WO2007052489A1 - 光学ガラス、光学ガラスの製造装置およびその製造方法 - Google Patents

光学ガラス、光学ガラスの製造装置およびその製造方法 Download PDF

Info

Publication number
WO2007052489A1
WO2007052489A1 PCT/JP2006/321083 JP2006321083W WO2007052489A1 WO 2007052489 A1 WO2007052489 A1 WO 2007052489A1 JP 2006321083 W JP2006321083 W JP 2006321083W WO 2007052489 A1 WO2007052489 A1 WO 2007052489A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting
optical glass
melt
gas
cullet
Prior art date
Application number
PCT/JP2006/321083
Other languages
English (en)
French (fr)
Inventor
Tatsuya Senoo
Tetsuya Aoki
Satoshi Inoue
Toru Nakayama
Satoru Matsumoto
Original Assignee
Ohara Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005317807A external-priority patent/JP2007126297A/ja
Priority claimed from JP2005317808A external-priority patent/JP2007126298A/ja
Priority claimed from JP2005317806A external-priority patent/JP2007126296A/ja
Application filed by Ohara Inc. filed Critical Ohara Inc.
Publication of WO2007052489A1 publication Critical patent/WO2007052489A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron

Definitions

  • the present invention relates to an optical material containing SiO and / or B 2 O excellent in solarization resistance.
  • 2 3 2 2 3 relates to an apparatus for producing optical glass.
  • the melt (elementary glass or glass) through the culleting step of melting multiple types of glass raw materials and Z or the main melting step. It is.
  • a mechanical stirring method in which the melt is stirred with a stirring blade and a publishing method using a gas publishing apparatus are provided (for example, see Patent Document 1).
  • the publishing method means that a gas publishing device is arranged at the melting tank or at the bottom of the melting tank, gas bubbles are blown into the gas publishing device, and the liquid is moved as the bubbles rise. Thus, the liquid is stirred.
  • Patent Document 1 Japanese Patent Publication No. 48-27724
  • Platinum ions and solarization are considered to be somehow related, for example, SiO and embedded
  • the solarization described above is based on the performance of optical lenses containing SiO and Z or B 2 O.
  • an optical lens of an i-line stepper is required to have no solarization due to ultraviolet irradiation.
  • Optical glasses containing Z or B 2 O are desired.
  • the present invention has been made in view of the above problems, and is an optical glass containing SiO and / or B 2 O having excellent solarization resistance, and solarization resistance.
  • An object is to provide a manufacturing method and a manufacturing apparatus.
  • the present invention provides the following.
  • An optical glass having a Pt content (mass basis) of 5 ppm or less.
  • SiO is 30% or more and 70% or less
  • optical glass according to (1) characterized by
  • BO 3-20% and Z or PbO: 0-2% and Z or
  • optical glass according to any one of (1) to (4).
  • the SiO is 50.5 to 70%
  • the B 2 O is 3 to 15%
  • the Al 2 O is 2.
  • optical gas containing not more than 9% and not more than 4.9% of Li 2 O.
  • the SiO is 55.35 to 70%
  • the Al 2 O is 2.3% or less
  • optical glass according to any one of (1) to (7), containing 2 2 3 2 or less.
  • the total content (mass basis) of each component of Dy, Ho, Fr, Tm, Yb, Lu is 3ppm or less
  • optical glass according to any one of (1) to (8).
  • the manufacturing method of the optical glass characterized by publishing non-oxidizing gas in the melt of the said cullet process and Z or the said main melting process.
  • the non-oxidizing gas is He, Ne, Ar, Kr, Xe, N, H, CO, or these gases
  • a batch melting apparatus that melts a notch to obtain cullet and a main melting apparatus that melts Z or the cullet or batch to obtain a glass melt.
  • An apparatus for producing optical glass characterized by being installed in a mixture melting apparatus and in the Z or cullet melting apparatus. [0023] (18) An apparatus for producing optical glass containing at least SiO and Z or BO.
  • a melting tank for melting a batch or cullet to obtain a melt a furnace body covering the periphery of the melting tank and having an opening for charging the batch or the cullet, and disposed near the opening.
  • an exhaust means for exhausting the gas generated from the melt in the melting tank, or an optical glass manufacturing apparatus a melting tank for melting a batch or cullet to obtain a melt, a furnace body covering the periphery of the melting tank and having an opening for charging the batch or the cullet, and disposed near the opening.
  • SiO and / or B 2 O excellent in solarization resistance are contained.
  • Optical glass can be provided.
  • optical glass manufacturing method of the present invention there is provided an optical glass manufacturing method capable of suppressing the generation of solarization and platinum fuzz in a melting step using a melting apparatus made of platinum or a platinum alloy. Is possible.
  • FIG. 1 is a plan view of a raw material melting apparatus for melting a glass raw material.
  • (B) is a plan view of a main melting apparatus for melting cullet.
  • FIG. 2 (A) is a cross-sectional view taken along line IV-IV in FIG. 1 (A) of a batch melting apparatus using a publishing apparatus according to an embodiment of the present invention.
  • (B) is a cross-sectional view of the melting apparatus along IV-IV in FIG. 1 (B) using the publishing apparatus of the embodiment of the present invention.
  • FIG. 3 is a drawing showing i-ray irradiation time and optical glass transmittance deterioration rate.
  • each component constituting the optical glass of the present invention is described below.
  • Each component is expressed in mass%.
  • all the glass compositions represented by the mass% in this-application specification are represented by the mass% on the basis of an oxide.
  • the “acid standard” means that the oxide, nitrate, etc. used as a raw material of the glass component of the present invention are all decomposed and converted into an oxide when melted. It is a composition in which each component contained in the glass is described with the total mass of the porridge being 100 mass%.
  • SiO is a component useful for glass formation. Shi
  • the weight percentage of SiO is less than 30%, a relatively large amount of components such as B 2 O and BaO are required.
  • the refractive index tends to be high and the chemical properties are liable to deteriorate. Also, SiO
  • the lower limit of SiO is preferably 50.5% or more.
  • the upper limit of SiO is preferably 70% or less, more preferably 65% or less.
  • B 2 O is a glass-forming oxide like SiO.
  • B 2 O is preferably 3% or more and 20% or less. Therefore, B O
  • the upper limit is preferably 20% or less, more preferably 17% or less, and most preferably 15% or less.
  • the lower limit of BO is preferably 3% or more, preferably 5% or more. More preferred is 6% or more.
  • Al 2 O is effective in improving the chemical durability of glass and adjusting the viscosity and refractive index. Only
  • Al O should be 2.9% or less, taking into account the physical durability, viscosity, refractive index, etc.
  • Preferred 2 Most preferred is 3% or less.
  • Li 2 O has an effect of promoting melting of a glass raw material, and compared with other alkali metal oxides.
  • Li O is 4.9% or less, more preferably 3% or less.
  • Na 2 O and K 2 O are effective in promoting melting of glass raw materials, and are contained in large amounts in glass
  • K 2 O It is preferably 3% or less, more preferably 10% or less, and most preferably 7% or less.
  • the upper limit of K 2 O is preferably 23% or less, preferably 20% or less.
  • BaO can improve the refractive index without significantly increasing the dispersion of the glass (without reducing the Abbe number too much), and can provide a stable glass having high devitrification resistance in a wide composition range. .
  • the upper limit of BaO is preferably 42% or less, more preferably 25% or less, and most preferably 18% or less.
  • ZnO is an effective component for improving the refractive index, adjusting the viscosity, and improving the devitrification resistance. However, if ZnO exceeds 7%, the transmittance in the short wavelength region may be lowered, which is not preferable. Therefore, the upper limit of ZnO is preferably 7% or less, more preferably 3% or less, and most preferably 1% or less.
  • Upper limit force of 5% or less is preferred 40% or less is more preferred 35% The following are most preferred. Further, the lower limit is preferably 10% or more, more preferably 13% or more, and most preferably 15% or more.
  • PbO and TiO are SiO and
  • Fluorine can be optionally added as a fluorine compound substituted for one or two or more of the above-mentioned oxides, and is effective in adjusting the refractive index and viscosity.
  • the total amount of fluoride exceeds 11%, the glass tends to become milky, the refractive index power becomes too narrow, or the volatilization of fluorine becomes too large during melting, producing a homogeneous glass. Since it becomes ⁇ , it is not preferable.
  • the upper limit of the total amount of fluoride is preferably 11% or less, and more preferably 9.5% or less.
  • Transition metals other than Ti such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, W, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy ⁇ Ho
  • the total content of each component of Fr, Tm, Yb, and Lu is preferably 3 ppm or less.
  • Each of the components contained as impurities causes deterioration in transmittance even if a small amount of absorption coefficient is mixed.
  • the Pt content of the optical glass of the present invention is preferably 5 ppm or less in order to prevent solarization. Further, it is preferably 1 ppm or less, more preferably 0.5 ppm or less, and most preferably 0.2 ppm or less.
  • a batch melting apparatus 100 used in the cullet process includes a melting furnace 102 for melting a notch to obtain a batch melt A.
  • a gas publishing device 106 for publishing in the batch melt A is provided.
