WO2007047979A2 - Activation parthénogénique d'oocytes humains pour la production de cellules souches embryonnaires humaines - Google Patents

Activation parthénogénique d'oocytes humains pour la production de cellules souches embryonnaires humaines Download PDF

Info

Publication number
WO2007047979A2
WO2007047979A2 PCT/US2006/041133 US2006041133W WO2007047979A2 WO 2007047979 A2 WO2007047979 A2 WO 2007047979A2 US 2006041133 W US2006041133 W US 2006041133W WO 2007047979 A2 WO2007047979 A2 WO 2007047979A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
oocyte
cells
human
donor
Prior art date
Application number
PCT/US2006/041133
Other languages
English (en)
Other versions
WO2007047979A3 (fr
Inventor
Elena S. Revazova
Marina V. Pryzhkova
Leonid N. Kuzmichev
Jeffrey D. Janus
Original Assignee
International Stem Cell Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Stem Cell Corporation filed Critical International Stem Cell Corporation
Priority to CA2626642A priority Critical patent/CA2626642C/fr
Priority to AU2006304788A priority patent/AU2006304788A1/en
Priority to KR1020087012017A priority patent/KR101513731B1/ko
Priority to JP2008536842A priority patent/JP5480504B2/ja
Priority to EP06826397.9A priority patent/EP1948791B1/fr
Priority to RU2008120001/10A priority patent/RU2469085C2/ru
Publication of WO2007047979A2 publication Critical patent/WO2007047979A2/fr
Priority to IL190869A priority patent/IL190869A/en
Priority to ZA2008/04079A priority patent/ZA200804079B/en
Publication of WO2007047979A3 publication Critical patent/WO2007047979A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/26Lymph; Lymph nodes; Thymus; Spleen; Splenocytes; Thymocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • C12N15/8776Primate embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0609Oocytes, oogonia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/12Light metals, i.e. alkali, alkaline earth, Be, Al, Mg
    • C12N2500/14Calcium; Ca chelators; Calcitonin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2517/00Cells related to new breeds of animals
    • C12N2517/10Conditioning of cells for in vitro fecondation or nuclear transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11001Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase

Definitions

  • the present invention relates generally to embryonic stems cells, and more specifically to a process for obtaining human embryonic stem cells using parthenogenically activated oocytes.
  • ES cells Human embryonic stem cells are pluripotent cells that can differentiate into a large array of cell types. When injected into immune-deficient mice, embryonic stem cells form differentiated tumors (teratomas). However, embryonic stem cells that are induced in vitro to form embryoid bodies (EBs) provide a source of embryonic stem cell lines that are amenable to differentiation into multiple cell types characteristic of several tissues under certain growth conditions. For example, ES cells become differentiated into neurons in the presence of nerve growth factor and retinoic acid.
  • Human ES cells and their differentiated progeny are important sources of normal human cells for therapeutic transplantation and for drug testing and development. Required by both of these goals is the provision of sufficient cells that are differentiated into tissue types suitable for a patient's needs or the appropriate pharmacological test. Associated with this is a need for an efficient and reliable method of producing differentiated cells from embryonic stem cells.
  • hES human embryonic stem cells
  • oocytes and sperm blastocysts generated from donated gametes (oocytes and sperm)
  • NT nuclear transfer
  • Cadaveric fetal tissue is the only source of human embryonic germ cells (hEG).
  • hES and hEG cells offer remarkable scientific and therapeutic possibilities, involving potential for generating more specialized cells or tissues. Ethical concerns about the sources of hES and hEG cells, however, and fears that use of NT for research could lead to use of NT to produce a human being, have fostered a great deal of public discussion and debate.
  • Parthenogenic activation of mammalian oocytes may be used as an alterative to fertilization by sperm/NT to prepare oocytes for embryonic stem cell generation. Parthenogenic activation is the production of embryonic cells, with or without eventual development into an adult, from a female gamete in the absence of any contribution from a male gamete.
  • Parthenogenetic activation of mammalian oocytes has been induced in a number of ways. Using an electrical stimulus to induce activation is of particular interest because electrofusion is part of the current nuclear transfer procedure. Parthenogenetic activation in vitro by electrical stimulation with electrofusion apparatus used for embryonic cell-oocyte membrane fusion has been reported.
  • Mouse oocytes have been activated by exposure to Ca +2 -Mg +2 free medium, medium containing hyaluronidase, exposure to ethanol, Ca +2 ionophores or chelators, inhibitors of protein synthesis, and electrical stimulation. These procedures have led to high rates of parthenogenic activation and development of mouse oocytes, but did not activate and/or lead to a lower development rate of young bovine oocytes. Further, fertilization and parthenogenic activation of mouse oocytes is also dependent on post ovulatory aging.
  • the present invention is based on the seminal discovery that certain conditions are optimal for parthenogenically activating human oocytes.
  • a method of producing human stem cells including parthenogenetically activating an oocyte, where activation includes contacting the oocyte with an ionophore at high oxygen (O 2 ) tension and contacting the oocyte with a serine- threonine kinase inhibitor under low O 2 tension, cultivating the activated oocyte at low O 2 tension until blastocyst formation, transferring the blastocyst to a layer of feeder cells, and culturing the transferred blastocyst under high O 2 tension, mechanically isolating an inner cell mass (ICM) from trophectoderm of the blastocyst, and culturing the cells of the ICM on a layer of feeder cells, where culturing the ICM cells is carried out under high O 2 tension.
  • ICM inner cell mass
  • the oocyte is human.
  • low O 2 tension is maintained by incubation in a gas mixture environment comprising an O 2 concentration of about 2% O 2 to about 5% O 2 , where the gas mixture environment further comprises about 5% CO 2 and about 90% nitrogen (N 2 ) to 93% N 2 .
  • a method of activating human metaphase II oocytes including incubating human metaphase II oocytes in in vitro fertilization (IVF) media under high O 2 tension, activating by incubating the cells in IVF media comprising an ionophore under high O 2 tension, and subsequently incubating the cells in IVF media comprising a serine-threonine kinase inhibitor (STKI) under low O 2 tension, and incubating the STKI treated cells until blastocyst formation under low O 2 tension, where inner cell masses (ICM) obtained from the blastocyst produce culturable stem cells.
  • High O 2 tension may be maintained by incubating the cells in a gas mixture environment having about 5% CO 2 , about 20% O 2 , and about 75% N 2 .
  • the O 2 tension for the incubating steps subsequent to activation is maintained by incubating the cells in a gas mixture environment comprising an O 2 concentration of about 2% O 2 to about 5% O 2 , where the gas mixture environment further includes about 5% CO 2 and about 90% N 2 to about 93% N 2 .
  • the IVF media is essentially free of non-human products.
  • isolated oocytes prepared by the invention methods are provided, including isolated inner cell masses (ICM) prepared from such oocytes and corresponding stem cells isolated therefrom.
  • ICM isolated inner cell masses
  • human parthenogenic activation of mammalian oocytes resulting in embryogenic stem cells and their differentiated progeny is provided.
  • Such cells and progeny are substantially isogenic to the oocyte donor, thus allowing for autologous transplantation of cells relative to the oocyte donor, and rejection by the oocyte donor's immune system is typically avoided.
  • a cell bank of hES cell lines derived from parthenogenically activated oocytes is provided.
  • a method for producing human stem cells from a cryopreserved oocyte or parthenote including microinjecting into the cytoplasm of the oocyte or parthenote a cryopreservation agent, freezing the oocyte or parthenote to a cryogenic temperature to cause it to enter a dormant state, storing the oocyte or parthenote in the dormant state, thawing the oocyte or parthenote, parthenogenically activating the oocyte, where the activation includes contacting the oocyte with an ionophore at high O 2 tension and contacting the oocyte with a serine-threonine kinase inhibitor under low O 2 tension, cultivating the parthenote or activated oocyte under low O 2 tension until blastocyst formation, isolating an inner cell mass (ICM) from the trophectoderm of the blastocyst, and culturing the cells of the ICM on a
  • autologous stem cells derived from parthenogenetically activated oocytes from a human donor are provided.
  • the stem cells possess a substantially identical haplotype as the donor cell.
  • stem cells are substantially identical genetically to the donor cell.
  • a stem cell is identified as a full sibling of the donor according to single nucleotide polymorphism (SNP) markers.
  • SNP single nucleotide polymorphism
  • a stem cell is genomically imprinted according to donor origin.
  • a differentiated cell derived from a stem cell obtained from a parthenogenetically activated oocyte from a human donor is disclosed.
  • the differentiated cell includes, but is not limited to, a neuronal cell, a cardiac cell, a smooth muscle cell, a striated muscle cell, an endothelial cell, an osteoblast, an oligodendrocyte, a hematopoietic cell, an adipose cell, a stromal cell, a chondrocyte, an astrocyte, a dendritic cell, a keratinocyte, a pancreatic islet, a lymphoid precursor cell, a mast cell, a mesodermal cell, and an endodermal cell.
  • the differentiated cell expresses one or more markers, including but not limited to, neurof ⁇ liment 68, NCAM, beta Ill-tubulin, GFAP, alpha-actinin, desmin, PECAM-I, VE-Cadherin, alpha-fetoprotein, or a combination thereof.
  • markers including but not limited to, neurof ⁇ liment 68, NCAM, beta Ill-tubulin, GFAP, alpha-actinin, desmin, PECAM-I, VE-Cadherin, alpha-fetoprotein, or a combination thereof.
  • a cell line comprising autologous stem cells
  • the stem cells are derived from parthenogenetically activated oocytes from a human donor.
  • the cells do not express SSEA-I.
  • the cells of the cell line give rise to ectodermal, mesodermal, and endodermal germ lines.
  • a cell bank is disclosed including cryopreserved parthenotes, where the parthenotes are derived from parthenogenetically activated oocytes from one or more human donors.
  • the parthenotes have been cultivated under low O 2 tension until blastocyst formation.
  • a cell bank including cryopreserved autologous stem cells, where the stem cells are derived from parthenogenetically activated oocytes from one or more human donors.
  • a method of treating a subject in need thereof comprising administering a cellular composition comprising differentiated cells, wherein the differentiated cells are derived from a stem cell obtained from a parthenogenetically activated oocyte from a human donor.
  • the differentiated cell is selected from the group consisting of a neuronal cell, cardiac cell, smooth muscle cell, striated muscle cell, endothelial cell, osteoblast, oligodendrocyte, hematopoietic cell, adipose cell, stromal cell, chondrocyte, astrocyte, dendritic cell, keratinocyte, pancreatic islet, lymphoid precursor cell, mast cell, mesodermal cell, and endodermal cell.
  • a neuronal cell cardiac cell, smooth muscle cell, striated muscle cell, endothelial cell, osteoblast, oligodendrocyte, hematopoietic cell, adipose cell, stromal cell, chondrocyte, astrocyte, dendritic cell, keratinocyte, pancreatic islet, lymphoid precursor cell, mast cell, mesodermal cell, and endodermal cell.
  • the subject presents a disease selected from the group consisting of Parkinson's disease, Huntington's disease, Alzheimer's disease, ALS, spinal cord defects or injuries, multiple sclerosis, muscular dystrophy, cystic fibrosis, liver disease, diabetes, heart disease, retinal disease (such as macular degeneration and retinitis pigmentosa), cartilage defects or injuries, burns, foot ulcers, vascular disease, urinary tract disease, AIDS, and cancer.
  • a method of generating cloned human embryonic stem cells including removing a first pronuclei from a previously fertilized human oocyte, transferring a second pro-nuclei into the enucleated oocyte, where the second pro-nuclei is derived from a donor oocyte or an oocyte from the mother of the donor, or a parthenogenetically activated oocyte, where the pro-nuclei of the oocyte has been replaced by the nucleus of a donor somatic cell prior to activation, and cultivating the resulting oocyte until blastocyst formation, where an inner cell mass from the blastocyst contains the embryonic stem cells.
  • Figure IA shows a micrograph of the surface marker expression of alkaline phosphatase for the parthenogenically derived hES cells.
  • Figure IB shows a micrograph of the expression for the surface marker Oct4.
  • Figure 1C shows a micrograph of the expression for the surface marker SSEA-I .
  • Figure ID shows a micrograph of the expression for the surface marker SSEA-3.
  • Figure IE shows a micrograph of the expression for the surface marker SSEA-4.
  • Figure IF shows a micrograph of the expression for the surface marker TRA-1-60.
  • Figure 1 G shows a micrograph of the expression for the surface marker TRA- 1-81.
  • Figure 2A shows the analysis of telomerase activity for the parthenogenically derived hES cells. 500, 1000, and 10000 (units) of extract was used to perform the analysis. ⁇ H-heat treated test extract (negative control); positive control-telomerase positive cells; CHAPS-lysis buffer; TSR8-control template.
  • Figure 2B shows a micrograph of embryoid body formation from parthenogenically derived hES cells, 9 day culture.
  • Figure 2C shows a micrograph of embryoid body formation from parthenogenically derived hES cells, 10 day culture.
  • Figure 2D illustrates the karyotype of parthenogenically derived hES cells.
  • Figure 2E shows the results from DNA finger printing analysis of parthenogenically derived hES cells.
  • Figure 3 shows a Northern blot characterizing the expression of genes associated with genomic imprinting.
  • DNA probes SNRPN, Pegl_2, Pegl_A, Hl 9, and GAPDH (as an internal control).
  • NSF neonatal skin fibroblasts
  • IiES human embryonic stem cell line derived from fertilized oocytes
  • NSF RT-, hES RT-, 1 RT- are negative controls.
  • Figure 4 shows the differentiation of phESC into derivatives of all three germ layers.
  • Ectoderm differentiation is presented by positive immunocytochemical staining for neuron specific markers 68 (A), NCAM (B), beta Ill-tubulin (C) and glial cell marker GFAP (D, M).
  • Differentiated cells were positive for mesodermal markers: muscle specific alpha actinin (G) and desmin (J), endothelial markers PECAM-I (E) and VE-Cadherin (F).
  • Endoderm differentiation is presented by positive staining for alpha-fetoprotein (H, L).
  • the phESC produce pigmented epithelial-like cells (I, K). Magnification (I) x 100; (A-H, J-M), x 400.
  • Figure 5 shows the characterization of phESC lines for specific markers.
  • Figure 6 demonstrates that phESC cells possess high levels of telomerase activity by comparison with positive control cells: "+"-extract from 500 cells; "-"-heat treated cell extract with inactivated telomerase; "Control +"-telomerase positive cell extract (applied with TRAPEZE Kit); "B”-CHAPS lysis buffer, primer-dimer/PCR contamination control; TSR8- telomerase quantitative control template (0.1 and 0.2 amole/ ⁇ l); "M”-marker, DNA ladder.
  • Figure 7 shows the G-banded karyotyping of phESC lines.
  • the phESC-1 (A), ⁇ hESC-3 (B), phESC-4 (C), phESC-5 (D) and phESC-6 (E) lines have normal 46, XX karyotype.
  • the phESC-7 line has 47, XXX karyotype (F).
  • “Differentiation” refers to a change that occurs in cells to cause those cells to assume certain specialized functions and to lose the ability to change into certain other specialized functional units.
  • Cells capable of differentiation may be any of totipotent, pluripotent or multipotent cells. Differentiation may be partial or complete with respect to mature adult cells.
  • Gynogenesis refers to the production of an embryo containing a discernible trophectoderm and inner cell mass that results upon activation of a cell, such as an oocyte, or other embryonic cell type, containing mammalian DNA of all female origin, preferably human female origin, e.g., human or non-human primate oocyte DNA.
  • a cell such as an oocyte, or other embryonic cell type
  • mammalian DNA may be genetically modified, e.g., by insertion, deletion or substitution of at least one DNA sequence, or may be unmodified.
  • the DNA may be modified by the insertion or deletion of desired coding sequences, or sequences that promote or inhibit embryogenesis.
  • Gynogenesis is inclusive of parthenogenesis which is defined below. It also includes activation methods where the spermatozoal DNA does not contribute to the DNA in the activated oocyte.
  • oocytes are obtained from superovulating subjects prepared for IVF.
  • "Superovulation” techniques such as treatment of a female subject with hormones, used in IVF are designed to stimulate the ovaries to produce several eggs (oocytes) rather than the usual single egg as in a natural cycle.
  • the medications required to boost egg production may include, but are not limited to the following: Lupron (gonadotropin releasing hormone-agonist), Orgalutran, Antagon or Cetrotide (gonadotropin releasing hormone-antagonist), Follistim, Bravelle or Gonal-F (FSH, follicle stimulating hormone), Repronex (combination of FSH and LH, luteinizing hormone), and Pregnyl or Novarel (hCG, human chorionic gonadotropin).
