WO2007043615A1 - ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用 - Google Patents

ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用 Download PDF

Info

Publication number
WO2007043615A1
WO2007043615A1 PCT/JP2006/320392 JP2006320392W WO2007043615A1 WO 2007043615 A1 WO2007043615 A1 WO 2007043615A1 JP 2006320392 W JP2006320392 W JP 2006320392W WO 2007043615 A1 WO2007043615 A1 WO 2007043615A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
peptide
amino acid
thiol
leu
Prior art date
Application number
PCT/JP2006/320392
Other languages
English (en)
French (fr)
Inventor
Toru Kawakami
Saburo Aimoto
Original Assignee
Osaka University
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Osaka Industrial Promotion Organization filed Critical Osaka University
Priority to JP2007539982A priority Critical patent/JPWO2007043615A1/ja
Publication of WO2007043615A1 publication Critical patent/WO2007043615A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids

Definitions

  • the present invention relates to a chemical ligation method using a peptide ester and a reagent used in the method. More specifically, the present invention relates to a method of ligating a protein or a component thereof (amino acid, peptide) or the like by an amide bond using a peptide ester as a starting material, and a reagent suitably used in the method.
  • the present invention also relates to a method for producing a thioester compound using a peptide ester, and a reagent suitably used in the method.
  • Chemical ligation is a method of forming a selective covalent bond between a first chemical component and a second chemical component.
  • ligation is performed by amide bond (covalent bond) between the N-terminal amino group of the first peptide and the C-terminal carboxyl group of the second peptide, i.e., elongation of the peptide chain, i.e. Used for peptide synthesis.
  • amide bond covalent bond
  • elongation of the peptide chain i.e. Used for peptide synthesis.
  • Various ligation reactions have been proposed for this purpose. Specific examples include natural chemical ligation (see Non-patent Documents 1 and 2) and oxime-generating chemical ligation (non-patent documents).
  • the natural chemical ligation and the extended natural chemical ligation are methods that can generate a peptide chain having a natural amide bond (peptide bond) at the ligation site.
  • Natural chemical ligation uses a peptide having an ⁇ -carboxythioester component at the C-terminus as the first peptide, and a second peptide. This reaction is carried out in the presence of a catalytic thiol using a peptide having a cysteine residue at the N-terminus, and the first peptide and the second peptide are linked through a thioester bond by thiol exchange reaction and subsequent amide bond by spontaneous rearrangement.
  • oligopeptides are produced by ligating together.
  • the disadvantage of this method is that the second peptide is limited to having a cysteine residue at the N-terminus.
  • a method using a peptide having an auxiliary group instead of a cystine residue has been proposed (see, for example, Non-Patent Documents 8 to 11).
  • Extended natural chemical ligation extends the scope of the above-mentioned natural chemical ligation for peptide elongation (synthesis) to amino acid residues, peptides, polypeptides, polymers, and other molecules. This is a method of binding these molecules by natural amide bonds.
  • peptides are synthesized mainly by the solid phase method using the Fmoc method.
  • the Boc method which is another method for synthesizing peptides, uses halogen compounds such as trifluoroacetic acid and dichloromethane, and strong acids such as anhydrous hydrogen fluoride for the reaction treatment, which has problems in terms of environmental conservation and safety.
  • the Fmoc method it is easy to synthesize phosphate peptides and glycopeptides.
  • the Fmoc method cannot be used and the Boc method is mainly used at present.
  • Non-Patent Document 1 Dawson, et al., Science, (1994) 266; 776-779
  • Non-Patent Document 2 Rose, J. Amer. Chem. Soc. (1994) 116; 30-34
  • Non-Patent Document 3 Schnolzer, et al, Science, (1992) 252; 221-225
  • Non-Patent Document 4 Englebretsen, et al., Tet ⁇ etts. (1995) 36 (48): 8871-8874
  • Non-patent document 5 Gaertner, et al, Bioconj. Chem. (1994) 5 (4): 333- 338
  • Non-Patent Document 6 Gaertner, et al., J. Biol. Chem. (1994) 269 (10): 7224-7230
  • Non-Patent Document 7 Zhang, et al., Proc. Natl. Acad. Sci. (1998) 95 (16): 9184-9189
  • Non-patent document 8 Canne, E., et al "J. Am. Chem. Soc, (1996) 118; 5891-5896
  • Non-patent document 9 Botti, P. et al. , Tetrahedron Lett. (2001) 42: 1831-1833
  • Non-Patent Document 10 Kawakami, T., et al., Org. Lett. (2001) 3: 1403-1405
  • Non-patent literature l l Kawakami, T., et al., Tetrahedron Lett. (2003) 44: 6059-6061
  • Non-patent literature 12 Hasegawa, et al., Lett. Pept. Sci., (2002) 8, 277
  • Non-Patent Document 13 R. Ingenito, et al "J. Am. Chem. Soc, (1999) 121, 11369
  • Non-Patent Document 14 Y. Shin, et al" J. Am. Chem. Soc, (1999) 121 , 11684
  • Non-Patent Document 15 R. R. Flavell et al "Org. Lett., (2002) 4, 165
  • Non-Patent Document 16 Mezzato, S., et al "Angew. Chem. Int. Ed., (2005) 44, 1650-1654
  • Patent Document 1 W096 / 34878
  • Patent Document 2 W098 / 28434
  • Patent Document 3 WO95 / 00846
  • Patent Document 4 US Patent No. 5,589,356
  • Patent Document 5 WO2002 / 020557
  • Patent Document 6 Japanese Patent Laid-Open No. 11-217397
  • a first object of the present invention is to provide a method for performing ligation using a peptide ester as a raw material, and a reagent suitably used in the method. According to this method, it is not necessary to use a peptide thioester which is difficult to apply the Fmoc method, and the peptide ester is prepared as a synthesis block by a method routinely performed by the conventional Fmoc method, and then ligated by linking it. It is possible.
  • the second object of the present invention is to provide a novel method for producing a peptide thioester, and a reagent suitably used in the method. Means for solving the problem
  • peptide ester does not have a thioester skeleton, such a peptide ester can easily condense and extend the peptide chain using a general-purpose Fmoc method without causing problems such as degradation of the thioester bond or racemization. Desired peptides and proteins can be prepared.
  • the ligation method can also be applied to condensation of desired molecules (compounds) only by condensing and extending peptide chains.
  • the present inventors also have cysteine-amino acid residues such as -Cys-Pro (Cystyle-Proline) and -Cys-Sar (Cystyle-sarcosine) in the C-terminal or C-terminal region. It was found that a thioester compound can be easily produced by reacting a peptide ester having a thiol compound with a thiol compound. According to this method, the above-mentioned peptide ester can be produced by a general-purpose F moc method, and the thioester compound can be easily produced and obtained by reacting with the thiol compound.
  • the peptide ester used in the method of the present invention does not have a thioester skeleton, a strong peptide ester does not cause problems such as degradation of the thioester bond or racemization by Fmoc group removal treatment. It is possible to stably produce and obtain the ester compound.
  • X is a group capable of binding to a carboxyl group to form X-COOH
  • Y is a hydrogen atom, or a group containing at least one carbon atom
  • R is a hydrogen atom, at least one carbon
  • R is a hydrogen atom or a thiol containing at least 2 consecutive carbon atoms
  • X is the same as above; Cys is a cysteine residue, R is a carboxyl group —OH.
  • Y, R and R are the same as described above, provided that one of R and R is a thiol group.
  • X is a group capable of binding to a carboxyl group to form X-COOH;
  • Y is a hydrogen atom, or a group containing at least one carbon atom;
  • R is a hydrogen atom, at least one carbon;
  • a group having a thiol group containing an atom or a group having no thiol group containing at least one carbon atom is shown.
  • R ′ represents at least 2 consecutive carbon atoms.
  • a method comprising a step of performing 3 'desorption treatment.
  • a cystolyl ester compound represented by General formula (5) A cystolyl ester compound represented by General formula (5)
  • Y is a hydrogen atom or a group containing at least one carbon atom.
  • X is a group capable of binding to a carboxyl group to form X-COOH; R is an adjacent carbo
  • Y is a hydrogen atom or a group containing at least one carbon atom; is a hydrogen atom or a group containing at least one carbon atom;
  • A-SH may have a substituent, It represents an alkylene thiol group having at least two carbons, an oxyalkylene thiol group having at least two carbons, or a mercaptobenzyl group.
  • Item 3 The method according to Item 2, comprising a step of producing a compound represented by:
  • Item 5. The compound represented by the general formula (1) and the compound represented by the general formula (2)
  • the group represented by “X—CO—” in the formula is an amino acid, a peptide having two or more amino acids, or a protein residue, which may be modified. Method.
  • Item 6. Amino acid, wherein the compound represented by the general formula (1) and the compound represented by the general formula (3) may be modified as a group represented by “Y” in these formulas, Item 2.
  • X—CO— is an optionally modified amino acid, a peptide having two or more amino acid strengths, or a protein residue, Cys is a cysteine residue, and R is a modified residue.
  • Item 8. In the general formula (2), X—CO—force An amino acid having a protecting group in the amino terminal amino acid, a peptide comprising two or more amino acids, or a protein residue, R is straight
  • Item 8 The peptide esterase for ligation according to Item 7, which is fixed or bonded to a solid phase carrier in contact or indirectly.
  • a reagent for peptide ligation comprising the peptide ester for ligation according to Item 9.
  • a peptide or protein synthesis kit comprising at least one peptide ester for ligation according to Item 10.
  • Y represents an amino acid in which an amino group is bonded to a carbonyl group, a peptide or a protein having a force of two or more amino acid residues in which the amino group of the terminal amino acid is bonded to a carbonyl group.
  • R is a hydrogen atom, a group having a thiol group containing at least one carbon atom, or a group having no thiol group containing at least one carbon atom; R is a hydrogen atom
  • R 3 or a group having a thiol group containing at least 2 consecutive carbon atoms.
  • R and R is a group having a thiol group.
  • Item 11 A peptide or protein synthesis kit according to Item 10, comprising the aminothiol compound represented by
  • the "group having a thiol group containing at least one carbon atom" represented by R is an alkylene thiol group having 1 to 3 carbon atoms, and represented by R
  • the ⁇ group having a thiol group containing a continuous carbon atom '' has a substituent! /, But may have an alkylene thiol or oxyalkylene thiol group having 2 to 3 carbon atoms, or a substituent!
  • X is a group capable of binding to a carboxyl group to form X-COOH; Cys is a cysteine residue, R is an amino acid substituted with OH of the carboxyl group, which may be modified)
  • X—CO is an optionally modified amino acid, a peptide having two or more amino acid strengths, or a protein residue, Cys is a cysteine residue, and R is a modified residue.
  • a thioester synthesis reagent comprising the peptide fragment represented by
  • Item 15. In the general formula (2), X—CO is an amino acid which may be modified, a peptide comprising two or more amino acids, or a protein residue, and R is directly or indirectly.
  • Item 15 The thioester synthesis reagent according to Item 14, which is fixed and bound to a carrier.
  • Item 16 A peptide ester synthesis kit comprising at least one peptide fragment according to Item 16.
  • Item 17 The peptide chain according to Item 16, further comprising a thiol compound (R—SH)
  • the ligation method of the present invention does not have a thioester skeleton as a synthesis block and a peptide ester can be used, the ligation method does not cause problems such as degradation of thioester bonds and racemization by conventional methods.
  • the desired synthesis block to be used can be easily and efficiently prepared using a general-purpose Fmoc method. Further, since the ligation method of the present invention can be carried out under mild conditions, it can be effectively used for the synthesis and modification of biomolecules such as peptides and proteins.
  • the peptide ester for ligation provided by the present invention is obtained by the above ligation method. It is a reagent that can be suitably used. By using the peptide fragment as a synthesis block, a desired peptide or protein can be easily synthesized under mild conditions.
  • the thioester compound can be easily produced and obtained by reacting the peptide ester with the thioesteric compound under mild conditions. Since this method uses a peptide ester that does not have a thioester skeleton as a raw material, a thioester compound that does not cause problems such as decomposition of the thioester bond or racemization by the Fmoc group removal treatment can be stably obtained in high yield. Can be obtained.
  • the thioester synthesis reagent provided by the present invention is a reagent that can be suitably used in a method for producing a thioester compound, which is mild by reacting with a desired thiol compound.
  • a desired thioester compound can be easily synthesized under various conditions.
  • the present invention relates to a chemical ligation method in which desired molecules (compounds) are condensed with each other by forming an amide bond (peptide bond) at a ligation site.
  • desired molecules compounds
  • amide bond peptide bond
  • the present invention can be effectively used for chemical synthesis of natural polypeptides, proteins, or modified products thereof, particularly for block synthesis of blocks in which a plurality of amino acids or amino acid derivatives are linked.
  • the above-mentioned amino acids targeted by the present invention include 20 kinds of amino acids constituting naturally occurring peptides and proteins.
  • Examples of strong amino acids include glycine (G1 y), alanine (Ala), norin (Val), leucine (Leu), isoleucine (lie), methionine (Met), proline (Pro), and fe-lualanin (Phe).
  • Trp Tryptophan
  • Ser serine
  • Thr threonine
  • Asparagine Asn
  • glutamine Gin
  • tyrosine Tyr
  • cysteine Cys
  • Lysine Lys
  • arginine Arg
  • Histidine Histidine
  • aspartic acid Asp
  • glutamic acid Glu
  • the above amino acids are found in proteins.
  • Amino acids other than the general amino acids are also included. Examples of strong amino acids include amino acids having side chains that are hydroxylated, alkylated, phosphorylated, formylated, glycosylated, or acylated.
  • amino acids specifically include 4-hydroxyproline, 3-methylhistidine, 5-hydroxylysine, N-monomethylglycine, O-phosphoserine, O-phosphotredenine, carboxyglutamate, acetylyllysine, and N-methyl.
  • Contains arginine examples include amino acid derivatives having biological activity, such as ⁇ -aminobutyric acid, thyroxine, citrulline, orthine, homocystine, S adenosylmethionine, 13-cyanalanine, And azaserine.
  • the amino acids constituting peptides and proteins are generally L-amino acids, but the amino acids targeted by the present invention are not limited to these and may be D-amino acids.
  • X is a group capable of binding to a carboxyl group to form X-COOH; Cys is a cysteine residue, and R is a group having an amino acid residue in which the OH of the carboxyl group is substituted.
  • R is a hydrogen atom, a group having a thiol group containing at least one carbon atom, or a thiol group containing at least one carbon atom
  • R is a hydrogen atom or at least 2 consecutive carbon atoms
  • R is a group having a thiol group containing at least 2 continuous carbon atoms
  • R is a hydrogen atom by further removing the group.
  • the ligation product (1) can be obtained.
  • the first segment (2) used as a raw material is a peptide ester having a cystinyl group (-Cys-) in the molecule and a group (-R) having an amino acid residue on the C-terminal side thereof.
  • R is specifically the OH of the force nolvoxynole group.
  • strong amino acids include proline and glycine having a substituent.
  • examples of the glycine having a substituent include, but are not limited to, sarcosine (N-monomethylglycine) which is a glycine having an alkyl group. Proline and sarcosine are preferable, and proline is more preferable.
  • Examples of the group substituted with —OH of the amino acid include a group that forms an ester structure with a carbonyl group adjacent to the —OH group.
  • Non-limiting powerful One OH substituent can specifically include OCH CONH.
  • the method for replacing OH of an amino acid residue is not particularly limited.
  • glycolic acid is first bound to a solid phase carrier (for example, polystyrene resin) with a linker (for example, a Rink linker) that gives a C-terminal amide bond, and then Fmoc-R. -OH or Boc- R-OH ("R-OH" means amino acid
  • NH-wax (n represents the number of amino acids or amino acid derivatives; hereinafter the same), or Boc- (Xxx) n-Cys (4-MeBzl) -R 2 -OCH CONH can be prepared. Then you must
  • the amino acid protecting group (Fmoc group, Boc group) may be removed or eliminated from the resin.
  • These methods can be performed according to a conventional method. The above series of production steps is shown in Fig. 1 using the Fmoc method using proline (Pro) as "R -OH" as an example.
  • the method for substitution of amino acid OH is not limited to the above method.
  • Fmoc-Pro-OH can be reacted with bromoacetic acid tert-butyl ester to remove the tert-butyl group to obtain Fmoc-Pro-OCH COOH.
  • a method of introducing a substituent into the —OH of the group can also be used.
  • R as described above, for example, -R -OCH CONH (eg, -Pro-OCH CONH, -Sar-
  • the present invention is not limited thereto, and any group having the above amino acid residue may be used.
  • examples of such groups include those in which any group is bonded to the above amino acid via an OH substituent ("-R'-OH substituent-Z", Z means any group). Can do. This
  • the group bonded to the amino acid via the —OH substituent is arbitrary, and is not particularly limited.
  • the peptide having the power of two or more amino acid residues including amino acid residues ( Oligopeptides and polypeptides) and proteins or their derivatives.
  • R may be modified. Modification mode is not particularly limited, but R force directly
  • the solid phase is not particularly limited !, but for example, a synthetic resin such as -trocellulose, agarose beads, modified cellulose fiber, polypropylene, polyethylene glycol, polystyrene resin or polyacrylamide resin, a thiol group, Examples thereof include amino group, carboxyl group, hydroxyl group or halogen introduced.
  • a synthetic resin such as -trocellulose, agarose beads, modified cellulose fiber, polypropylene, polyethylene glycol, polystyrene resin or polyacrylamide resin, a thiol group, Examples thereof include amino group, carboxyl group, hydroxyl group or halogen introduced.
  • X is a group capable of binding to a carboxyl group (-COOH group) to form X-COOH.
  • X-COOH an amino acid, a peptide having two or more amino acid residues (including oligopeptides and polypeptides) or a protein that may be modified may be used. Or a derivative thereof; an antibody; a labeling agent; a linker; a metal chelator including a metal indicator; and a cage compound.
  • the labeling agent include a dye compound or a compound containing a stable or radioisotope.
  • the dye compound capable of forming X-COOH include general fluorescent dyes such as FITC, A1 exa, Bodipy, Eosin and the like.
  • X—COOH preferably an amino acid, a peptide having two or more amino acid residues
  • oligopeptides and polypeptides include oligopeptides and polypeptides, or derivatives thereof.
  • the number of amino acids constituting the peptide can be about 2 to L00.
  • X COOH power
  • peptides including oligopeptides and polypeptides
  • proteins having two or more amino acid residues, derivatives thereof, or X
  • X may be modified.
  • the mode of modification is not particularly limited.
  • a part of X is an arbitrary group (for example, a conventional amino acid protecting group, phosphate group, hydroxyl group, alkyl group, formyl group, acyl group, sugar chain, fatty acid, etc. )
  • a labeling agent such as a fluorescent dye or an isotope.
  • the first segment is preferably a force in which X is a group that forms an amino acid with a carboxyl group (that is, when X—COOH is an amino acid), or X is an amino acid residue of 2 or more together with a carboxyl group
  • X is a group that forms an amino acid with a carboxyl group (that is, when X—COOH is an amino acid), or X is an amino acid residue of 2 or more together with a carboxyl group
  • Examples include a group that forms a peptide (including oligopeptides and polypeptides) that also has a force (that is, when X-COOH is a peptide).
  • a part of X may be substituted with an amino acid protecting group.
  • the protecting group for amino acid conventionally known protecting groups can be widely exemplified.
  • it includes 9 fluoromethoxy carbo yl group (Fmoc group), benzyloxy carbo yl group (Z group), p-methoxy benzyloxy carbo yl group (Z (OMe) group), 2-Chronobenzoyl dizoxycarbol group (Z (C1) group), p-trobenzyloxycarbol (Z (NO) group)
  • labeling agent for X conventionally known labeling agents capable of labeling amino acids, peptides, proteins or antibodies can be widely used. Specific examples include dyes (eg, fluorescent dyes, chemiluminescent dyes), compounds containing stable or radioactive isotopes, metal chelators containing metal indicators, and the like.
  • dyes eg, fluorescent dyes, chemiluminescent dyes
  • compounds containing stable or radioactive isotopes e.g, metal chelators containing metal indicators, and the like.
  • FiTC As a dye, FiTC,
  • the number of amino acid residues bound to one is not limited, but can be about 1 to 50.
  • Examples of amino acid residues adjacent to the cystenyl group include a prolyl group, a glycyl group, and a glycyl group having a substituent (for example, a sarcosyl group) as described above.
  • the Preferred are a prolyl group and a sarkosyl group.
  • the amino group of the N-terminal amino acid residue may be protected with an amino protecting group (for example, 9-fluorenylmethoxycarbonyl group (Fmoc group)).
  • each amino acid constituting the peptide ester may be modified!
  • the peptide ester may be immobilized at its C-terminus, directly or indirectly (via a linker), on the surface of an arbitrary solid phase carrier.
  • the first segment having a strong peptide ester force can be prepared, for example, by a solid-phase synthesis method.
  • a solid phase carrier for example, made of polystyrene
  • a linker indicated by “X” in the figure
  • HOCH COOH glycolic acid
  • Fmoc—Pro, Fmoc—Xxx— and ys (Trt), Fmoc—Xxx,... (Xxxi, meaning the same or different amino acids or derivatives thereof) are combined sequentially. be able to.
  • the 2 fat is then subjected to a normal cutting operation using TFA or the like to obtain a peptide ester (Fmoc- (Xxx) n-Cys-R-OCH CONH). Then as needed
  • Purification may be performed by a general purification operation such as HPLC.
  • Trt trifluoromethyl group
  • SH group protecting groups for the SH group, and is not limited thereto.
  • Trt group other SH group protecting groups such as a 4-MeBzl group, a 4-MeOBzl group, an Acm group, etc. can be used.
  • the Fmoc group may or may not be removed during the ligation reaction, but if necessary, remove it according to standard methods.
  • Examples of the second segment to be reacted with the first segment include an aminothio complex compound represented by the following formula (3).
  • either R group or R group has one thiol group (one SH).
  • the group having a thiol group of the R group is not particularly limited as long as it includes a group having a thiol group containing at least one carbon atom, such as an alkylene thiol group having 1 to 3 carbon atoms or a derivative thereof. be able to. Preferred are a methylene thiol group and an ethylene thiol group.
  • the R group has a thiol group.
  • the R group has a thiol group containing at least 2 or more consecutive carbon atoms.
  • alkylene group having 2 to 3 carbon atoms which may have a substituent [-(CH 2) n -SH, where n is 2 or 3] may have a substituent.
  • the substituent is not particularly limited, but examples of the substituent that the alkylene thiol group has include a substituent and may include a phenol group.
  • the R group may also be a hydrogen atom when the R group is a group having a thiol group.
  • R group is preferably a hydrogen atom (provided that R group is a group having a thiol group)
  • R is a hydrogen atom or an arbitrary substituent
  • R group and R group is preferably R group, acetylene thiol group, and R group
  • R group is a group not having a thiol group, and R group is a substituent
  • May have an ethylene thiol group may have a substituent, a propylene thiol group, an oxyethylene thiol group, a group represented by the above formula (a), or a group represented by the above formula (b) Can be exemplified.
  • Y is a hydrogen atom or a group containing at least one carbon atom.
  • an amino acid in which a carboxyl group, an amide group, or an amino group is bonded to a carbo group (—CO group)
  • N-terminal Examples thereof include peptides (including oligopeptides and polypeptides) or proteins having two or more amino acid residues formed by binding the amino group of the amino acid to a carbonyl group (—CO group).
  • the strong amino acid, peptide or protein may be amidated at the C-terminus.
  • Y is a group containing at least one carbon atom, an antibody, a labeling agent (a compound containing a dye such as a fluorescent pigment, a stable or radioactive isotope), a linker, a metal indicator It is also possible to use a metal chelator or a cage compound containing the above.
  • Y force For example, an amino acid in which an amino group is bonded to a carbonyl group (-CO group), or two or more amino acids in which an amino group of an amino acid on the N-terminal side is bonded to a carbo group (-CO group) From residue
  • a peptide including an oligopeptide and a polypeptide
  • the Y may be modified.
  • the mode of modification is not particularly limited.
  • a part of Y is an arbitrary group (for example, a conventional amino acid protecting group, hydroxyl group, alkyl group, phosphate group, formyl group, acyl group, sugar chain, A mode in which it is substituted with a fatty acid residue, a mode in which it is modified with a dye such as a fluorescent dye or a labeling agent such as a stable or radioactive isotope, or a mode in which Y is immobilized on a solid phase.
  • a dye such as a fluorescent dye or a labeling agent such as a stable or radioactive isotope
  • an amino acid in which an amino group is bonded to a carbonyl group or a peptide having an amino acid residue force of two or more amino acids in which an amino group of an amino acid on the N-terminal side is bonded to a carbonyl group (Including oligopeptides and polypeptides).
  • the amino acid or peptide may be one in which the C-terminus is amidated, one in which a part of Y is substituted with an amino acid protecting group, or one that is immobilized on an arbitrary solid phase carrier.
  • amino acid protecting group conventionally known protecting groups can be widely exemplified. Specifically, methoxy group (OMe group), ethoxy group (OEt group), benzyloxy group (OBzl group), p-trobenzyloxy group (OBzKNO) group), t-butoxy group (OBu group), amide Group (NH
  • Carboxy protecting groups such as phenacyl (Pac) group, allyl (All) group; NO
  • the Y labeling agent is not particularly limited as long as it can label a conventionally known amino acid, peptide, protein or antibody, for example, a dye (for example, a fluorescent dye or a chemiluminescent dye).
  • a dye for example, a fluorescent dye or a chemiluminescent dye.
  • metal chelators including fluorescent dyes such as Alexa, Bodipy, Eosin, affinity groups such as piotin, stable and radioactive isotopes, metal indicators including crown ethers, and the like.
  • the solid phase carrier is not particularly limited, but for example, synthetic resins such as -trocellulose, agarose beads, modified cellulose fibers, polypropylene resin, polystyrene resin, polyethylene glycol resin, polyacrylamide resin, Examples thereof include those obtained by introducing a thiol group, an amino group, a hydroxyl group, halogen, or the like into a substrate.
  • synthetic resins such as -trocellulose, agarose beads, modified cellulose fibers, polypropylene resin, polystyrene resin, polyethylene glycol resin, polyacrylamide resin.
  • the second segment The fixation of the solid to the solid phase can be performed using a known method.
  • Y is an amino acid in which an amino group is bonded to a carbonyl group, and an amino acid residue of two or more amino acids in which the amino group of the amino acid on the N-terminal side is bonded to a carbonyl group (an oligopeptide or a polypeptide).
  • peptides (b to d) having a thiol auxiliary group for example, an alkylene thiol group, an oxyalkylene thiol group, a mercaptobenzyl group, etc.
  • a thiol auxiliary group for example, an alkylene thiol group, an oxyalkylene thiol group, a mercaptobenzyl group, etc.
  • n means an integer of 1 or more
  • thiol auxiliary groups (alkylene thiol group, oxyalkylene thiol group, mercaptobenzyl group) may have a substituent, for example, an alkylene thiol group having a substituent on the N-terminal amino group.
  • alkylene thiol group having a substituent on the N-terminal amino group examples include those represented by the following formula.
  • amino acids constituting these peptides may be modified.
  • These peptides can be prepared according to a general peptide synthesis method such as a solid phase synthesis method or a method for producing a recombinant protein.
  • ligation can be performed by mixing the first segment and the second segment in a solution.
  • the solution is not particularly limited as long as it is a solution in which the first segment and the second segment are dissolved.
  • water, lower alcohol, fluorinated alcohol, polyhydric alcohol or other polar solvent, and Nonpolar solvents can be used.
  • lower alcohols include alcohols having 1 to 6 carbon atoms such as methanol, ethanol, propanol, isopropyl alcohol, and butanol; fluorinated alcohols include trifluoroethanol, hexafluoroisopropyl alcohol, and the like.
