WO2010150730A1 - ペプチドチオエステル体の製造方法 - Google Patents
ペプチドチオエステル体の製造方法 Download PDFInfo
- Publication number
- WO2010150730A1 WO2010150730A1 PCT/JP2010/060443 JP2010060443W WO2010150730A1 WO 2010150730 A1 WO2010150730 A1 WO 2010150730A1 JP 2010060443 W JP2010060443 W JP 2010060443W WO 2010150730 A1 WO2010150730 A1 WO 2010150730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- peptide
- thiol
- nhr
- cysteine residue
- Prior art date
Links
- AHWALFGBDFAJAI-UHFFFAOYSA-N O=C(Oc1ccccc1)Cl Chemical compound O=C(Oc1ccccc1)Cl AHWALFGBDFAJAI-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/1072—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
- C07K1/1077—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/06—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/1072—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/12—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
Definitions
- the present invention relates to a method for producing a peptide thioester.
- a protein is obtained by introducing into a cell and expressing DNA encoding a protein intended for synthesis using the inside of a cell such as Escherichia coli. Chemical synthesis synthesizes a target protein by organically coupling amino acids in order.
- cell-free synthesis proteins are synthesized cell-free using enzymes or the like present in various cells such as Escherichia coli. These methods can be appropriately used or combined according to the purpose of use of the protein, the size, the properties to be added, and the like.
- a method of chemically synthesizing a peptide chain is used.
- a solid phase synthesis method is mainly used.
- the peptide chain obtained by the solid phase synthesis method is generally a short chain and is about 50 residues at the longest.
- NCL method Native Chemical Ligation
- the NCL method is a chemoselective reaction between a first peptide having an ⁇ -carboxythioester moiety at the C-terminus and a second peptide having a cysteine residue at the N-terminus.
- Group also referred to as sulfhydryl group
- sulfhydryl group reacts selectively with the carbonyl carbon of the thioester group, and a thioester bond initial intermediate is formed by a thiol exchange reaction.
- This intermediate spontaneously undergoes intramolecular rearrangement to give a natural amide bond at the linking site while regenerating the cysteine side chain thiol.
- This method is a technique in which two peptide chains can be linked via a peptide bond simply by mixing in a buffer solution using an unprotected peptide.
- the NCL method can selectively link one peptide C-terminal and the other peptide N-terminal, even if the reaction is between compounds having many functional groups such as peptides. From this point, it is important how to use the NCL method to chemically synthesize proteins.
- the first is a method of constructing a peptide thioester on a resin.
- a peptide thioester can be obtained together with the cleavage of the peptide chain from the resin after the peptide construction (eg, Boc solid phase synthesis method, Fmoc solid phase synthesis method).
- the second is a method of constructing a peptide chain on a solid phase via a linker equivalent to a thioester (Safety Catching linker, Fujii method, Dawson method, Mercaptoprophetol method, Kawakami method, Kawakami method). method, etc.).
- This method is a method for obtaining a thioester by thiolysis of a peptide chain after activating the constructed C-terminal of the peptide chain by performing an appropriate treatment with a linker (Non-patent Document 1).
- Intein method is a method that solves the limitation of thioesterification by solid phase synthesis (Non-patent Document 2). This is a method by which polypeptide fragments biosynthesized by cells can be obtained as thioesters.
- a peptide chain is thioesterified by utilizing a protein splicing function that occurs in a specific protein sequence, and a polypeptide chain is obtained as a thioester form.
- the useful point of this method is that a long-chain peptide thioester can be obtained.
- Non-patent Document 3 Methods for expressing and obtaining polypeptide chains have already been extensively studied and are well established as basic biological techniques.
- Non-Patent Documents 4 and 5 A method for cleaving peptides bound to a solid phase by using them is known (Non-Patent Documents 6 and 7). Also known is a method of cleaving a peptide bond on the C-terminal side of a methionine residue using cyanogen bromide (CNBr). However, these are not methods for obtaining peptide fragments as thioesters.
- the peptide thioesterification method as shown in the background art is limited to peptide chains obtained by solid phase synthesis of peptides capable of thioesterification and peptide chains that are targets for protein splicing. This is because each method requires a non-natural amino acid derivative, a linker, a specific three-dimensional structure, and the like.
- an object of the present invention is to provide a novel method for chemically converting a polypeptide chain into a peptide thioester.
- the present inventors considered that a method for selectively activating the peptide C-terminus by targeting a natural amino acid residue in the peptide sequence was necessary. If it is such a method, even if it is a peptide obtained by what kind of methods, such as biosynthesis, a peptide chain can be activated selectively and thioesterification can be performed.
- a cysteine residue that is a special sulfur-containing amino acid among natural amino acids.
- a compound having a leaving group represented by 3 a —NH—C ( ⁇ Y) NHR 3 group is added to the carboxyl group of the peptide bond on the N-terminal side of the cysteine residue, and the peptide bond is cleaved. And found that the C-terminal peptide fragment was excised.
- a thionoformate group was first introduced into the thiol group of a cysteine residue.
- the thionoformate group By reacting the thionoformate group with N-acetylguanidine in an organic solvent, the peptide chain is cleaved at the N-terminal side of the cysteine residue, and the C-terminal is converted to N-acetylguanidide.
- the obtained peptide chain was obtained. Further, this N-acetylguanidated peptide chain reacted with thiol R 4 -SH in a buffer solution to convert it into a peptide thioester.
- the present inventors have found that the peptide chain obtained by the above and having a C-terminal converted to N-acetylguanidide and a peptide thioester can be used in the NCL method.
- a method for producing a peptide thioester comprising the following steps (a) to (c): (A) In the peptide chain having a cysteine residue, the thiol group of the cysteine residue has the following formula (I): [Where: X is a sulfur atom or an oxygen atom, R 1 and R 2 are leaving groups.
- the first intermediate has the following formula (II): [Where: Y is an oxygen atom, a sulfur atom, or an NH group, R 3 is a hydrogen atom, an acyl group, or an alkoxycarbonyl group.
- the thiol is represented by the following formula (III); R 4 —SH (Formula III) [Wherein, R 4 represents any one group selected from a substituted or unsubstituted benzyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted alkyl group. ]
- the first intermediate has the following formula (II): [Where Y is an oxygen atom, a sulfur atom, or an NH group, R 3 is a hydrogen atom, an acyl group, or an alkoxycarbonyl group.
- a peptide chain having [13] Production of a polypeptide comprising the step of linking a peptide chain having a —NH—C ( ⁇ Y) NHR 3 group at the C-terminus and a peptide chain having a cysteine at the N-terminus according to the ligation method as described in [12] Method.
- a method for removing a purification tag added to the C-terminal side of a recombinant protein comprising the following steps (a) to (c): (A) In a recombinant protein containing a purification tag at the C-terminus, the thiol group of the cysteine residue has the following formula (I): [Where: X is a sulfur atom or an oxygen atom, R 1 and R 2 are leaving groups.
- the first intermediate has the following formula (II): [Where: Y is an oxygen atom, a sulfur atom, or an NH group, R 3 is a hydrogen atom, an acyl group, or an alkoxycarbonyl group.
- a novel method for chemically converting a polypeptide chain into a peptide thioester is provided.