  • Lupron gonadotropin releasing hormone-agonist
  • Orgalutran Orgalutran
  • Antagon or Cetrotide glycotropin releasing hormone-antagonist
  • Follistim Bravelle or Gonal-F
  • FSH follicle stimulating hormone
  • Repronex combination of FSH and LH, luteinizing hormone
  • Pregnyl or Novarel hCG, human chorionic gonadotropin
  • Parthenogenesis (“parthenogenically activated” and “parthenogenetically activated” is used interchangeably) the process by which activation of the oocyte occurs in the absence of sperm penetration, and refers to the development of an early stage embryo comprising trophectoderm and inner cell mass that is obtained by activation of an oocyte or embryonic cell, e.g., blastomere, comprising DNA of all female origin.
  • a "parthenote” refers to the resulting cell obtained by such activation.
  • blastocyst refers to a cleavage stage of a fertilized or activated oocyte comprising a hollow ball of cells made of outer trophoblast cells and an inner cell mass (ICM).
  • ICM inner cell mass
  • the process of creating cloned human embryonic stem cell line by parthenogenetically activated oocytes is disclosed. While pathogenesis is not an uncommon form of reproduction in nature, mammals are not known to be capable of this form of reproduction. However, a 10% rate of spontaneous parthenogenesis can be found in oocytes from females of the inbred mouse strain LT/Sv (Ozil and Huneau, Development (2001) 128:917-928; Vrana et al., Proc Natl Acad Sci USA (2003) 100(Suppl 1):11911- 11916; Berkowitz and Goldstein, New Eng J Med (1996) 335(23): 1740-1748). Oocytes from placental mammals can be induced to undergo parthenogenesis in vitro; however, embryonic development is unsuccessful.
  • Macac fascicularis only 14 percent of oocytes in stage II metaphase following in vitro Parthenogenetic activation developed to the blastocyst stage following 8 days of culture (Monk, Genes Dev (1988) 2:921-925).
  • 12 percent of human oocytes that were parthenogenetically activated in vitro following nuclear transfer developed to the blastocyst state (Monk, 1988). In both cases, one stem cell line was created.
  • nuclear transfer is performed from cells comprising the inner cell mass (ICM) of these embryos into fertilized enucleated C57BL/6J mouse oocytes, cloned mice with the LT/Sv genome are obtained (Kaufman et al., Nature (1977) 265:53-55).
  • ICM inner cell mass
  • a fertilized oocyte allows for full-term development of a parthenote.
  • a fertilized enucleated human oocyte can be used to support development of a parthenogenetic embryo containing a donor's nuclei until the blastocyst stage.
  • the pronuclei of a donor's oocyte or from the oocyte of the mother of a donor, following parthenogenetic activation, can be transferred into a fertilized human oocyte from which the male and female pronuclei have been extracted.
  • a two stage process for generating human stem cells including transferring the nucleus of a donor's somatic cell into a donor oocyte, where the oocyte is subsequently activated by parthenogenesis and transferring the pronuclei of the activated oocyte into a fertilized oocyte, where the male and female pronuclei have been extracted.
  • the nucleus from a donor's somatic cell can be transferred into a fertilized enucleated human oocyte with subsequent parthenogenetic activation.
  • the three embodiments above are illustrated by the following flow diagrams: Case l
  • Pluripotent cell refers to a cell derived from an embryo produced by activation of a cell containing DNA of all female or male origin that can be maintained in vitro for prolonged, theoretically indefinite period of time in an undifferentiated state, that can give rise to different differentiated tissue types, i.e., ectoderm, mesoderm, and endoderm.
  • the pluripotent state of the cells is preferably maintained by culturing inner cell mass or cells derived from the inner cell mass of an embryo produced by androgenetic or gynogenetic methods under appropriate conditions, for example, by culturing on a fibroblast feeder layer or another feeder layer or culture that includes leukemia inhibitory factor (LIF).
  • LIF leukemia inhibitory factor
  • the pluripotent state of such cultured cells can be confirmed by various methods, e.g., (i) confirming the expression of markers characteristic of pluripotent cells; (ii) production of chimeric animals that contain cells that express the genotype of the pluripotent cells; (iii) injection of cells into animals, e.g., SCID mice, with the production of different differentiated cell types in vivo; and (iv) observation of the differentiation of the cells (e.g., when cultured in the absence of feeder layer or LIF) into embryoid bodies and other differentiated cell types in vitro.
  • various methods e.g., (i) confirming the expression of markers characteristic of pluripotent cells; (ii) production of chimeric animals that contain cells that express the genotype of the pluripotent cells; (iii) injection of cells into animals, e.g., SCID mice, with the production of different differentiated cell types in vivo; and (iv) observation of the differentiation of the cells (e.g.,
  • Diaploid cell refers to a cell, e.g., an oocyte or blastomere, having a diploid DNA content of all male or female origin.
  • Haploid cell refers to a cell, e.g., an oocyte or blastomere, having a haploid DNA content, where the haploid DNA is of all male or female origin.
  • Activation refers to a process where a fertilized or unfertilized oocyte, for example, but not limited to, in metaphase II of meiosis, undergoes a process typically including separation of the chromatid pairs, extrusion 1 of the second polar body, resulting in an oocyte having a haploid number of chromosomes, each with one chromatid.
  • Activation includes methods whereby a cell containing DNA of all male or female origin is induced to develop into an embryo that has a discernible inner cell mass and trophectoderm, which is useful for producing pluripotent cells but which is itself is likely to be incapable of developing into a viable offspring.
  • Activation may be carried out, for example, under one of the following conditions: (1) conditions that do not cause second polar body extrusion; (ii) conditions that cause polar body extrusion but where the polar body extrusion is inhibited; or (iii) conditions that inhibit first cell division of the haploid oocyte.
  • Method II refers to a stage of cell development where the DNA content of a cell consists of a haploid number of chromosomes with each chromosome represented by two chromatids.
  • metaphase II oocytes are activated by incubating oocytes under various O 2 tension gas environments.
  • the low O 2 tension gas environment is created by a gas mixture comprising an O 2 concentration of about 2%, 3%, 4%, or 5%.
  • the gas mixture comprises about 5% CO 2 .
  • the gas mixture comprises about 90% N 2 , 91% N 2 , or 93% N 2 . This gas mixture is to be distinguished from 5% CO 2 air, which is approximately about 5% CO 2 , 20% O 2 , and 75% N 2 .
  • O 2 tension refers to the partial pressure (pressure exerted by a single component of a gas mixture) of oxygen in a fluid (i.e., liquid or gas). Low tension is when the partial pressure of oxygen (p ⁇ 2 ) is low and high tension is when the p ⁇ 2 is high.
  • IVF in vitro fertilization
  • ECM substrates refer to a surface beneath cells which supports optimum growth.
  • ECM substrates include, but are not limited to, Matrigel, laminin, gelatin, and fibronectin substrates.
  • such substrates may comprise collagen IV, entactin, heparin sulfate proteoglycan, to include various growth factors (e.g., bFGF, epidermal growth factor, insulin-like growth factor-1, platelet derived growth factor, nerve growth factor, and TGF- ⁇ -1).
  • growth factors e.g., bFGF, epidermal growth factor, insulin-like growth factor-1, platelet derived growth factor, nerve growth factor, and TGF- ⁇ -1
  • Embryo refers to an embryo that results upon activation of a cell, e.g., oocyte or other embryonic cells containing DNA of all male or female origin, which optionally may be modified, that comprises a discernible trophectoderm and inner cell mass, which cannot give rise to a viable offspring and where the DNA is of all male or female origin.
  • the inner cell mass or cells contained therein are useful for the production of pluripotent cells as defined previously.
  • ICM Inner cell mass
  • fetal tissues these cells are used to provide a continuous source of pluripotent cells in vitro.
  • the ICM includes the inner portion of the embryo that results from androgenesis or gynogenesis, i.e., embryos that result upon activation of cells containing DNA of all male or female origin.
  • DNA for example, will be human DNA, e.g., human oocyte or spermatozoal DNA, which may or may not have been genetically modified.
  • Trophectoderm refers to another portion of early stage embryo which gives rise to placental tissues, including that tissue of an embryo that results from androgenesis or gynogenesis, i.e., embryos that result from activation of cells that contain DNA of all male or female origin, e.g., human ovarian or spermatozoan.
  • Differentiated cell refers to a non-embryonic cell that possesses a particular differentiated, i.e., non-embryonic, state.
  • the three earliest differentiated cell types are endoderm, mesoderm, and ectoderm.
  • substantially identical refers to a quality of sameness regarding a particular characteristic that is so close as to be essentially the same within the ability to measure difference (e.g., by HLA typing, SNP analysis, and the like).
  • HLA typing e.g., by HLA typing, SNP analysis, and the like.
  • Histocompatible refers to the extent to which an organism will tolerate a graft of a foreign tissue.
  • Genomic imprinting refers to the mechanism by which a number of genes throughout the genome are monoallelically expressed according to their parental origin.
  • Homoplasmy refers to the presence of the same type of the mitochondrial DNA (mtDNA) within a cell or individual.
  • Heteroplasmy refers to the presence of a mixture of more than one type of mitochondrial DNA (mtDNA) within a cell or individual.
  • Mechanismally isolating refers to the process of separating cell aggregates by physical forces. For example, such a process would exclude the use of enzymes (or other cell cleavage products) which might contain non-human materials.
  • oocytes In the native environment, immature oocytes (eggs) from the ovary undergo a process of maturation which results in the progression through meiosis to metaphase II of meiosis. The oocytes then arrest at metaphase II. In metaphase II, the DNA content of the cell consists of a haploid number of chromosomes, each represented by two chromatids.
  • Such oocytes may be maintained indefinitely by cryopreserving by, for example, but not limited to, microinjection with a sugar.
  • a method for producing human stem cells from a cryopreserved oocyte or parthenote including microinjecting into the cytoplasm of the oocyte or parthenote a cryopreservation agent, freezing the oocyte or parthenote to a ciyogenic temperature to cause it to enter a dormant state, storing the oocyte or parthenote in the dormant state, thawing the oocyte or parthenote, parthenogenically activating the oocyte under high O 2 tension in the presence or an ionophore followed by contacting the oocyte with a serine-threonine kinase inhibitor under low O 2 tension, culturing the activated oocyte or parthenote until blastocyst formation, isolating an inner cell mass (ICM) from the blastocyst, and culturing the cells of the ICM on a layer of human feeder cells, where culturing the ICM cells is
  • oocytes obtained as described are transferred to modified, isotonic IVF covered with embryo-tested mineral oil (Sigma), or any other suitable medium.
  • the oocytes may be incubated with an extracellular sugar at the same concentration as the amount planned for microinjection.
  • the cryopreservation agent comprises a lower Na + concentration than standard DMEM (i.e., Na + low media).
  • the cryopreservation agent comprises a higher K concentration than standard DMEM (i.e., K high).
  • the cryopreservation agent comprises both a lower Na + and higher K + concentration than standard DMEM (i.e., Na + low/ K + high media).
  • the cryopreservation agent comprises an organic buffer, including but not limited to, HEPES.
  • the cryopreservation agent comprises moieties mat inhibit apoptotic protein (e.g., capases).
  • the oocytes may be optionally equilibrated with any other substantially non-permeable solute, such a NaCl, to decrease their cell volume prior to microinjection.
  • This initial decrease in cell volume may result in a smaller final volume of the microinjected oocytes compared to oocytes not incubated in a hypertonic media prior to microinjection. This smaller final volume may minimize any potential adverse effect from the swelling of the oocytes.
  • This general procedure for the preparation of cells for microinjection may also be used for other cell types (e.g., activated oocytes, hES cells, and the like).
  • oocytes are then microinjected with a cryopreservation agent.
  • Microinjection equipment and procedures are well characterized in the art and microinjection equipment known for use in injecting small molecules into cells may be used with the invention.
  • oocytes can be microinjected at a pressure of 10 psi for 30 milliseconds.
  • Another example of a standard microinjection technique is the method described by Nakayama and Yanagimachi (Nature Biotech. 16:639-642, 1998).
  • a cryopreservation agent useful in this process includes any chemical that has cryo-protective properties and is ordinarily non-permeable.
  • the cryopreservation agent can include sugars either alone or mixed together with other traditional cryopreservation agents.
  • Carbohydrate sugars such as trehalose, sucrose, fructose, and raffinose, may be microinjected to concentrations less than or equal to about 1.0 M, and more preferably, less than or equal to about 0.4 M. In one aspect, the concentration is between 0.05 and 0.20 M, inclusive.
  • an extracellular sugar or traditional cryopreservation agent may be added prior to storage.
  • the substantially non-permeable solute may be allowed to remain in the media after microinjection or may be removed from the media by washing the cells with media containing a lower concentration, or none, of this solute.
  • sugars or polysaccharides which ordinarily do not permeate cell membranes because they are too large to pass through the membrane have superior physiochemical and biological properties for cryopreservation purposes. While these sugars ordinarily do not permeate cell membranes on their own, using the method as described, these ordinarily non-permeating sugars may be microinjected intracellularly to result in a beneficial effect.
  • Non-permeating sugars having a stabilizing or preserving effect on cells that are especially useful as the cryopreservation agent in the present method include sucrose, trehalose, fructose, dextran, and raffinose.
  • sucrose sucrose
  • trehalose a non-reducing disaccharide of glucose
  • the addition of extracellular glycolipids ox glycoproteins may also stabilize the cell membrane.
  • the cells are prepared for storage.
  • a variety of methods for freezing and/or drying may be employed to prepare the cells for storage.
  • three approaches are described herein: vacuum or air drying, freeze drying, and freeze-thaw protocols. Drying processes have the advantage that the stabilized biological material may be transported and stored at ambient temperatures.
