WO2007043242A1 - 直流電気鉄道の電力貯蔵装置 - Google Patents

直流電気鉄道の電力貯蔵装置 Download PDF

Info

Publication number
WO2007043242A1
WO2007043242A1 PCT/JP2006/316222 JP2006316222W WO2007043242A1 WO 2007043242 A1 WO2007043242 A1 WO 2007043242A1 JP 2006316222 W JP2006316222 W JP 2006316222W WO 2007043242 A1 WO2007043242 A1 WO 2007043242A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric
voltage
power storage
regenerative
power
Prior art date
Application number
PCT/JP2006/316222
Other languages
English (en)
French (fr)
Inventor
Tadashi Uemura
Koichi Ide
Original Assignee
Meidensha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corporation filed Critical Meidensha Corporation
Priority to CN2006800378678A priority Critical patent/CN101282855B/zh
Publication of WO2007043242A1 publication Critical patent/WO2007043242A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles

Definitions

  • the present invention relates to a power storage device for a DC electric railway that supplies power to an electric vehicle or absorbs regenerative power, and more particularly to an electric vehicle when the power storage medium is charged to an arbitrary voltage or higher.
  • the present invention relates to a device for preventing regeneration expiration.
  • a problem with the power storage device is that when the power storage medium is fully charged, it cannot absorb any more regenerative power. If regenerative braking of the electric vehicle occurs in this fully charged state, the regenerative operation is disabled on the electric vehicle side (electric braking is impossible) and the regenerative operation is stopped, and the braking method is switched from the electric brake to the mechanical brake. There will be a braking delay due to. Due to this braking delay, sudden braking of the mechanical brake leaves problems such as failure to stop the electric vehicle at a fixed point and shortening the service life due to increased wear of the wheels and brake shoe.
  • Patent Document 1 absorbs regenerative power by bypassing the regenerative current from the electric vehicle to the load resistance when the electric double layer capacitor is fully charged.
  • This method can prevent regenerative loss of electric vehicles and overvoltage protection of electric double layer capacitors, but requires load resistance equipment and ventilation equipment and heat dissipation equipment for dissipating heat generated by the equipment. Securing equipment installation space and equipment costs are required.
  • the capacity of the electric double layer capacitor can be increased to reduce the chance of power absorption by the load resistance. This makes the electric double layer capacitor larger and more expensive.
  • Patent Document 2 performs control to lower the output voltage of the feed substation when the voltage of the capacitor is equal to or higher than a predetermined set value.
  • the voltage cannot be lowered.
  • the overvoltage of the capacitor due to the regenerative electric power from the electric vehicle is not necessarily protected, and depends on the operating state of other electric vehicles.
  • the existing feeder substation does not have the output voltage regulation function using a tapped transformer or semiconductor power converter, it cannot be applied unless the feeder substation itself is newly installed. Therefore, the power supply equipment that can be applied is limited, and in the case of equipment that cannot be applied, the equipment itself is replaced, which requires a large equipment cost.
  • An object of the present invention is to prevent regenerative invalidation of an electric vehicle in an electric power storage device that supplies power to the electric vehicle or absorbs regenerative power by charging and discharging an electric power storage medium using a DC Z-DC converter.
  • reliable overvoltage protection of the power storage medium is possible!
  • load resistance equipment, ventilation equipment and heat dissipation equipment are not required, and the power storage medium is not enlarged. It is to provide a DC electric railway power storage device that can be used.
  • the present invention has the following configuration.
  • Electric power storage of a DC electric railway that supplies power to an electric vehicle or absorbs regenerative power of an electric vehicle having a regenerative current narrowing control function by charging and discharging a power storage medium with a DC Z-DC converter
  • the direct current z direct current converter is provided with regenerative invalidation prevention control means for increasing the voltage of the electric wire to a voltage at which the regenerative current narrowing control function of the electric vehicle operates when the power storage medium is charged to an arbitrary voltage. It is characterized by that.
  • the direct current Z direct current converter is provided with regenerative expiration prevention control means for increasing the voltage of the electric wire to a voltage at which the regenerative current of the electric vehicle becomes zero when the power storage medium is charged to a full charge voltage. It is characterized by.
  • the DC Z-DC converter increases the voltage of the electric wire to the voltage at which the regenerative current narrowing control function of the electric vehicle operates, and the voltage of the power storage medium In response to the increase, the voltage of the electric wire is also increased to increase the amount of regenerative current, and when the power storage medium is charged to the full charge voltage, the regenerative current is reduced to zero by the regenerative current limiting control function of the electric vehicle. It is characterized by the provision of regenerative expiration prevention control means that raises the voltage of the electric wire up to the voltage.
  • the direct current Z direct current converter is a step-up / down booster.
  • the power storage medium is an electric double layer capacitor.
  • FIG. 1 is a configuration diagram of a main part of a DC electric railway power feeding system showing an embodiment of the present invention.