  • Polyhydric alcohols include glycerin, 1,3-butylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, etc .; polar solvents other than the above include ketones such as acetone ketyl ketone; ethyl acetate, acetic acid Examples include esters such as methyl or butyl acetate; ethers such as tetrahydrofuran, ethyl ether, and propyl ether; acetonitrile, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like. Examples of the nonpolar solvent include toluene.
  • These solvents may be used alone or in combination of two or more.
  • combinations of two or more types include combinations of lower alcohols, polyhydric alcohols or other polar solvents and water.
  • Preferable examples include water, lower alcohol (preferably ethanol), acetonitrile, and a mixed solution of water and lower alcohol (hydrous alcohol, preferably hydrous ethanol), mixed solution of water and acetonitrile, and the like.
  • the pH of these solutions is not particularly limited, and may usually be in the range of 2 to 10. It is preferable that the pH is adjusted to near neutrality with a buffer or the like.
  • the pH range is preferably ⁇ is pH 6 to 9, more preferably ⁇ is pH 7 to 8.5.
  • reaction temperature is not particularly limited, the reaction can be usually carried out in the range of 0 to LOO ° C.
  • the temperature is preferably 10 to 60 ° C, more preferably 20 to 40 ° C. It is desirable to perform the reaction under the condition where oxygen is removed.
  • P (CH CH CH OH) or P (CH CH COO) is preferably 10 to 60 ° C, more preferably 20 to 40 ° C. It is desirable to perform the reaction under the condition where oxygen is removed.
  • Thiols such as toethanesulfonic acid and ethyl 3-mercaptopropionate, guanidine, urea, lipids and surfactants may coexist.
  • the reaction time is not particularly limited, usually 2 to 72 hours can be mentioned. During the reaction, stir or shake the solution.
  • a group having a thiol group containing R 1S 2 or more continuous carbon atoms for example,
  • a ligation product (1 ′) represented by the following formula can be obtained.
  • Examples of methods for removing R include UV irradiation, acid treatment, and zinc treatment.
  • the ligation method of the present invention compares the first segment (peptide ester) (2) and the second segment (aminothiol compound) (3) as described above. Therefore, a ligation is generated by automatically forming an amide bond between the first segment and the second segment by a molecular reaction.
  • Fig. 2 shows an example of a reaction in which peptides are ligated using the ligation method of the present invention, that is, when a polypeptide or protein is block-synthesized using the ligation method of the present invention.
  • the first segment is a peptide ester having cyste-proline formed by substituting OH of the carboxyl group of proline with —OR on the C-terminal side.
  • OR is OCH CONH.
  • the second segment is a sulfhydryl that is not acidified at the N-terminus.
  • the second segment is a peptide having a thiol auxiliary group on the N-terminal amino group.
  • the carbocyclic group adjacent to “peptide 1” is exactly a group derived from the carboxyl group of “peptide 1”.
  • R is as described above.
  • the A—SH group corresponds to the R group described above and contains at least two consecutive carbon atoms.
  • the ligation product (1) thus obtained can be finally obtained as a highly purified product by purification using high performance liquid chromatography or the like.
  • the ligation product (1) when it is obtained, for example, in a state where its N-terminal is protected with an Fmoc group or the like, it can be removed according to a conventional method if necessary.
  • the present invention also provides a reagent that can be suitably used for the ligation.
  • Examples of the ligation reagent of the present invention include a ligation peptide fragment represented by the following formula (2) corresponding to the first segment.
  • Cys is a cysteine residue, and R is carboxyl
  • One of the groups is a group having an amino acid residue substituted with OH.
  • strong amino acids include proline and glycine having a substituent.
  • examples of the glycine having a substituent include, but are not limited to, glycine having an alkyl group, preferably sarcosine (N-monomethylglycine). Proline and sarcosine are preferable, and proline is more preferable.
  • Examples of the group that substitutes —OH of the amino acid include a group that forms an ester structure with a carbonyl group adjacent to the —OH group.
  • a non-limiting powerful one OH substituent can specifically include one OCH CONH.
  • the method for replacing the —OH group of an amino acid is as described above.
  • R may be modified.
  • the mode of modification is not particularly limited, but preferably R
  • the solid phase carrier is not particularly limited.
  • thiol group garose beads, modified cellulose fiber, polypropylene resin, polystyrene resin, polyethylene glycol resin, polyacrylamide resin, thiol group, Examples include amino group, carboxyl group, hydroxyl group and halogen introduced.
  • X is a group capable of forming X — COOH by binding to a carboxyl group (—COOH).
  • strong X-COOH include, but are not limited to, amino acids, peptides composed of two or more amino acid residues (including oligopeptides and polypeptides) or proteins, or derivatives thereof. be able to. Preferably, they may be modified amino acids, peptides having two or more amino acid residues (including oligopeptides and polypeptides), or derivatives thereof.
  • the number of amino acids constituting the peptide is 2 to: about LOO.
  • a part of X is an arbitrary group (for example, a conventional amino acid protecting group, hydroxyl group, alkyl group, phosphate group, formyl group, acyl group, Examples include an aspect substituted with a sugar chain, a fatty acid residue, etc., and an aspect modified with a dye such as a fluorescent dye or a labeling agent such as a stable or radioactive isotope.
  • a dye such as a fluorescent dye or a labeling agent such as a stable or radioactive isotope.
  • an embodiment in which the amino group of the N-terminal amino acid constituting X has a protecting group can be mentioned.
  • this protecting group any known amino group protecting group can be used.
  • Examples of the labeling agent for X include a wide range of conventionally known labeling agents that can label amino acids and peptides. Specific examples include dyes (for example, fluorescent dyes and chemiluminescent dyes), compounds containing stable or radioactive isotopes, metal chelators containing metal indicators, and the like. Examples of the dye include general fluorescent dyes such as FITC, Alexa, Bodipy, and Eosin.
  • the OH group of the amino acid residue adjacent to the cysteine group represented by Cys is substituted with OCH CONH.
  • Examples thereof include peptide esters having 3 or more amino acid residues.
  • the —OH group of the amino acid residue adjacent to the cystenyl group represented by —Cys is substituted with OCH CONH, and the group is further substituted with an amino acid, or 2 or more.
  • Peptide esters formed by binding peptide chains with the above amino acid residue strength can be mentioned.
  • the number of amino acid residues bound to one OCH CONH— is not limited.
  • the force can be about 1-50.
  • examples of the amino acid residue adjacent to the cystenyl group include a prolyl group, a glycyl group, and a glycyl group having a substituent (for example, a sarcosine group). Preferred are a prolyl group and a sarkosyl group, and more preferred is a prolyl group.
  • the amino group of the N-terminal amino acid residue may be protected with an amino protecting group (eg, 9-fluorenylmethoxycarbonyl group (Fmoc group)).
  • each amino acid constituting the peptide ester may be modified.
  • the peptide fragment (2) for ligation is formed by binding to the surface of an arbitrary solid phase carrier directly or indirectly (through a linker) of the peptide ester. May be.
  • solid support examples include synthetic resins and substrates such as rocellulose, agarose beads, modified cellulose fibers, polypropylene resin, polystyrene resin, polyethylene glycol resin, and polyacrylamide resin.
  • synthetic resins such as polystyrene resin, polyethylene glycol resin, and polyacrylamide resin.
  • the powerful ligation peptide fragment (2) can be prepared by the method described in (1-1) above (see Fig. 1).
  • the ligation reagent of the present invention includes an aminothiol compound for ligation represented by the following formula (3) corresponding to the second segment.
  • the group having a thiol group of the R group is not particularly limited as long as it includes a group containing at least one carbon atom, such as an alkylene thiol group having 1 to 3 carbon atoms and derivatives thereof. Preferred are a methylene thiol group and an ethylene thiol group.
  • R group, R group is a thiol group
  • the R group has a thiol group containing at least 2 or more consecutive carbon atoms.
  • alkylene group having 2 to 3 carbon atoms which may have a substituent [-(CH 2) n -SH, where n is 2 or 3] may have a substituent.
  • the substituent is not particularly limited, and examples of the substituent that the alkylene thiol group has include a phenyl group that may have a substituent.
  • Ma The R group may be a hydrogen atom when the R group is a group having a thiol group.
  • the R group is preferably a hydrogen atom (provided that the R group is a group having a thiol group).
  • R is a hydrogen atom or an arbitrary substituent
  • R group and R group is preferably R group, acetylene thiol group, and R group
  • R group is a group having no thiol group, and R group is ethyl
  • Examples thereof include a 13 thiol group, a propylene thiol group, an oxyethylene thiol group, a group represented by the above formula (a), or a combination of groups represented by the formula (b).
  • Y is an amino acid in which the N-terminal amino group is bonded to a carbonyl group, and the amino terminal of the amino acid on the N-terminal side is bonded to a carbonyl group.
  • Examples thereof include peptides (including oligopeptides and polypeptides) or proteins having two or more amino acid residues.
  • the strong amino acid, peptide or protein may be amidated at the C-terminus.
  • Ys may be modified.
  • the mode of modification is not particularly limited.
  • a part of Y is an arbitrary group (for example, an amino acid protecting group, a hydroxyl group, an alkyl group). , Phosphoric acid group, formyl group, acyl group, sugar chain, fatty acid residue, etc.), a state where the dye is modified with a dye such as a fluorescent dye or a stable or radioactive isotope, or
  • a dye such as a fluorescent dye or a stable or radioactive isotope
  • An embodiment in which Y is immobilized on a solid support can be exemplified.
  • An embodiment in which a part of Y is substituted with an amino acid protecting group or an embodiment in which Y is immobilized on an arbitrary solid phase carrier can be mentioned.
  • amino acid protecting group conventionally known protecting groups can be widely exemplified. Specifically, methoxy group (OMe group), ethoxy group (OEt group), benzyloxy group (OBzl group), p-trobenzyloxy group (OBzKNO) group), t-butoxy group (OBu group), amide Group (NH
  • Carboxy protecting groups such as phenacyl (Pac) group, allyl (All) group; NO
  • the Y labeling agent is not particularly limited as long as it can label a conventionally known amino acid, peptide or antibody, for example, a dye (eg, fluorescent dye, chemiluminescent dye), specifically, FITC, Alexa
  • a dye eg, fluorescent dye, chemiluminescent dye
  • FITC chemiluminescent dye
  • Alexa Alexa
  • metal chelators including fluorescent dyes such as Bodipy and Eosin, affinity groups such as piotin, stable and radioactive isotopes, metal indicators including crown ethers, and the like.
  • the solid phase carrier is not particularly limited.
  • nitrocellulose nitrocellulose, agarose beads, modified cellulose fiber, polypropylene, polystyrene resin, polyethylene glycol resin, polyacrylamide resin described in (1-2) above.
  • Synthetic resins and substrates such as Synthetic resins such as polystyrene resin, polyethylene glycol resin, and polyarylamide resin are preferable.
  • a powerful ligation aminothiol compound (3) can be prepared by the method described in (1-2) above, including immobilization to a solid phase.
  • the thiol compound (3) for ligation more preferably, as shown by the following formula, the peptide (a) having a cysteine residue at the N-terminal side and also having two or more amino acid residue forces, or Also has two or more amino acid residues that have a thiol auxiliary group (eg, alkylene thiol group, oxyalkylene thiol group, mercaptobenzyl group, etc.) on the N-terminal amino group Peptides (b to d) can be mentioned
  • n means an integer of 1 or more
  • thiol auxiliary groups may have a substituent, for example, an alkylene thiol group having a substituent on the N-terminal amino group.
  • alkylene thiol group having a substituent on the N-terminal amino group examples include those represented by the following formula.
  • the peptide can be prepared according to a general peptide synthesis method such as a solid phase synthesis method or a technique for producing a recombinant protein.
  • ligation peptide fragments (2) and ligation aminothiol compounds (3) are used as ligation reagents for the synthesis of peptides and proteins.
  • a desired peptide or protein can be synthesized by ligating each other with an amide bond. It is also possible to synthesize macromolecular peptides and proteins by repeating powerful ligations.
  • the present invention relates to a method for producing a thioester compound using a peptide ester.
  • the method uses the above general formula (2) as a raw material:
  • R is a carboxy group substituted with OH.
  • strong amino acids include proline, glycine, and glycine having a substituent.
  • examples of the glycine having a substituent include, but are not limited to, for example, sarcosine (N-monomethyldaricin) which is a glycine having an alkyl group. Proline and sarcosine are preferable, and proline is more preferable.
  • Examples of the group that is substituted with -OH of the amino acid include a group that forms an ester structure with a carbonyl group adjacent to the -OH group.
  • a non-limiting powerful one OH substituent can specifically include one OCH CONH.
  • R as described above, for example, -R -OCH CONH (eg, -Pro-OCH CONH, -Sar-
  • any group having the above amino acid residue may be used.
  • any group is bonded to the above amino acid via an OH substituent.
  • -R'-OH substituent-Z Z means any group).
  • the group bonded to the amino acid via the —OH substituent is arbitrary, and is not particularly limited.
  • the peptide having the power of two or more amino acid residues including amino acid residues ( Oligopeptides and polypeptides) and proteins or their derivatives.
  • X-COOH may be a modified amino acid, a peptide composed of two or more amino acid residues (including oligopeptides and polypeptides), or a protein. It is out.
  • the modification mode is not particularly limited.
  • a part of X is an arbitrary group (for example, an amino acid protecting group, a hydroxyl group, a phosphate group, an alkyl group, a formyl group, an acyl group, Examples include an aspect substituted with a sugar chain, a fatty acid residue, etc., and an aspect modified with a dye such as a fluorescent dye or a labeling agent such as a stable or radioactive isotope.
  • an embodiment in which the amino group of the N-terminal amino acid constituting X has a protecting group can be mentioned.
  • this protecting group any known amino group protecting group can be used.
  • 9 fluorenyl methoxy carbo yl group Fmoc group
  • benzyloxy carbo yl group Z group
  • p- methoxy benzyloxy carbo yl group Z (OMe) group
  • 2-chloro Oral benzyloxycarbol group Z (C1) group
  • p-trobenzyloxycarbol group Z (NO) group
  • Examples of the labeling agent for X include widely known labeling agents that can label amino acids and peptides. Specific examples include dyes (for example, fluorescent dyes and chemiluminescent dyes), compounds containing stable or radioactive isotopes, metal chelators containing metal indicators, and the like. Examples of the dye include general fluorescent dyes such as FITC, Alexa, Bodipy, and Eosin.
  • peptide ester (2) in formula (2), 3 or more amino acids in which the OH group of the amino acid residue adjacent to the cyste group represented by -Cys is substituted with OCH CONH
  • the number of amino acid residues bound to NH— is not limited, but can be about 1 to 50.
  • examples of the amino acid residue adjacent to the cystenyl group include a prolyl group, a glycyl group, and a glycyl group having a substituent (for example, a sarcosyl group).
  • Preferred are a prolyl group and a sarkosyl group.
  • the amino group of the amino acid residue at the N-terminal may be protected with an amino protecting group (for example, 9-fluorenylmethoxycarbonyl group (Fmoc group)).
  • each amino acid constituting the peptide ester may be modified.
  • the powerful peptide ester (2) can be prepared by the method described in (1-1) above (see FIG. 1).
  • the protecting group of the amino group for example, Fmoc group
  • the protecting group is not limited to a force that can be removed prior to the reaction with thiol described later. Removal of the protecting group can be performed according to a conventional method.
  • Examples of the thiol compound to be reacted with the peptide ester (2) include conjugated thiols and conjugated thiols. Specifically, the following formula
  • R may have a substituent! /, May have an alkyl group, or may have a substituent! /, May! / ⁇
  • Examples include a phenyl group, an optionally substituted benzyl group, and an optionally substituted alkylene sulfonic acid group. Specifically, it may have a substituent such as an ethoxycarbolethyl group, a methoxycarboletyl group, and an ethoxycarboromethyl group, but may be an alkyl group; a phenyl group and a 4-trimethylsilylphenol.
  • An alkylene sulfonic acid group may be exemplified by a substituent such as a group, a phenyl group, a benzyl group, or an ethylene sulfonic acid group.
  • thiol compound examples include benzyl mercaptan
  • reaction solution is not particularly limited as long as it is a solution in which the peptide ester (2) and the thiol compound are dissolved.
  • the reaction solution is not particularly limited as long as it is a solution in which the peptide ester (2) and the thiol compound are dissolved.
  • water lower alcohol, fluorinated alcohol, polyhydric alcohol or other polar solvent.
  • non-polar solvents for example, water, lower alcohol, fluorinated alcohol, polyhydric alcohol or other polar solvent.
  • alcohols having 1 to 6 carbon atoms such as methanol, ethanol, propanol and isopropyl alcohol, butanol; as fluorinated alcohols, trifluoroalcohol, hexafluoroisopropyl alcohol, etc .; as polyhydric alcohols Are glycerin, 1,3-butylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, etc .; polar solvents other than the above include ketones such as acetone ethyl ketone, ethyl acetate, methyl acetate or butyl acetate Examples include esters, ethers such as ethyl ether and propyl ether; acetonitrile, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone and the like. Examples of the nonpolar solvent include toluene.
  • solvents may be used alone or in combination of two or more.
  • combinations of two or more types include combinations of lower alcohols, polyhydric alcohols or other polar solvents and water.
  • water Preferably, water, lower alcohol (preferably ethanol), acetonitrile, or a mixture of water and lower alcohol.
  • lower alcohol preferably ethanol
  • acetonitrile or a mixture of water and lower alcohol.
  • examples thereof include a mixed solution (hydrous alcohol, preferably hydrous ethanol) and a mixed solution of water and acetonitrile.
  • the pH of these solutions is not particularly limited, and may usually be in the range of 2 to 10. It is preferable that the pH is adjusted to near neutrality with a buffer or the like.
  • the pH range is preferably ⁇ is pH 6 to 9, more preferably ⁇ is pH 7 to 8.5.
  • reaction temperature is not particularly limited, the reaction can be usually carried out in the range of 0 to LOO ° C.
  • the temperature is preferably 10 to 60 ° C, more preferably 20 to 40 ° C. It is desirable to perform the reaction under the condition where oxygen is removed.
  • P (CH CH CH OH) or P (CH CH COO) is preferably 10 to 60 ° C, more preferably 20 to 40 ° C. It is desirable to perform the reaction under the condition where oxygen is removed.
  • the reaction time is not particularly limited, but usually 2 to 72 hours can be mentioned.
  • the solution may be stirred or shaken.
  • a thioester compound represented by the following formula (9) is produced.
  • the thioester compound (9) thus obtained can be finally obtained as a highly purified product by purification using high performance liquid chromatography or the like.
  • the method for producing a thioester compound of the present invention can be carried out by placing the peptide ester (2) and the thiole compound under the above mild conditions. It is also possible to generate a thioester within the molecule by a spontaneous reaction. Although not constrained, the principle of this reaction is that the peptide ester spontaneously and rapidly undergoes an intramolecular reaction under the above conditions to be converted into a thioester, which exchanges the thiol group with the thiol group. Thus, it is presumed that a thioester compound is produced. This series of reactions occurs automatically in the same reaction system without changing the reaction conditions or applying new operations.
  • Peptide thioesters have been used as a raw material for peptide synthesis, such as long-chain peptides and cyclic peptides, and using the Fmoc method, the thiol ester bond is degraded by the reagent used for the removal treatment. As a result, the peptide chain cannot be extended.
  • a peptide thioester can be produced without any of the above problems, for example, by the following operation.
  • the present invention also provides a reagent that can be suitably used for the synthesis of the above peptide thioester.
  • Examples of the peptide thioester synthesis reagent of the present invention include a peptide fragment represented by the following formula (2) corresponding to the above peptide ester.
  • R is an amino having a carboxyl group substituted with OH
  • strong amino acids include proline and a glycine residue having a substituent.
  • examples of the glycine residue having a substituent include, but are not limited to, sarcosine (N-monomethylglycine). Proline and sarcosine are preferable, and proline is more preferable.
  • the group substituted with —OH of the above amino acid is adjacent to the —OH group.
  • the group which forms an ester structure with a carbonyl group can be mentioned.
  • a non-limiting powerful one OH substituent can specifically include one OCH CONH.
  • R may be modified.
  • the mode of modification is not particularly limited, but preferably R
  • the solid phase is not particularly limited.
  • the above-described synthetic resin such as nitrocellulose, agarose beads, modified cellulose fiber, polypropylene, polystyrene resin, polyethylene glycol resin, polyacrylamide resin, and the like, have a thiol group, Examples include amino group, carboxyl group, hydroxyl group, and halogen introduced.
  • X-CO is not particularly limited, but may include an amino acid residue, a peptide residue having two or more amino acid powers, or a protein that may be modified. .
  • the mode of modification is not particularly limited.
  • a part of X is an arbitrary group (for example, an amino acid protecting group, a hydroxyl group, an alkyl group, a formyl group, an acyl group, a phosphate group, a sugar group).
  • a mode in which it is modified with a dye such as a fluorescent dye or a labeling agent such as a stable or radioactive isotope. The details are as described in (1-1).
  • Peptide esters that also have acid residue power can be mentioned.
  • the OH group of the amino acid residue adjacent to the cysteine group represented by -Cys is OCH CON
  • Peptide esters that are substituted with H and further have an amino acid or a peptide chain composed of two or more amino acid residues bonded to the group.
  • the number of amino acid residues bound to CONH— is not limited, but can be about 1 to 50.
  • the amino acid residue adjacent to the cystol group include a proparyl group, a glycyl group, and a glycyl group having a substituent (for example, a sarcosyl group). Preferred are a prolyl group and a sarkosyl group.
  • the peptide In the stealth the amino group of the amino acid residue at the N-terminal may be protected with an amino protecting group (for example, 9-fluorenylmethoxycarbonyl group (Fmoc group)).
  • each amino acid constituting the peptide ester may be modified.
  • the peptide ester (2) has an embodiment in which the peptide fragment is bound to a solid phase carrier directly or indirectly (through a linker) at the C-terminus.
  • Such peptide ester (2) can be prepared by the method described in (1-1) above (see FIG. 1).
  • HC1'MBHA (4-methylbenzhydrylamine) rosin (1.0 g,-NH: 0.63 mmol, Peptide Institute) was washed 3 times with NMP (N-methylpyrrolidone) (10 mL), and 5% DIEA ( N, N-diisopyrutylamine) / NMP (10 mL) was treated 3 times for 2 minutes. After washing 3 times with NMP (10 mL), NMP (8 mL), glycolic acid (62 mg, 0.82 mmol), HOBt (l-hydroxybenzazotriazole) ⁇ ⁇ 0 (0.13 g, 0.82 mmol), and DIPCI (Diisopropylcarbodiimide
  • Mass spectrometry MALDI-TOF m / z 1058.6 (calculated value: 1058.5)
  • Fmoc- Rink Amide oil (2.0 g,-NH: 0.86 mmol, Novabiochem) was washed 3 times with NMP (15 mL), then 20% piperidine / NMP (20 mL) for 5 min, 5 min and 10 min Processed. After washing 5 times with N MP (15 mL), NMP (15 mL), glycolic acid (98 mg, 1.3 mmol), HOB tH 0 (0.20 g, 1.3 mmol), and DIPCI (0.21 mL, 1.3 mmol) were added. Add sequentially and shake for 5 hours
  • Trt Trt-OH was introduced in an active manner with DIPC HOObt (3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine). After 0.205 g of this resin was treated with a TFA solution (4 mL) containing 5% water, 5% phenol and 2% triisopropylpropylsilane for 2 hours, cold ether was added to cause precipitation. The precipitate was washed three times with jetyl ether (10 mL) and then 50% acetonitrile. Z was dissolved in water, passed through a TOYOPAK ODS M cartridge (Tosoichi), and lyophilized to obtain 30 mg of powder.
  • Mass spectrometry MALDI-TOF m / z 1072.8 (calculated value: 1072.5)
  • Mass spectrometry MALDI-TOF m / z 1115.9 (calculated value: 1114.6)
  • Mass spectrometry MALDI- TOF m / z 1100.9 (calculated value: 1100.5)
  • Fmoc-Pro-OCH CO-Gly-Rink Amide resin is prepared according to the method described in Preparation Example 2,
  • Mass spectrometry MALDI-TOF m / z 1115.9 (calculated value: 1115.5)
  • Fmoc— Rink Amide resin (0.25 g, — NH: 0.43 mmol / g, Novabiochem), and protected peptide resin by Fmoc method (0.1 mmol scale, DIPCI-HOBt) with ACT440 Q automatic synthesizer.
  • Leu-Asp (OtBu) -Va Lys (Boc) -ThrCBu) -SerCBu) -Rink Amide resin was obtained.
  • a solution of bromoacetic acid (0.13 g, 0.95 mmol) and DIPCI (74 mL, 0.47 mmol) reacted with NMP (2.0 mL) for 30 minutes, and the mixture was shaken for 1 hour. After washing 5 times with NMP (3 mL), S-trityl-2-mercapto (2-nitrophenyl) ethylamine (Mnpe (Trt) -NH) (0.22 g, 0.50
  • the following compound was prepared. Specifically, following the method described in Preparation Example 3, the Fmoc group was subsequently removed, then Fmoc-Cys (Trt) -OH was introduced, the Fmoc group was removed, and H-Cys (Trt) — His (Trt) — Pro— lie— Arg (Pmc) — Leu— Cys (4— MeOBzl) — Pro— OCH CO— Rink Amide
  • Mass spectrometry MALDI-TOF m / z 1116.5 (calculated value: 1115.6)
  • Mass spectrometry MALDI-TOF m / z 1428.8 (calculated value: 1428.7)
  • Mass spectrometry MALDI-TOF m / z 1469.7 (calculated value: 1470.8)
  • Fmoc-His-Pro-lie-Arg-D-Va-Cys-Asp-lie-Leu-Leu-Gly-NH was prepared by the usual Fmoc solid-phase synthesis method, and condensed at the condensation site by HPLC. Test the racemization of the Val residue
  • Example 22 was dissolved in 0.10 mL of 0.10 M tricine buffer (pH 8.2) containing 20 mM THP and 6 M Gdn, and the mixture was stirred for 24 hours. The progress of the reaction was followed by HPLC and mass spectrometry as in Example 1.
  • Example 6 Fmoc- His- Pro- lie- Arg ⁇ k-Sar- Pro- OCH CONH (Preparation Example 6) and Cvs— ASD lie— Leu—
  • Fmoc-H is-Pro-lie- Arg-Axx-Bxx-Cxx-Dxx (1) + H-Cys-Asp-lle-Leu-Leu-Gly-NH 2 (2)
  • Mass spectrometry MALDI-TOF m / z 1681.8 (calculated value: 1682.9)
  • Example 3 Fmoc-His-Pro-lie-Arg-Gly- (Mnpe) Gly-Leu-Asp-Va-Lys-Thr-Ser-NH (trace amount) prepared in Example 3 was placed in a glass test tube and 6 M 0.10 M sodium phosphate loose with Gdn
  • the solution was dissolved in 0.05 mL of the impact liquid (pH 6.4), and irradiated with 365 nm ultraviolet rays for 30 minutes by Handheld Lamp UVL-56 (6 W, UVP).
  • This was applied to a reversed-phase column YMC PACK ProC18 (4.6 x 250 mm) and eluted with an acetonitrile solution using an aqueous solution of acetonitrile containing 0.1% TFA (flow rate: 1.0 mL / min).
  • Fractions containing Fmoc-His-Pro-Ile-Arg-Gly-Gly-Leu-Asp-Val-Lys-Thr-Ser-NH were collected by detecting the absorbance at 220 nm and frozen.
  • Mass spectrometry MALDI-TOF m / z 1501.1 (calculated value: 1500.8).
  • Mass spectrometry MALDI-TOF m / z 2070.0 (calculated value: 2070.1)
  • Mass spectrometry MALDI-TOF m / z 2306.2 (calculated value: 2306.3)
  • FIG. 4 shows a schematic diagram of the reaction steps of Example 9 (1) to (3).
  • peptidel is Leu- Lys- Asn- Thr- Ser- Val- Leu- tjly- Ala- Ala
  • peptide3 is Asp- lie- Leu- Leu- Leu- Gly- NH means.
  • R 1 is -CH CH CO- L
  • R 2 represents —CH 2 CH 2 OCH—p ⁇ and R 3 represents —CH 2 CONH.
  • Fmoc-H made from Fmoc-His-Pro-Ile-Arg ⁇ Ala-Cvs-Pro-OCH CONH (Preparation Example 2)
  • Mass spectrometry MALDI-TOF m / z 931.7 (calculated value: 931.5)
  • FIG. 5 shows this reaction scheme.
  • FIG. 1 is a schematic diagram showing a ligation method of the present invention and a method for producing a peptide ester used for producing a thioester compound.
  • FIG. 2 is a diagram showing an example of a ligation method of the present invention.
  • FIG. 3 shows the reaction scheme of Example 1 and the chromatograms of starting materials and products.
  • FIG. 4 shows a schematic diagram of the reaction steps of Example 9 (1) to (3).
  • peptide 1 is Leu-Lys-Asn- Thr- Ser- Vato Leu- Gly- Ala- Ala
  • peptiae2 is His-Pro-lie- Arg- Leu
  • pe ptide3 is Asp-lie- Leu- Leu- Gly- NH means.
  • R 1 is -CH CH CO- Leu- NH
  • R 2 represents —CH 2 CH OCH—p
  • R 3 represents —CH 2 CONH.
  • FIG. 5 is a schematic view showing a method for producing a peptide thioester compound in Example 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Description

