WO2007045355A1 - Vorrichtung zur förderung eines kühllufstromes - Google Patents

Vorrichtung zur förderung eines kühllufstromes Download PDF

Info

Publication number
WO2007045355A1
WO2007045355A1 PCT/EP2006/009582 EP2006009582W WO2007045355A1 WO 2007045355 A1 WO2007045355 A1 WO 2007045355A1 EP 2006009582 W EP2006009582 W EP 2006009582W WO 2007045355 A1 WO2007045355 A1 WO 2007045355A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
fan
air flow
heat sink
cooling air
Prior art date
Application number
PCT/EP2006/009582
Other languages
English (en)
French (fr)
Inventor
Thomas Bielesch
Benjamin Schweizer
Michael Spieth
Ulrich Vollert
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to EP06806022.7A priority Critical patent/EP1941164B1/de
Priority to US12/090,567 priority patent/US8230910B2/en
Publication of WO2007045355A1 publication Critical patent/WO2007045355A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives

Definitions

  • the invention relates to a device for conveying a cooling air flow according to the preamble of claim 1.
  • a radial fan for a heating and / or air conditioning of a motor vehicle wherein a motor holder is designed as a fan frame, on which a power electronics is arranged.
  • the fan cowl is designed as a metal part and thus performs the resulting in the power electronics or the control unit heat loss indirectly from the sucked air from the fan.
  • a radiator fan for motor vehicles has been known, ie a device for conveying a cooling air flow by means of an electric motor-driven axial fan for a coolant radiator of a motor vehicle.
  • the drive has control electronics on a printed circuit board in an electronics housing, which is fastened to a fan cowl (fan cowl).
  • the fan frame is attached to the radiator and has a Zargenö réelle in which a jacket fan rotates.
  • the sucked by the radiator cooling air flow is thus channeled through the fan frame and conveyed through the frame opening.
  • a heat sink with cooling fins is arranged, which protrude into the cooling air flow, either upstream or downstream of the fan.
  • the cooling ribs protrude radially into the outer diameter of the fan or the fan casing. Disadvantages are on the one hand the additional axial space, on the other hand, the unwanted noise, especially in an arrangement of the cooling fins on the upstream side of the fan.
  • the heat sink is arranged radially outside of the frame opening and is acted upon by a secondary flow of the cooling air flow.
  • the heat sink, the elements for heat dissipation, z. B. in the form of cooling fins or cooling pins, thus does not protrude into the main cooling air flow - this results in the advantage that unpleasant noise can be avoided because the cooling air flow remains undisturbed.
  • the fan is designed as a fan-type fan which, in the direction of airflow, is behind the door opening. tion or the Zargeneinlauf is arranged.
  • a gap is left in the axial direction between the frame and fan shroud, whereby a side stream is generated, which sweeps over the cooling fins or cooling pins of the heat sink and thus achieves a cooling effect.
  • the direction of the secondary current depends on the operating status of the fan or on the pressure gradient in front of and behind the fan. If the fan is sucked in from the area of the fan cowl, it also sucks in the sidestream via the gap, which produces a vertical vortex in the form of a recirculation flow. If the fan is over-blown, so that a higher pressure upstream of the fan than behind the fan, the direction of the bypass will reverse by adjusting a leakage current through the gap across the cooling fins. Also in this case, a cooling effect is achieved.
  • the frame opening is bounded by a cylindrical Zargenring in which the shell fan rotates while radially outwardly of the Zargenringes a bypass channel is arranged, which leads over the heat sink or its heat dissipating elements.
  • a bypass channel is arranged, which leads over the heat sink or its heat dissipating elements.
  • the bypass channel acts as a true bypass, through which a secondary flow flows in the same direction as the main cooling air flow.
  • a recirculation flow will be more likely to occur, i. H. the fan sucks already delivered cooling air via the bypass channel.
  • a portion of the heat sink is disposed radially within the Zargenringes or the fan shroud, ie, a portion of the cooling fins or cooling pins protrudes into the main cooling air flow, on the downstream side of the fan.
  • a portion of the heat dissipating elements is radially outward and another downstream portion radially outside and within the Zargenö réelle or the cladding diameter.
  • the cooling fins or so-called cooling dome protrude with a different height from the base plate of the heat sink.
  • the heat sink or its newly formed base plate extends both in the axial direction and in the circumferential direction.
  • the height of the cooling fins or cooling pins is adapted to the diameter of the Zargenringes or the fan shroud, so that on the circumference an approximately equal distance between the cooling fins and Zargenrise is achieved , Even so, the advantage of improved cooling effect is achieved.
  • FIG. 1 shows a fan control device with heat sink radially outside a fan shroud (first embodiment of the invention)
  • FIG. 4 shows a second exemplary embodiment of the invention with a heat sink arranged radially outside a frame ring and a bypass channel for the heat sink, FIG.
  • FIG. 5 shows a further exemplary embodiment of a heat sink
  • FIG. 6 shows a third embodiment of the invention with heat sink, the cooling pins are arranged both radially outside of the shell fan and within the shell diameter,
  • FIG. 7 shows the heat sink for the embodiment according to FIG. 6 in FIG.
  • FIG. 9 shows the heat sink in cross section according to the line IX-IX, FIG.
  • Fig. 10 shows the heat sink in longitudinal section along the line X-X and
  • Fig. 11 shows the heat sink in a view.
  • Fig. 1 shows a partially illustrated fan frame 1 with a frame opening 2, which is bounded by a Zargeneinlauf 3. Within the frame Opening 2 is arranged only a partially illustrated jacket fan 4, which also has only partially shown fan blades 4a and a connecting their sheath 5 mantle.