  • a regenerative current narrowing control function of an electric vehicle (in accordance with a panta point voltage exceeding a specified value).
  • This is equipped with a regenerative deactivation prevention control means for the DC Z-DC converter that raises the voltage of the feeder according to the voltage rise of the power storage medium using the function to narrow the regenerative current from 100% to 0%. .
  • the electric vehicle has a regenerative current narrowing control function.
  • This control function is installed in an existing electric vehicle.
  • the punter point voltage is monitored, and when this voltage exceeds the specified value, the regenerative current is reduced from 100% to 0% accordingly to prevent the punter point voltage from rising excessively.
  • the aperture ratio is 1.0 (0% aperture) when the punter voltage is 1600V DC or less, and the aperture ratio is 0 (100% aperture) when DC1800V or higher.
  • the aperture ratio is linearly reduced to 0 in proportion to the voltage to suppress the regenerative current.
  • the electric double layer capacitor 4A is used as the power storage medium and the buck-boost chiba 4B is applied as the DC Z-DC converter, but the power storage medium 4A and the DC Z-DC converter 4B are used. Is not limited to the present embodiment.
  • the power storage device 4 includes a main circuit composed of an electric double layer capacitor 4A and a step-up / step-down voltage regulator 4B.
  • the chietsuba controller 4C is provided as a control device.
  • the chiyotsuba control unit 4C has a charge / discharge control function similar to that provided in a conventional power storage device, so that the feeder voltage detection signal Vt can be supplied so as to be able to supply power and absorb regenerative power. And switching of the step-up / step-down operation of the step-up / step-down chiba 4B and continuity control by matching with the charge / discharge control voltage.
  • the chopper control unit 4C causes the booster 4B to perform a boost operation when the feeder line voltage Vt is reduced to a specified value or less due to the caulking operation of the electric vehicle, and a part or all of the caulking power is transferred to the capacitor 4A.
  • the power is also supplied as discharge power.
  • the chopper control unit 4C operates the stepped-down chopper 4B to charge part or all of the regenerative power to the capacitor 4A. As absorb.
  • the required charge / discharge power is adjusted by controlling the conductivity of the chiyotsuba 4B.
  • the chitsuba control unit 4C of the present embodiment has a regenerative current narrowing control function possessed by the electric vehicle itself when the electric double layer capacitor 4A is charged to an arbitrary voltage.
  • a regenerative / expiration prevention control means that raises the voltage of the electric wire to the operating voltage.
  • the wire voltage also rises to increase the amount of electric car's regenerative current, and capacitor 4A is fully charged. Control is performed so that the regenerative current becomes zero when the battery is charged to a voltage.
  • This regeneration / expiration prevention control means protects the capacitor 4A from being overcharged by preventing the capacitor 4A from being charged beyond the full charge voltage without increasing the capacity of the capacitor 4A without providing a load resistance facility. Regenerative current reduction function of electric cars prevents regenerative invalidation of electric cars
  • regenerative deactivation prevention control means when the operating voltage range of the electric double layer capacitor 4A is 400V to 1000V (full charge voltage) The operation of will be described.
  • charge / discharge control (steady control) of the capacitor 4A is performed so that the voltage of the chopper control unit 4C feeder wire is about 1650V in the range of voltage force 00V to 800V of the capacitor 4A. 100% of the regenerative current is regenerated.
  • the voltage of the capacitor 4A approaches 1000V (full charge voltage) and reaches the specified value of 800V or more
  • the voltage of the feeder is increased by the regenerative deactivation prevention control means of the chiyotsuba control unit 4C.
  • the regenerative current reduction control function of the car 2 itself starts to operate and the regenerative current decreases.
  • the electric booster 4B controls the electric vehicle 2 by controlling the voltage of the feeder line from 1650V to 1800V in the range of the capacitor 4A in the range of 800V to 1000V (full charge voltage) by controlling the conductivity. Narrow down the regenerative current.
  • the capacitor 4A power SlOOOV full charge
  • the regenerative current of the electric vehicle 2 becomes zero by controlling the voltage of the feeder to 1800V.
  • the power regeneration current narrowing control function is utilized because the surplus energy that cannot be regenerated is left in the electric vehicle 2 due to the voltage rise of the feeder.
  • the electric vehicle 2 does not perform regenerative braking by exceeding the fully charged voltage of the capacitor 4A due to the voltage rise, and regenerative deactivation does not occur because it is braked by mechanical brake before regenerative deactivation.
  • Capacitor 4A is not charged beyond the full charge voltage, so it does not become overvoltage.
  • problems such as failure to stop fixed points of electric vehicles without sudden braking due to switching from electric braking to mechanical braking and shortening of service life due to increased wear of wheels and brake shoes are eliminated.
  • the power storage medium can be protected from overvoltage.
  • FIG. 1 is a configuration diagram of a main part of a feeding system for a DC electric railway showing an embodiment of the present invention.
  • FIG. 2 shows an example of regenerative current narrowing characteristics of an electric vehicle.
  • FIG. 3 shows an example of current Z voltage control of each part in steady control and regenerative expiration prevention control.