ペプチドエステル試薬、およびそのライゲーシヨンまたはチォエステルイ匕 合物の製造のための使用
発明の属する技術分野
[0001] 本発明は、ペプチドエステルを用いたィ匕学的ライゲーシヨン法、およびその方法に 使用される試薬に関する。より詳細には本発明は、出発原料としてペプチドエステル を用いて、タンパク質若しくはその構成成分 (アミノ酸、ペプチド)などをアミド結合に よりライゲーシヨンする方法、および当該方法に好適に使用される試薬に関する。
[0002] また本発明は、ペプチドエステルを用いたチォエステルイ匕合物の製造方法、および 当該方法に好適に使用される試薬に関する。
背景技術
[0003] 化学的ライゲーシヨンは、第一の化学成分と第二の化学成分との間に選択的共有 結合を形成させる方法である。例えば、ペプチドの場合、ライゲーシヨンは、第一のぺ プチドの N末端アミノ基と第二のペプチドの C末端カルボキシル基とをアミド結合 (共 有結合)させることによって行われ、ペプチド鎖の伸張、すなわちペプチドの合成に 使用されている。従来よりこの目的で種々のライゲーシヨン反応が提案されており、具 体的には、天然型化学的ライゲーシヨン (非特許文献 1、特許文献 1〜2参照)、ォキ シム生成化学的ライゲーシヨン (非特許文献 2参照)、チォエステル生成ライゲーショ ン (非特許文献 3参照)、チォエーテル生成ライゲーシヨン (非特許文献 4〜5参照)、 ヒドラゾン生成ライゲーシヨン (非特許文献 6参照)、チアゾリジン生成ライゲーシヨンお よびォキサゾリジン生成ライゲーシヨン (非特許文献 7、特許文献 3〜4参照)、ならび に拡張天然型化学的ライゲーシヨン (非特許文献 8〜11参照,特許文献 5参照)を挙 げることができる。
[0004] これらの方法のうち、天然型化学的ライゲーシヨンおよび拡張天然型化学的ライゲ ーシヨンは、ライゲーシヨン部位に天然アミド結合 (ペプチド結合)を有するペプチド鎖 が生成できる方法である。天然型化学的ライゲーシヨンは、第一のペプチドとして C末 端に αカルボキシチォエステル成分を有するペプチドを、また第二のペプチドとして N末端にシスティン残基を有するペプチドを用いて、触媒チオールの存在下で行う 反応であり、チオール交換反応によるチォエステル結合およびそれに続く自発転位 によるアミド結合を通じて、第一のペプチドと第二のペプチドとを連結させてオリゴぺ プチドを生成させる方法である。この方法の欠点は、第二のペプチドが N末端にシス ティン残基を有するものに限られることである。このため、この改良法として、システィ ン残基の代わりに補助基を有するペプチドを使用する方法が提案されている(例え ば、非特許文献 8〜11参照)。また拡張天然型化学的ライゲーシヨンは、ペプチドの 伸張 (合成)を対象とした上記の天然型化学的ライゲーシヨンの適用範囲を、アミノ酸 残基、ペプチド、ポリペプチド、ポリマー、およびその他の分子まで拡張し、これらの 分子を天然アミド結合によって結合させる方法である。
[0005] これらのライゲーシヨン法の短所として、天然型化学的ライゲーシヨンが第一のぺプ チドとして C末端に aカルボキシチォエステル成分を有するペプチドを使用するよう に、 V、ずれもペプチドチォエステルを合成ブロックとして使用しなければならな ヽ点を 挙げることができる。
[0006] 現在ペプチドの合成は、主として Fmoc法による固相法によって行われている。そ の理由は、ペプチドの他の合成方法である Boc法は、反応処理にトリフルォロ酢酸や ジクロロメタンなどのハロゲン化合物や無水フッ化水素などの強酸を使用するため、 環境保全面や安全性に問題があること、また Fmoc法によるとリン酸ィ匕ペプチドや糖 ペプチドの合成が容易である力もである。し力しながら、ペプチドチォエステルは、 F moc基の除去に使用されるピペリジンによってチォエステルが分解するため、 Fmoc 法が使用できず、主として Boc法によって行われて 、るのが現状である。
[0007] 上記するように、 Fmoc法は Boc法に比して多くの利点を有することから、従来より F moc法を用いてペプチドチォエステルを合成する方法力 種々検討され提案されて いる(例えば、非特許文献 12〜16、特許文献 6等)。しかし、未だ一般的な方法とし て確立されていない。
非特許文献 1 : Dawson, et al., Science, (1994) 266; 776-779
非特許文献 2 : Rose, J. Amer. Chem. Soc. (1994) 116; 30-34
非特許文献 3 : Schnolzer, et al, Science, (1992) 252; 221-225 非特許文献 4 : Englebretsen, et al., Tet丄 etts. (1995) 36(48):8871- 8874 非特許文献 5 : Gaertner, et al, Bioconj. Chem. (1994) 5(4):333- 338
非特許文献 6 : Gaertner, et al., J. Biol. Chem. (1994) 269(10):7224-7230 非特許文献 7 : Zhang, et al., Proc. Natl. Acad. Sci. (1998) 95(16):9184- 9189 非特許文献 8 : Canne,し E.,et al" J. Am. Chem. Soc, (1996) 118; 5891-5896 非特許文献 9 : Botti, P. et al., Tetrahedron Lett. (2001) 42: 1831-1833
非特許文献 10 : Kawakami, T., et al., Org. Lett. (2001) 3:1403-1405
非特許文献 l l : Kawakami, T., et al., Tetrahedron Lett. (2003) 44:6059-6061 非特許文献 12 : Hasegawa, et al., Lett. Pept.Sci., (2002) 8, 277
非特許文献 13 : R. Ingenito, et al" J. Am. Chem. Soc, (1999) 121, 11369 非特許文献 14 :Y. Shin, et al" J. Am. Chem. Soc, (1999) 121, 11684
非特許文献 15 : R. R. Flavell et al" Org. Lett., (2002) 4, 165
非特許文献 16 : Mezzato, S., et al" Angew. Chem. Int. Ed., (2005) 44, 1650-1654 特許文献 1: W096/34878
特許文献 2: W098/28434
特許文献 3: WO95/00846
特許文献 4 :米国特許第 5,589,356号公報
特許文献 5: WO2002/020557
特許文献 6:特開平 11-217397号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明の第 1の目的は、原料としてペプチドエステルを用いてライゲーシヨンを行う 方法、および当該方法に好適に使用される試薬を提供することである。この方法によ れば、 Fmoc法の適用が難しいペプチドチォエステルを使用する必要がなぐ従来の Fmoc法によりルーチンィ匕された方法でペプチドエステルを合成ブロックとして調製し 、それを結合させてライゲーシヨンを行うことが可能である。
[0009] また本発明の第 2の目的は、ペプチドチォエステルを製造するための新規方法、お よびその方法に好適に使用される試薬を提供することである。 課題を解決するための手段
[0010] 本発明者らは、上記目的を達成するために日夜鋭意検討して ヽたところ、 C末端ま たは C末端領域に- Cys- Pro (システィ-ル-プロリン)や- Cys- Sar (システィ-ル-ザル コシン)などのシステイ-ル-アミノ酸残基を有するペプチドエステル力 従来の化学 的ライゲーシヨンで使用されて 、るペプチドチォエステルと同様の機能を有し、これを 原料とすることによって、ライゲーシヨンによりペプチド鎖を伸張することができることを 見出した。当該ペプチドエステルはチォエステル骨格を有しないため、かかるぺプチ ドエステルによれば、チォエステル結合の分解やラセミ化などの問題を生じることなく 、汎用の Fmoc法を用いて容易にペプチド鎖を縮合および伸張することができ、所望 のペプチドやタンパク質を調製することができる。当該ライゲーシヨン法はペプチド鎖 の縮合および伸張だけでなぐ所望の分子 (化合物)同士の縮合にも応用することが できる。
[0011] さらに、本発明者らは、 C末端または C末端領域に- Cys- Pro (システィ-ル-プロリン )や- Cys-Sar (システィ-ル-ザルコシン)などのシスティ-ル-アミノ酸残基を有する ペプチドエステルをチオールィ匕合物と反応させることで、容易にチォエステルイ匕合物 が製造できることを見出した。この方法によれば、上記のペプチドエステルを汎用の F moc法で製造し、チオールィ匕合物と反応させることでチォエステルイ匕合物を簡単に 製造取得することができる。前述するように本発明の方法で使用するペプチドエステ ルはチォエステル骨格を有しないため、力かるペプチドエステルによれば、 Fmoc基 除去処理によるチォエステル結合の分解やラセミ化などの問題を生じることなぐチ ォエステルイ匕合物を収率よく安定して製造取得することができる。
[0012] 本発明は力かる知見に基づいて完成したものであり、以下の態様を有することがで さる:
( 1)ペプチド ステル試靠 それ 用いるライゲーシヨン法
項 1.一般式 (1) :
[0013] [化 1]
Figure imgf000007_0001
[0014] (式中、 Xはカルボキシル基と結合して X-COOHを形成しえる基; Yは水素原子、ま たは少なくとも炭素原子を 1以上含む基; Rは水素原子、少なくとも 1つの炭素原子 を含むチオール基を有する基、または少なくとも 1つの炭素原子を含むチオール基を 有しない基; Rは水素原子または少なくとも 2以上の連続した炭素原子を含むチォー
3
ル基を有する基を示す。 )
で示される化合物を製造する方法であって、
(a) :—般式 (2)
[0015] [化 2]
Figure imgf000007_0002
[0016] (式中、 Xは前記と同一; Cysはシスティン残基、 Rは、カルボキシル基の— OHが置
2
換されたアミノ酸残基を有する基を示す。 )
で示される化合物と、
一般式 (3)
[0017] [化 3]
Figure imgf000007_0003
[0018] (式中、 Y、 Rおよび Rは前記と同一。但し、 Rと Rのいずれか一方はチオール基を
1 3 1 3
有する基である。 )
で示されるチオールィヒ合物とを反応させて、上記化合物(2)のカルボニル基とチォ ール化合物(3)のァミノ基またはイミノ基をアミド結合させる工程を有する方法。 [0019] 般式 ( ι ' ) :
[0020] [化 4]
Figure imgf000008_0001
[0021] (式中、 Xはカルボキシル基と結合して X-COOHを形成しえる基; Yは水素原子、ま たは少なくとも炭素原子を 1以上含む基; Rは水素原子、少なくとも 1つの炭素原子 を含むチオール基を有する基、または少なくとも 1つの炭素原子を含むチオール基を 有しない基を示す。)
で示される化合物を製造する項 1に記載する方法であって、
(b):上記 (a)工程で得られた下式:
[0022] [化 5]
Figure imgf000008_0002
[0023] (式中、 X、 Yおよび Rは前記の通り。 R 'は少なくとも 2以上の連続した炭素原子を
1 3
含むチオール基を有する基を示す。 )
で示される化合物(1")に対して、さらに R
3 'の脱離処理を行う工程を有する方法。
[0024] 項 3.—般式 (4) :
[0025] [化 6]
Figure imgf000008_0003
(式中、 Xはカルボキシル基と結合して X-COOHを形成し得る基; Rは隣接カルボ
4
-ル基とともにエステル構造を形成する基を示す。 )
で示されるシステュルプ口リルエステル化合物を、 一般式 (5)
[0027] [化 7]
Figure imgf000009_0001
[0028] (式中、 Yは水素原子、または少なくとも炭素原子を 1以上含む基である。 )
で示されるチオールィヒ合物と反応させて、上記化合物 (4)の Xに隣接したカルボ- ル基とチオール化合物(5)のアミノ基をアミド結合させて、
一般式 (6) :
[0029] [化 8]
Figure imgf000009_0002
[0030] (式中、 Xおよび Yは上記と同じ。 )
で示される化合物を製造する、項 1記載の方法。
[0031] 項 4. (a) :—般式 (4) :
[0032] [化 9]
Figure imgf000009_0003
[0033] (式中、 Xはカルボキシル基と結合して X-COOHを形成し得る基; Rは隣接カルボ
4
-ル基とともにエステル構造を形成する基を示す。 )
で示されるシステュルプ口リルエステル化合物を、
一般式 (7)
[0034] [化 10]
Figure imgf000010_0001
[0035] (式中、 Yは水素原子または少なくとも炭素原子を 1以上含む基; は水素原子また は少なくとも 1つの炭素原子を含む基; A—SHは、置換基を有していてもよい、少な くとも 2つの炭素を有するアルキレンチオール基、少なくとも 2つの炭素を有するォキ シアルキレンチオール基、またはメルカプトベンジル基を示す。 )
で示されるチオールィヒ合物と反応させて、上記化合物 (4)の Xに隣接したカルボ- ル基とチオール化合物(7)のイミノ基をアミド結合させて、
一般式 (8) :
[0036] [化 11]
Figure imgf000010_0002
[0037] (式中、 X、 Y、 Rおよび— A—SHは上記と同じ。 )
で示される化合物を製造する工程、および
(b):次いで、上記化合物(8)から A— SH基を除去して、
一般式 (1 ' ):
[0038] [化 12]
Figure imgf000010_0003
[0039] (式中、 X、 Yおよび Rは上記と同じ。 )
で示される化合物を製造する工程を有する、項 2に記載する方法。
[0040] 項 5.—般式(1)で示される化合物および一般式(2)で示される化合物が、これら の式中「X— CO—」で示される基として、修飾されていてもよい、アミノ酸、 2以上のァ ミノ酸力もなるペプチド、またはタンパク質の残基を有するものである、項 1に記載す る方法。
[0041] 項 6.—般式(1)で示される化合物および一般式 (3)で示される化合物が、これら の式中「Y」で示される基として、修飾されていてもよい、アミノ酸、 2以上のアミノ酸か らなるペプチド、またはタンパク質の残基を有するものである、項 1に記載する方法。
[0042] 項 7.—般式(2)
[0043] [化 13]
Figure imgf000011_0001
[0044] (式中、 X— CO—は、修飾されていてもよい、アミノ酸、 2以上のアミノ酸力 なるぺプ チド、またはタンパク質の残基であり、 Cysはシスティン残基、 Rは、修飾されていて
2
もよい、カルボキシル基の一 OHが置換されたアミノ酸残基を示す。 )
で示されるライゲーシヨン用ペプチドエステル。
[0045] 項 8.—般式 (2)中、 X— CO—力 N末端のアミノ酸のァミノ基に保護基を有する、 アミノ酸、 2以上のアミノ酸からなるペプチド、またはタンパク質の残基であり、 Rが直
2 接または間接的に固相担体に結合して固定ィ匕されてなるものである、項 7記載のライ ゲーシヨン用ペプチドエステノレ。
[0046] 項 9.項 7に記載するライゲーシヨン用ペプチドエステルを含む、ペプチドライゲーシ ヨン用試薬。
[0047] 項 10.項 7に記載するライゲーシヨン用ペプチドエステルを少なくとも 1つ含む、ぺ プチドまたはタンパク質の合成キット。
[0048] 項 11.さらに、一般式 (3)
[0049] [化 14]
Figure imgf000011_0002
[0050] (式中、 Yは、ァミノ基がカルボニル基と結合してなるアミノ酸、 Ν末端のアミノ酸のアミ ノ基がカルボニル基と結合してなる 2以上のアミノ酸残基力もなるペプチドまたはタン パク質の残基; Rは水素原子、少なくとも 1つの炭素原子を含むチオール基を有する 基、または少なくとも 1つの炭素原子を含むチオール基を有しない基; Rは水素原子
3 または少なくとも 2以上の連続した炭素原子を含むチオール基を有する基を示す。伹 し、 Rと Rのいずれか一方はチオール基を有する基である。 )
1 3
で示されるアミノチオールィ匕合物を含有する、項 10に記載するペプチドまたはタンパ ク質の合成キット。
[0051] 項 12.上記 Rで示される「少なくとも 1つの炭素原子を含むチオール基を有する基 」が炭素数 1〜3のアルキレンチオール基であり、 Rで示される「少なくとも 2以上の連
3
続した炭素原子を含むチオール基を有する基」が、置換基を有して!/、てもよ 、炭素 数 2〜3のアルキレンチオール若しくはォキシアルキレンチオール基、または置換基 を有して!/、てもよ 、メルカプトべンジル基である、項 11に記載するペプチドまたはタン パク質の合成キット。
[0052] (2)チ エステル化 ·の観告 法
項 13.—般式(2)
[0053] [化 15]
Figure imgf000012_0001
[0054] (式中、 Xはカルボキシル基と結合して X-COOHを形成し得る基; Cysはシスティン 残基、 Rは、修飾されていてもよい、カルボキシル基の OHが置換されたアミノ酸
2
残基を示す。 )
で示される化合物を、チオール化合物 (R —SH)と反応させる工程を有する、
6
下式 (9)
[0055] [化 16]
Figure imgf000012_0002
[0056] (式中、 Xは前記と同一; Rは、置換基を有していてもよいアルキル基、置換基を有し
6
ていてもよいフエニル基、置換基を有していてもよいべンジル基、または置換基を有 していてもよいアルキレンスルホン酸基を示す。)
で示されるチォエステル化合物の製造方法。
[0057] 項 14.一般式(2)
[0058] [化 17]
Figure imgf000013_0001
[0059] (式中、 X— CO は、修飾されていてもよい、アミノ酸、 2以上のアミノ酸力 なるぺプ チド、またはタンパク質の残基であり、 Cysはシスティン残基、 Rは修飾されていても
2
よい、カルボキシル基の OHが置換されたアミノ酸残基を示す。 )
で示されるペプチドフラグメントを含むチォエステル合成試薬。
[0060] 項 15.—般式(2)中、 X—CO は、修飾されていてもよいアミノ酸、 2以上のァミノ 酸からなるペプチド、またはタンパク質の残基であり、 Rが直接または間接的に固相
2
担体に結合して固定ィ匕されてなるものである、項 14記載のチォエステル合成試薬。
[0061] 項 16.項 14に記載するペプチドフラグメントを少なくとも 1つ含む、ペプチドチォェ ステル合成キット。
[0062] 項 17.さらにチオールィ匕合物 (R—SH)を含む、項 16に記載するペプチドチォェ
6
ステル合成キット。
発明の効果
[0063] 本発明のライゲーシヨン法は、合成ブロックとしてチォエステル骨格を有しな 、ぺプ チドエステルを用いることができるため、従来の方法によるチォエステル結合の分解 やラセミ化などといった問題が生じることなぐライゲーシヨンに使用する所望の合成 ブロックを汎用の Fmoc法を用いて容易に効率よく調製することができる。また本発明 のライゲーシヨン法は、温和な条件で行うことができるので、ペプチドやタンパク質な どの生体分子の合成ならびに修飾に有効に用いることができる。
[0064] 本発明が提供するライゲーシヨン用ペプチドエステルは、上記のライゲーシヨン法に 好適に使用することができる試薬であり、当該ペプチドフラグメントを合成ブロックとし て使用することによって所望のペプチドやタンパク質などを温和な条件で簡便に合 成することができる。
[0065] また本発明のチォエステルイ匕合物の製造方法によれば、ペプチドエステルをチォ 一ルイヒ合物と温和な条件で反応させることで簡単にチォエステルイヒ合物を製造取得 することができる。当該方法は、原料としてチォエステル骨格を有しないペプチドエス テルを用いる方法であるため、 Fmoc基除去処理によるチォエステル結合の分解や ラセミ化などの問題を生じることなぐチォエステルイ匕合物を収率よく安定して取得す ることがでさる。
[0066] 本発明が提供するチォエステル合成試薬は、カゝかるチォエステルイ匕合物の製造方 法に好適に使用することができる試薬であり、所望のチオールィ匕合物と反応させるこ とにより、温和な条件で簡便に所望のチォエステルイ匕合物を合成することができる。 発明の実施の形態
[0067] (1)ペプチドエステル試薬とそれを用いるライゲーシヨン法
本発明は、ライゲーシヨン部位にアミド結合 (ペプチド結合)を形成することにより所 望の分子 (化合物)同士を縮合していく化学的ライゲーシヨン法に関する。なお、本明 細書中、便宜上、縮合させる互いの分子を「第 1セグメント」および「第 2セグメント」と もいう。
[0068] 本発明は、天然のポリペプチド、タンパク質またはこれらの修飾体の化学合成、特 に複数のアミノ酸またはアミノ酸誘導体が結合したブロック同士のブロック合成に有効 に利用することができる。
[0069] 本願発明が対象とする上記のアミノ酸には、天然に存在するペプチドやタンパク質 を構成する 20種類のアミノ酸が含まれる。力かるアミノ酸としては、例えばグリシン (G1 y)、ァラニン (Ala)、ノ リン(Val)、ロイシン(Leu)、イソロイシン(lie)、メチォニン(Met) 、プロリン(Pro)、フエ-ルァラニン(Phe)、トリプトファン(Trp)、セリン(Ser)、トレオ- ン(Thr)、ァスパラギン (Asn)、グルタミン(Gin)、チロシン(Tyr)、システィン(Cys)、リ ジン(Lys)、アルギニン (Arg)、ヒスチジン(His)、ァスパラギン酸 (Asp)、およびグルタ ミン酸 (Glu)を挙げることができる。また上記アミノ酸には、タンパク質に見出される上 記一般的なアミノ酸以外のアミノ酸も含まれる。力かるアミノ酸としては、例えば、ヒドロ キシル化、アルキル化、リン酸化、ホルミル化、グリコシル化、またはァシル化された 側鎖を有するアミノ酸を挙げることができる。これらのアミノ酸には、具体的には 4ーヒ ドロキシプロリン、 3—メチルヒスチジン、 5—ヒドロキシリジン、 N—モノメチルグリシン、 O ホスホセリン、 O ホスホトレ才ニン、カルボキシグルタメート、ァセチルリジン、お よび N—メチルアルギニンが含まれる。また上記のアミノ酸誘導体としては生物学的 活性を有するアミノ酸誘導体を挙げることができ、例えば α—ァミノ酪酸、チロキシン 、シトルリン、オル-チン、ホモシスティン、 S アデノシルメチォニン、 13—シァノアラ ニン、およびァザセリンが含まれる。ペプチドやタンパク質を構成するアミノ酸は一般 的には L—アミノ酸であるが、本発明が対象とするアミノ酸はこれに限定されず、 D— アミノ酸であってもよい。
[0070] 本発明のライゲーシヨン法は、原料として下式(2)で示される第 1セグメント:
[0071] [化 18]
Figure imgf000015_0001
[0072] (式中、 Xはカルボキシル基と結合して X-COOHを形成し得る基; Cysはシスティン 残基、 Rは、カルボキシル基の OHが置換されたアミノ酸残基を有する基示す。 )
2
と、下式 (3)で示される第 2セグメント:
[0073] [化 19]
Ri \丫 (3)
R3
[0074] (式中、 Yは少なくとも炭素原子を 1つ以上含む基; Rは水素原子、少なくとも 1つの 炭素原子を含むチオール基を有する基、または少なくとも 1つの炭素原子を含むチ オール基を有しない基; Rは水素原子または少なくとも 2以上の連続した炭素原子を
3
含むチオール基を有する基を示す。但し、 Rと Rのいずれか一方はチオール基を有 する基である。 )
とを反応させて、縮合させることによって行うことができ、その結果
下式(1)で示されるライゲーシヨン生成物:
[0075] [化 20]
丫 (1)
Figure imgf000016_0001
[0076] (式中、 X、 Y、 Rおよび Rは上記と同じ。 )
1 3
を生成することができる。
[0077] このとき、 Rが少なくとも 2以上の連続した炭素原子を含むチオール基を有する基
3
である場合には、さらに当該基を除去する処理をすることにより、 Rが水素原子であ
3
るライゲーシヨン生成物(1)を取得することができる。
[0078] (1-1)第 1セグメント
上記反応において、原料として用いる第 1セグメント(2)は、分子内にシスティニル 基 (-Cys-)とその C-端側にアミノ酸残基を有する基 (-R )を有するペプチドエステル
2
である。
[0079] 当該第 1セグメント(2)において、 Rは、具体的には、力ノレボキシノレ基の OHが置
2
換されたアミノ酸残基を有する基である。力かるアミノ酸としては、具体的にはプロリン および置換基を有するグリシンを挙げることができる。置換基を有するグリシンの例と しては、制限されないが、例えば、アルキル基を有するグリシンであるザルコシン(N —モノメチルグリシン)を挙げることができる。好ましくはプロリンおよびザルコシンであ り、より好ましくはプロリンである。
[0080] 上記アミノ酸の— OHと置換される基(一 OH置換基)としては、—OH基に隣接する カルボニル基とともにエステル構造を形成する基を挙げることができる。制限されない 力 力かる一 OH置換基として具体的には、 OCH CONHを挙げることができる。
2 2
[0081] アミノ酸残基の OHの置換方法は、特に制限されないが、例えば OCH CON
2
Hへの置換としては、具体的には後述の調製例 1および 2に記載する方法を挙げる ことができる。この方法は、まず C-末端アミド結合を与えるリンカ一(例えば、 Rinkリン カー)をつけた固相担体 (例えばポリスチレン製の榭脂など)にグリコール酸を結合さ せ、次いでこれに Fmoc- R -OHあるいは Boc- R - OH (「R - OH」 はアミノ酸を意味
2 2 2
する)を結合することによって行われる(Fmoc-R -OCH CONH 榭脂の生成)。
2 2
[0082] 上記の操作に引き続いて、 Fmoc法に従って、 Fmoc- Xxx- Cys(Trt)、 Fmoc- Xxx、 · · • (Xxxは同一または異なる任意のアミノ酸またはその誘導体を意味する。以下同じ) を順次結合させる力、または Boc法に従って、 Boc-Cys(4- MeBzl)、 Boc-Xxx、 Boc-Xx x、 Boc- Xxx、 · · ·を順次結合させることにより、 Fmoc- (Xxx) n-Cys(Trt)-R -OCH CO
2 2
NH—榭脂 (nはアミノ酸またはアミノ酸誘導体の数を示す。以下、同じ)、または Boc- (Xxx) n-Cys(4-MeBzl)-R -OCH CONH 榭脂を調製することができる。次いで、必
2 2
要に応じて、アミノ酸保護基 (Fmoc基、 Boc基)の除去、または榭脂からの脱離を行つ てもよい。これらの方法は定法に従って行うことができる。以上の一連の製造工程を、 「R -OH」としてプロリン(Pro)を用いた Fmoc法を例として図 1に示す。
2