  • the melting furnace 102 includes a melting tank 121 that becomes a container for melting the notch, a furnace body 122 that covers the periphery of the melting tank 121, and a heating device (not shown).
  • the melting tank 121 has at least the heat resistance, erosion resistance required for melting and clarification of the batch melt A, and has little influence on the quality of the batch melt A
  • at least the batch melt The portion in contact with A is preferably a melting tank 121 made of, for example, quartz, platinum (Pt) or a platinum alloy (Pt alloy), and more preferably a melting tank 121 having platinum or platinum alloy power.
  • the furnace body 122 covers the periphery of the melting tank 121 and is formed of a heat-resistant material such as a refractory brick.
  • a heat-resistant material such as a refractory brick.
  • an opening 126 is formed for introducing the glass raw material into the melting tank 121.
  • the opening 126 is used for introducing the gas remaining in the batch melt A in the melting tank 121 into a discharge device (not shown) connected to the ventilator 110 that discharges the inside of the furnace body 122. Become an entrance!
  • the gas publishing device 106 is inserted into the melting tank 121 through the opening 126.
  • the opening 126 also serves as an insertion hole for the gas publishing device 106 for publishing in the melt.
  • the structure of the gas publishing device 106 is well known in order to generate as large bubbles as possible in order to sufficiently stir the batch melt A.
  • the gas publishing device 106 is, for example, at least notch melt A considering the heat resistance, the erosion resistance to notch melt A, and the influence on the quality of batch melt A.
  • the gas publishing device is preferably a gas publishing device that also has quartz, platinum, or a platinum alloy force, and more preferably a gas publishing device that is a platinum or platinum alloy force! /.
  • the portion of the gas publishing apparatus 106 that is in contact with the batch melt A is platinum or platinum alloy. Since gold alloy reacts with oxygen to generate PtO, gas publishing device 106 is used.
  • the gas used for publishing is preferably a non-oxidizing gas.
  • the non-oxidizing gas is a gas having an oxygen partial pressure of 1% or less, preferably 0.01% or less, more preferably 0.0001% or less, and helium (He), neon (Ne), argon ( A neutral gas such as Ar), krypton (Kr), xenon (Xe) or nitrogen (N), or carbon monoxide (CO) or
  • Reducing gas such as hydrogen (H) or a mixture of two or more gases selected from the above gases.
  • the depth at which the non-oxidizing gas is blown into the batch melt A using the gas publishing device 106 can be arbitrarily set.
  • the depth of the pressure notch melt A is 100 mm or more from the liquid level. Now, it is preferable to blow a non-acidic gas into the batch melt A.
  • the ventilation device 110 is provided in the upper part of the melting furnace 102.
  • the ventilation device 110 includes a conical portion 112 in which an inlet 114 having an opening surface shape substantially the same as that of the opening portion 126 is formed, and an exhaust pipe 116 connected to the conical portion 112.
  • the ventilator 110 is an example of an exhaust means for exhausting the gas generated from the batch melt A in the melting tank 121.
  • the conical portion 112 has a conical shape that becomes thinner from the suction port 114 in the upward direction.
  • the exhaust of the gas in the batch melting apparatus 100 is performed by using the ventilator 110 so that it becomes 2 to 20 times Z minutes based on the melting time space of the melting furnace 102 (batch melting process). .
  • the exhaust pipe 116 is formed so that the uppermost force of the conical portion 112 is also divided into two parts on the left and right in the vertical direction with respect to the gas publishing device 106, and one of the left and right (in the case of this embodiment, the right side Only the exhaust pipe 116 is extended in a direction parallel to the gas publishing device 106, that is, the anti-gravity direction, and the other (left side in the case of this embodiment) exhaust pipe 116 is extended in the middle. Closed.
  • the opening on the side opposite to the conical portion 112 of the ventilation device 110 is sucked by a suction pump which is an example of a suction means (suction device), so that the melt above the batch melt A is melted.
  • the gas in the space above the batch melt A in the batch melting apparatus 100 is discharged while controlling the pressure of the space to 0.1 lkPa to 100.0 kPa (lhPa to 1000 hPa).
  • No. 116 is stretched and connected to the suction means, but as long as the pressure above the batch melt A is controlled within the above range, the left exhaust pipe is stretched and connected to other melting devices. You may be allowed to.
  • the space above the batch melt A in the melting tank 121 is controlled while the pressure in the space above the batch melt A is substantially the same as the atmospheric pressure or controlled to the negative pressure side from the atmospheric pressure.
  • the gas existing in the furnace body 122 is exhausted from the inside of the furnace body 122 through the opening 126 to the suction port 114 of the ventilation device 110.
  • oxygen which is an oxidizing gas, gas blown by publishing using the gas bubbler 106, and further, platinum or a platinum alloy and oxygen react with each other. PtO generated by
  • the main melting apparatus 200 used in the main melting step is used for melting the notch to obtain the main melt or in the culleting step.
  • a melting furnace 202 for melting the cullet obtained to obtain the main melt D an outlet 203 for discharging the main melt D, a path (conduit) of the main melt D from the melting furnace 202 to the next process, and
  • the melting furnace 202 includes a melting tank 221 that serves as a container for melting cullet, a furnace body 222 that also serves as a heat-resistant material such as a refractory brick covering the periphery of the melting tank 221, and a heating device (not shown). ).
  • the melting tank 221 has at least the main melt D.
  • a melting tank having a force of contact with quartz, platinum or a platinum alloy is preferred, and a melting tank having a strength of platinum or a platinum alloy is more preferred.
  • the furnace body 222 covers the periphery of the melting tank 221 and also serves as a heat-resistant material such as a refractory brick. This An opening 226 is formed in the upper part of the furnace body 222 for charging the cullet into the melting tank 221. The opening 226 serves as an inlet for introducing the gas remaining in the main melt D in the melting tank 221 into the suction port 214 that also discharges the internal force of the furnace body 222.
  • the pipe 204 is provided with a heating device (not shown). By controlling the temperature of the pipe 204 by this heating device, the viscosity of the main melt D in the pipe 204 is controlled and the flow velocity of the main melt D in the pipe 204 is controlled. Further, as described above, the noise 204 serves as a conduit for the main melt D from the main melting step to the next step (clarification step, stirring step, annealing step).
  • the gas publishing device 206 is inserted into the melting tank 221 through the opening 226.
  • the opening also serves as an insertion hole for a gas publishing device for publishing in the melt.
  • the structure is well known to generate as large a bubble as possible in order to sufficiently stir the melt D.
  • the gas publishing device 206 is, for example, at least a portion in contact with the melt D.
  • the gas publishing apparatus also has a quartz, platinum or platinum alloy force, and it is particularly preferable that the gas publishing apparatus also have a platinum or platinum alloy force.
  • the gas used for publishing using the gas publishing apparatus 206 can be arbitrarily set. However, when the part of the gas publishing device 206 that constitutes the main melting device 200 such as the melting tank 221 and the pipe 204 is in contact with the main melt D is platinum or a platinum alloy, the platinum or the platinum alloy reacts with oxygen. Because PtO is generated
  • the gas used for publishing using the publishing apparatus 206 is preferably a non-oxidizing gas.
  • the non-oxidizing gas is a gas having an oxygen partial pressure of 1% or less, preferably 0.1% or less, more preferably 0.01% or less, and helium (He), neon (Ne), argon (Ar) , Neutral gas such as krypton (Kr), xenon (Xe) or nitrogen (N), or monoacid
  • Reducing gas such as carbonized carbon (CO) or hydrogen (H), or two types selected from the above gases
  • the depth at which the non-acidic gas is blown into the melt D using the gas publishing device 206 is a force that can be arbitrarily set. Depth of 100 mm or more from the liquid level of the melt D so It is preferable to blow a non-acidic gas into the cullet melt D.
  • the ventilation device 210 is provided in the upper part of the melting furnace 202.
  • the ventilation device 210 includes a conical portion 212 in which an intake port 214 having substantially the same opening surface shape as the opening portion 226 is formed, and an exhaust pipe 216 connected to the conical portion 212.
  • the ventilator 210 is an example of an exhaust means for exhausting the gas generated by the cullet melt force in the melting tank 221.
  • the conical portion 212 has a conical shape that becomes thinner from the suction port 214 in the upward direction.
  • the gas in the main melting apparatus 200 is discharged using the ventilator 210 so as to be 2 to 20 times Z on the basis of the melting space time of the melting furnace 202 (main melting process). .