Abstract

【課題】電気車の力行電力の供給または回生電力の吸収を昇降圧チョッパによる電気二重層キャパシタの充放電で行う電力貯蔵装置において、負荷抵抗設備が不要でキャパシタの容量を増やさずに電気車の回生失効の防止と電気二重層キャパシタの過電圧保護をする。 【解決手段】電気車2は規定値以上のパンタ点電圧で、当該電圧に応じて回生電流を100%から0%に絞り込む機能をもつものとする。昇降圧チョッパ4Bの制御部4Cは、電気二重層キャパシタ4Aが任意の電圧まで充電されたとき、電気車2の回生電流絞り込み制御機能が動作する電圧までき電線電圧を上昇させる回生失効防止制御を行う。

Description

明 細 書
直流電気鉄道の電力貯蔵装置
技術分野
[0001] 本発明は、電気車のカ行電力を供給または回生電力を吸収する直流電気鉄道の 電力貯蔵装置に係り、特に電力貯蔵媒体が任意の電圧以上に充電された場合の電 気車の回生失効を防止する装置に関する。
背景技術
[0002] 一般に、回生車両のすべての回生電力をカ行車両で利用するとは限らず、この利 用されない回生電力が余剰電力となってしまう。そこで、これら余剰な回生電力の有 効利用を図るために、き電線と並列に電力貯蔵媒体と直流 Z直流変換装置で構成 した電力貯蔵装置を設け、余剰な回生電力を電力貯蔵媒体に吸収する方式がある。
[0003] 前記電力貯蔵装置の問題点としては、電力貯蔵媒体が満充電となった場合には、 それ以上の回生電力を吸収できなくなることである。この満充電状態で電気車の回 生制動が発生した場合、電気車側で回生失効 (電気制動不能)となり回生動作を停 止し、電気ブレーキから機械ブレーキに制動方式の切り替えを行うが切り替え操作に よる制動遅れが生じる。この制動遅れにより、機械ブレーキを急制動することで、電気 車の定点停止の失敗、車輪とブレーキシュ一の磨耗増による寿命短縮などの問題が 残る。
[0004] これらの問題を解消するため、電気二重層キャパシタと並列にスィッチを介して負 荷抵抗を設け、前記キャパシタが満充電状態になったことを過電圧検出器で検出し 、該スィッチを閉じて回生電流を負荷抵抗にバイパスし、負荷抵抗により回生電力を 熱として消費させることで、電気二重層キャパシタを過電圧から保護する方式が提案 されている(例えば、特許文献 1参照)。
[0005] 他の方式として、キャパシタの電圧が所定の設定値以上であることを検出したときに 、き電変電所の主機 (半導体電力変換器、タップ付変圧器など)の制御装置に出力 電圧を下げる制御指令を与え、き電線電圧の過電圧防止および電気二重層キャパ シタを過電圧から保護する方式が提案されている (例えば、特許文献 2参照)。 特許文献 1:日本国の公開特許公報である特開 2001— 206110号公報 特許文献 2:日本国の公開特許公報である特開 2003— 237431号公報
発明の開示
[0006] 従来の特許文献 1の方式は、電気二重層キャパシタが満充電状態の時に電気車か らの回生電流を負荷抵抗にバイパスして回生電力を吸収する。この方式では、電気 車の回生失効の防止と電気二重層キャパシタの過電圧保護は出来るが、負荷抵抗 設備と当該設備が発生する熱量の放散処理のための換気設備や放熱設備が必要 であり、これら設備の設置スペースの確保と設備費用が必要となる。また、電気二重 層キャパシタの容量を大きくすることで、負荷抵抗による電力吸収の機会を減らすこ とができる力 これは電気二重層キャパシタが大型化し、また高価なものになる。