[0083] なお、アミノ酸の OHの置換方法は、上記方法に限定されることない。例えば、 F moc-Pro-OHとブロモ酢酸 tertブチルエステルを反応させ、 tertブチル基を除去する ことによって Fmoc-Pro-OCH COOHを得ることができ、当該アミノ酸のカルボキシル
2
基の― OHに置換基を導入する方法を用いることもできる。
[0084] Rとしては、前述する、例えば- R -OCH CONH (例:- Pro- OCH CONH、 - Sar-
2 2 2 2 2 2
OCH CONHなど)などのように、カルボキシル基の OHが置換されたアミノ酸残基
2 2
を挙げることができるが、これに限定されず、上記アミノ酸残基を有する基であればよ い。力かる基としては、上記のアミノ酸に OH置換基を介して任意の基が結合して なるもの(「- R '-OH置換基- Z」、 Zは任意の基を意味する)を挙げることができる。こ
2
こで、アミノ酸に— OH置換基を介して結合する基は任意であり、特に制限されない 力 実施例 5に示すように、アミノ酸残基を始め、 2以上のアミノ酸残基力 なるぺプチ ド (オリゴペプチド、ポリペプチドを含む)やタンパク質またはこれらの誘導体が含まれ る。
[0085] なお、 Rは修飾されて 、てもよ 、。修飾の態様は特に制限されな 、が、 R力 直接
2 2 または間接的 (任意のリンカ一を介して)に、固相に固定化されてなる態様を挙げるこ とがでさる。
[0086] 固相としては、特に制限されな!、が、例えば-トロセルロース、ァガロースビーズ、 修飾セルロース繊維、ポリプロピレン、ポリエチレングリコール、ポリスチレン榭脂また はポリアクリルアミド榭脂などの合成樹脂に、チオール基、アミノ基、カルボキシル基、 水酸基またはハロゲンなどを導入したものを挙げることができる。
[0087] 第 1セグメント(2)およびライゲーシヨン生成物(1)にお 、て、 Xはカルボキシル基 (- COOH基)と結合して X—COOHを形成することができる基である。この限りにおいて 特に制限されないが、例えば、 X—COOHの例として、修飾されていてもよい、ァミノ 酸、 2以上のアミノ酸残基力 なるペプチド (オリゴペプチド、ポリペプチドを含む)若し くはタンパク質、またはこれらの誘導体;抗体;標識剤;リンカ一;金属インディケータ 一などを含む金属キレーター;ケージィ匕合物などを挙げることができる。なお、ここで 標識剤としては、色素化合物、または安定若しくは放射性同位体を含む化合物を挙 げることができる。 X—COOHを形成することのできる色素化合物としては、 FITC, A1 exa, Bodipy, Eosinなどの一般的な蛍光色素を例示することができる。
[0088] X— COOHの例として好ましくは、アミノ酸、 2以上のアミノ酸残基力もなるペプチド
(オリゴペプチド、ポリペプチドを含む)、またはこれらの誘導体である。なお、制限は されないが、ペプチドの構成アミノ酸数としては 2〜: L00程度を挙げることができる。
[0089] X— COOH力 例えばアミノ酸、 2以上のアミノ酸残基力もなるペプチド(オリゴぺプ チド、ポリペプチドを含む)若しくはタンパク質、これらの誘導体、または抗体の場合、 Xは修飾されていてもよい。修飾の態様は特に制限されないが、例えば、 Xの一部が 任意の基 (例えば、慣用のアミノ酸の保護基、リン酸基、ヒドロキシル基、アルキル基、 ホルミル基、ァシル基、糖鎖、脂肪酸など)で置換されている態様、蛍光色素や同位 体などの標識剤で修飾されている態様を挙げることができる。
[0090] 第 1セグメントとして好ましくは、 Xがカルボキシル基とともにアミノ酸を形成する基( 即ち、 X— COOHがアミノ酸である場合)である力、または Xがカルボキシル基ととも に 2以上のアミノ酸残基力もなるペプチド (オリゴペプチド、ポリペプチドを含む)を形 成する基 (即ち、 X—COOHがペプチドである場合)である態様を挙げることができる 。上記 Xの一部がアミノ酸の保護基で置換されて 、てもよ!/、。 [0091] ここでアミノ酸の保護基としては、従来公知の保護基を広く挙げることができる。具 体的には、 9 フルォレ -ルメトキシカルボ-ル基(Fmoc基)、ベンジルォキシカルボ -ル基(Z基)、 p—メトキシベンジルォキシカルボ-ル基(Z(OMe)基)、 2—クロ口ベン ジルォキシカルボ-ル基(Z(C1)基)、 p -トロベンジルォキシカルボ-ル(Z(NO )基
2
;)、 p—フエ-ルァゾベンジルォキシカルボ-ル(Pz基)、 t—ブトキシカルボ-ル(Boc 基)、 tーァミルォキシカルボ-ル基(Aoc基)、 Alloc基、 Bismoc基、 Msc基、 Nvoc基、 p ービフエ-ルイソプロピルォキシカルボ-ル基(Bpoc基)、ジイソプロピルメチルォキシ カルボ-ル基(Dipmoc基)、シクロペンチルォキシカルボ-ル基(Poc基)、フオルミル 基、トリフルォロアセチル基(Tfa基)、フタリル基(Pht基)、トシル基(Tos基)、 o -ト 口フエ-ルスルフエ-ル基(Nps基)、ァセチル基、ベンゾィル基、トリチル基(Trt基)、 ジニトロフエ-ル基(Dnp基)などのァミノ保護基; NO、 Tos基、 Bzl基、 Bzl(Me)基、 Bzl
2
(Me )基、 Bzl(OMe)基、 Bzl(NO )基、 Z基、 Boc基、 Dnp基、 Dipmoc基、 Bom基、 tBu基
3 2
、 Acm基、 tBuS基、 cHex基、 Ally基、 Fm基、メチレン基、 Pac基、 Trt基、シリル基、 Npe 基、 CNB基、 Dmnb基などの各種の側鎖官能保護基を挙げることができる。
[0092] また Xの標識剤としては、アミノ酸、ペプチド、タンパク質または抗体を標識すること のできる従来公知の標識剤を広く挙げることができる。具体的には、色素(例えば蛍 光色素、化学発光色素など)、安定または放射性同位体を含む化合物、金属インデ ィケーターを含む金属キレーターなどを挙げることができる。なお、色素として FiTC、
Alexa、 Bodipyまたは Eosinなどの一般的な蛍光色素を例示することができる。
[0093] 第 1セグメントの好適な例として、式(2)中、 -Cysで示されるシステュル基に隣接し たアミノ酸残基の— OH基が— OCH CONHで置換された 3以上のアミノ酸残基か
2 2
らなるペプチドエステルを挙げることができる。また、他の例として、式(2)中、 - Cysで 示されるシステュル基に隣接したアミノ酸残基の OH基が OCH CONH で置
2
換され、さらに当該基にアミノ酸、または 2以上のアミノ酸残基からなるペプチド鎖が 結合してなるペプチドエステルを挙げることができる。なお、ここで一 OCH CONH
2 一に結合するアミノ酸残基の数としては、制限されないが、 1〜50程度を挙げること ができる。システニル基に隣接するアミノ酸残基としては、前述するように、プロリル基 、グリシル基、置換基を有するグリシル基 (例えば、ザルコシル基)を挙げることができ る。好ましくはプロリル基およびザルコシル基である。なお、当該ペプチドエステルは 、N末端のアミノ酸残基のァミノ基がアミノ保護基 (例えば 9—フルォレニルメトキシカ ルポ-ル基(Fmoc基))で保護されていてもよい。また、ペプチドエステルを構成する 各アミノ酸は修飾されたものであってもよ!、。
[0094] 当該ペプチドエステルは、その C末端が、任意の固相担体の表面に、直接または 間接的(リンカ一を介して)に結合して固定ィ匕されて 、てもよ 、。
[0095] 力かるペプチドエステル力 なる第 1セグメントは、例えば固相合成法によって調製 することができる。例えば、図 1に示すように、表面に C末端アミド結合などを与えるリ ンカー(図中、「X」で示す)(例えば、 Rinkリンカ一など)を有する固相担体 (例えばポ リスチレン製の榭脂など)に、グリコール酸(HOCH COOH)を結合させた後に、 Fmoc
2
法に従つ飞、 Fmoc— Pro、 Fmoc— Xxx—し ys(Trt)、 Fmoc— Xxx、 · · · (Xxxi 、同一また ί 異なるアミノ酸またはその誘導体を意味する)を順次結合させることによって調製する ことができる。斯くして得られる、例えば Fmoc- (Xxx) n-Cys(Trt)-R '- OCH CONH-榭
2 2 脂は、その後、 TFA等を用いた通常の切り出し操作に供され、ペプチドエステル (Fm oc- (Xxx) n- Cys- R -OCH CONH )を取得することができる。次いで、必要に応じて
2 2 2
HPLCなどによる一般的な精製操作によって精製を行ってもよい。なお、図 1に示した 上記「Fmoc- (Xxx) n- Cys(Trt)- R -OCH CONH-榭脂」中、 Trt (トリフエ-ルメチル基
2 2
)は、 SH基の保護基の例示であって、これに限定されるものではない。 Trt基に代え て、他の SH基保護基、たとえば、 4-MeBzl基、 4-MeOBzl基や Acm基などを用いるこ とちでさる。
[0096] 斯くして得られるペプチドエステル(Fmoc- (Xxx) n- Cys- R -OCH CONH )を第 1セ
2 2 2 グメントとしてライゲーシヨン反応に用いることができる。なお、 Fmoc基については、ラ ィゲーシヨン反応に際して除去の有無を問わないが、必要に応じて、定法に従って除 去してちょい。
[0097] (1-2)第 2セグメント
上記第 1セグメントと反応させる第 2セグメントとしては下式(3)で示されるアミノチォ 一ルイ匕合物を挙げることができる。
[0098] [化 21]
Figure imgf000021_0001
[0099] 第 2セグメント(3)において、 R基と R基はどちら力 1方がチオール基(一 SH)を有
1 3
する基である。その限りにおいて特に制限されないが、 R基のチオール基を有する 基としては、炭素数 1〜3のアルキレンチオール基またはその誘導体などの、少なくと も 1つの炭素原子を含むチオール基を有する基を挙げることができる。好ましくはメチ レンチオール基、エチレンチオール基である。また、 R基は、 R基がチオール基を有
1 3
する基である場合は、水素原子または少なくとも 1つの炭素原子を含むチオール基を 有しな 、基であることもできる。
[0100] また、 R基としては少なくとも 2以上の連続した炭素原子を含むチオール基を有す
3
る基を挙げることができる。具体的には、置換基を有していてもよい炭素数 2〜3のァ ルキレンチオール基〔- (CH )n-SH、 nは 2または 3〕、置換基を有していてもよい炭素
2
数 2〜3のォキシアルキレンチオール基〔-0- (CH )n-SH、 nは 2または 3〕、置換基を
2
有していてもよいメルカプトベンジル基〔- CH -Ph-SH〕、およびこれらの誘導体を挙
2
げることができる。ここで置換基は特に制限されないが、例えばアルキレンチオール 基が有する置換基としては、置換基を有して 、てもよ 、フエ-ル基を挙げることができ る。
[0101] また、 R基は、 R基がチオール基を有する基である場合は、水素原子であることも
3 1
できる。
[0102] R基として、好ましくは水素原子 (但し、 R基がチオール基を有する基である場合)
3 1
、エチレンチオール基、プロピレンチオール基、ォキシエチレンチオール基、並びに 下式 (a)または (b)で示す基である。
[0103] [化 22]
Figure imgf000022_0001
[0104] (式中、 は水素原子または任意の置換基である)
[0105] [化 23]
Figure imgf000022_0002
[0106] (式中、 Rは水素原子または任意の置換基である)
8
R基と R基の組合せとして好ましくは、 R基カ チレンチオール基であって、 R基
1 3 1 3 が水素原子である組合せ; R基がチオール基を有しない基であって、 R基が置換基
1 3
を有しても良 、エチレンチオール基、置換基を有しても良 、プロピレンチオール基、 ォキシエチレンチオール基、上記式 (a)で示される基、または上記式 (b)で示される 基の組合せを例示することができる。
[0107] 第 2セグメント(3)およびライゲーシヨン生成物(1)において、 Yは水素原子または 少なくとも炭素原子を 1つ以上含む基である。この限りにおいて特に制限されないが 、例えば、少なくとも炭素原子を 1つ以上含む基の例として、カルボキシル基、アミド 基、ァミノ基がカルボ-ル基 (-CO基)と結合してなるアミノ酸、 N末端のアミノ酸のアミ ノ基がカルボニル基 (-CO基)と結合してなる 2以上のアミノ酸残基力 なるペプチド( オリゴペプチド、ポリペプチドを含む)またはタンパク質を挙げることができる。なお、 力かるアミノ酸、ペプチドまたはタンパク質は、 C末端がアミド化されていてもよい。
[0108] また、 Yは、少なくとも炭素原子を 1つ以上含む基であれば、抗体、標識剤 (蛍光色 素等の色素、安定または放射性同位体を含む化合物)、リンカ一、金属インディケ一 ターなどを含む金属キレーター、ケージィ匕合物であることもできる。
[0109] Y力 例えばァミノ基がカルボニル基 (-CO基)と結合してなるアミノ酸、 N末端側の アミノ酸のァミノ基がカルボ-ル基 (-CO基)と結合してなる 2以上のアミノ酸残基から なるペプチド (オリゴペプチド、ポリペプチドを含む)若しくはタンパク質、または抗体 などの場合、当該 Yは修飾されていてもよい。修飾の態様は特に制限されないが、例 えば、 Yの一部が任意の基 (例えば、慣用のアミノ酸の保護基、ヒドロキシル基、アル キル基、リン酸基、ホルミル基、ァシル基、糖鎖、脂肪酸残基など)で置換されている 態様、蛍光色素等の色素や安定若しくは放射性同位体などの標識剤で修飾されて いる態様、または Yが固相に固定ィ匕されてなる態様を挙げることができる。
[0110] 好適な Yの態様として、ァミノ基がカルボニル基と結合してなるアミノ酸、または N末 端側のアミノ酸のァミノ基がカルボニル基と結合してなる 2以上のアミノ酸残基力もな るペプチド (オリゴペプチド、ポリペプチドを含む)を挙げることができる。当該アミノ酸 またはペプチドは、 C末端がアミド化されてなるもの、 Yの一部がアミノ酸の保護基で 置換されてなるもの、または任意の固相担体に固定ィ匕されてなるものであってもよい
[0111] ここでアミノ酸の保護基としては、従来公知の保護基を広く挙げることができる。具 体的には、メトキシ基 (OMe基)、エトキシ基 (OEt基)、ベンジルォキシ基 (OBzl基)、 p -トロベンジルォキシ基 (OBzKNO )基)、 t—ブトキシ基 (OBu基)、アミド基 (NH
2 2 基)、ヒドラジノ基(N H基)、 Boc-ヒドラジノ基(N H Boc基)、 Z-ヒドラジノ基(N H Z基)
2 3 2 2 2 2
、フエナシル(Pac)基、ァリル (All)基などのカルボキシ保護基; NO
2、 Tos基、 Bzl基、
Bzl(〇Me)基、 BzKNO )基、 Z基、 Boc基、 Dnp基、 Dipmoc基、 Fmoc基、 Acm基、 tBuS
2
基、 Bzl(Me)基などの各種の側鎖官能保護基を挙げることができる。
[0112] Yの標識剤としては、従来公知のアミノ酸、ペプチド、タンパク質または抗体を標識 することのできるものであればよぐ例えば色素(例えば蛍光色素、化学発光色素)、 具体的には、 FITC, Alexa, Bodipy, Eosinなどの蛍光色素、ピオチンなどの親和基, 安定および放射性同位体、クラウンエーテルを含む金属インディケ一ターなどを含む 金属キレーターなどを例示することができる。
[0113] 固相担体としては、特に制限されないが、例えば-トロセルロース、ァガロースビー ズ、修飾セルロース繊維、ポリプロピレン榭脂、ポリスチレン榭脂、ポリエチレングリコ ール榭脂、ポリアクリルアミド榭脂などの合成樹脂や基板などにチオール基、アミノ基 、水酸基,ハロゲンなどを導入したものなどを挙げることができる。なお、第 2セグメン トの固相への固定ィ匕は、公知の方法を用いて行うことができる。例えば、 Yがァミノ基 がカルボニル基と結合してなるアミノ酸、 N末端側のアミノ酸のァミノ基がカルボニル 基と結合してなる 2以上のアミノ酸残基力 なるペプチド (オリゴペプチド、ポリべプチ ドを含む)またはタンパク質である場合は、その C末端側のカルボニル基と、アミノ基 または水酸基を導入した合成樹脂や基板などの当該基との間で、 CO— NH (アミド) 結合または CO— O— (エステル)結合を形成させることで固定ィ匕することができる。
[0114] 第 2セグメント(3)として、より好適には、下式で示すように、 N末端側にシスティン残 基を有する 2以上のアミノ酸残基力もなるペプチド (a)、あるいは N末端のアミノ基上 にチオール補助基 (例えば、アルキレンチオール基、ォキシアルキレンチオール基、 メルカプトべンジル基など)を有する 2以上のアミノ酸残基力もなるペプチド (b〜d)を 挙げることができる。
[0115] [化 24]
HS、 peptide
Hク N
Figure imgf000024_0001
0
peptide
Figure imgf000024_0002
subsutuent
[0116] (式中、 nは 1以上の整数を意味する)
また、これらのチオール補助基(アルキレンチオール基、ォキシアルキレンチオール 基、メルカプトべンジル基)は置換基を有していてもよぐ例えば N末端のアミノ基上 に、置換基を有するアルキレンチオール基を有する 2以上のアミノ酸残基力 なるぺ プチドとしては、下式で示されるものを挙げることができる。
[0117] [化 25]
Figure imgf000025_0001
[0118] なお、これらのペプチドを構成するアミノ酸は修飾されたものであってもよい。
[0119] これらのペプチド (第 2セグメント)は、固相合成法など一般的なペプチド合成法や, また,組換え蛋白質を製造する手法に従って作成することができる。
[0120] (1-3)ライゲーシヨン生成物の製造 (ライゲーシヨン法)
本発明においてライゲーシヨンは、上記第 1セグメントと第 2セグメントとを溶液中で 混合すること〖こよって行うことができる。
[0121] 溶液としては、第 1セグメントと第 2セグメントとが溶解する溶液であれば特に制限さ れず、例えば、水、低級アルコール、フッ素化アルコール、多価アルコールまたはそ の他の極性溶媒、並びに非極性溶媒を用いることができる。具体的には、低級アルコ ールとしては、メタノール、エタノール、プロパノール及びイソプロピルアルコール、ブ タノール等の炭素数 1〜6のアルコール;フッ素化アルコールとしては、トリフルォロェ タノール、へキサフルォロイソプロピルアルコール等;多価アルコールとしては、グリセ リン、 1,3-ブチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエ チレングリコール等;上記以外の極性溶媒としては、アセトンゃェチルケトンなどのケ トン類;酢酸ェチル,酢酸メチルまたは酢酸ブチルなどのエステル類;テトラヒドロフラ ン,ェチルエーテルやプロピルエーテル等のエーテル類;ァセトニトリル、ジメチルホ ルムアミド、ジメチルスルホキシド, N—メチルピロリドン等を挙げることができる。非極 性溶媒としては、トルエン等を挙げることができる。
[0122] これらの溶媒は、単独で用いてもよぐまた二種以上を組み合わせて使用することも できる。二種以上の組合わせ例としては、低級アルコール、多価アルコールまたはそ れ以外の極性溶媒と水との組合わせを挙げることができる。好ましくは、水、低級アル コール (好ましくはエタノール)、ァセトニトリル、または水と低級アルコールとの混合液 (含水アルコール、好ましくは含水エタノール)、水とァセトニトリルなどとの混合液を 挙げることができる。 [0123] これらの溶液の pHは特に制限されず、通常 pH2〜 10の範囲であればよい。緩衝 剤などによって中性付近に調整されていることが好ましぐその pH領域としては好ま し <は pH6〜9、より好まし <は pH7〜8.5である o
[0124] 反応温度も特に制限されないが、通常 0〜: LOO°Cの範囲で行うことができる。好まし くは 10〜60°C、より好ましくは 20〜40°Cである。なお、酸素を除去した条件下で反 応を行うことが望ましい。また、反応に際して、 P(CH CH CH OH)や P(CH CH COO
2 2 2 3 2 2
H)などのホスフィンゃチオフェノール, 4-トリメチルシリルチオフエノール, 2-メルカプ
3
トエタンスルホン酸や 3-メルカプトプロピオン酸ェチルなどのチオール類、グァニジン 、尿素、脂質や界面活性剤などを共存させても良い。反応時間も特に制限されない が、通常 2〜72時間を挙げることができる。なお、反応に際して、溶液を攪拌または 振還してちょい。
[0125] 上記条件で、第 1セグメントと第 2セグメントとを共存状態に置くことにより、一般式 (2 )で示される第 1セグメントのカルボニル基と一般式(3)で示される第 2セグメントのアミ ノ基またはイミノ基とがアミド結合することによって、下式で示されるライゲーシヨン生 成物(1)が生成する。
[0126] [化 26]
Figure imgf000026_0001
( 1 )
[0127] (式中、 X、 Y、 Rおよび Rは前述の通り。 )
1 3
なお、ここで R 1S 2以上の連続した炭素原子を含みチオール基を有する基 (例え
3
ば、置換基を有していてもよい、アルキレンチオール基、ォキシアルキレンチオール 基、メルカプトべンジル基など)である場合、次いで、 Rの除去処理を行うことにより、
3
下式で示されるライゲーシヨン生成物 (1 ')を得ることができる。
[0128] [化 27]
Figure imgf000027_0001
[0129] (式中、 X、 Yおよび は前述の説明の通りである。 )
なお、 Rを除去する方法としては、例えば UV照射法、酸処理法、亜鉛処理法を挙
3
げることができ、 Rの種類に応じて適宜選択することができる。
3
[0130] 前述するように、本発明のライゲーシヨン法は、上記第 1セグメント (ペプチドエステ ル)(2)と第 2セグメント(アミノチオールィ匕合物)(3)とを、上記のような比較的温和な 条件に置くことによって実施することができ、斯くして分子反応により第 1セグメントと 第 2セグメントとの間に自動的にアミド結合が形成されてライゲーシヨンが生じるもので ある。
[0131] 拘束されないが、本発明におけるライゲーシヨン反応の原理としては、第 1セグメント
(ペプチドエステル) (2)が、上記条件下で自然に速やかに分子内反応を起こしてチ ォエステルに変換され、これが第 2セグメント(チオールィ匕合物)(3)のチオール基と チオール交換し、次いで S力も Nへのァシル基転位反応を経て、アミド (ペプチド)結 合を形成するものと推測される。この一連の反応は、反応条件を変えることなぐまた 新たな操作を施すことなぐ同一の反応系の中で自動的に生じる。
[0132] ペプチドやタンパク質などのアミド結合を有する生体高分子を合成あるいは修飾す るうえで、温和な条件でアミド結合を形成させる方法は極めて重要である。ゆえに、上 記するように温和な条件下で実施することができる本発明の方法は、アミノ酸、ぺプ チドまたはタンパク質などをお互いにライゲーシヨンする方法として有用である。
[0133] 本発明のライゲーシヨン法を用いてペプチド同士をライゲーシヨンする場合、すなわ ち本発明のライゲーシヨン法を用いてポリペプチドまたはタンパク質をブロック合成す る場合の反応例を、図 2に示す。
[0134] 図 2において、上段および下段の反応とも、第 1セグメントは、 C-末端側に、プロリン のカルボキシル基の OHがー ORで置換されてなるシステュル-プロリンを有するぺ プチドエステルである。 ORとして好適には一 OCH CONHを挙げることができる
2 2
。上段の反応において、第 2セグメントは、 N-末端に酸ィ匕されていないスルフヒドリル (suklhydryl)側鎖を有するシスティン残基を有するペプチドである。
[0135] 下段の反応にぉ 、て、第 2セグメントは、 N末端のアミノ基上にチオール補助基を有 するペプチドである。なお、図中、「peptide 1」に隣接するカルボ-ル基は、正確には 「peptide 1」のカルボキシル基に由来する基である。 Rは前述の通りである。また、図 中、 A— SH基は前述する R基に相当し、少なくとも 2以上の連続した炭素原子を含
3
むチオール基を有する基である。
[0136] 斯くして得られるライゲーシヨン生成物(1)は、最終的に高速液体クロマトグラフィー などを用いて精製することによって高純度のものとして取得することができる。また、ラ ィゲーシヨン生成物(1)が、例えばその N末端が Fmoc基などで保護された状態で得 られる場合、その後、必要に応じて定法に従って除去することもできる。
[0137] (1-4)ライゲーシヨン用試薬
本発明はまた上記ライゲーシヨンに好適に使用することができる試薬を提供する。
[0138] (i)ライゲーシヨン用ペプチドフラグメント(2)
本発明のライゲーシヨン用試薬として、上記第 1セグメントに相当する下式 (2)で示 されるライゲーシヨン用ペプチドフラグメントを挙げることができる。
[0139] [化 28]
Figure imgf000028_0001
[0140] 当該ペプチドプラグメント(2)中、 Cysはシスティン残基であり、 Rはカルボキシル
2
基の一 OHが置換されたアミノ酸残基を有する基である。力かるアミノ酸としては、具 体的にはプロリンおよび置換基を有するグリシンを挙げることができる。置換基を有す るグリシンの例としては、制限されないが、例えばアルキル基を有するグリシン、好ま しくはザルコシン (N-モノメチルグリシン)を挙げることができる。好ましくはプロリンお よびザルコシンであり、より好ましくはプロリンである。
[0141] 上記アミノ酸の— OHと置換される基(一 OH置換基)としては、—OH基に隣接する カルボニル基とともにエステル構造を形成する基を挙げることができる。制限されない 力 力かる一 OH置換基としては、具体的に一 OCH CONHを挙げることができる。 なお、アミノ酸の— OH基の置換方法は前述する通りである。
[0142] なお、 Rは修飾されて 、てもよ 、。修飾の態様は特に制限されな 、が、好ましくは R
2
1S 直接または間接的 (任意のリンカ一を介して)に、固相担体に固定化されてなる
2
態様を挙げることができる。固相担体としては、特に制限されないが、例えば-トロセ ルロース、ァガロースビーズ、修飾セルロース繊維、ポリプロピレン榭脂、ポリスチレン 榭脂、ポリエチレングリコール榭脂、ポリアクリルアミド榭脂などの合成樹脂などに、チ オール基、アミノ基、カルボキシル基、水酸基,ハロゲンなどを導入したものなどを挙 げることができる。
[0143] 上記ペプチドフラグメント(2)にお!/、て、 Xはカルボキシル基(-COOH)と結合して X — COOHを形成することができる基である。力かる X— COOHの例として、特に制限 されないが、修飾されていてもよい、アミノ酸、 2以上のアミノ酸残基からなるペプチド (オリゴペプチド、ポリペプチドを含む)若しくはタンパク質、またはこれらの誘導体を 挙げることができる。好ましくは修飾されていてもよい、アミノ酸、 2以上のアミノ酸残基 力もなるペプチド (オリゴペプチド、ポリペプチドを含む)、またはこれらの誘導体であ る。なお、制限されないが、ペプチドの構成アミノ酸数としては、 2〜: LOO程度を挙げ ることがでさる。