  • the exhaust pipe 216 is formed so that the uppermost force of the conical portion 212 is also divided into left and right portions in the vertical direction with respect to the gas publishing device 206, and one of the left and right sides (in the case of the present embodiment, the right side) Only the exhaust pipe 216 is extended in a direction parallel to the gas publishing device 206, that is, in the antigravity direction, and the other (left side in the case of the present embodiment) Closed.
  • the opening on the opposite side to the conical portion 212 is sucked by a suction pump which is an example of a suction means (suction device), so that the melt above the melt D is melted.
  • the gas in the space above the main melt D in the main melting apparatus 200 is discharged while controlling the atmospheric pressure of the space time to 0.1 lkPa to 100.0 kPa (lhPa to 1000 hPa).
  • only one of the left and right (right in the case of the present embodiment) exhaust pipe 216 is stretched and connected to the suction means.
  • the pressure in the space above the melt D is As long as the range is controlled, the left exhaust pipe should be stretched and connected to other melting equipment.
  • the pressure above the cullet melt D in the melting tank 221 is controlled while the pressure in the space above the main melt D is controlled to be substantially the same as the atmospheric pressure or to the negative pressure side from the atmospheric pressure.
  • the air in the space is likely to be discharged from the inside of the furnace body 222 through the opening 226 toward the suction port 214 of the ventilation device 210.
  • Gases remaining in the melt D include oxygen, which is an oxidizing gas, and gas bubbles. There are gases blown by publishing performed using the wrapping device 206, and PtO generated by the reaction of platinum or a platinum alloy with oxygen.
  • the pipe 204 is provided with a heating device (not shown). By controlling the temperature of the pipe 204 with this heating device, the viscosity of the main melt D in the pipe 204 is controlled, and as a result, the flow velocity of the main melt D in the pipe 204 is controlled. Become.
  • the pipe 204 serves as a conduit for the main melt D from the main melting step to the next step (clarification step, stirring step, slow cooling step).
  • the gas publishing devices 106 and 206 are forces inserted into the melting tanks 121 and 221 through the openings 126 and 226 in the upper portions of the furnace bodies 122 and 222, respectively.
  • the gas publishing apparatuses 106 and 206 pass through the side surface or bottom of the melting tanks 121 and 221 and perform publishing from the side surface or bottom to the batch melt A or the main melt D.
  • the gas publishing apparatuses 106 and 206 pass through the side surface or bottom of the melting tanks 121 and 221 and perform publishing from the side surface or bottom to the batch melt A or the main melt D.
  • notch melt A and main melt D are respectively published using gas publishing apparatuses 106 and 206 in both the cullet process and the main melt process.
  • the publishing may be performed only in either the culleting process or the main melting process.
  • a stirring blade for stirring the melt for example, batch melt A or main melt D
  • the melt tank for example, melt tank 121 or melt tank 221. You may make it provide the stirrer which provided.
  • the shape of the stirring blade is not particularly limited. For example, a well-known shape or configuration such as a screw-like shape can be used.
  • the exhaust means may be provided with the force V provided in the batch melting step and the main melting step, or the exhaust means may be provided in one of the deviations!
  • the ventilator 210 is provided with the ventilator 210 as an example of the discharging means.
  • the ventilator 210 may be omitted if necessary.
  • the batch melting apparatus 100 provided in the cullet process may be provided with a ventilator 110 as a discharge means.
  • the ventilator 210 may be omitted from the present melting apparatus 200 if necessary.
  • Ventilators 110 and 210 are well known in various shapes and configurations as long as they have a function of discharging gas in the space above notch melt A and cullet melt D. It can be done.
  • the pipe 204 and the like constituting the melting apparatus 200 should have little influence on the heat resistance, the erosion resistance to glass, and the quality of the melt D at least in the part in contact with the melt D.
  • the flow rate of the melt is controlled by a parameter other than the viscosity of the melt, for example, the pressure in the melt tank 221, the heating device (not necessarily provided in the pipe 204) It is not necessary to install (not shown)!
  • the heating device may be a well-known device such as an electric heater, an electric heater, an electric heating element, high-frequency induction heating, or a device that heats by combustion of a gas using a burner or the like.
  • the pipe 204 can be heated by directly applying electricity, but is not necessarily limited to this! /.
  • the melt melting apparatus 100 is charged into the melting tank 121 and melted.
  • the inside of the batch melt A obtained by melting (coarse melting) the glass raw material is published with a non-oxidizing gas using the gas publishing device 106.
  • This publishing is performed at a feed rate of 0.0 02 to 0.05 liters Z per liter of the volume of batch melt A at a depth of 100 mm or more from the surface of batch melt A in melt tank 121. This is done by blowing a non-oxidizing gas (caret candy process).
  • the obtained batch melt A is cast outside the furnace and collected as cullet.
  • the collected cullet is put into the melting tank 221 of the melting apparatus 200 and melted.
  • the inside of the main melt D obtained by melting (main melting) the cullet using the gas publishing device 206 is bubbled with a non-acidic gas (for example, argon gas).
  • a non-acidic gas for example, argon gas.
  • the gas above the melt D is exhausted from the ventilator 210 by being sucked by a suction pump which is an example of a suction means (suction device). Dissolution step). At this time, if the suction pump is controlled so that the pressure above the melt D is 0.1 kkPa to 100. OkPa (lhPa to lOOOhPa), the gas above the melt D is discharged well. . In addition, it is preferable that the gas in the melting apparatus 200 is replaced 2 to 20 times Z, based on the melting time space in the melting furnace 202. The obtained melt D is transferred from the main melting step to the next step (clarification step, stirring step, cooling step), and optical glass is produced in the next step.
  • a suction pump which is an example of a suction means (suction device). Dissolution step).
  • the suction pump is controlled so that the pressure above the melt D is 0.1 kkPa to 100. OkPa (lhPa to lOOOhPa)
  • a glass raw material is melted and then rapidly cooled and solidified cullet is manufactured, and the manufactured cullet is melted in a melting tank 221.
  • the melt was continuously supplied to the next process after the melt D was obtained, but the melt process may be performed in a batch system instead of a continuous system. .
  • the optical glass produced by the production method of the present invention was irradiated with the optical glass of the example, and the optical glass produced by another method was irradiated with the i-line (365 ⁇ m) of the ultrahigh pressure mercury lamp. The change in transmittance in each case was measured.
  • optical glass raw material (glass raw material) was weighed and mixed so as to have the composition ratio shown in Table 1.
  • the glass raw material was charged into the melting tank 121 of the batch melting apparatus 100, and a culleting process was performed at 1300 ° C for 14 hours.
  • the batch melt was cooled and recovered as cullet without publishing.
  • the recovered cullet was put into a melting tank 221 of the melting apparatus 200 and melted at 1150 ° C. for 15 hours.
  • the gas melt publishing apparatus 206 was used to publish the inside of the main melt D obtained by melting (main melting) the cullet with argon gas.
  • the gas supply rate was 0.024 liters Z per liter of glass, and the depth from the publishing liquid surface was 500 mm.
  • the space above the melt D is reduced in pressure compared to the atmospheric pressure (the pressure in the space above the melt D is 0.3 kPa).
  • the gas in the space above D was sucked from the ventilator 210 and discharged into the atmosphere (main melting process).
  • the obtained melt D was transferred to the next step (clarification step, stirring step, cold insulation step) to produce the optical glass of this example.
  • the gas supply speed was 0.024 liters Z per liter of glass, and the depth from the publishing liquid surface was 500 mm. Further, in the process of melting the glass block, the main melt D was not discharged from the space above (the main melting process). The obtained melt D was transferred to the following steps (clarification step, stirring step, cold insulation step) to produce an optical glass of this comparative example.
  • FIG. 3 is a diagram showing a change in transmittance when i-line (365 nm) is irradiated to the optical glass of the example and the optical glass of the comparative example.
  • the optical glass of the comparative example shortly after irradiation has a larger deterioration rate of the transmittance than the optical glass of the example.
  • the tendency becomes more prominent as the irradiation time progresses. In this way, by providing a duct to discharge gas in the space above the cullet melt, and publishing in the batch melt and Z or the main melt using a gas publishing device, the resistance to solarize is increased. It is possible to provide an optical glass having excellent sillability.
  • Table 1 shows the composition of the optical glass of the example of the present invention, the amount of transmittance deterioration caused by i-ray irradiation (500 hours), and the Pt content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

