WO2007046214A1 - ペースト組成物およびそれを用いた太陽電池素子 - Google Patents

ペースト組成物およびそれを用いた太陽電池素子 Download PDF

Info

Publication number
WO2007046214A1
WO2007046214A1 PCT/JP2006/318816 JP2006318816W WO2007046214A1 WO 2007046214 A1 WO2007046214 A1 WO 2007046214A1 JP 2006318816 W JP2006318816 W JP 2006318816W WO 2007046214 A1 WO2007046214 A1 WO 2007046214A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste composition
aluminum
hydroxide
semiconductor substrate
silicon semiconductor
Prior art date
Application number
PCT/JP2006/318816
Other languages
English (en)
French (fr)
Inventor
Gaochao Lai
Takashi Watsuji
Haruzo Katoh
Original Assignee
Toyo Aluminium Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminium Kabushiki Kaisha filed Critical Toyo Aluminium Kabushiki Kaisha
Priority to EP06810429A priority Critical patent/EP1939943B1/en
Priority to US11/990,618 priority patent/US8877100B2/en
Priority to JP2007540904A priority patent/JP4949263B2/ja
Priority to DE602006021767T priority patent/DE602006021767D1/de
Publication of WO2007046214A1 publication Critical patent/WO2007046214A1/ja
Priority to NO20082281A priority patent/NO339124B1/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention generally relates to a paste composition and a solar cell element using the same.
  • the present invention relates to a paste composition used for forming an electrode on a silicon semiconductor substrate constituting a crystalline silicon solar cell, and a solar cell element using the paste composition.
  • FIG. 1 is a diagram schematically showing a general cross-sectional structure of a solar cell element.
  • a solar cell element is generally configured using a p-type silicon semiconductor substrate 1 having a thickness of 220 to 300 / zm.
  • a n-type impurity layer 2 having a thickness of 0.3 to 0.6 m, and an antireflection film 3 and a grid electrode 4 are formed thereon.
  • An aluminum electrode layer 5 is formed on the back side of the p-type silicon semiconductor substrate 1.
  • the aluminum electrode layer 5 is formed by applying an aluminum powder, glass frit, and an aluminum paste composition that also has an organic vehicle force by screen printing or the like, drying it, and firing it at a temperature of 660 ° C (melting point of aluminum) or higher for a short time. It is formed by.
  • the Al—Si alloy layer 6 is formed between the aluminum electrode layer 5 and the p-type silicon semiconductor substrate 1 by diffusing into the aluminum-powered silicon semiconductor substrate 1 at the same time,
  • a P + layer 7 is formed as an impurity layer by diffusion of aluminum atoms. Due to the presence of the p + layer 7, a back surface field (BSF) effect that prevents recombination of electrons and improves the collection efficiency of generated carriers can be obtained.
  • BSF back surface field
  • a back electrode 8 composed of an aluminum-electrode layer 5 and an Al—Si alloy layer 6 is used as an acid or the like.
  • solar cell elements having a collector electrode layer formed of silver paste or the like have been put into practical use.
  • it is necessary to dispose of the acid used for removing the back electrode 8 and there is a problem that the process becomes complicated due to the removal process.
  • the silicon semiconductor substrate is formed so that the back surface side on which the back electrode layer is formed becomes concave after firing of the aluminum paste composition due to the difference in thermal expansion coefficient between silicon and aluminum.
  • the substrate deforms and warps. When warping occurs, cracks in the silicon semiconductor substrate are likely to occur during the solar cell manufacturing process.
  • the back electrode layer is thinned by reducing the coating amount of the aluminum paste composition.
  • Patent Document 2 discloses that an aluminum powder, a glass frit, and an organic substance are used as a conductive paste capable of suppressing warpage of a Si wafer.
  • the organic vehicle contains particles that are hardly soluble or insoluble, and the particles are at least one of organic compound particles and carbon particles.
  • Patent Document 4 JP-A-2005-191107 discloses a high-performance back electrode in which formation of aluminum balls and protrusions and swelling of the electrode are suppressed in the back electrode.
  • a method of manufacturing a solar cell element having high productivity with reduced warpage of a conductive substrate is disclosed, and an average particle size D force 1 ⁇ 2 to cumulative particle size distribution based on volume is used as an aluminum paste used in the manufacturing method. 20 m and less than half the average particle size D Those containing aluminum powder whose diameter accounts for 15% or less of the total particle size distribution are disclosed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-90734
  • Patent Document 2 JP 2004-134775 A
  • Patent Document 3 Japanese Patent Laid-Open No. 5-129640
  • Patent Document 4 JP-A-2005-191107
  • an object of the present invention is to solve the above-described problems, and suppresses the generation of a prestar or aluminum ball in the back electrode layer during firing, and also deforms the silicon semiconductor substrate. It is an object of the present invention to provide a solar cell element including a paste composition that can be reduced and an electrode formed using the composition.
  • the paste composition according to the present invention has the following characteristics.
  • a paste composition according to the present invention is a paste composition for forming an electrode on a silicon semiconductor substrate, and includes an aluminum powder, an organic vehicle, and a hydroxide.
  • the hydroxide is at least one selected from the group consisting of aluminum hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. I prefer to be there.
  • the paste yarn according to the present invention preferably contains 0.1% by mass or more and 25.0% by mass or less of hydroxide.
  • the paste composition of the present invention preferably further includes glass frit.