[0144] 修飾の態様は特に制限されな 、が、例えば、 Xの一部が任意の基 (例えば、慣用の アミノ酸の保護基、ヒドロキシル基、アルキル基、リン酸基、ホルミル基、ァシル基、糖 鎖、脂肪酸残基など)で置換されている態様、蛍光色素等の色素または安定若しくは 放射性同位体などの標識剤で修飾されている態様などを挙げることができる。
[0145] Xの一部が任意の基で置換されている態様の例として、 Xを構成する N末端のァミノ 酸のアミノ基が保護基を有して 、る態様を挙げることができる。この保護基としては、 アミノ基保護基として公知のものをいずれも使用することができる。例えば、 9 フル ォレニルメトキシカルボ-ル基(Fmoc基)、ベンジルォキシカルボ-ル基(Z基)、 p— メトキシベンジルォキシカルボ-ル基(Z(OMe)基)、 2—クロ口べンジルォキシカルボ -ル基(Z(C1)基)、 p -トロべンジルォキシカルボ-ル(Z(NO )基)、 p フエ-ルァ
2
ゾベンジルォキシカルボ-ル(Pz基)、 t—ブトキシカルボ-ル(Boc基)、 t—アミルォ キシカルボ-ル基(Aoc基)、 Alloc基、 Bismoc基、 Msc基、 Nvoc基、 p ビフエニルイソ プロピルォキシカルボ-ル基(Bpoc基)、ジイソプロピルメチルォキシカルボ-ル基(D ipmoc基)、シクロペンチルォキシカルボ-ル基(Poc基)、フオルミル基、トリフルォロア セチル基(Tfa基)、フタリル基(Pht基)、トシル基(Tos基)、 o -トロフ -ルスルフエ -ル基(Nps基)、ァセチル基、ベンゾィル基、トリチル基(Trt基)、ジニトロフ -ル基 (Dnp基)などのァミノ保護基を挙げることができる。好ましくは Boc基および Fmoc基 であり、より好ましくは Fmoc基である。
[0146] また Xの標識剤としては、アミノ酸やペプチドを標識することのできる従来公知の標 識剤を広く挙げることができる。具体的には、色素 (例えば蛍光色素、化学発光色素 など)、安定または放射性同位体を含む化合物、金属インディケ一ターを含む金属キ レーターなどを挙げることができる。なお、色素として FITC、 Alexa、 Bodipyまたは Eosi nなどの一般的な蛍光色素を例示することができる。
[0147] ライゲーシヨン用ペプチドプラグメント(2)として、より好適には、式(2)中、 - Cysで示 されるシステュル基に隣接したアミノ酸残基の OH基が OCH CONHで置換さ
2 2 れた 3以上のアミノ酸残基力もなるペプチドエステルを挙げることができる。また他の 好適な例として、式(2)中、 -Cysで示されるシステニル基に隣接したアミノ酸残基の —OH基が OCH CONH で置換され、さらに当該基に、アミノ酸、若しくは 2以
2
上のアミノ酸残基力 なるペプチド鎖が結合してなるペプチドエステルを挙げることが できる。ここで一 OCH CONH—に結合するアミノ酸残基の数としては制限されない
2
力 1〜50程度を挙げることができる。システニル基に隣接したアミノ酸残基としては 、前述するように、プロリル基、グリシル基、置換基を有するグリシル基 (例えば、ザル コシン基)を挙げることができる。好ましくはプロリル基およびザルコシル基であり、より 好ましくはプロリル基である。なお、当該ペプチドエステルは、 N末端のアミノ酸残基 のァミノ基がアミノ保護基 (例えば、 9—フルォレニルメトキシカルボニル基 (Fmoc基) など)で保護されていてもよい。また、ペプチドエステルを構成する各アミノ酸は修飾 されたものであってもよ 、。
[0148] また、ライゲーシヨン用ペプチドフラグメント(2)は、上記ペプチドエステルの C末端 力 直接または間接的(リンカ一を介して)に、任意の固相担体の表面に結合してな るものであってもよい。力かる固相担体としては、上記 (1-2)に記載される、例えば-ト ロセルロース、ァガロースビーズ、修飾セルロース繊維、ポリプロピレン榭脂、ポリスチ レン榭脂、ポリエチレングリコール榭脂、ポリアクリルアミド榭脂などの合成樹脂や基 板を挙げることができる。好ましくはポリスチレン榭脂、ポリエチレングリコール榭脂、 ポリアクリルアミド榭脂などの合成樹脂である。
[0149] 力かるライゲーシヨン用ペプチドフラグメント(2)は、上記 (1-1)に記載する方法で調 製することができる(図 1参照)。
[0150] (ii)ライゲーシヨン用アミノチオールィ匕合物(3)
また本発明のライゲーシヨン用試薬として、上記第 2セグメントに相当する下式 (3) で示されるライゲーシヨン用アミノチオールィ匕合物を挙げることができる。
[0151] [化 29]
Figure imgf000031_0001
γ (3)
[0152] ライゲーシヨン用アミノチオールィ匕合物(3)において、 R基と R基はどちら力 1方が
1 3
チオール基(一 SH)を有する基である。その限りにおいて特に制限されないが、 R基 のチオール基を有する基としては、炭素数 1〜3のアルキレンチオール基およびその 誘導体などの、少なくとも 1つの炭素原子を含む基を挙げることができる。好ましくはメ チレンチオール基、エチレンチオール基である。また、 R基は、 R基がチオール基を
1 3
有する基である場合は、水素原子または少なくとも 1つの炭素原子を含むチオール 基を有しな 、基であることもできる。
[0153] また、 R基としては少なくとも 2以上の連続した炭素原子を含むチオール基を有す
3
る基を挙げることができる。具体的には、置換基を有していてもよい炭素数 2〜3のァ ルキレンチオール基〔- (CH )n-SH、 nが 2または 3〕、置換基を有していてもよい炭素数
2
2〜3のォキシアルキレンチオール基〔-0- (CH )n-SH、 nが 2または 3〕、置換基を有し
2
ていてもよいメルカプトベンジル基〔- CH - Ph-SH〕、およびこれらの誘導体を挙げるこ
2
とができる。ここで置換基は特に制限されないが、例えばアルキレンチオール基が有 する置換基としては、置換基を有していてもよいフエ二ル基を挙げることができる。ま た、 R基は、 R基がチオール基を有する基である場合には、水素原子であることもで
3 1
きる。
[0154] R基として、好ましくは水素原子 (但し、 R基がチオール基を有する基である場合)
3 1
、エチレンチオール基、プロピレンチオール基、ォキシエチレンチオール基、並びに 下式 (a)または (b)で示す基である。
[0155] [化 30]
Figure imgf000032_0001
[0156] (式中、 Rは水素原子または任意の置換基である)
[0157] [化 31]
Figure imgf000032_0002
[0158] (式中、 Rは水素原子または任意の置換基である)
8
R基と R基の組合せとして好ましくは、 R基カ チレンチオール基であって、 R基
1 3 1 3 が水素原子である組合せ; R基がチオール基を有しない基であって、 R基がェチレ
1 3 ンチオール基、プロピレンチオール基、ォキシエチレンチオール基、上記式(a)で示 される基、または式 (b)で示される基の組合せを例示することができる。
[0159] ライゲーシヨン用アミノチオールィ匕合物(3)において、 Yは、 N末端のァミノ基がカル ボニル基と結合してなるアミノ酸、 N末端側のアミノ酸のァミノ基がカルボ-ル基と結 合してなる 2以上のアミノ酸残基力 なるペプチド (オリゴペプチド、ポリペプチドを含 む)またはタンパク質を挙げることができる。なお、力かるアミノ酸、ペプチドまたはタン パク質は、 C末端がアミドィ匕されていてもよい。
[0160] なお、これらの Yは、修飾されていてもよい。修飾の態様は特に制限されないが、例 えば、 Yの一部が任意の基 (例えば、アミノ酸の保護基、ヒドロキシル基、アルキル基 、リン酸基、ホルミル基、ァシル基、糖鎖、脂肪酸残基など)で置換されている態様、 蛍光色素等の色素や安定若しくは放射性同位体などの標識剤で修飾されている態 様、または Yが固相担体に固定ィ匕されてなる態様を挙げることができる。 Yの一部が アミノ酸の保護基で置換されてなる態様、または Yが任意の固相担体に固定化され てなる態様を挙げることがでさる。
[0161] ここでアミノ酸の保護基としては、従来公知の保護基を広く挙げることができる。具 体的には、メトキシ基 (OMe基)、エトキシ基 (OEt基)、ベンジルォキシ基 (OBzl基)、 p -トロベンジルォキシ基 (OBzKNO )基)、 t—ブトキシ基 (OBu基)、アミド基 (NH
2 2 基)、ヒドラジノ基(N H基)、 Boc-ヒドラジノ基(N H Boc基)、 Z-ヒドラジノ基(N H Z基)
2 3 2 2 2 2
、フエナシル(Pac)基、ァリル (All)基などのカルボキシ保護基; NO
2、 Tos基、 Bzl基、
Bzl(〇Me)基、 BzKNO )基、 Z基、 Boc基、 Dnp基、 Dipmoc基、 Fmoc基、 Acm基、 tBuS
2
基、 Bzl(Me)基などの各種側鎖官能保護基を挙げることができる。
[0162] Yの標識剤としては、従来公知のアミノ酸、ペプチドまたは抗体を標識することので きるものであればよぐ例えば色素(例えば蛍光色素、化学発光色素)、具体的には、 FITC, Alexa, Bodipy, Eosinなどの蛍光色素、ピオチンなどの親和基,安定および放 射性同位体、クラウンエーテルを含む金属インディケ一ターなどを含む金属キレータ 一などを例示することができる。
[0163] 固相担体としては、特に制限されないが、例えば上記 (1-2)に記載される、ニトロセ ルロース、ァガロースビーズ、修飾セルロース繊維、ポリプロピレン、ポリスチレン榭脂 、ポリエチレングリコール榭脂、ポリアクリルアミド榭脂などの合成樹脂や基板を挙げ ることができる。好ましくはポリスチレン榭脂、ポリエチレングリコール榭脂、ポリアタリ ルアミド榭脂などの合成樹脂である。
[0164] 力かるライゲーシヨン用アミノチオールィ匕合物(3)は、固相への固定ィ匕を含めて、上 記 (1-2)に記載する方法で調製することができる。
[0165] ライゲーシヨン用チオールィ匕合物(3)として、より好適には、下式で示すように、 N末 端側にシスティン残基を有する 2以上のアミノ酸残基力もなるペプチド (a)、または N 末端のアミノ基上にチオール補助基 (例えば、アルキレンチオール基、ォキシアルキ レンチオール基、メルカプトべンジル基など)を有する 2以上のアミノ酸残基力もなる ペプチド (b〜d)を挙げることができる
[0166] [化 32]
Figure imgf000034_0001
substituent
[0167] (式中、 nは 1以上の整数を意味する)
また、これらのチオール補助基(アルキレンチオール基、ォキシアルキレンチオール 基、メルカプトべンジル基)は置換基を有していてもよぐ例えば N末端のアミノ基上 に、置換基を有するアルキレンチオール基を有する 2以上のアミノ酸残基力もなるぺ プチドとしては、下式で示されるものを挙げることができる。
[0168] [化 33]
Figure imgf000034_0002
[0169] なお、これらのペプチドを構成するアミノ酸は修飾されたものであってもよ!、。
[0170] 当該ペプチドは、固相合成法など一般的なペプチド合成法や,また,組換え蛋白 質を製造する手法にのっとって作成することができる。
[0171] これらのライゲーシヨン用ペプチドフラグメント(2)およびライゲーシヨン用アミノチォ ール化合物(3)は、ペプチドやタンパク質を合成するためのライゲーシヨン試薬として
、言 、換えればペプチドやタンパク質を合成するための合成ブロックとして用いること ができる。すなわち、本発明のライゲーシヨン試薬 ((2)および (3))によれば、ライゲー シヨン用ペプチドフラグメント(2)およびライゲーシヨン用アミノチオールィ匕合物(3)を 各々合成ブロックとして、両者を互いにアミド結合させるライゲーシヨンを行うことで、 所望のペプチドやタンパク質を合成することができる。また力かるライゲーシヨンを繰り 返すことによって高分子のペプチドやタンパク質をも合成することが可能である。
[0172] (2)チォエステルイ匕合物の製造方法、およびそれに用いる試薬
(2-1)チォエステル化合物の製造方法
本発明は、ペプチドエステルを用いたチォエステルイ匕合物の製造方法に関する。 当該方法は、原料として、前述の一般式 (2):
[0173] [化 34]
Figure imgf000035_0001
[0174] で示されるペプチドエステルを用いて、これをチオールィ匕合物と反応させることによつ て行うことができる。またこれを自発的な反応により分子内でチォエステルを生成させ ることち可會である。
[0175] 当該ペプチドエステル(2)にお!/、て、 Rはカルボキシル基の OHが置換されたァ
2
ミノ酸残基を有する基である。力かるアミノ酸としては、具体的にはプロリン、グリシン、 および置換基を有するグリシンを挙げることができる。置換基を有するグリシンの例と しては、制限されないが、例えばアルキル基を有するグリシンであるザルコシン (N-モ ノメチルダリシン)を挙げることができる。好ましくはプロリンおよびザルコシンであり、よ り好ましくはプロリンである。
[0176] 上記アミノ酸の— OHと置換される基(一 OH置換基)としては、—OH基に隣接する カルボニル基とともにエステル構造を形成する基を挙げることができる。制限されない 力 力かる一 OH置換基としては、具体的に一 OCH CONHを挙げることができる。
2 2
なお、アミノ酸の OH基の置換方法は、前述(1) (1-1)の通りである。
[0177] Rとしては、前述する、例えば- R -OCH CONH (例:- Pro- OCH CONH、 - Sar-
2 2 2 2 2 2
OCH CONHなど)などのように、カルボキシル基の OHが置換されたアミノ酸残基
2 2
を挙げることができるが、これに限定されず、上記アミノ酸残基を有する基であればよ い。力かる基としては、上記のアミノ酸に OH置換基を介して任意の基が結合して なるもの(「- R '-OH置換基- Z」、 Zは任意の基を意味する)を挙げることができる。こ
2
こで、アミノ酸に— OH置換基を介して結合する基は任意であり、特に制限されない 力 実施例 5に示すように、アミノ酸残基を始め、 2以上のアミノ酸残基力 なるぺプチ ド (オリゴペプチド、ポリペプチドを含む)やタンパク質またはこれらの誘導体が含まれ る。
[0178] 上記ペプチドエステル(2)にお!/、て、 Xはカルボキシル基(-COOH基)と結合して X
COOHを形成することができる基である。この限りにおいて特に制限されないが、 例えば、 X— COOHの例として、修飾されていてもよい、アミノ酸、 2以上のアミノ酸残 基からなるペプチド (オリゴペプチド、ポリペプチドを含む)若しくはタンパク質を挙げ ることがでさる。
[0179] ここで修飾の態様は特に制限されな 、が、例えば、 Xの一部が任意の基 (例えば、 アミノ酸の保護基、ヒドロキシル基、リン酸基、アルキル基、ホルミル基、ァシル基、糖 鎖、脂肪酸残基など)で置換されている態様、蛍光色素等の色素または安定若しくは 放射性同位体などの標識剤で修飾されている態様などを挙げることができる。
[0180] Xの一部が任意の基で置換されている態様の例として、 Xを構成する N末端のァミノ 酸のアミノ基が保護基を有して 、る態様を挙げることができる。この保護基としては、 アミノ基保護基として公知のものをいずれも使用することができる。例えば、 9 フル ォレニルメトキシカルボ-ル基(Fmoc基)、ベンジルォキシカルボ-ル基(Z基)、 p— メトキシベンジルォキシカルボ-ル基(Z(OMe)基)、 2—クロ口べンジルォキシカルボ -ル基(Z(C1)基)、 p -トロべンジルォキシカルボ-ル(Z(NO )基)、 p フエ-ルァ
2
ゾベンジルォキシカルボ-ル(Pz基)、 t—ブトキシカルボ-ル(Boc基)、 t—アミルォ キシカルボ-ル基(Aoc基), Alloc基, Bismoc基, Msc基, Nvoc基, p ビフエニルイソ プロピルォキシカルボ-ル基(Bpoc基)、ジイソプロピルメチルォキシカルボ-ル基(D ipmoc基)、シクロペンチルォキシカルボ-ル基(Poc基)、フオルミル基、トリフルォロア セチル基(Tfa基)、フタリル基(Pht基)、トシル基(Tos基)、 o -トロフ -ルスルフエ -ル基(Nps基)、ァセチル基、ベンゾィル基、トリチル基(Trt基)、ジニトロフ -ル基 (Dnp基)などのァミノ保護基を挙げることができる。好ましくは Boc基および Fmoc基 であり、より好ましくは Fmoc基である。 [0181] また Xの標識剤としては、アミノ酸やペプチドを標識することのできる従来公知の標 識剤を広く挙げることができる。具体的には、色素 (例えば蛍光色素、化学発光色素 など)、安定または放射性同位体を含む化合物、金属インディケ一ターを含む金属キ レーターなどを挙げることができる。なお、色素として FITC、 Alexa、 Bodipyまたは Eosi nなどの一般的な蛍光色素を例示することができる。
[0182] ペプチドエステル(2)の好適な例として、式(2)中、 -Cysで示されるシステュル基に 隣接したアミノ酸残基の OH基が OCH CONHで置換された 3以上のアミノ酸
2 2
残基力もなるペプチドエステルを挙げることができる。また、他の例として、式(2)中、 -Cysで示されるシステュル基に隣接したアミノ酸残基の OH基が OCH CONH
2 一で置換され、さらに当該基にアミノ酸、または 2以上のアミノ酸残基からなるぺプチ ド鎖が結合してなるペプチドエステルを挙げることができる。なお、ここで OCH CO
2
NH—に結合するアミノ酸残基の数としては、制限されないが、 1〜50程度を挙げる ことができる。システニル基に隣接するアミノ酸残基としては、前述するように、プロリ ル基、グリシル基、置換基を有するグリシル基 (例えば、ザルコシル基)を挙げることが できる。好ましくはプロリル基およびザルコシル基である。なお、当該ペプチドエステ ルは、 N末端のアミノ酸残基のァミノ基がアミノ保護基 (例えば 9—フルォレニルメトキ シカルボ-ル基(Fmoc基))で保護されていてもよい。また、ペプチドエステルを構成 する各アミノ酸は修飾されたものであってもょ 、。
[0183] 力かるペプチドエステル (2)は、上記 (1-1)に記載する方法で調製することができる( 図 1参照)。なお、ペプチドエステル(2)の調製に際して、ァミノ基の保護基 (例えば、 Fmoc基など)は、後述するチオールとの反応に先だって除去することもできる力 こ れに制限されない。保護基の除去は定法に従って行うことができる。
[0184] 上記ペプチドエステル (2)と反応させるチオールィ匕合物としては、共役されて!、な Vヽメルカブタンまたは共役チオールを挙げることができる。具体的には下式
[0185] [化 35]
R 6 - S H
[0186] で示されるチオールィ匕合物を挙げることができる。
[0187] ここで Rとして、置換基を有して!/、てもよ 、アルキル基、置換基を有して!/、てもよ!/ヽ フエ-ル基、置換基を有していてもよいべンジル基、置換基を有していてもよいアル キレンスルホン酸基を挙げることができる。具体的には、エトキシカルボ-ルェチル基 、メトキシカルボ-ルェチル基、およびエトキシカルボ-ルメチル基などの置換基を有 して 、てもよ 、アルキル基;フエ-ル基および 4-トリメチルシリルフエ-ル基などの置 換基を有して 、てもよ 、フエ-ル基;ベンジル基;エチレンスルホン酸基などの置換 基を有して 、てもよ 、アルキレンスルホン酸基が例示される。
[0188] 具体的なチオール化合物としては、上記 R基に対応して、ベンジルメルカプタン、
6
チォフエノール、 1 チォー 2 -トロフエノール、 2 チォ安息香酸、 4 チォー 2— ピリジンカルボン酸、 4—チォ一 2—ニトロピリジン、 4-トリメチルシリルチオフエノール , 2-メルカプトエタンスルホン酸、および 3-メルカプトプロピオン酸ェチルを挙げること ができる。
[0189] 反応条件は特に制限されな!、。例えば、反応溶液としては、ペプチドエステル (2) とチオールィ匕合物とが溶解する溶液であれば特に制限されず、例えば、水、低級ァ ルコール、フッ素化アルコール、多価アルコールまたはその他の極性溶媒、並びに 非極性溶媒を用いることができる。具体的には、低級アルコールとしては、メタノール 、エタノール、プロパノール及びイソプロピルアルコール、ブタノール等の炭素数 1〜 6のアルコール;フッ素化アルコールとしてはトリフルォロアルコール、へキサフルォロ イソプロピルアルコール等;多価アルコールとしては、グリセリン、 1,3-ブチレングリコ ール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール等;上記 以外の極性溶媒としては、アセトンゃェチルケトンなどのケトン類、酢酸ェチル,酢酸 メチルまたは酢酸ブチルなどのエステル類、ェチルエーテルやプロピルエーテル等 のエーテル類;ァセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、 N—メチ ルピロリドン等を挙げることができる。非極性溶媒としては、トルエン等を挙げることが できる。
[0190] これらの溶媒は、単独で用いてもよぐまた二種以上を組み合わせて使用することも できる。二種以上の組み合わせ例としては、低級アルコール、多価アルコールまたは それ以外の極性溶媒と水との組み合わせを挙げることができる。好ましくは、水、低級 アルコール (好ましくはエタノール)、ァセトニトリル、または水と低級アルコールとの混 合液 (含水アルコール、好ましくは含水エタノール)、水とァセトニトリルとの混合液を 挙げることができる。
[0191] これらの溶液の pHは特に制限されず、通常 pH2〜 10の範囲であればよい。緩衝 剤などによって中性付近に調整されていることが好ましぐその pH領域としては好ま し <は pH6〜9、より好まし <は pH7〜8.5である o
[0192] 反応温度も特に制限されないが、通常 0〜: LOO°Cの範囲で行うことができる。好まし くは 10〜60°C、より好ましくは 20〜40°Cである。なお、酸素を除去した条件下で反 応を行うことが望ましい。また、反応に際して、 P(CH CH CH OH)や P(CH CH COO
2 2 2 3 2 2
H)などのホスフィン類、グァ-ジン、尿素、脂質や界面活性剤などを共存させても良
3
い。反応時間も特に制限されないが、通常 2〜72時間を挙げることができる。なお、 反応に際して、溶液を攪拌または振盪してもよい。
[0193] 上記条件で、ペプチドエステル(2)とチオールィ匕合物とを共存状態に置くことにより
、下式(9)で示されるチォエステルイ匕合物が生成する。
[0194] [化 36]
Figure imgf000039_0001
[0195] (式中、 Xおよび Rは前記の通りである)
6
斯くして得られるチォエステルイ匕合物(9)は、最終的に高速液体クロマトグラフィー などを用いて精製することによって高純度のものとして取得することができる。
[0196] 以上、本発明のチォエステルイ匕合物の製造方法は、上記ペプチドエステル (2)とチ オールィ匕合物とを上記の温和な条件に置くことによって実施することができる。あるい は自発的な反応により分子内でチォエステルを生成させることも可能である。拘束さ れないが、この反応の原理としては、ペプチドエステルが上記条件下で自然に速や かに分子内反応を起こしてチォエステルに変換され、これがチオールィ匕合物のチォ ール基とチオール交換して、チォエステルイ匕合物が生じるものと推測される。この一 連の反応は、反応条件を変えることなぐまた新たな操作を施すことなぐ同一の反応 系の中で自動的に生じる。 [0197] 従来よりペプチドチォエステルは、長鎖ペプチドや環状ペプチドなどのペプチド合 成の原料として汎用されている力 Fmoc法を用いては、その除去処理に使用する試 薬によってチオールエステル結合が分解されてペプチド鎖を伸張させることができな いという問題があった。これに対して上記本発明の方法を用いれば、例えば、下記の 操作によって、上記の問題なくペプチドチォエステルを製造することができる。
(a)固相担体上にグリコール酸をアミド結合により担持し,ペプチドエステルを従来公 知の Fmoc法に従って製造する、
(b)必要であれば、上記で調製したペプチドエステルの保護基 (Fmoc基)を定法に従 つて除去し、また必要であれば、アミノ酸側鎖保護基の除去処理または固相からの脱 離処理を行!、、遊離のペプチドエステル(2)を調製する、
(c)上記で調製したペプチドエステル (2)をチオール化合物と反応させて、ペプチド チォエステルを製造する。また自発的な反応により分子内でチォエステルを生成さ せることも可會である。
[0198] (2-2)チォエステル合成試薬
本発明はまた上記ペプチドチォエステルの合成に好適に使用することができる試 薬を提供する。
[0199] 本発明のペプチドチォエステル合成試薬として、上記ペプチドエステルに相当する 下式(2)で示されるペプチドフラグメントを挙げることができる。
[0200] [化 37]
Figure imgf000040_0001
[0201] 当該ペプチドフラグメント(2)中、 Rはカルボキシル基の OHが置換されたァミノ
2
酸残基を有する基である。力かるアミノ酸としては、具体的にはプロリン、および置換 基を有するグリシン残基を挙げることができる。置換基を有するグリシン残基の例とし ては、制限されないが、例えばザルコシン (N-モノメチルグリシン)を挙げることができ る。好ましくはプロリンおよびザルコシンであり、より好ましくはプロリンである。
[0202] 上記アミノ酸の— OHと置換される基(一 OH置換基)としては、—OH基に隣接する カルボニル基とともにエステル構造を形成する基を挙げることができる。制限されない 力 力かる一 OH置換基としては、具体的に一 OCH CONHを挙げることができる。
2 2
なお、アミノ酸の— OH基の置換方法は前述する通りである。
[0203] なお、 Rは修飾されて 、てもよ 、。修飾の態様は特に制限されな 、が、好ましくは R
2
1S 直接または間接的 (任意のリンカ一を介して)に、固相担体に固定化されてなる
2
態様を挙げることができる。固相としては、特に制限されないが、例えば前述する、二 トロセルロース、ァガロースビーズ、修飾セルロース繊維、ポリプロピレン、ポリスチレ ン榭脂、ポリエチレングリコール榭脂、ポリアクリルアミド榭脂などの合成樹脂にチォ ール基、アミノ基、カルボキシル基、水酸基,ハロゲンなどを導入したものなどを挙げ ることがでさる。
[0204] 上記ペプチドエステル(2)において、 X— CO は、特に制限されないが、修飾され ていてもよい、アミノ酸残基、 2以上のアミノ酸力もなるペプチド残基、またはタンパク 質を挙げることができる。
[0205] 修飾の態様は特に制限されな 、が、例えば、 Xの一部が任意の基 (例えば、ァミノ 酸の保護基、ヒドロキシル基、アルキル基、ホルミル基、ァシル基、リン酸基、糖鎖、脂 肪酸残基など)で置換されている態様、蛍光色素等の色素または安定若しくは放射 性同位体などの標識剤で修飾されて 、る態様などを挙げることができる。その詳細は (1-1)に記載の通りである。
[0206] ペプチドフラグメント(2)の好適な例として、式(2)中、 -Cysで示されるシステュル基 に隣接したアミノ酸残基の— OH基が— OCH CONHで置換された 3以上のァミノ
2 2
酸残基力もなるペプチドエステルを挙げることができる。また、他の例として、式(2)中 、 -Cysで示されるシステュル基に隣接したアミノ酸残基の OH基が OCH CON
2
H で置換され、さらに当該基にアミノ酸、または 2以上のアミノ酸残基からなるぺプ チド鎖が結合してなるペプチドエステルを挙げることができる。なお、ここで OCH
