WO2007052797A1 - 光ディスク記録装置 - Google Patents

光ディスク記録装置 Download PDF

Info

Publication number
WO2007052797A1
WO2007052797A1 PCT/JP2006/322123 JP2006322123W WO2007052797A1 WO 2007052797 A1 WO2007052797 A1 WO 2007052797A1 JP 2006322123 W JP2006322123 W JP 2006322123W WO 2007052797 A1 WO2007052797 A1 WO 2007052797A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
phase setting
pulse
recording apparatus
output
Prior art date
Application number
PCT/JP2006/322123
Other languages
English (en)
French (fr)
Inventor
Akihiro Isaji
Kazuhiko Nishikawa
Hiroyuki Yabuno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007542840A priority Critical patent/JPWO2007052797A1/ja
Priority to US12/092,775 priority patent/US20090180366A1/en
Publication of WO2007052797A1 publication Critical patent/WO2007052797A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00456Recording strategies, e.g. pulse sequences

Definitions

  • the present invention relates to an optical information recording / reproducing apparatus for a recordable information recording medium.
  • An apparatus for recording / reproducing information, particularly digital information, on an information recording medium has attracted attention as a means for recording / reproducing a large amount of data.
  • optical information recording media that record data using laser light!
  • recordable optical information recording media write-once optical discs that can be recorded only once, rewritable optical discs, and rewritable optical discs.
  • phase change optical discs In both cases, recording on an optical disk is performed by irradiating a rotating disk with a light beam of a semiconductor laser and heating and melting the recording film. Depending on the intensity of the light beam, the temperature reached by the recording film and the cooling process differ, and the recording film changes. The recorded data was reproduced from the difference in the intensity of the reflected wave obtained from the difference in the reflectance of the recording film by irradiating the intensity of the low light beam for reproduction that does not change the recording film. This is done by reading the data.
  • the mark position recording method or PPM method
  • the mark edge recording method or PWM method
  • the mark edge recording method is the information recording density. Can be high.
  • a predetermined mark is recorded by changing the mark start end portion, the position of the mark end portion, the recording noise, and the like.
  • the recording speed has been increased, and there are recording media with various materials, different manufacturers, and different standards. To cope with these, depending on the recording speed, or In consideration of the type of recording medium to be recorded, manufacturing variations of the recording medium, and standards, it is required to set the optimum mark recording position according to the recording medium.
  • mark edge recording method when mark edge recording is performed using data as a mark on a disk, a predetermined mark is not provided with a plurality of pulse trains called multipulses or a plurality of pulses.
  • Light 'strategies such as what are called non-multipulses And adjust this write strategy for optimal recording.
  • the time position, or phase, of the write 'strategy is set in order to record a given mark.
  • high resolution of the phase setting is required for high-speed operation. ing.
  • the recording pulse condition for determining the write strategy is recorded on the optical disc recording device or the disc, and differs for each recording medium in advance. It is set to record with characteristic parameters. However, there may be cases where recording media with varying characteristics and recording devices cannot be recorded with sufficient quality with the light / write strategy set.
  • Patent Document 1 shifts a plurality of mark front end pulse conditions and a plurality of mark rear end pulse conditions to each of them. Recorded and played back data by setting each standard condition separately as a recording pulse condition so that the jitter when recording and playing back the corresponding recording pattern is below the allowable value. Do the following.
  • Patent Document 2 describes a method for obtaining the optimum position of the mark start end portion and the end end portion, for the reliability of the optimum recording itself, the search time for the optimum position, and the establishment of the optimum method.
  • An information recording medium characterized by having a specific information recording area for recording specific information of the specific recording device is disclosed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-200418
  • Patent Document 2 JP 2004-281046 A
  • the accuracy of the write strategy that is output as set is required.
  • the write strategy time and the output for the phase setting may vary.
  • the phase output for the write strategy setting is abnormal.
  • the convergence level of learning and the learning accuracy cannot be improved, and there is a possibility that the optimum setting cannot be obtained.
  • a learning algorithm corresponding to the output characteristics of the specific device is required, and one learning algorithm cannot cope with all devices. .
  • learning to find the optimum value may become complicated and the optimum setting may not be obtained.
  • the present invention has been made to solve the above-described problem. Even if the output characteristics of the write strategy differ for each recording apparatus, the output of the optimal write strategy for the setting is corrected, and the accurate An object of the present invention is to provide an optical disc recording apparatus capable of performing output, suppressing variation among apparatuses and performing optimum recording.
  • an optical disc recording apparatus is based on a write strategy waveform in which one recording mark has a plurality of pulse forces shorter than the recording mark.
  • An optical disk recording apparatus for recording wherein the write strategy generating circuit for generating the write strategy waveform, a laser light source for emitting laser light, and driving the laser light source according to a pulse train of the write strategy waveform
  • the laser driving circuit, the photodetector for outputting the light intensity of the laser light emitted from the laser light source, and the amount of current supplied from the laser driving circuit to the laser light source is output by the photodetector.
  • the laser power control circuit for controlling the light intensity of the laser light source and the photodetector.
  • An averaging circuit that averages the light intensity signal of the pulse train of the mark part to be output and outputs it as an average level
  • a sample-and-hold circuit that samples and holds the output of the averaging circuit in the mark part
  • the sample A voltage measurement circuit that measures the analog level held by the hold circuit as a voltage value and a part of the write strategy waveform are set to a multi-pulse that repeats a pulse of the same shape at a predetermined period.
  • the phase setting of one pulse edge is fixed, the phase setting of the other pulse edge is sequentially changed, and the measurement value of the averaging level obtained by averaging the light intensity signals of the multi-pulse train of the mark portion, and its Based on the ideal value, find the optimal phase setting that minimizes the phase error of the time-axis pulse edge that is actually output.
  • the phase setting rearrangement circuit changes the phase setting of the pulse edge of the multi-pulse from (rl) T to (r2) T (rl is a real number in the range 0 ⁇ rl ⁇ l, is 0 ⁇ r2 Indicates a real number in the range of ⁇ l, rl ⁇ r2), the duty ratio of the multi-pulse is changed from (rl X 100)% to (r2 X 100)%, and the averaging circuit The averaging level corresponding to each is measured.
  • the optical disc recording apparatus is the optical disc recording apparatus according to claim 1, wherein the output period of the multi-pulse is 1T which is a basic period of a mark 'space length. 2T, the phase setting reordering circuit changes the phase setting of the pulse edge of the multipulse from 3) to 0: 3 + 1), and 0: 3 is 0 ⁇ r3 ⁇ 1), the duty ratio of the multi-pulse is changed from (r3 ⁇ 2 X 100)% to ((r3 + 1) ⁇ 2 X 100)%, and the averaging circuit sets each of the phase settings The averaging level corresponding to is measured.
  • the optical disk recording apparatus is the optical disk recording apparatus according to claim 1, wherein the phase setting rearrangement circuit sets the ideal value to a multi-value with the smallest phase setting.
  • the average level (y2) when the multi-pulse duty ratio is (x2)% is interpolated to the slope of the connected line (y2—yl) ⁇ (x2—xl) and the piece yl.
  • the ideal value is compared with each of the measured values of the average level of the multi-pulse train obtained for each phase setting, and the measurement closest to the ideal value among the measured values is obtained.
  • the phase setting corresponding to the value is the optimum phase setting.
  • an optical disc recording apparatus is the optical disc recording apparatus according to claim 1, wherein the output to the averaging circuit is the same as the output of the photodetection circuit.
  • a switching circuit that is connected to an optical disk recording device and that switches between an output of a standard signal generator that outputs a waveform signal equivalent to the write strategy waveform, and the phase setting rearrangement circuit includes the switching circuit The average level obtained when selecting the output of the standard signal generator is the ideal value, and obtained when the ideal value and the switching circuit select the output of the photodetection circuit. Compare the measured value of the average level of the multi-pulse train obtained for each phase setting, and set the phase setting corresponding to the measured value that takes the closest value to the ideal value of the medium power of each measured value.
  • the optimal phase setting It is characterized by being fixed.
  • the optical disc recording apparatus according to claim 8 of the present invention is the optical disc recording apparatus according to claim 6 or 7, wherein an error between each measured value and the ideal value is calculated, and the error is calculated. If larger, the optical disc recording apparatus is provided with a determination circuit that determines that it is defective.
  • the optical disk recording apparatus is the optical disk recording apparatus according to claim 1, wherein the phase setting rearrangement circuit has a time width of the duty ratio of the multi-pulse. In the phase setting where it is difficult to measure the corresponding voltage value, the optimum phase setting is not calculated.
  • the optical disk recording apparatus is an optical disk recording apparatus that records one recording mark by a write strategy with one block pulse force, and the write strategy waveform is recorded.
  • a light 'strategy generation circuit to generate, a laser light source that emits laser light, a laser drive circuit that drives the laser light source in accordance with a pulse train of the light' strategy waveform, and a laser emitted from the laser light source
  • a photodetector that outputs a light intensity of one light, and a current amount supplied from the laser driving circuit to the laser light source according to a light intensity signal output by the photodetector;
  • a laser power control circuit for controlling the light intensity of the laser light source, an averaging circuit for averaging the light intensity signal of the pulse train of the mark portion output from the photodetector, and outputting it as an averaging level, and the mark portion
  • the output of the averaging circuit in step S1 is a sample 'hold sample' hold circuit, a voltage measurement circuit that measures
  • an optical disk recording apparatus is the optical disk recording apparatus according to claim 1, wherein a hold control circuit for stopping laser control by the laser power control circuit, and the sample A sample position setting circuit that moves a sample position of the average level in the hold circuit to a predetermined position, wherein the laser power control circuit is configured to output the laser light source based on the output of the voltage measurement circuit.
  • the sample position setting circuit moves the sample position to the top pulse part of the mark part and sets the phase.
  • the sample position setting circuit converts the sample position to the sample position. Move the multi-pulse portion of the over-click section, the hold control circuit is characterized in that the laser control hole sul.
  • an optical disc recording apparatus is the optical disc recording apparatus according to claim 1 or 10, wherein the voltage level of the output signal of the sample hold circuit is measured. And a voltage gain amplifier for arbitrarily controlling the level.
  • the optical disc recording apparatus is the optical disc recording apparatus according to claim 1 or claim 10, wherein the laser power control circuit changes the laser emission power level to change the laser power. Control is performed a plurality of times, and the laser power control accuracy is the highest, and the light intensity of the laser light source is controlled by the laser power.
  • the optical disc recording apparatus is the optical disc recording apparatus according to claim 1 or 10, wherein the phase setting rearrangement circuit is provided while the focus on the optical disc is off.
  • the phase setting is sequentially changed, and the averaging circuit measures the average level by averaging the light intensity signals of the multi-pulse train of the mark portion for each phase setting.
  • the optical disk recording apparatus is the optical disk recording apparatus according to claim 1 or 10, wherein the averaging circuit is configured to output the write output from the write 'strategy generation circuit'.
  • the pulse signal of the strategy waveform is directly averaged and output as the average level.
  • the optical disk recording apparatus according to claim 16 of the present invention is the optical disk recording apparatus according to claim 15, wherein the output to the averaging circuit is the output of the photodetector and the light detector. 'A switching circuit that switches between the output of the strategy generation circuit is provided.
  • the optical disc recording apparatus according to claim 17 of the present invention is the optical disc recording apparatus according to claim 6 or 7, wherein the duty ratio of the multi-pulse is based on the ideal value and the measured value.
  • the laser power control circuit performs a peak power conversion calculation based on the output of the voltage measurement circuit and the corrected duty ratio. .
  • an optical disc recording device is the non-volatile storage device according to claim 1 or 10, wherein the correction parameter calculated by the phase setting rearrangement circuit is held.
  • a memory is provided.
  • the invention's effect [0030]
  • a light write strategy generating circuit for generating the write 'strategy waveform; a laser light source for emitting laser light; and a laser drive circuit for driving the laser light source in accordance with a pulse train of the write' strategy waveform '.
  • a photodetector that outputs the light intensity of the laser light emitted from the one laser light source, and a current amount supplied from the laser driving circuit to the laser light source as a light intensity signal output by the photodetector. And a laser power control circuit for controlling the light intensity of the laser light source, and a mark portion output from the photodetector.
  • Average circuit that averages the light intensity signal of the pulse train and outputs it as an average level
  • a sample 'hold circuit that samples and holds the output of the average circuit in the mark section
  • the sample' hold circuit A voltage measurement circuit that measures the analog level held by the voltage as a voltage value, and a part of the write strategy waveform is set to a multi-pulse that repeats a pulse of the same shape at a predetermined period, and one pulse edge of the multi-pulse Based on the measured value of the average level obtained by averaging the light intensity signal of the multi-pulse train of the mark portion and its ideal value.
  • phase setting parallel switching circuit that changes the setting is provided, so the phase setting of the write strategy that is actually output can be measured at the voltage level, and the error between the measured value and the ideal value is large. Can be corrected to a phase setting that minimizes the error.
  • the output period of the multi-pulse is 1T which is a basic period of the mark 'space length.
  • the phase setting rearrangement circuit changes the phase setting of the multi-pulse pulse edge from (rl) T to (r2) T (where rl is a real number in the range 0 ⁇ rl ⁇ l, r2 is Represents a real number in the range 0 ⁇ r2 ⁇ l, rl ⁇ r2), the duty ratio of the multi-pulse is changed from (rl X 100)% to (r2 X 100)%, and the averaging circuit Since the averaging level corresponding to each setting is measured, it is the basic period 1 When all T minutes can be measured with the minimum resolution, and the error between the measured value and the ideal value is large,
  • the phase setting can be corrected to minimize the error.
  • the output period of the multi-pulse is 1T which is a basic period of a mark 'space length.
  • the phase setting reordering circuit changes the phase setting of the pulse edge of the multi-pulse from 3) to 0: 3 + 1), and 0: 3 is 0 ⁇ r3 ⁇ 1)
  • the duty ratio of the multi-pulse is changed from (r3 ⁇ 2 X 100)% to ((r3 + l) ⁇ 2 X 100)%.
  • the rise and fall characteristics of the laser emission characteristics are increased when the duty is near 0% or 100% as the recording speed increases. If there is a large error between the measured value and the ideal value, Can be corrected so as to minimize the phase setting.
  • the phase setting rearrangement circuit sets the ideal value to the smallest phase setting.
  • the average level (yl) when the multi-pulse duty ratio is (xl)% and the average level (y2) when the phase setting is the largest and the multi-pulse duty ratio is (x2)% are connected.
  • the output to the averaging circuit is the output of the photodetection circuit and the optical disc.
  • a switching circuit that is connected to a recording device and switches between the output of a standard signal generator that outputs a waveform signal equivalent to the write strategy waveform, and the phase setting rearrangement circuit includes the switching circuit The average level obtained when selecting the output of the standard signal generator is the ideal value, and is obtained when the ideal value and the switching circuit select the output of the photodetection circuit.
  • the measured value of the average level of the multi-pulse train obtained for each phase setting is compared, and the phase setting corresponding to the measured value having the closest value to the ideal value is selected from the measured values. Since it was decided to phase configuration, it is possible to calibrate the output of the detection system for measuring the mean level, it is possible to correct the more accurate phase settings.
  • the phase setting rearrangement circuit has a time width of the duty ratio of the multi-pulse. In the phase setting where it is difficult to measure the corresponding voltage value, the calculation of the optimum phase setting is not performed. Therefore, the phase setting completely different from the original setting is not made, and abnormal output is lost.
  • an optical disk recording apparatus that records one recording mark by a write strategy having one block pulse force, wherein the write strategy waveform is represented by the write strategy waveform.
  • a light 'strategy generation circuit to generate, a laser light source that emits a single laser beam, a laser drive circuit that drives the laser light source according to a pulse train of the light' strategy waveform, and a laser that is emitted from the laser light source
  • a photodetector that outputs a light intensity of one light; and an amount of current that is supplied from the laser driving circuit to the laser light source is controlled according to a light intensity signal that is output by the photodetector.
  • a laser power control circuit for controlling the light intensity of the light source; and a light intensity signal of the pulse train of the mark portion output from the photodetector.
  • An average circuit that averages and outputs as an average level, a sample 'hold circuit that samples and holds the output of the average circuit in the mark section, and an analog level held by the sample' hold circuit Set a voltage measurement circuit to measure as a value and a block pulse that repeats a pulse of the same shape with a predetermined period in a part of the write strategy waveform, and fix the phase setting of one pulse edge of the block pulse, The phase setting of the other pulse edge is sequentially changed, the phase setting of one pulse edge of the multi-pulse is fixed, the phase setting of the other pulse edge is sequentially changed, and the light intensity signal of the multi-pulse train of the mark portion is changed.
  • phase setting that minimizes the phase error of the pulse edge on the time axis is obtained and the phase setting rearrangement circuit that changes the preset phase setting is provided, the simplest output waveform of the write strategy is provided. Even for block pulses, the time axis for phase setting can be measured at the voltage level, and even when multi-pulse output becomes difficult as the speed increases, phase setting can be corrected.
  • a hold control circuit for stopping laser control by the laser power control circuit, and the sample And a sample position setting circuit for moving the averaging level sample position in the hold circuit to a predetermined position, and the laser power control circuit is configured to output the laser based on the output of the voltage measurement circuit.
  • the sample position setting circuit moves the sample position to the top pulse part of the mark part, and controls the light intensity of the light source.
  • the phase setting rearrangement circuit changes the phase setting
  • the sample position setting circuit Since it is moved to the multi-pulse part of the mark part and the hold control circuit holds the laser control, the phase error detection system for the write strategy and the phase error detection system used for the laser control And the circuit can be simplified.
  • the optical disk recording apparatus of the twelfth aspect of the present invention in the optical disk recording apparatus of the first or tenth aspect, the voltage level of the output signal of the sample and hold circuit is arbitrarily controlled. Therefore, the SZN ratio can be improved by setting the optimum range.
  • the laser power control circuit changes a laser output power level.
  • the laser power control is performed multiple times, the laser power control accuracy is the highest, and the laser power is used to control the light intensity of the laser light source.
  • the SZN ratio You can improve.
  • the phase setting rearrangement circuit is provided while the focus on the optical disc is off.
  • the phase setting is sequentially changed, and the averaging circuit measures the average level by averaging the light intensity signals of the multi-pulse train of the mark portion for each phase setting.
  • the set write 'strategy correction and set write' without recording to the recording medium You can check if the strategy is being output.
  • the averaging circuit outputs the write output from the write strategy generation circuit. 'The pulse signal of the strategy waveform is directly averaged and output as the average level, so the time signal of the' write 'strategy can be converted directly into a voltage signal, and laser emission that is not related to laser control is stopped. Even in this state, the phase setting of the write strategy can be corrected.
  • the output to the averaging circuit is the output of the light detector and the light ' Since a switching circuit for switching between the output of the strategy generation circuit is provided, it is possible to compare the write strategy time signal with the laser emission time signal.
  • the multi-pulse of the multi-pulse may be based on the ideal value and the measurement value. Since a duty correction circuit for correcting the setting of the duty ratio is provided, the laser power control circuit performs the peak power conversion calculation based on the output of the voltage measurement circuit and the corrected duty ratio. Multi-pulse laser power correction for one control can be performed.
  • the nonvolatile parameter holding the value of the correction parameter calculated by the phase setting rearrangement circuit Since the memory is provided, it is possible to shorten the start-up of the recording apparatus by obtaining correction values in advance through process adjustment and using the stored correction values.
  • FIG. 1 is a block diagram of an optical disc recording apparatus according to Embodiment 1.
  • FIG. 5 is a diagram showing the relationship between 1T multi-pulse width setting and measurement level.
  • FIG. 6 is a flowchart showing a phase setting correction procedure of the optical disc recording apparatus according to the first embodiment.
  • FIG. 7 is a flowchart showing a measurement procedure for obtaining an AD conversion value for each phase setting in the optical disc recording apparatus according to the first embodiment.
  • FIG. 8 is a diagram showing an example of measurement results of the optical disc recording apparatus according to the first embodiment.
  • FIG. 9 is a view showing a calculation formula for calculating an ideal value in the optical disc recording apparatus according to the first embodiment.
  • FIG. 10 is a diagram showing an example of results of measured values and calculated ideal values in the optical disc recording apparatus according to the first embodiment.