- thioesterification is possible even in a peptide chain not having a non-natural amino acid derivative or linker or a specific tertiary structure, which is necessary for a conventional thioesterification method. Therefore, even a long polypeptide fragment obtained by biosynthesis or the like can be easily thioesterified.
- the modification is a sugar chain
- a fragment containing an amino acid to which a naturally linked sugar chain is added is chemically synthesized, the other part is prepared by biosynthesis, and thioesterified by the method of the present application, By linking, a longer-chain sugar chain peptide can be easily produced.
- a method of adding a sugar chain or the like to a peptide chain via a linker is known, and this can be added to a biosynthesized long chain peptide.
- this sugar chain binding method via a linker uses a specific amino acid or structure to bind sugar chains and the like.
- a peptide fragment containing only the desired binding site is excised from the long peptide and Add a chain, thioesterify the glycosylated peptide fragment using the thioesterification method of the present application, and relink it with the remaining part to add a sugar chain more easily and site-selectively than in the past. You can also.
- the full-length protein in the case of a peptide fragment, it may be recognized as a mistake in the cell and may not be normally expressed, such as being degraded.
- biosynthesizing the full-length protein cut out only the fragment of the part to be modified, perform the necessary modification, etc., and then thioesterify the modified peptide fragment using the method of the present application, It is also possible to obtain the desired modified protein by religation.
- the peptide thioesterification method of the present invention is useful in general protein synthesis.
- the present invention is a method for producing a novel peptide thioester, which comprises the following steps (a) to (c):
- the first intermediate has the following formula (II): [Where Y is an oxygen atom, a sulfur atom, or an NH group, R 3 is a hydrogen atom, an acyl group, or an alkoxycarbonyl group.
- the “peptide” is not particularly limited as long as two or more amino acids are bonded by an amide bond, and includes known peptides, novel peptides, and peptide variants.
- a protein is also included in a peptide.
- polypeptide is also included in the peptide.
- the peptide chain used in the method of the present invention may be a natural protein or a peptide chain obtained by a method such as biosynthesis, chemical synthesis or cell-free synthesis.
- the “peptide variant” includes a natural variant of a peptide, a post-translational modification, or an artificially modified compound.
- modifications include, for example, alkylation, acylation (eg acetylation), amidation (eg peptide C-terminal amidation), carboxylation, ester formation of one or more amino acid residues of the peptide , Disulfide bond formation, glycosylation, lipidation, phosphorylation, hydroxylation, binding of labeling components, and the like.
- the “amino acid” is used in its broadest sense, and is a natural amino acid such as serine (Ser), asparagine (Asn), valine (Val), leucine (Leu), isoleucine (Ile), alanine ( Ala), tyrosine (Tyr), glycine (Gly), lysine (Lys), arginine (Arg), histidine (His), aspartic acid (Asp), glutamic acid (Glu), glutamine (Gln), threonine (Thr), cysteine (Cys), methionine (Met), phenylalanine (Phe), tryptophan (Trp), proline (Pro) as well as unnatural amino acids such as amino acid variants and derivatives.
- amino acids in the present invention for example, L-amino acids; D-amino acids; chemically modified amino acids such as amino acid variants and derivatives; norleucine, ⁇ -alanine, ornithine, etc. It will be understood that amino acids that are not constituents of proteins in vivo; and chemically synthesized compounds that have amino acid properties known to those skilled in the art.
- the peptide chain to be thioesterified is not particularly limited as long as it is a peptide chain containing a cysteine residue.
- the origin, synthesis method, size, etc. of the peptide chain are not particularly limited.
- the number of cysteine residues contained in the peptide chain used in the present invention is not particularly limited, but the peptide chain is cleaved targeting the cysteine residue. Therefore, although it is necessary to design the basic skeleton of the protein to be finally synthesized depending on the position having a cysteine residue, such a design can be easily made by those skilled in the art.
- thioesterification is performed only at the position of the desired cysteine residue, so that the remaining cysteine residues are not affected by the reaction.
- the cysteine residue may be protected with a protecting group or the like in advance. Examples of such protecting groups include Acm groups.
- the peptide chain used in the present invention may have a fat-soluble protective group on the N-terminal side.
- Preferred protecting groups include acyl groups such as acetyl (Ac) group, carbonyl-containing groups such as t-butyloxycarbonyl (Boc) group, 9-fluorenylmethoxycarbonyl (Fmoc) group, and allyloxycarbonyl (Alloc) group. , Allyl group, benzyl group and the like, but are not limited thereto.
- the peptide chain used in the method of the present invention may be a natural protein, or may be a peptide chain obtained by a method such as biosynthesis, chemical synthesis or cell-free synthesis. Alternatively, it is a recombinant protein expressed in cells.
- a recombinant protein may have the same peptide sequence as a natural protein as long as it is artificially expressed in cells or cells, or has a peptide sequence with modifications such as mutation and purification tags It may be.
- the recombinant protein used in the present invention can be prepared by methods known to those skilled in the art.
- the gene of interest can be introduced into a recombinant vector and expressed.
- the recombinant vector used in the present invention is not limited as long as it can transform a host cell.
- a plasmid for E. coli, a plasmid for Bacillus subtilis, a plasmid for yeast, a retrovirus, a vaccinia virus, Animal virus vectors such as baculovirus are used.
- These preferably have a control sequence such as a promoter capable of appropriately expressing the protein in the host cell.
- any host cell that can express a foreign gene with a recombinant vector may be used.
- Escherichia coli, Bacillus subtilis, yeast, insect cells, animal cells, and the like are used.
- a commonly used method may be used.
- a calcium chloride method or an electroporation method in the case of Escherichia coli, a calcium chloride method or an electroporation method, and in the case of yeast, a lithium chloride method or an electroporation method.
- the poration method can be used.
- Animal cells can be transformed using physical methods such as electroporation, chemical methods such as the liposome method and calcium phosphate method, or viral vectors such as retroviruses.
- the culture form of the host cell as a transformant may be selected in consideration of the nutritional physiological properties of the host.
- the peptide used in the present invention is preferably purified.
- the method for purifying the peptide can be performed by ordinary general purification.
- the cells or cells are collected by a known method, suspended in an appropriate buffer, After disrupting cells or cells by ultrasonic waves, lysozyme and / or freeze-thawing, a crude peptide extract is prepared by centrifugation or filtration.
- the buffer solution may contain a protein denaturant such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 TM.
- the peptide contained in the thus obtained extract or culture supernatant can be purified by a known purification method.
- peptide separation and purification can be performed by appropriately selecting and combining affinity chromatography, ion exchange chromatography, filter, ultrafiltration, gel filtration, electrophoresis, salting out, dialysis and the like.
- a purification tag can be incorporated into the expression vector.
- the purification tag include His tag, GST tag, Myc tag, FLAG tag, and maltose binding protein (MBP).
- MBP maltose binding protein
- a purification tag is added to the C-terminal side of the peptide, and thioesterification is performed after purification, whereby Cys in the peptide chain is obtained.
- the C-terminal side is truncated together with the tag, and a peptide thioester can be obtained efficiently.
- the method of the present invention can also be used for removing the C-terminal tag. Therefore, a method for removing the purification tag added to the C-terminal of the recombinant protein using the method for producing a peptide thioester of the present invention is also included in the present invention.
- a “peptide thioester form” refers to a peptide having a carboxythioester moiety (—C ⁇ O—SR) at the C-terminus.