  • the fan frame 1 corresponds in its entire training and function as the disclosed in the aforementioned prior art fan shroud for a coolant radiator of a motor vehicle and is thus downstream of a coolant radiator, not shown, or a cooling module of a motor vehicle.
  • the fan 4 may be connected in a manner not shown with the frame 1 and is driven by an electric motor, not shown, which is controlled by a control unit 6.
  • control unit 6 In the control unit 6, not shown electronic components, so-called power electronics are arranged, whose heat loss via a heat sink 7, connected to the control unit 6, is dissipated.
  • a main cooling air flow is conveyed in the direction of the arrow L and sucked by the or the heat exchanger, not shown.
  • an axial gap 8 is left, which allows a leakage or secondary air flow.
  • the secondary flow is represented by dashed lines and denoted by N: with an intake fan 4, a recirculation flow in the form of a vortex N is formed, with the secondary flow being sucked in by the cooling air flow L through the gap 8 via the heat sink 7.
  • the heat sink 7 is thus cooled by convection.
  • the direction of the secondary flow N can then be reversed if the fan 4 is "over-blown” at a high vehicle speed, ie at a correspondingly high back pressure
  • the fan 4 then no longer supplies the air flow with energy and acts as a resistance "push" a side stream through the gap 8, which extends over the heat sink 7 in the direction of a dotted arrow N '.
  • Fig. 2 and Fig. 2a show the heat sink 7 in a plan view and a side view.
  • a metallic, planar base plate 7a vertically projecting pins or so-called cooling domes 7b are arranged in rows and offset from one another.
  • the air flow direction is indicated by an arrow P.
  • the base plate 7a is in heat conductive connection with the power electronics of the control unit 6, so that the dissipated heat loss passes through the line in the cooling dome 7b, from where it is discharged via convection to an air flow.
  • FIG. 3 and FIG. 3 a show a modified heat sink T with variable height of the cooling domes 7'b, which varies between a minimum height h ⁇ approximately in the middle and a maximum height h1 in the outer region.
  • the height of the cooling domes 7'b is adapted to the circular circumference of the fan casing 5, so that a better cooling effect results.
  • FIG. 4 shows a further exemplary embodiment of the invention with a fan frame 10, a circular frame opening 11, which is delimited by a hollow-cylindrical frame ring 12.
  • a jacket fan 13 with partially indicated fan blades 13a and a jacket 14 to.
  • the jacket 14 forms a radial gap 15 with the frame ring 12.
  • the jacket 14 has an end-side inlet region 14a, and the frame ring 12 has an end-side inlet region 12a, which overlap in the radial direction.
  • a control unit 16 is arranged, which is heat-conductively connected to a heat sink 17.
  • the heat sink 17 has two plates 17a, 17b, through which a bypass channel 18 is formed, which communicates with a passage opening 19 in the fan frame 10 in flow communication.
  • a bypass channel 18 Within the bypass channel 18 heat dissipating elements 17c are arranged.
  • the bypass channel 18 allows a bypass flow, represented by dashed arrows N, to pass through-parallel to the main cooling air flow, represented by the arrow L.
  • this bypass flow will only set if a corresponding overpressure exists within the fan cowl 10 , caused by a corresponding dynamic pressure prevails. Otherwise, d. H. with suction fan 13, the flow direction in the bypass channel 18 will reverse, and it will form a Rezirkulationsströmung, wherein the fan 13 already sucks already conveyed cooling air through the bypass channel 18 again.
  • Fig. 5 shows the heat sink 17 for the embodiment of FIG. 4 with air flow direction P or P '.
  • Cooling dome 17c On the base plate 17a are turn Cooling dome 17c arranged, which are bounded laterally by channel walls 17d, 17e.
  • the cooling domes 17c are in turn arranged in rows and offset from each other, so that there is a very good cooling effect by convection.
  • Fig. 6 shows a third embodiment of the invention with a frame 20, which has a Zargenö réelle 21, which is bounded by an approximately bell-shaped Zargeneinlauf 22.
  • a jacket fan 23 is arranged with a jacket 24, wherein the jacket is arranged in the air flow direction L downstream of the Zargeneinlaufes 22 is arranged.
  • an axial gap 25 is left, which generates a leakage or secondary flow.
  • a fan control unit 26 is arranged, which is heat-conductively connected to a base plate 27 a of a heat sink 27.
  • the shorter cooling domes 27b are arranged radially outside the fan casing 24, while the downstream (in the direction of the arrows L) cooling domes 27c have a greater height and extend into the main cooling air flow L, d. H. extend into the diameter of the fan shroud 24.
  • the tips of the cooling domes 27c are thus flowed around and cooled by the main cooling air flow L.
  • the shorter cooling domes 27b are surrounded by a secondary flow, represented by the arrows N, which adjusts as a result of the fan rotation and the axial gap 25.
  • the secondary flow N is thus directed substantially counter to the main stream L.
  • cooling domes 27b, 27c Due to the combination of cooling domes 27b, 27c extending radially outside the fan casing 24 and radially inside the shell diameter, an enhanced cooling effect, i. H. achieves a better heat dissipation of the power loss.
  • FIGS. 7 to 11 show the heat sink 27 for the exemplary embodiment according to FIG. 6.
  • FIG. 7 shows an isometric view of the heat sink 27, wherein the different heights of the cooling domes 27b, 27c are clearly recognizable. are bar. The change in height takes place both in the axial direction and in the circumferential direction.
  • Fig. 8 shows a plan view of the heat sink 27 with staggered the arrangement of the cooling dome 27b, 27c.
  • FIG. 9 shows a cross section along the line IX-IX 1, wherein the different heights h1 for the shorter cooling domes 27b and the heights h2 for the longer cooling domes 27c are shown.
  • Fig. 10 a longitudinal section along the line XX, shows that the height of the cooling dome 27b also varies in the circumferential direction, along a circular arc K, which corresponds to the circumference of the fan shroud 24 (see Fig. 6).
  • FIG. 11 shows the heat sink 27 in a view, again showing the varying height of the cooling domes adapted to circular arcs K and KO.