  • FIG. 11 is a flowchart showing a procedure for searching for an optimum phase setting and correcting the phase setting in the optical disc recording apparatus according to the first embodiment.
  • FIG. 12 is a diagram showing an example of a correction result in the optical disc recording apparatus according to the first embodiment.
  • FIG. 13 is a graph showing an example of a correction result in the optical disc recording apparatus according to the first embodiment.
  • FIG. 17 is a diagram showing the relationship between 2T multi-pulse width setting and measurement level.
  • FIG. 18 shows a 3T mark in the optical disc recording apparatus according to the third embodiment.
  • FIG. 6 is a waveform diagram when a block pulse having an IT length is output.
  • FIG. 19 is a waveform diagram when a block pulse having a length of 1.5T is output at a 3T mark in the optical disc recording apparatus according to the third embodiment.
  • FIG. 20 is a waveform diagram when a block pulse of 2. OT length is output at the 3T mark in the optical disc recording apparatus according to the third embodiment.
  • FIG. 21 is a diagram showing the relationship between the top pulse width setting and the measurement level in the optical disc recording apparatus according to the third embodiment.
  • FIG. 22 is a block diagram of an optical disc recording apparatus according to Embodiment 4.
  • FIG. 23 is a diagram showing an example of measurement results of a measured value [n] and a standard device [n] in the optical disc recording device according to the fourth embodiment.
  • FIG. 24 is a diagram showing an example of measurement results in the optical disc recording apparatus according to the fourth embodiment.
  • FIG. 25 is a block diagram of an optical disk recording apparatus according to the fifth embodiment.
  • FIG. 27 is a flowchart showing a measurement procedure in the optical disc recording apparatus according to the fifth embodiment.
  • FIG. 28 is a block diagram of a pickup in the optical disc recording apparatus according to the sixth embodiment.
  • FIG. 29 is a block diagram of an optical disc recording apparatus according to a seventh embodiment.
  • FIG. 30 is a block diagram of an optical disc recording apparatus according to an eighth embodiment.
  • FIG. 31 is a diagram showing a calculation formula for calculating a correction value of the duty ratio in the optical disc recording apparatus according to the eighth embodiment.
  • FIG. 32 is a diagram showing a result of correcting the duty ratio in the optical disc recording apparatus according to the eighth embodiment.
  • VGA Voltage gain amplifier
  • VGA Voltage gain amplifier
  • VGA Voltage gain amplifier
  • VGA Voltage gain amplifier
  • FIG. 1 is a block diagram showing the configuration of the optical disc recording apparatus according to Embodiment 1 of the present invention.
  • an optical disc recording apparatus 100 emits a laser beam to an optical disc 1, controls the pick-up 2 for writing and reading information on the optical disc 1, and the laser emission power.
  • a laser control system 3 a phase detection setting system 4 for controlling the phase detection and phase setting of the write strategy, and a recording data generation system 5 for generating recording data.
  • the laser diode (LD) 7 force is driven by the laser diode (LD) 6 and the laser beam is emitted from the LD 7 to the optical disc 1.
  • the reflected light of the laser beam is received by a photodetector 8 which is a light receiving element, and the intensity of the received light is converted into a voltage level by the photodetector 8 and output.
  • the light converted to the voltage level is output to the laser control system 3 and the phase detection setting system 4 in the subsequent stage.
  • the laser control system 3 includes an attenuator (ATT circuit) 9, a mark part detection system 3a, a space Z-erased part detection system 3b, a laser APC (Auto Power Control) control circuit 19, and a DAC 20. Have.
  • the ATT circuit 9 lowers the voltage level. In recent years, the recording speed of optical disk recording devices has been increased, and the voltage level is lowered by the ATT circuit 9 when the LD 7 emits light with a large power.
  • the output signal of the ATT circuit 9 is output to the mark part detection system 3a and the space Z erase part detection system 3b.
  • the mark part detection system 3a has a laser power level when a laser is emitted to the mark part.
  • Voltage level is sampled and held, and the level is measured.
  • LPF circuit Low-pass filter with frequency adjustment
  • SH circuit sample-and-hold circuit
  • VGA voltage gain amplifier
  • AD conversion circuit 14 When the output signal of the ATT circuit 9 is a multi-north waveform, the mark detection system 3a averages the signal level through the signal through the LPF 10 and samples and holds the average power level of the multi-pulse by the SH circuit 11. Measure its level.
  • the SH circuit 11 samples and holds a voltage level corresponding to the laser power level based on a mark sample 'hold (SH) signal (not shown). After that, the output of the SH circuit 11 is gain-adjusted by the VGA 13 according to the recording speed and the laser power at the time of recording, and AD converted by the AD conversion circuit 14.
  • Space Z-erasure detection system 3b samples and holds the laser power level (voltage level) when a laser is emitted to the space Z-erasure, and measures the level.
  • VGA sample 'hold circuit
  • VGA voltage gain amplifier
  • AD converter circuit 18 Since the laser power for the space part is small compared to the laser power for the erase part and mark part, the gain of the laser power level (voltage level) signal for the space part is increased by VGA15. On the other hand, since the laser power for the erase portion is sufficiently large, it is not necessary to increase the gain.
  • the VGA15 output signal (level) is sampled by the SH circuit 16 based on the space SH signal (not shown). And held.
  • the laser power level sample hold for the erase portion is the same as for the space portion. Thereafter, the output of the SH circuit 16 is subjected to signal gain adjustment by the VGA 17 in accordance with the recording speed and the laser power at the time of recording, and the AD conversion circuit 18 AD converts the signal.
  • the laser APC (Auto Power Control) control circuit 19 calculates the drive current of LD7 using the AD conversion values detected by the mark part detection system 3a and the space Z-rase part detection system 3b as inputs, The drive current is supplied to the driver 6.
  • the DAC 20 converts the output of the laser APC control circuit 19 into an analog signal and outputs it to the LD driver 6.
  • the laser APC control circuit 19 sets the initial current value in the LD driver 6 in order to keep the power of the LD 7 constant to the reproduction power necessary for reproducing the information on the optical disc 1,
  • the LD driver 6 causes the LD 7 to emit light based on the current value.
  • the output signal of the photodetector 8 passes through the ATT circuit 9 and is AD-converted by the space Z erase portion detection system 3b.
  • the laser APC control circuit 19 controls the value of the drive current so that the AD conversion value becomes the target laser power. During reproduction, the laser APC control circuit 19 controls the laser power to a predetermined target value.
  • the recording waveform NRZI Normally, the recording waveform NRZI repeatedly outputs a mark portion waveform and a space portion waveform.
  • a write 'strategy is generated from the recording waveform NRZI according to the material, characteristics or recording speed of the media, and a laser beam is emitted by this write' strategy. It becomes a shape.
  • the amount of current required to emit the target power varies depending on the temperature characteristics. For this reason, in order to control the laser power of the mark part and the space part so as to achieve the target power, each laser power level is measured and the laser power is kept constant. One APC control is performed.
  • the mark part detection system 3a samples and holds the laser power level of the mark part showing the multi-pulse waveform, and measures the level.
  • the mark section detection system 3a switches the switching switch 12 so that the signal passes through the LPF circuit 10, and the LPF circuit 10 averages the signal level.
  • the ratio of the time Tp when the high power for recording appears to the time Tb when the bottom power appears where the low power for reproduction appears, and TpZ (Tp + Tb) is the duty ratio.
  • TpZ Tp + Tb
  • This detected average power level is sampled and honored by the SH circuit 11. Then, the value of the drive current is controlled by the laser APC control circuit 19 so that the AD conversion value becomes the target laser power.
  • the mark part detection system 3a switches the switching switch 12 so as to pass through the signal force LPF circuit 10 from the ATT circuit 9 to set the level. taking measurement. In this case, it is not necessary to calculate the duty ratio because the level can be measured directly. Even in the case of multi-pulse, the mark detection system 3a switches the switching switch 12 so that it passes through the output signal force LPF circuit 10 from the ATT circuit 9 and samples and holds the top pulse part. Also good. In this case as well, the duty ratio must be calculated because the level can be measured directly.
  • the laser power level in the space part is sampled and held by the same method as the above-described reproduction, and the level is measured. Then, the value of the drive current is controlled by the laser APC control circuit 19 so that the AD conversion value becomes the target laser power.
  • the phase detection setting system 4 performs control such as phase detection of the write strategy and determination of the phase, and includes a low-pass filter with frequency adjustment (LPF circuit) 26, a sample ⁇ Hold circuit (SH circuit) 27, voltage gain amplifier (VGA) 28, CPU30 And RAM31. It is also possible to provide a non-volatile memory in place of the RAM 31, and store various data stored in the RAM 31 in the non-volatile memory! /.
  • LPF circuit low-pass filter with frequency adjustment
  • SH circuit sample ⁇ Hold circuit
  • VGA voltage gain amplifier
  • the optical signal converted into the voltage level by the photodetector 8 is subjected to electrical processing as follows, and the setting power on the time axis of the write strategy is set at the voltage level. Detected.
  • the multi-pulse waveform force LPF 26 of the mark portion converted into the voltage level is passed through and the average power level of the multi-pulse is detected.
  • the detected average power level is sampled and held by the SH circuit 27. Thereafter, the gain of the signal is adjusted by the VGA 28 according to the recording speed and the laser power at the time of recording, and AD conversion is performed by the AD conversion circuit 29.
  • the CPU 30 sequentially changes the phase setting of the write strategy, and obtains a measurement value output from the AD conversion circuit 29 for each phase setting. Then, linear approximation is performed based on this measurement value, the ideal value of the measurement value is obtained for each phase setting, and the phase setting that minimizes the error between the measurement value and the ideal value is obtained as the optimal phase setting. And stored in the phase setting table 32 of RAM31. The detailed operation of the phase detection setting system 4 will be described later.
  • the recording data generation system 5 generates recording data to be recorded on the optical disc 1, and includes a recording data storage circuit 21, a recording modulation circuit 22, a write strategy generation circuit 23, and a phase setting circuit. 24 and a multi-phase clock generation circuit 25.
  • the recording data stored in the recording data storage circuit 21 is modulated by the recording modulation circuit 22 according to a predetermined standard.
  • the recording waveform NRZI signal is input from the recording modulation circuit 22 to the write strategy generation circuit 23.
  • the phase setting circuit 24 selects the reference clock generated by the multiphase clock generation circuit 25 based on the value of the phase setting table 32 read by the CPU 30 and inputs it to the write strategy generation circuit 23. .
  • the write strategy generation circuit 23 is an optimum write for recording on the optical disc 1 in accordance with the characteristics and recording speed of the optical disc 1 based on the outputs from the recording modulation circuit 22 and the phase setting circuit 24. 'Generate strategy. At this time, the write strategy generating circuit 23 uses a plurality of shorter pulses or one pulse for the reference recording repetition period 1T. The phase of the write strategy is determined based on a multiphase clock with a resolution higher than 1T. Then, the LD driver 6 causes the LD 7 to emit light based on this light strategy.
  • the phase setting table 32 stored in the RAM 31 of the phase detection setting system 4 may be held in the phase setting circuit 24 or the like.
  • the laser power level of the mark portion showing the multi-pulse waveform is averaged by the LPF circuit 27, the averaged level is sampled and held, and the level is measured. At this time, the laser APC control is performed so that the laser power is constant. Therefore, when the multi-pulse phase setting Tmp changes, the level averaged by the LPF circuit 27 changes.
  • Fig. 2 (b) shows the output of the laser.
  • Tmp indicates the multi-pulse phase setting, which is a phase setting in which the arrow direction (+) of Tmp can be varied.
  • the starting point of the Tmp arrow is a fixed phase setting.
  • the fundamental period is 1T, so Tmp is variable from OT to 1T.
  • FIG. 2 (a) shows a recording waveform NRZI which is an output signal of the recording modulation circuit 22, which is a mark portion where the HIGH section force data is recorded, and in the LOW section, no data is recorded. Or a space portion to be erased.
  • the space part is controlled by APC with bias power bl, and the multi-pulse at the mark part is controlled by peak power b2.
  • the current is set so that the bottom power b3 becomes the laser power during reproduction. This bottom power b3 may be changed according to the recording characteristics.
  • FIG. 2 (c) shows the signal output in the laser control system 3a.
  • the SH signal in the mark part detection system 3a, the output of the SH circuit 11, and the space Z-rase part detection system 3b. Represents the SH signal and the output of the SH circuit 16 respectively.
  • sampling is performed in the section of the SH signal power) W for detecting the level of the mark portion, and the sampling level is held at the timing from LOW to HIGH.
  • sampling is performed in the section of the SH signal power 3 ⁇ 4) W for detecting the space level, and the sampling level is held at the timing from LOW to HIGH.
  • the LOW and HIGH polarities of the SH signal may be the same, particularly with the inversion setting.
  • FIG. 2D shows outputs of the LPF circuit 26, the SH signal, and the SH circuit 27 in the phase detection setting system 4.
  • the averaged signal of the LPF circuit 10 has a duty of 50%, so ideally it is averaged at the 50% level obtained by subtracting the bottom power d2 from the peak power dl as shown in Fig. 2 (d). It becomes.
  • sampling is performed in the LOW section by the SH signal, and the sampling level is held at the timing when the LOW force is also HIGH.
  • FIG. 5 shows the time axis from 0% to 100% of 1T, which is the basic period of the mark's space length, as a relationship from the bottom power of the averaging level to the peak power.
  • the horizontal axis is the multi-pulse setting Tmp and duty ratio of the write strategy circuit
  • the vertical axis is the AD conversion level of the signal held by the SH circuit 27.
  • the relationship between the 1T multi-pulse width setting and the measurement level is that when the duty is 0%, the AD conversion level is the bottom power level, and when the duty is 100%.
  • peak It is represented by a straight line that is the power level.
  • the operation for determining the optimum phase value by sampling the voltage level corresponding to the phase setting of the write strategy will be described in detail.
  • the following describes the case where the resolution of 1T, the basic period of the mark's space length, is lZio.
  • a resolution of 1T of 1Z10 indicates that a multi-pulse phase can be set in units of 0.1T.
  • the same result as in the case of 10 resolution can be obtained regardless of whether the resolution is lZn (n is an arbitrary integer) or n.
  • FIG. 6 is a flowchart showing an outline of an operation of correcting the phase setting of the write strategy and outputting the optimum phase setting by the optical disc recording apparatus 100 according to the first embodiment of the present invention.
  • step SI 1 the phase setting of the write strategy is sequentially changed, and the signal level at each phase setting is measured.
  • step S12 the optimum value is searched for each phase setting to obtain the optimum phase setting.
  • step S13 the optimum phase value is output.
  • step Sl l and step S12 will be described in detail. First, the process of step S11 will be described.
  • FIG. 7 shows the flow of setting the multipulse phase in order with the minimum resolution and measuring the average level for each phase setting. Note that the following steps are executed by the CPU 30, and variables and array variables in the flow are secured in the RAM 31 connected to the CPU 30.
  • step S21 variables are initialized.
  • This variable is a variable n indicating the number of times of measurement, and in the case of the first embodiment, is an integer from 0 to 10.
  • step S22 to step S27 is formed, and when variable n is 10 or less, processing from step S23 to step S27 is repeated.
  • step S23 the phase—OZ10 is set, and in step S24, the AD value at the time of phase—OZ 10 is acquired.
  • step S25 the acquired AD value is arrayed—measured value [0] Stored in Next, in step S26, 0 is incremented. It is judged whether or not the force to continue loop 1 formed under the condition of step S22 is finished or not, and then loop 1 is repeated until the measured value [10] is obtained.
  • Embodiment 1 of the present invention even when n is decremented from 10 so that the duty is incremented from 0 so that the duty is 0% to 100%, the duty is 100% and the force is also 0%. Similar measurement results can be obtained. Further, before and after the execution of step S23 and step S24, the following processing may be executed with a waiting time for stability after setting and measurement stability.
  • step S12 Next, the process of step S12 will be described.
  • an ideal value for correcting the phase setting of the write strategy is calculated before the optimum value of the phase setting is searched.
  • the ideal value is calculated from the measurement result obtained in step S11.
  • the array variable holds the measurement result with a duty of 0% —measurement value [0] and the measurement result with a duty of 100%. It is obtained by linear approximation from the result of the array variable—measured value [10].
  • the linear approximation formula is expressed by the formula in FIG. 9. From the measurement result of the first embodiment, the ideal value is
  • FIG. 10 shows the measurement result obtained in step S11 and the result of obtaining the linear approximate expression force ideal value.
  • FIG. 11 shows a flow for searching for the optimum value of each phase setting from the result of FIG. 10 and correcting the phase setting.
  • the optimum value search process the V measurement value closest to the ideal value at a certain phase setting is searched, and the phase setting corresponding to the measurement value obtained as a result of the search is set as the optimum phase setting.
  • the measurement value closest to the ideal value is calculated from the measurement result and the absolute value of the ideal value. Details of the flow will be described below.
  • step S30 the ideal value for each phase setting value is calculated based on the linear approximation equation obtained in FIG. 9, and stored in the array variable—ideal value [n].
  • the ideal value [0] to the ideal value [10] are stored in the array variable.
  • step S31 the variable m is initialized.
  • the variable m is a variable used for the loop 1 count described later.
  • loop 1 processing from step S32 to step S44 is formed, and when variable m is less than 10, processing from step S33 to step S43 is repeated.
  • This loop 1 process searches for the optimum value closest to the ideal value for a certain phase setting n from the measured results, and finds the phase setting corresponding to the optimum value for the optimum phase value for the certain phase setting value n. The process of determining as a setting is performed.
  • step S33 the ideal value calculated in step S30 for the phase setting value for searching for the optimum phase setting is obtained as variable_ideal value [m].
  • step S34 variables are initialized.
  • the variables initialized in step S34 are the variables used for the loop 2 count described later—n, the minimum absolute value, and the optimum table [m].
  • the variable_minimum absolute value is a variable that stores the value with the smallest error in the ideal value force when searching for the measured value closest to the ideal value in the processing of loop 2.
  • the maximum possible value is stored.
  • the variable-optimal table [m] is a variable that stores the phase setting value when the value is retrieved with the smallest error for a certain phase setting in the loop 1 process.
  • loop 2 processing from step S35 to step S41 is formed, and when variable n is less than 10, processing from step S36 to step S40 is repeated.
  • This loop 2 processing is the measurement closest to the ideal value by comparing the ideal value [m] with all measured values for the phase setting value to search for the optimal phase setting value in the above loop 1 processing. The process of retrieving values is performed.
  • step S36 the absolute value of the difference between the array variable—measured value [n] and the ideal value [m] obtained by calculation is calculated.
  • step S37 the difference absolute value and the minimum absolute value are compared. If the difference absolute value is smaller, the process proceeds to step S38. If the difference absolute value is greater, the process proceeds to step S40.
  • step S38 the difference absolute value is stored in the variable—minimum absolute value.
  • step S39 the variable n is set in the variable—optimal phase setting.
  • step S40 the variable n is incremented.
  • step S41 it is determined whether or not to end the loop 2 formed under the condition of step S35.
  • step S42 The optimal phase setting is stored in the array variable—optimal table [m].
  • step S43 the variable m is incremented, and in step S44, it is determined whether or not to end the loop 1 formed under the conditions of step S32. The process of searching for the optimum value of the optimum value for each phase setting is completed.
  • FIG. 12 and FIG. 13 show the results of processing as described above.
  • Figure 12 shows the ideal value, measured value, level error, and error (LSB) for the phase setting n before and after correction, respectively.
  • the ideal value is the value obtained in step S30
  • the measured value is the value obtained in step S11.
  • the level error represents the difference between the measured value and the ideal value
  • the error (LSB) is the result of dividing the difference between the measured value and the ideal value by the slope of the ideal straight line. Indicates.
  • the column “Correction n” after correction corresponds to the optimum table [m] obtained by the flow described in FIG.
  • the level error and error are reduced by the above-described correction as compared to the level before the correction.
  • Fig. 13 is a graph of the numerical values shown in Fig. 12, with the left first axis representing the measured value and the right second axis representing the horizontal axis phase setting n.
  • the error (LSB) is shown respectively. As shown in Fig. 13, with respect to the ideal straight line, there was an error of -0.8 (LSB) to +1.0 .O (LSB) before correction. After correction, -0.7 (LSB ) Force + 0.4 (LSB) error is reduced.
  • phase setting after correction obtained by the above operation is held in the phase setting table 32 of the nonvolatile memory 31. Specifically, before correction, the settings stored in the order [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] are changed to [0, 2, 1, 3, 5, 5, 6, 7, 9, 8].
  • the strategy phase can be set.
  • the SZN ratio may be improved by changing the VGA28 setting.
  • the S / N ratio may be improved by changing the laser power, depending on the dynamic range of the mark detection system 3a. If VGA28 is set, more accurate detection may be performed by comparing the results of varying the laser power.
  • step S12 approximation and correction of a straight line are performed, and correction n which is a phase setting value after correction is held in RAM31, and the next write 'strategy is stored. It is possible to hold the ideal value that is the result of linear approximation, which is the force for which correction n is set in the setting. In this case, only the result of linear approximation can be read out and compared with the output result of the phase setting n of the set write strategy, and the accuracy can be judged.
  • the CPU 30 compares the ideal value with the measured value, and performs error detection if the value is set to be greater than the ideal value.
  • Tomo ⁇ For example, an error occurs when the measured value is subtracted from the ideal value and the set value is exceeded.
  • the recording apparatus determines that the product is defective.
  • the error detection may be performed by measuring again any number of times.
  • the optical disc recording apparatus sets a part of the write strategy waveform as a multi-pulse in which pulses having the same shape are repeated at a predetermined cycle, and sets one pulse edge of the multi-pulse.