  • a solar cell element according to the present invention includes an electrode formed by applying a paste yarn and composition having any of the above-described characteristics onto a silicon semiconductor substrate and then firing the paste.
  • the paste is formed on the back surface of the silicon semiconductor substrate by using the paste composition containing hydroxide in addition to the aluminum powder and the organic vehicle.
  • the paste composition containing hydroxide in addition to the aluminum powder and the organic vehicle.
  • FIG. 1 is a diagram schematically showing a general cross-sectional structure of a solar cell element to which the present invention is applied as one embodiment.
  • FIG. 2 is a diagram schematically showing a method for measuring a deformation amount of a p-type silicon semiconductor substrate after firing in which an aluminum electrode layer is formed in Examples and Comparative Examples.
  • l p-type silicon semiconductor substrate, 2: n-type impurity layer, 3: antireflection film, 4: grid electrode, 5: aluminum electrode layer, 6: A1-Si alloy layer, 7: p + layer, 8: Back electrode.
  • the paste composition of the present invention is characterized in that it contains hydroxide in addition to aluminum powder and an organic vehicle.
  • a paste with a conventional composition When a paste with a conventional composition is used, the reaction between aluminum and silicon and the sintering of aluminum cannot be controlled. As a result, the amount of Al-Si alloy produced locally increases, resulting in blistering and There was a phenomenon that aluminum balls were generated and the deformation of the silicon semiconductor substrate increased due to oversintering of aluminum.
  • a hydroxide salt in the paste it is possible to control the reaction between aluminum and silicon and the sintering of aluminum not to proceed excessively.
  • the hydroxide contained in the paste undergoes a dehydration decomposition reaction at a temperature of 200 to 500 ° C during firing. The It is considered that the generation of blisters and aluminum balls and the deformation of the silicon semiconductor substrate can be suppressed by the endothermic reaction due to the dehydration decomposition and the surface acidity of the aluminum powder due to the decomposed water vapor.
  • the hydroxide contained in the paste composition of the present invention is not particularly limited as long as the effects of the present invention can be obtained, and for example, a hydroxide that has the power of metal elements such as copper and iron. Things are listed.
  • Preferred hydroxides are at least one selected from the group of the Ila group and nib group of the periodic table that also have hydroxyl group power, and more specifically, hydroxide group aluminum. And at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide.
  • Ila group and Illb group hydroxides of the periodic table are preferable.
  • the elements of the above-mentioned periodic table Ila group and Illb group diffuse into the silicon semiconductor substrate. This is because the degree to which the BSF effect is inhibited is small, but the effect of a decrease in energy conversion efficiency is small!
  • the content of hydroxide contained in the paste composition of the present invention is 0.1 mass% or more 25.
  • hydroxide content is less than 0.1% by mass, it may not be possible to obtain the prescribed blister or aluminum ball suppression effect, which is sufficient to suppress deformation of the silicon semiconductor substrate after firing. The additive effect cannot be obtained. If the hydroxide content exceeds 25.0% by mass, the surface resistance of the back electrode layer increases, and there is a risk that the paste sinterability will be impaired. When the surface resistance of the back electrode layer increases, the ohmic resistance between the electrodes increases, and the energy generated by the irradiation of sunlight cannot be extracted effectively, leading to a decrease in energy conversion efficiency.
  • the surface resistance can be suppressed to the range described below, and the blisters in the aluminum electrode layer can be maintained without lowering the electrode function and the BSF effect of the aluminum electrode layer. And the generation of balls of aluminum can be suppressed, and the amount of deformation of the silicon semiconductor substrate can be reduced.
  • the content of the aluminum powder included in the paste composition of the present invention is preferably 50% by mass or more and 80% by mass or less. If the content of the aluminum powder is less than 50% by mass, the resistance of the aluminum electrode layer after firing becomes high, which may cause a decrease in the energy conversion efficiency of the solar cell. If the aluminum powder content exceeds 80% by mass, The applicability of paste in clean printing or the like is reduced.
  • a wide range of aluminum powder having an average particle diameter of 1 to 20 ⁇ m can be used. When blended in a paste composition, it is preferably 2 to 15111, and more preferably. 3 to 10 m should be used. If the average particle size is less than L m, the specific surface area of the aluminum powder increases, which is not preferable. If the average particle diameter exceeds 20 / zm, an appropriate viscosity cannot be obtained when an aluminum powder is included to constitute a paste composition, which is not preferable. Further, the aluminum powder included in the paste composition of the present invention is not particularly limited to the shape of the powder and the method for producing the powder.
  • the components of the organic vehicle included in the paste composition of the present invention are not particularly limited. Resins such as ethyl cellulose and alkyd, and solvents such as glycol ethers and terpineols can be used.
  • the content of the organic vehicle is preferably 15% by mass or more and 40% by mass or less. If the content of the organic vehicle is less than 15% by mass, the printability of the paste is lowered and a good aluminum electrode layer cannot be formed. If the organic vehicle content exceeds 40% by mass, not only will the viscosity of the paste increase, but the presence of excess organic vehicle will hinder the firing of aluminum.