[0007] 特許文献 2の方式は、キャパシタの電圧が所定の設定値以上のときにき電変電所 の出力電圧を下げる制御を行うが、他のカ行車両が存在しない場合にはき電線の電 圧を下げることが出来ない。このため、電気車からの回生電力によるキャパシタの過 電圧を確実に保護出来るとは限らず、他の電気車の運行状態に左右されてしまう。ま た、既設のき電変電所がタップ付き変圧器や半導体電力変換器による出力電圧調 節機能を持たない場合、き電変電所自体を新規に設備しない限り適用できない。従 つて、適用できるき電設備が限られ、適用できない設備の場合には設備自体の交換 となり多大な設備費用を要することになる。
[0008] 本発明の目的は、電気車のカ行電力の供給または回生電力の吸収を直流 Z直流 変換装置による電力貯蔵媒体の充放電で行う電力貯蔵装置において、電気車の回 生失効の防止と電力貯蔵媒体の確実な過電圧保護を行!ヽ、かつ負荷抵抗設備およ び換気設備や放熱設備が不要であると共に電力貯蔵媒体を大型化することが無ぐ さらに既設のき電変電所設備の利用が可能な直流電気鉄道の電力貯蔵装置を提供 することにある。
[0009] 本発明は、前記の課題を解決するため、以下の構成とする。
[0010] (1)電気車のカ行電力の供給または回生電流絞り込み制御機能をもつ電気車の 回生電力の吸収を直流 Z直流変換装置による電力貯蔵媒体の充放電で行う直流電 気鉄道の電力貯蔵装置において、 前記直流 z直流変換装置は、前記電力貯蔵媒体が任意の電圧まで充電されたと き、前記電気車の回生電流絞り込み制御機能が動作する電圧までき電線の電圧を 上昇させる回生失効防止制御手段を設けたことを特徴とする。
[0011] (2)電気車のカ行電力の供給または回生電流絞り込み制御機能をもつ電気車の 回生電力の吸収を直流 Z直流変換装置による電力貯蔵媒体の充放電で行う直流電 気鉄道の電力貯蔵装置において、
前記直流 Z直流変換装置は、前記電力貯蔵媒体が満充電電圧まで充電されたと き、前記電気車の回生電流が零となる電圧までき電線の電圧を上昇させる回生失効 防止制御手段を設けたことを特徴とする。
[0012] (3)電気車のカ行電力の供給または回生電流絞り込み制御機能をもつ電気車の 回生電力の吸収を直流 Z直流変換装置による電力貯蔵媒体の充放電で行う直流電 気鉄道の電力貯蔵装置において、
前記直流 Z直流変換装置は、前記電力貯蔵媒体が任意の電圧まで充電されたと き、前記電気車の回生電流絞り込み制御機能が動作する電圧までき電線の電圧を 上昇させ、前記電力貯蔵媒体の電圧上昇に応じてき電線の電圧も上昇させて回生 電流の絞り込み量を大きくし、前記電力貯蔵媒体が満充電電圧まで充電されたとき、 前記電気車の回生電流絞り込み制御機能により回生電流が零となる電圧までき電線 の電圧を上昇させる回生失効防止制御手段を設けたことを特徴とする。
[0013] (4)前記直流 Z直流変換装置は、昇降圧チヨツバであることを特徴とする。
[0014] (5)前記電力貯蔵媒体は、電気二重層キャパシタであることを特徴とする。