  • the phase setting is fixed, the phase setting of the other pulse edge is sequentially changed, laser power control is performed to control the light intensity of the laser light source, multi-pulse light emission is detected, and the mark portion is detected. It is averaged by the LPF circuit, the level is sampled and held, the average level corresponding to the time width of the multi-pulse duty ratio is measured by voltage, and it is actually output according to the measurement result.
  • the multi-pulse output cycle is set to 1T
  • the basic cycle of the mark's space length the level is measured by changing the multi-pulse duty ratio from 0% to 100%. Therefore, it is possible to measure all of 1T, which is the basic period, with the minimum resolution, and by rearranging the phase setting order based on the measurement results, it is possible to perform phase setting that reduces errors.
  • the averaging level is (yl)
  • the phase setting is the largest and the duty ratio of the multipulse is (x2)%
  • the averaging level is (y2)
  • the slope is (y2—yl) ⁇ (x2—xl)
  • the ideal value for each phase setting is obtained using a straight line with the contact ⁇ yl. So the basic period The first two IT points and the first two points of the next IT can be linearly approximated, and correction can be performed for all phase settings with a relative resolution of 1T.
  • the optical disk recording apparatus can improve the SZN ratio by setting an optimum range when measuring at the voltage level. Also, by changing the laser power by the laser APC control circuit 19 and performing laser power control a plurality of times, and selecting and setting a more accurate laser power, the SZN ratio can be improved.
  • the optical disk recording apparatus is configured to rewrite and hold the result of correcting the phase setting in the RAM 31, so that the correction value can be corrected by adjusting the process of the optical disk recording apparatus.
  • the stored correction value it is possible to shorten the time when the optical disk recording apparatus is started up.
  • phase setting is not corrected in the vicinity of a setting value that is difficult to measure, so the phase setting is completely different from the original setting, and abnormal output is not generated. .
  • the ideal value and the correction value are stored in the RAM 31, the correction value is obtained in advance by the adjustment, and the stored correction value and ideal value are used. As a result, the time required for starting the optical disk recording apparatus can be reduced.
  • the optical disk recording apparatus is the same as the optical disk recording apparatus 100 according to the first embodiment, except that the multi-pulse output period is 2T and the basic period of the mark 'space length is 2T.
  • the case of 2T multipulse when the multipulse output period is 2 ⁇ , which is the basic period of the mark / space length, is shown in FIG. Explain.
  • the configuration and basic operation of the optical disc recording apparatus according to the second embodiment are the same as those of the optical disc recording apparatus 100 according to the first embodiment described above.
  • FIG. 14 shows the recording waveform NRZI, (b) shows the laser output, and (c) shows the phase detection.
  • This represents the output of the LPF circuit 26, the output of the SH signal, and the output of the SH circuit 27 in the output setting system 4.
  • Tmp indicates the multi-pulse phase setting and can be changed in the direction of the arrow (+) of Tmp.
  • the starting point of the Tmp arrow is a fixed phase setting. Since the basic period is 2T, Tmp can be varied from OT to 2T.
  • the level averaged by the LPF circuit 26 is as shown in Fig. 14 (c). As shown in Fig. 14, it becomes the same level as 25% of the difference between peak power and bottom power, and is detected by SH circuit 27 as shown in Fig. 14 (c).
  • the duty ratio which is the recording power output ratio in 2T units
  • the level averaged by the LPF circuit 10 is the difference between the peak power and the bottom power as shown in Fig. 16 (c). It becomes the same level as 75% and is detected by SH circuit 27 as shown in Fig. 16 (c).
  • Fig. 17 The results of Fig. 14, Fig. 15, and Fig. 16 are summarized and the relationship between the phase setting and the measurement level when the multi-pulse phase setting is changed can be expressed as shown in Fig. 17. .
  • the horizontal axis represents the multi-pulse setting Tmp and duty ratio of the write strategy circuit
  • the vertical axis represents the AD conversion level held by the SH circuit 27.
  • the voltage level that can be detected is exactly 50%, which is different from the first embodiment described above, but the detection of this voltage level is the resolution of the AD conversion circuit 29. If it is sufficiently larger, the ideal value for each phase setting is obtained using the straight line shown in FIG. 17, and the phase setting of the write strategy is corrected by the same method as in the first embodiment of the present invention. be able to.
  • the multipulse duty ratio is 25%. Since the level is measured by changing from 75% to 75%, the basic period of 1T can be measured with the minimum resolution when the duty ratio is in the range of 25% to 75%.
  • the optical disk recording apparatus 100 records with a write strategy that also has a block pulse force formed by one pulse when forming one recording mark. Is.
  • the output of the block pulse is 1T, which is the basic period of the mark 'space length, and the 3T mark and 3T space are output.
  • the operation in this case will be described with reference to FIG.
  • the configuration of the optical disk recording apparatus according to the third embodiment is the same as that of the optical disk recording apparatus 100 according to the first embodiment.
  • FIG. 18 shows a mark during recording and a space signal.
  • the block pulse has a length of 1T.
  • Ttop indicates the phase setting of the top pulse, which is the width setting of this block pulse, and is a phase setting in which the arrow direction (+) of Ttop can be varied.
  • the starting point of the Ttop arrow is a fixed phase setting.
  • the variable range of Ttop is not particularly limited.
  • the mark and space length are each 3T and the period of the mark and space length is 6T in total will be described as an example.
  • the cut-off frequency setting of the LPF circuit 26 is lowered, and the mark 3T and the space 3T are combined so as to average the entire laser output. Then, when the phase setting for recording mark 3T is Ttop, the Ttop setting is varied from 1T to 2T, and the entire laser output for 6T of mark 3T and space 3T is averaged.
  • the detectable voltage level is exactly 16.67%, which is different from the first embodiment of the present invention, but this voltage level is detected by the AD conversion circuit 29. If it is sufficiently larger than the resolution, the phase setting of the write strategy can be corrected by the same method as in the first embodiment of the present invention.
  • the optical disc recording apparatus changes the top pulse phase setting by a time of 1T, with the Topnors output period as a reference and the generation period of mark and space length as 6T. Therefore, it is possible to measure all of the basic period of 1T with the minimum resolution with the duty ratio in the range of 16.67% to 33.33%. By correcting the phase setting by rearranging the phase setting order in the same manner as in the first mode, the error can be reduced.
  • the generation period of the mark and space length is 6T.
  • the duty ratio is calculated in accordance with the length of the basic period. In other words, the averaging level can be measured and the phase setting can be corrected as in the third embodiment.
  • FIG. 22 is a block diagram showing a configuration of an optical disc recording apparatus 2200 according to the fourth embodiment.
  • a signal switching switch 36 switches the input to the LPF 26 between the output of the photodetector 8 and the output of a standard signal generator 37 described later.
  • the standard signal generator 37 receives the output from the phase setting circuit 24 and outputs a waveform signal equivalent to the output of the write strategy generation circuit 23 for each phase setting. This is an external device connected to the 2200.
  • the output is a standard waveform with no variation in the output signal.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the signal switching switch 36 is switched to the standard signal generator 37 side, and in this state, the phase setting n is sequentially changed by 0 from 0 to 10, and the output of the standard signal generator 37 is averaged. The The result is stored in the RAM32 variable—standard device [n].
  • the signal switching switch 36 is switched to the photodetector 8 side, and the phase setting n is sequentially changed by +1 from 0 to 10 to convert it to the voltage level output from the photodetector 8.
  • the average level of the laser power of the detected multi-pulse part is detected, and the result is stored in the array_measurement value [n] of RAM32.
  • FIG. 23 is an example showing the measurement results
  • FIG. 24 is a graph showing the measurement results. From the measurement results of FIG. 23 and FIG. 24, in the measurement using the standard signal generation device 37 of Embodiment 4 of the present invention, it is possible to obtain a result in which the ideal linear force is slightly bowed! /
  • step S12 the ideal value was obtained from Fig. 9, which is a linear approximation formula.
  • the ideal value [n] in Fig. 10 is the result of obtaining the ideal value from the measurement result and the linear approximation equation obtained from the measurement result.
  • the ideal value [n] in FIG. 10 is replaced with the variable—standard device [n] in FIG. 23, and the processes after step S12 are performed.
  • the phase setting correction system 4 whose output is calibrated by the standard signal generator 37 can correct the phase setting in the same manner as in the first embodiment.
  • the SZN ratio may be improved by varying the setting of the VGA 28 in accordance with the resolution and range of the AD conversion circuit 29.
  • the SZN ratio may be improved by varying the laser power depending on the dynamic range of the detection system. Further, more accurate detection may be performed by comparing the setting of the VGA 28 and the result of varying one laser power.
  • the standard signal generation device 37 is intended to calibrate the phase detection setting system 4, it is assumed as an external device in the fourth embodiment, but the phase detection setting system 4 includes the standard signal generation device 36. As a standard signal generator.
  • the output of the standard signal generator 37 that outputs a waveform signal equivalent to that of the write strategy generation circuit is averaged.
  • Switch 36 Standard signal generator 37 This average level measurement result is used as an ideal value to correct the phase setting, so the output of phase detection setting system 4 that performs level measurement can be calibrated. This makes it possible to correct the phase setting more accurately.
  • FIG. 25 is a block diagram showing a configuration of an optical disc recording apparatus 2500 according to the fifth embodiment.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • 38 is an SH position setting circuit that changes the sample hold position of the SH circuit 11 of the laser control system 3.
  • 39 is an ON switch that controls ON / OFF of the output of the laser APC control circuit 19.
  • the CPU 30 of the phase setting system 4 uses the output of the AD conversion circuit 14 of the laser control system 3 as its input signal.
  • FIG. 26 shows a state in which 6T mark laser output is performed with 1T multipulses, (a) shows the recording waveform NRZI, and (b) shows the laser output.
  • Fig. 26 (c) shows the output of the LPF circuit 12, the output of the SH signal, and the output of the SH circuit 11 when the SH signal of the SH circuit 11 is located in the multipulse section.
  • d) represents the output of the LPF circuit 12, the output of the SH signal, and the output of the SH circuit 11 when the SH signal of the SH circuit 11 is located in the top pulse portion.
  • Fig. 26 the signal after the multi-pulse part is sampled and held by SH circuit 11 is shown.
  • the result of AD conversion of the signal level is smaller than the result of AD conversion of the signal level after the top pulse part is sampled and held by the SH circuit 11.
  • the level of the LPF circuit 10 in the multi-pulse section varies depending on the duty change of the multi-pulse, so laser APC control that outputs a laser at a constant level using this AD conversion level is not possible. Can not. Therefore, when laser APC control is performed, as shown in FIG. 26 (d), the sample hold position is moved to the top pulse portion by the SH position setting circuit 38, and the top pulse portion is sampled and held. Based on the result of AD conversion of the held level by the AD conversion circuit 14, laser APC control by the laser APC control circuit 19 is performed.
  • the SH position setting circuit 38 when detecting the averaging level when the duty ratio of the multi-north waveform is changed by changing the phase setting of the write strategy, as shown in Fig. 26 (c), the SH position setting circuit 38, the level is measured by moving the sample hold position to the multi-pulse part.
  • the result of AD conversion by the AD conversion circuit 14 is input to the CPU 30 of the phase detection setting system 4, and the detection result is used as a basis.
  • the phase setting is corrected by the same method as in the first embodiment.
  • the operation shown in FIG. 27 is used to measure the phase of the write strategy at the voltage level using the laser control system 3. I will explain.
  • step S50 the SH position setting circuit 38 changes the SH signal to the top pulse portion.
  • step S51 the switching switch 12-power LPF circuit 10 is switched to the through side.
  • the laser emission waveform voltage-converted by the photodetector 8 is directly input to the SH circuit 11.
  • step S52 laser APC control is performed, and the laser emission power is controlled to a predetermined power. At this time, since the top pulse part is sampled and held, the same level is detected even if the duty ratio is changed by changing the phase setting.
  • step S53 the laser control stabilization wait is performed, and in step S54, laser-one APC control is stopped.
  • step S54 laser-one APC control is stopped.
  • turn off switch 39 This is done by keeping the output of the DAC 20 that is the current setting to the LD driver 6 constant. At this time, since the current supplied to the LD driver 6 is constant, the LD 7 emits a laser with the same current.
  • step S55 the SH position setting circuit 38 changes the SH signal to a multi-pulse part.
  • step S56 the switch is switched to the 12-switch SLPF circuit 10 side, and in step S57, the phase setting of the write strategy is sequentially changed, and the level is measured for each setting. Thereafter, as in the first embodiment, the phase setting is corrected by rearranging the phase setting order based on the measured value obtained in step S57 and the ideal value.
  • the optical disk recording apparatus of the fifth embodiment of the present invention when laser power is controlled, the sample timing of the SH circuit of the mark detection system is moved to the top pulse section and the laser is controlled.
  • APC control is performed and phase setting is corrected, the laser control is held, the amount of current to the laser is kept constant, and the sample timing of the SH circuit of the mark detection system is moved to the multi-pulse section. Therefore, it is possible to measure the time axis for the light strategy phase setting at the voltage level by using the laser power detection means used for laser control.
  • the mark detection system of the laser control system and the phase detection means of the write 'strategy in the phase detection setting system can be shared, and the circuit scale It becomes possible to achieve reduction.
  • the optical disc recording apparatus according to Embodiments 1 and 5 described above is a force that corrects the multi-pulse phase setting when the optical disc recording apparatus is powered on or reset.
  • the optical disc recording apparatus according to Embodiment 6 This corrects the multi-pulse phase setting during the recording operation.
  • FIG. 28 is a block diagram showing the configuration of the optical pickup in the optical disc recording apparatus according to the sixth embodiment.
  • the laser of the optical disk recording apparatus according to the sixth embodiment The one control system 3, the phase detection setting system 4, and the recording data generation system 5 are the same as those in the first to fifth embodiments described above, and are omitted in FIG.
  • reference numeral 41 denotes an actuator for moving the lens 40 up and down to focus on the recording layer of the optical disc 1.
  • Reference numeral 42 denotes a focus drive circuit 42 that drives an actuator 41 linked with the lens 40 to move the lens 40 up and down to focus or remove the focus on the recording layer of the optical disc 1.
  • the laser output power is recorded. Because of the laser power for performing the above, the emitted light with the laser power is recorded as data on the recording layer of the optical disc 1. When measurement is performed with all phase settings changed, the recorded data is meaningless data.
  • the focus is momentarily removed from the recording layer of the optical disc 1 by the focus drive circuit 42, and the average level of multipulses is measured during this time.
  • the average level can be measured without performing recording on the recording medium, and the phase setting of the set write strategy is performed in the same manner as in the first embodiment. Can be corrected.
  • the focus drive circuit 42 measures the average level of multi-north for a specific phase setting while focusing from the recording layer of the optical disc 1, and this measured value and ideal value are measured.
  • the focus drive circuit 42 measures the average level of multi-north for a specific phase setting while focusing from the recording layer of the optical disc 1, and this measured value and ideal value are measured.
  • the lens is defocused by the focus drive circuit during the recording of the optical disk recording apparatus, and the time width of the duty ratio of the multipulse is supported during this time. Decided to measure the level of averaging Therefore, even when data is recorded on the recording medium, the phase setting of the write strategy can be corrected.
  • FIG. 29 is a block diagram showing a configuration of an optical disc recording apparatus 2900 according to the seventh embodiment.
  • 34 is a signal conversion circuit that converts the level of the output signal in accordance with the output signal of the write strategy generation circuit 23.
  • the output signal of the write strategy generation circuit 23 is a low voltage differential transmission (LVDS) signal that is often used in recent years, one signal level is transmitted with two differential signals. It is necessary to convert the two differential signals into the original vibration, and the signal conversion circuit 34 corresponds to this conversion circuit.
  • LVDS low voltage differential transmission
  • [0173] 35 is a signal switching switch for switching the input to the LPF circuit 26 between the output signal of the photodetector 8 and the output signal of the signal conversion circuit 34.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the operation when the signal switching switch 35 selects the signal of the signal conversion circuit 34 as the input to the LPF circuit 26 will be described in detail. .
  • Output power of the signal conversion circuit 34 For example, a circuit that outputs from 3.3V to OV is assumed. At this time, when the binary signal of the write strategy generation circuit 23 is converted by the signal conversion circuit 34, it is output at the level of 3.3V when the laser output is permitted, and the power OV when it is not permitted. Is done.
  • the output of the signal conversion circuit 34 is output in a binarized state, for example, when the range force OV force of the AD conversion circuit 29 is 3.3 V, a multi-pulse duty is generated.
  • the tee ratio is 0%
  • the level detected by the AD conversion circuit 29 is detected at the 0 level.
  • the multi-pulse duty ratio is 100%
  • the level detected by the AD conversion circuit 29 is detected at the 3.3V level.
  • the output of the signal conversion circuit 34 is binary
  • the averaging level by LPF circuit 26 varies between OV and 3.3V depending on the duty ratio. For this reason, the ideal value obtained from the ideal straight line and the measured value obtained by averaging the output of the signal conversion circuit 34 by the LPF circuit 26 and AD-converting the level are obtained by the same method as in the first embodiment.
  • the multi-pulse phase setting can be corrected.
  • the recording data generation system 5 and the phase detection setting system 4 are It is also possible to perform correction by operating the recording data generation system 5 independently by using an apparatus independent of the optical disk recording apparatus 2900.
  • phase detection setting system 4 is an inspection device and the recording data generation system 5 is an inspection device
  • the phase detection setting system 4 that is an inspection device outputs from the recording data generation system 5.
  • optical disk recording apparatus 2900 according to the seventh embodiment is similar to the optical disk recording apparatus 2500 according to the fifth embodiment of the present invention shown in FIG. 25 in the SH position of the SH circuit 11 of the laser control system 3.
  • An SH position setting circuit 38 may be provided so that the phase detection system 4 measures the average level of the multi-pulse part using the mark part detection system 3a of the laser control system.
  • SH position setting circuit In this case, the output of the signal conversion circuit 34 may be input to the laser control system 3.
  • the optical disk recording apparatus may improve the SZN ratio by varying the setting of VGA 28 in accordance with the resolution and range of AD conversion circuit 29.
  • the S / N ratio may be improved by changing the laser power depending on the dynamic range of the detection system.
  • the setting of VGA28 and the result of varying the laser power may be compared to perform more accurate detection.
  • the optical disk recording apparatus directly averages the write strategy pulse signal and directly converts the write strategy time signal into a voltage signal. Even when the laser emission, which is not related to the control, is stopped, the phase setting can be corrected based on the output of the write strategy setting circuit.
  • the optical disk recording apparatus according to the eighth embodiment is the same as the optical disk recording apparatus according to the first embodiment described above, which corrects the duty ratio of the multi-north and controls the laser power using the corrected duty ratio. is there.
  • FIG. 30 is a block diagram showing a configuration of the optical disc recording apparatus 3000 according to the eighth embodiment.
  • the duty correction circuit 33 corrects the value of the duty ratio obtained from the phase setting value based on the output of the AD conversion circuit 29 and outputs it to the laser APC control circuit 19.
  • Laser APC control in the first embodiment is as follows.
  • the target power is calculated by averaging the multipulse waveform and using the duty ratio, so the duty ratio calculated from the set phase setting is converted to the output of LD7 by the photo detector 8. If there is a deviation from the result, the target power is not calculated.
  • a duty of 50% / (20/24) approximately 60%
  • FIG. 31 a method for performing the duty correction in the optical disc recording apparatus 3000 according to the eighth embodiment will be described with reference to FIGS. 31 and 32.
  • FIG. 31 a method for performing the duty correction in the optical disc recording apparatus 3000 according to the eighth embodiment will be described with reference to FIGS. 31 and 32.
  • the correction duty ratio can be expressed as shown in Fig. 31.
  • Fig. 32 shows the ideal value [n], measured value [n], duty ratio setting, and duty ratio result corrected based on the formula in Fig. 31 for phase setting n.
  • the phase setting n, the ideal value [n], and the measured value [n] are obtained by the same method as in the first embodiment.
  • the width of the multi-pulse should be 0.5 T and the duty ratio should be 50%.
  • the correction duty ratio obtained by the correction of Fig. 31 is 44%.
  • the target power of the laser may be originally 50%, but with 50% duty calculation, the laser APC control circuit 19 may output a small power.
  • the optical disc recording apparatus according to the eighth embodiment is a force obtained by adding the duty correction circuit 33 to the optical disc recording apparatus according to the first embodiment described above.
  • the duty correction circuit added in this eighth embodiment Even if 33 is added to the optical disk recording apparatus according to Embodiments 2 to 7, the same effect can be obtained.
  • the SZN ratio may be improved by varying the setting of the VGA 28 in accordance with the resolution and range of the AD conversion circuit 29. Also, laser power By varying it, the S / N ratio may be improved by the dynamic range of the detection system. Also, compare the VGA28 settings and the results of varying the laser power for better accuracy and detection.
  • the optical disc recording apparatus corrects the duty ratio by the duty correction circuit and performs laser APC control based on the corrected duty ratio. Therefore, it is possible to perform power correction during multi-pulse laser control.
  • the present invention is useful in that it can provide an optical disc recording apparatus capable of performing optimum recording while suppressing variations among apparatuses.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