2
CONH—に結合するアミノ酸残基の数としては、制限されないが、 1〜50程度を挙 げることができる。システュル基に隣接するアミノ酸残基としては、前述するように、プ 口リル基、グリシル基、置換基を有するグリシル基 (例えば、ザルコシル基)を挙げるこ とができる。好ましくはプロリル基およびザルコシル基である。なお、当該ペプチドェ ステルは、 N末端のアミノ酸残基のァミノ基がアミノ保護基 (例えば 9—フルォレニルメ トキシカルボ-ル基(Fmoc基))で保護されていてもよい。また、ペプチドエステルを構 成する各アミノ酸は修飾されたものであってもょ 、。
[0207] 更に好ま 、ペプチドエステル (2)は、当該ペプチドフラグメントが、 C末端が、直接 または間接的(リンカ一を介して)に、固相担体に結合してなる態様を有するものであ る。かかるペプチドエステル(2)は、上記 (1-1)に記載する方法で調製することができ る(図 1参照)。
実施例
[0208] 以下に、本発明の構成ならびに効果をより明確にするために、実施例を記載する。
但し本発明は、これらの実施例に何ら影響されるものではない。
[0209] 調製例 1 Fmoc—His- Pro- lie- Ai^Gly- Cv_s- Pro- OCH CONHの調製
2 2
HC1'MBHA(4-メチルベンズヒドリルァミン)榭脂(1.0 g, - NH: 0.63 mmol,ペプチド 研究所)を NMP (N-メチルピロリドン)(10 mL)で 3回洗浄し、 5% DIEA(N,N-ジィソプ 口ピルェチルァミン)/ NMP (10 mL)で 2分間、 3回処理した。 NMP (10 mL)で 3回洗 浄した後、 NMP(8 mL)、グリコール酸(62 mg, 0.82 mmol)、 HOBt (l-ヒドロキシベン ゾトリァゾール) ·Η 0 (0.13 g, 0.82 mmol)、および DIPCI (ジイソプロピルカルボジイミ
2
ド) (0.13 mL, 0.82 mmol)を順次加え、 4時間振盪した。 NMP (10 mL)で 3回洗浄した 後、 1 M DCC (N,N-ジシクロへキシルカルボジイミド) ZNMP(4.1 mL)と 1 M HOBt'H 0/NMP(4.1 mL)を用いて 30分間活性化した Boc- Pro (0.88 g, 4.1 mmol)を加え、
2
さらに DMAP (4-ジメチルァミノピリジン)(49 mg, 0.40 mmol)を加えて、 19時間振盪し た。 NMP、 DCM (ジクロロメタン)および MeOHのそれぞれ 8 mLで 3回洗浄した後、減 圧乾燥し、 Boc- Pro- OCH CO- MBH A榭脂(1.05 g, Pro: 0.55 mmol/g)を得た。この
2
榭脂 0.49 gを用い、ペプチド自動合成機 ABI433A型で Boc法(0.5 mmolスケール, DC C-HOBt)によって、保護ペプチド榭脂 Fmoc- His(Trt)- Pro- lie- Arg(Tos)- Gly- Cys(4- MeBzl)- Pro- OCH CO- MBHA榭脂(0.733 g)を得た。この榭脂 0.372 gを、 1,4-ブタン
2
ジチオール(0.75 mL)とァ-ソール(0.75 mL)を含む無水 HF溶液(10 mL)で氷冷下 、 1.5時間処理した後、 HFを減圧留去した。得られた残渣をジェチルエーテル(10 m L)で 3回洗浄した後、 50%ァセトニトリル Z水に溶解させて、 TOYOPAK ODS Mカート リッジ (東ソ一)に通し、回収液を凍結乾燥して、 0.109 gの粉末を得た。これを逆相力 ラム YMC PACK ProC18 (10 x 250 mm)に供して、 0.1% TFA (トリフルォロ酢酸)を含 むァセトニトリル水溶液を溶離液として、ァセトニトリルのグラジェントで溶出した (流速 2.5 mL/分)。 220 nmの吸光度を検出することによって、 Fmoc- His- Pro- lie- Arg- Gly- Cys-Pro-OCH CONHを含む画分を集め、これを凍結乾燥して白色粉末を得た。収
2 2
量並びに各種分析結果を下記に示す:
収量: 42 mg (14%)
質量分析: MALDI-TOF m/z 1058.6 (計算値: 1058.5)
アミノ酸分析: Pro Gly Cys He His Arg 。
1.8 1 nd 1.0 0.84 0.92
調製例 2 Fmoc- His- Pro- lie- Ar _- Ala- C s- Pro- OCH CONHの調製
2 '2
Fmoc- Rink Amide榭脂(2.0 g、 - NH: 0.86 mmol, Novabiochem)を NMP(15 mL)で 3 回洗浄し、 20%ピぺリジン/ NMP(20 mL)で 5分間、 5分間および 10分間処理した。 N MP (15 mL)で 5回洗浄した後、 NMP(15 mL)、グリコール酸(98 mg, 1.3 mmol)、 HOB t-H 0 (0.20 g, 1.3 mmol)、および DIPCI (0.21 mL, 1.3 mmol)を順次加え、 5時間振
2
盪した。 NMP(10 mL)で 3回洗浄した後、 0.45 M HBTU (1- [ビス (ジメチルァミノ)メチレ ン]- 1H-ベンゾトリアゾリゥム 3-ォキシドへキサフルォロホスフアート)、 0.45 M HOBtを 含む DMF (ジメチルホルムアミド) (5.7 mL)および DIEA (0.67 mL, 3.9 mmol)で 2分間 活性化した Fmoc- Pro (0.87 g, 2.6 mmol)をカ卩え、 3時間振盪した。 NMP(15 mL)で 3 回洗浄した後、 10%無水酢酸、 5% DIEAを含む NMP溶液(20 mL)で 10分間処理した 。次いで、 NMP、 DCMおよび MeOHのそれぞれ 20 mLで 3回洗浄した後、減圧乾燥し 、 Fmoc— Pro— OCH CO— Rink Amide榭脂(2.1 g, Fmoc: 0.17 mmol/g)を得た。この榭
2
脂 0.34 gを用い、自動合成機 ACT440 Q型で Fmoc法(0.1 mmolスケール、 DIPCI- HO Bt)によって、保護ペプチド榭脂 Fmoc- His(Trt)- Pro- lie- Arg(Pmc)- Ala- Cys(Trt)- Pro -OCH CO- Rink Amide榭脂(0.41 g)を得た。なお、 Ala- Cys残基は、 Fmoc- Ala- Cvs(
2
Trt)- OHを DIPC卜 HOObt (3,4-ジヒドロ- 3-ヒドロキシ- 4-ォキソ - 1,2,3-ベンゾトリアジ ン)による活性ィ匕で導入した。この榭脂 0.205 gを、 5%水、 5%フエノールおよび 2%トリ イソプロビルシランを含む TFA溶液 (4 mL)で 2時間処理した後,冷エーテルを加え、 沈殿させた。沈殿物をジェチルエーテル(10 mL)で 3回洗浄した後、 50%ァセトニトリ ル Z水に溶解させ、 TOYOPAK ODS Mカートリッジ (東ソ一)に通した後、凍結乾燥し 、 30 mgの粉末を得た。これを逆相カラム YMC PACK ProC18 (10 x 250 mm)に供し て、 0.1% TFAを含むァセトニトリル水溶液を溶離液として、ァセトニトリルのグラジェ ントで溶出した (流速 2.5 mL/分)。 220 nmの吸光度を検出することによって、 Fmoc- H is- Pro- lie- Arg- Ala- Cvs- Pro- OCH CONHを含む画分^^め、これを凍結乾燥して
2 2
白色粉末を得た。収量および各種分析結果を下記に示す:
収量: 19 mg (42%)
質量分析: MALDI- TOF m/z 1072.8 (計算値: 1072.5)
アミノ酸分析: Pro Ala Cys He His Arg 。
1.8 1.1 nd 1.2 0.93 1
[0211] 調製例 3 Fmoc- His- Pro- lie- Ar _— Leu- Cys- Pro- OCH CONH
2 2の言 M 調製例 2 (Fmoc- His- Pro- lie- Arg- Ala- Cys- Pro- OCH CONH )と同様にして標記
2 2
化合物を調製した。ただし、 Leu-Cys残基の導入は、調製例 2における Fmoc-Ala-Cy s(Trt)- OHを用いた Ala- Cys残基の導入に代えて、 Fmoc- Leu- Cys(4-MeOBzl)-OH を用いて行い、最後に、 1,4-ブタンジチオール(7.5%)とァ-ソール(7.5%)を含む無 水 HFを用いて脱処理することによって実施した。収量および各種分析結果を下記に 示す:
収量: 11 mg (18%)
質量分析: MALDI- TOF m/z 1115.9 (計算値: 1114.6)
アミノ酸分析: Pro Cys He Leu His Arg 。
1.9 nd 0.92 1 0.83 0.93
[0212] 調製例 4 Fmoc-His-Pro-Ile-Ar .-Val-Cvs-Pro-OCH CONHの調製
2 2
調製例 2 (Fmoc- His- Pro- lie- Arg- Ala- Cys- Pro- OCH CONH )と同様にして標記
2 2
化合物を調製した。ただし,調製例 2における Fmoc-Ala-Cys(Trt)- OHを用いた Ala- Cys残基の導入に代えて、 Fmoc-Va卜 Cys(Trt)- OHを用いて Va卜 Cys配列を導入した 。収量および各種分析結果を下記に示す:
収量: 18 mg (20%)
質量分析: MALDI- TOF m/z 1100.9 (計算値: 1100.5)
アミノ酸分析: Pro Cys Val He His Arg 。
2.0 nd 1 0.94 0.84 0.94
[0213] 調製例 5 Fmoc-His-Pro-Ile-Ar .-Glv^Cis-Pro-OCH CO-Glv_-NH, (DM Fmoc- Rink Amide榭脂に Fmoc- Gly- OHを導入後、調製例 2 (Fmoc- His- Pro- lie- A rg-Ala-Cys-Pro-OCH CONH )と同様にして標記化合物を調製した。具体的には、
2 2
Fmoc- Rink Amide榭脂に Fmoc- Gly_OHを導入した後、調製例 2に記載する方法に 従って、 Fmoc-Pro-OCH CO-Gly-Rink Amide榭脂を調製し、この榭脂を用いて、 Fm
2
oc- Ala- Cys(Trt)- OHの代わりに、 Fmoc- Gly- Cys(Trt)- OHを用いて、自動合成機 A CT440 Q型で Fmoc法(0.1 mmolスケール、 DIPCI- HOBt)に従って、保護ペプチド榭 脂 Fmoc— His(Trt)— Pro— lie— Arg(Pmc)— Gly— Cvs(Trt)— Pro— OCH CO-Gly-Rink Amide
2
榭脂を得た。次 ヽでこれを調製例 2に記載する方法に従って脱保護処理して Fmoc- His- Pro- lie- Arg- Gly- Cys- Pro- OCH CO- Gly- NHを得た。収量および各種分析結
2 2
果を下記に示す:
収量: 1.6 mg (1.1%)
質量分析: MALDI- TOF m/z 1115.9 (計算値: 1115.5)
アミノ酸分析: Pro Gly Cys He His Arg 。
2.2 2 nd 1.1 0.92 0.98
[0214] 調製例 6 Fmoc- His- Pro- lie- Ar _—Glv Cxs-Sar- OCH CONHの調製
2 2
Fmoc- Pro- OHの代わりに Fmoc- Sar- OHを、また Fmoc- Ala- Cys(Trt)- OHの代わり に、 Fmoc- Gly- Cys(Trt)- OHを用いて、調製例 2 (Fmoc- His- Pro- lie- Arg- Ala- Cys- P ro-OCH CONH )と同様にして標記化合物を調製した。収量および各種分析結果を
2 2
下記に示す:
収量: 0.8 mg (0.6%)
質量分析: MALDI- TOF m/z 1032.9 (計算値: 1033.2)
アミノ酸分析: Pro Gly Cys He His Arg 。
0.96 0.89 nd 1 0.88 1.0
[0215] 調製例 7 Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-SCH CH CO— Leu— NH
2 2 2 の調製
文献記載の方法 (T. Kawakami, S. Kogure, S. Aimoto, Bull. Chem. Soc. Jpn., 69, 3331 (1996))を用いて標記化合物を調製した。 MBHA榭脂より Bocィ匕アミノ酸誘導体 を用いて、自動合成機 ABI433A型で、保護ペプチド Boc- Leu- Lys(a-Z)- Asn- Thr(B zl)- Ser(Bzl)- Va卜 Leu- Gly- Ala- Ala- SCH CH CO- Leu- MBHA榭脂を合成取得し、 H
2 2
Fで脱保護処理した後、逆相高速液体クロマトグラフィー (逆相 HPLC)で精製した。収 量および各種分析結果を下記に示す:
収量: 48 mg (48%)
質量分析: MALDI- TOF) m/z 1174.4 (計算値: 1173.7)
アミノ酸分析: Asp Thr Ser Glv Ala Val Leu Lys 。
1.0 0.96 0.90 1.0 2.0 0.99 3 0.95
[0216] 調製例 8 Ci.s-Asp-Ile-Leu-Leu-Gly-NHの調製
2
標準的な Fmoc法に従って標記化合物を合成し、逆相 HPLCで精製した。収量およ び各種分析結果を下記に示す:
質量分析: ESI m/z 632.3 (計算値: 632.3)
アミノ酸分析: Asp Gly Cys He Leu 。
1.0 1.0 nd 1.0 2
[0217] 調製例 9 (MnDe}Gk-Leu-AsD-Val-LYS-Thr-Ser-NHの調製
2
Fmoc— Rink Amide榭脂(0.25 g、— NH:0.43 mmol/g, Novabiochem)を用い、自動合 成機 ACT440 Q型で Fmoc法(0.1 mmolスケール, DIPCI- HOBt)によって、保護ぺプ チド榭脂 Leu- Asp(〇tBu)- Va Lys(Boc)- ThrCBu)- SerCBu)- Rink Amide榭脂を得た。 これに、ブロモ酢酸(0.13 g, 0.95 mmol)と DIPCI (74 mL, 0.47 mmol)を NMP(2.0 mL) で 30分間反応させた溶液を加え、 1時間振盪した。 NMP(3 mL)で 5回洗浄した後、 S- トリチル- 2-メルカプト (2-二トロフエ-ル)ェチルァミン(Mnpe(Trt)- NH ) (0.22 g, 0.50
2
mmol)の DMF溶液(0.6 mL)を加え、 8時間振盪した。これに DIEA(44 ;z L, 0.25 mmol )を加え、さらに 24時間振盪した。 NMP、 DCMおよび MeOHのそれぞれ 3 mLで 3回洗 浄した後、減圧乾燥して、(Mnpe)Gly- Leu- Asp(〇tBu)- Va卜 Lys(Boc)- ThrfBu)- Ser^B u)- Rink Amide榭脂(0.37 g)を得た。この榭脂 0.156 gを、 5%水、 5%フエノール、および 2%トリイソプロビルシランを含む TFA溶液 (4 mL)で 2時間処理した後、冷エーテルを 加えて沈殿させた。沈殿物をジェチルエーテル(10 mL)で 3回洗浄した後、 50%ァセト 二トリル Z水に溶解させ、これを TOYOPAK ODS Mカートリッジ(東ソ一)に通し、次い で回収液を凍結乾燥して 41mgの粉末を得た。これを逆相カラム YMC PACK ProC18 (10 x 250 mm)に供して、 0.1% TFAを含むァセトニトリル水溶液を溶離液として、ァセ トニトリルのグラジェントで溶出した (流速 2.5 mL/分)。 220應の吸光度を検出するこ とによって、(Mnpe)Gly- Leu- Asp- Val- Lys- Thr- Ser- NHを含む画分^^め、これを
2
凍結乾燥して白色粉末を得た。なお、(Mnpe)Gly-Leu-Asp-Va卜 Lys-Thr-Ser-NHは 、 Mnpe基の不斉によりジァステレオマーとして 2つの画分 (a, b)に分離された。収量 および各種分析結果を下記に示す:
収量: 21 mg (32%) (a: 10 mg, b : l l mg)
質量分析: ESI m/z 899.5 (計算値: 899.0)
アミノ酸分析: Asp Thr Ser Gly Val Leu Lys 。
1 1.0 0.95 nd 0.95 1.1 0.97
調製例 10 C s-His-Pro-Ile-Arg^Leu-CYs(4-MeOBzll-Pro-OCH CONHの調製
2" '2 調製例 3 (Fmoc- His- Pro- lie- Arg- Leu- Cys- Pro- OCH CONH )の方法に準じて標
2 2
記化合物を調製した。具体的には、調製例 3に記載する方法にならい、続けて Fmoc 基を除去した後、 Fmoc-Cys(Trt)-OHを導入、さらに、 Fmoc基を除去して H- Cys(Trt) — His(Trt)— Pro— lie— Arg(Pmc)— Leu— Cys(4— MeOBzl)— Pro— OCH CO— Rink Amide榭脂
2
を取得し、これを TFA溶液で処理して標記ペプチドを取り出した。収量および各種分 析結果を下記に示す:
収量: 16 mg (23%)
質量分析: MALDI- TOF m/z 1116.5 (計算値: 1115.6)
アミノ酸分析: Pro Cvs He Leu His Arg 。
2.0 nd 0.93 1 0.98 0.92
例 1
Fmoc-His-Pro-Ile-Ar^Gly-Cvs-Pro-OCH CONH (調製例 1) Cvs— ASD lie— Leu—
2" '2
Leu- Gly- NH (調製例 8)の反]^による、 Fmoc- His- Pro- lie- Ar_g^ly-Cv_s- Asp- lie- L
2
eu-Leu-Gly-NHの合成(闵 3参照)
2
調製例 1で調製した Fmoc- His- Pro- lie- Arg- Gly- Cys- Pro- OCH CONH (1.0 mg, 0
2 2
.70 μ mol)と調製例 8で調製した Cys- Asp- lie- Leu- Leu- Gly- NH (1.0 mg,1.2 μ mol)
2
に、 20 mM THP (トリスヒドロキシプロピルホスフィン)および 6 M Gdn (グァ二ジン)を含 む 0.10 Mトリシン緩衝液(pH 8.2) 0.15 mLを加え、さらにァセトニトリル 0.05 mLを加え て、室温 (25°C)にて 24時間攪拌した。反応の進行は高速液体クロマトグラフィー(HP LC) (固定相:逆相カラム YMC PACK ProC18 (4.6 x 150 mm)、移動相: 0.1% TFAを 含むァセトニトリル水溶液、ァセトニトリルのグラジェント溶出、流速:流速 1.0 mL/分、 検出: 220應の吸光度検出)および質量分析により追跡した (以下の実施例におい て同じ)。 [0219] 得られた反応液に酢酸(50 L)をカ卩え、逆相カラム YMC PACK ProC18 (10 x 250 mm)〖こ力けて、 0.1% TFAを含むァセトニトリル水溶液を溶離液としてァセトニトリルの グラジェントで溶出させた (流速 2.5 mL/分)。 220應の吸光度を検出することにより、 Fmoc-His-Pro-Ile-Arg-Gly-Cvs-Asp-Ile-Leu-Leu-Gly-NHを含む画分を集め、こ
2
れを凍結乾燥して白色粉末を取得した (収量: 0.7 πι§ (0.37 ^ πιο1, 52%) )。
[0220] これを下記の分析に供して、確かに Fmoc-His-Pro-Ile-Arg-Gly-Cys-Asp-Ile-Leu -Leu-Gly-NHが生成していることを確認した:
2
質量分析: MALDI- TOF m/z 1414.9 (計算値: 1414.7)
アミノ酸分析: Asp Pro Gly Cys He Leu His Arg 。
0.99 0.94 2.0 nd 1.9 2 0.84 0.92
[0221] 図 3の右上に原料として使用した Fmoc— His- Pro- lie- Arg- Gly- Cys- Pro- OCH CO
2
NH (Rt.:18.40min) (調製例 1)と Cys- Asp- lie- Leu- Leu- Gly- NH (Rt.:8.76min) (調
2 2
製例 8)のクロマトグラムを、また図 3の右下に、生成した Fmoc—His-Pro-Ile-Arg-Gly -Cys- Asp- lie- Leu- Leu- Gly- NH (Rt.:23.82min)のクロマトグラムを示す。
2
[0222] 実飾 12
Fmoc-His-Pro-Ile-Arg^Ala-Cvs-Pro-OCH CONH ( f^l 2)ilCvs-Asp-Ile-Leu-
2 2
Leu-Glv-NH (調製例 8)の反]^による、 Fmoc- His- Pro- lie- A^Ala-Cv_s-As_p- lie- L
2
eu-Leu-Glv-NHの合成
2
調製例 2で調製した Fmoc- His- Pro- lie- Arg- Ala- Cys- Pro- OCH CONH (2.0 mg,l.
2 2
3 μ mol)と調製例 8で調製した Cys- Asp- lie- Leu- Leu- Gly- NH (1.8 mg,2.1 μ mol)に
2
、 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 0.30 mLをカ卩えて
、 24時間攪拌した。反応の進行は実施例 1と同様に HPLCおよび質量分析により追跡 した。
[0223] 得られた反応液にジチォステイトール (DTT) 5 mgと酢酸 0.1 mLをカ卩えた後、逆相力 ラム YMC PACK ProC18 (10 x 250 mm)に力けて、 0.1% TFAを含むァセトニトリル水 溶液を溶離液としてァセトニトリルのグラジェントで溶出させた (流速 2.5 mL/分)。 220 nmの吸光度を検出することにより、 Fmoc- His- Pro- lie- Arg- Ala- Cys- Asp- lie- Leu- L eu-Gly-NHを含む画分を集め、これを凍結乾燥して白色粉末を取得した (収量: 1.6
2
πι§(0.71 ,α πιο1, 56%) )。 [0224] これを下記の分析に供して、確かに Fmoc-His-Pro-Ile-Arg-Ala-Cys-Asp-Ile-Leu -Leu-Gly-NHが生成していることを確認した:
2
質量分析: MALDI- TOF m/z 1428.8 (計算値: 1428.7)
アミノ酸分析: Asp Pro Gly Ala Cys He Leu His Arg
1.0 0.98 1 1.1 ).96
[0225] 下式にこの反応スキームを示す。
[0226] [化 38]
ο
θ °Υ° 、
Fmoc-His-Pro-lle-Ara-Ala 、Ν'
、SH
Figure imgf000049_0001
[0227] 施例 3
Fmoc- His- Pro- lie- Ar Leu- Cv_s- Pro- OCH CONH (調製例 3) Cvs— ASD lie— Leu—
2 2
Leu- Gly- NH (調製例 8)の反]^による Fmoc- His- Pro- lie- Arg- Leu- Cvs- ASD- lie- Le
2
u- Leu- Glv_- NHの調製
2
調製例 3で調製した Fmoc- His- Pro- lie- Arg- Leu- Cys- Pro- OCH CONH (2.2 mg,l
2 2
.5 μ mol)と調製例 8で調製した Cys- Asp- lie- Leu- Leu- Gly- NH (2.4 mg,2.8 μ mol)に
2
、 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 0.30 mLを加え、 2
4時間攪拌した。反応の進行は、実施例 1と同様に HPLCおよび質量分析により追跡 した。
[0228] 得られた反応液に DTT (8 mg)と酢酸(0.2 mL)を加え、これを逆相カラム YMC PAC K ProC18 (10 x 250 mm)に供して、 0.1% TFAを含むァセトニトリル水溶液を溶離液と してァセトニトリルのグラジェントで溶出させた (流速 2.5 mL/分)。 220 nmの吸光度を 検出することにより、 Fmoc- His- Pro- lie- Arg- Leu- Cys- Asp- lie- Leu- Leu- Gly- NHを
2 含む画分を集め、これを凍結乾燥して白色粉末を取得した (収量: 1.8 mg (0.79 ^ mol , 54%) )。
[0229] この画分を下記の分析に供して、確かに Fmoc-His-Pro-Ile-Arg-Leu-Cys-Asp-Ile -Leu-Leu-Gly-NHが生成して!/、ることを確認した:
2
質量分析: MALDI- TOF m/z 1469.7 (計算値: 1470.8)
アミノ酸分析: Asp Pro Gly Cys He Leu His Arg
1.0 1.1 1.1 nd 1.9 3 0.84 C
[0230] 下式にこの反応スキームを示す。
[0231] [化 39]
Figure imgf000050_0001
[0232]
( 1) Fmoc— His— Pro— lie— Arg— Vaト Cvs— Pro— OCH CONH Cvs- ASD- lie- Leu- Leu- Gl
2" '2
- NHの反応による Fmoc- His- Pro- lie- Are- Va卜 Cvs- ASD- lie- Leu- Leu- Glv- NHの 調製例 4で調製した Fmoc- His- Pro- lie- Arg- Va卜 Cys- Pro- OCH CONH (0.9 mg,0.
2 2
57 μ mol)と調製例 8で調製した Cys- Asp- lie- Leu- Leu- Gly- NH (1.1 mg, 1.2 mol)
2
に、 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 0.13 mLを加え て、 24時間攪拌した。反応の進行は、実施例 1と同様に HPLCおよび質量分析により 追跡した。
[0233] 得られた反応液に、 DTT (3 mg)と酢酸(0.1 mL)をカ卩えて、これを逆相カラム YMC P ACK ProC18 (10 x 250 mm)に供して、 0.1% TFAを含むァセトニトリル水溶液を溶離 液としてァセトニトリルのグラジェントで溶出させた (流速 2.5 mL/分)。 220 nmの吸光 度を検出することにより、 Fmoc-His-Pro-Ile-Arg-Val-Cys-Asp-Ile-Leu-Leu-Gly-N Hを含む画分を集め、これを凍結乾燥して白色粉末を取得した (収量: 1.8 mg (0.79
2
/z mol, 54%) )。
[0234] この画分を下記の分析に供して、確かに Fmoc-His-Pro-Ile-Arg-Va卜 Cys-Asp-Ile -Leu-Leu-Gly-NHが生成して!/、ることを確認した: 質量分析: MALDI- TOF m/z 1456.3 (計算値: 1456.8)
アミノ酸分析: Asp Pro Gly Cys Val He Leu His Arg 。