 耐ソラリゼーション性に優れ白金フシの発生を抑制した光学ガラスを製造する。  質量%でSiO2:30~70%および/またはB2O3:3~20%を含有し、Pt含有量が5ppm以下である光学ガラスであって、溶解装置内の気体を溶解炉の容積を基準として、2~20回/分で置換し、また、溶融ガラス内を非酸化性気体でバブリングさせる光学ガラスおよびその製造方法を提供する。

Description

光学ガラス、光学ガラスの製造装置およびその製造方法
技術分野
[0001] 本発明は、耐ソラリゼーシヨンに優れた SiOおよび/または B Oを含有する光学
2 2 3
ガラス、溶融物をパブリングにより攪拌しながら、 SiOおよび
2 Zまたは B Oを含有す
2 3 る光学ガラスを製造する方法、溶融装置内の気体を排出しながら sioおよび
2 Zまた は B Oを含有する光学ガラスを製造する方法および SiOおよび Zまたは B Oを含
2 3 2 2 3 有する光学ガラスを製造する装置に関する。
背景技術
[0002] 光学ガラスを製造する場合、複数種類のガラス原料を溶融させるカレット化工程お よび Zまたは本溶融工程にぉ ヽて、溶融物(素ガラスまたはガラス)を十分に攪拌す ることが重要である。溶融物を攪拌する方法としては、攪拌翼で溶融物を攪拌する機 械攪拌法、気体パブリング装置を使用したパブリング法が提供されている (例えば、 特許文献 1参照)。ここで、パブリング法とは、気体パブリング装置を溶融槽または溶 融槽の底部に配置し、気体パブリング装置力 酸素等の気体の気泡を吹き込ませて 、気泡の上昇に伴って液体を移動させることにより、液体を攪拌する方法である。
[0003] また、高均質な光学ガラスを歩留り良く生産しょうとする場合、上記気体パブリング 装置や溶融槽のような溶融装置からのコンタミネーシヨンを防止する必要がある。この ため、少なくとも溶融物と接する一部分または全部に、耐熱性および耐食性に優れた 白金または白金合金で構成された溶融装置を用いることが一般的である。
特許文献 1:特公昭 48 - 27724号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、溶融槽ゃ気体パブリング装置等に白金または白金合金を使用した場 合、溶融時の高温により白金部分または白金合金部分の一部が空気中の酸素と反 応して、二酸化白金 (PtO
2 )が発生してしまう。この PtOは、気体となって気相中から
2
溶融ガラス表面を介して溶融ガラスに溶け込む。また、 SiOおよび Zまたは B Oを 含有する溶融ガラスと白金または白金合金との境界面からも、白金イオン (Pt4+)が 溶融ガラスに溶け込む。白金イオンとソラリゼーシヨンは、何らかの関連性があると考 えられており、例えば、 SiOおよび 込ん
2 Zまたは B Oを含有する溶融ガラスに溶け
2 3
だ Pt4+ (PtOを含む)が、最終製品である光学ガラスに不純物として残存した場合、
2
SiOおよび Zまたは B Oを含有するガラスの透過率の劣化や紫外線照射に伴いソ
2 2 3
ラリゼーシヨンを引き起こす場合がある。
[0005] 上記ソラリゼーシヨンは、 SiOおよび Zまたは B Oを含有する光学レンズの性能を
2 2 3
低下させることになるため、ソラリゼーシヨンをいかに抑えられることができる力否かが その光学レンズを採用する重要な要素となる。例えば、 i線ステッパーの光学レンズで は、紫外線照射によるソラリゼーシヨンがないことが求められる。
[0006] 以上のようなソラリゼーシヨンの問題があるにしても、高温となるガラス製造において は前述したような理由により、白金製または白金合金製の溶融槽ゃ気体パブリング装 置を使用することは避けられない。このため、耐ソラリゼーシヨンに優れた SiO
2および
Zまたは B Oを含有する光学ガラスが望まれている。
2 3
[0007] 本発明は、以上のような課題に鑑みてなされたものであり、耐ソラリゼーシヨン性に 優れた SiOおよび/または B Oを含有する光学ガラス、および耐ソラリゼーシヨン性
2 2 3
に優れたガラスを製造するための SiOおよび
2 Zまたは B Oを含有する光学ガラスを
2 3
製造する方法および製造装置を提供することを目的とする。
課題を解決するための手段
[0008] 具体的には、本発明は、以下のようなものを提供する。
[0009] (1) SiOおよび
2 Zまたは B Oを含有する光学ガラスであって、当該光学ガラスの
2 3
Pt含有量 (質量基準)が 5ppm以下であることを特徴とする光学ガラス。
[0010] (2) 質量%で、 SiOを 30%以上 70%以下、および
2 Zまたは、 B Oを 3%以上 20
2 3
%以下を特徴とする(1)に記載の光学ガラス。
[0011] (3) 質量%で、下記の成分を含有することを特徴とする(1)または(2)に記載の光 学ガラス。
(a) SiO : 30〜70%
2 ぉょび7または
B O : 3〜20%および Zまたは PbO:0〜 2%および Zまたは
AIO :0〜 6%および
2 3 Zまたは
LiO:0〜 5%および
2 Zまたは
CaO:0〜 2%および Zまたは
TiO :0〜0.5%および
2 Zまたは
As O :0〜 1%および Zまたは
2 3
sb o :o〜 1%および
2 3 Zまたは
Na O:0〜 13%および
2 Zまたは
KO:0〜 23%および
2 Zまたは
BaO:0〜 42%および Zまたは ZnO:0〜7%
および
(b)上記酸ィ匕物の一部または全部を置換したフッ化物の Fの合計量力^〜 11%
[0012] (4) 質量0 /0で、 Na O+K O + BaO+ZnOが 10〜45%であることを特徴とする(1
2 2
)から(3)の 、ずれかに記載の光学ガラス。
(5) 質量%で、 SrOが 0〜2%および Zまたは ZrO力^〜 2%であることを特徴とす
2
る(1)から (4)の 、ずれかに記載の光学ガラス。
(6) 質量%で、 CaO + SrO+ZrO力^)〜 2%であることを特徴とする(1)から(5)の
2
V、ずれかに記載の光学ガラス。
(7) 質量%で、前記 SiOを 50.5〜70%、前記 B Oを 3〜15%、前記 Al Oを 2.
2 2 3 2 3
9%以下、前記 Li Oを 4.9%以下含有する(1)から(6)のいずれかに記載の光学ガ
2
ラス。
[0013] (8) 質量%で、前記 SiOを 55.35〜70%、前記 Al Oを 2.3%以下、前記 Li O
2 2 3 2 を 3%以下含有する(1)から(7)の 、ずれかに記載の光学ガラス。
[0014] (9) V、 Cr、 Mn、 Fe、 Co、 Niゝ Cu、 Ag、 W、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、
Dy、 Ho、 Fr、 Tm、 Yb、 Luの各成分の合計含有量(質量基準)が 3ppm以下である
(1)から(8)の 、ずれかに記載の光学ガラス。
[0015] (10) 「原料混合物(以下バッチという)を溶融しカレットを得る工程 (以下、カレット 化工程と!、う)」および Zまたは「カレットおよび Zまたはバッチを溶融してガラスを得 る工程 (以降、本溶融工程と!/、う)」を有する光学ガラスの製造方法にぉ ヽて、 得られるガラスの組成は SiOおよび
2 Zまたは B Oを含有し、
2 3
且つ、前記カレット化工程および Zまたは前記本溶融工程の溶融物内に非酸化性 気体をパブリングすることを特徴とする光学ガラスの製造方法。
[0016] (11) 前記溶融物の液面から 100mm以上の深さにおいて前記非酸ィ匕性気体を 吹き込むことを特徴とする(10)に記載の光学ガラスの製造方法。
[0017] (12)前記非酸ィ匕性気体をガラス容積 1リットルあたり 0. 002〜0. 05リットル Z分の 供給速度で吹き込むことを特徴とする(10)または(11)に記載の光学ガラスの製造 方法。
[0018] (13)前記非酸化性気体は、 He、 Ne、 Ar、 Kr、 Xe、 N、 H、 COまたはこれら気体
2 2
の複数種類の混合気体であることを特徴とする( 10)から( 12)の ヽずれかに記載の 光学ガラスの製造方法。
[0019] (14) 「原料混合物(以下、バッチという)を溶融しカレットを得る工程 (以下、力レツ ト化工程と!、う)」および Zまたは「このカレットおよび Zまたはバッチを溶融してガラス を得る工程 (以下、本溶融工程と 、う)」を有する光学ガラスの製造方法にぉ ヽて、 得られるガラスの組成は SiOおよび ま
2 Z たは B O系を含有し、
2 3
且つ、前記カレットィヒ工程および Zまたは前記本溶融工程における溶融装置内の 空間における気体を排出することを特徴とする光学ガラスの製造方法。
[0020] (15) 前記カレットィ匕工程および Zまたは前記本溶融工程において、前記バッチ および Zまたは前記カレットを溶融するとともに、前記溶融装置内の空間における気 体を排出する(14)に記載の光学ガラスの製造方法。
[0021] (16) 前記溶融装置内の空間容積を基準として該溶融装置内の気体の置換を 2
〜20回 Z分となるように行う(14)または(15)に記載の光学ガラスの製造方法。
[0022] (17) SiOおよび Zまたは B Oを少なくとも含有する光学ガラスの製造装置であ
2 2 3
つて、ノツチを溶融してカレットを得るバッチ溶融装置および Zまたは前記カレットま たは前記バッチを溶融してガラス溶融物を得る本溶融装置を含み、非酸ィ匕性気体バ プリング装置が前記原料混合物溶融装置内および Zまたは前記カレット溶融装置内 に設置されて ヽることを特徴とする光学ガラスの製造装置。 [0023] (18) SiOおよび Zまたは B Oを少なくとも含有する光学ガラスの製造装置であ
2 2 3
つて、バッチまたはカレットを溶融して溶融物を得るための溶融槽と、当該溶融槽の 周囲を覆うとともに前記バッチまたは前記カレットを投入する開口部を有する炉体と、 前記開口部付近に配置され、または連通し、前記溶融槽内の前記溶融物から発生 する気体を排出するための排気手段と、を備えることを特徴とする光学ガラスの製造 装置。
発明の効果
[0024] 本発明によれば、耐ソラリゼーシヨン性に優れた SiOおよび/または B Oを含有
2 2 3 する光学ガラスを提供することが可能である。
[0025] 本発明の光学ガラスの製造方法によれば、白金または白金合金を材料とした溶融 装置を使用した溶融工程において、ソラリゼーシヨンや白金フシの発生を抑制できる 光学ガラスの製造方法を提供することが可能である。
[0026] この結果、半導体産業用(特にステッパー用)や、生物工学や医療等の様々な分野 にお 、て用いられる光学ガラスとして、「初期光線透過率が良好な」および Zまたは「 光線照射後の光線透過率劣化が少な ヽ」、従来にな!ヽ光学ガラスを得ることが可能 となった。