Abstract

Die Erfindung betrifft eine Vorrichtung zur Förderung eines Kühlluftstromes für mindestens einen Wärmeübertrager, insbesondere für Kraftfahrzeuge, aufweisend eine Lüfterzarge (1) mit Zargenöffnung (2), ein in der Zargenöffnung umlaufendes Lüfterrad (4), einen Lüfterantrieb mit Lüftersteuergerät (6), welches im Randbereich der Zargenöffnung (2) angeordnet und mittels eines Kühlkörpers (7) kühlbar ist. Es wird vorgeschlagen, dass zumindest ein Teil des Kühlkörpers (7) radial außerhalb der Zargenöffnung (2) angeordnet und von einem Nebenstrom (N) des Kühlluftstromes (L) beaufschlagbar ist.

Description

BEHR GmbH & Co. KG Mauserstraße 3, 70469 Stuttgart
Vorrichtung zur Förderung eines Kühlluftstromes
Die Erfindung betrifft eine Vorrichtung zur Förderung eines Kühlluftstromes nach dem Oberbegriff des Patentanspruches 1.
Vorrichtungen zur Förderung eines Kühlluftstromes sind als Lüftergebläse für einen Kühlmittelkühler oder ein Kühlmodul und als Heizungs- oder Klimagebläse für Kraftfahrzeuge bekannt. Der Lüfter bzw. das Gebläserad wird elektromotorisch angetrieben, wobei der Antrieb durch eine elektronische Steuer- einrichtung geregelt wird, welche Verlustwärme abgibt. Die elektronische Steuereinrichtung muss daher gekühlt werden, wozu so genannte Kühlkörper verwendet werden, die einerseits mit dem Steuergerät in Wärme leitender Verbindung stehen und andererseits Kühlrippen oder -stifte, so genannte Kühldome aufweisen, welche von einem Kühlluftstrom beaufschlagt werden. Ein derartiger Kühlkörper, wurde z. B. durch die EP 0 278 240 A2 der Anmelderin bekannt.
Durch die DE 35 23 223 A1 der Anmelderin wurde ein Radialgebläse für eine Heizungs- und/oder Klimaanlage eines Kraftfahrzeuges bekannt, wobei ein Motorhalter als Lüfterzarge ausgebildet ist, auf welcher eine Leistungselektronik angeordnet ist. Die Lüfterzarge ist als Metallteil ausgebildet und führt somit die in der Leistungselektronik bzw. dem Steuergerät entstehende Verlustwärme mittelbar an den vom Gebläse angesaugten Luftstrom ab. Durch die DE 196 12 679 C2 wurde ein Kühlerventilator für Kraftfahrzeuge bekannt, d. h. eine Vorrichtung zur Förderung eines Kühlluftstromes mittels eines elektromotorisch angetriebenen Axiallüfters für einen Kühlmittelkühler eines Kraftfahrzeuges. Der Antrieb weist eine Steuerelektronik auf einer Lei- terplatte in einem Elektronikgehäuse auf, welches an einer Lüfterzarge (Lüfterhaube) befestigt ist. Die Lüfterzarge ist am Kühler befestigt und weist eine Zargenöffnung auf, in welcher ein Mantellüfter umläuft. Der durch den Kühler angesaugte Kühlluftstrom wird somit durch die Lüfterzarge kanalisiert und durch die Zargenöffnung gefördert. Am Elektronikgehäuse ist ein Kühlkörper mit Kühlrippen angeordnet, welche in den Kühlluftstrom hineinragen, und zwar entweder stromaufwärts oder stromabwärts des Lüfters. In jedem Fall ragen die Kühlrippen radial in den Außendurchmesser des Lüfters bzw. den Lüftermantel hinein. Nachteilig sind einerseits der zusätzliche axiale Bauraum, andererseits die unerwünschte Geräuschentwicklung, insbesondere bei einer Anordnung der Kühlrippen auf der Zustromseite des Lüfters.
Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Förderung eines Kühlluftstromes der eingangs genannten Art hinsichtlich der Elektronikkühlung zu verbessern, insbesondere bei Vermeidung unerwünschter Ge- räuschentwicklung und zusätzlichen Bauraumes.
Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Erfindungsgemäß ist vorgesehen, dass mindestens ein Teil des Kühlkörpers radial außerhalb der Zargenöffnung angeordnet und von einem Nebenstrom des Kühlluftstromes beaufschlagt wird. Der Kühlkörper, der Elemente zur Wärmeabfuhr, z. B. in Form von Kühlrippen oder Kühlstiften aufweist, ragt somit nicht in den Haupt-Kühlluftstrom - daraus resultiert der Vorteil, dass unangenehme Geräusche vermieden werden, da der Kühlluftstrom ungestört bleibt.
Nach einer vorteilhaften Ausgestaltung der Erfindung ist der Lüfter als Man- tellüfter ausgebildet, welcher in Luftströmungsrichtung hinter der Zargenöff- nung bzw. dem Zargeneinlauf angeordnet ist. Dabei ist in axialer Richtung zwischen Zarge und Lüftermantel ein Spalt belassen, wodurch ein Nebenstrom erzeugt wird, welcher über die Kühlrippen bzw. Kühlstifte des Kühlkörpers streicht und somit einen Kühleffekt erzielt. Die Richtung des Neben- Stromes hängt vom Betriebszustand des Lüfters ab bzw. von dem Druckgefälle vor und hinter dem Lüfter. Saugt der Lüfter aus dem Bereich der Lüfterzarge an, saugt er auch über den Spalt den Nebenstrom an, welcher einen stehenden Wirbel in Form einer Rezirkulationsströmung erzeugt. Wird der Lüfter überblasen, so dass sich vor dem Lüfter ein höherer Druck als hinter dem Lüfter einstellt, wird sich die Richtung des Nebenstromes umkehren, indem sich ein Leckagestrom durch den Spalt über die Kühlrippen einstellt. Auch in diesem Falle wird ein Kühleffekt erzielt.