  • oocytes loaded with 1 to 2M DMSO are cooled at a very slow cooling rate (0.3 to 0.5°C/min) to an intermediate temperature (-60 0 C. to -8O 0 C.) before plunging in liquid nitrogen for storage. The sample can then be stored at this temperature.
  • the suspended material can then be stored at cryopreservation temperatures, for example, by leaving the vials in liquid nitrogen (LN 2 ), for the desired amount of time.
  • LN 2 liquid nitrogen
  • Protocols for vacuum or air drying and for freeze drying proteins are well characterized in the art (Franks et al., "Materials Science and the Production of Shelf-Stable Biologicals," BioPharm, October 1991, p. 39; Shalaev et al., “Changes in the Physical State of Model Mixtures during Freezing and Drying: Impact on Product Quality,” Cryobiol. 33, 14-26 (1996)) and such protocols may be used to prepare cell suspensions for storage with the method as described.
  • other convective drying methods that may be used to remove water from cell suspensions include the convective flow of nitrogen or other gases.
  • An exemplary evaporative vacuum drying protocol useful with the method of the invention may include placing 20 ⁇ l each into wells on 12 well plates and vacuum drying for 2 hours at ambient temperature.
  • other drying methods could be used, including drying the cells in vials.
  • Cells prepared in this manner may be stored dry, and rehydrated by diluting in DMEM or any other suitable media.
  • a method of the invention using freeze drying to prepare the cells for storage begins with freezing the cell suspension. While methods of freezing known in the art may be employed, the simple plunge freezing method described herein for the freeze-thaw method may also be used for the freezing step in the freeze drying protocol.
  • a two stage drying process may be employed. In the first stage, energy of sublimation is added to vaporize frozen water. Secondary drying is performed after the pure crystalline ice in the sample has been sublimated. Freeze dried cells can be stored and hydrated in the same manner as described above for vacuum drying. Viable cells may then be recovered.
  • any external cryopreservation agent may be optionally removed from the culture media.
  • the media may be diluted by the addition of the corresponding media with a lower concentration of cryopreservation agent.
  • the recovered cells may be incubated for approximately five minutes in media containing a lower concentration of sugar than that used for cell storage.
  • the media may contain the same sugar that was used as the cryopreservation agent; a different cryopreservation agent, such as galactose; or any other substantially non-permeable solute.
  • the concentration of the extracellular cryopreservation agent may be slowly decreased by performing this dilution step multiple times, each time with a lower concentration of cryopreservation agent. These dilution steps may be repeated until there is no extracellular cryopreservation agent present or until the concentration of cryopreservation agent or the osmolarity of the media is reduced to a desired level.
  • the parthenogenetically activated oocytes, blastocysts, ICM, and autologous stem cells can be stored or "banked" in a manner that allows the cells to be revived as needed in the future.
  • An aliquot of the parthenogenetically activated oocytes and autologous stem cells can be removed at any time, to be grown into cultures of many undifferentiated cells and then differentiated into a particular cell type or tissue type, and may then be used to treat a disease or to replace malfunctioning tissues in a subject. Since the cells are parthenogenetically derived from the donor, the cells can be stored so that an individual or close relative can have access to cells for an extended period of time.
  • a cell bank for storing parthenogenetically activated oocytes, blastocysts, ICM, and/or autologous stem cell samples.
  • methods for administering such a cell bank are provided.
  • U.S. Published Patent Application No. 20030215942 which is incorporated by reference herein in its entirety, provides an example of a stem cell bank system.
  • a portion of the sample is made available for testing, either before or after processing and storage.
  • This invention also provides methods of recording or indexing the parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell samples so that when a sample needs to be located, it can be easily retrieved.
  • Any indexing and retrieval system can be used to fulfill this purpose.
  • Any suitable type of storage system can be used so that the parthenogenetically activated oocytes, blastocysts, ICM, and/or autologous stem cells can be stored.
  • the samples can be designed to store individual samples, or can be designed to store hundreds, thousands, and even millions of different cell samples.
  • the stored parthenogenetically activated oocyte, blastocyst, ICM, and/or ⁇ autologous stem cell samples can be indexed for reliable and accurate retrieval. For example, each sample can be marked with alphanumeric codes, bar codes, or any other method or combinations thereof. There may also be an accessible and readable listing of information enabling identification of each parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell sample and its location in the bank and enabling identification of the source and/or type the cell sample, which is outside of the bank.
  • This indexing system can be managed in any way known in the art, e.g., manually or non-manually, e.g. a computer and conventional software can be used.
  • the cell samples are organized using an indexing system so that the sample will be available for the donor's use whenever needed.
  • the cell samples can be utilized by individuals related to the original donor. Once recorded into the indexing system, the cell sample can be made available for matching purposes, e.g., a matching program will identify an individual with matching type information and the individual will have the option of being provided the matching sample.
  • the storage banking system can comprise a system for storing a plurality of records associated with a plurality of individuals and a plurality of cell samples. Each record may contain type information, genotypic information or phenotypic information associated with the cell samples or specific individuals.
  • the system will include a cross-match table that matches types of the samples with types of individuals who wish to receive a sample.
  • the database system stores information for each parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell sample in the bank. Certain information is stored in association with each sample.
  • the information may be associated with a particular donor, for example, an identification of the donor and the donor's medical history.
  • each sample may be HLA typed and the HLA type information may be stored in association with each sample.
  • the information stored may also be availability information.
  • the information stored with each sample is searchable and identifies the sample in such a way that it can be located and supplied to the client immediately.
  • embodiments of the invention utilize computer-based systems that contain information such as the donor, date of submission, type of cells submitted, types of cell surface markers present, genetic information relating to the donor, or other pertinent information, and storage details such as maintenance records and the location of the stored samples, and other useful information.
  • a computer-based system refers to the hardware, software, and any database used to store, search, and retrieve information about the stored cells.
  • the computer- based system preferably includes the storage media described above, and a processor for accessing and manipulating the data.
  • the hardware of the computer-based systems of this embodiment comprises a central processing unit (CPU) and a database.
  • CPU central processing unit
  • database a database
  • the computer system includes a processor connected to a bus that is connected to a main memory (preferably implemented as RAM) and a variety of secondary storage devices, such as a hard drive and removable medium storage device.
  • the removable medium storage device can represent, for example, a floppy disk drive, a DVD drive, an optical disk drive, a compact disk drive, a magnetic tape drive, etc.
  • a removable storage medium, such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded therein can be inserted into the removable storage device.
  • the computer system includes appropriate software for reading the control logic and/or the data from the removable medium storage device once inserted in the removable medium storage device.
  • Information relating to the parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell can be stored in a well known manner in the main memory, any of the secondary storage devices, and/or a removable storage medium.
  • Software for accessing and processing these data (such as search tools, compare tools, etc.) reside in main memory during execution.
  • a database refers to memory that can store any useful information relating to the parthenogenetically activated oocyte and/or autologous stem cell collections and the donors.
  • the data relating to the stored parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell can be stored and manipulated in a variety of data processor programs in a variety of formats.
  • the data can be stored as text in a word processing file, such as Microsoft WORD or WORDPERFECT, an ASCII file, an html file, or a pdf file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE.
  • a "search program” refers to one or more programs that are implemented on the computer-based system to search for details or compare information relating to the cryopreserved samples within a database.
  • a "retrieval program” refers to one or more programs that can be implemented on the computer-based system to identify parameters of interest in the database. For example, a retrieval program can be used to find samples that fit a particular profile, samples having specific markers or DNA sequences, or to find the location of samples corresponding to particular individuals.
  • the storage facility may have a means for any method of organizing and indexing the stored cell samples, such as, for example, automated robotic retrieval mechanisms and cell sample manipulation mechanisms.
  • the facility may include micromanipulation devices for processing cell samples.
  • Known conventional technologies can be used for efficient storage and retrieval of the cell samples. Exemplary technologies include but are not limited to Machine Vision, Robotics, Automated Guided Vehicle System, Automated Storage and Retrieval Systems, Computer Integrated Manufacturing, Computer Aided Process Planning, Statistical Process Control, and the like.
  • the type information or other information associated with the individual in need of a sample may be recorded into a system that can be used to identify an appropriate matching product, such as, for example, a database system, an indexing system, and the like. Once recorded in the system, a match can be made between the type of the individual and a donor cell sample.
  • the donor sample is from the same individual as the individual in need of the sample. However, similar but not identical donor/recipient matches can also be used.
  • the matching sample is available for the individual possessing the matching type identifier. In one embodiment of this invention, the individual's identification information is stored in connection with the cell sample.
  • the matching process occurs around the time of harvesting the sample, or can occur at any time during processing, storage, or when a need arises. Accordingly, in some embodiments of the invention, the matching process occurs before the individual is in actual need of the cell sample.
  • parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell sample When needed by an individual, it may be retrieved and made available for research, transplantation or other purposes within minutes, if desired. The sample may also be further processed to prepare it for transplantation or other needs.
  • the oocyte is ovulated at this stage and fertilized by the sperm.
  • the sperm initiates the completion of meiosis in a process called activation.
  • the pairs of chromatids separate, the second polar body is extruded, and the oocyte retains a haploid number of chromosomes, each with one chromatid.
  • the sperm contributes the other haploid complement of chromosomes to make a full diploid cell with single chromatids.
  • the chromosomes then progress through DNA synthesis during the first cell cycle. These cells then develop into embryos.
  • embryos described herein are developed by artificial activation of cells, typically mammalian oocytes or blastomeres containing DNA of all male or female origin.
  • cells typically mammalian oocytes or blastomeres containing DNA of all male or female origin.
  • many methods have been reported in the literature for artificial activation of unfertilized oocytes.
  • Such methods include physical methods, e.g., mechanical methods such as pricking, manipulation or oocytes in culture, thermal methods such as cooling and heating, repeated electric pulses, enzymatic treatments, such as trypsin, pronase, hyaluronidase, osmotic treatments, ionic treatments such as with divalent cations and calcium ionophores, such as ionomycin and A23187, the use of anesthetics such as ether, ethanol, tetracaine, lignocaine, procaine, phenothiazine, tranquilizers such as thioridazine, trifluoperazine, fluphenazine, chlorpromazine, the use of protein synthesis inhibitors such as cycloheximide, puromycin, the use of phosphorylation inhibitors, e.g., protein kinase inhibitors such as staurosporine, 2-aminopurine, sphingosine, and DMAP, combinations thereof,
  • a human cell in metaphase II typically an oocyte or blastomere comprising DNA of all male or female origin, is artificially activated for effecting artificial activation of oocytes.
  • the activated cell e.g., oocyte, which is diploid
  • the activated cell is allowed to develop into an embryo that comprises a trophectoderm and an inner cell mass. This can be effected using known methods and culture media that facilitate blastocyst development.
  • the cells of the inner cell mass are then used to produce the desired pluripotent cell lines. This can be accomplished by transferring cells derived from the inner cell mass or the entire inner cell mass onto a culture that inhibits differentiation. This can be effected by transferring the inner cell mass cells onto a feeder layer that inhibits differentiation, e.g., fibroblasts or epithelial cells, such as fibroblasts derived from postnatal human tissues, etc., or other cells that produce LIF.
  • a feeder layer that inhibits differentiation
  • the inner cell mass cells are cultured on human postnatal foreskin or dermal fibroblast cells or other cells which produce leukemia inhibitory factor, or in the presence of leukemia inhibitory factor.
  • feeder cells are inactivated prior to seeding with the ICM.
  • the feeder cells can be mitotically inactivated using an antibiotic.
  • the antibiotic can be, but is not limited to, mitomycin C.
  • oocytes are parthenogenically activated with calcium ionophores under high O 2 tension followed by contacting the oocytes with a serine-threonine kinase inhibitor under low O 2 tension.
  • the resulting ICM from the parthenogenically activated oocytes is cultured under high O 2 tension, where the cells, for example, are maintained using a gas mixture comprising 20% O 2 .
  • culturable refers to being capable of, or fit for, being cultivated.