明 細 書
光ディスク記録装置
技術分野
[0001] 本発明は、記録可能な情報記録媒体への光学情報の記録再生装置に関する。
背景技術
[0002] 情報記録媒体に情報、特にデジタル情報を記録再生する装置は、大容量のデータ を記録再生する手段として注目されている。その中で、レーザー光を用いて、データ を記録する光学的情報記録媒体につ!、て、記録可能な光学的情報記録媒体には、 一度だけ記録ができる追記型の光ディスクと、書き換え型の相変化光ディスクなどが ある。いずれも、光ディスクへの記録は、半導体レーザーの光ビームを、回転するディ スクに照射し、記録膜を加熱融解させることで行う。その光ビーム強度の強弱により、 記録膜の到達温度、及び冷却過程が異なり、記録膜の変化が起こる。記録されたデ ータの再生は、記録膜が変化しない程度の再生用の低い光ビームの強度を照射し て、記録膜の反射率の違いから得られる反射波の強度差から、記録されたデータを 読み取ることで行われる。
[0003] 光ディスクへのデータの記録方式として、マークポジション記録方式(または PPM 方式)と、マークエッジ記録方式 (または PWM方式)とがあり、通常はマークエッジ記 録方式の方が、情報記録密度を高くすることができる。
[0004] このマークエッジ記録方式では、マーク始端部分と、マーク終端部分の位置、記録 ノ^ーなどを変化させて、所定のマークを記録する。近年では、記録するときの速度 が高速ィ匕し、また、様々な材質や、メーカーの違い、規格が異なる記録媒体が存在し 、これらに対応するために、記録する速度に応じて、または、記録される記録媒体の 種類や、記録媒体の製造上のばらつき、規格を考慮して、最適なマークの記録位置 設定を、記録媒体に応じて行うことが求められている。
[0005] 前記マークエッジ記録方式は、ディスク上に、データをマークとして、マークエッジ 記録する場合に、所定のマークを、レーザー光をマルチパルスと呼ばれる複数のパ ルス列や、複数のパルスがない非マルチパルスと呼ばれるものなど、ライト'ストラテジ を生成し、このライト'ストラテジの調整を行って、最適な記録を行うようにする。ライト' ストラテジを生成する際には、所定のマークを記録するために、ライト'ストラテジの時 間的位置、すなわち位相を設定するが、高倍速ィ匕のために位相設定の高分解能が 要求されている。
[0006] 実際の光ディスク記録再生装置を実現するためには、ライト'ストラテジを決定する ための記録パルス条件は、光ディスク記録装置、またはディスクに記録されており、あ らかじめ記録媒体ごとに異なる特性パラメータで記録するように設定される。しかしな がら、特性のばらついた記録媒体ディスクと、記録装置では、あら力じめ決められたラ イト'ストラテジの設定では、十分な品質で記録できない場合が考えられる。
[0007] 以上のような課題に対して、特許文献 1 (または特許文献 2)にお 、ては、複数のマ ーク前端パルス条件や、複数のマーク後端パルス条件をシフトさせ、各々に対応した 記録パターンを記録し再生したときのジッタが許容値以下となるように、各標準条件 をそれぞれ別々に補正した値を、記録再生装置の記録パルス条件として設定し、デ ータの記録再生を行なって 、る。
[0008] また、特許文献 2には、マーク始端部分と、終端部分の最適な位置を求める手法に ついて、最適記録自体の信頼性、最適位置の探索時間短縮、最適な手法の確立の ために、特定記録装置の固有情報を記録するための特定情報記録領域を有するこ とを特徴とする情報記録媒体が開示されている。
特許文献 1:特開 2000— 200418号公報
特許文献 2:特開 2004 - 281046号公報
発明の開示
発明が解決しょうとする課題
[0009] 最適な記録を行えるような情報記録媒体、記録再生装置を提供するには、設定さ れたとおりに出力されるライト'ストラテジの精度が必要となる。記録する装置によって は、ライト'ストラテジの時間や、位相設定に対する出力がばらついている可能性があ る。また、ライト'ストラテジの設定に対する位相出力が、異常である場合などが考えら れる。その場合、従来の手法では、学習の収束レベル、学習精度の向上が見込めず 、最適な設定が求まらない可能性がある。 [0010] また、ある特定の装置のばらつきに対応しょうとしたとき、その特定の装置の出力特 性に応じた学習アルゴリズムが必要となり、ひとつの学習アルゴリズムでは、すべての 装置に対応することができない。また、すべての装置のばらつきに対応しょうとした場 合、最適値を求める学習が、複雑になり最適設定が求まらない場合がある。
[0011] 本発明は上記課題を解決するためになされたものであり、記録装置ごとにライト'ス トラテジの出力特性が異なったとしても、設定に対する最適ライト'ストラテジの出力を 補正し、正確な出力を行えるようにして、装置ごとのばらつきを抑え、最適な記録を行 うことのできる光ディスク記録装置を提供することを目的とする。
課題を解決するための手段
[0012] 上記課題を解決するために、本発明の請求項 1に係る光ディスク記録装置は、 1つ の記録マークを、該記録マークよりも更に短い複数のパルス力もなるライト'ストラテジ 波形に基づ 、て記録する光ディスク記録装置であって、前記ライト'ストラテジ波形を 生成するライト'ストラテジ生成回路と、レーザー光を出射するレーザー光源と、前記 ライト'ストラテジ波形のパルス列に応じて前記レーザー光源を駆動するレーザー駆 動回路と、前記レーザー光源より出射されるレーザー光の光強度を出力する光検出 器と、前記レーザー駆動回路から前記レーザー光源に供給される電流量を、前記光 検出器が出力する光強度信号に応じて制御することにより、前記レーザー光源の光 強度を制御するレーザーパワー制御回路と、前記光検出器より出力されるマーク部 のパルス列の光強度信号を平均化し、平均化レベルとして出力する平均化回路と、 前記マーク部における前記平均化回路の出力を、サンプル 'ホールドするサンプル · ホールド回路と、前記サンプル ·ホールド回路によりホールドされたアナログレベルを 電圧値として測定する電圧測定回路と、前記ライト'ストラテジ波形の一部を所定の周 期で同じ形状のパルスを繰り返すマルチパルスに設定し、前記マルチパルスの一方 のパルスエッジの位相設定を固定し、他方のパルスエッジの位相設定を順次変更し 、前記マーク部のマルチパルス列の光強度信号を平均化して得られる前記平均化レ ベルの測定値と、その理想値とに基づいて、実際に出力される時間軸のパルスエツ ジの位相誤差が最小となる最適位相設定を求め、予め設定される位相設定を変更 する位相設定並べ替え回路とを備えることを特徴とする。 [0013] また、本発明の請求項 2に係る光ディスク記録装置は、請求項 1に記載の光デイス ク記録装置において、前記マルチパルスの出力周期は、マーク'スペース長の基本 周期である 1Tであり、前記位相設定並べ替え回路は、マルチパルスのパルスエッジ の位相設定を、(rl) Tから (r2) Tまで変更して (rlは 0≤rl≤lの範囲の実数、 は 0≤r2≤lの範囲の実数を示し、 rl <r2)、前記マルチパルスのデューティ比を、(rl X 100) %から (r2 X 100) %に変化させ、前記平均化回路は、前記位相設定のそれ ぞれに対応する前記平均化レベルを測定することを特徴とする。
[0014] また、本発明に係る光ディスク記録装置は、請求項 2に記載の光ディスク記録装置 において、前記位相設定並べ替え回路は、前記 (rl)と、前記 (r2)とを、 rl = 0、 r2 = 1に設定し、前記マルチパルスのパルスエッジの位相設定を、 0Tから 1Tまで変更 させて、前記マルチパルスのデューティ比を、 0%から 100%に変化させ、前記平均 化回路は、それぞれの前記位相設定に対応する前記平均レベルをすベて測定する ことを特徴とする。
[0015] また、本発明の請求項 4に係る光ディスク記録装置は、請求項 1に記載の光デイス ク記録装置において、前記マルチパルスの出力周期は、マーク'スペース長の基本 周期である 1Tの 2倍の 2Tであり、前記位相設定並べ替え回路は、前記マルチパル スのパルスエッジの位相設定を、 3)丁から0:3 + 1)丁まで変更して0:3は、 0≤r3≤ 1の範囲の実数)、前記マルチパルスのデューティ比を (r3 ÷ 2 X 100) %から((r3 + 1) ÷ 2 X 100) %に変化させ、前記平均化回路は、それぞれの前記位相設定に対応 する前記平均化レベルを測定することを特徴とする。
[0016] また、本発明の請求項 5に係る光ディスク記録装置は、請求項 4に記載の光デイス ク記録装置において、前記位相設定並べ替え回路は、前記 (rl) ¾:3 = 0. 5に設定 し、マルチパルスのパルスエッジの位相設定を、 0. 5Tから 1. 5Tまで変更して、マル チパルスのデューティ比を 25%から 75%に変化させ、前記平均化回路は、それぞれ の前記位相設定に対応する平均レベルをすベて測定することを特徴とする。
[0017] また、本発明の請求項 6に係る光ディスク記録装置は、請求項 1に記載の光デイス ク記録装置において、前記位相設定並べ替え回路は、前記理想値を、位相設定が 最も小さいマルチパルスのデューティ比が (xl) %時の平均化レベル (yl)と、位相設 定が最も大き 、マルチパルスのデューティ比が(x2) %時の平均化レベル (y2)とを、 結んだ直線の傾き (y2— yl) ÷ (x2— xl)、接片 ylに補間して求め、該理想値と、各 位相設定毎に得られるマルチパルス列の平均化レベルの測定値のそれぞれとを比 較し、前記各測定値の中カゝら前記理想値に最も近い値をとる測定値に対応する位相 設定を、前記最適位相設定とすることを特徴とする。
[0018] また、本発明の請求項 7に係る光ディスク記録装置は、請求項 1に記載の光デイス ク記録装置において、前記平均化回路への出力を、前記光検出回路の出力と、当 該光ディスク記録装置に接続され、前記ライト'ストラテジ波形と同等の波形信号を出 力する標準信号発生装置の出力と、の間で切り換える切替回路を備え、前記位相設 定並べ替え回路は、前記切り替え回路が前記標準信号発生装置の出力を選択する 場合に得られる前記平均化レベルを、前記理想値とし、該理想値と、前記切り替え回 路が前記光検出回路の出力を選択している場合に得られる、各位相設定毎に得ら れるマルチパルス列の平均化レベルの測定値とを比較し、前記各測定値の中力 前 記理想値に最も近!ヽ値をとる測定値に対応する位相設定を、前記最適位相設定と することを特徴とする。
[0019] また、本発明の請求項 8に係る光ディスク記録装置は、請求項 6または 7に記載の 光ディスク記録装置において、前記各測定値と前記理想値との誤差を算出し、該誤 差が大きい場合は、当該光ディスク記録装置を不良品と判定する判定回路を備える ことを特徴とする。
[0020] また、本発明の請求項 9に係る光ディスク記録装置は、請求項 1に記載の光デイス ク記録装置において、前記位相設定並べ替え回路は、前記マルチパルスのデュー ティ比の時間幅に対応する電圧値の測定が困難な位相設定では、前記最適位相設 定の算出を行わないことを特徴とする。
[0021] また、本発明の請求項 10に係る光ディスク記録装置は、 1つの記録マークを、 1つ のブロックパルス力 なるライト'ストラテジによって記録する光ディスク記録装置であ つて、前記ライト'ストラテジ波形を生成するライト'ストラテジ生成回路と、レーザー光 を出射するレーザー光源と、前記ライト'ストラテジ波形のパルス列に応じて前記レー ザ一光源を駆動するレーザー駆動回路と、前記レーザー光源より出射されるレーザ 一光の光強度を出力する光検出器と、前記レーザー駆動回路から前記レーザー光 源に供給される電流量を、前記光検出器が出力する光強度信号に応じて制御するこ とにより、前記レーザー光源の光強度を制御するレーザーパワー制御回路と、前記 光検出器より出力されるマーク部のパルス列の光強度信号を平均化し、平均化レべ ルとして出力する平均化回路と、前記マーク部における前記平均化回路の出力を、 サンプル 'ホールドするサンプル 'ホールド回路と、前記サンプル 'ホールド回路によ りホールドされたアナログレベルを電圧値として測定する電圧測定回路と、前記ライト 'ストラテジ波形の一部を所定の周期で同じ形状のノ ルスを繰り返すブロックパルス に設定し、前記ブロックパルスの一方のパルスエッジの位相設定を固定し、他方のパ ルスエッジの位相設定を順次変更し、前記マルチパルスの一方のパルスエッジの位 相設定を固定し、他方のパルスエッジの位相設定を順次変更し、前記マーク部のマ ルチパルス列の光強度信号を平均化して得られる前記平均化レベルの測定値と、そ の理想値とに基づいて、実際に出力される時間軸のパルスエッジの位相誤差が最小 となる前記位相設定を求め、予め設定される位相設定を変更する位相設定並べ替え 回路とを備えることを特徴とする。
[0022] また、本発明の請求項 11に係る光ディスク記録装置は、請求項 1に記載の光デイス ク記録装置において、前記レーザーパワー制御回路によるレーザー制御を停止する ホールド制御回路と、前記サンプル ·ホールド回路における前記平均化レベルのサ ンプル位置を所定の位置に移動させるサンプル位置設定回路と、をさらに備え、前 記レーザーパワー制御回路は、前記電圧測定回路の出力に基づいて、前記レーザ 一光源の光強度を制御するものであり、前記レーザーパワー制御回路がレーザー制 御を行う場合は、前記サンプル位置設定回路は、前記サンプル位置を、前記マーク 部のトップパルス部に移動させ、前記位相設定並び替え回路が前記位相設定の変 更を行う場合は、前記サンプル位置設定回路は、前記サンプル位置を、前記マーク 部のマルチパルス部に移動させ、前記ホールド制御回路は、レーザー制御をホール ドすることを特徴とする。
[0023] また、本発明の請求項 12に係る光ディスク記録装置は、請求項 1または 10に記載 の光ディスク記録装置において、前記サンプルホールド回路の出力信号の電圧レべ ルを任意にコントールする電圧ゲインアンプを備えることを特徴とする。
[0024] また、本発明の請求項 13に係る光ディスク記録装置は、請求項 1または請求項 10 に記載の光ディスク記録装置において、前記レーザーパワー制御回路は、レーザー 出射パワーレベルを変更してレーザーパワー制御を複数回行 、、レーザーパワー制 御の精度が最も高 、レーザーパワーで、前記レーザー光源の光強度を制御すること を特徴とする。
[0025] また、本発明の請求項 14に係る光ディスク記録装置は、請求項 1または 10に記載 の光ディスク記録装置において、光ディスクへのフォーカスがはずれている間に、前 記位相設定並べ替え回路が、前記位相設定を順次変更し、前記平均化回路が、各 位相設定毎に、前記マーク部のマルチパルス列の光強度信号を平均化して前記平 均化レベルを測定することを特徴とする。
[0026] また、本発明の請求項 15に係る光ディスク記録装置は、請求項 1または 10に記載 の光ディスク記録装置において、前記平均化回路が、前記ライト'ストラテジ生成回路 より出力される前記ライト'ストラテジ波形のパルス信号を直接平均化して、前記平均 レベルとして出力することを特徴とする。
[0027] また、本発明の請求項 16に係る光ディスク記録装置は、請求項 15に記載の光ディ スク記録装置において、前記平均化回路への出力を、前記光検知器の出力と、前記 ライト'ストラテジ生成回路の出力との間で切り換える切り替え回路を備えることを特徴 とする。
[0028] また、本発明の請求項 17に係る光ディスク記録装置は、請求項 6または 7に記載の 光ディスク記録装置において、前記理想値と、前記測定値とに基づいて、前記マル チパルスのデューティ比の設定を補正するデューティ補正回路を備え、前記レーザ 一パワー制御回路は、前記電圧測定回路の出力と、前記補正されたデューティ比と に基 、て、ピークパワー換算計算を行うことを特徴とする。
[0029] また、本発明の請求項 18に係る光ディスク記録装置は、請求項 1または 10に記載 の光ディスク記録装置において、前記位相設定並べ替え回路により算出される補正 ノ ラメータの値を保持する不揮発メモリを備えることを特徴とする。 発明の効果 [0030] 本発明の請求項 1による光ディスク記録装置によれば、 1つの記録マークを、該記 録マークよりも更に短 、複数のパルス力 なるライト'ストラテジ波形に基づ 、て記録 する光ディスク記録装置であって、前記ライト'ストラテジ波形を生成するライト'ストラ テジ生成回路と、レーザー光を出射するレーザー光源と、前記ライト'ストラテジ波形 のパルス列に応じて前記レーザー光源を駆動するレーザー駆動回路と、前記レーザ 一光源より出射されるレーザー光の光強度を出力する光検出器と、前記レーザー駆 動回路から前記レーザー光源に供給される電流量を、前記光検出器が出力する光 強度信号に応じて制御することにより、前記レーザー光源の光強度を制御するレー ザ一パワー制御回路と、前記光検出器より出力されるマーク部のパルス列の光強度 信号を平均化し、平均化レベルとして出力する平均化回路と、前記マーク部におけ る前記平均化回路の出力を、サンプル 'ホールドするサンプル 'ホールド回路と、前 記サンプル 'ホールド回路によりホールドされたアナログレベルを電圧値として測定 する電圧測定回路と、前記ライト'ストラテジ波形の一部を所定の周期で同じ形状の パルスを繰り返すマルチパルスに設定し、前記マルチパルスの一方のパルスエッジ の位相設定を固定し、他方のパルスエッジの位相設定を順次変更し、前記マーク部 のマルチパルス列の光強度信号を平均化して得られる前記平均化レベルの測定値 と、その理想値とに基づいて、実際に出力される時間軸のパルスエッジの位相誤差 が最小となる最適位相設定を求め、予め設定される位相設定を変更する位相設定並 ベ替え回路とを備えることとしたので、実際に出力されるライト'ストラテジの位相設定 を電圧レベルで測定することができ、測定値と理想値との誤差が大きい場合は、その 誤差が最小となる位相設定に補正することができる。
[0031] また、本発明の請求項 2による光ディスク記録装置によれば、請求項 1に記載の光 ディスク記録装置において、前記マルチパルスの出力周期は、マーク'スペース長の 基本周期である 1Tであり、前記位相設定並べ替え回路は、マルチパルスのパルスェ ッジの位相設定を、(rl)Tから (r2)Tまで変更して (rlは 0≤rl≤lの範囲の実数、 r 2は 0≤r2≤lの範囲の実数を示し、 rl <r2)、前記マルチパルスのデューティ比を、 (rl X 100) %から (r2 X 100) %に変化させ、前記平均化回路は、前記位相設定の それぞれに対応する前記平均化レベルを測定することとしたので、基本周期である 1 T分を、最小分解能ですべて測定ができ、測定値と理想値との誤差が大きい場合は
、その誤差が最小となる位相設定に補正することができる。
[0032] また、本発明の請求項 3による光ディスク記録装置によれば、請求項 2に記載の光 ディスク記録装置において、前記位相設定並べ替え回路は、前記 (rl)と、前記 (r2) とを、 rl = 0、 r2= lに設定し、前記マルチパルスのパルスエッジの位相設定を、 OT 力も 1Tまで変更させて、前記マルチパルスのデューティ比を、 0%力ら 100%に変ィ匕 させ、前記平均化回路は、それぞれの前記位相設定に対応する前記平均レベルを すべて測定することとしたので、基本周期である 1T分を、最小分解能ですべて測定 ができ、測定値と理想値との誤差が大きい場合は、その誤差が最小となる位相設定 に補正することができる。
[0033] また、本発明の請求項 4による光ディスク記録装置によれば、請求項 1に記載の光 ディスク記録装置において、前記マルチパルスの出力周期は、マーク'スペース長の 基本周期である 1Tの 2倍の 2Tであり、前記位相設定並べ替え回路は、前記マルチ パルスのパルスエッジの位相設定を、 3)丁から0:3 + 1)丁まで変更して0:3は、 0≤ r3≤ 1の範囲の実数)、前記マルチパルスのデューティ比を (r3÷ 2 X 100) %から(( r3 + l) ÷ 2 X 100) %に変化させ、前記平均化回路は、それぞれの前記位相設定に 対応する前記平均化レベルを測定することとしたので、記録速度の高倍速化に伴 、 、デューティが 0%や 100%付近の設定付近で、レーザー出射特性の立ち上がり特 性、立ち下がり特性が悪ィ匕しても、測定値と理想値との誤差が大きい場合は、その誤 差が最小となる位相設定に補正することができる。
[0034] また、本発明の請求項 5による光ディスク記録装置によれば、請求項 4に記載の光 ディスク記録装置において、前記位相設定並べ替え回路は、前記 (rl)を r3 = 0. 5 に設定し、マルチパルスのパルスエッジの位相設定を、 0. 5Tから 1. 5Tまで変更し て、マルチパルスのデューティ比を 25%から 75%に変化させ、前記平均化回路は、 それぞれの前記位相設定に対応する平均レベルをすベて測定することとしたので、 記録速度の高倍速化に伴い、デューティが 0%や 100%付近の設定付近で、レーザ 一出射特性の立ち上がり特性、立ち下がり特性が悪ィ匕しても、デューティ比を 25% 力も 75%の範囲で、基本周期である 1T分を、最小分解能ですべて測定ができ、測 定値と理想値との誤差が大き!/、場合は、その誤差が最小となる位相設定に補正する ことができる。
[0035] また、本発明の請求項 6による光ディスク記録装置によれば、請求項 1に記載の光 ディスク記録装置において、前記位相設定並べ替え回路は、前記理想値を、位相設 定が最も小さいマルチパルスのデューティ比が(xl) %時の平均化レベル (yl)と、位 相設定が最も大き 、マルチパルスのデューティ比が(x2) %時の平均化レベル (y2) とを、結んだ直線の傾き (y2— yl) ÷ (x2— xl)、接片 ylに補間して求め、該理想値 と、各位相設定毎に得られるマルチパルス列の平均化レベルの測定値のそれぞれと を比較し、前記各測定値の中から前記理想値に最も近 ヽ値をとる測定値に対応する 位相設定を、前記最適位相設定とすることとしたので、基本周期である 1T分の最初 と、次の 1Tの最初の 2点で直線近似することができ、相対的に 1Tの最小分解能で、 すべての位相設定について補正を行なうことができる。
[0036] また、本発明の請求項 7による光ディスク記録装置によれば、請求項 1に記載の光 ディスク記録装置において、前記平均化回路への出力を、前記光検出回路の出力と 、当該光ディスク記録装置に接続され、前記ライト'ストラテジ波形と同等の波形信号 を出力する標準信号発生装置の出力と、の間で切り換える切替回路を備え、前記位 相設定並べ替え回路は、前記切り替え回路が前記標準信号発生装置の出力を選択 する場合に得られる前記平均化レベルを、前記理想値とし、該理想値と、前記切り替 え回路が前記光検出回路の出力を選択している場合に得られる、各位相設定毎に 得られるマルチパルス列の平均化レベルの測定値とを比較し、前記各測定値の中か ら前記理想値に最も近 ヽ値をとる測定値に対応する位相設定を、前記最適位相設 定とすることとしたので、平均化レベルの測定を行う検出系の出力を校正することが でき、より正確な位相設定の補正が可能となる。
[0037] また、本発明の請求項 8による光ディスク記録装置によれば、請求項 6または 7に記 載の光ディスク記録装置において、前記各測定値と前記理想値との誤差を算出し、 該誤差が大き!ヽ場合は、当該光ディスク記録装置を不良品と判定する判定回路を備 えることとしたので、ライト'ストラテジの異常検出や、記録装置の不良品検出を行うこ とがでさる。 [0038] また、本発明の請求項 9による光ディスク記録装置によれば、請求項 1に記載の光 ディスク記録装置において、前記位相設定並べ替え回路は、前記マルチパルスのデ ユーティ比の時間幅に対応する電圧値の測定が困難な位相設定では、前記最適位 相設定の算出を行わないこととしたので、本来の設定とは全く異なる位相設定がされ ることがなくなり、異常な出力がなくなる。
[0039] また、本発明の請求項 10による光ディスク記録装置によれば、 1つの記録マークを 、 1つのブロックパルス力 なるライト'ストラテジによって記録する光ディスク記録装置 であって、前記ライト'ストラテジ波形を生成するライト'ストラテジ生成回路と、レーザ 一光を出射するレーザー光源と、前記ライト'ストラテジ波形のパルス列に応じて前記 レーザー光源を駆動するレーザー駆動回路と、前記レーザー光源より出射されるレ 一ザ一光の光強度を出力する光検出器と、前記レーザー駆動回路から前記レーザ 一光源に供給される電流量を、前記光検出器が出力する光強度信号に応じて制御 することにより、前記レーザー光源の光強度を制御するレーザーパワー制御回路と、 前記光検出器より出力されるマーク部のパルス列の光強度信号を平均化し、平均化 レベルとして出力する平均化回路と、前記マーク部における前記平均化回路の出力 を、サンプル 'ホールドするサンプル 'ホールド回路と、前記サンプル 'ホールド回路 によりホールドされたアナログレベルを電圧値として測定する電圧測定回路と、前記 ライト'ストラテジ波形の一部を所定の周期で同じ形状のパルスを繰り返すブロックパ ルスに設定し、前記ブロックパルスの一方のパルスエッジの位相設定を固定し、他方 のパルスエッジの位相設定を順次変更し、前記マルチパルスの一方のパルスエッジ の位相設定を固定し、他方のパルスエッジの位相設定を順次変更し、前記マーク部 のマルチパルス列の光強度信号を平均化して得られる前記平均化レベルの測定値 と、その理想値とに基づいて、実際に出力される時間軸のパルスエッジの位相誤差 が最小となる前記位相設定を求め、予め設定される位相設定を変更する位相設定並 ベ替え回路とを備えることとしたので、ライト'ストラテジの最も簡単な出力波形である ブロックパルスにおいても、位相設定に対する時間軸を、電圧レベルで測定すること ができ、高倍速化に伴い、マルチパルスの出力が困難になった場合でも、位相設定 の補正ができる。 [0040] また、本発明の請求項 11による光ディスク記録装置によれば、請求項 1に記載の光 ディスク記録装置において、前記レーザーパワー制御回路によるレーザー制御を停 止するホールド制御回路と、前記サンプル 'ホールド回路における前記平均化レべ ルのサンプル位置を所定の位置に移動させるサンプル位置設定回路と、をさらに備 え、前記レーザーパワー制御回路は、前記電圧測定回路の出力に基づいて、前記 レーザー光源の光強度を制御するものであり、前記レーザーパワー制御回路がレー ザ一制御を行う場合は、前記サンプル位置設定回路は、前記サンプル位置を、前記 マーク部のトップパルス部に移動させ、前記位相設定並び替え回路が前記位相設定 の変更を行う場合は、前記サンプル位置設定回路は、前記サンプル位置を、前記マ ーク部のマルチパルス部に移動させ、前記ホールド制御回路は、レーザー制御をホ 一ルドすることとしたので、ライト'ストラテジ用の位相誤差検出系と、レーザー制御に 用いる位相誤差検出系と共有することができ、回路の簡略ィ匕を行うことができる。