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Zar- genöffnung durch einen zylindrischen Zargenring begrenzt, in welchem der Mantellüfter umläuft, während radial außerhalb des Zargenringes ein By- passkanal angeordnet ist, welcher über den Kühlkörper bzw. dessen Wärme abführende Elemente führt. Durch diesen Bypasskanal ergibt sich ebenfalls ein kühlender Nebenstrom, welcher - je nach Arbeitspunkt des Lüfters bzw. dem anliegenden Druckgefälle - in der Strömungsrichtung wechselt. Wird der Lüfter aufgrund hoher Geschwindigkeit des Fahrzeuges und hohen Staudruckes überblasen, so wirkt der Bypasskanal als echter Bypass, durch welchen ein Nebenstrom in gleicher Richtung wie der Haupt-Kühlluftstrom strömt. Bei Saugbetrieb des Lüfters wird sich dagegen eher eine Rezirkulati- onsströmung einstellen, d. h. der Lüfter saugt bereits geförderte Kühlluft über den Bypasskanal an.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist ein Teil des Kühlkörpers radial innerhalb des Zargenringes bzw. des Lüftermantels angeordnet, d. h. ein Bereich der Kühlrippen oder Kühlstifte ragt in den Haupt-Kühlluftstrom hinein, und zwar auf der Abströmseite des Lüfters. Somit liegt ein Teil der Wärme abführenden Elemente radial außerhalb und ein weiterer stromabwärts gelegener Teil radial außerhalb und innerhalb der Zargenöffnung bzw. des Manteldurchmessers. Damit wird der Vorteil eines erhöhten Kühleffektes erreicht. Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ragen die Kühlrippen oder so genannte Kühldome mit einer unterschiedlichen Höhe von der Grundplatte des Kühlkörpers ab. Der Kühlkörper bzw. seine eben ausgebildete Grundplatte erstreckt sich sowohl in axialer Richtung als auch in Umfangsrichtung. Um den Strömungsquerschnitt zwischen Grundplatte und Zargenring bzw. Lüftermantel möglichst effektiv zu nutzen, ist die Höhe der Kühlrippen bzw. Kühlstifte an den Durchmesser des Zargenringes des bzw. des Lüftermantels angepasst, so dass auf dem Umfang ein annähernd gleicher Abstand zwischen Kühlrippen und Zargenumfang erreicht wird. Auch damit wird der Vorteil einer verbesserten Kühlwirkung erreicht.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher erläutert. Es zeigen
Fig. 1 ein Lüftersteuergerät mit Kühlkörper radial außerhalb eines Lüftermantels (erstes Ausführungsbeispiel der Erfindung),
Fig. 2, 2a einen Kühlkörper mit konstanter Stifthöhe,
Fig. 3, 3a einen Kühlkörper mit variabler Stifthöhe, Fig. 4 ein zweites Ausführungsbeispiel der Erfindung mit radial außerhalb eines Zargenringes angeordnetem Kühlkörper und Bypass- kanal für den Kühlkörper,
Fig. 5 ein weiteres Ausführungsbeispiel für einen Kühlkörper,
Fig. 6 ein drittes Ausführungsbeispiel der Erfindung mit Kühlkörper, dessen Kühlstifte sowohl radial außerhalb des Mantellüfters als auch innerhalb des Manteldurchmessers angeordnet sind,
Fig. 7 den Kühlkörper für das Ausführungsbeispiel gemäß Fig. 6 in 3-
D-Darstellung,
Fig. 8 den Kühlkörper in einer Draufsicht, Fig. 9 den Kühlkörper im Querschnitt gemäß der Linie IX-IX,
Fig. 10 den Kühlkörper im Längsschnitt gemäß der Linie X-X und
Fig. 11 den Kühlkörper in einer Ansicht.
Fig. 1 zeigt eine teilweise dargestellte Lüfterzarge 1 mit einer Zargenöffnung 2, welche von einem Zargeneinlauf 3 begrenzt wird. Innerhalb der Zargen- öffnung 2 ist ein nur teilweise dargestellter Mantellüfter 4 angeordnet, welcher ebenfalls nur teilweise dargestellte Lüfterschaufeln 4a und einen deren Spitzen verbindenden Mantel 5 aufweist. Die Lüfterzarge 1 entspricht in ihrer gesamten Ausbildung und Funktion etwa der im eingangs genannten Stand der Technik offenbarten Lüfterzarge für einen Kühlmittelkühler eines Kraftfahrzeuges und ist somit stromabwärts von einem nicht dargestellten Kühlmittelkühler oder einem Kühlmodul eines Kraftfahrzeuges angeordnet. Der Lüfter 4 kann auf nicht dargestellte Weise mit der Zarge 1 verbunden sein und wird durch einen nicht dargestellten Elektromotor angetrieben, welcher über ein Steuergerät 6 geregelt wird. In dem Steuergerät 6 sind nicht dargestellte Elektronikbauteile, so genannte Leistungselektronik angeordnet, deren Verlustwärme über einen Kühlkörper 7, verbunden mit dem Steuergerät 6, abgeführt wird. Der Kühlkörper 7, welcher hier nicht dargestellte Elemente zur Wärmeabfuhr aufweist, ist radial außerhalb des Lüftermantels 5 ange- ordnet. Innerhalb des Mantels 5 wird ein Haupt-Kühlluftstrom in Richtung des Pfeiles L gefördert und durch den bzw. die nicht dargestellten Wärmeübertrager gesaugt. Zwischen dem (ortsfesten) Zargeneinlauf 3 und dem (umlaufenden) Lüftermantel 5 ist ein Axialspalt 8 belassen, welcher einen Leckage- oder Neben luftstrom ermöglicht. Der Nebenstrom ist gestrichelt dar- gestellt und durch N bezeichnet: bei saugendem Lüfter 4 bildet sich eine Re- zirkulationsströmung in Form eines Wirbels N aus, wobei der Nebenstrom vom Kühlluftstrom L durch den Spalt 8 über den Kühlkörper 7 angesaugt wird. Der Kühlkörper 7 wird somit durch Konvektion gekühlt. Die Richtung des Nebenstromes N kann sich dann umkehren, wenn der Lüfter 4 bei hoher Fahrzeuggeschwindigkeit, d. h. bei entsprechend hohem Staudruck „überblasen" wird. Der Lüfter 4 führt dann dem Luftstrom keine Energie mehr zu und wirkt als Widerstand. In diesem Falle wird der Staudruck einen Nebenstrom durch den Spalt 8 „drücken", welcher über den Kühlkörper 7 in Richtung eines punktierten Pfeils N' verläuft.