- the peptide thioester used in the present invention is not particularly limited as long as it is a thioester that can undergo an exchange reaction with other thiol groups. Examples of the R group include groups exemplified by the following R 4 .
- X is a sulfur atom or an oxygen atom, preferably a sulfur atom.
- R 1 and R 2 are particularly limited as long as the leaving group has a nucleophilic property lower than the substituted atom or atomic group under the reaction conditions in the following step (a) and has a function of being eliminated. Although not preferred, R 1 and R 2 are preferably different leaving groups.
- R 1 and R 2 include a halogen atom, a substituted or unsubstituted —O-alkyl group, a substituted or unsubstituted —O-alkenyl group, a substituted or unsubstituted —O-alkynyl group, substituted or unsubstituted Substituted -O-aryl group, substituted or unsubstituted -O-heteroaryl group, substituted or unsubstituted -S-alkyl group, substituted or unsubstituted -S-alkenyl group, substituted or unsubstituted -S- Examples thereof include an alkynyl group, a substituted or unsubstituted —S-aryl group, and a substituted or unsubstituted —S-heteroaryl group.
- R 1 is a substituted or unsubstituted -O-C 6-10 aryl group, and is selected from the group consisting of substituted or unsubstituted -S-C 1-8 alkyl group leaving group
- R 2 is a halogen atom, a substituted or unsubstituted -S-C 1-8 alkyl group, leaving selected from the group consisting of substituted or unsubstituted -S-C 6-10 aryl group The combination which is group is mentioned.
- an “alkyl group” is a monovalent group derived by removing an arbitrary hydrogen atom from an aliphatic hydrocarbon, and represents a hydrocarbyl or hydrocarbon subset containing hydrogen and carbon atoms.
- the alkyl group includes a linear or branched structure.
- the alkyl group of the present invention is preferably an alkyl group having 1 to 8 carbon atoms.
- the “C 1-8 alkyl group” refers to an alkyl group having 1 to 8 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group. Group, octyl group and the like.
- the “alkenyl group” is a monovalent group having at least one double bond. Depending on the arrangement of the double bond and the substituent, the geometric form of the double bond can take an
- E an
- tszanmen (Z) tszanmen
- the alkenyl group includes a straight chain or a branched chain.
- the alkenyl group of the present invention is preferably an alkenyl group having 2 to 8 carbon atoms.
- the “C 2-8 alkenyl group” refers to an alkenyl group having 2 to 8 carbon atoms.
- the “alkynyl group” is a monovalent group having at least one triple bond.
- the alkynyl group includes a linear or branched alkynyl group.
- the alkynyl group of the present invention is preferably an alkynyl group having 2 to 8 carbon atoms.
- “C 2-8 alkynyl group” means an alkynyl group having 2 to 8 carbon atoms, and specific examples thereof include ethynyl group, 1-propynyl group, 2-propynyl group, butynyl group, pentynyl group, hexynyl group. , Heptynyl group, octynyl group and the like.
- the “aryl group” means an aromatic hydrocarbon cyclic group.
- the aryl group of the present invention is preferably an aryl group having 6 to 10 carbon atoms.
- the “C 6-10 aryl group” refers to an aryl group having 6 to 10 carbon atoms, and specific examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like.
- a “heteroaryl group” means a monovalent or divalent group derived from one or two hydrogen atoms at any position from a heteroaryl ring.
- the “heteroaryl ring” means an aromatic ring containing one or more heteroatoms in the atoms constituting the ring, preferably a 5-9 membered ring.
- the ring may be a monocyclic ring or a bicyclic heteroaryl group fused with a benzene ring or a monocyclic heteroaryl ring.
- furanyl group thiophenyl group, pyrrolyl group, benzofuranyl group, benzothiophenyl group, indolyl group, pyridyl group, quinolinyl group and the like.
- the type, number, and substitution position of the substituents in the above-mentioned leaving group are not particularly limited.
- substituents include alkyl groups, alkenyl groups, alkoxy groups, aryl groups, formyl groups, carbonyl groups, carboxyl groups, and alkyl groups.
- examples include a carboxyl group, an alkoxycarbonyl group, a halogen, a sulfonyl group, and a nitro group.
- step (a) is preferably carried out under acidic conditions, particularly preferably at pH 3-5.
- the reaction is preferably performed in a mixed solvent of buffer and acetonitrile at 0 to 50 ° C., preferably 15 to 25 ° C., for about 0.1 to 3 hours, preferably 10 minutes to 1 hour, but is not limited thereto. .
- compound B is represented by the following formula (II).
- Y is an oxygen atom, an NH group, or a sulfur atom
- R 3 is a hydrogen atom, an acyl group, or an alkoxycarbonyl group.
- acyl group means an atomic group obtained by removing an OH group from a carboxyl group of a carboxylic acid.
- the acyl group of the present invention is preferably an acyl group having 1-4 carbon atoms. Specifically, an acetyl group, a propionyl group, a butyroyl group, etc. are mentioned, for example.
- the “alkoxy group” means an oxy group to which an “alkyl group” is bonded.
- the alkoxy group of the present invention may be linear or branched.
- the alkoxy group of the present invention is preferably a linear alkoxy group having 1 to 14 carbon atoms or a branched alkoxy group having 3 to 14 carbon atoms.
- methoxy group, ethoxy group, n-propyloxy group, isopropoxy group, n-butoxy group, 2-methyl-2-propyloxy group, n-pentyloxy group, n-hexyloxy group, etc. Can be mentioned.
- the “C 2-n alkoxycarbonyl group” means a carbonyl group having a C 1- (n-1) alkoxy group.
- the alkoxycarbonyl group of the present invention is preferably an alkoxycarbonyl group having 2 to 15 carbon atoms. Specifically, for example, methoxycarbonyl group, ethoxycarbonyl group, n-propyloxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, 2-methyl-2-propyloxycarbonyl group, n-pentyloxycarbonyl group, Examples thereof include an n-hexyloxycarbonyl group.
- the acyl group an acetyl group is preferable.
- the alkoxycarbonyl group is preferably a tert-butoxycarbonyl group (Boc group).
- the step (b) is preferably performed in the presence of an organic solvent.
- the organic solvent preferably has high solubility and low nucleophilicity. Examples of such an organic solvent include DMSO, DMF, dioxane, and the like.
- the reaction is preferably carried out at 0 to 50 ° C., preferably 15 to 25 ° C. for about 1 to 24 hours, preferably 5 to 10 hours, but is not limited thereto.
- a lipophilic protecting group may be introduced into the side chain amino group before performing the step (b) of the present invention.
- the fat-soluble protecting group include carbonyl-containing groups such as 9-fluorenylmethoxycarbonyl (Fmoc) group, t-butyloxycarbonyl (Boc) group, allyloxycarbonyl (Alloc) group, acetyl (Ac) group, etc.
- Protecting groups such as an acyl group, an allyl group, and a benzyl group are not particularly limited thereto.
- the fat-soluble protecting group for example, when introducing the Fmoc group, 9-fluorenylmethyl-N-succinimidyl carbonate and sodium hydrogen carbonate can be added and reacted.
- the reaction may be performed at 0 to 50 ° C., preferably at room temperature, for about 1 to 5 hours, but is not limited thereto.
- a peptide fragment on the N-terminal side of the cleaved portion of the cleaved peptide chain can be obtained as the second intermediate of the following formula (1).