[0041] また、本発明の請求項 12による光ディスク記録装置によれば、請求項 1または 10に 記載の光ディスク記録装置にお!、て、前記サンプルホールド回路の出力信号の電圧 レベルを任意にコントールする電圧ゲインアンプを備えることとしたので、最適なレン ジを設定することで、 SZN比の向上をすることができる。
[0042] また、本発明の請求項 13による光ディスク記録装置によれば、請求項 1または請求 項 10に記載の光ディスク記録装置において、前記レーザーパワー制御回路は、レー ザ一出射パワーレベルを変更してレーザーパワー制御を複数回行い、レーザーパヮ 一制御の精度が最も高 、レーザーパワーで、前記レーザー光源の光強度を制御す ることとしたので、最適なレーザーパワーを設定することで、 SZN比の向上をすること ができる。
[0043] また、本発明の請求項 14による光ディスク記録装置によれば、請求項 1または 10に 記載の光ディスク記録装置において、光ディスクへのフォーカスがはずれている間に 、前記位相設定並べ替え回路が、前記位相設定を順次変更し、前記平均化回路が 、各位相設定毎に、前記マーク部のマルチパルス列の光強度信号を平均化して前 記平均化レベルを測定することとしたので、光ディスク記録装置の記録動作中に、記 録媒体への記録を行わずに、設定したライト'ストラテジの補正、及び設定したライト' ストラテジが出力されているかを確認することができる。
[0044] また、本発明の請求項 15による光ディスク記録装置によれば、請求項 1または 10に 記載の光ディスク記録装置において、前記平均化回路が、前記ライト'ストラテジ生成 回路より出力される前記ライト'ストラテジ波形のパルス信号を直接平均化して、前記 平均レベルとして出力することとしたので、ライト'ストラテジの時間信号を直接電圧信 号に変換でき、レーザーの制御とは関係なぐレーザーの出射を停止している状態で も、ライト'ストラテジの位相設定を補正できる。
[0045] また、本発明の請求項 16による光ディスク記録装置によれば、請求項 15に記載の 光ディスク記録装置において、前記平均化回路への出力を、前記光検知器の出力と 、前記ライト'ストラテジ生成回路の出力との間で切り換える切り替え回路を備えること としたので、ライト'ストラテジの時間信号と、レーザー出射の時間信号とを比較するこ とがでさる。
[0046] また、本発明の請求項 17による光ディスク記録装置によれば、請求項 6または 7に 記載の光ディスク記録装置において、前記理想値と、前記測定値とに基づいて、前 記マルチパルスのデューティ比の設定を補正するデューティ補正回路を備え、前記 レーザーパワー制御回路は、前記電圧測定回路の出力と、前記補正されたデューテ ィ比とに基いて、ピークパワー換算計算を行うこととしたので、マルチパルスのレーザ 一制御用のパワー補正を行うことができる。
[0047] また、本発明の請求項 18による光ディスク記録装置によれば、請求項 1または 10に 記載の光ディスク記録装置において、前記位相設定並べ替え回路により算出される 補正パラメータの値を保持する不揮発メモリを備えることとしたので、あらかじめ工程 調整で補正値を求めておいて、その保持されている補正値を使用することで、記録 装置の起動の短縮を行うことができる。
図面の簡単な説明
[0048] [図 1]図 1は、実施の形態 1による光ディスク記録装置のブロック図である。
[図 2]図 2は、実施の形態 1による光ディスク記録装置において、マルチパルスの位相 設定 Tmp = 0. 5Tでデューティ比が 50%となる場合の信号波形図である。
[図 3]図 3は、実施の形態 1による光ディスク記録装置において、マルチパルスの位相 設定 Tmp =ゼロでデューティ比が 0%となる場合の信号波形図である。
[図 4]図 4は、実施の形態 1による光ディスク記録装置において、マルチパルスの位相 設定 Tmp = ITでデューティ比が 100%となる場合の信号波形図である。
[図 5]図 5は、 1Tマルチパルスの幅設定と、測定レベルの関係を示す図である。
[図 6]図 6は、実施の形態 1による光ディスク記録装置の、位相設定の補正手順を示 すフロー図である。
[図 7]図 7は、実施の形態 1による光ディスク記録装置において、位相設定毎の AD変 換値を得るための測定手順を示すフロー図である。
[図 8]図 8は、実施の形態 1による光ディスク記録装置の測定結果例を示す図である。
[図 9]図 9は、実施の形態 1による光ディスク記録装置において、理想値を算出するた めの計算式を示す図である。
[図 10]図 10は、実施の形態 1による光ディスク記録装置において、測定値と、算出さ れた理想値の結果例を示す図。
[図 11]図 11は、実施の形態 1による光ディスク記録装置において、最適位相設定を サーチし、位相設定を補正する手順を示すフロー図である。
[図 12]図 12は、実施の形態 1による光ディスク記録装置における補正結果例を示す 図である。
[図 13]図 13は、実施の形態 1による光ディスク記録装置における補正結果例をグラフ で示した図である。
[図 14]図 14は、実施の形態 2による光ディスク記録装置において、 2Tマルチパルス の場合に、マルチパルスの位相設定 Tmp = 0. 5Tでデューティ比が 50%となる場合 の信号波形図である。
[図 15]図 15は、実施の形態 2による光ディスク記録装置において、マルチパルスの位 相設定 Tmp = 1. 0Tでデューティ比が 50%となる場合の信号波形図である。
[図 16]図 16は、実施の形態 2による光ディスク記録装置において、マルチパルスの位 相設定 Tmp = 1. 5Tでデューティ比が 75%となる場合の信号波形図である。
[図 17]図 17は、 2Tマルチパルスの幅設定と測定レベルの関係を示す図である。
[図 18]図 18は、実施の形態 3による光ディスク記録装置において、 3Tマークにおい て、 ITの長さのブロックパルスが出力される場合の波形図である。
[図 19]図 19は、実施の形態 3による光ディスク記録装置において、 3Tマークにおい て、 1. 5Tの長さのブロックパルスが出力される場合の波形図である。
[図 20]図 20は、実施の形態 3による光ディスク記録装置において、 3Tマークにおい て、 2. OTの長さのブロックパルスが出力される場合の波形図である。
[図 21]図 21は、実施の形態 3による光ディスク記録装置において、トップパルスの幅 設定と測定レベルの関係を示す図である。
[図 22]図 22は、実施の形態 4による光ディスク記録装置のブロック図である。
[図 23]図 23は、実施の形態 4による光ディスク記録装置における、測定値 [n]と標準 装置 [n]の測定結果例を示す図である。
[図 24]図 24は、実施の形態 4による光ディスク記録装置における測定結果例を示す 図である。
[図 25]図 25は、実施の形態 5による光ディスク記録装置のブロック図である。
[図 26]図 26は、実施の形態 5による光ディスク記録装置において、マルチパルスの位 相設定 Tmp = 0. 5Tでデューティ比が 50%となる場合の波形図である。
[図 27]図 27は、実施の形態 5による光ディスク記録装置における測定手順を示すフ ロー図である。
[図 28]図 28は、実施の形態 6による光ディスク記録装置における、ピックアップのブロ ック図である。
[図 29]図 29は、実施の形態 7による光ディスク記録装置のブロック図である。
[図 30]図 30は、実施の形態 8による光ディスク記録装置のブロック図である。
[図 31]図 31は、実施の形態 8による光ディスク記録装置における、デューティ比の補 正値を算出するための計算式を示す図である。
[図 32]図 32は、実施の形態 8による光ディスク記録装置において、デューティ比を補 正した結果を示す図である。
符号の説明
1 光ディスク
2 ピックアップ レーザー制御系
a マーク部検出系
b スペース Zィレース部検出系
位相検出設定系
記録データ生成系
レーザーダイオード(LD)ドライバ
レーザー(LD)
光検出器
アツテネータ (ATT)回路
0 ローパスフィルタ(LPF)回路
1 サンプル 'ホールド(SH)回路
2 切替スィッチ
3 電圧ゲインアンプ (VGA)
4 AD変換回路
5 電圧ゲインアンプ (VGA)
6 サンプル 'ホールド(SH)回路
7 電圧ゲインアンプ (VGA)
8 AD変換回路
9 レーザー APC ( Auto Power Control)制御回路0 DAC
1 記録データ格納回路
2 記録変調回路
3 ライト'ストラテジ生成回路
4 位相設定回路
5 多層クロック生成回路
6 ローパスフィルタ(LPF)回路
7 サンプル 'ホールド(SH)回路
8 電圧ゲインアンプ (VGA)回路 29 AD変換回路
30 CPU
31 RAM
32 位相設定テーブル
33 デューティ補正回路
34 信号変換回路
35 信号切替スィッチ
36 信号切替スィッチ
37 標準信号発生装置
38 SH位置設定回路
39 ONスィッチ
40 レンズ
41 ァクチユエータ
42 フォーカス駆動回路
発明を実施するための最良の形態
[0050] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る光ディスク記録装置の構成を示すブロック図 である。
図 1において、本実施の形態 1による光ディスク記録装置 100は、光ディスク 1にレ 一ザ一を出射し、光ディスク 1に対する情報の書き込み、及び読み出しを行うピックァ ップ 2と、レーザーの出射パワーを制御するレーザー制御系 3と、ライト'ストラテジの 位相検出や、位相設定などの制御を行う位相検出設定系 4と、記録データを生成す る記録データ生成系 5とを有する。
[0051] ピックアップ 2では、レーザーダイオード(LD) 7力 レーザーダイオード(LD)ドライ ノ 6によって電流駆動され、レーザー光が LD7から光ディスク 1に出射される。このレ 一ザ一光の反射光は、受光素子である光検出器 8により受光され、光検出器 8により 、受光した光の強度が電圧レベルに変換されて出力される。そして電圧レベルに変 換された光は、後段のレーザー制御系 3と、位相検出設定系 4に出力される [0052] レーザー制御系 3は、アツテネータ(ATT回路) 9と、マーク部検出系 3aと、スぺー ス Zィレース部検出系 3bと、レーザー APC (Auto Power Control)制御回路 19 と、 DAC20とを有する。
[0053] ATT回路 9は、光検出器 8より出力される電圧レベルが高 、場合、その電圧レベル を下げるものである。近年、光ディスク記録装置の記録速度は高倍速化しており、大 きなパワーで LD7が発光される場合は、 ATT回路 9で電圧レベルを下げる。 ATT回 路 9の出力信号は、マーク部検出系 3aと、スペース Zィレース部検出系 3bに出力さ れる。
[0054] マーク部検出系 3aは、マーク部へレーザーを発光した時のレーザーパワーレベル
(電圧レベル)をサンプルしてホールドし、そのレベルを測定するものであり、周波数 調整付ローパスフィルタ(LPF回路) 10と、切替スィッチ 12と、サンプルホールド回路 (SH回路) 11と、電圧ゲインアンプ (VGA) 13と、 AD変換回路 14とよりなる。マーク 部検出系 3aは、 ATT回路 9の出力信号がマルチノ ルス波形のときは、 LPF10にそ の信号を通して信号のレベルを平均化し、マルチパルスの平均パワーレベルを SH 回路 11によりサンプルしてホールドし、そのレベルを測定する。 SH回路 11は、マー ク用サンプル 'ホールド(SH)信号(図示せず)に基づいて、レーザーパワーレベルに 対応する電圧レベルをサンプルしてホールドする。その後、 SH回路 11の出力は、記 録速度や記録時のレーザーパワーに応じて VGA13によりゲイン調整され、 AD変換 回路 14により AD変換される。
[0055] スペース Zィレース部検出系 3bは、スペース部 Zィレース部へレーザーを発光した 時のレーザーパワーレベル(電圧レベル)をサンプルしてホールドし、そのレベルを 測定するものであり、電圧ゲインアンプ(VGA) 15と、サンプル 'ホールド回路(SH回 路) 16と、電圧ゲインアンプ (VGA) 17と、 AD変換回路 18とよりなる。スペース部に 対するレーザーパワーは、ィレース部やマーク部に対するレーザーパワーと比較して 小さ 、ので、スペース部に対するレーザーパワーレベル(電圧レベル)の信号につ!ヽ ては、 VGA15によりゲインを上げる。一方で、ィレース部に対するレーザーパワーは 、十分大きなレベルであるので、ゲインを上げる必要はない。 VGA15の出力信号(レ ベル)は、 SH回路 16によって、スペース用 SH信号(図示せず)に基づいてサンプル されホールドされる。なお、ィレース部に対するレーザーパワーレベルのサンプル'ホ 一ルドは、スペース部の場合と同様である。その後、 SH回路 16の出力は、記録速度 や、記録時のレーザーパワーに応じて、 VGA17により信号のゲイン調整が行われ、 AD変換回路 18により信号が AD変換される。
[0056] レーザー APC (Auto Power Control)制御回路 19は、マーク部検出系 3aと、 スペース Zィレース部検出系 3bとにより検出された AD変換値を、入力として LD7の 駆動電流を演算し、 LDドライバ 6に駆動電流を供給するものである。また、 DAC20 は、レーザー APC制御回路 19の出力をアナログ信号に変換して、 LDドライバ 6に出 力するものである。
[0057] 以下、上述したレーザー制御系 3によるレーザーパワーの制御方法について説明 する。なお、ィレース部に対するレーザーパワーレベルのサンプル、及びホールドの 動作は、スペース部のそれと同様であるので、その説明を省略する。
[0058] まず、光ディスク 1の情報を再生するときの LD7のパワー制御について説明する。
[0059] レーザー APC制御回路 19は、 LD7のパワーを、光ディスク 1の情報を再生するた めに必要な再生パワーに一定に制御するために、初期の電流値を LDドライバ 6に設 定し、 LDドライバ 6がその電流値に基づいて LD7を発光させる。その後、光検出器 8 の出力信号が ATT回路 9を通り、スペース Zィレース部検出系 3bで AD変換される。 そして、 AD変換値が目標のレーザーパワーになるように、レーザー APC制御回路 1 9が駆動電流の値を制御する。再生時には、このレーザー APC制御回路 19によって 、レーザーパワーが所定の目標値になるように制御される。
[0060] 次に、光ディスク 1に情報を記録するときの LD7のパワー制御について説明する。
通常、記録波形 NRZIは、マーク部の波形とスペース部の波形とが繰り返し出力さ れる。 1つの記録マークを形成する際、メディアの材質や特性または記録速度に応じ て、記録波形 NRZIからライト'ストラテジを生成し、このライト'ストラテジによりレーザ 一を出射するため、レーザーの発光波形は様々な形となる。また、 LD7は、温度特 性により、目標パワーを出射するための必要な電流量が変化する。このため、マーク 部と、スペース部のレーザーパワーを目的のパワーになるように制御するために、そ れぞれのレーザーパワーレベルを測定して、レーザーパワーが一定となるようレーザ 一 APC制御が行われる。
[0061] マーク部検出系 3aは、マルチパルス波形を示すマーク部のレーザーパワーレベル をサンプルしてホールドし、そのレベルを測定する。マーク部の波形が複数のパルス 力もなるマルチノ ルスの場合、マーク部検出系 3aは、切替スィッチ 12を、信号が LP F回路 10を通過するように切替え、 LPF回路 10で信号のレベルを平均化し、平均化 したレベルをサンプルしてホールドし、そのレベルを測定する。記録用の高パワーが 出現する時間 Tpと、再生用の低パワーが出力されるボトムパワーの出現する時間 Tb との比率、 TpZ (Tp+Tb)をデューティ比とすると、マルチパルス波形のときに目標 パワーの計算を行うときは、得られた平均レベルと、デューティ比とから、ピークパヮ 一の換算を行う。例えば、デューティ比が 50%、得られた平均レベルを aveとすると、 実際に発光しているピークパワーは、レーザー APC制御回路 19により、 ave/50% = ave X 2と計算される。この検出された平均パワーレベルは、 SH回路 11によりサン プノレされホーノレドされる。そして、 AD変換値が目標のレーザーパワーになるように、 レーザー APC制御回路 19により駆動電流の値が制御される。
[0062] なお、 ATT回路 9からの出力が非マルチパルス波形の場合は、マーク部検出系 3a は、 ATT回路 9からの信号力 LPF回路 10をスルーするように切替スィッチ 12を切替 えてレベルを測定する。この場合、直接レベルの測定を行うことができるので、デュー ティ比の計算は必要ない。また、マルチパルスの場合でも、マーク部検出系 3aは、 A TT回路 9からの出力信号力 LPF回路 10をスルーするように切替スィッチ 12を切替 えて、 Topパルス部分をサンプル 'ホールドするようにしてもよい。この場合も、直接レ ベルの測定を行うことができるので、デューティ比の計算は必要な 、。
[0063] 一方、スペース Zィレース部検出系 3bでは、先に述べた再生時と同様の方法によ り、スペース部のレーザーパワーレベルがサンプルしてホールドされ、そのレベルが 測定される。そして、 AD変換値が目標のレーザーパワーになるように、レーザー AP C制御回路 19により駆動電流の値が制御される。
[0064] 次に、図 1において、位相検出設定系 4は、ライト'ストラテジの位相検出や、位相の 決定などの制御を行うものであり、周波数調整付ローパスフィルタ(LPF回路) 26と、 サンプル ·ホールド回路(SH回路) 27と、電圧ゲインアンプ(VGA) 28と、 CPU30と 、 RAM31とを有する。なお、 RAM31に代わる不揮発性メモリを設け、該不揮発性メ モリに、 RAM31にされる各種のデータを格納してもよ!/、。
[0065] 位相検出設定系 4の処理では、光検出器 8により電圧レベルに変換された光信号 は、以下のように電気的処理がなされ、ライト'ストラテジの時間軸の設定力 電圧レ ベルで検出される。
[0066] すなわち、電圧レベルに変換されたマーク部のマルチパルス波形力 LPF26に通 され、マルチパルスの平均パワーレベルが検出される。検出された平均パワーレべ ルは、 SH回路 27によりサンプルされホールドされる。その後、記録速度や、記録時 のレーザーパワーに応じて VGA28により信号のゲイン調整がなされ、 AD変換回路 29により AD変換される。
[0067] CPU30は、ライト'ストラテジの位相設定を順次変更して、それぞれの位相設定毎 に AD変換回路 29より出力される測定値を得る。そして、この測定値を元に直線近似 を行なって、各位相設定毎に測定値の理想値を求め、測定値と理想値との誤差が最 小となるような位相設定を最適位相設定として求めて、 RAM31の位相設定テープ ル 32に格納する。なお、位相検出設定系 4の詳細な動作については、後述する。
[0068] 記録データ生成系 5は、光ディスク 1に記録される記録データを生成するものであり 、記録データ格納回路 21と、記録変調回路 22と、ライト ·ストラテジ生成回路 23と、位 相設定回路 24と、多相クロック生成回路 25と、を有している。
[0069] 記録データ生成系 5では、記録データ格納回路 21に格納される記録データが、記 録変調回路 22により、所定の規格に応じて変調される。そして、記録波形 NRZI信号 力 記録変調回路 22からライト ·ストラテジ生成回路 23に入力される。
[0070] 位相設定回路 24は、多相クロック生成回路 25が生成した基準クロックを、 CPU30 により読み出された位相設定テーブル 32の値に基づいて選択し、ライト'ストラテジ生 成回路 23に入力する。
[0071] ライト'ストラテジ生成回路 23は、記録変調回路 22、及び位相設定回路 24からの出 力に基づいて、光ディスク 1の特性や記録速度等に応じて、光ディスク 1への記録に 最適なライト'ストラテジを生成する。このとき、ライト'ストラテジ生成回路 23は、基準と なる記録の繰返し周期 1Tに対して、更に短い複数のパルス、またはひとつのパルス を生成するために、 1Tより更に分解能のある多相クロックを基準として、ライト'ストラ テジの位相を決定する。そして、 LDドライバ 6は、このライト'ストラテジに基づいて LD 7を発光させる。なお、位相検出設定系 4の RAM31に格納されている位相設定テー ブル 32は、位相設定回路 24などに保持してもよい。
[0072] 次に、以上のように構成された光ディスク記録装置 100における、マルチパルスの 位相設定と、位相検出系 4におけるマルチパルスの平均化レベルの測定値との関係 について説明する。
[0073] 上述したように、マルチパルス波形を示すマーク部のレーザーパワーレベルは、 LP F回路 27で平均化され、平均化されたレベルがサンプル、ホールドされ、そのレベル が測定される。この時、レーザーパワーは一定となるように、レーザー APC制御が行 われているため、マルチパルスの位相設定 Tmpが変化したとき、 LPF回路 27で平均 化されるレベルは変化する。
[0074] 例えば、マルチパルスの出力周期を、マーク'スペース長の基本周期である 1Tとし たときの、 1Tマルチパルスの場合について、図 2を用いて説明する。
[0075] 図 2は、記録中のマークと、スペースの信号を示しており、ライト'ストラテジのマルチ パルスの位相設定 Tmp = 0. 5Tでデューティ比が 50%となる場合を示す。図 2 (b) は、レーザーの出力を表しており、図 2 (b)において、 Tmpは、マルチパルスの位相 設定を示し、 Tmpの矢印方向(+ )が可変できる位相設定である。また、 Tmpの矢印 の始点は、固定された位相設定である。図 2では、基本周期は、 1Tであるので、 Tm pは、 OTから 1Tまで可変される。
[0076] 図 2 (a)は記録変調回路 22の出力信号である記録波形 NRZIを表し、 HIGHの区 間力 データが記録されるマーク部分であり、 LOWの区間が、データが記録されな い、または、消去されるスペース部である。スペース部は、バイアスパワー blで APC 制御されており、マーク部のマルチパルスは、ピークパワー b2で制御されている。ま た、ボトムパワー b3は、再生中のレーザーパワーとなるように電流が設定されている。 このボトムパワー b3は、記録特性に応じて変化させてもよい。
[0077] 図 2 (c)は、レーザー制御系 3aでの信号出力を表すものであり、マーク部検出系 3a における SH信号、及び SH回路 11の出力と、スペース Zィレース部検出系 3bにお ける SH信号、及び SH回路 16の出力とをそれぞれ表す。レーザー制御系 3aでは、 マーク部のレベルを検出するための SH信号力 ¾ )Wの区間でサンプリングが行われ 、 LOWから HIGHのタイミングでサンプリングレベルがホールドされる。また、スぺー ス Zィレース部検出系 3bでは、スペース部のレベルを検出するための SH信号力 ¾ ) Wの区間でサンプリングが行われ、 LOWから HIGHのタイミングでサンプリングレべ ルがホールドされる。なお、本発明の実施の形態 1において、サンプリングとホールド の意味が同じであれば、 SH信号の LOWや、 HIGHの極性は、特に反転設定で同じ 動作を行ってもよい。
[0078] 図 2 (d)は、位相検出設定系 4における、 LPF回路 26、 SH信号、及び SH回路 27 のそれぞれの出力を表す。位相検出設定系 4において、 LPF回路 10の平均化信号 は、デューティが 50%なので、理想的には図 2 (d)のようにピークパワー dlからボトム パワー d2を引き算した 50%のレベルで平均化される。このマーク部分の位置で、 SH 信号により LOWの区間でサンプリングが行われ、 LOW力も HIGHのタイミングでサ ンプリングレベルがホールドされる。