Fig. 2 und Fig. 2a zeigen den Kühlkörper 7 in einer Draufsicht und einer Seitenansicht. Auf einer metallischen, ebenen Grundplatte 7a sind senkrecht abragende Stifte oder so genannte Kühldome 7b in Reihen und versetzt zueinander angeordnet. Die Luftströmungsrichtung ist durch einen Pfeil P ge- kennzeichnet. Die Grundplatte 7a steht in Wärme leitender Verbindung mit der Leistungselektronik des Steuergerätes 6, so dass die abzuführende Verlustwärme durch Leitung in die Kühldome 7b gelangt, von wo aus sie über Konvektion an einen Luftstrom abgeführt wird.
Fig. 3 und Fig. 3a zeigen einen abgeänderten Kühlkörper T mit variabler Höhe der Kühldome 7'b, welche zwischen einer minimalen Höhe hθ etwa in der Mitte und einer maximalen Höhe h1 im Außenbereich variiert. Die Höhe der Kühldome 7'b ist an den kreisförmigen Umfang des Lüftermantels 5 an- gepasst, so dass sich eine bessere Kühlwirkung ergibt.
Fig. 4 zeigt ein weiteres Ausführungsbeispiel der Erfindung mit einer Lüfterzarge 10, einer kreisförmigen Zargenöffnung 11 , welche von einem hohlzy- lindrisch ausgebildeten Zargenring 12 begrenzt wird. Innerhalb des Zargenringes 12 läuft ein Mantellüfter 13 mit teilweise angedeuteten Lüfterschaufeln 13a und einem Mantel 14 um. Der Mantel 14 bildet mit dem Zargenring 12 einen Radialspalt 15. Der Mantel 14 weist einen stirnseitigen Einlaufbereich 14a, und der Zargenring 12 einen stirnseitigen Einlaufbereich 12a auf, welche sich in radialer Richtung überlappen. Radial außerhalb des Zargenringes 12 ist ein Steuergerät 16 angeordnet, welches Wärme leitend mit einem Kühlkörper 17 verbunden ist. Der Kühlkörper 17 weist zwei Platten 17a, 17b auf, durch welche ein Bypasskanal 18 gebildet wird, welcher mit einer Durchtrittsöffnung 19 in der Lüfterzarge 10 in Strömungsverbindung steht. Innerhalb des Bypasskanals 18 sind Wärme abführende Elemente 17c angeordnet. Der Bypasskanal 18 lässt bei einem entsprechenden Druckgefälle ei- nen Bypassstrom, dargestellt durch gestrichelte Pfeile N, durch - parallel zum Haupt-Kühlluftstrom, dargestellt durch den Pfeil L. Dieser Bypassstrom wird sich allerdings nur dann einstellen, wenn innerhalb der Lüfterzarge 10 ein entsprechender Überdruck, hervorgerufen durch einen entsprechenden Staudruck herrscht. Anderenfalls, d. h. bei saugendem Lüfter 13 wird sich die Strömungsrichtung im Bypasskanal 18 umkehren, und es wird sich eine Rezirkulationsströmung ausbilden, wobei der Lüfter 13 bereits geförderte Kühlluft durch den Bypasskanal 18 wieder ansaugt.
Fig. 5 zeigt den Kühlkörper 17 für das Ausführungsbeispiel gemäß Fig. 4 mit Luftströmungsrichtung P bzw. P'. Auf der Grundplatte 17a sind wiederum Kühldome 17c angeordnet, welche seitlich durch Kanalwände 17d, 17e begrenzt werden. Die Kühldome 17c sind wiederum in Reihen und versetzt gegeneinander angeordnet, so dass sich eine sehr gute Kühlwirkung durch Konvektion ergibt.
Fig. 6 zeigt ein drittes Ausführungsbeispiel der Erfindung mit einer Zarge 20, welche eine Zargenöffnung 21 aufweist, welche von einem etwa glockenförmig ausgebildeten Zargeneinlauf 22 begrenzt wird. Innerhalb der Zargenöffnung 21 ist ein Mantellüfter 23 mit einem Mantel 24 angeordnet, wobei der Mantel in Luftströmungsrichtung L gesehen stromabwärts des Zargeneinlaufes 22 angeordnet ist. Zwischen einer Hinterkante 22a des Zargeneinlaufes 20 und einer Vorderkante 24a des Mantels 24 ist ein Axialspalt 25 belassen, welcher einen Leckage- oder Nebenstrom erzeugt. Auf der Außenseite der Zarge 20 ist ein Lüftersteuergerät 26 angeordnet, welches Wärme leitend mit einer Grundplatte 27a eines Kühlkörpers 27 verbunden ist. Auf der Grundplatte 27a sind Kühldome 27b, 27c unterschiedlicher Höhe angeordnet. Die kürzeren Kühldome 27b sind radial außerhalb des Lüftermantels 24 angeordnet, während die stromabwärts (in Richtung der Pfeile L) gelegenen Kühldome 27c eine größere Höhe aufweisen und sich bis in den Haupt- Kühlluftstrom L, d. h. in den Durchmesser des Lüftermantels 24 hinein erstrecken. Die Spitzen der Kühldome 27c werden somit vom Haupt- Kühlluftstrom L umströmt und gekühlt. Die kürzeren Kühldome 27b dagegen werden von einem Nebenstrom, dargestellt durch die Pfeile N, umströmt, welcher sich infolge der Lüfterdrehung und des Axialspaltes 25 einstellt. Der Nebenstrom N ist also im Wesentlichen entgegen dem Hauptstrom L gerichtet.
Durch die Kombination von radial außerhalb des Lüftermantels 24 und radial innerhalb des Manteldurchmessers sich erstreckender Kühldome 27b, 27c wird ein verstärkter Kühleffekt, d. h. eine bessere Wärmeabfuhr der Verlustleistung erreicht.
Die Figuren 7 bis 11 zeigen den Kühlkörper 27 für das Ausführungsbeispiel gemäß Fig. 6. Fig. 7 zeigt in isometrischer Darstellung den Kühlkörper 27, wobei die unterschiedlichen Höhen der Kühldome 27b, 27c deutlich erkenn- bar sind. Die Veränderung der Höhe erfolgt sowohl in Axial- als auch in Um- fangsrichtung. Fig. 8 zeigt eine Draufsicht auf den Kühlkörper 27 mit versetzten der Anordnung der Kühldome 27b, 27c. Fig. 9 zeigt einen Querschnitt entlang der Linie IX-IX1 wobei die unterschiedlichen Höhen h1 für die kürze- ren Kühldome 27b und die Höhen h2 für die längeren Kühldome 27c eingezeichnet sind. Fig. 10, ein Längsschnitt entlang der Linie X-X, zeigt, dass die Höhe der Kühldome 27b auch in Umfangsrichtung variiert, und zwar entlang einem Kreisbogen K, welcher dem Kreisumfang des Lüftermantels 24 (vgl. Fig. 6) entspricht.
Fig. 11 zeigt den Kühlkörper 27 in einer Ansicht, wobei wiederum die variierende, an Kreisbögen K und KO angepasste Höhe der Kühldome ersichtlich ist.