0.99 nd 1 nd 1.0 1.9 2.1 0.82 0.94
[0235] 別途,通常の Fmoc固相合成法により Fmoc- His- Pro- lie- Arg- D- Va卜 Cys- Asp- lie- Leu-Leu-Gly-NHを調製し、 HPLCにより縮合部位での Val残基のラセミ化を検定し
2
たところ, 2.5%以下であった。
[0236] 下式にこの反応スキームを示す。
[0237] [化 40]
Figure imgf000051_0001
[0238]
[0239]
Figure imgf000051_0002
[0240] および Fmoc- His- Pro- lie- Ar_g^Va Cv - Asp- lie- Leu- Leu- Gly- NHの調製
2
調製例 4で調製した Fmoc- His- Pro- lie- Arg- Va卜 Cys- Pro- OCH CONH (0.70 mg)
2 2 を 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 0.10 mLに溶解さ せて、 24時間攪拌した。反応の進行は、実施例 1と同様に HPLCおよび質量分析によ り追跡した。
[0241] 得られた反応液に、酢酸(0.1 mL)をカ卩えて、これを逆相カラム YMC PACK ProC18
(10 x 250 mm)に供して、 0.1% TFAを含むァセトニトリル水溶液を溶離液としてァセト 二トリルのグラジェントで溶出させた (流速 2.5 mL/分)。 220 nmの吸光度を検出する ことにより、表記の化合物を含む画分を集め、これを凍結乾燥して白色粉末を取得し た (収量: 0.3 mg)。 [0242] この画分を下記の分析に供して、確かに表記化合物が生成していることを確認した 質量分析: MALDI-TOF m/z 1025.8 (計算値: 1025.5)。
[0243] また、表記化合物(0.10 mg)と調製例 8で調製した Cys-Asp-Ile-Leu-Leu-Gly-NH
2
(0.14 mg)に、 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 30 μ Lを加えて、 24時間攪拌したところ、 HPLCおよび質量分析によって Fmoc-His-Pro-Il e-Arg-Val-Cys-Asp-Ile-Leu-Leu-Gly-NHが生成して!/、ることを確認した。
2
[0244] 下式にこの反応スキームを示す。
[0245] [化 42]
Figure imgf000052_0001
Cys-Asp-lle-Leu-Leu-Gly-NH2
·- Fmoc-His-Pro-lle-Arg-Val-Cys-Asp-lle-Leu-Leu-Gly-NH2
[0246] 実施例 5
Fmoc-His-Pro-Ile-Arg^Gly-Cvs-Pro-OCH CO— Glv二 NH (調製例 5)と Cys— Asq—Ile
2 2
-Leu-Leu-Gly-NH (調製例 8)の反]^による Fmoc- His- Pro- lie- Arg- Glv- Cvs- ASD- I
2
le-Leu-Leu-Gly-NHの調製
2
調製例 5で調製した Fmoc- His- Pro- lie- Arg- Gly- Cys- Pro- OCH CO- Gly- NH (0.1
2 2
6 mg,0.081 μ mol)と調製例 8で調製した Cys- Asp- lie- Leu- Leu- Gly- NH (0.24 mg,0.
2
30 μ mol)に、 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 0.030 mLを加え、 24時間攪拌した。
[0247] 得られた反応液に、 DTT (1 mg)と酢酸(0.02 mL)を加え、これを逆相カラム YMC P ACK ProC18 (10 x 250 mm)に供して、 0.1% TFAを含むァセトニトリル水溶液を溶離 液としてァセトニトリルのグラジェントで溶出させた。 220應の吸光度を検出すること により、 Fmoc- His- Pro- lie- Arg- Glv- Cys- Asp- lie- Leu- Leu- Gly- NHを含む画分を
2
集め、これを凍結乾燥して白色粉末を取得した (収量: 0.030 mol (37%) )。
[0248] 実施例 6 Fmoc- His- Pro- lie- Arg^ k-Sar- Pro- OCH CONH (調製例 6)と Cvs— ASD lie— Leu—
2 2
Leu-Glv-NH (調製例 8)の反応による Fmoc- His- Pro- lie- Ar_gzGlY-Cy§- Asp- lie- Le u- Leu- Glv_- NHの調製
2
A G
調製例 6で調製 gsした Fmoc- His- Pro- lie- Arg- Gbd-Cys- Sar- OCH CONH (0.15 mg,
2 2
0.094 /z mol)と調製例 8で調製した Cys- Asp- lie- Leu- Leu- Gly- NH (0.25 mg, 0.29 μ
2
mol)に、 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 0.030 mL を力!]え、 24時間攪拌した。
[0249] 得られた反応液に DTT (1 mg)と酢酸(0.02 mL)を加え、これを逆相カラム YMC PA CK ProC18 (10 x 250 mm)に供して、 0.1% TFAを含むァセトニトリル水溶液を溶離液 としてァセトニトリルのグラジェントにより溶出させた。 220應の吸光度を検出すること により、 Fmoc- His- Pro- lie- Arg- Gly- Cys- Asp- lie- Leu- Leu- Gly- NHを含む画分を
2
集め、これを凍結乾燥して白色粉末を取得した (収量: 0.026 mol (28%) )。
[0250] 上記実施例 1〜6における、第 1セグメントとしてシステュルプ口リルエステル (CPE) を用いたペプチドライゲーシヨン反応およびその反応収率を纏めた結果を表に示す
[0251] [表 1]
Fmoc-H is-Pro- lie- Arg-Axx-Bxx-Cxx-Dxx (1) + H-Cys-Asp-lle-Leu-Leu-Gly-NH2 (2)
0.1 M tricine, 6 M Gdn, 0.02 M THP
pH 8.2, 24 h
Fmoc-His-Pro-lle-Arg-Axx-Cys-Asp-lle-Leu-Leu-Gly-NH2 (3)
Entry Bxx Cxx Dxx 3 yield/%
1 a Cys Pro -OCH2CONH2 3a 52
2 b Cys Pro -OCH2CONH2 3b 56
3 c Cys Pro -OCH2CONH2 3c 54
4 d Cys Pro -OCH2CONH2 3d 49
5 e Cys Pro -OCH2CO-Gly-NH2 3a 37
6
Figure imgf000053_0001
Cys Sar -OCH2CONH2 3a 28
[0252] 実施例 7
Fmoc-His-Pro-Ile-Arg-Glv-Cvs-Pro-OCH CONH (調製例 1)と (Mnpe)Glv— Leu— As
2 2
ErVal-Lv_s-Thr-Ser-NH (調製例 9)の反応によ Fmoc- His- Pro- lie- Arg- G (Mn pe)Glv-Leu-Asp-Val-Lvs-Thr-Ser-NHの合成
2
調製例 1で調製した Fmoc- His- Pro- lie- Arg- Gly- Cys- Pro- OCH CONH (0.15 mg,
2 2
0.105 μ mol)と調製例 9で調製した (Mnpe)Gly- Leu- Asp- Va卜 Lys- Thr- Ser- NH (0.15
2 mg,0.096 μ mol)に、 50 mM 4-トリメチルシリルチオフエノールおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液 (pH 8.2) 0.020 mLを加え、 24時間攪拌した。反応の進行は、実 施例 1と同様に HPLCおよび質量分析により追跡した。
[0253] 得られた反応液に、 DTT (ジチオスレィトール) 2 mgおよび酢酸 0.005 mLをカ卩えた 後、逆相カラム YMC PACK ProC18 (10 x 250 mm)に力けて、 0.1% TFAを含むァセト 二トリル水溶液を溶離液としてァセトニトリルのグラジェントで溶出させた (流速 2.5 mL /分)。 220 nmの吸光度を検出することにより、 Fmoc- His- Pro- lie- Arg- Gly- (Mnpe)Gl y- Leu- Asp- Va卜 Lys- Thr- Ser- NHを含む画分を集め、凍結乾燥により白色粉末とし
2
て得た(収量: 0.009 mol, 9.5%) o
[0254] この画分を下記の分析に供して、確かに
Fmoc- His- Pro- lie- Arg- Gly- (Mnpe)Gly- Leu- Asp- Va卜 Lys- Thr- Ser- NHが生成して
2 いることを確認した:
質量分析: MALDI- TOF m/z 1681.8 (計算値: 1682.9)
アミノ酸分析: Asp Thr Ser Pro Gly Val He Leu Lys His Arg 。
1.1 0.99 0.92 1.3 1.5 0.54 1.2 2.0 1 1.1 1.2
[0255] 下式 :の反応スキームを示す。
[0256] [化 43]
Figure imgf000054_0001
[0257] 実施例 8
Fmoc- His- Pro- lie- Are- Glv— Glv- Leu- ASD- Va卜 Lvs- Thr- Ser- NHの合成
2 実施例 3で調製した Fmoc- His- Pro- lie- Arg- Gly- (Mnpe)Gly- Leu- Asp- Va卜 Lys- Th r-Ser-NH (痕跡量)をガラス試験管に取り、 6 M Gdnを含む 0.10 Mリン酸ナトリウム緩
2
衝液(pH 6.4) 0.05 mLに溶力し、 Handheld Lamp UVL— 56 (6 W, UVP)により、 365 n mの紫外線を 30分間照射した。これを逆相カラム YMC PACK ProC18 (4.6 x 250 mm) に供し、 0.1% TFAを含むァセトニトリル水溶液を溶離液としてァセトニトリルのグラジェ ントで溶出した (流速 1.0 mL/分)。 220 nmの吸光度を検出することにより Fmoc- His-P ro-Ile-Arg-Gly-Gly-Leu-Asp-Val-Lys-Thr-Ser-NHを含む画分を集め、これを凍
2
結乾燥して白色粉末を取得した:
質量分析: MALDI- TOF m/z 1501.1 (計算値: 1500.8)。
[0258] 下式にこの反応スキームを示す。
[0259] [化 44]
Figure imgf000055_0001
Figure imgf000055_0002
[0260] 実飾 19
11 )_Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-SCH CH CO— Leu— NH (調製例 7
2 2 2
1と Cv_s— His— Pro— lie— Arg^Leu— Cv — MeOBzl):Pro— OCH CONH (調製例 10)の反
2 2
、【こよ 、 Leu— Lvs— Asn— Thr— Ser— Val— Leu— Glv— Ala— Ala— Cvs— His— Pro— lie— Arg— Leu -Cvs(4-MeOBzl)_-Pro-OCH CONHの調製
2 2
調製例 7で調製した Leu- Lys- Asn- Thr- Ser- Va卜 Leu- Gly- Ala- Ala- SCH CH CO- L
2 2 eu-NH (4.3 mg,2.7 μ mol)と調製例 10で調製した Cys- His- Pro- lie- Arg- Leu- Cys(4-
2
MeOBzl)- Pro- OCH CONH (3.6 mg,2.3 μ mol)に、 2% 4-トリメチルシリルチオフエノ
2 2
ールおよび 6 M Gdnを含む 0.10 Mリン酸ナトリウム(pH 7.2) 0.60 mLを加え、 24時間 攪拌した。反応の進行は、実施例 1と同様に HPLCおよび質量分析により追跡した。
[0261] 得られた反応液に DTT (10 mg)と酢酸(0.4 mL)を加え、これを逆相カラム YMC PA CK ProC18 (10 x 250 mm)に供して、 0.1% TFAを含むァセトニトリル水溶液を溶離液 としてァセトニトリルのグラジェントで溶出させた (流速 2.5 mL/分)。 220 nmの吸光度 を検出することにより、 Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-Pro-I le- Arg- Leu- Cys(4- MeOBzl)- Pro- OCH CONHを含む画分を集め、これを凍結乾燥
2 2
して白色粉末を取得した(収量: 5.1 mg d.S ^ mol, 78%) )。
[0262] この画分を下記の分析に供して、確かに Leu-Lys-Asn- Thr- Ser-Va卜 Leu-Gly-Ala - Ala- Cvs- His- Pro- lie- Arg- Leu- Cys(4- MeOBzl)- Pro- OCH CONHが生成して!/、る
2 2
ことを確認した:
質量分析: MALDI- TOF m/z 2070.0 (計算値: 2070.1)
アミノ酸分析: Asp Thr Ser Pro Gly Ala Cys Val He Leu Lys His Arg
1.0 0.96 0.90 2.0 1 2.0 nd 1.0 0.94 3.0 0.97 1.0 0
.96 °
[0263] 下式にこの反応スキームを示す。
[0264] [化 45]
Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-SCH2CH2CO-Leu-NH2
+
Cys-His-Pro-lle-Arg-Leu-Cys(4-MeOBzl)-Pro-OCH2CONH2
Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-Pro-lle-Arg-Leu-Cys(4-MeOBzl)-Pro-OCH2CONH2
[0265] (2) Leu— Lvs—Asn— Thr— Ser— Val— Leu— Glv— Ala— Ala— Cvs— His— Pro— lie— Are— Leu— Cvs - Pro- OCH CONHの調製
'2 2
上記(1)で調製した Leu- Lys- Asn- Thr- Ser- Va卜 Leu- Gly- Ala- Ala- Cys- His- Pro- II e— Arg— Leu— Cvs(4— MeOBzl)— Pro— OCH CONH (2.5 mg,0.87 mol)をチオア-ソー
2 2
ル(0.047 mL)を含む TFA溶液(0.32 mL)に溶かし氷冷した後、トリフルォロメタンスル ホン酸 (0.036 mL)を加えて、氷冷下で 1時間反応させた。反応後、冷ジェチルエー テル 5 mLを加え、生じた沈殿を遠心分離により集めた。さらに、回収した沈殿物をジ ェチルエーテル(5 mL)で 2回洗浄した後、 50%ァセトニトリル Z水に溶解させて、次い でこれを凍結乾燥して白色粉末を取得した (収量: 2.5 mg)。
[0266] これを下記の分析に供して、 Leu- Lys- Asn- Thr- Ser- Va卜 Leu- Gly- Ala- Ala- Cys- H is- Pro- lie- Arg- Leu- Cys- Pro- OCH CONHが生成していることを確認した: 質量分析: MALDI- TOF m/z 1949.9 (計算値: 1950.0)。
[0267] [化 46]
Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-Pro-lle-Arg-Leu-Cys(4-MeOBzl)-Pro-OCH2CONH2
1
Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-Pro-lle-Arg-L8U-Cys-Pro-OCH2CONH2
[0268] (3) Leu— Lvs— Asn— Thr— Ser— Val— Leu— Glv— Ala— Ala— Cvs— His— Pro— lie— Are— Leu— Cvs -Pro-OCH CONHと C^s— As_p— lie— Leu— Leu— Glv_— NH (調製例 8)の反応による Leu-L
■2 2 2
vs— Asn— Thr— Ser— Val— Leu— Glv— Ala— Ala—し vs— His— Pro— He— Arg— Leu—し vs— Asp— He— L eu-Leu-Glv-NHの調製
2
上記( 2)で調製した Leu- Lys- Asn- Thr- Ser- Va卜 Leu- Gly- Ala- Ala- Cys- His- Pro- II e- Arg- Leu- Cys- Pro- OCH CONH (2.5 mg)と調製例 8で調製した Cys- Asp- lie- Leu
2 2
-Leu-Gly-NH (1.4 mg, 1.7 μ mol)に、 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリ
2
シン緩衝液 (pH 8.2) 0.20 mLをカ卩え、 24時間攪拌した。反応の進行は、実施例 1と同 様に HPLCおよび質量分析により追跡した。
[0269] 得られた反応液に DTT (8 mg)と酢酸(0.1 mL)を加え、これを逆相カラム YMC PAC K ProC18 (10 x 250 mm)に供し、 0.1% TFAを含むァセトニトリル水溶液を溶離液とし てァセトニトリルのグラジェントで溶出させた (流速 2.5 mL/分)。 220 nmの吸光度を検 出することにより、 Leu— Lys— Asn— Thr— Ser— Va Leu— Gly— Ala— Ala— Cys— His— Pro— lie— A rg-Leu-Cys-Asp-Ile-Leu-Leu-Gly-NHを含む画分を集め、これを凍結乾燥して白
2
色粉末を取得した(収量: 0.9 mg CO.Sl ^ mol, 36%) )。
[0270] この画分を下記の分析に供して、確かに Leu-Lys-Asn- Thr- Ser-Va卜 Leu-Gly-Ala -Ala- Cys- His- Pro- lie- Arg- Leu- Cys- Asp- lie- Leu- Leu- Gly-NHが生成しているこ
2
とを確認した:
質量分析: MALDI- TOF m/z 2306.2 (計算値: 2306.3)
アミノ酸分析: Asp Thr Ser Pro Gly Ala Cvs Val He Leu Lys His Ar
2.0 0.95 0.89 0.98 2 2.0 nd 0.96 1.89 4.9 0.98 2.0 g o
0.91
[0271] 下式にこの反応スキームを示す。
[0272] [化 47] Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-Pro-lle-Arg-Leu-Cys-Pro-OCH2CONH2
+
Cys-Asp-lle-Leu-Leu-Gly-NH2
Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-Pro-lle-Arg-Leu-Cys-Asp-lle-Leu-Leu-Gly-NH2
[0273] 上記実施例 9 (1)〜(3)の反応ステップの模式図を図 4に示す。図 4中、 peptidelは Leu— Lys— Asn— Thr— Ser— Val— Leu— tjly— Ala— Alaを、 peptide2i¾riis— Pro— lie— Arg— Leu 、また peptide3は Asp- lie- Leu- Leu- Gly- NHを意味する。また、 R1は- CH CH CO- L
2 2 2 eu-NH、 R2は— CH C H OCH— pゝおよび R3は— CH CONHを意味する。
2 2 6 4 3 2 2
[0274] ¾細 0 チォエステル化合物の製诰
Fmoc-His-Pro-Ile-Arg^Ala-Cvs-Pro-OCH CONH (調製例 2)を原料とした Fmoc- H
2 2
is- Pro- lie- Ar Ala- SCH CH CO Etの合成
2 2 '2
調製例 2で調製した Fmoc- His- Pro- lie- Arg- Ala- Cys- Pro- OCH CONH (0.78 mg,
2 2
0.48 μ mol)に、 50 mM 3-メルカプトプロピオン酸ェチルおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液 (pH 8.2) 0.12 mLをカ卩えて攪拌した。反応の進行は実施例 1と同様 に質量分析により追跡した。
反応 24時間後に、反応液に TCEP (トリス (2-カルボキシェチル)ホスフィン)塩酸塩 (6 mg)を加え、これを逆相カラム YMC PACK ProC18 (10 x 250 mm)に供して、 0.1% TF Aを含むァセトニトリル水溶液を溶離液としてァセトニトリルのグラジェントで溶出させ た(流速 2.5 mL/分)。 220 nmの吸光度を検出することにより、 Fmoc-His-Pro-Ile-Arg -Ala-SCH CH CO Etを含む画分を集め、これを凍結乾燥して白色粉末を取得した:
2 2 2
収量: 0.2 mg (0.20 mol, 41%)
質量分析: MALDI- TOF m/z 931.7 (計算値: 931.5)
アミノ酸分析: Pro Ala He His Arg 。
0.96 1 1.1 0.89 0.93
[0275] 実施例 11 岡相担体を用いた Fmoc- His- Pro- lie- Are- Ala- SCH CH CO Etの合
2 2" 2 成
Hし 1 · aminomethyl ChemMatrix樹月旨 (1.0 g,— NH:0.73 mmol, matrix innovation)を NMP(10 mL)で 3回洗浄し、 5% DIEA I NMP (10 mL)で 2分間、 3回処理した。 NMP (10 mL)で 3回洗浄した後、 NMP(8 mL)、 Fmoc— j8—Ala (0.47 g, 1.5 mmol)、 HOBt' H 0 (0.23 g, 1.5 mmol)、および DIPCI (0.24 mL, 1.5 mmol)を順次加え、 3時間振盪
2
した。 NMP(10 mL)で 3回洗浄した後、 10%無水酢酸と 5% DIEAを含む NMP溶液(10 mL)で 10分間処理した後、 NMP(10 mL)で 3回洗浄した。 20%ピぺリジン/ NMP (10 mL )で 5分、 10分および 10分処理した後、 NMP(10 mL)で 5回洗浄した。ついで、 NMP (8 mL)、グリコーノレ酸(0.12 g, 1.5 mmol)、 HOBt'H 0 (0.23 g, 1.5 mmol)、および DIP
2
CI (0.24 mL, 1.5 mmol)を順次加え、 2時間振盪した。 NMP(10 mL)で 5回洗浄した後 、 DMF (8 mL)ゝ HBTU (l.l g, 3.0 mmol)および DIEA (0.70 mL, 4.0 mmol)で 2分間活 性化した Fmoc- Pro (1.1 g, 3.0 mmol)を加え、 15時間振盪した。 NMPおよび MeOHの それぞれ 10 mLで 5回洗浄した後、減圧乾燥し、 Fmoc- Pro- OCH CO- j8 - Ala- NH-
2
榭脂(0.97 g)を得た。このうち 0.45 gの榭脂を NMP(6 mL)で 3回洗浄した後、 10%無 水酢酸と 5% DIEAを含む NMP溶液(6 mL)で 10分間処理した後、 NMP (6 mL)で 3回 洗浄した。 25%ピぺリジン/ NMP (8 mL)で 5分、 10分および 10分処理した後、 NMP(6 mL)で 5回洗浄した。 NMP(3 mL)、 Fmoc- Ala- Cys(Trt) (0.41 g, 0.60 mmol)、 HOObt (98 mg, 0.60 mmol)、および DIPCI (0.093 mL,0.60 mmol)を順次加え、 14時間振盪 した。 NMP(6 mL)で 3回洗浄した後、 10%無水酢酸および 5% DIEAを含む NMP溶液( 6 mL)で 10分間処理した後、 NMPおよび MeOHのそれぞれ 6 mLで 3回洗浄した後、 減圧乾燥し、 Fmoc— Ala— Cys(Trt)— Pro— OCH CO— j8— Ala— NH—榭脂(0.50 g, Fmoc:0.
2
35 mmol/g)を得た。この榭脂 0.15 gを用い、自動合成機 ACT440 Q型で Fmoc法 (0.1 mmolスケール、 DIPCI- HOBt)によって、保護ペプチド榭脂 Fmoc- His(Trt)- Pro- lie- A rg(Pmc)— Ala— Cys(Trt)— Pro— OCH CO— j8— Ala— NH—榭脂(0.18 g)を得た。
2
この榭脂 9.8 mgを、 5%水、 5%フエノール、および 2%トリイソプロビルシランを含む TFA 溶液(0.5 mL)で 2時間処理した後、エーテル 4 mLで 3回洗浄した。この樹脂に 20 mM THPおよび 6 M Gdnを含む 0.10 Mトリシン緩衝液(pH 8.2) 0.45 mLを加え、さらに 3- メルカプトプロピオン酸ェチル (0.050 mL)をカ卩えて 24時間攪拌した。この溶液に酢 酸 0.25 mLを加え,逆相カラム YMC PACK ProC18 (10 x 250 mm)に力けて、 0.1% T FAを含むァセトニトリル水溶液を溶離液として、流速 1.0 mL/分で,ァセトニトリルのグ ラジェントで溶出し、 220 nmの吸光度により検出し、 Fmoc- His- Pro- lie- Arg- Ala- SC H CH CO Etを含む画分を集め、これを凍結乾燥して白色粉末を得た。収量を下記 に示す:
収量: 0.26 iu mol (9.3%) 0
[0277] 図 5にこの反応スキームを示す。
図面の簡単な説明
[0278] [図 1]本発明のライゲーシヨン方法およびチォエステルイ匕合物の製造に使用するぺプ チドエステルの製造方法を示す模式図である。
[図 2]本発明のライゲーシヨン方法の一例を示す図である。
[図 3]実施例 1の反応スキームと出発原料と生成物のクロマトグラムを示す図である。
[図 4]実施例 9 (1)〜(3)の反応ステップの模式図を示す。図中、 peptide 1は Leu-Lys - Asn- Thr- Ser- Vaト Leu- Gly- Ala- Alaを、 peptiae2は His- Pro- lie- Arg- Leuを、また pe ptide3は Asp- lie- Leu- Leu- Gly- NHを意味する。また、 R1は- CH CH CO- Leu- NH
2 2 2 2
、 R2は— CH C H OCH— p、および R3は— CH CONHを意味する。
2 6 4 3 2 2
[図 5]実施例 11におけるペプチドチォエステルイ匕合物の製造方法を示す模式図であ る。