  • the paste composition of the present invention may contain glass frit.
  • the content of the glass frit in the paste yarn composition of the present invention is not particularly limited, but is preferably 8% by mass or less. If the glass frit content exceeds 8% by mass, the prayer of the glass occurs, the resistance of the aluminum electrode layer increases, and the power generation efficiency of the solar cell may decrease.
  • the lower limit of the glass frit content is not particularly limited, but is usually 0.1% by mass or more.
  • composition of the glass frit included in the paste composition of the present invention is not particularly limited, but usually comprises PbO, B 2 O, ZnO, Bi 2 O, SiO, Al 2 O, MgO, and BaO.
  • Examples thereof include a glass-based composition containing at least two kinds of oxides selected from the group as main components.
  • the average particle size of the glass frit particles included in the paste composition of the present invention is not particularly limited, but is preferably 20 m or less.
  • the paste composition of the present invention comprises a dispersant, a plasticizer that adjusts the properties of the paste as necessary.
  • Various additives such as an agent, an anti-settling agent, and a thixotropic agent can be included.
  • the composition of the additive is not particularly limited, but the content is preferably 10% by mass or less.
  • the aluminum powder 50-80 wt 0/0, the glass frit from 0.1 to 8 mass 0/0, of organic vehicle prepared by dissolving Echiru cellulose glycol ether organic solvents 15 to 40 mass% Paste compositions were prepared that contained within the range and added various hydroxides in the proportions shown in Table 1.
  • an aluminum vehicle and a ZnO-B 2 O 3 -SiO glass frit are added to an organic vehicle in which ethyl cellulose is dissolved in a glycol ether organic solvent.
  • Paste compositions (Examples 1 to 18) were prepared by adding various hydroxides in the amounts shown in Table 1 and mixing with a known mixer. Also, in the same way as above, do not include hydroxide as shown in Table 1! A rice cake paste composition (Comparative Example 1) was prepared.
  • the aluminum powder is a sphere having an average particle diameter of 2 to 20 / ⁇ ⁇ , or a sphere from the viewpoint of ensuring reactivity with the silicon semiconductor substrate, coating properties, and uniformity of the coating film.
  • a powder composed of particles having a shape close to that of the powder was used.
  • Glass frit having an average particle diameter of 1 to 12 m was used.
  • the p-type silicon semiconductor substrate on which the paste was printed After drying the p-type silicon semiconductor substrate on which the paste was printed, it was fired in an air atmosphere in an infrared continuous firing furnace.
  • the temperature of the firing zone of the firing furnace was set to 760 to 780 ° C, and the retention time (firing time) of the substrate was set to 8 to 12 seconds.
  • the amount of blisters and aluminum balls generated per measured surface area 150 X 150mm 2 of the aluminum electrode layer 5 was visually counted, and the total value is shown in Table 1. . Occurrence of cracks in the silicon semiconductor substrate during the manufacturing process To prevent life, the target value of the amount of blister and aluminum balls is set to 10.
  • the surface resistance of the back electrode 8 that affects the ohmic resistance between the electrodes was measured with a 4-probe surface resistance measuring device (RG-5 type sheet resistance measuring device manufactured by Epson Corporation). Measurement conditions are voltage
  • the load was 4 mV, the current was 100 mA, and the load applied to the surface was 200 grf (1.96 N).
  • the measured values are shown in Table 1 for the back electrode surface resistance (m ⁇ Z port).
  • the p-type silicon semiconductor substrate on which the back electrode 8 was formed was immersed in an aqueous hydrochloric acid solution, whereby the aluminum electrode layer 5 and the Al—Si alloy layer 6 were dissolved and removed, and the p + layer 7 was formed.
  • the surface resistance of the type silicon semiconductor substrate was measured with the above surface resistance measuring instrument.
  • the amount of deformation of the p-type silicon semiconductor substrate after firing with the aluminum electrode layer formed is diagonal to the four corners of the substrate with the aluminum electrode layer facing up, as shown in FIG. 2, after firing and cooling.
  • the target value of deformation is 3. Omm or less.
  • Table 1 shows the surface resistance of the back electrode 8, the surface resistance of the p + layer 7, and the deformation amount of the silicon semiconductor substrate measured as described above.
  • Example 1 ⁇ 1 ( ⁇ ) 3 0.08 12 14.8 16.6 2.9
  • Example 2 Al (OH) 3 0.12 9 15.0 16.7 2.7
  • Example 4 Fe (OH) 3 3.0 2 15.1 16.4 1.9
  • Example 5 Cu (OH) 2 3.0 3 15.8 16.7 1.8
  • Example 6 Mg (OH) 2 3.0 2 15.3 16.7 1.8
  • Example 7 Ca (OH) 2 3.0 3 15.6 16.9 2.0
  • Example 8 Al (OH 3 5.0 1 15.9 17.0 1.7
  • Example 9 Ca (OH) 2 5.0 1 16.0 16.9 1.5
  • Example 10 Al (OH) 3 9.0 0 16.8 17.2 1.5
  • Example 11 Ca (OH) 2 10.0 0 17.5 17.7 1.6
  • Example 12 Ca (OH) 2 5.0 0 17.2 17.8 1.5
  • Example 13 Al (OH) 3 11.0 0 18.5 19.3 1.4
  • Example 14 Mg (OH) 2 15.0 0 18.9 19.6 1.3
  • Example 15 Al (OH) 3 18.0 0 19.0 20.1 1.1
  • Example 16 Al (OH) 3 23.0 0 19.5 20.8
  • Example 17 Mg (OH) 2 23.0 0 19.8 20.5
  • Example 18 Mg (OH) 2 27.0 0 22.3 22.6 1.0 Comparative Example 1 ⁇ ⁇ 15 14.9 16.5 3.3
  • a blister or an aluminum ball is formed on the aluminum electrode layer formed on the back surface of the silicon semiconductor substrate.
  • deformation of the silicon semiconductor substrate can be reduced, and the production yield of solar cell elements can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