Claims

P a t e n t a n s p r ü c h e
1. Vorrichtung zur Förderung eines Kühlluftstromes für mindestens einen
Wärmeübertrager, insbesondere für Kraftfahrzeuge, aufweisend eine Lüfterzarge (1, 10, 20) mit Zargenöffnung (2, 11, 21), ein in der Zargenöffnung umlaufendes Lüfterrad (4, 13, 23), einen Lüfterantrieb mit Lüftersteuergerät (6, 16, 26), welches im Randbereich der Zargenöff- nung (2, 11 , 21) angeordnet und mittels eines Kühlkörpers (7, 17, 27) kühlbar ist, dadurch gekennzeichnet, dass zumindest ein Teil des Kühlkörpers (7, 17, 27) radial außerhalb der Zargenöffnung (2, 11 , 21) angeordnet und von einem Nebenstrom (N) des Kühlluftstromes (L) beaufschlagbar ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Zargenöffnung (1 1) einen vorzugsweise zylindrisch ausgebildeten Zargenring (12) aufweist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Lüfterrad (4, 13, 23) einen Mantel (5, 14, 24) aufweist.
4. Vorrichtung nach Anspruch 1 und 3, dadurch gekennzeichnet, dass die Zargenöffnung (2) einen vorzugsweise glockenförmig ausgebilde- ten Lufteinlaufbereich (3) aufweist und dass in Luftströmungsrichtung
L hinter dem Einlaufbereich (3) unter Belassung eines Spalts (8) der Mantel (5) angeordnet ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Kühlkörper (7) radial außerhalb des Mantels (5) angeordnet und dass der Nebenstrom (N) im Bereich des Spaltes (8) und des Mantels (5) erzeugbar ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Kühlkörper (7, 17, 27) Elemente zur Wärmeabfuhr, insbesondere
Kühlrippen oder Kühldome aufweist, welche vom Nebenstrom (N) beaufschlagbar sind.
7. Vorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Kühlkörper (17) radial außerhalb des Zargenringes (12) angeordnet und einen Bypasskanal (18) zum Kühlluftstrom (L) bildet.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Bypasskanal (18) eine in der Lüfterzarge (10) angeordnete Durch- trittsöffnung (19) für den Nebenstrom (N) aufweist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass im Bypasskanal (18) Elemente zur Wärmeabfuhr (17c) angeordnet sind.
10. Vorrichtung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Teil (27c) des Kühlkörpers (27) radial innerhalb der Zargenöffnung (21) angeordnet und vom Kühlluftstrom (L) beaufschlagbar ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der
Kühlkörper (27) Kühlrippen oder Kühldome (27b, 27c) aufweist, welche in Luftströmungsrichtung hinter dem Mantel (24) angeordnet sind und in den Kühlluftstrom (L) hineinragen.
12. Vorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlrippen oder Kühldome eine variable Höhe (h) aufweisen, die an den Durchmesser des Zargenringes oder des Lüftermantels angepasst ist.
PCT/EP2006/009582 2005-10-20 2006-10-04 Vorrichtung zur förderung eines kühllufstromes WO2007045355A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06806022.7A EP1941164B1 (de) 2005-10-20 2006-10-04 Vorrichtung zur förderung eines kühlluftstromes
US12/090,567 US8230910B2 (en) 2005-10-20 2006-10-04 Apparatus for conveying a cooling air flow having a cooling domes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005050685A DE102005050685A1 (de) 2005-10-20 2005-10-20 Vorrichtung zur Förderung eines Kühlluftstromes
DE102005050685.2 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007045355A1 true WO2007045355A1 (de) 2007-04-26