  • ICM isolation is carried out mechanically after four days of blastocyst cultivation, where the cultivation is carried out on feeder cells.
  • Such cultivation for example, eliminates the need to use materials derived from animal sources, as would be the case for immunosurgery.
  • culture media for the ICM is supplemented with non-animal sera, including but not limited to, human umbilical cord serum, where the serum is present in defined media (e.g., IVF, available from MediCult A/S, Denmark; Vitrolife, Sweden; or Zander IVF, Inc., Vero Beach, FL).
  • defined media e.g., IVF, available from MediCult A/S, Denmark; Vitrolife, Sweden; or Zander IVF, Inc., Vero Beach, FL.
  • the media and processes as provided are free of animal products.
  • animal products are those products, including serum, interferons, chemokines, cytokines, hormones, and growth factors, mat are from non- human sources.
  • the pluripotent state of the cells produced by the present invention can be confirmed by various methods.
  • the cells can be tested for the presence or absence of characteristic ES cell markers.
  • characteristic ES cell markers include SSEA-4, SSEA-3, TRA-I -60, TRA-I -81 and OCT 4, and are known in the art.
  • pluripotency can be confirmed by injecting the cells into a suitable animal, e.g., a SCID mouse, and observing the production of differentiated cells and tissues. Still another method of confirming pluripotency is using the subject pluripotent cells to generate chimeric animals and observing the contribution of the introduced cells to different cell types. Methods for producing chimeric animals are well known in the art and are described in U.S. Pat. No. 6,642,433, incorporated by reference herein.
  • pluripotent cells and cell lines preferably human pluripotent cells and cell lines, which are derived from DNA of entirely female original, have numerous therapeutic and diagnostic applications. Such pluripotent cells may be used for cell transplantation therapies or gene therapy (if genetically modified) in the treatment of numerous disease conditions.
  • human pluripotent (ES) cells produced according to the invention should possess similar differentiation capacity.
  • the pluripotent cells according to the invention will be induced to differentiate to obtain the desired cell types according to known methods.
  • human ES cells produced according to the invention may be induced to differentiate into hematopoietic stem cells, muscle cells, cardiac muscle cells, liver cells, islet cells, retinal cells, cartilage cells, epithelial cells, urinary tract cells, etc., by culturing such cells in differentiation medium and under conditions which provide for cell differentiation. Medium and methods which result in the differentiation of ES cells are known in the art as are suitable culturing conditions.
  • Pluripotent cells produced by the methods described herein may be used to obtain any desired differentiated cell type.
  • Therapeutic usages of differentiated human cells are unparalleled.
  • human hematopoietic stem cells may be used in medical treatments requiring bone marrow transplantation. Such procedures are used to treat many diseases, e.g., late stage cancers such as ovarian cancer and leukemia, as well as diseases that compromise the immune system, such as AIDS.
  • Hematopoietic stem cells can be obtained, e.g., by incorporating male or female DNA derived from a male or female cancer or AIDS patient with an enucleated oocyte, obtaining pluripotent cells as described above, and culturing such cells under conditions which favor differentiation, until hematopoietic stem cells are obtained.
  • Such hematopoietic cells may be used in the treatment of diseases including cancer and AIDS.
  • the subject pluripotent cells may be used to treat a patient with a neurological disorder by culturing such cells under differentiation conditions that produce neural cell lines.
  • Specific diseases treatable by transplantation of such human neural cells include, by way of example, Parkinson's disease, Alzheimer's disease, ALS and cerebral palsy, among others.
  • Parkinson's disease it has been demonstrated that transplanted fetal brain neural cells make the proper connections with surrounding cells and produce dopamine. This can result in long-term reversal of Parkinson's disease symptoms.
  • nerve precursors can be used to reanneal severed/damaged nerve fibers to restore movement after hand, leg, and spinal cord injuries.
  • One object of the subject invention is that it provides an essentially limitless supply of pluripotent, human cells that can be used to produce differentiated cells suitable for autologous transplantation for the oocyte donor.
  • Human embryonic stem cells and their differentiated progeny derived from blastocysts remaining after infertility treatments, or created using NT, will likely be rejected by a recipient's immune system when used in allogenic cell transplantation therapy.
  • Parthenogenically derived stem cells should result in differentiated cells that could alleviate the significant problem associated with current transplantation methods, i.e., rejection of the transplanted tissue which may occur because of host-vs-graft or graft-vs-host rejection relative to the oocyte donor.
  • Another object of the subject invention is that it provides an essentially limitless supply of pluripotent, human cells that can be used to produce differentiated cells suitable for allogenic transplantation to members of the oocyte donor's family (e.g., siblings).
  • the cells will be immunologically and genetically similar to those of the oocytes donor's direct family members and thus less likely to be rejected by the donor's family members.
  • Another object of this method is that parthenogenic activation of mammalian oocytes is a relatively simple procedure when compared to SCNT and results in the creation of stem cells with less cell manipulation.
  • Other diseases and conditions treatable by cell therapy include, by way of example, spinal cord injuries, multiple sclerosis, muscular dystrophy, diabetes, liver diseases Including acute diseases (viral hepatitis, drug overdoses (acetaminophen) and others), chronic diseases (chronic hepatitis and others (generally leading to cirrhosis)), heritable liver defects (hemophilia B, factor IX deficiency, bulirubin metabolism defects, urea cycle defects, lysosomal storage disease, al -antitrypsin deficiency and others), heart diseases, cartilage replacement, burns, foot ulcers, gastrointestinal diseases, vascular diseases, kidney disease, retinal disease, urinary tract disease, and aging related diseases and conditions.
  • This methodology can be used to replace defective genes, e.g., defective immune system genes, cystic fibrosis genes, or to introduce genes which result in the expression of therapeutically beneficial proteins such as growth factors, lymphokines, cytokines, enzymes, etc.
  • the gene encoding brain derived growth factor may be introduced into human pluripotent cells produced according to the invention, the cells differentiated into neural cells and the cells transplanted into a Parkinson's patient to retard the loss of neural cells during such disease.
  • the subject pluripotent human ES cells may be used as an in vitro model of differentiation, in particular for the study of genes which are involved in the regulation of early development. Also, differentiated cell tissues and organs produced using the subject ES cells may be used in drug studies.
  • the subject ES cells or differentiated cells derived therefrom may be used as nuclear donors for the production of other ES cells and cell colonies.
  • pluripotent cells obtained according to the present disclosure may be used to identify proteins and genes that are involved in embryogenesis. This can be effected, e.g., by differential expression, i.e., by comparing mJRNAs that are expressed in pluripotent cells provided according to the invention to mRNAs that are expressed as these cells differentiate into different cell types, e.g., neural cells, myocardiocytes, other muscle cells, skin cells, etc. Thereby, it may be possible to determine what genes are involved in differentiation of specific cell types.
  • differential expression i.e., by comparing mJRNAs that are expressed in pluripotent cells provided according to the invention to mRNAs that are expressed as these cells differentiate into different cell types, e.g., neural cells, myocardiocytes, other muscle cells, skin cells, etc.
  • ES cells and/or their differentiated progeny that have specific genetic defects may be used as models to study the specific disease associated with the genetic defect.
  • pluripotent cell lines produced according to the described methods to cocktails of different growth factors, at different concentrations and under different cell culture conditions such as cultured on different cell matrices or under different partial pressures of gases so as to identify conditions that induce the production and proliferation of desired differentiated cell types.
  • Donors voluntarily donated oocytes, cumulous cells, and blood (for DNA analysis) with no financial payment. Donors signed comprehensive informed consent documents and were informed that all donated materials were to be used for research and not for reproductive purposes. Before ovarian stimulation, oocyte donors underwent medical examination for suitability according to FDA eligibility determination guidelines for donors of human cells, tissues, and cellular and tissue-based products (Food and Drug Administration. (Draft) Guidance for Industry: Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue Based Products (HCT/Ps) dated May 2004) and order N 67 (02.26.03) of Russian Public Health Ministry. It included X-ray, blood and urine analysis, and liver function test. Donors were also screened for syphilis, HIV, HBV, and HCV.
  • Oocytes were obtained using standard hormonal stimulation to produce superovulation in the subject donor. Each donor egg underwent ovarian stimulation by FSH from the 3rd to the 13th days of their menstrual cycle. A total of 1500IU of FSh was given. From the 10th to the 14th day of the donor's menstrual cycle, gonadoliberin antagonist Orgalutran (Organon, Holland) was injected at 0.25 mg/day.
  • Orgalutran Organon, Holland
  • COCs Cumulus oocyte complexes
  • COCs cumulus-oocyte complexes
  • SynVitro Hyadase MediCult, AJS, Denmark
  • the culture of oocytes and embryos was performed in a humidified atmosphere at 37 0 C using O 2 -reduced gas mixture (90% N 2 + 5% O 2 + 5% CO 2 ), with the exception of the ionomycin treatment.
  • the oocytes were activated by incubation in 5 ⁇ M ionomycin for 5 minutes in a CO 2 incubator at 37°C in a gas environment of 20% O 2 , 5% CO 2 , followed by culture with 1 mM 6-dimethylaminopurine (DMAP) for 4 hours in IVF medium, with paraffin overlay, in a gas environment of 90% N 2 , 5% O 2 , and 5% CO 2 at 37 0 C.
  • DMAP 6-dimethylaminopurine
  • the oocytes were then washed 3 times in IVF. Activation and cultivation were carried out in 4-well plates (Nunclon, A/S, Denmark) in 500 ⁇ l of medium overlaid with liquid paraffin oil (MediCult, A/S, Denmark).
  • Activated oocytes were cultivated in IVF medium in a gas environment comprising 5% O 2 , 5% CO 2 , and 90% N 2 , and embryos generated from the activated oocytes were cultured in the same gas mixture.
  • Activated oocytes were allowed to incubate in IVF under the above conditions (i.e., low O 2 tension) until fully expanded blastocysts containing an inner cell mass (ICM) at a Blastocyst Scoring Modification of IAA or 2AA (Shady Grove Fertility Center, Rockville, MD, and Georgia Reproductive Specialists, Atlanta, GA) was observed.
  • ICM inner cell mass
  • the zona pellucida was removed by 0.5% pronase (Sigma, St. Louis) treatment.
  • the ICM from blastocysts was isolated by immuno-surgery where the blastocysts were incubated with horse antiserum to human spleen cells followed by exposure to guinea pig complement. Trophoectodern cells were removed from the ICM by gently pipetting the treated blastocysts.
  • the blastocysts were placed on a feeder layer in medium designed for culture of phESC (i.e., VitroHESTM media (e.g., DMEM/high glucose medium, VitroLife, Sweden) supplemented with 10% human umbilical cord blood serum, 5 ng/ml human recombinant LIF (Chemicon Int'l, Inc., Temecula, CA), 4 ng/ml recombinant human FGF (Chemicon Int'l, Inc., Temecula, CA) and penicillin- streptomycin (lOOU/lOO ⁇ g)).
  • VitroHESTM media e.g., DMEM/high glucose medium, VitroLife, Sweden
  • the ICM became visible. Through three to four days of additional culture, the ICM was isolated through mechanical slicing of the ICM from the trophoectoderm outgrowth using a finely drawn glass pipette. Further, the IMC cells were cultured on a feeder cell layer of mitotically inactivated post natal human dermal fibroblasts, in VirtroHESTM media (as formulated above) in a 96-well plate in 5% CO 2 and 20% O 2 at 37 0 C. This gas mixture was used to culture stem cells. Human fibroblast cultures were made using non-animal materials.
  • Inactivation of fibroblasts was carried out using 10 ⁇ g/ml mitomycin C (Sigma, St. Louis, MO) for 3 hours.
  • immuno-surgery was performed by incubating blastocysts with horse antiserum to human spleen cells followed by exposure to rabbit complement. The trophectoderm cells were removed from the ICM through gentle pipetting of the treated blastocyts. Further culturing of the isolated ICMs was performed on a feeder layer of neonatal human skin fibroblasts (HSF) obtained from a genetically unrelated individual (with parental consent) derived using medium containing human umbilical cord blood serum. The HSF feeder layer was mitotically inactivated using mitomycin C.
  • HSF neonatal human skin fibroblasts
  • the medium for the culture of HSF consisted of 90% DMEM (high glucose, with L-glutamaine (Invitrogen), 10% human umbilical cord blood serum and penicillin- streptomycin (,100U/100mg) Invitrogen).
  • VitroHESTM Vitrolife
  • 4ng/ml hrbFGF 4ng/ml hrLIF
  • 10% human umbilical cord blood serum 4ng/ml hrbFGF
  • the ICM was mechanically plated on a fresh feeder layer and cultured for three to four days. The first colony was mechanically cut and replated after five days of culture. All subsequent passages were made after five to six days in culture. For early passages, colonies were mechanically divided into clumps and replated. Further passing of phESC was performed with collagenase IV treatment and mechanical dissociation. The propagation of phESC was performed at 37°C, 5% CO 2 in a humidified atmosphere.
  • MlTM media MediCult
  • M2TM media MediCult
  • MlTM and M2TM contain human serum albumin, glucose and derived metabolites, physiological salts, essential amino acids, non-essential amino acids, vitamins, nucleotides, sodium bicarbonate, streptomycin (4C mg ⁇ ), penicillin (40.000 IU/ 1) and phenol red.
  • Inner cell masses were isolated from N4 and transferred to human fibroblast feeder cells as outlined above. Nl and N2 degenerated on Day 6. Further, on Day 6, N3 produced folly expanded blastocyst with ICM 2AB. N3 was then transferred to human fibroblast feeder cells on Day 6. ICM from N4 was unchanged. N3 was used to isolate stem cells.
  • ICM cells were cultivated in VitroHESTM medium in a gas environment comprising 5% CO 2 , and 95% N 2 and followed over forty-five (45) days.
  • Table 2a shows the progress of N3 ICM cell cultivation.
  • hES cell colonies and phESC cells on feeder layers were seeded onto micro cover glass, washed twice with PBS and fixed with 100% methanol for 5 minutes at -2O 0 C.
  • Cells were washed twice with PBS + 0.05% Tween-20 and permeabilized with PBS + 0.1% Triton X-100 for 10 minutes at room temperature. After cell washing, non-specific binding was blocked by incubation with blocking solution (PBS + 0.05% Tween-20 + four percent goat serum plus three percent human umbilical cord blood serum) for 30 minutes at room temperature (RT).