[0079] また、位相検出設定系 4において、図 3に示すように、マルチパルスの位相設定 Tm p =ゼロで、 IT単位中の記録パワー出射比率であるデューティ比が 0%となる場合、 LPF回路 10で平均したレベルは、図 3 (c)のようにボトムパワー c2と略同じレベルで 、検出される。また、例えば、図 4に示すように、マルチパルスの位相設定 Tmp = lT で、 1T単位中の記録パワー出射比率であるデューティ比が 100%となる場合、 LPF 回路 10で平均したレベルは、図 4 (c)のようにピークパワー clと略同じレベルで検出 される。以上、図 2、図 3、図 4の結果をまとめて、マルチパルスの位相設定を変化さ せたときのレベル検出の関係を表すと、図 5のように示すことができる。
[0080] 図 5は、マーク'スペース長の基本周期である 1Tの時間軸 0%から 100%までを、 平均化レベルのボトムパワーからピークパワーの関係で表している。図 5において、 横軸はライト'ストラテジ回路のマルチパルス設定 Tmpとデューティ比、縦軸は SH回 路 27でホールドされた信号の AD変換レベルである。図 5に示すように、本実施の形 態 1において、 1Tマルチパルスの幅設定と測定レベルとの関係は、デューティが 0% では、 AD変換レベルはボトムパワーのレベルとなり、デューティが 100%ではピーク パワーのレベルとなる直線で表される。
[0081] 次に、以上のように構成される光ディスク記録装置 100において、ライト'ストラテジ の位相設定に対応する電圧レベルをサンプルして、最適位相値を決定する動作に ついて詳細に説明する。なお、以下マーク'スペース長の基本周期である 1Tの分解 能が lZioの場合について説明する。
[0082] 1Tの分解能が 1Z10ということは、 0. 1T単位でマルチパルスの位相設定が可能 であることを示す。本実施の形態 1による光ディスク記録装置では、分解能は lZn (n は任意の整数)でもよぐ任意の分解能 nであっても、 10の分解能の場合と同じ結果 を得ることができる。
[0083] 図 6は、本発明の実施の形態 1による光ディスク記録装置 100により、ライト'ストラテ ジの位相設定を補正し、最適位相設定を出力する動作の概略を示すフローである。
[0084] まずステップ SI 1にお 、て、ライト'ストラテジの位相設定を順次変化させて、各位 相設定における信号レベルの測定を行う。次にステップ S12において、各位相設定 毎に最適値をサーチして、最適位相設定を求める。そしてステップ S 13において、最 適位相値の出力を行う。
[0085] 以下、ステップ Sl l、ステップ S12について、詳細に説明する。まず、ステップ S11 の処理について説明する。
図 7は、マルチパルスの位相を最小分解能で順に設定し、各位相設定毎の平均化 レベルの測定を行うフローを示す。なお、以下の各ステップは CPU30により実行され るものであり、また、当該フローにおける変数や、配列変数は、 CPU30に接続されて V、る RAM31に確保される。
[0086] まず、ステップ S21で、変数が初期化される。この変数は、測定回数を示す変数 n で、本実施の形態 1の場合は、 0から 10までの整数となる。
[0087] 次に、ステップ S22からステップ S27までのループ 1処理が形成され、変数 nが 10 以下の場合、ステップ S23からステップ S27までが繰り返し処理される。
[0088] すなわち、ステップ S23で、位相— OZ10が設定され、ステップ S24で、位相— OZ 10の時の AD値が取得され、ステップ S25で、取得された AD値が配列—測定値 [0] に格納される。次に、ステップ S 26で、 0をインクリメントし、ステップ S 27では、ステツ プ S22の条件で形成されているループ 1を継続する力、終了するか力 判断され以 降、測定値 [10]が得られるまで、ループ 1が繰り返される。
[0089] 以上の測定により、例えば、図 8のような測定結果が得られる。
本発明の実施の形態 1では、デューティが 0%から 100%になるように、 nを 0からィ ンクリメントした力 デューティが 100%力も 0%になるように、 nを 10からデクリメントし ても、同様な測定結果を得ることができる。また、ステップ S23や、ステップ S24の実 施の前後において、設定後の安定性や、測定の安定性のために、待ち時間をとつて 、次の処理を実行してもよい。
[0090] 次に、ステップ S12の処理について説明する。
まず、位相設定の最適値がサーチされる前に、ライト'ストラテジの位相設定を補正 するための理想値が算出される。理想値は、ステップ S11により得られた測定結果か ら算出されるものであり、デューティが 0%の測定結果を保持している配列変数—測 定値 [0]と、デューティが 100%の測定結果を保持して ヽる配列変数—測定値 [10] の結果とから、直線近似することにより得られる。直線近似式は、図 9の式で表され、 本実施の形態 1の測定結果から、理想値は、
[0091] 理想値 = 100 X n+ 100
[0092] で直線近似される。図 10は、上記ステップ S 11により得られた測定結果と、上記直線 近似式力 理想値を求めた結果を示すものである。
[0093] 図 11は、図 10の結果から、各位相設定の最適値をサーチして、位相設定を補正 するフローを示す。最適値のサーチ処理は、ある位相設定のときの理想値に最も近 Vヽ測定値をサーチして、そのサーチした結果の測定値に対応する位相設定を最適 位相設定とするものである。理想値に最も近い測定値は、測定結果と、理想値の絶 対値とから演算する。以下、フローの詳細について説明する。
[0094] まず、ステップ S30では、図 9で求めた直線近似式に基づき、各位相設定値毎の理 想値が計算され、配列変数—理想値 [n]に格納される。本実施の形態 1の場合、理 想値 [0]から理想値 [10]までの 11個のデータが、配列変数に格納される。
[0095] 次に、ステップ S31で、変数 mの初期化を行う。変数 mは、後述するループ 1のカウ ントに使用する変数である。 [0096] 次に、ステップ S32からステップ S44までのループ 1の処理が形成され、変数 mが 1 0未満の場合、ステップ S33からステップ S43までが繰り返し処理される。このループ 1の処理は、ある位相設定 nについて、理想値に最も近い最適値を、実測した結果か ら検索し、当該最適値に対応する位相設定を、ある位相設定値 nについての最適位 相設定として決定する処理を行うものである。
[0097] 次に、ステップ S33で、変数 _理想値 [m]に、最適位相設定を検索する位相設定 値に対してステップ S30で計算された理想値が取得される。
[0098] 次に、ステップ S34で、変数の初期化が行われる。ステップ S34で初期化される変 数は、後述するループ 2のカウントに使用する変数— n、最小絶対値、及び最適テー ブル [m]である。ここで、変数 _最小絶対値は、ループ 2の処理において、最も理想 値に近い測定値を検索するときに、理想値力 の誤差が最も小さい値を格納する変 数である。なお、最小絶対値の初期値としては、値として取り得る最大の値が格納さ れている。また、変数—最適テーブル [m]は、ループ 1の処理において、ある位相設 定に対して、最も誤差が小さ!、値が検索されたときの位相設定値を格納する変数で ある。
[0099] 次に、ステップ S35からステップ S41までのループ 2の処理が形成され、変数 nが 1 0未満の場合、ステップ S36からステップ S40までが繰り返し処理される。このループ 2の処理は、上記ループ 1処理のうち、最適位相設定値を検索する位相設定値につ いて、理想値 [m]とすべての実測値とを比較して、最も理想値に近い測定値を検索 する処理を行うものである。
[0100] すなわち、ステップ S36では、配列変数—測定値 [n]と計算で求めた理想値 [m]と の差分の絶対値が計算される。ステップ S37では、この差分絶対値と最小絶対値と が比較され、差分絶対値のほうが小さければ、ステップ S38に移行し、差分絶対値の ほうが大きければ、ステップ S40に移行する。
[0101] ステップ S38では、変数—最小絶対値に、差分絶対値が格納され、ステップ S39で は、変数—最適位相設定に、変数 nが設定される。そして、ステップ S40で、変数 nが インクリメントされし、ステップ S41では、ステップ S35の条件で形成されているループ 2を継続する力、終了するかが判断される。ループ 2を終了する場合は、ステップ S42 で、配列変数—最適テーブル [m]に、最適位相設定が格納される。
[0102] 次に、ステップ S43で、変数 mをインクリメントし、ステップ S44では、ステップ S32の 条件で形成されているループ 1を継続する力、終了するかが、判断され、ループ 1が 終了により、各位相設定の最適値の最適値をサーチする処理が終了する。
[0103] 以上のように、処理を行った結果を、図 12と図 13に示す。
図 12は、補正前と補正後の位相設定 nに対する理想値、測定値、レベル誤差、及 び誤差 (LSB)をそれぞれ示している。図 12において、理想値は、ステップ S30で求 められた値であり、測定値は、ステップ S11で求められたものである。また、レベル誤 差は、測定値と、理想値との差分を表し、誤差 (LSB)は、測定値と理想値との差分を 、理想直線の傾きで割った結果であり、位相設定に対する誤差を示す。なお、図 12 において、補正後の"補正 n"の欄は、図 11で説明したフローにより得られる最適テー ブル [m]に相当するものである。
[0104] 図 12に示すように、上述した補正により、レベル誤差、誤差 (LSB)は、補正前に比 ベて、小さくなつている。
[0105] また、図 13は、図 12に示す各数値をグラフ化したものであり、横軸の位相設定 nに 対して、左の第一軸は、測定値を、右の第二軸は、誤差 (LSB)をそれぞれ示してい る。図 13に示されるように、理想の直線に対して、補正前は、—0. 8 (LSB)から + 1 . O (LSB)の誤差があった力 補正後は、—0. 7 (LSB)力 + 0. 4 (LSB)の誤差に 低減している。
[0106] 以上の動作により得られた、補正後の位相設定は、不揮発メモリ 31の位相設定テ ーブノレ 32に保持される。具体的には、ネ ΐ正前には、 [0、 1、 2、 3、 4、 5、 6、 7、 8、 9] と順番に格納されていた設定を、補正結果により、 [0、 2、 1、 3、 5、 5、 6、 7、 9、 8]と 書き換えておくことである。
[0107] そして、実際のライト'ストラテジの出力では、本実施形態のように位相設定 ηが、 0 力も 10まで存在している場合、例えば、 η= 1の設定を行うときは、補正 η= 2となる選 択を行えばよい。また、位相設定 η=4のときは、補正 η= 5を選択すればよい。このよ うに、 CPU30が、ある位相設定に対して補正後の位相設定 ηを設定することで、あら カゝじめ定められた位相設定順序を並べ替えを行ない、回路特性に応じた最適なライ ト 'ストラテジの位相設定が可能となる。
[0108] なお、本発明の実施の形態 1では、 AD変換回路 29の分解能やレンジに合わせて
、 VGA28の設定を可変して、 SZN比を向上させても良い。
[0109] また、本発明の実施の形態 1では、レーザーパワーを可変することで、マーク部検 出系 3aのダイナミックレンジにより、 S/N比を向上させてもよい。また、 VGA28の設 定ゃ、レーザーパワーを可変した結果をそれぞれ比較して、より精度のよい検出を行 つてもよい。
[0110] また、本発明の実施の形態 1では、マーク'スペース長の基本周期である 1Tの分解 能が 1Z10の場合について、位相設定を、 n=0から n= 10まで 1ずつ変更して、マ ルチパルスのディーティ比を、 0%から 100%に変化させて測定を行った力 ここで測 定する nは任意の設定でもよい。また、補正するための基準直線 0%と、 100%の測 定結果が得られて 、れば、任意の位相設定を補正することができる。
[0111] また、本発明の実施の形態 1では、マーク'スペース長の基本周期である 1Tの分解 能が 1Z10の場合について、位相設定が、 n=0から n= 10まで 1ずつ変更して、マ ルチパルスのディーティ比を、 0%から 100%に変化させて測定を行った力 ここで、 測定する n= lや、 n= 9の設定は、出力波形の幅が最も短い時間幅である。近年の 高倍速化に伴い、記録倍速が上がると、時間幅も短くなる。信号出力の立ち上がり特 性と、立下り特性の時間が、設定したライト'ストラテジの時間幅を上回った場合、正 常な波形は出力されない。この条件に関して、あらかじめ立ち上がり特性、および立 下り特性は、製品仕様として規定されており、明確化されている。ここで、上記条件の ように正常な波形が出力されない記録倍速設定のときは、測定を行うことができない 。したがって、あら力じめ測定を行うことができない時間設定のときは、測定を行わず 、補正を行わないようにする。具体的には、 n= lの補正結果は、補正 n= lとする。
[0112] また、本発明の実施の形態 1では、ステップ S12で、直線の近似と補正とを行い、 R AM31に補正後の位相設定値である補正 nを保持し、次のライト'ストラテジの設定に 補正 nを設定するとした力 RAM31〖こ、直線近似の結果である理想値を保持してお いてもよい。この場合、直線近似の結果だけを読み出し、設定したライト'ストラテジの 位相設定 nの出力結果とを比較し、その精度を判断することができる。 [0113] また、本発明の実施の形態 1において、 CPU30は、理想値と測定値を比較して、 あら力じめ設定されて 、る値を超えて 、る場合は、エラー検出を行うものとしてもょ ヽ 。例えば、理想値カゝら測定値を引き算して、設定されている値を超えた場合、エラー とする。そして、エラー検出した場合、この記録装置は不良品と判断する。また、一部 の部品交換を行って、再度測定し、設定されている値より小さくなれば良品と判断し ても良い。また、エラーとなった場合でも、測定の誤差によって、あらかじめ設定され ている値を超えている場合も考えられるため、再度、任意の回数測定を行って、エラ 一検出を行っても良い。
[0114] 以上のように本実施の形態 1による光ディスク記録装置は、ライト'ストラテジ波形の 一部を所定の周期で同じ形状のパルスを繰り返すマルチパルスに設定し、マルチパ ルスの一方のパルスエッジの位相設定を固定し、他方のパルスエッジの位相設定を 順次変更し、レーザー光源の光強度を制御するレーザーパワー制御を行い、マルチ パルス発光して 、るレーザー光を光検出して、マーク部を LPF回路で平均化して、 そのレベルをサンプリングしてホールドして、マルチパルスのデューティ比の時間幅 に対応する平均化レベルを電圧によって測定し、その測定結果に応じて、実際に出 力される時間軸のパルスエッジの位相誤差を減らすように、ノ ルスエッジの位相設定 順序の並べ替えを行うこととしたので、ライト'ストラテジの実際に出力される時間軸に 対する位相設定を電圧レベルで測定することができ、誤差が大き 、位相設定にっ 、 ては、その誤差が低減される最適な位相設定を決定することができる。
[0115] また、マルチパルスの出力周期をマーク'スペース長の基本周期である 1Tとしたと き、マルチパルスのデューティ比を 0%から 100%に変化させて、レベルの測定を行 うようにしたので、基本周期である 1T分を、最小分解能ですべて測定することができ 、該測定結果に基づいて位相設定順序を並べ替えることで、誤差が低減される位相 設定を行うことができる。
[0116] また、位相設定が最も小さいマルチパルスのデューティ比が(xl) %時の平均化レ ベルを (yl)とし、位相設定が最も大き 、マルチパルスのデューティ比が (x2) %時の 平均化レベルを (y2)とした場合に、傾きを (y2— yl) ÷ (x2— xl)とし、接片^ ylと する直線を用いて、各位相設定についての理想値を求めることとしたので、基本周期 である IT分の最初と、次の ITの最初の 2点で直線近似することができ、相対的に 1T の最小分解能で、すべての位相設定にっ 、て補正を行なうことができる。
[0117] また、本実施の形態 1による光ディスク記録装置では、電圧レベルで測定するときに 、最適なレンジを設定することで、 SZN比の向上をすることができる。また、レーザー APC制御回路 19によりレーザーパワーを変化させて、レーザーパワー制御を複数 回行ない、もっと精度の良いレーザパワーを選択し設定することで、 SZN比の向上 をすることができる。
[0118] また、本実施の形態 1による光ディスク記録装置は、 RAM31に、位相設定を補正 した結果を書き換えて保持しておくようにしたので、あら力じめ光ディスク記録装置の 工程調整で補正値を求めておいて、その保持されている補正値を使用することにより 光ディスク記録装置の起動時の時間短縮を行うことができる。
[0119] また、測定が困難な設定値付近では、位相設定の補正を行わないようにしたので、 本来の設定とは全く異なる位相設定がされることがなくなり、異常な出力がされなくな る。
[0120] また、 RAM31に、理想値や、補正値を保持しておくようにしたので、あらかじめェ 程調整で補正値を求めておいて、その保持されている補正値や、理想値を使用する ことで、光ディスク記録装置の起動にようする時間短縮を行うことができる。
[0121] (実施の形態 2)
以下、本発明の実施の形態 2に係る光ディスク記録装置について説明する。
本実施の形態 2による光ディスク記録装置は、上記実施の形態 1による光ディスク記 録装置 100において、マルチパルスの出力周期を、マーク'スペース長の基本周期 を 2Tとするものである。
[0122] 本実施の形態 2による光ディスク記録装置において、マルチパルスの出力周期を、 マーク ·スペース長の基本周期である 2τとしたときの、 2Tマルチパルスの場合につ いて、図 14を用いて説明をする。なお、本実施の形態 2による光ディスク記録装置の 構成、及び基本的な動作は、上述した実施の形態 1による光ディスク記録装置 100と 同じである。
[0123] 図 14において (a)は、記録波形 NRZIを、 (b)はレーザー出力を、(c)は、位相検 出設定系 4における、 LPF回路 26の出力、 SH信号の出力、及び SH回路 27の出力 を表す。図 14は、記録中のマークとスペースの信号を示しており、ライト'ストラテジの マルチパルスの位相設定が Tmp = 0. 5Tで、デューティ比が 25%である場合に対 応するものである。 Tmpは、マルチパルスの位相設定を示し、 Tmpの矢印方向(+ ) に変化させることができる。 Tmpの矢印の始点は、固定された位相設定である。基本 周期は、 2Tであるので、 Tmpは、 OTから 2Tまで可変される。
[0124] ここで、マーク'スペース長の基本周期である 2Tにおいて、時間軸 25%から 75% は 1T相当の時間となる。
[0125] マルチパルスの位相設定が Tmp = 0. 5で、 2T単位中の記録パワー出射比率であ るデューティ比が 25%となる場合、 LPF回路 26で平均したレベルは、図 14 (c)に示 すようにピークパワーとボトムパワーの差の 25%と同じレベルとなり、 SH回路 27にて 図 14 (c)のように検出される。
[0126] また、図 15は、ライト'ストラテジのマルチパルスの位相設定が Tmp = 1. OTで、デ ユーティ比が 50%である場合に対応する図であり、マルチパルスの位相設定が Tmp = 1Tで、 2Τ単位中の記録パワー出射比率であるデューティ比が 50%となる場合、 L PF回路 10で平均したレベルは、図 15 (c)に示すようにピークパワーとボトムパワーの 差の 50%と同じレベルとなり、 SH回路 27にて図 15 (c)のように検出される。
[0127] さらに、図 16は、ライト'ストラテジのマルチパルスの位相設定が Tmp = l. 5Tで、 デューティ比が 75%である場合に対応する図であり、マルチパルスの位相設定が T mp = l. 5Tで、 2T単位中の記録パワー出射比率であるデューティ比が 75%となる 場合、 LPF回路 10で平均したレベルは、図 16 (c)に示すようにピークパワーとボトム パワーの差の 75%と同じレベルとなり、 SH回路 27にて図 16 (c)のように検出される
[0128] 図 14、図 15、図 16の結果をまとめて、マルチパルスの位相設定を変化させたとき の、位相設定と測定レベルとの関係を表すと、図 17のように示すことができる。図 17 において、横軸は、ライト'ストラテジ回路のマルチパルス設定 Tmpとデューティ比を 示し、縦軸は、 SH回路 27でホールドされたレベルの AD変換レベルを示す。
[0129] 図 17に示すように、マルチパルスの位相設定を変化させたときの、位相設定と測定 レベルとの関係は、デューティが 25%では、 AD変換レベルがピークパワーとボトム パワーの差の 25%となり、デューティが 75%では、 AD変換レベルがピークパワーと ボトムパワーの差の 75%のレベルとなる直線で表される。図 17は、マーク'スペース 長の基本周期である 2Tにおいて、時間軸 25%から 75%を、平均化レベルでボトム パワーからピークパワーの関係で表しており、この時間幅は、ちょうど 1T相当の時間 幅があり、本発明の実施の形態 1と同じである。
[0130] したがって、本実施の形態 2においては、検出できる電圧レベルは、ちょうど 50%と なり、上述した実施の形態 1とは異なるが、この電圧レベルの検出が、 AD変換回路 2 9の分解能より十分大きいならば、上述した図 17で示す直線を用いて各位相設定毎 の理想値を求めることにより、本発明の実施の形態 1と同じ方法により、ライト'ストラテ ジの位相設定を補正することができる。
[0131] 以上のように本発明の実施の形態 2による光ディスク記録装置によれば、マルチパ ルスの出力周期をマーク'スペース長の基本周期である 2Tとしたとき、マルチパルス のデューティ比を 25%から 75%に変化させて、レベルの測定を行うようにしたので、 デューティ比が 25%から 75%の範囲で、基本周期である 1T分を、最小分解能です ベて測定ができ、上記実施の形態 1と同様の方法により、位相設定順序を並べ替え ることで位相設定の補正を行な 、、誤差を低減させることができる。
[0132] なお、本実施の形態 2では、マーク'スペース長の基本周期である 1Tの分解能が 1 Z10の場合について、位相設定が n=0から n= 10まで 1ずつ変更して、マルチパ ルスのディーティ比を 25%から 75%に変化させて測定を行った力 基準直線 25%と 75%の測定結果が得られて 、れば、任意の設定 nを補正することができる。
[0133] (実施の形態 3)
以下、本発明の実施の形態 3に係る光ディスク記録装置について説明する。
本実施の形態 3による光ディスク記録装置は、上記実施の形態 1による光ディスク記 録装置 100において、 1つの記録マークを形成するときに、 1つのパルスで形成する ブロックパルス力もなるライト ·ストラテジによって記録するものである。
[0134] 以下、本実施の形態 3による光ディスク記録装置において、ブロックパルスの出力を 、マーク'スペース長の基本周期である 1Tとして、 3Tマークと 3Tスペースを出力した 場合の動作について、図 18を例に説明をする。なお、本実施の形態 3による光デイス ク記録装置の構成は、上述した実施の形態 1による光ディスク記録装置 100と同じで ある。
[0135] 図 18において、(a)は、記録波形 NRZIを、 (b)はレーザー出力を、(c)は、位相検 出設定系 4における、 LPF回路 26の出力、 SH信号の出力、及び SH回路 27の出力 を表す。図 18は、記録中のマークと、スペースの信号を示しており、 3Tマークにおい て、 1Tの長さのブロックパルスとなる場合である。 Ttopは、このブロックパルスの幅設 定であるトップパルスの位相設定を示し、 Ttopの矢印方向(+ )が可変できる位相設 定である。また Ttopの矢印の始点は、固定された位相設定である。 Ttopの可変範 囲は、特に制限はない。
[0136] 以下、マークとスペース長がそれぞれ 3Tであり、マークとスペース長の周期が、合 わせて 6Tの場合を例として説明する。本実施の形態 3による光ディスク記録装置で は、 LPF回路 26のカットオフ周波数の設定を下げて、マーク 3Tとスペース 3Tをまと めて、レーザー出力全体を平均化する設定にする。そして、マーク 3Tの記録を行うと きの位相設定を Ttopとしたとき、 Ttopの設定を、 1Tから 2Tまで可変して、マーク 3T とスペース 3Tの 6T分のレーザー出力全体を平均化する。
[0137] このとき、 Ttop= lTのときは、 6T中にピークパワーが出現する割合は、 1TZ6T= 16. 67%であり、 Ttop = 2Tのときは、 6T中にピークパワーが出現する割合は、 2T /6T= 33. 33%である。つまり、 Ttopが 1Tから 2Τまで変化したときの、ピークパヮ 一が出現する割合は、 16. 67%力ら 33. 33%となる。これを平均化レベルでボトム パワー力 ピークパワーの関係で表すと、時間軸では 1T相当の時間となり、このピー クパワーが出現する割合を、デューティ比と同じとすれば、本発明の実施の形態 1と 同様に扱うことができる。