Family

ID=37750461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/009582 WO2007045355A1 (de) 2005-10-20 2006-10-04 Vorrichtung zur förderung eines kühllufstromes

Country Status (4)

Country Link
US (1) US8230910B2 (de)
EP (1) EP1941164B1 (de)
DE (1) DE102005050685A1 (de)
WO (1) WO2007045355A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3093141A1 (fr) * 2019-02-25 2020-08-28 Valeo Systemes Thermiques Groupe moto-ventilateur pour vehicule automobile

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341007B (zh) * 2015-07-06 2019-08-23 浙江三花汽车零部件有限公司 电驱动泵的制造方法
US10746024B2 (en) * 2018-05-15 2020-08-18 Asia Vital Components Co., Ltd. Fan noise-lowering structure
FR3092657B1 (fr) * 2019-02-12 2021-02-19 Valeo Systemes Thermiques Dissipateur thermique pour carte electronique d’un groupe moto-ventilateur de vehicule automobile
CN111486132B (zh) * 2020-04-24 2021-10-08 上海交通大学 一种改善散热风扇返流的引流降噪装置及其方法
US20220034607A1 (en) * 2020-07-28 2022-02-03 Kyle Borden Marquis Layered Radiator for Efficient Heat Rejection
US11951797B2 (en) * 2021-06-03 2024-04-09 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Cooling pack assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709560A (en) * 1986-12-04 1987-12-01 Carrier Corporation Control module cooling
FR2772844A1 (fr) * 1997-12-23 1999-06-25 Valeo Thermique Moteur Sa Dispositif de canalisation d'un flux d'air, notamment pour vehicule automobile
US5947189A (en) * 1997-03-11 1999-09-07 Denso Corporation Heat exchanging system having cooling fan, for vehicle
DE19949322C1 (de) * 1999-10-13 2001-01-25 Temic Auto Electr Motors Gmbh Kühlgebläse, insbesondere Kühlerventilator für Kraftfahrzeuge
DE19949321C1 (de) * 1999-10-13 2001-05-03 Temic Auto Electr Motors Gmbh Kühlerventilator für Kraftfahrzeuge