図面の簡単な説明
[0027] [図 1] (A)は、ガラス原料を溶融する原料溶融装置の平面図である。(B)は、カレット を溶融する本溶融装置の平面図である。
[図 2] (A)は、本発明の実施形態のパブリング装置を使用するバッチ溶融装置の図 1 (A)の IV— IVに沿った断面図である。(B)は、本発明の実施形態のパブリング装置 を使用する図 1 (B)の IV— IVに沿った本溶融装置の断面図である。
[図 3]i線照射時間と光学ガラスの透過率の劣化率を示す図面である。
発明を実施するための形態
[0028] 以下、本発明の各実施形態を図面に基づいて説明する。なお、以下の実施形態の 説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしく は簡略化する。
[0029] なお、本発明は、以下に説明する実施形態に限定されるものではなぐ本発明の目 的を達成できる範囲での変形、改良等は本発明に含まれるものである。
[0030] [ガラスの組成]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。各成分は質量 %にて表現する。なお、本願明細書中において質量%で表されるガラス組成は全て 酸ィ匕物基準での質量%で表されたものである。ここで、「酸ィ匕物基準」とは、本発明の ガラス構成成分の原料として使用される酸化物、硝酸塩等が溶融時に全て分解され 酸化物へ変化すると仮定した場合に、当該生成酸ィ匕物の質量の総和を 100質量% として、ガラス中に含有される各成分を表記した組成である。
[0031] まず、本発明において、耐ソラリゼーシヨン性に優れた SiOおよび/または B Oを
2 2 3 含有する、特に、 SiO— B O成分の光学ガラスを製造することができる組成範囲に
2 2 3
ついて説明する。
[0032] 各成分を前記組成範囲に限定した理由は以下のとおりである。
[0033] SiOを含有する光学ガラスにおいて、 SiOは、ガラス形成上有用な成分である。し
2 2
かし、 SiOの重量%が30%未満では、比較的多量の B Oや BaO等の成分を必要
2 2 3
とする傾向になり易ぐ他にも屈折率が高くなり易くなつたり、化学的性質の劣化を招 き易くなるので好ましくない。また、 SiO の
2が 70%を超えると、ガラス 粘度が高くなり 易ぐその結果、均質なガラスを得に《なり易い。よって、屈折率、化学的性質の劣 化性、ガラスの粘性等を考慮すれば、 SiOは、下限が 50. 5%以上であることが好ま
2
しぐ 53. 0%以上であることがより好ましぐ 55. 35%以上であることが最も好ましい 。また、 SiOの上限は、 70%以下であることが好ましぐ 65%以下であることがより好
2
ましぐ 61%以下であることが最も好ましい。
[0034] B Oを含有する光学ガラスにおいて、 B Oは、 SiOと同様にガラス形成酸化物で
2 3 2 3 2
あり、ガラスを低分散化したり、粘性を調節したりするのに有効である。しかし、 B O
2 3 力 3%未満では、その効果は不十分となり易ぐ 20%を超えると、化学的性質が劣化 し易くなるので好ましくない。さらに、ガラスの低分散、粘性、化学的性質の劣化等を 考慮すれば、 B Oは、 3%以上 20%以下であることが好ましい。したがって、 B Oの
2 3 2 3 上限は、 20%以下が好ましぐ 17%以下がより好ましぐ 15%以下であることが最も 好ましい。また、 B Oの下限は、 3%以上であることが好ましぐ 5%以上であることが より好ましぐ 6%以上であることが最も好ましい。
[0035] Al Oは、ガラスの化学的耐久性の向上、粘度や屈折率の調整に有効である。しか
2 3
し、 Al O力 %を超えると、ガラスの粘性が高くなり易い。そして、さらに、ガラスのィ匕
2 3
学的耐久性、粘度や屈折率等を考慮すれば、 Al Oは、 2. 9%以下であることがより
2 3
好ましぐ 2. 3%以下であることが最も好ましい。
[0036] Li Oは、ガラス原料の溶融を促進する効果があり、他のアルカリ金属酸化物と比べ
2
て屈折率の低下を招きにくいので有効である。しかし、 Li O
2 が 5%を超えるとガラスの 失透性が増大し易いので好ましくない。そして、さらに、粘性、屈折率、化学的性質 の劣化等を考慮すれば、 Li Oは、 4. 9%以下であることがより好ましぐ 3%以下であ
2
ることが最も好ましい。
[0037] Na Oおよび K Oは、ガラス原料の溶融促進に有効であり、多量にガラス中に含有
2 2
させても安定なガラスをつくる。し力し、 Na Oおよび K Oの量が、それぞれ 13%およ
2 2
び 23%を超えると化学的性質を悪ィ匕させ易いので好ましくない。 Na Oの上限は、 1
2
3%以下であることが好ましぐ 10%以下であることがより好ましぐ 7%以下であること が最も好ましい。また、 K Oの上限は、 23%以下であることが好ましぐ 20%以下で
2
あることがより好ましい。
[0038] BaOは、ガラスの分散をあまり大きくすることなく(アッベ数をあまり小さくすることなく )、屈折率を向上させ、広い組成範囲において耐失透性の大きい安定なガラスを得る ことができる。しかし、 BaOが 42%を超えるとガラスの化学的耐久性が極度に劣化し 易い。そこで BaOの上限は、 42%以下であることが好ましぐ 25%以下であることが より好ましぐ 18%以下であることが最も好ましい。
[0039] ZnOは、屈折率の向上、粘性の調整、耐失透性の向上等に有効な成分である。し かし、 ZnOが 7%を超えると、短波長域における透過率の低下を招くことがあるので、 好ましくない。そこで ZnOの上限は、 7%以下であることが好ましぐ 3%以下であるこ とがより好ましぐ 1%以下であることが最も好ましい。
[0040] また、安定で化学的性質が優れ、且つ、短波長域まで透過率の良!、ガラスを得る ためには、 Na 0、 K 0、 BaOおよび ZnOの 1種または 2種以上の合計量の範囲(%
2 2
)の上限力 5%以下であることが好ましぐ 40%以下であることがより好ましぐ 35% 以下が最も好ましい。また、下限は 10%以上であることが好ましぐ 13%以上である ことがより好ましぐ 15%以上であることが最も好ましい。
[0041] PbOおよび TiOは、 SiOおよび
2 2 Zまたは B Oを含有する光学ガラス、とりわけ、 S
2 3
iO B O
2 2 3 アルカリ金属酸ィ匕物および Zまたはアルカリ土類金属酸ィ匕物系ガラス において、ソラリゼーシヨンを防止するのに有効である。し力しこれらの成分は必要以 上に多く含有させると短波長域の光線透過率を劣化させる原因になり易いので、これ らの成分の量は、それぞれ上限を 2%以下および 1. 0%以下とすることが好ましぐ 1 %以下および 0. 1%以下とすることがより好ましい。
[0042] As Oおよび Sb Oは、ガラスの清澄助剤としての効果があり、それぞれ任意に添
2 3 2 3
カロしうる力 上記効果を得るためには、それぞれ 1%以下で十分である。
[0043] フッ素は、一種または二種以上の上記酸ィ匕物の一部または全部と置換したフツイ匕 物として任意に添加することができ、屈折率および粘度の調整に効果がある。しかし 、上記フッ化物の合計量が 11%を超えると、ガラスが乳白化し易くなつたり、屈折率 力 、さくなりすぎたり、溶融の際にフッ素の揮発が大きくなりすぎて、均質なガラスを 製造しに《なるので好ましくない。フッ化物の合計量の上限は、 11%以下が好ましく 、 9. 5%以下がより好ましい。
[0044] また、上記各成分の他に、屈折率の調整や、ガラスの化学的性質の向上等を目的に 、任意成分として、 CaO、 SrOおよび ZrOをそれぞれ 2%まで添加することができる。
2
なお、これら成分を添加する場合は、 CaO、 SrOおよび ZrO力 選ばれる 1種または
2
2種以上を合計で 2%までとすることが好ましぐ 1%以下とすることがより好ましい。
[0045] また、 Ti以外の遷移金属、例えば、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ag、 W、 Ce、 P r、 Nd、 Pm、 Sm、 Eu、 Gd、 Dyゝ Ho、 Fr、 Tm、 Yb、 Luの各成分の合計含有量が 3 ppm以下であることが好ましい。不純物として含まれた前記各成分は、吸収計数が大 きぐ少量混入しても透過率の劣化を招く。
[0046] 本発明の光学ガラスの Pt含有量は、ソラリゼーシヨンを防止するために 5ppm以下 であることが好ましい。さらに、 lppm以下であることが好ましぐ 0. 5ppm以下である ことがより好ましぐ 0. 2ppm以下であることが最も好ましい。
[0047] [バッチ溶融装置、カレットィ匕工程] 以下、白金含有量の少な!/、耐ソラリゼーシヨンに良好なガラスを製造するためのバ ツチ溶解装置、カレットィ匕工程について詳細に説明する。
[0048] 図 1 (A)および図 2 (A)に示すように、カレットィ匕工程で使用されるバッチ溶融装置 100は、ノ ツチを溶融してバッチ溶融物 Aを得るための溶融炉 102と、上記バッチ溶 融物 A内のパブリングを行う気体パブリング装置 106を備えている。また、溶融炉 102 は、ノ ツチを溶融する際の容器となる溶融槽 121と、この溶融槽 121の周囲を被う炉 体 122と、加熱装置(図示しない)とを備えている。
[0049] 溶融槽 121は、バッチ溶融物 Aの溶融、清澄に必要な耐熱性、耐侵食性およびバ ツチ溶融物 Aの品質への影響が少な 、こと等を考慮して、少なくともバッチ溶融物 A に接する部分が、例えば、石英、白金 (Pt)または白金合金 (Pt合金)からなる溶融槽 であることが好ましぐさらに白金または白金合金力もなる溶融槽 121であることがより 好ましい。
[0050] 炉体 122は、溶融槽 121の周囲を覆っており、耐火レンガ等の耐熱材から形成され ている。この炉体 122の上部には、ガラス原料を溶融槽 121に投入するため開口部 1 26が形成されている。また、開口部 126は、溶融槽 121内のバッチ溶融物 A内に残 存する気体を、炉体 122内部から排出する換気装置 110に接続された排出装置 (図 示しな 、)に導入するための入口となって!/、る。
[0051] 気体パブリング装置 106は、上記開口部 126から溶融槽 121内に挿入される。すな わち、開口部 126は、溶融物内のパブリングを行うための気体パブリング装置 106の 挿入孔を兼ねている。気体パブリング装置 106の構造は、バッチ溶融物 Aを十分に 攪拌するために、できるだけ大型の気泡を発生することが可能な周知なものである。 この気体パブリング装置 106は、これらの耐熱性、ノ ツチ溶融物 Aに対する耐侵食性 およびバッチ溶融物 Aの品質への影響が少ないこと等を考慮して、例えば、少なくと もノ ツチ溶融物 Aに接する部分力 石英、白金または白金合金力もなる気体パブリン グ装置であることが好ましぐさらには、白金または白金合金力 なる気体パブリング 装置であることがより好まし!/、。
