さないように 、すなわち保持板 57aの透孔が支持板 53の内側あるいは外側に配置されな ヽように 保持板の動きを規制して、保持板 57aの透孔カゝらの小球の落下を防止する。 [0049] As the holding plates 57a, 57b, 57c, and 57d, those having the same shape are used. For example, the holding plate 57a holds a small ball group 56a as shown in FIG. A pair of openings 52, 52 are provided on each end side in the length direction of the holding plate 57a. As shown in FIGS. 11 and 14, a holding plate regulating pin 61 provided in a state in which the surface force of the supporting plate 53 protrudes is inserted inside each opening 52 of the holding plate 57a. . When the table plate 54 is repeatedly moved, the holding plate regulating pin 61 prevents the holding plate 57a from protruding greatly from the inner or outer peripheral edge of the support plate 53, that is, the through hole of the holding plate 57a is supported. The movement of the holding plate is restricted so as not to be arranged inside or outside the plate 53, and the small balls of the through hole cap of the holding plate 57a are prevented from falling.
[0050] 図 11及び図 12に示すように、支持板 53の下側で且つ保持板 57cの下方の位置に は、保持板 60cに保持された小球群 58cを介して板材 59cが配置されている。同様 に、支持板 53の下側で且つ保持板 57dの下方の位置には、保持板 60dに保持され
た小球群 58dを介して板材 59dが配置されている。これらの板材 59c、 59dの各々は 、テーブル板 54の下面に一対の支柱 51、 51を介して固定されている。これにより、 支持板 53は、テーブル板 54及び板材 59cにより小球群 56c、 58cを介して予め加圧 されている。同様に、支持板 53は、テーブル板 54及び板材 59dにより小球群 56d、 5 8dを介して予め加圧されている。従って、図 10に示す位置決め装置 50もまた、その テーブル板 54を、支持板 53との平行度を良好な状態に維持したまま、支持板 53の 表面に沿って移動(滑動)させることができる。 [0050] As shown in FIGS. 11 and 12, a plate material 59c is disposed below the support plate 53 and below the holding plate 57c via a small ball group 58c held by the holding plate 60c. ing. Similarly, the holding plate 60d holds the lower side of the support plate 53 and below the holding plate 57d. A plate material 59d is arranged through a small ball group 58d. Each of these plate materials 59c, 59d is fixed to the lower surface of the table plate 54 via a pair of support columns 51, 51. Thereby, the support plate 53 is pre-pressurized by the table plate 54 and the plate material 59c through the small ball groups 56c and 58c. Similarly, the support plate 53 is previously pressurized by the table plate 54 and the plate material 59d through the small ball groups 56d and 58d. Accordingly, the positioning device 50 shown in FIG. 10 can also move (slide) the table plate 54 along the surface of the support plate 53 while maintaining the parallelism with the support plate 53 in a good state. .
[0051] なお、図 10の位置決め装置 50のように、テーブル板 54及び支持板 53の各々に開 口部が備えられ、そして上記のように位置決めの際に撮像装置を用いる場合には、 支持板 53の上に配置される保持板の構成は、前記の撮像装置による位置決め対象 物の配置の検出を妨げない限り特に制限はない。例えば、支持板 53の上に配置さ れる保持板としては、支持板 53と対応する形状(中央に開口を備える矩形の)保持 板を用いることもできる。同様に、支持板 53の下に配置される保持板の構成もまた、 前記の撮像装置による位置決め対象物の配置の検出を妨げない限り特に制限はな いが、図 15に示すように支持板 53の下面の昇降装置 12の昇降部材 25で支持され る表面領域には保持板を配置しな 、ようにする必要がある。 [0051] As in the positioning device 50 of FIG. 10, each of the table plate 54 and the support plate 53 is provided with an opening, and when the imaging device is used for positioning as described above, a support is provided. The configuration of the holding plate arranged on the plate 53 is not particularly limited as long as it does not prevent the detection of the arrangement of the positioning object by the imaging device. For example, as the holding plate disposed on the support plate 53, a holding plate having a shape corresponding to the support plate 53 (rectangular shape having an opening at the center) can be used. Similarly, the configuration of the holding plate disposed under the support plate 53 is not particularly limited as long as it does not prevent detection of the positioning object by the imaging device, but as shown in FIG. It is necessary to dispose the holding plate in the surface region supported by the lifting member 25 of the lifting device 12 on the lower surface of 53.