 焼成時においてブリスターやアルミニウムの玉が裏面電極層に発生するのを抑制するとともに、シリコン半導体基板の変形も低減することが可能なペースト組成物と、その組成物を用いて形成された電極を備えた太陽電池素子を提供する。ペースト組成物は、シリコン半導体基板(1)の上に電極(8)を形成するためのペースト組成物であって、アルミニウム粉末と、有機質ビヒクルと、水酸化物とを含む。太陽電池素子は、上述の特徴を有するペースト組成物をシリコン半導体基板(1)の上に塗布した後、焼成することにより形成した電極(8)を備える。

Description

明 細 書
ペースト組成物およびそれを用いた太陽電池素子
技術分野
[0001] この発明は、一般的にはペースト組成物およびそれを用いた太陽電池素子に関し
、特定的には、結晶系シリコン太陽電池を構成するシリコン半導体基板の上に電極 を形成する際に用いられるペースト組成物、およびそれを用 、た太陽電池素子に関 するものである。
背景技術
[0002] シリコン半導体基板の上に電極が形成された電子部品として、特開 2000— 90734 号公報 (特許文献 1)、特開 2004— 134775号公報 (特許文献 2)に開示されている ような太陽電池素子が知られて 、る。
[0003] 図 1は、太陽電池素子の一般的な断面構造を模式的に示す図である。
[0004] 図 1に示すように、太陽電池素子は、一般的に厚みが 220〜300 /z mの p型シリコ ン半導体基板 1を用いて構成される。シリコン半導体基板 1の受光面側には、厚みが 0. 3〜0. 6 mの n型不純物層 2と、その上に反射防止膜 3とグリッド電極 4が形成さ れている。
[0005] また、 p型シリコン半導体基板 1の裏面側には、アルミニウム電極層 5が形成されて いる。アルミニウム電極層 5は、アルミニウム粉末、ガラスフリットおよび有機質ビヒクル 力もなるアルミニウムペースト組成物をスクリーン印刷等によって塗布し、乾燥した後 、 660°C (アルミニウムの融点)以上の温度にて短時間焼成することによって形成され ている。この焼成の際にアルミニウム力 ¾型シリコン半導体基板 1の内部に拡散するこ とにより、アルミニウム電極層 5と p型シリコン半導体基板 1との間に Al— Si合金層 6が 形成されると同時に、アルミニウム原子の拡散による不純物層として P+層 7が形成され る。この p+層 7の存在により、電子の再結合を防止し、生成キャリアの収集効率を向上 させる BSF (Back Surface Field)効果が得られる。
[0006] たとえば、特開平 5— 129640号公報 (特許文献 3)に開示されているように、アルミ -ゥム電極層 5と Al— Si合金層 6とから構成される裏面電極 8を酸等により除去し、新 たに銀ペースト等により集電極層を形成した太陽電池素子が実用化されている。しか しながら、裏面電極 8を除去するために用いられる酸を廃棄処理する必要があり、そ の除去工程のために工程が煩雑になる等の問題がある。このような問題を回避する ために、最近では、裏面電極 8を残して、そのまま集電極として利用して太陽電池素 子を構成することが多くなつてきて 、る。
[0007] ところで、最近では太陽電池のコストダウンを図るためにシリコン半導体基板を薄く することが検討されている。しかし、シリコン半導体基板が薄くなれば、シリコンとアル ミニゥムとの熱膨張係数の差に起因してアルミニウムペースト組成物の焼成後に、裏 面電極層が形成された裏面側が凹状になるようにシリコン半導体基板が変形し、反り が発生する。反りが発生すると、太陽電池の製造工程でシリコン半導体基板の割れ 等が発生しやすくなる。一方、反りの発生を抑制するために、アルミニウムペースト組 成物の塗布量を減らし、裏面電極層を薄くする方法がある。しカゝしながら、アルミ-ゥ ムペースト組成物の塗布量を減らすと、焼成時にぉ 、て裏面電極層にブリスターや アルミニウムの玉が発生しやくなる。発生したブリスターやアルミニウムの玉の箇所に 応力が集中し、これによるシリコン半導体基板の割れも発生している。その結果、太 陽電池の製造歩留まりが低下すると!、う問題があった。
[0008] これらの問題を解決する方法として、種々のアルミニウムペースト組成物が提案され ている。
[0009] 特開 2004— 134775号公報 (特許文献 2)には、焼成時の電極膜の焼成収縮が小 さぐ Siウェハの反りを抑えることができる導電性ペーストとして、アルミニウム粉末、ガ ラスフリットおよび有機質ビヒクルに加えて、該有機質ビヒクルに難溶解性または不溶 解性の粒子を含有し、該粒子は有機化合物粒子および炭素粒子のうちの少なくとも 1種であるものが開示されている。
[0010] また、特開 2005— 191107号公報(特許文献 4)には、裏面電極においてアルミ- ゥムの玉 ·突起の形成や電極の膨れを抑制した高特性の裏面電極を得るとともに、半 導体基板の反りを低減した高い生産性を有する太陽電池素子の製造方法が開示さ れており、その製造方法において用いられるアルミニウムペーストとして、体積基準に よる累積粒度分布の平均粒径 D 力 ½〜20 mかつ、平均粒径 D の半分以下の粒 径のものが全粒度分布に対して占める割合が 15%以下であるアルミニウム粉末を含 むものが開示されている。
[0011] しかしながら、これらのアルミニウムペーストを用いても、焼成時において裏面電極 層におけるブリスターやアルミニウムの玉の発生と、焼成後のシリコン半導体基板の 変形とをともに抑制することはできな力つた。
特許文献 1:特開 2000— 90734号公報
特許文献 2:特開 2004— 134775号公報
特許文献 3:特開平 5 - 129640号公報
特許文献 4:特開 2005— 191107号公報
発明の開示
発明が解決しょうとする課題
[0012] そこで、この発明の目的は、上記の課題を解決することであり、焼成時においてプリ スターやアルミニウムの玉が裏面電極層に発生するのを抑制するとともに、シリコン半 導体基板の変形も低減することが可能なペースト組成物と、その組成物を用いて形 成された電極を備えた太陽電池素子を提供することである。
課題を解決するための手段
[0013] 本発明者らは、従来技術の問題点を解決するために鋭意研究を重ねた結果、特定 の組成を有するペースト組成物を使用することにより、上記の目的を達成できることを 見出した。この知見に基づいて、本発明に従ったペースト組成物は、次のような特徴 を備えている。
[0014] この発明に従ったペースト組成物は、シリコン半導体基板の上に電極を形成するた めのペースト組成物であって、アルミニウム粉末と、有機質ビヒクルと、水酸化物とを 含む。
[0015] また、この発明のペースト組成物においては、水酸化物は、水酸化アルミニウム、水 酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウムおよび水酸化バリウムか らなる群より選ばれた少なくとも 1種であるのが好ま 、。
[0016] さらに、この発明のペースト糸且成物は、水酸化物を 0. 1質量%以上 25. 0質量%以 下含むのが好ましい。 [0017] なお、この発明のペースト組成物は、ガラスフリットをさらに含むのが好ましい。