[0052] 溶融槽 121等のバッチ溶融装置 100を構成する部材ゃ気体パブリング装置 106の うち、バッチ溶融物 Aと接する部分が白金または白金合金である場合、白金または白 金合金と酸素が反応して PtOが発生するため、気体パブリング装置 106を用いて行
2
うパブリングに使用される気体としては、非酸化性気体が好ましい。非酸化性気体と しては、酸素分圧が 1%以下、好ましくは 0. 01%以下、さらに好ましくは 0. 0001% 以下の気体であり、ヘリウム(He)、ネオン (Ne)、アルゴン (Ar)、クリプトン (Kr)、キ セノン (Xe)または窒素 (N )等の中性気体、もしくは、一酸化炭素(CO)またはおよ
2
び水素 (H )等の還元性気体や、前記気体の中から選ばれる 2種以上の混合気体が
2
好ましい。
[0053] 気体パブリング装置 106を用いて非酸ィ匕性気体をバッチ溶融物 A内に吹き込ませ る深さとしては、任意に設定可能である力 ノツチ溶融物 Aの液面から 100mm以上 の深さで非酸ィ匕性気体をバッチ溶融物 A内に吹き込むことが好ま 、。
[0054] また換気装置 110は、溶融炉 102の上部に設けられている。この換気装置 110は、 開口部 126と略同じ開口面形状の吸入口 114が形成されている円錐部 112と、この 円錐部 112とに連接されている排気管 116とを備えている。なお、換気装置 110は、 溶融槽 121内のバッチ溶融物 Aから発生する気体を排気するための排気手段の一 例である。
[0055] 円錐部 112は、吸入口 114から上方に向力 につれて細くなる円錐状となっている
[0056] バッチ溶融装置 100内の気体の排出は、換気装置 110を使用して、溶融炉 102の 溶融時空間容積を基準として、 2〜20回 Z分となるように行う (バッチ溶融工程)。
[0057] 排気管 116は、円錐部 112の最上部力も気体パブリング装置 106に対して垂直方 向に左右に二つに分かれて形成されるとともに、左右のうち一方 (本実施形態の場合 、右側)の排気管 116のみ気体パブリング装置 106に対して平行方向に、すなわち、 反重力方向にその方向を変更して延伸され、他方 (本実施形態の場合、左側)の排 気管 116は、途中で閉じられている。
[0058] さらに、換気装置 110のうち、円錐部 112とは反対側の開口部を、吸引手段(吸引 装置)の一例である吸引ポンプにより吸引することによって、バッチ溶融物 Aの上方の 溶融時空間の気圧を 0. lkPa〜100. 0kPa (lhPa〜1000hPa)に制御しながら、 バッチ溶融装置 100内のバッチ溶融物 Aの上方の空間にある気体の排出を行う。さ らには、本実施形態において、左右のうち一方 (本実施形態の場合、右側)の排気管
116のみ延伸して吸引手段に接続されているが、バッチ溶融物 Aの上方の気圧が上 記の範囲に制御される限り、左方の排気管が延伸されて、他の溶解装置に接続され ているようにしてもよい。
[0059] このように、バッチ溶融物 Aの上方の空間内の圧力が大気圧と略同じかまたは大気 圧よりも陰圧側に制御しながら、溶融槽 121内のバッチ溶融物 Aの上方の空間にあ る気体は、炉体 122内部から開口部 126を介して、換気装置 110の吸入口 114に向 力つて排出されることになる。
[0060] なお、バッチ溶融物 A内に残存する気体としては、酸化性気体である酸素、気体バ プリング装置 106を用いて行うパブリングによって吹き込まれる気体、さらには、白金 または白金合金と酸素が反応して発生する PtO等がある。
2
[0061] [本溶融装置、本溶融工程]
以下、白金含有量の少な!/、耐ソラリゼーシヨンに良好なガラスを製造するための本 溶融装置、本溶融工程について詳細に説明する。
[0062] 図 1 (B)および図 2 (B)に示すように、本溶融工程で使用される本溶融装置 200は 、ノツチを溶融して本溶融物を得るため、またはカレットィ匕工程で得られたカレットを 溶融して本溶融物 Dを得るための溶融炉 202と、本溶融物 Dを排出する排出口 203 と、溶融炉 202から次工程までの本溶融物 Dの経路 (導管)となるパイプ 204と、上記 本溶融物 D内のパブリングを行う気体パブリング装置 206と、本溶融物 Dの上方の空 間における気体を排出する排出手段の一例である換気装置 210と、を備えている。
[0063] 溶融炉 202は、カレットを溶融する際の容器となる溶融槽 221と、この溶融槽 221の 周囲を被う耐火レンガ等の耐熱材カもなる炉体 222と、加熱装置(図示しない)とを備 えている。
[0064] 溶融槽 221は、本溶融物 Dの溶融、清澄に必要な耐熱性、耐侵食性および本溶融 物 Dの品質への影響が少ないこと等を考慮して、少なくとも本溶融物 Dに接する部分 力 例えば、石英、白金または白金合金力 なる溶融槽であることが好ましぐさらに 白金または白金合金力もなる溶融槽であることがより好ましい。
[0065] 炉体 222は、溶融槽 221の周囲を覆っており、耐火レンガ等の耐熱材カもなる。こ の炉体 222の上部には、カレットを溶融槽 221に投入するため開口部 226が形成さ れている。また、この開口部 226は、溶融槽 221内の本溶融物 D内に残存する気体 を、炉体 222内部力も排出する吸入口 214に導入するための入口となって 、る。
[0066] パイプ 204には、図示しない加熱装置が設けられている。この加熱装置によって、 パイプ 204の温度が制御されることにより、パイプ 204中の本溶融物 Dの粘性が制御 されるとともに、パイプ 204中の本溶融物 Dの流速が制御されることになる。また、ノ イブ 204は、上述したように、本溶融工程から次工程 (清澄工程、攪拌工程、徐冷ェ 程)までの本溶融物 Dの導管となる。
[0067] 気体パブリング装置 206は、上記開口部 226から溶融槽 221に挿入される。すなわ ち、開口部は、溶融物内のパブリングを行うための気体パブリング装置の挿入孔を兼 ねている。その構造は、本溶融物 Dを十分に攪拌するために、できるだけ大型の気 泡を発生することが可能な周知なものである。この気体パブリング装置 206は、これら の耐熱性、本溶融物 Dに対する耐侵食性および本溶融物 Dの品質への影響が少な いこと等を考慮して、例えば、少なくとも本溶融物 Dに接する部分が、石英、白金また は白金合金力もなる気体パブリング装置であることが好ましぐ特に、白金または白金 合金力もなる気体パブリング装置であることが好ましい。
[0068] 気体パブリング装置 206を用いて行うパブリングに使用される気体としては、任意に 設定可能である。しかし、溶融槽 221、パイプ 204等の本溶融装置 200を構成する 部材ゃ気体パブリング装置 206のうち、本溶融物 Dと接する部分が白金または白金 合金である場合、白金または白金合金と酸素が反応して PtOが発生するため、気体
2
パブリング装置 206を用いて行うパブリングに使用される気体としては、非酸ィ匕性気 体が好ましい。非酸化性気体としては、酸素分圧が 1%以下、好ましくは 0. 1%以下 、さらに好ましくは 0. 01%以下の気体であり、ヘリウム (He)、ネオン (Ne)、アルゴン (Ar)、クリプトン (Kr)、キセノン (Xe)または窒素 (N )等の中性気体、もしくは、一酸
2
化炭素 (CO)または水素 (H )等の還元性気体や、前記気体の中から選ばれる 2種
2
以上の混合気体が好ま U、。
[0069] 気体パブリング装置 206を用いて非酸ィ匕性気体を本溶融物 D内に吹き込ませる深 さとしては、任意に設定可能である力 本溶融物 Dの液面から 100mm以上の深さで 非酸ィ匕性気体をカレット溶融物 D内に吹き込ませることが好ましい。
[0070] 換気装置 210は、溶融炉 202の上部に設けられている。この換気装置 210は、開 口部 226と概略同じ開口面形状の吸入口 214が形成されて 、る円錐部 212と、この 円錐部 212と連接されている排気管 216とを、備えている。なお、換気装置 210は、 溶融槽 221内のカレット溶融物力 発生する気体を排気するための排気手段の一例 である。
[0071] 円錐部 212は、吸入口 214から上方に向力 につれて細くなる円錐状となっている
[0072] 本溶融装置 200内の気体の排出は、換気装置 210を使用して、溶融炉 202の溶融 時空間容積を基準として、 2〜20回 Z分となるように行う(本溶融工程)。
[0073] 排気管 216は、円錐部 212の最上部力も気体パブリング装置 206に対して垂直方 向に左右に二つに分かれて形成されるとともに、左右のうち一方 (本実施形態の場合 、右側)の排気管 216のみ気体パブリング装置 206に対して平行方向に、すなわち、 反重力方向にその方向を変更して延伸され、他方 (本実施形態の場合、左側)の排 気管 216は、途中で閉じられている。
[0074] さらに、換気装置 210のうち、円錐部 212とは反対側の開口部を、吸引手段(吸引 装置)の一例である吸引ポンプにより吸引することによって、本溶融物 Dの上方の溶 融時空間の気圧を 0. lkPa〜100. 0kPa (lhPa〜1000hPa)に制御しながら、本 溶融装置 200内の本溶融物 Dの上方の空間にある気体の排出を行う。さらには、本 実施形態において、左右のうち一方 (本実施形態の場合、右側)の排気管 216のみ 延伸して吸引手段に接続されている力 本溶融物 Dの上方の空間の気圧が上記の 範囲に制御される限り、左方の排気管が延伸されて、他の溶解装置に接続されてい るようにしてちょい。
[0075] このように、本溶融物 Dの上方の空間内の気圧が大気圧と略同じ力または大気圧よ りも陰圧側に制御しながら、溶融槽 221内のカレット溶融物 Dの上方の空間にある気 体は、炉体 222内部から開口部 226を介して、換気装置 210の吸入口 214に向かつ て 出されること〖こなる。
[0076] なお、本溶融物 D内に残存する気体としては、酸化性気体である酸素、気体バブリ ング装置 206を用いて行うパブリングによって吹き込まれる気体、さらには、白金また は白金合金と酸素が反応して発生する PtO等がある。
2
[0077] パイプ 204には、図示しない加熱装置が設けられている。この加熱装置によって、 パイプ 204の温度が制御されることにより、パイプ 204中の本溶融物 Dの粘性が制御 され、その結果として、パイプ 204中の本溶融物 Dの流速が制御されることになる。ま た、パイプ 204は、上述したように、本溶融工程から次工程 (清澄工程、攪拌工程、 徐冷工程)までの本溶融物 Dの導管となる。