[0052] 三次元位置決めテーブル 50もまた、上記の位置決めテーブル 10の場合と同様に 、複数の位置決めテーブルを積み重ねることなく構成できるので装置の高さを低くす ることができ、そしてテーブル板 54の開口部 54aの上方に配置された位置決め対象 物を、例えば、その配置をテーブル板の開口の内側あるいはその下方に配置された 撮像装置により検出しながら三次元にて高い精度で位置決めすることができる。 図面の簡単な説明 [0052] As in the case of the positioning table 10 described above, the three-dimensional positioning table 50 can also be configured without stacking a plurality of positioning tables, so that the height of the apparatus can be reduced. The positioning object placed above the opening 54a can be positioned with high accuracy in three dimensions while detecting the placement by an imaging device placed inside or below the opening of the table plate, for example. . Brief Description of Drawings
[0053] [図 1]本発明の三次元位置決めテーブルの構成例を示す図である。但し、位置決め テーブルが備える昇降装置(図 4 : 12)の記載は省略してある。 FIG. 1 is a diagram showing a configuration example of a three-dimensional positioning table of the present invention. However, the lifting device (Fig. 4:12) provided in the positioning table is omitted.
[図 2]図 1に示す位置決めテーブル 10を図の上側力も見た図である。 FIG. 2 is a view of the positioning table 10 shown in FIG.
[図 3]図 2に示す位置決めテーブル 10が備える昇降装置の構成を示す図である。 3 is a diagram showing a configuration of a lifting device provided in the positioning table 10 shown in FIG.
[図 4]図 2に示す位置決めテーブル 10を図の下側力も見た図である。但し、直動駆動 装置 17a、 17b、 17c、および接続具 15a、 15b、 15cの記載は省略してある。
[図 5]図 1に示す位置決めテーブル 10のテーブル板 14及び支持板 13の拡大図であ る。但し、小球 26a及び 28aの各々は、断面として記入していない。 FIG. 4 is a view of the positioning table 10 shown in FIG. However, the description of the linear motion drive devices 17a, 17b, 17c and the connectors 15a, 15b, 15c is omitted. FIG. 5 is an enlarged view of the table plate 14 and the support plate 13 of the positioning table 10 shown in FIG. However, each of the small spheres 26a and 28a is not shown as a cross section.
[図 6]図 2に示す位置決めテーブル 10のテーブル板 14を X方向に移動させた状態を 示す図である。但し、支持板(図 1 : 13)の記載は省略してある。 6 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the X direction. However, the description of the support plate (Fig. 1: 13) is omitted.
[図 7]図 2に示す位置決めテーブル 10のテーブル板 14を Y方向に移動させた状態を 示す図である。但し、支持板(図 1 : 13)の記載は省略してある。 7 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is moved in the Y direction. However, the description of the support plate (Fig. 1: 13) is omitted.
[図 8]図 2に示す位置決めテーブル 10のテーブル板 14を Θ方向に回転移動させた 状態を示す図である。但し、支持板(図 1 : 13)の記載は省略してある。 FIG. 8 is a view showing a state in which the table plate 14 of the positioning table 10 shown in FIG. 2 is rotationally moved in the Θ direction. However, the description of the support plate (Fig. 1: 13) is omitted.
[図 9]図 4に示す位置決めテーブル 10のテーブル板 14を Z方向に移動させた状態を 示す図である。 FIG. 9 is a view showing a state where the table plate 14 of the positioning table 10 shown in FIG. 4 is moved in the Z direction.
[図 10]本発明の三次元位置決めテーブルの別の構成例を示す平面図である。 FIG. 10 is a plan view showing another configuration example of the three-dimensional positioning table of the present invention.
[図 11]図 10の位置決めテーブル 50のテーブル板 54及び支持板 53を図の右側から 見た側面図である。 FIG. 11 is a side view of the table plate 54 and the support plate 53 of the positioning table 50 of FIG. 10 viewed from the right side of the drawing.
[図 12]図 11に記入した切断線 I-I線に沿って切断したテーブル板 54及び支持板 53 の断面図である。但し、小球の各々は、断面として記入していない。 FIG. 12 is a cross-sectional view of the table plate 54 and the support plate 53 cut along the cutting line I-I entered in FIG. However, each of the small spheres is not filled in as a cross section.
[図 13]図 10の位置決めテーブル 50から、直動駆動装置 17a、 17b、 17c、接続具 15 a、 15b、 15c、テーブル板 54、そしてテーブル板 54の下面に各々一対の支柱(図 1 2 : 51、 51)によって固定された二枚の板材(図 12 : 59c、 59d)を取り除いた状態を 示す平面図である。 [FIG. 13] From the positioning table 50 of FIG. 10, linear motion drive devices 17a, 17b, 17c, connecting tools 15a, 15b, 15c, table plate 54, and a pair of support columns (FIG. 12) FIG. 12 is a plan view showing a state in which two plate members (FIG. 12: 59c, 59d) fixed by 51, 51) are removed.
[図 14]図 13に示す保持板 57aの形状を説明する図である。 FIG. 14 is a diagram illustrating the shape of the holding plate 57a shown in FIG.
[図 15]図 13に示す保持板 57a、 57b, 57c、 57dを、支持板 53の上から取り除いた状 態を示す平面図である。 15 is a plan view showing a state in which the holding plates 57a, 57b, 57c, 57d shown in FIG. 13 are removed from the support plate 53. FIG.
符号の説明 Explanation of symbols
10 三次元位置決めテーブル 10 3D positioning table
11 基台 11 base
12 昇降装置 12 Lifting device
13 支持板 13 Support plate
14 テーブル板
aゝ 15bゝ 15c 接続具 駆動軸14 Table board a ゝ 15b ゝ 15c Connector Drive shaft
a, 17b、 17c 直動駆動装置 第一のリニア軸受a レーノレa, 17b, 17c Linear motion drive 1st linear bearing a Lenore
b スライダ b Slider
第二のリニア軸受a レーノレ Second linear bearing a Lenore
b スライダ b Slider
揺動具 Swing tool
a 可動部 a Moving parts
スライド板 Slide plate
駆動軸 Drive shaft
直動駆動装置 Linear drive
スライド部材 Slide member
a 斜面 a slope
昇降部材 Elevating member
a 斜面 a slope
小球群 Small ball group
a 小球 a small ball
保持板 Holding plate
小球群 Small ball group
a 小球 a small ball
板材 Board
保持板 Holding plate
a、 31b リニア軸受a, 32b レール a, 31b Linear bearing a, 32b Rail
回転駆動装置
回転軸 Rotation drive Axis of rotation
ボーノレねじ Bonore screw
ねじ軸 Screw shaft
リニア軸受 Linear bearing
a レーノレa Lenore
b スライダ b Slider
リニア軸受 Linear bearing
a レーノレa Lenore
b スライダ b Slider
回転駆動装置 回転軸 Rotation drive device Rotating shaft
ボールねじ Ball screw
ねじ軸 Screw shaft
スライダ支持材 レール支持材 Slider support material Rail support material
三次元位置決めテーブル 支柱 3D positioning table
開口部 Aperture
支持板 Support plate
a 開口部 a Opening
テーブル板 Table board
a 開口部a Opening
a、 56b、 56c、 56d 小球群a, 57b、 57c、 57d 保持板c、 58d 小球群a, 56b, 56c, 56d Balls a, 57b, 57c, 57d Holding plate c, 58d Balls
c、 59d 板材c, 59d board
c、 60d 保持板 c, 60d holding plate
保持板規制用のピン
Pin for holding plate regulation
Claims
[1] 基台、基台上に設置されている昇降装置、昇降装置の上部に固定されている支持 板、支持板上に滑動可能に配置されているテーブル板、および基台上の昇降装置 の周囲に配設されて ヽる、各々接続具を介してテーブル板に接続されて ヽる駆動軸 を備えた少なくとも三個の直動駆動装置を含み、該接続具の各々が、テーブル板の 表面に垂直な方向に配置されたレールと該レールにその長さ方向に沿って移動可 能に取り付けられて 、るスライダとからなる第一のリニア軸受、第一のリニア軸受のレ ールに直交する方向に配置されたレールと該レールにその長さ方向に沿って移動可 能に取り付けられているスライダとからなる第二のリニア軸受、及びテーブル板の表 面に垂直な方向を軸に揺動可能な可動部を備える揺動具を任意の順に連結してな り、そして上記の三つの接続具のうちの二つの接続具の第二のリニア軸受のレール が互いに同軸もしくは平行に配置され、且つ残りの接続具の第二のリニア軸受のレ ールと直交する方向に配置されて 、る三次元位置決めテーブル。 [1] Base, lifting device installed on the base, support plate fixed to the top of the lifting device, table plate slidably disposed on the support plate, and lifting device on the base Including at least three linear motion drive devices each having a drive shaft connected to the table plate via a connection tool, each of the connection tools being connected to the table plate. A first linear bearing consisting of a rail arranged in a direction perpendicular to the surface and a slider movably attached to the rail along its length direction. A second linear bearing consisting of a rail arranged in an orthogonal direction and a slider attached to the rail so as to be movable along its length, and a direction perpendicular to the surface of the table plate as an axis A swinging tool with a swingable movable part is connected in any order. And the rails of the second linear bearings of two of the above three connectors are arranged coaxially or parallel to each other and the rails of the second linear bearings of the remaining connectors. A three-dimensional positioning table placed in a direction perpendicular to the
[2] 昇降装置が、基台上に滑動可能に配置されているスライド板、基台上に設置され、 該スライド板に接続されている駆動軸を備えた直動駆動装置、スライド板の上に固定 され、上記テーブル板の表面に対して傾斜した斜面を持つスライド部材、そして頂面 が上記支持板の下面に固定され、該スライド部材の斜面に滑動可能に対向配置され て 、る斜面を持つ昇降部材力 なる請求項 1に記載の三次元位置決めテーブル。 [2] A slide plate that is slidably disposed on a base, a linear drive device having a drive shaft installed on the base and connected to the slide plate, on the slide plate A slide member having a slope inclined with respect to the surface of the table plate, and a top surface fixed to the lower surface of the support plate, and slidably opposed to the slope of the slide member. The three-dimensional positioning table according to claim 1, which has a lifting member force.
[3] テーブル板が、支持板の表面に沿って配設された小球群を介して該支持板の上に 滑動可能に配置されて ヽる請求項 1に記載の三次元位置決めテーブル。 [3] The three-dimensional positioning table according to [1], wherein the table plate is slidably disposed on the support plate via a group of small balls disposed along the surface of the support plate.
[4] テーブル板と支持板との間に、上記小球の直径よりも小さい厚みを有し、表面に沿 つて多数の透孔が形成されている保持板が配置され、上記小球の各々が、保持板の 多数の透孔の各々に一つずつ収容され保持されている請求項 3に記載の三次元位 置決めテーブル。 [4] A holding plate having a thickness smaller than the diameter of the small sphere and having a plurality of through holes formed along the surface is disposed between the table plate and the support plate. 4. The three-dimensional positioning table according to claim 3, wherein one is accommodated and held in each of the plurality of through holes of the holding plate.
[5] テーブル板及び支持板の各々が、その中央に開口部を備える請求項 1に記載の三 次元位置決めテーブル。
5. The three-dimensional positioning table according to claim 1, wherein each of the table plate and the support plate has an opening at the center thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007544208A JPWO2007055339A1 (en) | 2005-11-11 | 2006-11-10 | 3D positioning table |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-327642 | 2005-11-11 | ||
JP2005327642 | 2005-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007055339A1 true WO2007055339A1 (en) | 2007-05-18 |
Family
ID=38023332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/322504 WO2007055339A1 (en) | 2005-11-11 | 2006-11-10 | Three-dimensional positioning table |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007055339A1 (en) |
WO (1) | WO2007055339A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012051054A (en) * | 2010-08-31 | 2012-03-15 | Hiihaisuto Seiko Kk | Positioning table |
JP2012135839A (en) * | 2010-12-27 | 2012-07-19 | Hiihaisuto Seiko Kk | Positioning component |
JP2012189393A (en) * | 2011-03-09 | 2012-10-04 | Ulvac Japan Ltd | Stage system |
CN103137532A (en) * | 2011-11-22 | 2013-06-05 | 财团法人金属工业研究发展中心 | Coplanar three-axis positioning device |
WO2013140956A1 (en) * | 2012-03-23 | 2013-09-26 | 株式会社明電舎 | Chassis dynamometer |
WO2015082713A1 (en) * | 2013-12-06 | 2015-06-11 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redundant parallel positioning table device |
WO2019147993A1 (en) | 2018-01-25 | 2019-08-01 | Reny & Co., Inc. | Semi-automatic precision positioning robot apparatus and method |
EP3782770A1 (en) | 2019-08-20 | 2021-02-24 | Huber Diffraktionstechnik GmbH & Co. KG | Redundant parallel positioning table device |
US10955084B2 (en) | 2013-12-06 | 2021-03-23 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redundant parallel positioning table device |
CN114187961A (en) * | 2022-01-07 | 2022-03-15 | 合肥工业大学 | High-precision six-degree-of-freedom micro-displacement workbench system capable of releasing thermal deformation |
US11458579B2 (en) | 2013-12-06 | 2022-10-04 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redundant parallel positioning table device |
CN115533470A (en) * | 2022-08-24 | 2022-12-30 | 苏州赛腾精密电子股份有限公司 | Automatic adjusting device for converting linear motion into angular adjustment motion |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5843458B2 (en) * | 2011-03-29 | 2016-01-13 | ヒーハイスト精工株式会社 | Sliding table |
CN107240423B (en) * | 2017-07-13 | 2022-12-13 | 中国科学院苏州生物医学工程技术研究所 | Three-dimensional nanometer workstation based on flexible hinge |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735799B2 (en) * | 1976-05-28 | 1982-07-30 | ||
JPS62180291A (en) * | 1986-02-05 | 1987-08-07 | キヤノン株式会社 | Stage for adjustment |
JPH04128130U (en) * | 1991-05-13 | 1992-11-24 | エヌテイエヌ株式会社 | moving table |
JPH04354637A (en) * | 1991-05-31 | 1992-12-09 | Ntn Corp | Transfer table |
JP2003215466A (en) * | 2002-01-18 | 2003-07-30 | Olympus Optical Co Ltd | Microscope stage and manufacturing method |
JP2004156679A (en) * | 2002-11-05 | 2004-06-03 | Hiihaisuto Seiko Kk | Multi-freedom fine-positioning device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2621377B2 (en) * | 1988-07-11 | 1997-06-18 | 三菱化学株式会社 | Multi-degree-of-freedom fine movement device |
JP2676256B2 (en) * | 1989-07-25 | 1997-11-12 | 住友重機械工業株式会社 | Drive stage device and actuator unit therefor |
JP2005297109A (en) * | 2004-04-09 | 2005-10-27 | Canon Inc | Slow motion stage |
-
2006
- 2006-11-10 JP JP2007544208A patent/JPWO2007055339A1/en active Pending
- 2006-11-10 WO PCT/JP2006/322504 patent/WO2007055339A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735799B2 (en) * | 1976-05-28 | 1982-07-30 | ||
JPS62180291A (en) * | 1986-02-05 | 1987-08-07 | キヤノン株式会社 | Stage for adjustment |
JPH04128130U (en) * | 1991-05-13 | 1992-11-24 | エヌテイエヌ株式会社 | moving table |
JPH04354637A (en) * | 1991-05-31 | 1992-12-09 | Ntn Corp | Transfer table |
JP2003215466A (en) * | 2002-01-18 | 2003-07-30 | Olympus Optical Co Ltd | Microscope stage and manufacturing method |
JP2004156679A (en) * | 2002-11-05 | 2004-06-03 | Hiihaisuto Seiko Kk | Multi-freedom fine-positioning device |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012051054A (en) * | 2010-08-31 | 2012-03-15 | Hiihaisuto Seiko Kk | Positioning table |
JP2012135839A (en) * | 2010-12-27 | 2012-07-19 | Hiihaisuto Seiko Kk | Positioning component |
JP2012189393A (en) * | 2011-03-09 | 2012-10-04 | Ulvac Japan Ltd | Stage system |
CN103137532A (en) * | 2011-11-22 | 2013-06-05 | 财团法人金属工业研究发展中心 | Coplanar three-axis positioning device |
CN104204761B (en) * | 2012-03-23 | 2016-09-28 | 株式会社明电舍 | Chassis dynamometer and open and close the method for roller opening of chassis dynamometer |
WO2013140956A1 (en) * | 2012-03-23 | 2013-09-26 | 株式会社明電舎 | Chassis dynamometer |
JP2013195406A (en) * | 2012-03-23 | 2013-09-30 | Meidensha Corp | Chassis dynamometer and method for opening/closing aperture for roller of chassis dynamometer |
CN104204761A (en) * | 2012-03-23 | 2014-12-10 | 株式会社明电舍 | Chassis dynamometer |
US9212972B2 (en) | 2012-03-23 | 2015-12-15 | Meidensha Corporation | Chassis dynamometer and method of opening and closing a roller opening of chassis dynamometer |