[0138] ここで、 Ttop = 1Tで、デューティ比が、 16. 67%となる場合、 LPF回路 26で平均 したレベルは、図 18 (c)のように検出される。また、図 19に示すように、 Ttop = l. 5T で、デューティ比力 25%となる場合、 LPF回路 26で平均したレベルは、図 19 (c)の ように検出される。さらに、図 20に示すように、 Ttop = 2Tで、デューティ比力 33. 3 3%となる場合、 LPF回路 26で平均したレベルは、図 20 (c)のように検出される。 [0139] 図 18、図 19、図 20の結果をまとめて、トップパルス Ttopの位相設定を変化させた ときの位相設定と測定レベルとの関係を表すと、図 21のように示すことができる。図 2 1において、横軸は、ライト'ストラテジ回路のトップパルス設定 Ttopとデューティ比を 示し、縦軸は、 SH回路 27でホールドされたレベルの AD変換レベル示す。
[0140] デューティが 16. 67%では、ピークパワーとボトムパワーの差の 16. 67%、デュー ティが 33. 33%では、ピークパワーとボトムパワーの差の 33. 33%のレベルとなる直 線になり、マークとスペース長の基本周期である 6Tにおいて、時間軸 16. 67%から 33. 33%を、平均化レベルでボトムパワーからピークパワーの関係で表している。こ の時間幅は、ちょうど 1T相当の時間幅があり、本発明の実施の形態 1と同じである。
[0141] したがって、本実施の形態 3においては、検出できる電圧レベルは、ちょうど 16. 67 %となり、本発明の実施の形態 1と異なるが、この電圧レベルの検出が、 AD変換回 路 29の分解能より十分大きいならば、本発明の実施の形態 1と同じ方法により、ライト 'ストラテジの位相設定を補正することができる。
[0142] 以上のように本発明の実施の形態 3に係る光ディスク記録装置は、トツプノルスの 出力周期をマークとスペース長の発生周期 6Tを基準とし、トップパルスの位相設定 を 1T分の時間を変化させて、レベルの測定を行うこととしたので、デューティ比を 16 . 67%から 33. 33%の範囲で、基本周期である 1T分を、最小分解能ですべて測定 ができ、これにより上記実施の形態 1と同様の方法により、位相設定順序を並べ替え ることで位相設定の補正を行な 、、誤差を低減させることができる。
[0143] また、本発明の実施の形態 3においては、マークとスペース長の発生周期は 6Tとし たが、その他の周期に設定した場合でも、基本周期の長さに合わせて、デューティ比 計算を変えれば、本実施の形態 3と同様に、平均化レベルの測定と位相設定の補正 を行うことができる。
[0144] (実施の形態 4)
以下、本発明の実施の形態 4に係る光ディスク記録装置について説明する。
図 22は、本実施の形態 4による光ディスク記録装置 2200の構成を示すブロック図 である。図 22において、信号切替スィッチ 36は、 LPF26への入力を、光検出器 8の 出力と、後述する標準信号発生装置 37の出力との間で切り換えるものである。 [0145] 標準信号発生装置 37は、位相設定回路 24からの出力を受けて、各位相設定毎に ライト'ストラテジ生成回路 23の出力と同等な波形信号を出力するものであり、光ディ スク装置 2200に接続される外部装置である。その出力は、出力信号のばらつきがな い標準波形となる。なお、図 22において、図 1と同じ構成要素については同一の符 号を使用し、その説明を省略する。
[0146] 次に、以上のように構成された本実施の形態 4による光ディスク記録装置 2200の 動作について説明する。
まず、信号切替スィッチ 36が、標準信号発生装置 37側に切り替えられ、この状態 で、位相設定 nが、 0から 10まで順に + 1づっ変化されて、標準信号発生装置 37の 出力が平均化される。その結果は、 RAM32の変数—標準装置 [n]に格納される。 次に、信号切替スィッチ 36が、光検出器 8側に切り替えられ、位相設定 nを、 0から 1 0まで、順に + 1づっ変化させて、光検知器 8より出力される、電圧レベルに変換され たマルチパルス部のレーザーパワーの平均化レベルが検出され、その結果が、 RA M32の配列 _測定値 [n]に格納される。
[0147] 図 23は、上記測定結果を示す例であり、図 24は、該測定結果をグラフで表したも のである。図 23と、図 24の測定結果から、本発明の実施の形態 4の標準信号発生装 置 37を使用した測定では、理想直線力も少し弓形をした結果を得ることができて!/、る
[0148] 上記実施の形態 1では、ステップ S12において、直線近似式である、図 9より理想値 を求めた。つまり図 10の理想値 [n]は、測定結果と、これより得られた直線近似式か ら理想値を求めた結果であった。本実施の形態 4では、図 10の理想値 [n]を、図 23 の変数—標準装置 [n]に置き換えて、ステップ S 12以降の処理が行われる。これによ り、標準信号発生装置 37によりその出力が校正された位相検出設定系 4により、上 記実施の形態 1と同様に位相設定の補正を行うことができる。
[0149] なお、 AD変換回路 29の分解能やレンジに合わせて、 VGA28の設定を可変して、 SZN比を向上させても良い。また、レーザーパワーを可変することで、検出系のダイ ナミックレンジにより、 SZN比を向上させてもよい。また、 VGA28の設定や、レーザ 一パワーを可変した結果をそれぞれ比較して、より精度のよい検出を行ってもよい。 [0150] また、標準信号発生装置 37は、位相検出設定系 4を校正する目的なので、本実施 の形態 4では外部装置として想定しているが、位相検出設定系 4に、標準信号発生 装置 36を標準信号発生器として設けてもょ 、。
[0151] 以上のように本実施の形態 4による光ディスク記録装置によれば、位相検設定系に おいて、ライト'ストラテジ生成回路と同等の波形信号を出力する標準信号発生装置 37の出力を平均化し、切替スィッチ 36標準信号発生装置 37この平均レベルを測定 した結果を理想値として、位相設定の補正を行なうこととしたので、レベル測定を行う 位相検出設定系 4の出力を校正することができ、より正確な位相設定の補正が可能と なる。
[0152] (実施の形態 5)
以下、本発明の実施の形態 5に係る光ディスク記録装置について説明する。
図 25は、本実施の形態 5による光ディスク記録装置 2500の構成を示すブロック図 である。なお、図 25において、図 1と同じ構成要素については同一の符号を使用し、 その説明を省略する。
図 25において、 38は、レーザー制御系 3の SH回路 11のサンプルホールド位置を 変化させる SH位置設定回路である。 39は、レーザー APC制御回路 19の出力の O NZOFFを制御する ONスィッチである。また、本実施の形態 5による光ディスク記録 装置 2500では、位相設定系 4の CPU30は、レーザー制御系 3の AD変換回路 14 の出力を、その入力信号とする。
[0153] 次に、以上のように構成される光ディスク記録装置 2500の動作にっ 、て、図 26、 及び図 27を用いて説明する。
図 26は、 1Tマルチパルスで、 6Tマークのレーザー出力を行なっている状態を表し 、(a)は、記録波形 NRZIを、(b)はレーザー出力を表す。また、図 26 (c)は、 SH回 路 11の SH信号がマルチパルス部に位置する場合の、 LPF回路 12の出力、 SH信 号の出力、及び SH回路 11の出力を表し、図 26 (d)は、 SH回路 11の SH信号がトツ プパルス部に位置する場合の、 LPF回路 12の出力、 SH信号の出力、及び SH回路 11の出力を表す。
[0154] 図 26において、マルチパルス部を SH回路 11によりサンプルホールドした後の信 号レベルを AD変換した結果は、トップパルス部を SH回路 11によりサンプルホール ドした後の信号レベルを AD変換した結果より、小さい状態である。マルチノ ルス部 の位相設定を変化させたとき、マルチパルス部の LPF回路 10のレベルは、マルチパ ルスのデューティ変化により変動するので、この AD変換レベルを用いてレーザーを 一定に出力するレーザー APC制御はできない。このため、レーザー APC制御を行う 場合は、図 26 (d)に示すように、 SH位置設定回路 38によりサンプルホールド位置を トップパルス部に移動させ、トップパルス部をサンプル ·ホールドする。そして、ホール ドされたレベルが AD変換回路 14により AD変換された結果に基づいて、レーザー A PC制御回路 19によるレーザー APC制御が行なわれる。
[0155] 一方、ライト'ストラテジの位相設定を変化させて、マルチノルス波形のデューティ 比が変化したときの平均化レベルを検出する場合は、図 26 (c)に示すように、 SH位 置設定回路 38によりサンプルホールド位置をマルチパルス部に移動させてレベル測 定を行うそして、 AD変換回路 14で AD変換された結果が、位相検出設定系 4の CP U30に入力され、該検出結果を元に、上記実施の形態 1と同様の方法により、位相 設定の補正が行われる。
[0156] 以下、図 27に示すフローを用いて、本実施の形態 5による光ディスク記録装置 250 0において、レーザー制御系 3を用いて、ライト'ストラテジの位相を電圧レベルで測 定する動作にっ 、て説明する。
まず、ステップ S50で、 SH位置設定回路 38により SH信号がトップパルス部に変更 される。
[0157] 次に、ステップ S51で、切替スィッチ 12力 LPF回路 10がスルーされる側に切り替 えられる。 LPF回路 10をスルーすることで、光検出器 8で電圧変換されたレーザーの 出射波形が、そのまま SH回路 11に入力される。
[0158] 次に、ステップ S52で、レーザー APC制御が行なわれ、レーザーの出射パワーが 所定のパワーに制御される。この時トップパルス部がサンプル ·ホールドされているの で、位相設定を変化させてデューティ比が変化しても、同じレベルが検出される。
[0159] 次に、ステップ S53で、レーザー制御の安定待ちを行い、ステップ S54で、レーザ 一 APC制御が停止される。このレーザー APC制御の停止は、スィッチ 39を OFFに し、 LDドライバ 6への電流設定である DAC20の出力を一定とすることで行う。この時 、 LDドライバ 6に供給される電流は一定であるので、 LD7は、同じ電流でレーザーを 出射する。
[0160] 次に、ステップ S55で、 SH位置設定回路 38により SH信号がマルチパルス部に変 更される。
[0161] 次に、ステップ S56で、切替スィッチ 12力 SLPF回路 10側に切り替られ、ステップ S5 7で、ライト'ストラテジの位相設定が順次変化されて、各位設定毎のレベル測定が行 われる。以降は、上記実施の形態 1と同様に、ステップ S57により得られた測定値と、 理想値とを元に、位相設定順序を並べ替えることで、位相設定の補正が行なわれる
[0162] 以上のように本発明の実施の形態 5による光ディスク記録装置によれば、レーザー パワーの制御を行なう場合は、マーク検出系の SH回路のサンプルタイミングを、トツ プパルス部に移動させてレーザー APC制御を行な 、、位相設定の補正を行なう場 合は、レーザー制御をホールドして、レーザーへの電流量を一定とし、マーク検出系 の SH回路のサンプルタイミングを、マルチパルス部に移動させて、各位相設定毎の レベル測定を行うこととしたので、レーザー制御に用いるレーザーパワーの検出手段 を使って、ライト'ストラテジの位相設定に対する時間軸を、電圧レベルで測定するこ とができ、これにより、レーザー制御系のマーク検出系と、位相検出設定系における ライト'ストラテジの位相検出手段とを共通化させて、回路規模の縮小化を図ることが 可能となる。
[0163] (実施の形態 6)
以下、本発明の実施の形態 6に係る光ディスク記録装置について説明する。
上記実施の形態 1な 、し 5による光ディスク記録装置は、光ディスク記録装置の電 源投入時やリセット時に、マルチパルスの位相設定を補正するものである力 本実施 の形態 6による光ディスク記録装置は、記録動作時にマルチパルスの位相設定を補 正するものである。
[0164] 図 28は、本実施の形態 6による光ディスク記録装置における光ピックアップの構成 を示すブロック図である。なお、本実施の形態 6による光ディスク記録装置の、レーザ 一制御系 3、位相検出設定系 4、及び記録データ生成系 5は、上述した実施の形態 1 ないし実施の形態 5と同じものであり、図 28では省略している。
[0165] 図 28において、 41は、レンズ 40を上下させて、光ディスク 1の記録層に焦点を合わ すためのァクチユエータである。 42は、レンズ 40と連動したァクチユエータ 41を駆動 してレンズ 40を上下に動作させて、光ディスク 1の記録層に対してフォーカスを合わ せたり、はずしたりするフォーカス駆動回路 42である。
[0166] 次に、本実施の形態 6による光ディスク記録装置において、記録動作時に位相設 定の補正を行なう場合の制御動作について説明する。
[0167] 光ディスク 1の記録層にフォーカスを合わせる制御が行われている状態においては 、マルチパルスのデューティ比の時間幅に対応する平均化レベルを電圧によって測 定する場合、レーザーの出射パワーは記録を行うためのレーザーパワーであるため に、レーザー力もの出射光が光ディスク 1の記録層に、データとして記録されてしまう 。すべての位相設定を変化させて測定を行った場合、記録されるデータは、特に意 味のないデータとなる。
[0168] 本実施の形態 6では、光ディスクの記録動作時に、フォーカスを、フォーカス駆動回 路 42により光ディスク 1の記録層より一瞬はずし、この間に、マルチパルスの平均化 レベルを測定する。これにより、光ディスクの記録動作時に、記録媒体への記録を行 うことなく平均化レベルを測定することができ上述した実施の形態 1と同様の方法によ り、設定したライト'ストラテジの位相設定を補正することできる。
[0169] また、光ディスクの記録時に、フォーカス駆動回路 42により、光ディスク 1の記録層 よりフォーカスを合わせた状態において特定の位相設定に対するマルチノ ルスの平 均化レベルを測定し、この測定値と理想値との比較を行うことで、光ディスク記録装置 の異常を検知することができる。例えば、測定値と理想値との差が大きければ、位相 設定に対して異なる位相が出力されている可能性があり、装置が異常であると判断 できる。
[0170] 以上のように、本実施の形態 6による光ディスク記録装置によれば、光ディスク記録 装置の記録時に、フォーカス駆動回路によりレンズのフォーカスをはずし、この間に マルチパルスのデューティ比の時間幅に対応する平均化レベルを測定することとした ので、記録媒体へデータを記録する場合においても、ライト'ストラテジの位相設定の 補正を行なうことができる。
[0171] また、記録媒体への記録時に測定した値と理想値とを比較することにより、設定した ライト'ストラテジが正確に出力されているか否かを確認することができる。
[0172] (実施の形態 7)
以下、本発明の実施の形態 7に係る光ディスク記録装置について説明する。
図 29は、本実施の形態 7による光ディスク記録装置 2900の構成を示すブロック図 である。図 29において、 34は、ライト'ストラテジ生成回路 23の出力信号に応じて、そ の出力信号のレベルを変換する信号変換回路である。例えば、ライト'ストラテジ生成 回路 23の出力信号が、近年よく使用される、低電圧差動伝送 (LVDS)信号である 場合のように、ひとつの信号レベルが 2つの差動信号で伝達される場合、 2つの差動 信号を元の振動に変換する必要があるが、信号変換回路 34はこの変換回路に相当 するものである。
[0173] 35は、 LPF回路 26への入力を、光検出器 8の出力信号と、信号変換回路 34の出 力信号との間で切り換える信号切替スィッチである。なお、図 29において、図 1と同じ 構成要素については同一の符号を使用し、その説明を省略する。
[0174] 以下、本実施の形態 7による光ディスク記録装置 2900において、信号切替スィッチ 35が、 LPF回路 26への入力として信号変換回路 34の信号を選択している場合の動 作について詳細に説明する。
[0175] 信号変換回路 34の出力力 例えば、 OVから 3. 3Vのレベルで出力される回路とす る。このとき、ライト'ストラテジ生成回路 23の 2値ィ匕信号は、信号変換回路 34により 変換されると、レーザー出力を許可するときが、 3. 3V、許可しないとき力 OVのレべ ルで出力される。
[0176] このように、信号変換回路 34の出力は、 2値化された状態で出力されるので、例え ば、 AD変換回路 29のレンジ力 OV力 3. 3Vである場合、マルチパルスのデュー ティ比が 0%のときは、 AD変換回路 29で検出されるレベルは、 0レベルで検出される 。また、マルチパルスのデューティ比が 100%のときは、 AD変換回路 29で検出され るレベルは、 3. 3Vレベルで検出される。信号変換回路 34の出力が 2値ィ匕されてい ることで、上記実施の形態 1のと同様の方法によりライト'ストラテジの位相設定を補正 する場合、理想値を求める場合は、 OVから 3. 3Vの理想直線と単純化することがで きる。
[0177] また、 LPF回路 26による平均化レベルは、デューティ比に応じて OVから 3. 3Vの 間で変化する。このため、上記理想直線より求められる理想値と、信号変換回路 34 の出力を LPF回路 26により平均化し、そのレベルを AD変換した測定値と、を用いて 、上記実施の形態 1と同じ方法により、マルチパルスの位相設定の補正を行うことが できる。
[0178] また、本実施の形態 6による方式により位相設定の補正を行なう場合は、実際のレ 一ザ一発光を必要としないので、記録データ生成系 5と、位相検出設定系 4とを、光 ディスク記録装置 2900から独立した装置とし、記録データ生成系 5を単独で動作さ せて、補正を行うことも可能である。
[0179] 例えば、位相検出設定系 4が検査装置であり、記録データ生成系 5が被検査装置 であるとした場合、検査装置である位相検出設定系 4は、記録データ生成系 5のより 出力されるライト'ストラテジ波形の測定と位相設定の補正とを行い、位相設定テープ ル 32の値を出力すれば良い。
[0180] また、本実施の形態 7による光ディスク記録装置 2900は、図 25に示す本発明の実 施の形態 5による光ディスク記録装置 2500と同様に、レーザー制御系 3の SH回路 1 1の SH位置を可変する SH位置設定回路 38を設けて、位相検出系 4が、レーザー制 御系のマーク部検出系 3aを用いて、マルチパルス部の平均化レベルを測定するよう にしても良い。 SH位置設定回路この場合、信号変換回路 34の出力は、レーザー制 御系 3に入力すればよい。
[0181] さらに、本発明の実施の形態 7による光ディスク記録装置は、 AD変換回路 29の分 解能やレンジに合わせて、 VGA28の設定を可変して、 SZN比を向上させても良い 。また、レーザーパワーを可変することで、検出系のダイナミックレンジにより、 S/N 比を向上させてもよい。また、 VGA28の設定や、レーザーパワーを可変した結果を それぞれ比較して、より精度のよい検出を行ってもよい。
[0182] また、本発明の実施の形態 7に係る光ディスク記録装置 2900では、信号切替スイツ チ 35が、光検出器 8の出力を選択する場合は、本発明の実施の形態 1と全く同じ構 成を有するものとなる。このため、レーザー出力を、光検出器 8の出力を測定して補 正した結果と、ライト'ストラテジ生成回路 23の出力を測定して補正した結果との、 2 種類の結果を得ることができ、この両者の結果を、場合に応じて使い分けても良い。
[0183] 以上のように本実施の形態 7による光ディスク記録装置は、ライト'ストラテジのパル ス信号を直接平均化し、ライト'ストラテジの時間信号を直接電圧信号に変換すること としたので、レーザーの制御とは関係なぐレーザーの出射を停止している状態でも ライト'ストラテジ設定回路の出力に基づいて位相設定の補正を行うことができる。
[0184] (実施の形態 8)
以下、本発明の実施の形態 8に係る光ディスク記録装置について説明する。
本実施の形態 8による光ディスク記録装置は、上記実施の形態 1による光ディスク記 録装置において、マルチノ ルスのデューティ比を補正し、該補正後のデューティ比を 用いて、レーザーパワーの制御を行うものである。
[0185] 図 30は、本実施の形態 8による光ディスク記録装置 3000の構成を示すブロック図 である。図 30において、デューティ補正回路 33は、 AD変換回路 29の出力に基づい て、位相設定値より求められるデューティ比の値を補正し、レーザー APC制御回路 1 9に出力するものである。
[0186] 上記実施の形態 1におけるレーザー APC制御は、以下のように制御するものであ つた o
すなわち、光検出器 8の出力がマルチパルス波形のときは、目標パワーの計算を行 うときは、得られた平均レベルと、デューティ比とから、ピークパワーの換算を行う。例 えば、デューティ比が 50%、得られた平均レベルを aveとすると、実際に発光している ピークパワーは、 aveZ50% = ave X 2と計算する。この計算方法では、マルチパル ス波形を平均化して、そのデューティ比を使って、目標パワーを計算するので、設定 した位相設定より算出されるデューティ比が、 LD7の出力を光検出器 8で電圧変換し た結果とずれている場合、目標パワーの計算がずれる。例えば、平均化レベル ave = 10のレベルを測定した場合、デューティ比 = 50%では、 10 X 2 = 20のレベルを 得ることができる。そして、この 20のレベルになるように APC制御を行う。 [0187] 実際の波形でデューティ比ずれが生じて、平均化レベル ave= 12が得られると、 12 X 2 = 24のレベル検出となり、レーザー APC制御回路 19〖こより 24のレベルを 20の レベルになるようにパワー制御される。その結果、実際のレーザー出力は、 20/24 の割合で小さいパワーが出力されることになる。
[0188] 本発明の実施の形態 8においては、理想では 50%であるデューティ比を、実際に は、 50%/ (20/24) =約 60%のデューティで計算を行い、 ave/60% = ave X l . 67と計算する。これにより、平均ィ匕レベノレ ave= 12の場合、 12 X 1. 67=約 20のレ ベノレを得ることができ、実際のレーザー出力が小さくなることはない。
[0189] 以下、本実施の形態 8による光ディスク記録装置 3000において、このデューティ補 正を行う方法について、図 31、及び図 32を用いて説明する。
図 10に示すレーザーパワーの測定値 [n]と理想値 [n]に対して、補正デューティ比 は、図 31の式のように表すことができる。図 32は、位相設定 nに対する理想値 [n]、 測定値 [n]、デューティ比の設定、及び図 31の式に基づき補正したデューティ比の 結果を示す。なお、位相設定 nと、理想値 [n]、測定値 [n]は、上記実施の形態 1と同 じ方法で得られるものである。
[0190] 図 32の結果によれば、例えば、位相設定 n= 5のとき、マルチパルスの幅は、 0. 5 Tであり、デューティ比は 50%となるはずである。しかし、測定値 [5]の結果から、図 3 1の補正により、得られる補正デューティ比は 44%となる。
[0191] レーザーの目標パワーは、本来は 50%で行えばよいが、 50%のデューティ計算で は、レーザー APC制御回路 19により、小さいパワーが出力される可能性がある。ここ で補正されたデューティ比 44%を使用すると、測定値 [5]Z44% X 50% = 531. 2 /0. 44 X 0. 5 = 603. 6となり、理想値 [5] =600に近!/、状態にネ甫正される。
[0192] なお、本実施の形態 8による光ディスク記録装置は、上述した実施の形態 1による 光ディスク記録装置にデューティ補正回路 33を追加したものである力 この形態 8に おいて追加されたデューティ補正回路 33は、上述した実施の形態 2ないし 7による光 ディスク記録装置に対して追加しても、同様の効果を得ることができる。
[0193] また、本発明の実施の形態 8では、 AD変換回路 29の分解能やレンジに合わせて 、 VGA28の設定を可変して、 SZN比を向上させても良い。また、レーザーパワーを 可変することで、検出系のダイナミックレンジにより、 S/N比を向上させてもよい。ま た、 VGA28の設定や、レーザーパワーを可変した結果をそれぞれ比較して、より精 度のよ!、検出を行ってもょ 、。
[0194] 以上のように本発明の実施の形態 8に係る光ディスク記録装置は、デューティ補正 回路により、デューティ比を補正し、該補正後のデューティ比に基づいてレーザー A PC制御を行なうこととしたので、マルチパルスのレーザー制御時のパワー補正を行う ことが可能となる。
産業上の利用可能性
[0195] 本発明によれば、装置ごとのばらつきを抑え、最適な記録を行うことのできる光ディ スク記録装置を提供することができる点において有用である。