- the method for producing a peptide thioester of the present invention further comprises (c) reacting the second intermediate with a thiol to exchange a C-terminal —NH—C ( ⁇ Y) NHR 3 group with a thiol group. To thioesterify the C-terminus of the second intermediate.
- the second intermediate used in step (c) may or may not be isolated after step (b).
- a thiol represented by the following formula (III) is used in the step (c).
- R 4 —SH (Formula III) R 4 is not particularly limited as long as it does not inhibit the thiol exchange reaction and becomes a leaving group in the substitution reaction on the carbonyl carbon.
- R 4 is any one group selected from a substituted or unsubstituted benzyl group, a substituted or unsubstituted aryl group and a substituted or unsubstituted alkyl group, more preferably a substituted or unsubstituted group.
- benzyl-type leaving groups such as benzyl mercaptan, aryl-type leaving groups such as thiophenol and 4- (carboxymethyl) -thiophenol, 2-mercaptoethanesulfonic acid groups, and 3-mercaptopropion. It can be selected from alkyl-type leaving groups such as acid amides. There are no particular limitations on the type, number, and substitution position of the substituents that these leaving groups have.
- step (c) the second intermediate is completely converted into a thioester as shown in the following figure.
- the peptide thioester obtained as described above is linked to a peptide (or modified peptide) containing an amino acid residue having an —SH group at the N-terminus, among peptides or modified peptides, using a ligation method.
- this invention also provides the manufacturing method of polypeptide including the process of couple
- the “ligation method” is not limited to the natural chemical ligation method described in Patent Document 1 (Native Chemical Ligation, NCL method), but also non-natural amino acids, amino acid derivatives (eg, threonine derivative A, protected methionine). And the case where the above-mentioned natural chemical ligation method is applied to a peptide containing a glycosylated amino acid or the like). A peptide having a natural amide bond (peptide bond) at the linking site can be produced by the ligation method.
- Ligation using a ligation method can be performed at any of peptide-peptide, peptide-modified peptide, and modified peptide-modified peptide.
- the target product was purified by HPLC, and the target N-acetylguanidide (Ac-Val Tyr Ala Leu-NHC (NH) NHAc (SEQ ID NO: 13) and Ac-Val Tyr Ala Phe-NHC ( NH) NHAc (SEQ ID NO: 14)) was obtained (yield 80%, calculated from HPLC area intensity).
- Xaa Leu, ESIMS calcd [M + H] + 590.3, found [M + H] + 590.3).
- (Xaa Phe, ESIMS calcd [M + H] + 624.3, found [M + H] + 624.3)
- the target product was purified by HPLC to obtain the target N-acetylguanidide (Ac-Val Tyr Ala Lys (Boc) -NHC (NH) NHAc (SEQ ID NO: 18)). (Yield 70%, calculated from HPLC area intensity).
- 24aa peptide (BocHN-Leu Ile Cys (Acm) Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys (Boc) Glu Ala Glu Asn Ir ThrChr ThrChr ThrC 0.1 mg>) was dissolved in pH 7.05 buffer solution (0.2 M phosphoric acid, 6 M guanidine, 50 ⁇ l) containing MESNa (sodium 2-sulfanylethansulfonate) (1 mg, 2% v / v).
- MESNa sodium 2-sulfanylethansulfonate
- a novel method for chemically converting a polypeptide chain into a peptide thioester is provided.
- the method of the present invention enables thioesterification even in non-natural amino acid derivatives and linkers necessary for conventional thioesterification methods, or in peptide chains that do not have a specific tertiary structure. Even the obtained long polypeptide fragment can be easily thioesterified. Therefore, the peptide thioesterification method of the present invention can be used in general protein synthesis.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
ペプチド鎖を化学合成する方法としては、主に固相合成法が用いられる。しかし固相合成法によって得られるペプチド鎖は、一般的に短鎖であり、長くとも50残基程度である。
この方法は、無保護のペプチドを用い緩衝溶液中で混合するのみで、ペプチド結合を介して二つのペプチド鎖を連結することのできる手法である。NCL法はペプチドのように数多くの官能基を有した化合物同士の反応であっても、選択的に一方のペプチドC末端と他方のペプチドN末端を連結することができる。このような点から、タンパク質を化学合成するためにはいかにNCL法を利用するかが重要になる。
〔1〕
ペプチドチオエステル体の製造方法であって、以下の工程(a)~(c):
(a)システイン残基を有するペプチド鎖において、前記システイン残基のチオール基に、以下の式(I):
Xは硫黄原子または酸素原子であり、
R1及びR2は、脱離基である。]
で表わされる化合物Aを反応させることによりR2を脱離させ、第1中間体を作製する工程;
(b)有機溶媒中で、前記第1中間体に以下の式(II):
Yは酸素原子、硫黄原子、または、NH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