  • blocking solution PBS + 0.05% Tween-20 + four percent goat serum plus three percent human umbilical cord blood serum
  • Monoclonal antibodies were diluted in blocking solution and used for one hour at RT: SSEA-I (MAB4301) (1:30), SSEA-3 (MAB4303) (1:10), SSEA-4 (MAB4304) (1:50), OCT-4 (MAB4305) (1 :30), TRA-1-60 (MAB4360) (1:50), and TRA-I -81 (MAB4381) (1:50) from Chemicon.
  • SSEA-I MAB4301
  • SSEA-3 MAB4303
  • SSEA-4 MAB4304
  • OCT-4 MAB4305)
  • TRA-1-60 MAB4360
  • TRA-I -81 MAB4381
  • Alkaline phosphatase and telomerase activity were performed according to the manufacturer's specifications with AP kit and TRAPEZETM Kit (Chemicon).
  • hES cells were treated with lO ⁇ g/ml Demecolcine (Sigma) for two hours, harvested with 0.05% trypsin/EDTA (Invitrogen) and centrifuged at 700 x rpm for three minutes. The pellet was resuspended in 5 ml of 0.56% KCl, and incubated for 15 minutes at RT. After repeated centrifugation, the supernatant was removed and cells were resuspended and fixed with 5 ml of an ice cold mixture of methanol/acetic acid (3:1) for five minutes at +4°C.
  • hES and phESC cell colonies were mechanically divided into clumps and placed in wells of a 24 well plate precoated with 1.5% agarose (Sigma) in medium containing 85% Knockout DMEM, 15% human umbilical cord blood serum, 1 x MEM NEAA, 1 mM Glutamax, 0.055 mM ⁇ -mercaptoethanol, penicillin-streptomycin (50 U/50 mg), 4 ng/ml hrbFGF (all from Invitrogen, except serum). Human EBs were cultured for 14 days in suspension culture and placed on a culture dish to give outgrowth or cultivated in suspension for an additional week.
  • Neural differentiation was induced by the cultivation of two week old embryoid bodies attached to a culture dish surface over a period of a week in differentiation medium: DMEM/F12, B27, 2 mM Glutamax, penicillin-streptomycin (lOOU/lOO ⁇ g) and 20 ng/ml hrbFGF (all from Invitrogen). Some embryoid bodies gave rise to differentiated cells with neural morphology, others were dissected and additionally cultured to produce neurospheres.
  • Genomic DNA was extracted from donor blood, hES, phESC cells, and human newborn skin fibroblasts (NSFs) with Dynabeads DNA Direct Blood from Dynal (Invitrogen).
  • HLA typing was performed by PCR with allele-specific sequencing primers (PCR-SSP, Protrans) according to the manufacturer's specifications.
  • HLA class I genes HLA A*,B*,Cw* were typed with PROTRANS HLA A* B* Cw* defining A*01-A*80, B*07-B*83, Cw*01-Cw*18 regions.
  • HLA class II genes HLA DRBl*, DRB3*, DRB4*, DRB5*, DQAl*, DQBl*
  • PROTRANS HLA DRBl* defining DRB1*O1-DRB1*16 (DR1-DR18), DRB3*, DRB4*, DRB5* regions
  • PROTRANS HLA DQBl* DQAl* defining DQB 1*02- DQB 1*06 (DQ2-DQ9), DQAl*0101-DQAl*0601 regions.
  • PCR amplification was achieved: at 94°C for 2 min; 10 cycles at 94°C for 10 sec, 65 0 C for 1 min; 20 cycles at 94 0 C for 10 sec, 61 0 C for 50 sec, 72 0 C for 30 sec. Amplified products were detected in 2% agarose gel.
  • Genomic DNA was isolated from blood, cumulus cells, phESC and NSF by phenol/chloroform extraction method. These DNA samples obtained from four Caucasian subjects were genotyped with Affimetrix Mapping 5OK Hind 240 Array (part of Affimetrix GeneChip Mapping IOOK kit). Initially, the dataset contained 57,244 binary SNP markers. Since the number of markers is more than would be necessary to identify the equivalency of genomic samples and to study heterozygosity, 15 (chromosomes 1-15) out of 22 autosomal chromosomes were chosen.
  • the shorter seven chromosomes were removed to reduce the chance that no marker, or only a single marker for a given chromosome, is selected during random sampling.
  • the 1,459 markers were analyzed by Relcheck (version 0.67, Copyright ⁇ 2000 Karl W. Broman, Johns Hopkins University, Licensed under GNU General Public License version 2 (June 1991)).
  • RNA and DNA were extracted from cells using Tri-reagent (Sigma) or by using an RNA preparation kit from Qiagen (Valencia, CA).
  • Northern blots containing RNA from the various samples were blotted onto filters by standard methods (See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 1989, 2nd ed, Cold Spring Harbor Press).
  • the Northern filter was hybridized with single stranded oligonucleotide probes that hybridized specifically to the mRNAs.
  • the oligonucleotide probes were end-labeled with [ ⁇ 32 P]ATP (Amersham Biosciences).
  • the sequences of the oligonucleotide probes were obtained from sequences based on the following Accession Nos.: NP002393 (Pegl_2 and Pegl_A; for these genes, human PEGl is transcribed from two alternative promoters, resulting in the transcription of two isoforms, of which only one (isoform 1_2) is imprinted.
  • Paternal expression isoform 1 occurs in conjunction with an unmethylated CpG island in exon 1 of the paternal allele, whereas the corresponding CpG island in the maternal gene (isoform 1_A) is fully methylated.
  • isoform 1_A the corresponding CpG island in the maternal gene
  • Genomic DNA was isolated from blood, liES cells, and NSFs through a phenol/chloroform extraction, digested with Hinfl restriction enzyme (Fermentas) and loaded in a 0.8% agarose gel. Following electrophoresis, denatured DNA was transferred to a nylon membrane (Hybond N, Amersham) by Southern blotting and hybridized with 32 P-labeled (CAC) 5 oligonucleotide probe. mData were analysed after membrane exposition on X-ray film (Kodak XAR) using Cronex intensifying screens.
  • Allele frequencies for known populations i.e., Russian and Caucasian-American populations determined for the above polymorphic sites were compared to allele frequencies of these sites in test samples (i.e., hES, NSF, and donor blood DNA).
  • test samples i.e., hES, NSF, and donor blood DNA.
  • GenBank locus and locus definition APOB, apolipoprotein B (including Ag(x) antigen) untranslated region
  • VNTR ladder size range (# of repeats, according to Ludwig et al, 1989): 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52
  • PCR protocol Thermal cycler: DNA Technology Ltd., Russia Initial Incubation: 95 0 C, 2' Cycling for 30 cycles:
  • D1S80 pMCTl l ⁇ hypervariable minisatellite locus (D1S80 VNTR)
  • GenBank locus and locus definition Human D1S80 and MCT118 gene
  • VNTR ladder size range (# of repeats): 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 40, 41
  • GenBank locus and locus definition NA
  • STR ladder size range (# of repeats): 5, 8, 9, 10, 11, 12, 13, 14, 15
  • VNTR ladder size range (# of repeats): 6, 7, 8, 9, 10, 11, 12, 13, 14
  • vWFII Human von Willebrand factor gene hypervariable microsatellite locus II
  • GenBank locus and locus definition HUMvWFII, Human von Willebrand factor gene
  • GenBank locus and locus definition NA
  • STR ladder size range (# of repeats): 8, 9, 10, 11, 12, 13, 14, 15
  • PCR protocol Thermal cycler: DNA Technology Ltd., Russia Initial Incubation: 95 0 C, T Cycling for 30 cycles:
  • GenBank locus and locus definition HUMVWF A31 , Human von Willebrand factor gene
  • GenBank locus and locus definition HUMCSFlPO, Human c-fms proto-oncogene
  • TPOX Human thyroid peroxidase gene microsatellite locus
  • GenBank locus and locus definition HUMTPOX, Human thyroid peroxidase gene
  • STR ladder size range (# of repeats): 6, 7, 8, 9, 10, 11, 12, 13
  • GenBank locus and locus definition HUMTHOl, Human tyrosine hydroxylase gene
  • STR ladder size range (# of repeats): 5, 6, 7, 8, 9, 10, 11
  • the hES cells from this method display many features that are typical for embryonic stem cells: cytoplasmic lipid bodies, small cytoplasmic/nuclear ratio and clearly distinguishable nucleoli.
  • the hES cell colonies display similar morphology to that reported previously for human embryonic stem cells derived after in vitro fertilization.
  • the cells were immunoreactively positive for alkaline phosphatase (Fig IA), octamer-binding transcription factor 4 mRNA (Oct-4) (Fig IB), stage- specific embryonic antigen 1 (SSEA-I) (Fig lC),stage- specific embryonic antigen 3 (SSEA-3) (Fig ID), stage-specific embryonic antigen 4 (SSEA-4) (Fig IE), tumor rejection antigen 1-60 (TRA-I -60) (Fig IF), tumor rejection antigen 1-81 (TRA-I -81) (Fig IG), and negative for stage-specific embryonic antigen 1 (SSEA-I) (Fig 1C), (which is positive for mouse embryonic stem cells, but not for human).
  • Fig IA alkaline phosphatase
  • Oct-4 octamer-binding transcription factor 4 mRNA
  • Fig IB stage- specific embryonic antigen 1
  • SSEA-3 stage-specific embryonic antigen 3
  • SSEA-4 stage-specific embryonic antigen
  • telomerase activity is often correlated with replicative immortality and is typically expressed in germ cells, cancer cells, and a variety of stem cells, including stem cells, but absent in most somatic cell types.
  • the cells prepared by this method after three months in in vitro proliferation maintained their undifferentiated morphology and displayed high levels of telomerase activity (Fig 2A).
  • the pluripotency of the cells was investigated in vitro by embryoid body formation (Fig 2B, 2C), G-banded karyotyping shows that cells have normal human 46XX karyotype (Fig 2D).
  • DNA fingerprinting analysis was performed on the blood of the oocyte donor, on the ES cells, and on the HNSF feeder cells by Southern blotting and hybridization with a 32 P - labeled (CAC)s oligonucleotide probe (Fig 2E), and monolocus polymerase chain reaction (PCR) with different locuses.
  • CAC 32 P - labeled
  • Fig 2E oligonucleotide probe
  • PCR monolocus polymerase chain reaction
  • Heterozygosity (heterozygosis) of all heterozygous donor loci (but one, D7S820) was not changed in hES loci.
  • Homozygosity (homozygosis) of D7S820 locus in hES DNA is a result of mutation (insertion of one AGAT monomer in microsatellite repeat) due to slipped-strand mispairing during DNA replication and DNA repair.
  • FIG. 2E demonstrated heterozygosity of hES cells and their identity with the oocyte donor's blood, and there was no similarity between the hES cells and the feeder cells.
  • the DNA profile of hES cell line was confirmed by PCR-based haplotype analysis using polymorphic genes within the MHC class I and class II. Total genomic DNA from the oocyte donor blood cells, from hES cells, and feeder HNSFs were genotyped and compared. The data demonstrated that hES cells and cells from donor blood were indistinguishable from each other and therefore should be considered autologous, and both distinguished from DNA of the feeder cells (Table 16).
  • DNA fingerprinting and HLA typing analysis confirmed that the hES cells are heterozygous and contain the whole donor genetic material. These results coincide with data from parthenogenetic monkey stem cell lines (Vrana et al., Proc Natl Acad Sci USA (2003) 100(Suppl 1):11911-11916), and do not coincide with data from parthenogenetic mouse stem cell lines (Lin et al., Stem Cells (2003) 21 :153-161), which contains half of the donor genetic material.
  • the phESC lines display a morphology expected in hES cells, forming colonies with tightly packed cells, prominent nucleoli and a small cytoplasm to nucleus ratio (FIG. 4). These cells express traditional hES markers SSEA-3, SSEA-4, TRA-1-60, TRA- 1-81, and OCT-4, and do not express SSEA-I, a positive marker for undifferentiated mouse embryonic stem cells (FIG. 4).
  • SSEA-3, SSEA-4, TRA-1-60, TRA- 1-81, and OCT-4 do not express SSEA-I, a positive marker for undifferentiated mouse embryonic stem cells (FIG. 4).
  • the cells derived from all lines demonstrate high levels of alkaline phosphatase and telomerase activity (FIG. 5 and FIG. 6).
  • G-banded karyotyping showed that phESC lines have a normal human 46,XX karyotype, with the exception of the phESC-7 line (FIG. 7). Approximately 91% of cells from the phESC-7 line have a 47,XXX karyotype and 9% of the cells have a 48,XXX,+6 karyotype. A different degree of X chromosome heteromorphism was observed in the lines; approximately 12% of the phESC-1 and phESC-6 lines; 42% for the phESC-5 line; and 70, 80, and 86 % for the cell lines phESC7, phESC-3, and phESC-4, respectively (FIG. 7).
  • DiSfA samples were numbered as follows: 1-human neonatal skin fibroblasts; 2-phESC-7 line donor; 3-phESC-7 line; 4-phESC-l line; 5-phESC-l line; 6-phESC-3 line; 7-phESC-4 line; 8-phESC-5 line; 9-phESC-6 line; 10- phESC-6 line donor; ll-phESC-3 to phESC-5 lines donor; and 12-phESC-l line donor.
  • Example 4-5 has been identified as monozygotic (MZ) twins.
  • Ten other pairs (samples 2-3, 4-12, 5-12, 6-7, 6-11, 7-8, 7-11, 8-11, 9-10) have been identified as full siblings, and all the other combination of pairs have been identified as unrelated.
  • the output does not display P (observed markers
  • differentiated cells derived from all phESC lines should be wholly histocompatible with the oocyte donors, making this a method to create cells of therapeutic use (Table 19).
  • DNA-profiling of the genetic material derived from the human fibroblasts used as feeder cells revealed no contamination of the pliESC cell lines with material from the human fibroblasts (Table 19).
  • the phESC-1 line remained undifferentiated during ten months of culture, spanning 35 passages.
  • the other cell lines were successfully cultivated over at least 21 passages.
  • the cells from all phESC lines formed cystic embryoid bodies in suspension culture and gave rise to derivatives of all three germ layers: ectoderm, mesoderm, and endoderm, after differentiation in vitro (FIG. 4).
  • Approximately 5% of embryoid bodies from the phESC- 1 line gave rise to beating cells five days following plating.
  • the phESC-6 line produced pigmented epithelial-like cells (FIG. 41, K).
  • Ectoderm differentiation is presented by positive immunocytochemical staining for neuron specific markers neurofiliment 68 (FIG.
  • NCAM NCAM
  • beta Ill-tubulin FGFAP
  • GFAP glial cell marker GFAP
  • mesoderm markers including alpha-actinin (FIG. 4G) and desmin (FIG. 4J), which are muscle specific markers, and the endothelial markers PECAM-I (FIG. 4E) and VE-Cadherin (FIG. 4F). Endoderm differentiation is presented by positive staining of differentiated derivatives for alpha-fetoprotein.
  • the altered karyotype of phESC-7 may be a reason to exclude it form clinical use. Alterations of genomic imprinting in human embryos can contribute to the development of disorders linked to maternally or paternally expressed genes (Gabriel et al., Proc Natl Acad Sci USA (1998) 95:14857). In order to investigate other characteristics of the phESC lines, and to determine their suitability for use in cell therapy, imprinting analysis was performed.
  • Northern blots were made and screened with DNA probes SNRPN, Pegl_2, Pegl_A, H19, and GAPDH (as an internal control) as outlined above.
  • Blotted nucleic acids were obtained from NSF, neonatal skin fibroblasts; hES, human embryonic stem cell line derived from fertilized oocytes; 1, phESC-1; 2, phESC-3, 3, phESC-4, 4, phESC-5; 5, phESC-6; 6 phESC-7.
  • NSF RT-, hES RT-, 1 RT- are negative controls.
  • FIG. 3 shows the results of the imprinting blot.
  • Pegl_A shows strong binding in all of the cell lines tested. Weaker (relative to Pegl_A), but consistent binding was observed in all of the cell lines for the maternal imprinting gene Hl 9.
  • SNRPN shows binding predominantly in NSF, hES, phESC-4, and phESC-6.
  • Pegl_2 shows binding predominantly in NSF, hES, phESC-1 (weaker signal), phESC-3, phESC-5, and phESC-6.
  • GAPDH binding confirmed similar loading of RNA in all lanes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Molecular Biology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Diabetes (AREA)
  • Ophthalmology & Optometry (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)