[0078] なお、本実施形態において、気体パブリング装置 106, 206は、それぞれ炉体 122 , 222の上部にある開口部 126、 226を介して、溶融槽 121、 221内に挿入されてい る力 これに限らず、例えば、気体パブリング装置 106、 206は、溶融槽 121、 221の 側面部または底部を貫通して、側面部または底部からバッチ溶融物 Aまたは本溶融 物 D内にパブリングを行うようにしてもょ 、。
[0079] また、本実施形態において、カレットィ匕工程および本溶融工程の両方の溶融工程 において、ノツチ溶融物 Aおよび本溶融物 D内を、各々気体パブリング装置 106, 2 06を用いてパブリングを行っている力 カレットィ匕工程または本溶融工程のいずれか の工程のみパブリングを行うようにしてもよい。そして、パブリングを行わない工程に おいては、溶融槽 (例えば、溶融槽 121または溶融槽 221)内の溶融物(例えば、バ ツチ溶融物 Aまたは本溶融物 D)を攪拌するための攪拌翼を供えた攪拌機を設ける ようにしてもよい。この攪拌翼の形状は、特に限定されるものではなぐ例えば、スクリ ユー状のもの等、周知の形状や構成のものを用いることができる。
[0080] また、本実施形態にお!ヽて、排気手段をバッチ溶融工程および本溶融工程に設け た力 V、ずれか一つに排気手段を設けるようにしてもよ!、。
[0081] また、本実施形態において、本溶融工程に設けられた本溶融装置 200にのみ排出 手段の一例である換気装置 210を設けたが、必要に応じて換気装置 210を省略して もよい。また、カレット化工程に設けられたバッチ溶融装置 100にも排出手段である 換気装置 110を設けるようにしてもよい。なお、ノツチ溶融装置 100に排出手段であ る換気装置 110を設けた場合は、必要に応じて本溶融装置 200には換気装置 210 を省略してもよ ヽ。 [0082] 換気装置 110および 210は、ノ ツチ溶融物 A、カレット溶融物 Dの上方の空間にあ る気体を排出させる機能を有していればよぐ様々な形状や構成の周知のもの用い ることがでさる。
[0083] また、本溶融装置 200を構成するパイプ 204等は、少なくとも本溶融物 Dと接する 部分において、これらの耐熱性、ガラスに対する耐侵食性および本溶融物 Dの品質 への影響が少ないこと等を考慮して白金または白金合金製であることが好ましいが、 必ずしもこれらに限定されるものではない。
[0084] また、溶融物の流速が、溶融物の粘性以外のパラメータ、例えば、溶融槽 221内の 圧力によって制御されて 、る場合等は、必ずしもパイプ 204に設けられて 、る加熱装 置(図示せず)を設ける必要はな!、。
[0085] 上記加熱装置は、電熱器、電気ヒーター、通電発熱体、高周波誘導加熱や、バー ナ一等を使用したガス等の燃焼により加熱するもの等周知のものを用いることができ
、さらには、パイプ 204は、直接電気を通電して加熱できるようになつていることが好 まし 、が、必ずしもこれに限定されるものではな!/、。
[0086] [光学ガラスの製造方法]
次に、上記に述べた溶融装置および製造方法を用いて、本発明に係る光学ガラス の製造方法を図 2 (A)および図 2 (B)を用いて説明する。
[0087] まず、図 2Aに示すように、質量%で、 30%以上 70%以下の SiOおよび
2 Zまたは、
3%以上 20%以下の B Oを含有する光学ガラスとなるように配合されたバッチを、バ
2 3
ツチ溶融装置 100の溶融槽 121に投入し、溶融させる。このとき、気体パブリング装 置 106を用いて、ガラス原料を溶融 (粗溶融)して得られたバッチ溶融物 A内を非酸 化性気体でパブリングさせる。このパブリングは、溶融槽 121内のバッチ溶融物 Aの 液面から 100mm以上の深さにおいて、バッチ溶融物 Aの容積 1リットルあたり、 0. 0 02〜0. 05リットル Z分の供給速度で、非酸化性気体を吹き込むことにより行う(カレ ットイ匕工程)。得られたバッチ溶融物 Aを炉外にてキャストしカレットとして回収する。
[0088] 次に、図 2 (B)に示すように、回収したカレットを、本溶融装置 200の溶融槽 221に 投入し、溶融させる。このとき、気体パブリング装置 206を用いて、カレットを溶融 (本 溶融)して得られた本溶融物 D内を非酸ィ匕性気体 (例えば、アルゴンガス)でバブリン グさせる。このパブリングは、溶融槽 221内の本溶融物 Dの液面から 100mm以上の 深さにお!/、て、本溶融物 Dの容積 1ジッ卜ノレあたり、 0. 002〜0. 05ジッ卜ノレ/分の供 給速度で、非酸ィヒ性気体を吹き込むことにより行う。
[0089] また、カレットを溶融する工程において、吸引手段(吸引装置)の一例である吸引ポ ンプにより吸引することによって、本溶融物 Dの上方の気体は、換気装置 210から排 出される(本溶解工程)。このとき、本溶融物 Dの上方の気圧を 0. lkPa〜100. OkP a ( lhPa〜 lOOOhPa)とするように吸引ポンプを制御すれば本溶融物 Dの上方の気 体は良好に排出される。また、溶融炉 202内の溶融時空間容積を基準として、本溶 融装置 200内の気体の置換が 2〜20回 Z分と行われることが好まし 、。得られた本 溶融物 Dは、当該本溶解工程から次工程 (清澄工程、攪拌工程、保冷工程)に移り、 次工程で光学ガラスを製造する。
[0090] なお、本実施形態にぉ ヽては、原料溶融工程にお!ヽて、ガラス原料を溶融した後、 急冷して固化させたカレットを製造し、この製造されたカレットを溶融槽 221に投入し て、本溶融物 Dを得た後、次工程に連続的に溶融物を供給するようにしたが、本溶 融工程を連続方式ではなく、バッチ方式で行うようにしてもょ ヽ。
[0091] 以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明は 以下の実施例に限定されるものではない。
実施例
[0092] 本発明の製造方法によって製造した光学ガラスを実施例の光学ガラス、および他 の方法で製造した光学ガラスを比較例の光学ガラスに、超高圧水銀灯の i線 (365η m)を照射した場合の透過率の変化につ!、て測定した。
[0093] [実施例 1]
[0094] 光学ガラス用原料 (ガラス原料)を表 1に示した組成の割合となるように秤量し、混合 した。
[表 1] No. 実施例 実施 実施 実施侧 実施肺 実施佻 比較例
Si(¾ 63 60 60 60 58 51 60
B203 8 15 11 6 10 17 15
Al203 1 0 0 0 2 0 0 ^菊 K20 20 15 18 14 6 10 15
F 8 10 5 0 0 0 10
BaO 0 0 3 10 15 10 0
PbO 0 0 1 1 0 0 0
Li20 0 0 0 1 0 0 0
Na20 0 0 1 1 5 7 0
ZnO 0 0 1 7 3 5 0
As203 0.1 0.01 0.01 0.01 0.01 0.01 0
Sb203 0 0 0 0 0 0 0.01
TOTAL 100.1 100.01 100.01 100.01 99.01 100.01 100.01 パブリング Ar Ar Ar Ar Ar Ar 02
Pt量
0.10 0.12 0.14 0.21 0.26 0.29 0.70 (ppm)
遷移金属 a
2.6 2.4 2.3 2.9 2.5 2.8 3.1 (ppm)
-0.098 -0.084 -0.100 -0.110 -0.138 -0.157 -0.214
[0095] その後、ガラス原料をバッチ溶融装置 100の溶融槽 121に投入し、 1300°Cにおい て、 14時間、カレットィ匕工程を行った。このとき、パブリングは実施せずバッチ溶融物 を冷却して、カレットとして回収した。この回収したカレットを、本溶融装置 200の溶融 槽 221に投入し、 1150°Cにおいて、 15時間溶融させた。このとき、気体パブリング装 置 206を用いて、カレットを溶融 (本溶融)して得られた本溶融物 D内をアルゴンガス でパブリングさせた。このパブリングは、ガラス 1リットル当り気体の供給速度 0.024リ ットル Z分、パブリングする液面からの深さを 500mmとした。また、この溶融工程に おいては、本溶融物 Dの上方の空間を、大気圧と比較して減圧 (本溶融物 Dの上方 の空間の気圧が 0.3kPa)とすることにより、本溶融物 Dの上方の空間にある気体を、 換気装置 210から吸入させ、大気中に排出させた (本溶融工程)。得られた本溶融物 Dを、次工程 (清澄工程、攪拌工程、保冷工程)に移し、本実施例の光学ガラスを製 し 7こ。
[0096] [比較例] 比較例の光学ガラスのガラス原料は、実施例 1と同じ組成の割合となるように秤量し 、混合した。その後、このガラス原料を原料溶融装置 100の溶融槽 121に投入し 130 0°Cにおいて、 14時間、カレットィ匕工程を行った。このとき、パブリングは実施せずバ ツチ溶融物を冷却して、カレットとして回収した。この回収したカレットを、本溶融装置 200の溶融槽 221に投入し、 1150°Cにおいて、 15時間溶融させた。このとき、気体 パブリング装置 206を用いて、カレットを溶融 (本溶融)して得られた本溶融物 D内を「 酸素ガス」でパブリングさせた。このパブリングは、ガラス 1リットル当り、気体の供給速 度 0. 024リットル Z分、パブリングする液面からの深さを 500mmとした。また、このガ ラスブロックを溶融する工程においては、本溶融物 Dの上方の空間からの排出は行 わなかった (本溶融工程)。得られた本溶融物 Dを、次工程 (清澄工程、攪拌工程、 保冷工程)に移し、本比較例の光学ガラスを製造した。
[0097] 次に、実施例の光学ガラスと比較例の光学ガラスに i線(365nm)を 2. 5WZcm2の 条件で照射した場合の透過率の変化を測定した。なお、透過率は波長 365nmにお ける透過率を U— 4000 (日立製作所製)により測定した。
[0098] 図 3は、実施例の光学ガラスと比較例の光学ガラスに i線 (365nm)を照射した場合 の透過率の変化を示した図である。図 3に示すように、照射後間もない比較例の光学 ガラスは、実施例の光学ガラスよりも透過率の劣化率が大きい。また、照射時間が進 行するにつれて、その傾向が顕著となっている。このように、ダクトを設けてカレット溶 融物の上方の空間における気体を排出するとともに、気体パブリング装置を用いてバ ツチ溶融物および Zまたは本溶融物内のパブリングを行うことによって、耐ソラリゼ一 シヨン性に優れた光学ガラスを提供することができる。
[0099] また、本発明の実施例の光学ガラスの組成と、 i線照射(500時間)による透過率の 劣化量と Ptの含有量について、表 1に示す。
[0100] 表 1に示したように、実施例 1から 6の Pt含有量は、比較例の Pt含有量に比べて少 なぐ耐ソラリゼーシヨン性に優れることがわかる。