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541852A (en) * 1949-12-22 1951-02-13 Gen Electric Variable electric resistance device
JPS5837919U (ja) * 1981-09-04 1983-03-11 日産自動車株式会社 自動車用オルタネ−タの冷却装置
DE3523223A1 (de) 1985-06-28 1987-01-02 Sueddeutsche Kuehler Behr Als motorhalter ausgebildete luefterzarge
DE3703873A1 (de) 1987-02-07 1988-08-18 Sueddeutsche Kuehler Behr Kuehlkoerper, insbesondere zum kuehlen elektronischer bauelemente
KR920000868Y1 (ko) * 1988-07-08 1992-01-31 지이제루 기기 가부시기가이샤 송풍기 제어용의 조절장치
US5216983A (en) * 1992-10-26 1993-06-08 Harvard Industries, Inc. Vehicle hydraulic cooling fan system
EP0652375A1 (de) * 1993-11-05 1995-05-10 General Motors Corporation Gebläseeinheit
US5481433A (en) * 1994-07-01 1996-01-02 Chrysler Corporation Heat dissipation from high power semiconductors in an electrical vehicle
US5563570A (en) * 1994-07-01 1996-10-08 Dong A Electric Parts Co., Ltd. Resistor device for controlling a rotational speed of a motor
DE4441039C1 (de) * 1994-11-18 1996-05-15 Fichtel & Sachs Ag Flüssigkeitsreibungskupplung mit einem Kühlluftventilator
FR2734348B1 (fr) * 1995-05-18 1997-07-04 Valeo Thermique Moteur Sa Echangeur de chaleur muni d'un capteur de temperature pour vehicule automobile
JPH0979188A (ja) * 1995-09-12 1997-03-25 Zexel Corp ブロワ装置
JP3330807B2 (ja) * 1995-12-12 2002-09-30 カルソニックカンセイ株式会社 自動車用空気調和装置の送風制御装置
JPH09261915A (ja) * 1996-03-22 1997-10-03 Asmo Co Ltd 電動ファン装置
DE19612679C2 (de) * 1996-03-29 2003-10-30 Temic Auto Electr Motors Gmbh Kühlerventilator für Kraftfahrzeuge
FR2764747B1 (fr) * 1997-06-16 1999-09-03 Valeo Systemes Dessuyage Motoventilateur pour vehicule automobile avec refroidissement de la platine porte-balais
US5859581A (en) * 1997-06-20 1999-01-12 International Resistive Company, Inc. Thick film resistor assembly for fan controller
JPH11229876A (ja) * 1997-12-10 1999-08-24 Denso Corp 自動車用冷却装置
JP3354539B2 (ja) * 1999-12-07 2002-12-09 三洋電機株式会社 自動車用空調装置
US6883589B2 (en) * 2000-01-31 2005-04-26 Denso Corporation Front end structure
DE10052331A1 (de) * 2000-10-17 2002-05-02 Stribel Gmbh Lüfteranlage
USD464327S1 (en) * 2001-03-27 2002-10-15 Molded Products Company Resistive motor speed control
FR2827345A1 (fr) * 2001-07-13 2003-01-17 Sagem Motoventilateur a carte de commande integree
DE10321732B4 (de) * 2003-05-14 2013-08-01 Robert Bosch Gmbh Kühlung der Ansteuerung von Kühlgebläsen für Kraftfahrzeugmotoren
JP2008207645A (ja) * 2007-02-26 2008-09-11 Denso Corp 車両用空調装置
CN101610658B (zh) * 2008-06-20 2012-07-18 富准精密工业(深圳)有限公司 散热装置
US7992664B2 (en) * 2008-09-23 2011-08-09 Kunststoff Schwanden Ag Jalousie for a vehicle
US20100154468A1 (en) * 2008-12-22 2010-06-24 Denso International America, Inc. Air flow around blower resistor and at evaporator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709560A (en) * 1986-12-04 1987-12-01 Carrier Corporation Control module cooling
US5947189A (en) * 1997-03-11 1999-09-07 Denso Corporation Heat exchanging system having cooling fan, for vehicle
FR2772844A1 (fr) * 1997-12-23 1999-06-25 Valeo Thermique Moteur Sa Dispositif de canalisation d'un flux d'air, notamment pour vehicule automobile
DE19949322C1 (de) * 1999-10-13 2001-01-25 Temic Auto Electr Motors Gmbh Kühlgebläse, insbesondere Kühlerventilator für Kraftfahrzeuge
DE19949321C1 (de) * 1999-10-13 2001-05-03 Temic Auto Electr Motors Gmbh Kühlerventilator für Kraftfahrzeuge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3093141A1 (fr) * 2019-02-25 2020-08-28 Valeo Systemes Thermiques Groupe moto-ventilateur pour vehicule automobile
WO2020174135A1 (fr) * 2019-02-25 2020-09-03 Valeo Systemes Thermiques Groupe moto-ventilateur pour vehicule automobile

Also Published As

Publication number Publication date
DE102005050685A1 (de) 2007-05-03
US8230910B2 (en) 2012-07-31
EP1941164B1 (de) 2016-12-14
US20080264600A1 (en) 2008-10-30
EP1941164A1 (de) 2008-07-09

Similar Documents

Publication Publication Date Title
EP1941164B1 (de) Vorrichtung zur förderung eines kühlluftstromes
DE69722828T2 (de) Gebläserad mit axiallufteinlassöffnung
EP1703140B1 (de) Kühleinrichtung für ein elektromotorisch angetriebenes Radialgebläse
DE2756880C2 (de) Axialventilator
DE19751042A1 (de) Vorrichtung zum Einleiten und Abgeben von Kühlluft
DE102005007545B4 (de) Vorrichtung und Verfahren zur Kühlung einer Elektronik
EP2076661B1 (de) Axiallüfter zur förderung von kühlluft für eine kühlvorrichtung eines kraftfahrzeuges
DE202016105887U1 (de) Aufbau eines Motors mit Wärmeableitungsfunktion
DE102011087602A1 (de) Elektrische Maschine
DE19651608A1 (de) Endrohr für ein Abgasrohr einer Abgasanlage eines Kraftfahrzeuges
DE102009030008A1 (de) Tomographiegerät mit einem Ringkanal und mit mindestens einem Entlüftungselement zum Abführen eines in dem Ringkanal strömenden Luftstroms
WO2008074307A1 (de) Axiallüfter für einen fahrzeugkühler
DE10321732B4 (de) Kühlung der Ansteuerung von Kühlgebläsen für Kraftfahrzeugmotoren
DE102015102188A1 (de) Gebläseanordnung
EP1213547B1 (de) Motorunabhängiges Heizgerät eines Kraftfahrzeuges
EP0504740B1 (de) Verteilergebläse
EP1525067B1 (de) Prozesskammer einer anlage zur temperaturbehandlung von leiterplatten
DE19949322C1 (de) Kühlgebläse, insbesondere Kühlerventilator für Kraftfahrzeuge
EP1591666B1 (de) Gebläse
DE10357289A1 (de) Kompakter Diagonallüfter
EP0353744B1 (de) Luftkühler
EP1367262B1 (de) Ventilator, insbesondere von Luftkühlern, mit Berührungsschutz
DE102008010182A1 (de) Gehäuse für eine Gasfördereinrichtung
DE3905092C2 (de)
DE10313991A1 (de) Rohrlüfter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006806022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006806022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12090567

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006806022

Country of ref document: EP