Claims

請求の範囲
[1] 1つの記録マークを、該記録マークよりも更に短い複数のパルス力もなるライト'スト ラテジ波形に基づいて記録する光ディスク記録装置であって、
前記ライト'ストラテジ波形を生成するライト'ストラテジ生成回路と、
レーザー光を出射するレーザー光源と、
前記ライト'ストラテジ波形のパルス列に応じて前記レーザー光源を駆動するレーザ 一駆動回路と、
前記レーザー光源より出射されるレーザー光の光強度を出力する光検出器と、 前記レーザー駆動回路から前記レーザー光源に供給される電流量を、前記光検出 器が出力する光強度信号に応じて制御することにより、前記レーザー光源の光強度 を制御するレーザーパワー制御回路と、
前記光検出器より出力されるマーク部のパルス列の光強度信号を平均化し、平均 化レベルとして出力する平均化回路と、
前記マーク部における前記平均化回路の出力を、サンプル 'ホールドするサンプル •ホールド回路と、
前記サンプル 'ホールド回路によりホールドされたアナログレベルを電圧値として測 定する電圧測定回路と、
前記ライト'ストラテジ波形の一部を所定の周期で同じ形状のパルスを繰り返すマル チパルスに設定し、前記マルチパルスの一方のパルスエッジの位相設定を固定し、 他方のパルスエッジの位相設定を順次変更し、前記マーク部のマルチパルス列の光 強度信号を平均化して得られる前記平均化レベルの測定値と、その理想値とに基づ
V、て、実際に出力される時間軸のパルスエッジの位相誤差が最小となる最適位相設 定を求め、予め設定される位相設定を変更する位相設定並べ替え回路と、を備える ことを特徴とする光ディスク記録装置。
[2] 請求項 1に記載の光ディスク記録装置にお!、て、
前記マルチパルスの出力周期は、マーク ·スペース長の基本周期である 1Tであり、 前記位相設定並べ替え回路は、マルチパルスのパルスエッジの位相設定を、 (rl) Tから(r2)Tまで変更して(rlは 0≤rl≤lの範囲の実数、 r2は 0≤r2≤ 1の範囲の 実数を示し、 rl <r2)、前記マルチパルスのデューティ比を、(rl X 100) %から(r2 X 100) %に変化させ、
前記平均化回路は、前記位相設定のそれぞれに対応する前記平均化レベルを測 定する、
ことを特徴とする光ディスク記録装置。
[3] 請求項 2に記載の光ディスク記録装置にお 、て、
前記位相設定並べ替え回路は、前記 (rl)と、前記 (r2)とを、 rl = 0、 r2= lに設定 し、前記マルチパルスのパルスエッジの位相設定を、 0Tから 1Tまで変更させて、前 記マルチパルスのデューティ比を、 0%から 100%に変化させ、
前記平均化回路は、それぞれの前記位相設定に対応する前記平均レベルをすベ て測定する、
ことを特徴とする光ディスク記録装置。
[4] 請求項 1に記載の光ディスク記録装置にお!、て、
前記マルチパルスの出力周期は、マーク'スペース長の基本周期である 1Tの 2倍 の 2Tであり、
前記位相設定並べ替え回路は、前記マルチパルスのパルスエッジの位相設定を、 0:3)丁から 3 + 1)丁まで変更して0:3は、 0≤r3≤lの範囲の実数)、前記マルチパ ルスのデューティ比を (r3 ÷ 2 X 100) %から((r3 + 1) ÷ 2 X 100) %に変化させ、 前記平均化回路は、それぞれの前記位相設定に対応する前記平均化レベルを測 定する、
ことを特徴とする光ディスク記録装置。
[5] 請求項 4に記載の光ディスク記録装置にお ヽて、
前記位相設定並べ替え回路は、前記 (rl)を r3 = 0. 5に設定し、マルチパルスの パルスエッジの位相設定を、 0. 5Tから 1. 5Tまで変更して、マルチパルスのデュー ティ比を 25%から 75%に変化させ、
前記平均化回路は、それぞれの前記位相設定に対応する平均レベルをすベて測 定する、 ことを特徴とする光ディスク記録装置。
[6] 請求項 1に記載の光ディスク記録装置にお!、て、
前記位相設定並べ替え回路は、前記理想値を、位相設定が最も小さいマルチノ ル スのデューティ比が(xl) %時の平均化レベル (yl)と、位相設定が最も大きいマルチ パルスのデューティ比が(x2) %時の平均化レベル (y2)とを、結んだ直線の傾き (y2 -yl) ÷ (x2— xl)、接片 ylに補間して求め、該理想値と、各位相設定毎に得られ るマルチパルス列の平均化レベルの測定値のそれぞれとを比較し、前記各測定値の 中から前記理想値に最も近 、値をとる測定値に対応する位相設定を、前記最適位 相設定とする、
ことを特徴とする光ディスク記録装置。
[7] 請求項 1に記載の光ディスク記録装置にお!、て、
前記平均化回路への出力を、前記光検出回路の出力と、当該光ディスク記録装置 に接続され、前記ライト'ストラテジ波形と同等の波形信号を出力する標準信号発生 装置の出力と、の間で切り換える切替回路を備え、
前記位相設定並べ替え回路は、前記切り替え回路が前記標準信号発生装置の出 力を選択する場合に得られる前記平均化レベルを、前記理想値とし、該理想値と、 前記切り替え回路が前記光検出回路の出力を選択している場合に得られる、各位相 設定毎に得られるマルチパルス列の平均化レベルの測定値とを比較し、前記各測定 値の中から前記理想値に最も近 、値をとる測定値に対応する位相設定を、前記最適 位相設定とする、
ことを特徴とする光ディスク記録装置。
[8] 請求項 6または 7に記載の光ディスク記録装置にお 、て、
前記各測定値と前記理想値との誤差を算出し、該誤差が大きい場合は、当該光デ イスク記録装置を不良品と判定する判定回路を備える、
ことを特徴とする光ディスク記録装置。
[9] 請求項 1に記載の光ディスク記録装置にお!、て、
前記位相設定並べ替え回路は、前記マルチパルスのデューティ比の時間幅に対 応する電圧値の測定が困難な位相設定では、前記最適位相設定の算出を行わない ことを特徴とする光ディスク記録装置。
1つの記録マークを、 1つのブロックパルスからなるライト'ストラテジによって記録す る光ディスク記録装置であって、
前記ライト'ストラテジ波形を生成するライト'ストラテジ生成回路と、
レーザー光を出射するレーザー光源と、
前記ライト'ストラテジ波形のパルス列に応じて前記レーザー光源を駆動するレーザ 一駆動回路と、
前記レーザー光源より出射されるレーザー光の光強度を出力する光検出器と、 前記レーザー駆動回路から前記レーザー光源に供給される電流量を、前記光検出 器が出力する光強度信号に応じて制御することにより、前記レーザー光源の光強度 を制御するレーザーパワー制御回路と、
前記光検出器より出力されるマーク部のパルス列の光強度信号を平均化し、平均 化レベルとして出力する平均化回路と、
前記マーク部における前記平均化回路の出力を、サンプル 'ホールドするサンプル •ホールド回路と、
前記サンプル 'ホールド回路によりホールドされたアナログレベルを電圧値として測 定する電圧測定回路と、
前記ライト'ストラテジ波形の一部を所定の周期で同じ形状のパルスを繰り返すプロ ックパルスに設定し、
前記ブロックパルスの一方のパルスエッジの位相設定を固定し、他方のパルスエツ ジの位相設定を順次変更し、前記マルチパルスの一方のパルスエッジの位相設定を 固定し、他方のパルスエッジの位相設定を順次変更し、前記マーク部のマルチパル ス列の光強度信号を平均化して得られる前記平均化レベルの測定値と、その理想値 とに基づいて、実際に出力される時間軸のノルスエッジの位相誤差が最小となる前 記位相設定を求め、予め設定される位相設定を変更する位相設定並べ替え回路と、 を備える、
ことを特徴とする光ディスク記録装置。 [11] 請求項 1に記載の光ディスク記録装置にぉ 、て、
前記レーザーパワー制御回路によるレーザー制御を停止するホールド制御回路と 前記サンプル 'ホールド回路における前記平均化レベルのサンプル位置を所定の 位置に移動させるサンプル位置設定回路と、をさらに備え、
前記レーザーパワー制御回路は、前記電圧測定回路の出力に基づいて、前記レ 一ザ一光源の光強度を制御するものであり、
前記レーザーパワー制御回路がレーザー制御を行う場合は、前記サンプル位置設 定回路は、前記サンプル位置を、前記マーク部のトップパルス部に移動させ、 前記位相設定並び替え回路が前記位相設定の変更を行う場合は、前記サンプル 位置設定回路は、前記サンプル位置を、前記マーク部のマルチパルス部に移動させ 、前記ホールド制御回路は、レーザー制御をホールドする、
ことを特徴とする光ディスク記録装置。
[12] 請求項 1または 10に記載の光ディスク記録装置において、
前記サンプルホールド回路の出力信号の電圧レベルを任意にコントールする電圧 ゲインアンプを備える、
ことを特徴とする光ディスク記録装置。
[13] 請求項 1または請求項 10に記載の光ディスク記録装置において、
前記レーザーパワー制御回路は、レーザー出射パワーレベルを変更してレーザー パワー制御を複数回行!、、レーザーパワー制御の精度が最も高!、レーザーパワーで 、前記レーザー光源の光強度を制御する、
ことを特徴とする光ディスク記録装置。
[14] 請求項 1または 10に記載の光ディスク記録装置において、
光ディスクへのフォーカスがはずれている間に、前記位相設定並べ替え回路が、前 記位相設定を順次変更し、前記平均化回路が、各位相設定毎に、前記マーク部の マルチパルス列の光強度信号を平均化して前記平均化レベルを測定する、 ことを特徴とする光ディスク記録装置。
[15] 請求項 1または 10に記載の光ディスク記録装置において、 前記平均化回路が、前記ライト'ストラテジ生成回路より出力される前記ライト'ストラ テジ波形のパルス信号を直接平均化して、前記平均レベルとして出力する、 ことを特徴とする光ディスク記録装置。
[16] 請求項 15に記載の光ディスク記録装置において、
前記平均化回路への出力を、前記光検知器の出力と、前記ライト'ストラテジ生成 回路の出力との間で切り換える切り替え回路を備える、
ことを特徴とする光ディスク記録装置。
[17] 請求項 6または 7に記載の光ディスク記録装置において、
前記理想値と、前記測定値とに基づいて、前記マルチパルスのデューティ比の設 定を補正するデューティ補正回路を備え、
前記レーザーパワー制御回路は、前記電圧測定回路の出力と、前記補正されたデ ユーティ比とに基いて、ピークパワー換算計算を行う、
ことを特徴とする光ディスク記録装置。
[18] 請求項 1または 10に記載の光ディスク記録装置において、
前記位相設定並べ替え回路により算出される補正パラメータの値を保持する不揮 発メモリを備える、
ことを特徴とする光ディスク記録装置。
PCT/JP2006/322123 2005-11-07 2006-11-06 光ディスク記録装置 WO2007052797A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007542840A JPWO2007052797A1 (ja) 2005-11-07 2006-11-06 光ディスク記録装置
US12/092,775 US20090180366A1 (en) 2005-11-07 2006-11-06 Optical disc recording apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-322667 2005-11-07
JP2005322667 2005-11-07

Publications (1)

Publication Number Publication Date
WO2007052797A1 true WO2007052797A1 (ja) 2007-05-10

Family

ID=38005948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322123 WO2007052797A1 (ja) 2005-11-07 2006-11-06 光ディスク記録装置

Country Status (4)

Country Link
US (1) US20090180366A1 (ja)
JP (1) JPWO2007052797A1 (ja)
CN (1) CN101305419A (ja)
WO (1) WO2007052797A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159792A1 (en) * 2007-05-23 2010-03-03 Panasonic Corporation Optical disc device and recording condition setting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446518B (zh) * 2010-10-13 2015-02-04 三星半导体(中国)研究开发有限公司 对光功率进行控制的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182244A (ja) * 1998-12-14 2000-06-30 Ricoh Co Ltd 情報記録方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW457476B (en) * 1998-11-06 2001-10-01 Matsushita Electric Ind Co Ltd Method and apparatus for obtaining a recording pulse condition
CN100416668C (zh) * 2004-06-28 2008-09-03 Tdk股份有限公司 对光记录媒体的信息记录方法和光记录装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182244A (ja) * 1998-12-14 2000-06-30 Ricoh Co Ltd 情報記録方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159792A1 (en) * 2007-05-23 2010-03-03 Panasonic Corporation Optical disc device and recording condition setting method
EP2159792A4 (en) * 2007-05-23 2010-09-29 Panasonic Corp OPTICAL DISK DEVICE AND RECORD CONDITION CONFIGURATION METHOD
US8031572B2 (en) 2007-05-23 2011-10-04 Panasonic Corporation Optical disc device and recording condition setting method

Also Published As

Publication number Publication date
CN101305419A (zh) 2008-11-12
US20090180366A1 (en) 2009-07-16
JPWO2007052797A1 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
US7154825B2 (en) Optical recording/reproducing apparatus with APC and ACC processes
JP3908720B2 (ja) 光ディスク装置及び光情報記録方法
US6894965B2 (en) Method for recording/reproducing data on/from optical disk
JP2006302332A (ja) 記録再生装置
KR100867124B1 (ko) 광디스크의 데이터 기록 및 재생 장치 및 방법
JP4232809B2 (ja) 記録再生装置、レーザ駆動パルス調整方法
JP4151506B2 (ja) 光ディスク装置
WO2007052797A1 (ja) 光ディスク記録装置
JP2007048412A (ja) 記録パルス調整方法、記録パルス調整プログラム、記録パルス調整装置、情報記録装置、情報記録媒体
JP4122459B2 (ja) レーザ駆動装置及び光ディスク記録再生装置
JPWO2006009204A1 (ja) 光ディスク記録パルス制御方法、その制御装置および光ディスク装置
JP2009170043A (ja) 記録ストラテジ調整方法および情報記録再生装置
KR100892331B1 (ko) 광 디스크 장치 및 기록 전력 제어 방법
JP4564960B2 (ja) 情報記録装置、情報記録方法及び情報記録プログラム
JP2008016164A (ja) 光ディスク装置および記録ストラテジ決定方法
KR20080081012A (ko) 고속 포워드 레이저 파워 제어(lpc)를 하는광학기록장치
US20110164481A1 (en) Recording method for optical disc and optical disc device
US7787335B2 (en) Information recording device, information recording method, and information recording program
JP4565340B2 (ja) ライトストラテジ設定方法、ライトストラテジ設定装置、記録媒体駆動装置及びピックアップモジュール
JP2008159123A (ja) 半導体レーザ制御回路
US20080175120A1 (en) Optical disc apparatus and optical disc recording and reproduction method
JP2008305483A (ja) 光ディスク記録装置及び光ディスク記録方法
JP2006172532A (ja) 光ディスク装置および記録パワーの設定方法
JP2007026607A (ja) 半導体レーザーパワー制御装置
JP2008269709A (ja) 情報記録装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041624.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542840

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12092775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823036

Country of ref document: EP

Kind code of ref document: A1