発明を実施するための最良の形態
[0015] 図 1は、本発明の実施形態を示す直流電気鉄道用き電システムの要部構成図であ り、電気車がもつ回生電流絞り込み制御機能 (規定値以上のパンタ点電圧に応じて 回生電流を 100%から 0%に絞り込む機能)を利用し、電力貯蔵媒体の電圧上昇に 応じて、き電線の電圧を上昇させる直流 Z直流変換装置の回生失効防止制御手段 を設けたものである。
[0016] 本実施形態を適用する電力貯蔵装置は、電気車が回生電流絞り込み制御機能を もつものとする。この制御機能は、既存の電気車に装備されるものであり、電気車の パンタ点電圧を監視し、この電圧が規定値以上のときにはそれに応じて回生電流を 1 00%から 0%に絞り込むことにより、過剰にパンタ点電圧が上昇するのを防止する。 一般的には、 DC1500V系の電気車では、図 2に示すように、パンタ点電圧が DC16 00V以下では絞り率 1.0 (絞り量 0%)、 DC1800V以上で絞り率 0 (絞り量 100%)と し、 1600V〜1800Vの間は電圧に比例して直線的に絞り率を 0に向けて下げ、回 生電流を抑制する。この回生電流の絞り込みによる余剰の回生電力は機械ブレーキ により吸収される。また、本実施例の説明では、電力貯蔵媒体として電気二重層キヤ パシタ 4A、直流 Z直流変換装置として昇降圧チヨツバ 4Bを適用した例であるが、電 力貯蔵媒体 4Aと直流 Z直流変換装置 4Bは本実施例に限定されるものではない。
[0017] 上記の回生電流絞り込み制御機能をもつ電気車で運用される直流電気鉄道の電 力貯蔵装置において、電力貯蔵装置 4は、主回路を電気二重層キャパシタ 4Aと昇 降圧チヨツバ 4Bで構成し、制御装置としてチヨツバ制御部 4Cを設ける。
[0018] チヨツバ制御部 4Cは、従来の電力貯蔵装置に設けられるものと同様の充放電制御 機能をもち、カ行電力の供給と回生電力の吸収ができるように、き電線電圧の検出 信号 Vtと、充放電制御電圧との突き合わせによって、昇降圧チヨツバ 4Bの昇降圧動 作の切り替えと導通率制御を行う。
[0019] 例えば、チヨッパ制御部 4Cは、電気車のカ行運転によってき電線電圧 Vtが低下し て規定値以下のときにチヨツバ 4Bを昇圧動作させ、カ行電力の一部あるいは全部を キャパシタ 4A力も放電電力として供給する。逆に、チヨッパ制御部 4Cは、電気車の 回生制動によってき電線電圧 Vtが上昇して規定値以上のときにチヨツバ 4Bを降圧動 作させ、回生電力の一部あるいは全部をキャパシタ 4Aに充電電力として吸収する。 これら充放電制御に際して、チヨツバ 4Bの導通率制御により必要とする充放電電力 を調整する。
[0020] これら充放電制御機能に加えて、本実施形態のチヨツバ制御部 4Cは、電気二重層 キャパシタ 4Aが任意の電圧まで充電されたときに、電気車自身がもつ回生電流絞り 込み制御機能が動作する電圧までき電線の電圧を上昇させる回生失効防止制御手 段を設ける。また、図 3に例示する通りにキャパシタ 4Aの電圧上昇に応じてき電線電 圧も上昇させて電気車の回生電流の絞り込み量を大きくし、キャパシタ 4Aが満充電 電圧まで充電されるときには回生電流が零となるように制御する。この回生失効防止 制御手段により、負荷抵抗設備を設けずにかつキャパシタ 4Aの容量を増やすことな く、キャパシタ 4Aが満充電電圧を越えて充電されるのを防止して過電圧から保護す ると共に、電気車が持つ回生電流絞り込み機能により電気車の回生失効を防止する
[0021] 以下に、図 3に基づいて DC1500V系のき電系統を例として、電気二重層キャパシ タ 4Aの使用電圧範囲を DC400V〜1000V (満充電電圧)とした場合の回生失効防 止制御手段の動作について説明をする。
[0022] まず、キャパシタ 4Aの電圧力 00V〜800Vの範囲では、チヨッパ制御部 4Cはき 電線の電圧が 1650V程度になるようにキャパシタ 4Aの充放電制御(定常制御)を行 い、電気車の回生電流はその 100%がほぼ回生される。
[0023] キャパシタ 4Aの電圧が 1000V (満充電電圧)に近づき規定値である 800V以上と なった場合、チヨツバ制御部 4Cの回生失効防止制御手段によりき電線の電圧を上昇 させて、これにより電気車 2自身がもつ回生電流絞り込み制御機能が動作し始めて 回生電流が減少する。この時、昇降圧チヨッパ 4Bはその導通率制御によって、キヤ パシタ 4Aの電圧が 800V〜1000V (満充電電圧)の範囲では、き電線の電圧を 165 0V〜1800Vに制御することで電気車 2は回生電流を絞り込む。特にキャパシタ 4A 力 SlOOOV (満充電)では、き電線の電圧を 1800Vに制御することで電気車 2の回生 電流は零となる。
[0024] 従って、回生失効防止制御手段による制御中は、き電線の電圧上昇により電気車 2には回生しきれない余剰エネルギーが残る力 回生電流絞り込み制御機能を利用 しているため、前記き電線の電圧上昇により電気車 2はキャパシタ 4Aの満充電電圧 を超えて回生制動を行わず、回生失効前に機械ブレーキにより制動するため回生失 効が起こらない。また、キャパシタ 4Aは満充電電圧を越えて充電されないので過電 圧にならない。さらに回生失効が起こらないので、電気ブレーキから機械ブレーキへ の制動方式の切り替えによる急制動が無ぐ電気車の定点停止の失敗および車輪と ブレーキシュ一の磨耗増による寿命短縮などの問題は解消される。
[0025] 以上のとおり、本発明の電力貯蔵装置によれば、電力貯蔵媒体の電圧上昇に応じ てき電線の電圧を上昇させる制御手段を設けたため、以下の効果がある。
[0026] (1)電気車の回生失効を防止できる。
[0027] (2)電力貯蔵媒体を過電圧から保護できる。
[0028] (3)電力貯蔵媒体が小容量のもので済むため、貯蔵媒体の小型化とコストダウンを 図ることができる。
[0029] (4)負荷抵抗設備および換気設備や放熱設備が不要となるため、当該設備の設置 スペースを省略できかつ設備費用のコストダウンを図ることができる。
[0030] (5)既設のき電変電所設備が利用可能で設備の交換または改造が不要であるた め、適用路線を選ばず設備の交換または改造の費用が掛カもない。
図面の簡単な説明
[0031] [図 1]本発明の実施形態を示す直流電気鉄道用き電システムの要部構成図。
[0032] [図 2]電気車の回生電流絞り込み特性の例。
[0033] [図 3]定常制御および回生失効防止制御における各部の電流 Z電圧制御の例。

Claims

請求の範囲
[1] 電気車のカ行電力の供給または回生電流絞り込み制御機能をもつ電気車の回生 電力の吸収を直流 Z直流変換装置による電力貯蔵媒体の充放電で行う直流電気鉄 道の電力貯蔵装置において、
前記直流 Z直流変換装置は、前記電力貯蔵媒体が任意の電圧まで充電されたと き、前記電気車の回生電流絞り込み制御機能が動作する電圧までき電線の電圧を 上昇させる回生失効防止制御手段を設けたことを特徴とする直流電気鉄道の電力 貯蔵装置。
[2] 電気車のカ行電力の供給または回生電流絞り込み制御機能をもつ電気車の回生 電力の吸収を直流 Z直流変換装置による電力貯蔵媒体の充放電で行う直流電気鉄 道の電力貯蔵装置において、
前記直流 Z直流変換装置は、前記電力貯蔵媒体が満充電電圧まで充電されたと き、前記電気車の回生電流絞り込み制御機能により回生電流が零となる電圧までき 電線の電圧を上昇させる回生失効防止制御手段を設けたことを特徴とする直流電気 鉄道の電力貯蔵装置。
[3] 電気車のカ行電力の供給または回生電流絞り込み制御機能をもつ電気車の回生 電力の吸収を直流 Z直流変換装置による電力貯蔵媒体の充放電で行う直流電気鉄 道の電力貯蔵装置において、
前記直流 Z直流変換装置は、前記電力貯蔵媒体が任意の電圧まで充電されたと き、前記電気車の回生電流絞り込み制御機能が動作する電圧までき電線の電圧を 上昇させ、前記電力貯蔵媒体の電圧上昇に応じてき電線の電圧も上昇させて電気 車の回生電流絞り込み量を大きくし、前記電力貯蔵媒体が満充電電圧まで充電され たとき、前記電気車の回生電流絞り込み制御機能により回生電流が零となる電圧ま でき電線の電圧を上昇させる回生失効防止制御手段を設けたことを特徴とする直流 電気鉄道の電力貯蔵装置。
[4] 前記直流 Z直流変換装置は、昇降圧チヨツバであることを特徴とする請求項 1乃至 3 記載の直流電気鉄道の電力貯蔵装置。
[5] 前記電力貯蔵媒体は、電気二重層キャパシタであることを特徴とする請求項 1乃至 4 記載の直流電気鉄道の電力貯蔵装置。
PCT/JP2006/316222 2005-10-12 2006-08-18 直流電気鉄道の電力貯蔵装置 WO2007043242A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800378678A CN101282855B (zh) 2005-10-12 2006-08-18 直流电气轨道的电力存储单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-297066 2005-10-12
JP2005297066A JP4848729B2 (ja) 2005-10-12 2005-10-12 直流電気鉄道の電力貯蔵装置

Publications (1)

Publication Number Publication Date
WO2007043242A1 true WO2007043242A1 (ja) 2007-04-19

Family

ID=37942503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316222 WO2007043242A1 (ja) 2005-10-12 2006-08-18 直流電気鉄道の電力貯蔵装置

Country Status (5)