で表わされる化合物Bを反応させ、前記システイン残基のN末端側に隣接するアミノ酸との間のペプチド結合を形成するカルボキシル基に-NH-C(=Y)NHR3基を付加し、前記ペプチド結合を切断することにより、切断された前記ペプチド結合よりもN末端側のペプチド断片を第2中間体として得る工程;及び
(c)前記第2中間体にチオールを反応させて、C末端の-NH-C(=Y)NHR3基とチオール基とを交換させることにより、第2中間体のC末端をチオエステル化する工程
を含む、方法。
〔2〕
Xが硫黄原子である前記〔1〕に記載の方法。
〔3〕
R1が、-O-C6アリール基である前記〔1〕または〔2〕に記載の方法。
〔4〕
R2が、ハロゲン原子または置換もしくは非置換の-S-C6-10アリール基である前記〔1〕から〔3〕のいずれかに記載の方法。
〔5〕
YがNH基である、前記〔1〕から〔4〕のいずれかに記載の方法。
〔6〕
R3が、アセチル基である、前記〔1〕から〔5〕のいずれかに記載の方法。
〔7〕
前記工程(c)において、前記チオールが以下の式(III);
R4-SH (式III)
[式中、R4は、置換もしくは非置換のベンジル基、置換もしくは非置換のアリール基、および、置換もしくは非置換のアルキル基から選択されるいずれか一つの基である。]
で表わされるチオールである、前記〔1〕から〔6〕のいずれかに記載の方法。
〔8〕
ペプチド鎖が、組換えタンパク質である、前記〔1〕から〔7〕のいずれかに記載の方法。
〔9〕
ペプチド鎖が、精製用タグを含む組換えタンパク質である、前記〔1〕から〔8〕のいずれかに記載の方法。
〔10〕
前記〔1〕から〔9〕のいずれかにに記載の方法で得られたペプチドチオエステル体と、N末端にシステインを有するペプチド鎖をライゲーション法により結合する工程を含む、ポリペプチドの製造方法。
〔11〕
前記〔1〕から〔9〕のいずれかにに記載のペプチドチオエステル体の製造方法に用いる第2中間体の製造方法であって、以下の工程(a)または(b):
(a)システイン残基を有するペプチド鎖において、前記システイン残基のチオール基に、以下の式(I):
Xは硫黄原子または酸素原子であり、
R1及びR2は、脱離基である。]
で表わされる化合物Aを反応させることによりR2を脱離させ、第1中間体を作製する工程;
(b)有機溶媒中で、前記第1中間体に以下の式(II):
Yは酸素原子、硫黄原子、または、NH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
で表わされる化合物Bを反応させ、前記システイン残基のN末端側に隣接するアミノ酸との間のペプチド結合を形成するカルボキシル基に-NH-C(=Y)NHR3基を付加し、前記ペプチド結合を切断することにより、切断された前記ペプチド結合よりもN末端側のペプチド断片を第2中間体として得る工程
を含む、方法。
〔12〕
C末端に-NH-C(=Y)NHR3基
[式中、Yは酸素原子またはNH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
を有するペプチド鎖。
〔13〕
前記〔12〕に記載の、C末端に-NH-C(=Y)NHR3基を有するペプチド鎖と、N末端にシステインを有するペプチド鎖をライゲーション法により結合する工程を含む、ポリペプチドの製造方法。
〔14〕
組換えタンパク質のC末端側に付加された精製用タグを除去する方法であって、以下の工程(a)~(c):
(a)C末端に精製用タグを含む組換えタンパク質において、システイン残基のチオール基に、以下の式(I):
Xは硫黄原子または酸素原子であり、
R1及びR2は、脱離基である。]
で表わされる化合物Aを反応させることによりR2を脱離させ、第1中間体を作製する工程;
(b)有機溶媒中で、前記第1中間体に以下の式(II):
Yは酸素原子、硫黄原子、または、NH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
で表わされる化合物Bを反応させ、前記システイン残基のN末端側に隣接するアミノ酸との間のペプチド結合を形成するカルボキシル基に-NH-C(=Y)NHR3基を付加し、前記ペプチド結合を切断することにより、切断された前記ペプチド結合よりもN末端側のペプチド断片を第2中間体として得る工程;及び
(c)前記第2中間体にチオールを反応させて、C末端の-NH-C(=Y)NHR3基とチオール基とを交換させることにより、第2中間体のC末端をチオエステル化する工程
を含む、方法。
以上のように、本発明のペプチドチオエステル化方法は、タンパク質の合成全般において有用である。
(a)システイン残基を有するペプチド鎖において、前記システイン残基のチオール基に、以下の式(I):
Xは硫黄原子または酸素原子であり、
R1及びR2は、脱離基である。]
で表わされる化合物Aを反応させることによりR2を脱離させ、第1中間体を作製する工程;
(b)有機溶媒中で、前記第1中間体に以下の式(II):
Yは酸素原子、硫黄原子、または、NH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
で表わされる化合物Bを反応させ、前記システイン残基のN末端側に隣接するアミノ酸との間のペプチド結合を形成するカルボキシル基に-NH-C(=Y)NHR3基を付加し、前記ペプチド結合を切断することにより、切断された前記ペプチド結合よりもN末端側のペプチド断片を第2中間体として得る工程;及び
(c)前記第2中間体にチオールを反応させて、C末端の-NH-C(=Y)NHR3基とチオール基とを交換させることにより、第2中間体のC末端をチオエステル化する工程
を含む、方法を提供する。
従って、本発明のペプチドチオエステル体の製造方法を用いて、組換えタンパク質のC末端に付加された精製用タグを除去する方法もまた、本発明に含まれる。
本発明において、化合物Aは以下の式(I)で示される。
R1及びR2は、脱離基として、下記工程(a)の反応条件下において、置換される原子又は原子団よりも求核性が低く、脱離される機能を有するものであれば特に限定されないが、R1及びR2はそれぞれ異なる脱離基であることが好ましい。R1及びR2として具体的には、ハロゲン原子、置換もしくは非置換の-O-アルキル基、置換もしくは非置換の-O-アルケニル基、置換もしくは非置換の-O-アルキニル基、置換もしくは非置換の-O-アリール基、置換もしくは非置換の-O-ヘテロアリール基、置換もしくは非置換の-S-アルキル基、置換もしくは非置換の-S-アルケニル基、置換もしくは非置換の-S-アルキニル基、置換もしくは非置換の-S-アリール基、または、置換もしくは非置換の-S-ヘテロアリール基が挙げられる。R1及びR2としてより好ましくは、R1が置換もしくは非置換の-O-C6-10アリール基、および、置換もしくは非置換の-S-C1-8アルキル基からなる群より選ばれる脱離基、および、R2が、ハロゲン原子、置換もしくは非置換の-S-C1-8アルキル基、置換もしくは非置換の-S-C6-10アリール基からなる群より選ばれる脱離基、である組み合わせが挙げられる。
また、上記の、
また、「C2-nアルコキシカルボニル基」とは、C1-(n-1)のアルコキシ基を有するカルボニル基であることを意味する。本発明のアルコキシカルボニル基として、好ましくは炭素原子数が2から15のアルコキシカルボニル基を挙げることができる。具体的には、例えばメトキシカルボニル基、エトキシカルボニル基、n-プロピルオキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、2-メチル-2-プロピルオキシカルボニル基、n-ペンチルオキシカルボニル基、n-へキシルオキシカルボニル基等を挙げることができる。
工程(c)に用いる第2中間体は、工程(b)の後に単離されていても、単離されていなくてもよい。
R4-SH (式III)
R4は、チオール交換反応を阻害せず、カルボニル炭素上での置換反応において脱離基となる基であれば特に限定されない。好ましくは、R4は、置換もしくは非置換のベンジル基、置換もしくは非置換のアリール基および置換もしくは非置換のアルキル基から選択されるいずれか一つの基であり、より好ましくは置換もしくは非置換のベンジル基、置換もしくは非置換のC6-10アリール基、および、置換もしくは非置換のC1-8アルキル基から選択されるいずれか一つの基である。より具体的には、ベンジルメルカプタン等のベンジル型の脱離基、チオフェノール、4-(カルボキシメチル)-チオフェノール等のアリール型の脱離基、2-メルカプトエタンスルホン酸基、3-メルカプトプロピオン酸アミド等のアルキル型の脱離基等から選択することができる。これらの脱離基が有する置換基の種類、個数、置換位置は特に限定されない。
また、上記ペプチドチオエステル体の代わりに、前記工程(b)で得られた第2中間体を、ライゲーション法に使用することも可能である。
本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。
第一の、第二のなどの用語が種々の要素を表現するために用いられるが、これらの要素はそれらの用語によって限定されるべきではないことが理解される。これらの用語は一つの要素を他の要素と区別するためのみに用いられているのであり、例えば、第一の要素を第二の要素と記し、同様に、第二の要素は第一の要素と記すことは、本発明の範囲を逸脱することなく可能である。
(MPAAフェニルチオノフォルメートの合成)
ペプチド(Ac-Val Tyr Ala Xaa Cys Gly-OH(配列番号:1),Xaa=Lys(配列番号:2),Ser(配列番号:3),Asp(配列番号:4),Ala(配列番号:5),Val(配列番号:6),crude(Lys,Ser,Asp,Ala,Valの混合物),6mg)をpH5.5の緩衝溶液(1.0mL,0.2M Na2HPO4,6M Gn-HCl)に溶解した後、アセトニトリル(230μL)に溶解したMPAAフェニルチオノフォルメート(15μL)を全量加えた。1時間後Et2Oで反応溶液を洗浄した。HPLCにて精製を行い、目的化合物を得た。反応はHPLCの結果、定量的に行われていた。
(Xaa=Lys,ESIMS calcd [M+H]+ 818.3,found [M+H]+ 818.4).