Claims

請求の範囲
[1] SiOおよび Zまたは B Oを含有する光学ガラスであって、当該光学ガラスの Pt含
2 2 3
有量 (質量基準)が 5ppm以下であることを特徴とする光学ガラス。
[2] 質量%で、 SiOを 30%以上 70%以下、および
2 Zまたは、 B Oを 3%以上 20%以
2 3
下を含有することを特徴とする請求項 1に記載の光学ガラス。
[3] 質量%で、下記の成分を含有することを特徴とする請求項 1または請求項 2に記載 の光学ガラス。
(a) SiO :30〜70%
2 ぉょび7または
B O :3〜20%
2 3 および Zまたは
PbO:0〜 2%および Zまたは
AIO :0〜 6%
2 3 および Zまたは
LiO:0〜 5%
2 および Zまたは
CaO:0〜 2%および Zまたは
TiO :0〜0.5%
2 および Zまたは
As O :0〜 1%
2 3 および Zまたは
sb 2 o 3 :o〜 1%および Zまたは
Na O:0〜 13%
2 および Zまたは
KO:0〜 23%
2 および Ζまたは
BaO:0〜 42%および Zまたは
ZnO:0〜7%
および
(b)上記酸ィ匕物の一部または全部を置換したフッ化物の Fの合計量力^〜 11%
[4] 質量%で、 Na O+K O + BaO+ZnOが 10〜45%であることを特徴とする請求項
2 2
1力 請求項 3のいずれかに記載の光学ガラス。
[5] 質量%で、 SrOが 0〜2%および Zまたは ZrO力^〜 2%であることを特徴とする請
2
求項 1から請求項 4のいずれか〖こ記載の光学ガラス。
[6] 質量%で、 CaO + SrO+ZrO力^〜 2%であることを特徴とする請求項 1から請求
2
項 5の 、ずれかに記載の光学ガラスの製造方法。
[7] 質量%で、前記 SiOを 50. 5〜70%、前記 B Oを 3〜15%、前記 Al Oを 2. 9%
2 2 3 2 3 以下、前記 Li Oを 4. 9%以下含有する請求項 1から請求項 6のいずれかに記載の
2
光学ガラス。
[8] 質量%で、前記 SiOを 55. 35〜70%、前記 Al Oを 2. 3%以下、前記 Li Oを 3
2 2 3 2
%以下含有する請求項 1から請求項 7のいずれかに記載の光学ガラス。
[9] V、 Cr、 Mn、 Fe、 Co、 Niゝ Cu、 Ag、 W、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Dy、 H o、 Fr、 Tm、 Yb、 Luの各成分の合計含有量 (質量基準)が 3ppm以下である請求項
1力 請求項 8のいずれかに記載の光学ガラス。
[10] 「原料混合物(以下バッチという)を溶融しカレットを得る工程 (以下、カレット化工程 t 、う)」および Zまたは「カレットおよび Zまたはバッチを溶融してガラスを得る工程 ( 以降、本溶融工程と ヽぅ)」を有する光学ガラスの製造方法にぉ ヽて、
得られるガラスの組成は SiOおよび ま
2 Z たは B Oを含有し、
2 3
且つ、前記カレット化工程および Zまたは前記本溶融工程の溶融物内に非酸化性 気体をパブリングすることを特徴とする光学ガラスの製造方法。
[11] 前記溶融物の液面から 100mm以上の深さにおいて前記非酸ィ匕性気体を吹き込 むことを特徴とする請求項 10に記載の光学ガラスの製造方法。
[12] 前記非酸ィ匕性気体をガラス容積 1リットルあたり 0. 002〜0. 05リットル Z分の供給 速度で吹き込むことを特徴とする請求項 10または請求項 11に記載の光学ガラスの 製造方法。
[13] 前記非酸化性気体は、 He、 Ne、 Ar、 Kr、 Xe、 N、 H、 COまたはこれら気体の複
2 2
数種類の混合気体であることを特徴とする請求項 10から請求項 12のいずれかに記 載の光学ガラスの製造方法。
[14] 「原料混合物(以下、ノ ツチという)を溶融しカレットを得る工程 (以下、カレットィ匕ェ 程と 、う)」および Zまたは「このカレットおよび Zまたはバッチを溶融してガラスを得る 工程 (以下、本溶融工程と ヽぅ)」を有する光学ガラスの製造方法にぉ ヽて、
得られるガラスの組成は SiOおよび Zまたは B O系を含有し、
2 2 3
且つ、前記カレットィヒ工程および Zまたは前記本溶融工程における溶融装置内の 空間における気体を排出することを特徴とする光学ガラスの製造方法。
[15] 前記カレットィ匕工程および Zまたは前記本溶融工程において、前記バッチおよび
Zまたは前記カレットを溶融するとともに、前記溶融装置内の空間における気体を排 出する請求項 14に記載の光学ガラスの製造方法。
[16] 前記溶融装置内の空間容積を基準として該溶融装置内の気体の置換を 2〜20回
Z分となるように行う請求項 14または請求項 15に記載の光学ガラスの製造方法。
[17] SiOおよび Zまたは B Oを少なくとも含有する光学ガラスの製造装置であって、
2 2 3
ノツチを溶融してカレットを得るバッチ溶融装置および Zまたは前記カレットまたは 前記バッチを溶融してガラス溶融物を得る本溶融装置を含み、非酸ィヒ性気体バブリ ング装置が前記原料混合物溶融装置内および Zまたは前記カレット溶融装置内に 設置されて!ヽることを特徴とする光学ガラスの製造装置。
[18] SiOおよび Zまたは B Oを少なくとも含有する光学ガラスの製造装置であって、
2 2 3
バッチまたはカレットを溶融して溶融物を得るための溶融槽と、当該溶融槽の周囲 を覆うとともに前記バッチまたは前記カレットを投入する開口部を有する炉体と、前記 開口部付近に配置され、または連通し、前記溶融槽内の前記溶融物から発生する気 体を排出するための排気手段と、を備えることを特徴とする光学ガラスの製造装置。
PCT/JP2006/321083 2005-10-31 2006-10-23 光学ガラス、光学ガラスの製造装置およびその製造方法 WO2007052489A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-317808 2005-10-31
JP2005317807A JP2007126297A (ja) 2005-10-31 2005-10-31 光学ガラスの製造方法及び製造装置
JP2005-317807 2005-10-31
JP2005-317806 2005-10-31
JP2005317808A JP2007126298A (ja) 2005-10-31 2005-10-31 光学ガラス
JP2005317806A JP2007126296A (ja) 2005-10-31 2005-10-31 光学ガラスの製造方法及び製造装置

Publications (1)

Publication Number Publication Date
WO2007052489A1 true WO2007052489A1 (ja) 2007-05-10

Family

ID=38005641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321083 WO2007052489A1 (ja) 2005-10-31 2006-10-23 光学ガラス、光学ガラスの製造装置およびその製造方法

Country Status (1)

Country Link
WO (1) WO2007052489A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138784A3 (en) * 2009-05-29 2011-01-20 Corning Incorporated Fusion formable sodium free glass
JP2012046392A (ja) * 2010-08-30 2012-03-08 Nippon Electric Glass Co Ltd 光学ガラス
US8975199B2 (en) 2011-08-12 2015-03-10 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
US9512030B2 (en) 2012-02-29 2016-12-06 Corning Incorporated High CTE potassium borosilicate core glasses and glass articles comprising the same
WO2021002244A1 (ja) * 2019-07-03 2021-01-07 日本電気硝子株式会社 ガラス物品の製造装置及び製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114915A (ja) * 1974-07-29 1976-02-05 Post Office
JPS533350A (en) * 1976-06-30 1978-01-13 Toshiba Corp Production of optical glass for optical communication
JPS62223028A (ja) * 1986-03-25 1987-10-01 Asahi Glass Co Ltd リン酸塩ガラスの溶融法
JPH0656433A (ja) * 1992-08-13 1994-03-01 Nippon Electric Glass Co Ltd 熔融ガラスを均質化する方法
JP2002128528A (ja) * 2000-08-17 2002-05-09 Hoya Corp ガラスの製造方法およびそれに用いるガラス溶融装置
JP2003252631A (ja) * 2002-02-28 2003-09-10 Hoya Corp ガラスの製造方法
JP2003300750A (ja) * 2002-02-05 2003-10-21 Nippon Electric Glass Co Ltd ガラス組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114915A (ja) * 1974-07-29 1976-02-05 Post Office
JPS533350A (en) * 1976-06-30 1978-01-13 Toshiba Corp Production of optical glass for optical communication
JPS62223028A (ja) * 1986-03-25 1987-10-01 Asahi Glass Co Ltd リン酸塩ガラスの溶融法
JPH0656433A (ja) * 1992-08-13 1994-03-01 Nippon Electric Glass Co Ltd 熔融ガラスを均質化する方法
JP2002128528A (ja) * 2000-08-17 2002-05-09 Hoya Corp ガラスの製造方法およびそれに用いるガラス溶融装置
JP2003300750A (ja) * 2002-02-05 2003-10-21 Nippon Electric Glass Co Ltd ガラス組成物
JP2003252631A (ja) * 2002-02-28 2003-09-10 Hoya Corp ガラスの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138784A3 (en) * 2009-05-29 2011-01-20 Corning Incorporated Fusion formable sodium free glass
US9371247B2 (en) 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
US10173919B2 (en) 2009-05-29 2019-01-08 Corsam Technologies Llc Fusion formable sodium free glass
JP2012046392A (ja) * 2010-08-30 2012-03-08 Nippon Electric Glass Co Ltd 光学ガラス
WO2012029563A1 (ja) * 2010-08-30 2012-03-08 日本電気硝子株式会社 光学ガラス
US8975199B2 (en) 2011-08-12 2015-03-10 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
US9643883B2 (en) 2011-08-12 2017-05-09 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
US9512030B2 (en) 2012-02-29 2016-12-06 Corning Incorporated High CTE potassium borosilicate core glasses and glass articles comprising the same
WO2021002244A1 (ja) * 2019-07-03 2021-01-07 日本電気硝子株式会社 ガラス物品の製造装置及び製造方法
JP2021011393A (ja) * 2019-07-03 2021-02-04 日本電気硝子株式会社 ガラス物品の製造装置及び製造方法
JP7330433B2 (ja) 2019-07-03 2023-08-22 日本電気硝子株式会社 ガラス物品の製造装置及び製造方法

Similar Documents

Publication Publication Date Title
JP2007126296A (ja) 光学ガラスの製造方法及び製造装置
EP2396284B1 (en) Method of reducing redox ratio of molten glass for making ultra-clear glass
KR101489983B1 (ko) 무알칼리 유리의 제조 방법
US20140356608A1 (en) Method for producing glasses, glass ceramics and the use thereof
TWI642642B (zh) Optical glass and manufacturing method thereof
KR101873069B1 (ko) 유리 용융로, 용융 유리의 제조 방법, 유리 제품의 제조 장치, 및 유리 제품의 제조 방법
US6743491B2 (en) Flint/amber laminated glass container and method of manufacture
US20090325349A1 (en) Semiconductor encapsulation material and method for encapsulating semiconductor using the same
JP2008105860A (ja) ガラスの製造方法
JP4777936B2 (ja) ガラス管成形用スリーブ及びガラス管の製造方法
EP4103522B1 (en) Feed material for producing colorless glass using submerged combustion melting
WO2007052489A1 (ja) 光学ガラス、光学ガラスの製造装置およびその製造方法
TWI552972B (zh) A molten glass manufacturing apparatus, a method for producing a molten glass, and a method for manufacturing the same
JP2001080921A (ja) ガラスあるいはガラスセラミックスを精製する装置及び方法
JP4531568B2 (ja) ホウケイ酸ガラス、ホウ酸塩ガラスおよび結晶化ホウ素含有材料を製造する方法
JP2002293547A (ja) 陰極線管用ガラスの製造方法
EP4103523A1 (en) Producing flint glass using submerged combustion melting
JP2007126298A (ja) 光学ガラス
US9676643B2 (en) Method for producing glasses, glass ceramics and the use of same
US20030051510A1 (en) Device for melting and refining of highly pure optical glasses
JP2007126297A (ja) 光学ガラスの製造方法及び製造装置
JP2019137562A (ja) フロートガラス製造方法
JP2023538672A (ja) 貴金属系内で製造されたガラス中の結晶性ロジウム-白金欠陥の形成の最小化
JP2005060193A (ja) 光学ガラスの製造方法
JP2006143549A (ja) ガラスの製造方法およびガラス熔融装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040149.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812143

Country of ref document: EP

Kind code of ref document: A1