Abstract

L’invention concerne des méthodes pour produire des cellules souches humaines dans le but d’activer parthénogénétiquement des oocytes humains en manipulant la pression d’O2, consistant à manipuler des ions Ca2+ sous haute pression d’O2 et à mettre en contact des oocytes avec des inhibiteurs de la sérine thréonine kinase sous basse pression d’O2, à isoler des masses cellulaires internes (MCI) à partir d'oocytes activés et à cultiver les cellules MCI isolées sous haute pression d’O2. De plus, l'invention concerne des méthodes pour la production de cellules souches d'oocytes activés en l’absence de produits animaux non humains, comprenant l'utilisation de cellules/produits nourriciers humains pour cultiver des MCI/cellules souches. L'invention concerne également les cellules souches produites par lesdites méthodes.
PCT/US2006/041133 2005-10-21 2006-10-19 Activation parthénogénique d'oocytes humains pour la production de cellules souches embryonnaires humaines WO2007047979A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2626642A CA2626642C (fr) 2005-10-21 2006-10-19 Activation parthenogenique d'oocytes humains pour la production de cellules souches embryonnaires humaines
AU2006304788A AU2006304788A1 (en) 2005-10-21 2006-10-19 Parthenogenic activation of human oocytes for the production of human embryonic stem cells
KR1020087012017A KR101513731B1 (ko) 2005-10-21 2006-10-19 인간 배아 줄기 세포의 생성을 위한 인간 난모 세포의 처녀생식에 의한 활성화 방법
JP2008536842A JP5480504B2 (ja) 2005-10-21 2006-10-19 ヒト胚性幹細胞を作製するためのヒト卵母細胞の単為生殖的活性化
EP06826397.9A EP1948791B1 (fr) 2005-10-21 2006-10-19 Activation parthenogenique d'oocytes humains pour la production de cellules souches embryonnaires humaines
RU2008120001/10A RU2469085C2 (ru) 2005-10-21 2006-10-19 Партеногенетическая активация человеческих ооцитов для получения человеческих эмбриональных стволовых клеток
IL190869A IL190869A (en) 2005-10-21 2008-04-15 Activation of virgin reproduction of eggs of human origin to create embryonic stem cells of human origin
ZA2008/04079A ZA200804079B (en) 2005-10-21 2008-05-13 Parthenogenic activation of human oocytes for the production of human embroyonic stem cells

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US72917705P 2005-10-21 2005-10-21
US60/729,177 2005-10-21
US73330905P 2005-11-02 2005-11-02
US60/733,309 2005-11-02
US75844306P 2006-01-11 2006-01-11
US60/758,443 2006-01-11
US81379906P 2006-06-14 2006-06-14
US60/813,799 2006-06-14

Publications (2)

Publication Number Publication Date
WO2007047979A2 true WO2007047979A2 (fr) 2007-04-26
WO2007047979A3 WO2007047979A3 (fr) 2009-04-30

Family

ID=37508233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/041133 WO2007047979A2 (fr) 2005-10-21 2006-10-19 Activation parthénogénique d'oocytes humains pour la production de cellules souches embryonnaires humaines

Country Status (13)

Country Link
US (6) US7732202B2 (fr)
EP (1) EP1948791B1 (fr)
JP (2) JP5480504B2 (fr)
KR (1) KR101513731B1 (fr)
AU (1) AU2006304788A1 (fr)
CA (1) CA2626642C (fr)
GB (1) GB2431411B (fr)
HK (1) HK1101640A1 (fr)
IL (1) IL190869A (fr)
RU (2) RU2469085C2 (fr)
SG (1) SG172600A1 (fr)
WO (1) WO2007047979A2 (fr)
ZA (1) ZA200804079B (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057123A1 (fr) * 2009-11-05 2011-05-12 Primegen Biotech, Llc Dba Reprocyte Système de classement de cellules souches à lignée germinale
WO2014125363A1 (fr) * 2013-02-15 2014-08-21 Sung Kwang Medical Foundation Production de cellules souches parthénogénétiques et de cellules souches embryonnaires humaines spécifiques d'un patient par transfert nucléaire de cellules somatiques
US9499795B2 (en) 2005-10-27 2016-11-22 Viacyte, Inc. PDX1-expressing dorsal and ventral foregut endoderm
WO2017019902A1 (fr) * 2015-07-29 2017-02-02 New York Stem Cell Foundation, Inc. Lignées de cellules souches embryonnaires humaines haploïdes et lignées de cellules somatiques humaines haploïdes et procédés de production de celles-ci
US9920299B2 (en) 2007-04-06 2018-03-20 International Stem Cell Corporation Patient-specific stem cell lines derived from human parthenogenetic blastocysts
US10465162B2 (en) 2004-04-27 2019-11-05 Viacyte, Inc. Anterior endoderm cells and methods of production
US11535824B2 (en) 2015-10-29 2022-12-27 Sung Kwang Medical Foundation Nuclear transfer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129745A1 (en) * 1999-10-28 2003-07-10 Robl James M. Gynogenetic or androgenetic production of pluripotent cells and cell lines, and use thereof to produce differentiated cells and tissues
AU2006346492A1 (en) * 2006-07-24 2008-01-31 International Stem Cell Corporation Synthetic cornea from retinal stem cells
JP2008109866A (ja) * 2006-10-30 2008-05-15 Jms Co Ltd 培地添加剤、この培地添加剤を含む培地、及びこの培地を用いた細胞の培養方法
US8105831B2 (en) 2007-03-09 2012-01-31 University Of Washington Parvoviral production of HLA homozygous cells
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
RU2473685C2 (ru) 2007-07-31 2013-01-27 Лайфскен, Инк. Дифференцировка человеческих эмбриональных стволовых клеток
US20090111184A1 (en) * 2007-10-24 2009-04-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Chromosome selection
US20090111764A1 (en) * 2007-10-25 2009-04-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Mitochondrial selection
KR20190057164A (ko) 2008-02-21 2019-05-27 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
JP5734183B2 (ja) 2008-06-30 2015-06-17 ヤンセン バイオテツク,インコーポレーテツド 多能性幹細胞の分化
WO2010049783A1 (fr) * 2008-10-28 2010-05-06 Patki Research Foundation & Hospital Cellules souches en obstétrique et en gynécologie
RU2701335C2 (ru) 2009-12-23 2019-09-25 Янссен Байотек, Инк. Способ получения популяции панкреатических эндокринных клеток, соэкспрессирующих nkx6.1 и инсулин, и способ лечения диабета
SG192732A1 (en) * 2011-02-14 2013-09-30 Int Stem Cell Corp Methods and compositions of producing patient-specific multipotent neuronal stem cells
EP2794857A4 (fr) 2011-12-22 2015-07-08 Janssen Biotech Inc Différenciation de cellules souches embryonnaires humaines en cellules positives pour l'insuline hormonales individuelles
EP3450542B1 (fr) 2012-06-08 2021-09-01 Janssen Biotech, Inc. Différenciation de cellules souches embryonnaires humaines en cellules endocrines pancréatiques
CA2896658C (fr) 2012-12-31 2021-06-22 Janssen Biotech, Inc. Differenciation de cellules souches embryonnaires humaines en cellules endocrines pancreatiques au moyen de regulateurs de hb9
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
RU2658488C2 (ru) 2012-12-31 2018-06-21 Янссен Байотек, Инк. Способ получения клеток, экспрессирующих маркеры, характерные для панкреатических эндокринных клеток
WO2014106141A1 (fr) 2012-12-31 2014-07-03 Janssen Biotech, Inc. Mise en suspension et agrégation de cellules pluripotentes humaines pour la différenciation en cellules endocrines du pancréas
KR20150100452A (ko) 2014-02-25 2015-09-02 최해용 고광도 헤드-업 디스플레이 장치
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
CN106226133B (zh) * 2016-07-01 2019-05-10 内蒙古农业大学 包含多个复合体的新型COCs复合结构组织的制备方法
CN111418579B (zh) * 2020-04-13 2021-05-18 广东华夏健康生命科学有限公司 一种脂肪组织的保存方法、脂肪组织的保存液及其制备方法
WO2021236463A1 (fr) * 2020-05-18 2021-11-25 TMRW Life Sciences, Inc. Manipulation et suivi d'échantillons biologiques pour un stockage cryogénique
JP7545768B2 (ja) 2020-10-02 2024-09-05 ティーエムアールダブリュ ライフサイエンシーズ,インコーポレイテツド 無線トランスポンダタグ付き試料容器及び/又はキャリアのための位置合わせ機構を有する問い合わせ装置及び/又はシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945577A (en) 1997-01-10 1999-08-31 University Of Massachusetts As Represented By Its Amherst Campus Cloning using donor nuclei from proliferating somatic cells
US6642433B1 (en) 1997-05-15 2003-11-04 Trillium Therapeutics Inc. Fgl-2 knockout mice
US20030215942A1 (en) 2002-02-14 2003-11-20 Stemcyte, Inc. Undesignated allogeneic stem cell bank