[0018] この発明に従った太陽電池素子は、上述のいずれかの特徴を有するペースト糸且成 物をシリコン半導体基板の上に塗布した後、焼成することにより形成した電極を備え る。
発明の効果
[0019] 以上のように、本発明によれば、アルミニウム粉末、有機質ビヒクルにカ卩えて、さらに 水酸化物を含有するペースト組成物を使用することにより、シリコン半導体基板の裏 面に形成されるアルミニウム電極層にブリスターやアルミニウムの玉が発生するのを 抑制するとともに、シリコン半導体基板の変形も低減することができ、太陽電池素子 の製造歩留まりを向上させることができる。
図面の簡単な説明
[0020] [図 1]一つの実施の形態として本発明が適用される太陽電池素子の一般的な断面構 造を模式的に示す図である。
[図 2]実施例と比較例においてアルミニウム電極層を形成した焼成後の p型シリコン半 導体基板の変形量を測定する方法を模式的に示す図である。
符号の説明
[0021] l :p型シリコン半導体基板、 2 :n型不純物層、 3 :反射防止膜、 4 :グリッド電極、 5 : アルミニウム電極層、 6 :A1—Si合金層、 7 :p+層、 8 :裏面電極。
発明を実施するための最良の形態
[0022] 本発明のペースト組成物は、アルミニウム粉末と有機質ビヒクルにカ卩えて水酸ィ匕物 を含むことを特徴とする。従来の組成のペーストを使用した場合には、アルミニウムと シリコンとの反応やアルミニウムの焼結を制御することができず、その結果、局部的に Al— Si合金の生成量の増大により、ブリスターやアルミニウムの玉が発生する、アル ミニゥムの過剰焼結によるシリコン半導体基板の変形が増大するという現象が生じて いた。本発明では、水酸ィ匕物をペーストに含ませることにより、アルミニウムとシリコン との反応やアルミニウムの焼結を過度に進行しな 、ように制御することができる。ぺー スト中に含まれる水酸ィ匕物は、焼成中にて温度 200〜500°Cで脱水分解反応が起こ る。この脱水分解による吸熱反応と、分解された水蒸気によるアルミニウム粉末の表 面酸ィ匕により、ブリスターやアルミニウムの玉の発生とシリコン半導体基板の変形を抑 えることができると考えられる。
[0023] 本発明のペースト組成物に含まれる水酸ィ匕物としては、本発明の効果が得られるも のであれば特に限定されず、例えば銅や鉄などの金属元素力 なる水酸ィ匕物が挙 げられる。好ましい水酸ィ匕物としては、周期表の Ila族および nib族の水酸ィ匕物力もな る群より選ばれた少なくとも 1種であればよぐより具体的には、水酸ィ匕アルミニウム、 水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウムおよび水酸化バリウム 力 なる群より選ばれた少なくとも 1種であればよい。周期表の Ila族および Illb族の 水酸ィ匕物が好ましい理由は、本発明のペースト組成物を焼成する際に上記の周期 表 Ila族および Illb族の元素がシリコン半導体基板中に拡散しても、 BSF効果を阻害 させる度合!、が少なぐエネルギー変換効率の低下の影響も小さ!、からである。
[0024] 本発明のペースト組成物に含められる水酸ィ匕物の含有量は、 0. 1質量%以上 25.
0質量%以下であることが好ましい。水酸化物の含有量が 0. 1質量%未満では、所 定のブリスターやアルミニウムの玉の抑制効果が得られない恐れがあり、焼成後のシ リコン半導体基板の変形を抑制するほどの十分な添加効果を得ることができない。水 酸化物の含有量が 25. 0質量%を超えると、裏面電極層の表面抵抗が増大し、ぺー ストの焼結性が阻害されるという弊害が生じる恐れがある。裏面電極層の表面抵抗が 増大すると、電極間のオーム抵抗が増加し、太陽光の照射で生じたエネルギーを有 効に取り出すことができず、エネルギー変換効率の低下を招く。水酸化物の含有量 を上記の範囲にすることにより、表面抵抗を後述する好ま 、範囲内に抑えることが でき、アルミニウム電極層の電極機能と BSF効果が低下することがなぐアルミニウム 電極層におけるブリスターやアルミニウムの玉の発生を抑制するとともに、シリコン半 導体基板の変形量を低減することができる。
[0025] 本発明のペースト組成物に含められるアルミニウム粉末の含有量は、 50質量%以 上 80質量%以下であることが好まし 、。アルミニウム粉末の含有量が 50質量%未満 では、焼成後のアルミニウム電極層の抵抗が高くなり、太陽電池のエネルギー変換 効率の低下を招く恐れがある。アルミニウム粉末の含有量が 80質量%を超えると、ス クリーン印刷等におけるペーストの塗布性が低下する。
[0026] 本発明においては、平均粒子径が 1〜20 μ mという幅広い範囲のアルミニウム粉 末が使用可能であり、ペースト組成物に配合する場合は、好ましくは2〜15 111、さ らに好ましくは 3〜10 mのものを使用するとよい。平均粒子径が: L m未満では、 アルミニウム粉末の比表面積が大きくなり、好ましくない。平均粒子径が 20 /z mを超 えると、アルミニウム粉末を含ませてペースト組成物を構成したときに適正な粘度が得 られず、好ましくない。また、本発明のペースト組成物に含められるアルミニウム粉末 は、粉末の形状や粉末の製造方法には特に限定されな 、。
[0027] 本発明のペースト組成物に含められる有機質ビヒクルの成分は特に限定されない 力 ェチルセルロースやアルキッド等の樹脂と、グリコールエーテル系やターピネオ ール系などの溶剤を使用することができる。有機質ビヒクルの含有量は、 15質量% 以上 40質量%以下であることが好ま 、。有機質ビヒクルの含有量が 15質量%未満 になると、ペーストの印刷性が低下し、良好なアルミニウム電極層を形成することがで きない。また、有機質ビヒクルの含有量が 40質量%を超えると、ペーストの粘度が増 大するだけでなく、過剰な有機質ビヒクルの存在によりアルミニウムの焼成が阻害され るという問題が生じる。
[0028] さらに、本発明のペースト組成物はガラスフリットを含んでもよい。本発明のペースト 糸且成物におけるガラスフリットの含有量は、特に限定されないが、 8質量%以下である のが好ましい。ガラスフリットの含有量が 8質量%を超えると、ガラスの偏祈が生じ、ァ ルミニゥム電極層の抵抗が増大し、太陽電池の発電効率が低下する恐れがある。ガ ラスフリットの含有量の下限値は特に限定されないが、通常は 0. 1質量%以上である
[0029] 本発明のペースト組成物に含められるガラスフリットの組成としては、特に限定され ないが、通常、 PbO、 B O、 ZnO、 Bi O、 SiO、 Al O、 MgOおよび BaOからなる
2 3 2 3 2 2 3
群より選ばれた少なくとも 2種の酸ィ匕物を主成分とするガラス系の組成が挙げられる。
[0030] 本発明のペースト組成物に含められるガラスフリットの粒子の平均粒径は特に限定 されないが、 20 m以下であるのが好ましい。
[0031] 本発明のペースト組成物は、必要に応じてペーストの特性を調整する分散剤、可塑 剤、沈降防止剤、チクソ剤、など各種添加剤を含ませて使用することができる。添カロ 剤の組成は特に制限されないが、含有量は 10質量%以下とするのが好ましい。 実施例