Country Link
JP (1) JP4848729B2 (ja)
KR (1) KR100998873B1 (ja)
CN (1) CN101282855B (ja)
MY (1) MY141103A (ja)
WO (1) WO2007043242A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583001A (zh) * 2012-10-31 2015-04-29 株式会社东芝 电力管理装置以及电力管理系统
JP2017147786A (ja) * 2016-02-15 2017-08-24 株式会社東芝 異常診断装置、方法、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978354B2 (ja) * 2007-07-17 2012-07-18 株式会社明電舎 直流電力貯蔵装置
JP5493604B2 (ja) * 2009-09-03 2014-05-14 株式会社明電舎 直流電気鉄道の電力貯蔵装置
JP5604984B2 (ja) * 2010-05-27 2014-10-15 株式会社明電舎 電気鉄道システムのき電電圧制御方法
CN102729841B (zh) * 2012-07-03 2015-04-01 南车株洲电力机车研究所有限公司 供电臂布线系统和锚段关节式分相系统
CN103434420B (zh) * 2013-07-29 2016-02-17 华北电力大学(保定) 基于电动汽车充电的制动能量回收式直流牵引供电系统
CN112350377B (zh) * 2021-01-11 2021-04-13 西南交通大学 一种同相牵引供电发电系统及控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237431A (ja) * 2002-02-20 2003-08-27 Shizuki Electric Co Inc 饋電電圧補償システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731723A (en) * 1985-07-12 1988-03-15 Kabushiki Kaisha Meidensha Power supply installation for DC electric railroad
JPH1191415A (ja) * 1997-07-22 1999-04-06 Nissin Electric Co Ltd 電鉄用直流変電システム
JP2003220859A (ja) * 2002-01-30 2003-08-05 Hitachi Ltd 直流機電用電力蓄積装置及び鉄道機電システム
JP3927901B2 (ja) * 2002-11-21 2007-06-13 株式会社指月電機製作所 饋電電圧補償装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237431A (ja) * 2002-02-20 2003-08-27 Shizuki Electric Co Inc 饋電電圧補償システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583001A (zh) * 2012-10-31 2015-04-29 株式会社东芝 电力管理装置以及电力管理系统
JP2017147786A (ja) * 2016-02-15 2017-08-24 株式会社東芝 異常診断装置、方法、及びプログラム

Also Published As

Publication number Publication date
CN101282855B (zh) 2010-08-18
JP2007106186A (ja) 2007-04-26
CN101282855A (zh) 2008-10-08
KR100998873B1 (ko) 2010-12-08
KR20080046236A (ko) 2008-05-26
JP4848729B2 (ja) 2011-12-28
MY141103A (en) 2010-03-15

Similar Documents

Publication Publication Date Title
JP4572840B2 (ja) 直流電力貯蔵装置
EP2241472B1 (en) Power storage control apparatus and method of electric vehicle
WO2007043242A1 (ja) 直流電気鉄道の電力貯蔵装置
JP3964857B2 (ja) 電鉄用回生電力吸収制御方法
EP2151097B1 (en) Energy recapture for an industrial vehicle
JP3606780B2 (ja) 無停電電源装置
JP2009072003A5 (ja)
JP3618273B2 (ja) 電鉄用直流き電システム
KR101627960B1 (ko) 전기차 제어장치
JP6055258B2 (ja) 鉄道車両
JP2000233669A (ja) 直流き電系統の給電システム
JP4934562B2 (ja) 蓄電装置を有する車両用制御装置
JP4978354B2 (ja) 直流電力貯蔵装置
JP4238190B2 (ja) 電力貯蔵式回生電力吸収装置およびその制御方法
JP2004358984A (ja) 電鉄用直流電力供給設備
JP5604984B2 (ja) 電気鉄道システムのき電電圧制御方法
JP3430709B2 (ja) 電気自動車電源制御装置
WO2018123917A1 (ja) 鉄道車両用回路システム
JP4835347B2 (ja) 直流電気鉄道システムの回生電力吸収方式
JP2010000810A (ja) 直流き電系統の給電方式
JP2004168214A (ja) 饋電電圧補償装置
JP2001320831A (ja) 電鉄用電気車
JP5245602B2 (ja) 回生電力吸収装置
JP2018016108A (ja) 蓄電装置
JPS5810262B2 (ja) 電気鉄道用電力回生装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037867.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12008500685

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: PI 20080959

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 1020087008567

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796533

Country of ref document: EP

Kind code of ref document: A1