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680199B1 (en) 1993-02-10 2004-01-20 Infigen, Inc. In vitro activation of mammalian oocytes
US5496720A (en) 1993-02-10 1996-03-05 Susko-Parrish; Joan L. Parthenogenic oocyte activation
US6271436B1 (en) 1996-10-11 2001-08-07 The Texas A & M University System Cells and methods for the generation of transgenic pigs
EP2336297A3 (fr) 1999-10-28 2011-11-16 University of Massachusetts Production gynogénétique ou androgénétique de cellules et de lignées cellulaires pluripotentes et son utilisation pour la production de cellules et de tissus différentiés
US20030129745A1 (en) * 1999-10-28 2003-07-10 Robl James M. Gynogenetic or androgenetic production of pluripotent cells and cell lines, and use thereof to produce differentiated cells and tissues
US6982172B2 (en) * 2000-01-04 2006-01-03 University Of Connecticut Oocyte vitrification technique
GB2360522A (en) 2000-03-24 2001-09-26 Geron Corp A strategy for maintaining pregnancy
US7094601B2 (en) * 2000-05-16 2006-08-22 The General Hospital Corporation Microinjection of cryoprotectants for preservation of cells
JP4487449B2 (ja) * 2001-06-28 2010-06-23 アイシン精機株式会社 弁開閉時期制御装置
CA2452256A1 (fr) * 2001-07-24 2003-02-06 Es Cell International Pte Ltd Methodes destinees a induire une differenciation de cellules souches
US20030232430A1 (en) 2001-11-26 2003-12-18 Advanced Cell Technology Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells
EP2679671B1 (fr) 2002-05-24 2019-12-11 Advanced Cell Technology, Inc. Une banque de cellules souches pour produire des cellules pour la transplantation ayant des antigènes HLA correspondant à ceux des greffés et des méthodes de fabrication et d'utilisation d'une telle banque de cellules souches
US20040091936A1 (en) * 2002-05-24 2004-05-13 Michael West Bank of stem cells for producing cells for transplantation having HLA antigens matching those of transplant recipients, and methods for making and using such a stem cell bank
WO2004011616A2 (fr) * 2002-07-26 2004-02-05 The General Hospital Corporation Systemes et procede de conservation des cellules
WO2005011371A1 (fr) * 2003-08-05 2005-02-10 Tokyo University Of Agriculture Educational Corporation Procede d'edification d'un oeuf par transplantation du noyau, embryon parthenogenetique et mammifere parthenogenetique
WO2005032341A2 (fr) 2003-09-29 2005-04-14 Embryomics, Inc. Procedes d'evaluation d'ovocytes pour la conservation ou traitements de reproduction
GB0329608D0 (en) 2003-12-22 2004-01-28 Univ Nottingham A novel method for embryo and animal production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945577A (en) 1997-01-10 1999-08-31 University Of Massachusetts As Represented By Its Amherst Campus Cloning using donor nuclei from proliferating somatic cells
US6642433B1 (en) 1997-05-15 2003-11-04 Trillium Therapeutics Inc. Fgl-2 knockout mice
US20030215942A1 (en) 2002-02-14 2003-11-20 Stemcyte, Inc. Undesignated allogeneic stem cell bank

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
AMIT ET AL., BIOL REPROD, vol. 70, 2004, pages 837 - 845
AMIT ET AL., DEVELOPMENTAL BIOL, vol. 227, 2000, pages 271 - 278
BAIN ET AL., DEV. BIOL., vol. 168, 1995, pages 342 - 357
BERKOWITZ; GOLDSTEIN, NEW ENG J MED, vol. 335, no. 23, 1996, pages 1740 - 1748
GABRIEL ET AL., PROC NATL ACAD SCI USA, vol. 95, 1998, pages 14857
HAGEMANN ET AL., MOL REPROD DEV, vol. 50, 1998, pages 154 - 162
HOFFMAN; CARPENTER, NATURE BIOTECH, vol. 23, no. 6, 2005, pages 699 - 708
KAUFMAN ET AL., NATURE, vol. 265, 1977, pages 53 - 55
KIM ET AL., FEBS LETT, vol. 579, 2005, pages 534 - 540
KURE-BAYASHI ET AL., THERIOGENOLOGY, vol. 53, 2000, pages 1105 - 1119
MONK, GENES DEV, vol. 2, 1988, pages 921 - 925
OZIL; HUNEAU, DEVELOPMENT, vol. 128, 2001, pages 917 - 928
PALACIOS ET AL., PROC. NATL. ACAD. SCI., USA, vol. 92, 1995, pages 7530 - 7537
PEDERSEN, J. REPROD. FERTIL. DEV., vol. 6, 1994, pages 543 - 552
SATO ET AL., NAT MED, vol. 10, 2004, pages 55 - 63
See also references of EP1948791A4
STEVENS, NATURE, vol. 276, 1978, pages 266 - 267
SURANI, CELL, vol. 93, 1998, pages 309 - 312
SURANI; BARTON, SCIENCE, vol. 222, 1983, pages 1034 - 1036
VRANA ET AL., PROC NATL ACAD SCI USA, vol. 100, no. 1, 2003, pages 11911 - 11916

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746323B2 (en) 2004-04-27 2023-09-05 Viacyte, Inc. PDX1 positive foregut endoderm cells and methods of production
US10465162B2 (en) 2004-04-27 2019-11-05 Viacyte, Inc. Anterior endoderm cells and methods of production
US9499795B2 (en) 2005-10-27 2016-11-22 Viacyte, Inc. PDX1-expressing dorsal and ventral foregut endoderm
US11427805B2 (en) 2005-10-27 2022-08-30 Viacyte, Inc. Methods of producing human foregut endoderm cells expressing PDX1 from human definitive endoderm
EP1957636B1 (fr) * 2005-10-27 2018-07-04 Viacyte, Inc. Endoderme d'intestin anterieur dorsal et ventral exprimant pdx1
US9920299B2 (en) 2007-04-06 2018-03-20 International Stem Cell Corporation Patient-specific stem cell lines derived from human parthenogenetic blastocysts
US9657267B2 (en) 2009-11-05 2017-05-23 Primegen Biotech Llc Ex host maturation of germline stem cells
WO2011057123A1 (fr) * 2009-11-05 2011-05-12 Primegen Biotech, Llc Dba Reprocyte Système de classement de cellules souches à lignée germinale
AU2014217550B2 (en) * 2013-02-15 2017-09-07 Sung Kwang Medical Foundation Production of parthenogenetic stem cells and patient-specific human embryonic stem cells using somatic cell nuclear transfer
US10017733B2 (en) 2013-02-15 2018-07-10 Sung Kwang Medical Foundation Production of parthenogenetic stem cells and patient-specific human embryonic stem cells using somatic cell nuclear transfer
US11339369B2 (en) 2013-02-15 2022-05-24 Sung Kwang Medical Foundation Production of parthenogenetic stem cells and patient-specific human embryonic stem cells using somatic cell nuclear transfer
WO2014125363A1 (fr) * 2013-02-15 2014-08-21 Sung Kwang Medical Foundation Production de cellules souches parthénogénétiques et de cellules souches embryonnaires humaines spécifiques d'un patient par transfert nucléaire de cellules somatiques
US10961503B2 (en) 2015-07-29 2021-03-30 New York Stem Cell Foundation, Inc. Haploid human embryonic stem cell lines and somatic cell lines and methods of making the same
WO2017019902A1 (fr) * 2015-07-29 2017-02-02 New York Stem Cell Foundation, Inc. Lignées de cellules souches embryonnaires humaines haploïdes et lignées de cellules somatiques humaines haploïdes et procédés de production de celles-ci
US12091678B2 (en) 2015-07-29 2024-09-17 New York Stem Cell Foundation, Inc. Haploid human embryonic stem cell lines and somatic cell lines and methods of making the same
US11535824B2 (en) 2015-10-29 2022-12-27 Sung Kwang Medical Foundation Nuclear transfer

Also Published As

Publication number Publication date
RU2469085C2 (ru) 2012-12-10
US8420393B2 (en) 2013-04-16
US20220265728A1 (en) 2022-08-25
RU2012144428A (ru) 2014-04-27
US20070141702A1 (en) 2007-06-21
SG172600A1 (en) 2011-07-28
US11324778B2 (en) 2022-05-10
WO2007047979A3 (fr) 2009-04-30
KR20080070015A (ko) 2008-07-29
EP1948791A2 (fr) 2008-07-30
EP1948791B1 (fr) 2019-01-02
US20100248989A1 (en) 2010-09-30
US20160143956A1 (en) 2016-05-26
IL190869A0 (en) 2008-11-03
US20100233143A1 (en) 2010-09-16
KR101513731B1 (ko) 2015-04-21
EP1948791A4 (fr) 2012-01-11
JP2009512450A (ja) 2009-03-26
US7732202B2 (en) 2010-06-08
GB0621068D0 (en) 2006-11-29
ZA200804079B (en) 2009-12-30
US20120184466A1 (en) 2012-07-19
GB2431411A (en) 2007-04-25
JP2013009679A (ja) 2013-01-17
JP5695004B2 (ja) 2015-04-01
JP5480504B2 (ja) 2014-04-23
HK1101640A1 (zh) 2007-10-18
AU2006304788A1 (en) 2007-04-26
GB2431411B (en) 2015-11-04
IL190869A (en) 2011-12-29
CA2626642C (fr) 2017-03-28
RU2008120001A (ru) 2009-11-27
CA2626642A1 (fr) 2007-04-26

Similar Documents

Publication Publication Date Title
US20220265728A1 (en) Parthenogenic activation of human oocytes for the production of human embryonic stem cells
US9920299B2 (en) Patient-specific stem cell lines derived from human parthenogenetic blastocysts
EP2049043B1 (fr) Cornée synthétique produite à partir de cellules souches rétiniennes
AU2016203682A1 (en) Parthenogenic activation of human oocytes for the production of human embryonic stem cells
AU2013205483B2 (en) Parthenogenic activation of human oocytes for the production of human embryonic stem cells
Class et al. Patent application title: PARTHENOGENIC ACTIVATION OF HUMAN OOCYTES FOR THE PRODUCTION OF HUMAN EMBRYONIC STEM CELLS Inventors: Elena S. Revazova (Pacific Palisades, CA, US) Marina V. Pryzhkova (Moscow, RU) Leonid N. Kuzmichev (Moscow, RU) Jeffrey D. Janus (Frederick, MD, US)
AU2014240375B2 (en) Patient-specific stem cell lines derived from human parthenogenetic blastocysts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043279.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 190869

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2006304788

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2626642

Country of ref document: CA

Ref document number: 2008536842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3649/DELNP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2006304788

Country of ref document: AU

Date of ref document: 20061019

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006826397

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008120001

Country of ref document: RU