[0032] 以下、本発明の一つの実施例について説明する。
[0033] まず、アルミニウム粉末を 50〜80質量0 /0、ガラスフリットを 0. 1〜8質量0 /0、ェチル セルロースをグリコールエーテル系有機溶剤に溶解した有機質ビヒクルを 15〜40質 量%の範囲内で含むとともに、表 1に示す割合で各種の水酸ィ匕物を添加したペース ト組成物を作製した。
[0034] 具体的には、ェチルセルロースをグリコールエーテル系有機溶剤に溶解した有機 質ビヒクルに、アルミニウム粉末と ZnO-B O - SiO系のガラスフリットを加え、さらに、
2 3 2
表 1に示す添加量で各種の水酸ィ匕物を加えて、周知の混合機にて混合することによ り、ペースト組成物(実施例 1〜 18)を作製した。また、上記と同様の方法で、表 1に 示すように水酸化物を含まな!/ヽペースト組成物 (比較例 1)を作製した。
[0035] ここで、アルミニウム粉末は、シリコン半導体基板との反応性の確保、塗布性、およ び塗布膜の均一性の点から、平均粒径が 2〜20 /ζ πιの球形、または球形に近い形 状を有する粒子からなる粉末を用いた。ガラスフリットは、粒子の平均粒径が 1〜12 mのものを用いた。
[0036] 上記の各種のペースト組成物を、厚みが 220 μ m、大きさが 155mm X 155mmの p型シリコン半導体基板に、 165メッシュのスクリーン印刷板を用いて塗布 '印刷し、乾 燥させた。塗布量は、乾燥前で 1. 5±0. lgZ枚になるように設定した。
[0037] ペーストが印刷された p型シリコン半導体基板を乾燥した後、赤外線連続焼成炉に て、空気雰囲気で焼成した。焼成炉の焼成ゾーンの温度を 760〜780°C、基板の滞 留時間 (焼成時間)を 8〜12秒に設定した。焼成後、冷却することにより、図 1に示す ように p型シリコン半導体基板 1にアルミニウム電極層 5と Al— Si合金層 6を形成した 構造を得た。
[0038] シリコン半導体基板に形成されたアルミニウム電極層 5において、アルミニウム電極 層 5の測定表面積 150 X 150mm2当たりのブリスターとアルミニウムの玉の発生量を 目視で数え、その合計値を表 1に示す。製造工程でシリコン半導体基板の割れの発 生を防ぐためには、ブリスターとアルミニウムの玉の発生量の目標値を 10とする。
[0039] 電極間のオーム抵抗に影響を及ぼす裏面電極 8の表面抵抗を 4探針式表面抵抗 測定器けプソン社製 RG— 5型シート抵抗測定器)で測定した。測定条件は、電圧を
4mV、電流を 100mA、表面に与えられる荷重を 200grf (1. 96N)とした。その測定 値を表 1の裏面電極表面抵抗 (m Ω Z口)に示す。
[0040] その後、裏面電極 8を形成した p型シリコン半導体基板を塩酸水溶液に浸漬するこ とによって、アルミニウム電極層 5と Al— Si合金層 6を溶解除去し、 p+層 7が形成され た p型シリコン半導体基板の表面抵抗を上記の表面抵抗測定器で測定した。
[0041] p+層 7の表面抵抗と BSF効果との間には相関関係があり、その表面抵抗が小さい ほど、 BSF効果が高いとされている。ここで、好ましい表面抵抗の値は、裏面電極 8 では 20m ΩΖ口以下、 ρ+層 7では 21 ΩΖ口以下である。
[0042] アルミニウム電極層を形成した焼成後の p型シリコン半導体基板の変形量は、焼 成'冷却後、図 2に示すようにアルミニウム電極層を上にして基板の四隅の対角にあ る二端を矢印 P P
1と 2で示すように押さえて、その他の二端の浮き上がり量 (基板の厚 みを含む) X
1と X
2を測定した。また、上記と同様の方法により、上記の測定にて浮き 上がり量 XIと X2を測定した箇所を矢印 Pと Pで示すように押さえて、矢印 Pと Pで
1 2 1 2 示すように押さえた箇所の二端の浮き上がり量 X
3と X
4を測定した。浮き上がり量 X、
1
X、 Xおよび Xの平均値を計算し、シリコン半導体基板の「変形量 (mm)」とした。な
2 3 4
お、変形量の目標値は 3. Omm以下である。
[0043] 以上のようにして測定された裏面電極 8の表面抵抗、 p+層 7の表面抵抗およびシリ コン半導体基板の変形量を表 1に示す。
[0044] [表 1] 水酸化物 ブ リ ス タ 裏面電極 P+層 シリ コン 水酸化物 添加量 — · A1玉 表面抵抗 表面低抗 半導体 種類 発生量 基板
[質量%] [個] [m Q/D] [ Ω/D] 変形量
[mm] 実施例 1 Α1(ΟΗ)3 0.08 12 14.8 16.6 2.9 実施例 2 Al(OH)3 0.12 9 15.0 16.7 2.7 実施例 3 Α1(ΟΗ)3 3.0 2 15.5 16.9 1.9 実施例 4 Fe(OH)3 3.0 2 15.1 16.4 1.9 実施例 5 Cu(OH)2 3.0 3 15.8 16.7 1.8 実施例 6 Mg(OH)2 3.0 2 15.3 16.7 1.8 実施例 7 Ca(OH)2 3.0 3 15.6 16.9 2.0 実施例 8 Al(OH)3 5.0 1 15.9 17.0 1.7 実施例 9 Ca(OH)2 5.0 1 16.0 16.9 1.5 実施例 10 Al(OH)3 9.0 0 16.8 17.2 1.5 実施例 11 Ca(OH)2 10.0 0 17.5 17.7 1.6 実施例 12 Ca(OH)2 5.0 0 17.2 17.8 1.5
Mg(OH)2 5.0
実施例 13 Al(OH)3 11.0 0 18.5 19.3 1.4 実施例 14 Mg(OH)2 15.0 0 18.9 19.6 1.3 実施例 15 Al(OH)3 18.0 0 19.0 20.1 1.1 実施例 16 Al(OH)3 23.0 0 19.5 20.8 1.0 実施例 17 Mg(OH)2 23.0 0 19.8 20.5 1.1 実施例 18 Mg(OH)2 27.0 0 22.3 22.6 1.0 比較例 1 ― ― 15 14.9 16.5 3.3
[0045] 表 1に示す結果から、水酸化物を含まな!/、従来のペースト組成物(比較例 1)に比 ベて、本発明の水酸ィ匕物を使用したペースト組成物(実施例 1〜18)を用いることに より、アルミニウム電極層の電極機能と BSF効果が低下することがなく、アルミニウム 電極層におけるブリスターやアルミニウムの玉の発生を抑制するとともに、シリコン半 導体基板の変形量を低減することができることがわかる。
[0046] 以上に開示された実施の形態や実施例はすべての点で例示であって制限的なも のではないと考慮されるべきである。本発明の範囲は、以上の実施の形態や実施例 ではなぐ請求の範囲によって示され、請求の範囲と均等の意味および範囲内での すべての修正や変形を含むものと意図される。 産業上の利用可能性
この発明に従って、アルミニウム粉末、有機質ビヒクルにカ卩えて、さらに水酸ィ匕物を 含有するペースト組成物を使用することにより、シリコン半導体基板の裏面に形成さ れるアルミニウム電極層にブリスターやアルミニウムの玉が発生するのを抑制するとと もに、シリコン半導体基板の変形も低減することができ、太陽電池素子の製造歩留ま りを向上させることができる。