Claims

請求の範囲 一般式 (1) :
[化 1] γ (1)
Figure imgf000061_0001
(式中、 Xはカルボキシル基と結合して X-COOHを形成しえる基; Yは水素原子、ま たは少なくとも炭素原子を 1以上含む基; Rは水素原子、少なくとも 1つの炭素原子 を含むチオール基を有する基、または少なくとも 1つの炭素原子を含むチオール基を 有しない基; Rは水素原子または少なくとも 2以上の連続した炭素原子を含むチォー
3
ル基を有する基を示す。 )
で示される化合物を製造する方法であって、
(a) :—般式 (2)
[化 2]
Figure imgf000061_0002
(式中、 Xは前記と同一; Cysはシスティン残基、 Rは、カルボキシル基の— OHが置
2
換されたアミノ酸残基を有する基を示す。 )
で示される化合物と、
一般式 (3)
[化 3]
Ri
、 Y (3)
(式中、 Y、 Rおよび Rは前記と同一。但し、 Rと Rのいずれか一方はチオール基を
1 3 1 3
有する基である。 ) で示されるチオールィヒ合物とを反応させて、上記化合物(2)のカルボニル基とチォ ール化合物(3)のァミノ基またはイミノ基をアミド結合させる工程を有する方法。
[2] 一般式 (1 ' ) :
[化 4]
χ Y d ')
Figure imgf000062_0001
(式中、 Xはカルボキシル基と結合して Χ-COOHを形成しえる基; Υは水素原子、ま たは少なくとも炭素原子を 1以上含む基; Rは水素原子、少なくとも 1つの炭素原子 を含むチオール基を有する基、または少なくとも 1つの炭素原子を含むチオール基を 有しない基を示す。)
で示される化合物を製造する請求項 1に記載する方法であって、
(b):上記 (a)工程で得られた下式:
[化 5]
(r)
Figure imgf000062_0002
(式中、 X、 Yおよび Rは前記の通り。 R 'は少なくとも 2以上の連続した炭素原子を
1 3
含むチオール基を有する基を示す。 )
で示される化合物(1")に対して、さらに R
3 'の脱離処理を行う工程を有する方法。
[3] 一般式 (4) :
[化 6]
Figure imgf000062_0003
(式中、 Xはカルボキシル基と結合して X-COOHを形成し得る基; Rは隣接カルボ -ル基とともにエステル構造を形成する基を示す。 )
で示されるシステュルプ口リルエステル化合物を、
一般式 (5)
[化 7]
HSヽ
H2N/ ヽ Y (5)
(式中、 Yは水素原子、または少なくとも炭素原子を 1以上含む基である。 ) で示されるチオールィヒ合物と反応させて、上記化合物 (4)の Xに隣接したカルボ- ル基とチオール化合物(5)のアミノ基をアミド結合させて、
一般式 (6) :
[化 8]
Figure imgf000063_0001
(式中、 Xおよび Yは上記と同じ。 )
で示される化合物を製造する、請求項 1記載の方法。
[4] (a) :—般式 (4) :
[化 9]
Figure imgf000063_0002
(式中、 Xは力ルポキシル基と結合して X-COOHを形成し得る基; Rは隣接力ルポ
4
ニル基とともにエステル構造を形成する基を示す。 )
で示されるシステュルプ口リルエステル化合物を、
一般式 (7)
[化 10]
Figure imgf000064_0001
(式中、 Yは水素原子または少なくとも炭素原子を 1以上含む基; は水素原子また は少なくとも 1つの炭素原子を含む基; A—SHは、置換基を有していてもよい、少な くとも 2つの炭素を有するアルキレンチオール基、少なくとも 2つの炭素を有するォキ シアルキレンチオール基、またはメルカプトベンジル基を示す。 )
で示されるチオールィヒ合物と反応させて、上記化合物 (4)の Xに隣接したカルボ- ル基とチオール化合物(7)のイミノ基をアミド結合させて、
一般式 (8) :
[化 11]
Figure imgf000064_0002
(式中、 X、 Y、 Rおよび— A—SHは上記と同じ。 )
で示される化合物を製造する工程、および
(b):次いで、上記化合物(8)から— A—SH基を除去して、
一般式 (1 ' ):
[化 12]
Figure imgf000064_0003
(式中、 X、 Yおよび Rは上記と同じ。 )
で示される化合物を製造する工程を有する、請求項 2に記載する方法。
一般式(1)で示される化合物および一般式 (2)で示される化合物が、これらの式中 「X— CO—」で示される基として、修飾されていてもよい、アミノ酸、 2以上のアミノ酸 からなるペプチド、またはタンパク質の残基を有するものである、請求項 1に記載する 方法。
[6] 一般式(1)で示される化合物および一般式 (3)で示される化合物が、これらの式中 「Y」で示される基として、修飾されていてもよい、アミノ酸、 2以上のアミノ酸カゝらなる ペプチド、またはタンパク質の残基を有するものである、請求項 1に記載する方法。
[7] 一般式 (2)
[化 13]
Figure imgf000065_0001
(式中、 X— CO—は、修飾されていてもよい、アミノ酸、 2以上のアミノ酸力 なるぺプ チド、またはタンパク質の残基であり、 Cysはシスティン残基、 Rは、修飾されていて
2
もよい、カルボキシル基の一 OHが置換されたアミノ酸残基を示す。 )
で示されるライゲーシヨン用ペプチドエステル。
[8] 一般式 (2)中、 X— CO—力 N末端のアミノ酸のァミノ基に保護基を有する、ァミノ 酸、 2以上のアミノ酸からなるペプチド、またはタンパク質の残基であり、 Rが直接ま
2 たは間接的に固相担体に結合して固定ィ匕されてなるものである、請求項 7記載のライ ゲーシヨン用ペプチドエステノレ。
[9] 請求項 7に記載するライゲーシヨン用ペプチドエステルを含む、ペプチドライゲーシ ヨン用試薬。
[10] 請求項 7に記載するライゲーシヨン用ペプチドエステルを少なくとも 1つ含む、ぺプ チドまたはタンパク質の合成キット。
[11] さらに、一般式 (3)
[化 14]
Figure imgf000065_0002
(式中、 Yは、ァミノ基がカルボニル基と結合してなるアミノ酸、 Ν末端のアミノ酸のアミ ノ基がカルボニル基と結合してなる 2以上のアミノ酸残基力もなるペプチドまたはタン パク質の残基; Rは水素原子、少なくとも 1つの炭素原子を含むチオール基を有する 基、または少なくとも 1つの炭素原子を含むチオール基を有しない基; Rは水素原子
3 または少なくとも 2以上の連続した炭素原子を含むチオール基を有する基を示す。伹 し、 Rと Rのいずれか一方はチオール基を有する基である。 )
1 3
で示されるアミノチオールィ匕合物を含有する、請求項 10に記載するペプチドまたはタ ンパク質の合成キット。
[12] 上記 Rで示される「少なくとも 1つの炭素原子を含むチオール基を有する基」が炭 素数 1〜3のアルキレンチオール基であり、 Rで示される「少なくとも 2以上の連続し
3
た炭素原子を含むチオール基を有する基」が、置換基を有していてもよい炭素数 2〜 3のアルキレンチオール若しくはォキシアルキレンチオール基、または置換基を有し て!、てもよ 、メルカプトべンジル基である、請求項 11に記載するペプチドまたはタン パク質の合成キット。
[13] 一般式 (2)
[化 15]
Figure imgf000066_0001
(式中、 Xはカルボキシル基と結合して X-COOHを形成し得る基; Cysはシスティン 残基、 Rは、修飾されていてもよい、カルボキシル基の OHが置換されたアミノ酸
2
残基を示す。 )
で示される化合物を、チオール化合物 (R—SH)と反応させる工程を有する、
6
下式 (9)
[化 16]
Figure imgf000066_0002
(式中、 Xは前記と同一; Rは、置換基を有していてもよいアルキル基、置換基を有し ていてもよいフエニル基、置換基を有していてもよいべンジル基、または置換基を有 していてもよいアルキレンスルホン酸基を示す。)
で示されるチォエステル化合物の製造方法。
[14] 一般式 (2)
[化 17]
Figure imgf000067_0001
(式中、 X— CO は、修飾されていてもよい、アミノ酸、 2以上のアミノ酸力 なるぺプ チド、またはタンパク質の残基であり、 Cysはシスティン残基、 Rは修飾されていても
2
よい、カルボキシル基の OHが置換されたアミノ酸残基を示す。 )
で示されるペプチドフラグメントを含むチォエステル合成試薬。
[15] 一般式(2)中、 X—CO は、修飾されていてもよいアミノ酸、 2以上のアミノ酸から なるペプチド、またはタンパク質の残基であり、 Rが直接または間接的に固相担体に
2
結合して固定ィ匕されてなるものである、請求項 14記載のチォエステル合成試薬。
[16] 請求項 14に記載するペプチドフラグメントを少なくとも 1つ含む、ペプチドチォエス テル合成キット。
[17] さらにチオールィ匕合物 (R— SH)を含む、請求項 16に記載するペプチドチォエス
6
テル合成キット。
PCT/JP2006/320392 2005-10-14 2006-10-12 ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用 WO2007043615A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007539982A JPWO2007043615A1 (ja) 2005-10-14 2006-10-12 ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-300947 2005-10-14
JP2005300947 2005-10-14

Publications (1)

Publication Number Publication Date
WO2007043615A1 true WO2007043615A1 (ja) 2007-04-19

Family

ID=37942840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320392 WO2007043615A1 (ja) 2005-10-14 2006-10-12 ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用

Country Status (2)

Country Link
JP (1) JPWO2007043615A1 (ja)
WO (1) WO2007043615A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060620A1 (ja) * 2007-11-08 2009-05-14 Fujifilm Corporation ポリペプチドの製造方法
WO2010150730A1 (ja) * 2009-06-26 2010-12-29 大塚化学株式会社 ペプチドチオエステル体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117796A (ja) * 1987-10-30 1989-05-10 Toray Ind Inc タンパク質の回収方法
JPH04346999A (ja) * 1991-05-24 1992-12-02 Ichikawa Gosei Kagaku Kk 鎖状ペプチドおよびその製造方法
WO1997031896A1 (fr) * 1996-03-01 1997-09-04 Sankyo Company, Limited Derives de thiazolidine
JPH11217397A (ja) * 1997-11-27 1999-08-10 Saburo Aimoto ペプチドチオールエステルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117796A (ja) * 1987-10-30 1989-05-10 Toray Ind Inc タンパク質の回収方法
JPH04346999A (ja) * 1991-05-24 1992-12-02 Ichikawa Gosei Kagaku Kk 鎖状ペプチドおよびその製造方法
WO1997031896A1 (fr) * 1996-03-01 1997-09-04 Sankyo Company, Limited Derives de thiazolidine
JPH11217397A (ja) * 1997-11-27 1999-08-10 Saburo Aimoto ペプチドチオールエステルの製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AIMOTO S.: "Sentakuteki Shukugoho ni Motozuku Tanpakushitsu Goseiho no Tenkai", HEISEI 16 NENDO KAGAKU KEIGAKU KYOKAI TOHOKU TAIKAI PUROGURAMU OYOBI KOEN YOKOSHU, 17 September 2004 (2004-09-17), pages 43, XP003010447 *
CHOU S.-H. ET AL.: "Enzymatic Synthesis of Oligopeptide. Part I. Papain-Catalyzed Synthesis of Dipeptide, Tripeptide and Tetrapeptide", JOURNAL OF THE CHINESE CHEMICAL SOCIETY, vol. 25, no. 4, 1978, pages 215 - 218, XP003010446 *
HARRIS R.B. ET AL.: "Purification of human serum angiotensin I-converting enzyme by affinity chromatography", ANALYTICAL BIOCHEMISTRY, vol. 111, no. 2, 1981, pages 227 - 234, XP003010445 *
LEWIS R. ET AL.: "Contractile activities of structural analogs of leukotrienes C and D: role of the polar substituents", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 78, no. 7, 1981, pages 4579 - 4583, XP003010444 *
LOW D.W. ET AL.: "Total synthesis of cytochrome b562 by native chemical ligation using a removable auxil", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 98, no. 12, 2001, pages 6554 - 6559, XP002241361 *
SUMITA E. ET AL.: "N-S Acyl Group Ten'I Hanno o Riyo shita Fmoc-ho ni yoru Peptide-Thioester Choseiho no Kaihatsu", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 85 SHUNKI NENKAI, 11 March 2005 (2005-03-11), pages 856 (LECTURE NO.: 3 A2-14), XP003010448 *
ZHU X. ET AL.: "Synthesis of an S-linked glycopeptide analog derived from human Tamm-Horsfall glycoprotein", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 2, no. 1, 2004, pages 31 - 33, XP003010443 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060620A1 (ja) * 2007-11-08 2009-05-14 Fujifilm Corporation ポリペプチドの製造方法
WO2010150730A1 (ja) * 2009-06-26 2010-12-29 大塚化学株式会社 ペプチドチオエステル体の製造方法
CN102803286A (zh) * 2009-06-26 2012-11-28 大塚化学株式会社 肽硫酯的制造方法
AU2010263701B2 (en) * 2009-06-26 2014-01-23 Glytech, Inc. Process for production of peptide thioester
US8642725B2 (en) 2009-06-26 2014-02-04 Glytech Inc. Process for production of peptide thioester
RU2529998C2 (ru) * 2009-06-26 2014-10-10 Глитек,Инк. Способ получения тиоэфира пептида
JP5730197B2 (ja) * 2009-06-26 2015-06-03 株式会社糖鎖工学研究所 ペプチドチオエステル体の製造方法
US9127041B2 (en) 2009-06-26 2015-09-08 Glytech, Inc. Process for production of peptide thioester

Also Published As

Publication number Publication date
JPWO2007043615A1 (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
JP2000512633A (ja) チオエーテル結合を含む環状ポリペプチドおよびそれらの調製方法
CN115925790A (zh) 用于合成α4β7肽拮抗剂的方法
Monsó et al. Reverse thioether ligation route to multimeric peptide antigens
Decostaire et al. Solid phase oxime ligations for the iterative synthesis of polypeptide conjugates
TWI548645B (zh) A method for producing a glycopeptide having a sialic acid sugar chain, a sialic acid sugar chain addition amino acid derivative used in the production method, and a glycopeptide
Katayama et al. The phenacyl group as an efficient thiol protecting group in a peptide condensation reaction by the thioester method
Nakamura et al. Peptide thioester synthesis via an auxiliary-mediated N–S acyl shift reaction in solution
Nakamura et al. Synthesis of peptide thioesters via an N–S acyl shift reaction under mild acidic conditions on an N‐4, 5‐dimethoxy‐2‐mercaptobenzyl auxiliary group
Katayama et al. N-methyl-phenacyloxycarbamidomethyl (Pocam) group: A novel thiol protecting group for solid-phase peptide synthesis and peptide condensation reactions
CN111040020A (zh) 一种烯烃硫醚类订书肽及其制备方法与应用
Chen et al. Mature homogeneous erythropoietin-level building blocks by chemical synthesis: the EPO 114–166 glycopeptide domain, presenting the O-linked glycophorin
WO2007043615A1 (ja) ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用
JP2008150393A (ja) 拡張天然型化学的ライゲーション
Rijkers et al. A convenient solid phase synthesis of S-palmitoyl transmembrane peptides
JP2022527041A (ja) プレカナチドを製造する改善された方法
Atherton et al. Peptide synthesis. Part 6. Protection of the sulphydryl group of cysteine in solid-phase synthesis using N α-fluorenylmethoxycarbonylamino acids. Linear oxytocin derivatives
JP4339797B2 (ja) 非標的部位のアミンが保護されたペプチド、その製造方法、及びこれを利用したpegが特異的に接合されたペプチドの製造方法
AU2014234400B2 (en) Synthesis of hydantoin containing peptide products
Kitagawa et al. Total chemical synthesis of large CCK isoforms using a thioester segment condensation approach
Gatos et al. Comparison of the stepwise and convergent approaches in the solid-phase synthesis of rat Tyr o-atriopeptin II
JP6858950B2 (ja) 液相法によるセレノグルタチオンの製造方法
US20040132966A1 (en) Backbone anchored thioester and selenoester generators
EP1904515B1 (en) Side-chain extended ligation
US20100204449A1 (en) Methods and intermediates for chemical synthesis of polypeptides and proteins
AU2001288937A1 (en) Extended native chemical ligation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821845

Country of ref document: EP

Kind code of ref document: A1