(Xaa=Ser,ESIMS calcd [M+H]+ 777.3,found [M+H]+ 777.3).
(Xaa=Asp,ESIMS calcd [M+H]+ 805.3,found [M+H]+ 805.3).
(Xaa=Ala,ESIMS calcd [M+H]+ 761.3,found [M+H]+ 761.3).
(Xaa=Val,ESIMS calcd [M+H]+ 789.3,found [M+H]+ ---).
(Xaa=Ser,ESIMS calcd [M+H]+ 777.3,found [M+H]+ 777.3).
(Xaa=Leu,ESIMS calcd [M+H]+ 803.4,found [M+H]+ 803.3).
(Xaa=Phe,ESIMS calcd [M+H]+ 837.4,found [M+H]+ 837.3).
(Xaa=Alaの場合)
Ac-Val Tyr Ala Ala Cys(C(S)OPh)Gly-OH(配列番号:9)(0.2mg,0.28μmol)を250mM N-アセチルグアニジン/DMSO溶液(260μl)に溶解した。2時間後Et2Oにて化合物を沈殿、洗浄した。HPLCにて目的物を精製し目的とするN-アセチルグアニジド体(Ac-Val Tyr Ala Ala-NHC(NH)NHAc(配列番号:10))を得た(収率80%、HPLC面積強度より計算した)。
(ESIMS calcd [M+H]+ 548.3,found [M+H]+ 548.4)
Ac-Val Tyr Ala Leu Cys(C(S)OPh)Gly-OH(配列番号:11)(0.1mg,0.12μmol)、Ac-Val Tyr Ala Phe Cys(C(S)OPh)Gly-OH(配列番号:12)(0.1mg,0.12μmol)の混合物を250mM N-アセチルグアニジン/DMSO溶液(100μL)に溶解した。4.5時間後Et2Oにて化合物を沈殿、洗浄した。HPLCにて目的物を精製し、目的とするN-アセチルグアニジド体(Ac-Val Tyr Ala Leu-NHC(NH)NHAc(配列番号:13)、および、Ac-Val Tyr Ala Phe-NHC(NH)NHAc(配列番号:14))を得た(収率80%、HPLC面積強度より計算した)。
(Xaa=Leu,ESIMS calcd [M+H]+ 590.3,found [M+H]+ 590.3).
(Xaa=Phe,ESIMS calcd [M+H]+ 624.3,found [M+H]+ 624.3)
Ac-Val Tyr Ala Ser Cys(C(S)OPh)Gly-OH(配列番号:15)(0.2mg,0.26μmol)を250mM N-アセチルグアニジン/DMSO溶液(100μL)に溶解した。3.5時間後Et2Oにて化合物を沈殿、洗浄した。HPLCにて目的物を精製し目的とするN-アセチルグアニジド体(Ac-Val Tyr Ala Ser-NHC(NH)NHAc(配列番号:16))を得た(収率70%、HPLC面積強度より)
ペプチド(Ac-Val Tyr Ala Lys Cys(C(S)OPh)Gly-OH(配列番号:17),0.1mg)をBoc2O(0.3mg),トリエチルアミン(0.14μL)を含んだDMSO(30μL)に溶解した。1.5時間後反応溶液をEt2Oで沈殿、洗浄した。得られた残さを250mM N-アセチルグアニジン/DMSO溶液(100μl)に溶解した。2.5時間後、HPLCにて目的物を精製し目的とするN-アセチルグアニジド体(Ac-Val Tyr Ala Lys(Boc)-NHC(NH)NHAc(配列番号:18))を得た(収率70%、HPLC面積強度より計算した)。
(ESIMS calcd [M+2H]2+ 1553.8,[M+3H]3+ 1035.8,found [M+2H]2+ 1552.9,[M+3H]3+ 1035.7))
(ESIMS calcd [M+2H]2+ 1546.8,[M+3H]3+ 1031.5,found [M+2H]2+ 1547.0,[M+3H]3+ 1031.4))
(ESIMS calcd [M + 2H]2+ 1567,3,found [M+2H]2+ 1566.8,)
ペプチド(Ac-Val Tyr Ala Ala Cys Gly-OH(配列番号:5),6mg)をpH5.0の緩衝溶液(961μL,0.2M
Na2HPO4,6M Gn-HCl)に溶解し、アセトニトリル(320μL)に溶解したPhenyl chlorothionoformate(6.5μL)を加えた。1時間後Et2Oで反応溶液を洗浄した。HPLCにて精製を行い目的のチオノフォルメート化ペプチド(配列番号:9)を得た(6.4mg,88%)
(Xaa=Ala,ESIMS calcd [M+H]+ 761.3,found [M+H]+ 761.3)
Na2HPO4,6M Gn-HCl)に溶解し、アセトニトリル(170μL)に溶解したPhenyl chlorothionoformate(3.5μL)を加えた。1時間後Et2Oで反応溶液を洗浄した。HPLCにて精製を行い目的のチオノフォルメート化ペプチド(配列番号:11)を得た(3.8mg,92%)
(Xaa=Leu,ESIMS calcd [M+H]+ 803.4,found [M+H]+ 803.3).
Na2HPO4,6M Gn-HCl)に溶解し、アセトニトリル(243μL)に溶解したPhenyl chlorothionoformate(5.0μL)を加えた。1時間後Et2Oで反応溶液を洗浄した。HPLCにて精製を行い目的のチオノフォルメート化ペプチド(配列番号:12)を得た(5.1mg,84%)
(Xaa=Phe,ESIMS calcd [M+H]+ 837.4,found [M+H]+ 837.3)
Na2HPO4,6M Gn-HCl)に溶解し、アセトニトリル(265μL)に溶解したPhenyl chlorothionoformate(5.2μL)を加えた。1時間後Et2Oで反応溶液を洗浄した。HPLCにて精製を行い目的のチオノフォルメート化ペプチド(配列番号:15)を得た(5.5mg,92%)
(Xaa=Ser,ESIMS calcd [M+H]+ 777.3,found [M+H]+ 777.3)
Na2HPO4,6M Gn-HCl)に溶解し、アセトニトリル(270μL)に溶解したPhenyl chlorothionoformate(5.5μL)を加えた。1時間後Et2Oで反応溶液を洗浄した。HPLCにて精製を行い目的のチオノフォルメート化ペプチド(配列番号:17)を得た(6.1mg,94%)
(Xaa=Lys,ESIMS calcd [M+H]+ 818.3,found [M+H]+ 818.4).