Claims

請求の範囲
[1] シリコン半導体基板(1)の上に電極 (8)を形成するためのペースト組成物であって
、アルミニウム粉末と、有機質ビヒクルと、水酸化物とを含む、ペースト組成物。
[2] 前記水酸化物は、水酸ィ匕アルミニウム、水酸化マグネシウム、水酸ィ匕カルシウム、 水酸化ストロンチウムおよび水酸化バリウム力 なる群より選ばれた少なくとも 1種であ る、請求項 1に記載のペースト組成物。
[3] 前記水酸化物を 0. 1質量%以上 25. 0質量%以下含む、請求項 1に記載のペース ト組成物。
[4] ガラスフリットをさらに含む、請求項 1に記載のペースト組成物。
[5] 請求項 1に記載のペースト組成物をシリコン半導体基板(1)の上に塗布した後、焼 成することにより形成した電極 (8)を備えた、太陽電池素子。
PCT/JP2006/318816 2005-10-20 2006-09-22 ペースト組成物およびそれを用いた太陽電池素子 WO2007046214A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06810429A EP1939943B1 (en) 2005-10-20 2006-09-22 Paste composition and solar battery element using the same
US11/990,618 US8877100B2 (en) 2005-10-20 2006-09-22 Paste composition and solar cell element using the same
JP2007540904A JP4949263B2 (ja) 2005-10-20 2006-09-22 ペースト組成物およびそれを用いた太陽電池素子
DE602006021767T DE602006021767D1 (de) 2005-10-20 2006-09-22 Pastenzusammensetzung und solarbatterieelement damit
NO20082281A NO339124B1 (no) 2005-10-20 2008-05-19 Pastamateriale og solcelleelement hvor dette anvendes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005306025 2005-10-20
JP2005-306025 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007046214A1 true WO2007046214A1 (ja) 2007-04-26

Family

ID=37962312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318816 WO2007046214A1 (ja) 2005-10-20 2006-09-22 ペースト組成物およびそれを用いた太陽電池素子

Country Status (10)