DE202014011139U1 (en) | 2013-12-06 | 2018-01-29 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redunante parallel positioning table device |
WO2015082713A1 (en) * | 2013-12-06 | 2015-06-11 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redundant parallel positioning table device |
US10384341B2 (en) | 2013-12-06 | 2019-08-20 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redundant parallel positioning table device |
US10955084B2 (en) | 2013-12-06 | 2021-03-23 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redundant parallel positioning table device |
US11458579B2 (en) | 2013-12-06 | 2022-10-04 | Huber Diffraktionstechnik Gmbh & Co. Kg | Redundant parallel positioning table device |
WO2019147993A1 (en) | 2018-01-25 | 2019-08-01 | Reny & Co., Inc. | Semi-automatic precision positioning robot apparatus and method |
EP3743249A4 (en) * | 2018-01-25 | 2021-11-24 | Edwards Lifesciences Corporation | Semi-automatic precision positioning robot apparatus and method |
EP3782770A1 (en) | 2019-08-20 | 2021-02-24 | Huber Diffraktionstechnik GmbH & Co. KG | Redundant parallel positioning table device |
EP3782769A1 (en) | 2019-08-20 | 2021-02-24 | Huber Diffraktionstechnik GmbH & Co. KG | Redundant parallel positioning table device |
CN114187961A (en) * | 2022-01-07 | 2022-03-15 | 合肥工业大学 | High-precision six-degree-of-freedom micro-displacement workbench system capable of releasing thermal deformation |
CN114187961B (en) * | 2022-01-07 | 2022-09-13 | 合肥工业大学 | High-precision six-degree-of-freedom micro-displacement workbench system capable of releasing thermal deformation |
CN115533470A (en) * | 2022-08-24 | 2022-12-30 | 苏州赛腾精密电子股份有限公司 | Automatic adjusting device for converting linear motion into angular adjustment motion |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007055339A1 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007055339A1 (en) | Three-dimensional positioning table | |
JP4656334B2 (en) | Alignment device | |
JP5490650B2 (en) | Positioning table | |
TWI457193B (en) | Stage device | |
JP5102358B2 (en) | Stage with alignment function and processing apparatus provided with stage with alignment function | |
JP4258851B1 (en) | Articulated robot | |
CN100377326C (en) | Component-supplying head device, component-supplying device, comonent-mounting device, and method of moving mounting head portion | |
JP2007266585A (en) | Stage apparatus | |
WO2024032053A1 (en) | Nano micro-displacement workbench for laser ultra-precision polishing for highly hard and brittle material | |
JPH02139146A (en) | Positioning table of one step six degrees of freedom | |
JP4635998B2 (en) | Stage equipment | |
US5637024A (en) | Method of combining plate members and plate member combining device for carrying out the method | |
JP2012112715A (en) | Slide table | |
US20060104787A1 (en) | Substrate delivering apparatus | |
JPH04270151A (en) | Laminator | |
TWM612607U (en) | Scribing apparatus | |
JP2006237485A (en) | Alignment device | |
JP7365248B2 (en) | Polishing jig and polishing method | |
KR20040084712A (en) | Large size substrate stage | |
JP2020180013A (en) | Scribe head and scribe apparatus | |
CN113492263B (en) | Laser polishing device | |
JPH10175144A (en) | Both side grinding device of sheet disk form work | |
JP5773839B2 (en) | Micro component placement unit | |
JP2010181770A (en) | Apparatus for applying sealing agent | |
JP2003124762A (en) | Crystal vibrator assembly device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007544208 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06832518 Country of ref document: EP Kind code of ref document: A1 |