Claims (14)
- ペプチドチオエステル体の製造方法であって、以下の工程(a)~(c):
(a)システイン残基を有するペプチド鎖において、前記システイン残基のチオール基に、以下の式(I):
Xは硫黄原子または酸素原子であり、
R1及びR2は、脱離基である。]
で表わされる化合物Aを反応させることによりR2を脱離させ、第1中間体を作製する工程;
(b)有機溶媒中で、前記第1中間体に以下の式(II):
Yは酸素原子、硫黄原子、または、NH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
で表わされる化合物Bを反応させ、前記システイン残基のN末端側に隣接するアミノ酸との間のペプチド結合を形成するカルボキシル基に-NH-C(=Y)NHR3基を付加し、前記ペプチド結合を切断することにより、切断された前記ペプチド結合よりもN末端側のペプチド断片を第2中間体として得る工程;及び
(c)前記第2中間体にチオールを反応させて、C末端の-NH-C(=Y)NHR3基とチオール基とを交換させることにより、第2中間体のC末端をチオエステル化する工程
を含む、方法。 - Xが硫黄原子である請求項1に記載の方法。
- R1が、-O-C6アリール基である請求項1または2に記載の方法。
- R2が、ハロゲン原子、または、置換もしくは非置換の-S-C6-10アリール基である請求項1から3のいずれかに記載の方法。
- YがNH基である、請求項1から4のいずれかに記載の方法。
- R3が、アセチル基である、請求項1から5のいずれかに記載の方法。
- 前記工程(c)において、前記チオールが以下の式(III);
R4-SH (式III)
[式中、R4は、置換もしくは非置換のベンジル基、置換もしくは非置換のアリール基、および、置換もしくは非置換のアルキル基から選択されるいずれか一つの基である。]
で表わされるチオールである、請求項1から6のいずれかに記載の方法。 - ペプチド鎖が、組換えタンパク質である、請求項1から7のいずれかに記載の方法。
- ペプチド鎖が、精製用タグを含む組換えタンパク質である、請求項1から8のいずれかに記載の方法。
- 請求項1から9のいずれかに記載の方法で得られたペプチドチオエステル体と、N末端にシステインを有するペプチド鎖をライゲーション法により結合する工程を含む、ポリペプチドの製造方法。
- 請求項1から9のいずれかに記載のペプチドチオエステル体の製造方法に用いる第2中間体の製造方法であって、以下の工程(a)または(b):
(a)システイン残基を有するペプチド鎖において、前記システイン残基のチオール基に、以下の式(I):
Xは硫黄原子または酸素原子であり、
R1及びR2は、脱離基である。]
で表わされる化合物Aを反応させることによりR2を脱離させ、第1中間体を作製する工程;
(b)有機溶媒中で、前記第1中間体に以下の式(II):
Yは酸素原子、硫黄原子、または、NH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
で表わされる化合物Bを反応させ、前記システイン残基のN末端側に隣接するアミノ酸との間のペプチド結合を形成するカルボキシル基に-NH-C(=Y)NHR3基を付加し、前記ペプチド結合を切断することにより、切断された前記ペプチド結合よりもN末端側のペプチド断片を第2中間体として得る工程
を含む、方法。 - C末端に-NH-C(=Y)NHR3基
[式中、Yは酸素原子またはNH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
を有するペプチド鎖。 - 請求項12に記載のC末端に-NH-C(=Y)NHR3基を有するペプチド鎖と、N末端にシステインを有するペプチド鎖をライゲーション法により結合する工程を含む、ポリペプチドの製造方法。
- 組換えタンパク質のC末端側に付加された精製用タグを除去する方法であって、以下の工程(a)~(c):
(a)C末端に精製用タグを含む組換えタンパク質において、システイン残基のチオール基に、以下の式(I):
Xは硫黄原子または酸素原子であり、
R1及びR2は、脱離基である。]
で表わされる化合物Aを反応させることによりR2を脱離させ、第1中間体を作製する工程;
(b)有機溶媒中で、前記第1中間体に以下の式(II):
Yは酸素原子、硫黄原子、または、NH基であり、
R3は、水素原子、アシル基、または、アルコキシカルボニル基である。]
で表わされる化合物Bを反応させ、前記システイン残基のN末端側に隣接するアミノ酸との間のペプチド結合を形成するカルボキシル基に-NH-C(=Y)NHR3基を付加し、前記ペプチド結合を切断することにより、切断された前記ペプチド結合よりもN末端側のペプチド断片を第2中間体として得る工程;及び
(c)前記第2中間体にチオールを反応させて、C末端の-NH-C(=Y)NHR3基とチオール基とを交換させることにより、第2中間体のC末端をチオエステル化する工程
を含む、方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011519878A JP5730197B2 (ja) | 2009-06-26 | 2010-06-21 | ペプチドチオエステル体の製造方法 |
DK10792048.0T DK2450364T3 (en) | 2009-06-26 | 2010-06-21 | Process for preparing a peptide thioester |
CN201080028424.9A CN102803286B (zh) | 2009-06-26 | 2010-06-21 | 肽硫酯的制造方法 |
CA2766040A CA2766040C (en) | 2009-06-26 | 2010-06-21 | Process for production of peptide thioester |
RU2012102519/04A RU2529998C2 (ru) | 2009-06-26 | 2010-06-21 | Способ получения тиоэфира пептида |
BRPI1016151-1A BRPI1016151B1 (pt) | 2009-06-26 | 2010-06-21 | processo para produção de um tioéster de peptídeo, processos para a produção de um polipeptídeo, processo para a produção de um segundo intermediário utilizado para o processo para a produção do tioéster de peptídeo e processo para a remoção de uma marca para a purificação adicionada a um lado terminal c de uma proteína recombinante |
EP10792048.0A EP2450364B1 (en) | 2009-06-26 | 2010-06-21 | Process for production of peptide thioester |
SG2011089158A SG176300A1 (en) | 2009-06-26 | 2010-06-21 | Process for production of peptide thioester |
US13/379,832 US8642725B2 (en) | 2009-06-26 | 2010-06-21 | Process for production of peptide thioester |
AU2010263701A AU2010263701B2 (en) | 2009-06-26 | 2010-06-21 | Process for production of peptide thioester |
KR1020127001146A KR101676515B1 (ko) | 2009-06-26 | 2010-06-21 | 펩티드 티오에스테르체의 제조방법 |
US14/162,642 US9127041B2 (en) | 2009-06-26 | 2014-01-23 | Process for production of peptide thioester |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009151713 | 2009-06-26 | ||
JP2009-151713 | 2009-06-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/379,832 A-371-Of-International US8642725B2 (en) | 2009-06-26 | 2010-06-21 | Process for production of peptide thioester |
US14/162,642 Division US9127041B2 (en) | 2009-06-26 | 2014-01-23 | Process for production of peptide thioester |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010150730A1 true WO2010150730A1 (ja) | 2010-12-29 |
Family
ID=43386499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060443 WO2010150730A1 (ja) | 2009-06-26 | 2010-06-21 | ペプチドチオエステル体の製造方法 |
Country Status (13)
Country | Link |
---|---|
US (2) | US8642725B2 (ja) |
EP (1) | EP2450364B1 (ja) |
JP (1) | JP5730197B2 (ja) |
KR (1) | KR101676515B1 (ja) |
CN (1) | CN102803286B (ja) |
AU (1) | AU2010263701B2 (ja) |
BR (1) | BRPI1016151B1 (ja) |
CA (1) | CA2766040C (ja) |
DK (1) | DK2450364T3 (ja) |
RU (1) | RU2529998C2 (ja) |
SG (1) | SG176300A1 (ja) |
TW (1) | TWI485156B (ja) |
WO (1) | WO2010150730A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047372A1 (ja) | 2011-09-26 | 2013-04-04 | 株式会社糖鎖工学研究所 | Ncl法に適した、ポリペプチド断片の効率的な製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022143532A1 (zh) * | 2020-12-28 | 2022-07-07 | 江苏金斯瑞生物科技有限公司 | 一种肽硫酯及其首尾酰胺环肽的合成方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996034878A1 (en) | 1995-05-04 | 1996-11-07 | The Scripps Research Institute | Synthesis of proteins by native chemical ligation |
WO2007043615A1 (ja) * | 2005-10-14 | 2007-04-19 | Osaka University | ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用 |
WO2007114454A1 (ja) | 2006-03-29 | 2007-10-11 | Otsuka Chemical Co., Ltd. | ペプチドのチオエステル化合物の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2539483A (en) * | 1945-03-28 | 1951-01-30 | Simon L Ruskin | Urea ascorbate and complexes containing the same and process for their manufacture |
NL6513990A (ja) * | 1964-10-29 | 1966-01-25 | ||
GB0113657D0 (en) * | 2001-06-05 | 2001-07-25 | Geneprot Inc | Improved native chemical ligation with three or more components |
KR101534881B1 (ko) * | 2007-07-31 | 2015-07-07 | 가부시키가이샤 도우사 고가쿠 겐큐쇼 | 펩티드의 제조방법 |
WO2009042668A2 (en) * | 2007-09-24 | 2009-04-02 | Achillion Pharmaceuticals, Inc. | Urea-containing peptides as inhibitors of viral replication |
-
2010
- 2010-06-21 CN CN201080028424.9A patent/CN102803286B/zh not_active Expired - Fee Related
- 2010-06-21 EP EP10792048.0A patent/EP2450364B1/en active Active
- 2010-06-21 CA CA2766040A patent/CA2766040C/en active Active
- 2010-06-21 JP JP2011519878A patent/JP5730197B2/ja active Active
- 2010-06-21 AU AU2010263701A patent/AU2010263701B2/en not_active Ceased
- 2010-06-21 BR BRPI1016151-1A patent/BRPI1016151B1/pt not_active IP Right Cessation
- 2010-06-21 DK DK10792048.0T patent/DK2450364T3/en active
- 2010-06-21 KR KR1020127001146A patent/KR101676515B1/ko active IP Right Grant
- 2010-06-21 WO PCT/JP2010/060443 patent/WO2010150730A1/ja active Application Filing
- 2010-06-21 RU RU2012102519/04A patent/RU2529998C2/ru active
- 2010-06-21 SG SG2011089158A patent/SG176300A1/en unknown
- 2010-06-21 US US13/379,832 patent/US8642725B2/en active Active
- 2010-06-24 TW TW099120685A patent/TWI485156B/zh not_active IP Right Cessation
-
2014
- 2014-01-23 US US14/162,642 patent/US9127041B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996034878A1 (en) | 1995-05-04 | 1996-11-07 | The Scripps Research Institute | Synthesis of proteins by native chemical ligation |
WO2007043615A1 (ja) * | 2005-10-14 | 2007-04-19 | Osaka University | ペプチドエステル試薬、およびそのライゲーションまたはチオエステル化合物の製造のための使用 |
WO2007114454A1 (ja) | 2006-03-29 | 2007-10-11 | Otsuka Chemical Co., Ltd. | ペプチドのチオエステル化合物の製造方法 |
Non-Patent Citations (11)
Title |
---|
BRASK J. ET AL.: "Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters", ORG. LETT., vol. 5, no. 16, 2003, pages 2951 - 2953, XP008149114 * |
INGENITO ET AL., J. AM. CHEM. SOC., vol. 121, 1999, pages 11369 - 11374 |
JOHNSON EC. ET AL.: "Insights into the mechanism and catalysis of the native chemical ligation reaction", J. AM. CHEM. SOC., vol. 128, no. 20, 2006, pages 6640 - 6646, XP008149115 * |
MUIR, ANNU. REV. BIOCHEM., vol. 72, 2003, pages 249 - 289 |
NAKAGAWA ET AL., J. AM. CHEM. SOC., vol. 116, 1994, pages 5513 - 5514 |
OKAMOTO R. ET AL.: "Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens", J. ORG. CHEM., vol. 74, no. 6, May 2009 (2009-05-01), pages 2494 - 2501, XP055008165 * |
PASCAL ET AL., TETRAHEDRON LETTERS, vol. 35, no. 34, 1994, pages 6291 - 6294 |
SCHWARTZ ET AL., CHEMCOMMUN, 2003, pages 2087 - 2090 |
See also references of EP2450364A4 |
SOLA ET AL., J. CHEM. SOC. CHEM. COMMUN., 1993, pages 1786 - 1788 |
STARK GR, METHODS OF ENZYMOLOGY, vol. 47, 1977, pages 129 - 132 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047372A1 (ja) | 2011-09-26 | 2013-04-04 | 株式会社糖鎖工学研究所 | Ncl法に適した、ポリペプチド断片の効率的な製造方法 |
CN104080796A (zh) * | 2011-09-26 | 2014-10-01 | 株式会社糖锁工学研究所 | 适于ncl法的多肽片段的有效率的制造方法 |
JPWO2013047372A1 (ja) * | 2011-09-26 | 2015-03-26 | 株式会社糖鎖工学研究所 | Ncl法に適した、ポリペプチド断片の効率的な製造方法 |
TWI549963B (zh) * | 2011-09-26 | 2016-09-21 | 糖鎖工學研究所股份有限公司 | 適於ncl法之多胜肽片段之有效率的製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140249294A1 (en) | 2014-09-04 |
RU2012102519A (ru) | 2013-08-10 |
BRPI1016151B1 (pt) | 2021-01-19 |
CN102803286B (zh) | 2015-01-14 |
US20120178905A1 (en) | 2012-07-12 |
CA2766040C (en) | 2018-05-01 |
CN102803286A (zh) | 2012-11-28 |
SG176300A1 (en) | 2012-01-30 |
EP2450364A4 (en) | 2014-07-02 |
TW201100445A (en) | 2011-01-01 |
KR20120039637A (ko) | 2012-04-25 |
BRPI1016151A2 (pt) | 2016-04-19 |
CA2766040A1 (en) | 2010-12-29 |
JP5730197B2 (ja) | 2015-06-03 |
JPWO2010150730A1 (ja) | 2012-12-10 |
US8642725B2 (en) | 2014-02-04 |
EP2450364B1 (en) | 2016-11-09 |
TWI485156B (zh) | 2015-05-21 |
AU2010263701A1 (en) | 2011-12-15 |
US9127041B2 (en) | 2015-09-08 |
EP2450364A1 (en) | 2012-05-09 |
DK2450364T3 (en) | 2017-01-16 |
KR101676515B1 (ko) | 2016-11-15 |
RU2529998C2 (ru) | 2014-10-10 |
AU2010263701B2 (en) | 2014-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI405770B (zh) | Production of peptides | |
JP5730197B2 (ja) | ペプチドチオエステル体の製造方法 | |
US9023957B2 (en) | Compound for use in peptide synthesis | |
JP6186278B2 (ja) | Ncl法に適した、ポリペプチド断片の効率的な製造方法 | |
US20050096456A1 (en) | Compounds comprising pseudo-amino acids | |
Pedone et al. | DESIGNANDCHARACTERIZA TION OF MOLECULAR SCAFFOLDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080028424.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10792048 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011519878 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010263701 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2010263701 Country of ref document: AU Date of ref document: 20100621 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2766040 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127001146 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 691/CHENP/2012 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2010792048 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010792048 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012102519 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13379832 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1016151 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1016151 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111226 |