Country Link
US (1) US8877100B2 (ja)
EP (1) EP1939943B1 (ja)
JP (1) JP4949263B2 (ja)
KR (1) KR101031060B1 (ja)
CN (1) CN100550431C (ja)
DE (1) DE602006021767D1 (ja)
ES (1) ES2361974T3 (ja)
NO (1) NO339124B1 (ja)
TW (1) TWI382546B (ja)
WO (1) WO2007046214A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306023A (ja) * 2007-06-08 2008-12-18 Toyo Aluminium Kk ペースト組成物と太陽電池素子
US20140335651A1 (en) * 2008-11-14 2014-11-13 Sichuan Yinhe Chemical Co., Ltd. Inks and pastes for solar cell fabrication
US8017428B2 (en) * 2009-06-10 2011-09-13 E. I. Du Pont De Nemours And Company Process of forming a silicon solar cell
KR20110025614A (ko) * 2009-09-04 2011-03-10 동우 화인켐 주식회사 태양전지의 후면 전극용 알루미늄 페이스트
KR20110040083A (ko) * 2009-10-13 2011-04-20 동우 화인켐 주식회사 태양전지의 후면 전극용 알루미늄 페이스트
KR101113503B1 (ko) * 2009-10-30 2012-02-29 고려대학교 산학협력단 유도전류 장치를 이용한 실리콘 태양전지의 제조 방법
EP2555250A4 (en) * 2010-04-02 2013-12-04 Noritake Co Ltd PULP COMPOSITION FOR SOLAR CELL, METHOD FOR PRODUCING SAME, AND SOLAR CELL
US20120152341A1 (en) * 2010-12-16 2012-06-21 E.I. Du Pont De Nemours And Company Low bow aluminum paste with an alkaline earth metal salt additive for solar cells
US20120152342A1 (en) * 2010-12-16 2012-06-21 E.I. Du Pont De Nemours And Company Aluminum paste compositions comprising metal phosphates and their use in manufacturing solar cells
US20120152344A1 (en) * 2010-12-16 2012-06-21 E.I. Du Pont De Nemours And Company Aluminum paste compositions comprising calcium oxide and their use in manufacturing solar cells
CN102157220B (zh) * 2011-02-28 2013-09-18 张振中 晶体硅太阳能电池正面栅线电极专用Ag浆
KR101276669B1 (ko) * 2011-07-15 2013-06-19 주식회사 케이씨씨 금속-함유 유기계 첨가제를 포함하는 실리콘 태양전지용 후면 전극 조성물
JP7264674B2 (ja) * 2019-03-13 2023-04-25 東洋アルミニウム株式会社 バックコンタクト型太陽電池セルの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193505A (ja) * 1984-10-12 1986-05-12 株式会社東海理化電機製作所 導電性ペ−スト
JPS62237605A (ja) * 1986-04-08 1987-10-17 ティーディーケイ株式会社 厚膜ペ−スト
JPH01118580A (ja) * 1987-10-30 1989-05-11 Ibiden Co Ltd 樹脂系導電ペースト
JPH03116608A (ja) * 1989-09-29 1991-05-17 Tdk Corp 導体ペーストおよび導体
JPH03209702A (ja) * 1990-01-11 1991-09-12 Daito Tsushinki Kk Ptc組成物
JPH04198359A (ja) * 1990-11-28 1992-07-17 Mitsubishi Petrochem Co Ltd 半導電性樹脂組成物からなる電子写真装置用ベルト
JP2004134775A (ja) * 2002-09-19 2004-04-30 Murata Mfg Co Ltd 導電性ペースト
JP2004355862A (ja) * 2003-05-27 2004-12-16 Ngk Spark Plug Co Ltd 導体用ペースト、セラミック配線基板及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117638B2 (ja) * 1987-10-30 1995-12-18 キヤノン株式会社 振動波モータを用いたレンズ系駆動装置
JP2999867B2 (ja) 1991-11-07 2000-01-17 シャープ株式会社 太陽電池およびその製造方法
JP3662955B2 (ja) * 1994-09-16 2005-06-22 株式会社東芝 回路基板および回路基板の製造方法
JP2000090734A (ja) 1998-09-16 2000-03-31 Murata Mfg Co Ltd 導電性ペースト及びそれを用いた太陽電池
JP3910072B2 (ja) * 2002-01-30 2007-04-25 東洋アルミニウム株式会社 ペースト組成物およびそれを用いた太陽電池
EP1618575B1 (en) * 2003-04-28 2019-10-23 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP2004330247A (ja) * 2003-05-08 2004-11-25 Murata Mfg Co Ltd ニッケル粉末、及び導電性ペースト、並びに積層セラミック電子部品
JP4373774B2 (ja) 2003-12-24 2009-11-25 京セラ株式会社 太陽電池素子の製造方法
JP2005200585A (ja) 2004-01-16 2005-07-28 Gp Daikyo Corp 樹脂組成物並びにそれを用いた樹脂成形品及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193505A (ja) * 1984-10-12 1986-05-12 株式会社東海理化電機製作所 導電性ペ−スト
JPS62237605A (ja) * 1986-04-08 1987-10-17 ティーディーケイ株式会社 厚膜ペ−スト
JPH01118580A (ja) * 1987-10-30 1989-05-11 Ibiden Co Ltd 樹脂系導電ペースト
JPH03116608A (ja) * 1989-09-29 1991-05-17 Tdk Corp 導体ペーストおよび導体
JPH03209702A (ja) * 1990-01-11 1991-09-12 Daito Tsushinki Kk Ptc組成物
JPH04198359A (ja) * 1990-11-28 1992-07-17 Mitsubishi Petrochem Co Ltd 半導電性樹脂組成物からなる電子写真装置用ベルト
JP2004134775A (ja) * 2002-09-19 2004-04-30 Murata Mfg Co Ltd 導電性ペースト
JP2004355862A (ja) * 2003-05-27 2004-12-16 Ngk Spark Plug Co Ltd 導体用ペースト、セラミック配線基板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1939943A4 *

Also Published As

Publication number Publication date
EP1939943A4 (en) 2009-12-30
JP4949263B2 (ja) 2012-06-06
TWI382546B (zh) 2013-01-11
KR101031060B1 (ko) 2011-04-25
NO20082281L (no) 2008-05-19
US8877100B2 (en) 2014-11-04
US20090223563A1 (en) 2009-09-10
EP1939943B1 (en) 2011-05-04
DE602006021767D1 (de) 2011-06-16
TW200725923A (en) 2007-07-01
NO339124B1 (no) 2016-11-14
EP1939943A1 (en) 2008-07-02
CN101292363A (zh) 2008-10-22
KR20080068638A (ko) 2008-07-23
ES2361974T3 (es) 2011-06-24
CN100550431C (zh) 2009-10-14
JPWO2007046214A1 (ja) 2009-04-23

Similar Documents

Publication Publication Date Title
WO2007046214A1 (ja) ペースト組成物およびそれを用いた太陽電池素子
JP3910072B2 (ja) ペースト組成物およびそれを用いた太陽電池
WO2011013469A1 (ja) ペースト組成物およびそれを用いた太陽電池素子
US20110146781A1 (en) Process of forming a grid cathode on the front-side of a silicon wafer
US20080135097A1 (en) Paste Composition, Electrode, and Solar Cell Element Including the Same
WO2007046199A1 (ja) アルミニウムペースト組成物およびそれを用いた太陽電池素子
US20130056060A1 (en) Process for the production of lfc-perc silicon solar cells
JP4907331B2 (ja) 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
CN107258002B (zh) 银糊组合物、使用其形成的太阳能电池的前电极以及采用其的太阳能电池
JP2010087501A (ja) 導電性組成物及びそれを用いた太陽電池
JP2007081059A (ja) アルミニウムペースト組成物およびそれを用いた太陽電池素子
KR20100021616A (ko) 페이스트 조성물 및 태양 전지 소자
TWI759447B (zh) 太陽電池用膏狀組成物
JP2008166344A (ja) 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
KR101368314B1 (ko) 비히클 조성물 및 이를 이용한 전도성 조성물
KR20140074415A (ko) 태양전지 후면 전극의 제조 방법 및 이를 이용한 태양전지 소자
JP2013089481A (ja) ペースト組成物
JP2007234625A (ja) 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
KR20150057457A (ko) 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자
TWI807034B (zh) 結晶系太陽電池單元之製造方法
KR101338548B1 (ko) 페이스트 조성물 및 태양전지
JP2008159879A (ja) 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
JP2008160016A (ja) 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
JP2012212542A (ja) ペースト組成物
KR20150057456A (ko) 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038639.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540904

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11990618

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087005167

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006810429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE