WO2007040277A1 - 低Co水素吸蔵合金 - Google Patents

低Co水素吸蔵合金 Download PDF

Info

Publication number
WO2007040277A1
WO2007040277A1 PCT/JP2006/320096 JP2006320096W WO2007040277A1 WO 2007040277 A1 WO2007040277 A1 WO 2007040277A1 JP 2006320096 W JP2006320096 W JP 2006320096W WO 2007040277 A1 WO2007040277 A1 WO 2007040277A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
storage alloy
crystal structure
general formula
low
Prior art date
Application number
PCT/JP2006/320096
Other languages
English (en)
French (fr)
Inventor
Shinya Kagei
Keisuke Miyanohara
Yoshimi Hata
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to JP2006549729A priority Critical patent/JP3944237B2/ja
Publication of WO2007040277A1 publication Critical patent/WO2007040277A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • H01M4/385Hydrogen absorbing alloys of the type LaNi5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an AB-type hydrogen storage alloy having a CaCu-type crystal structure.
  • the present invention relates to a low Co hydrogen storage alloy capable of realizing a battery having excellent low-temperature capacity and life characteristics when used as a negative electrode active material.
  • a hydrogen storage alloy is an alloy that reacts with hydrogen to form a metal hydride and can reversibly store and release a large amount of hydrogen near room temperature.
  • Practical use in various fields such as hybrid electric vehicles (HEV: hybrid electric vehicles; vehicles that use both electric motors and internal combustion engines and V, two power sources) and nickel-hydrogen batteries and fuel cells mounted on digital still cameras Is being promoted.
  • HEV hybrid electric vehicles
  • AB type hydrogen storage alloys having a CaCu type crystal structure such as A
  • Mm—Ni—Mn— A1—Co alloy An alloy that uses Mm (Misch metal), a rare earth-based mixture, and an element such as Ni, Al, Mn, Co, etc. at the B site (hereinafter referred to as “Mm—Ni—Mn— A1—Co alloy ”) is a hermetically sealed type in which the negative electrode can be made of a relatively inexpensive material compared to other alloy compositions, and the internal pressure due to the generated gas during overcharging is long and the cycle life is long. -It has features such as the ability to configure a nickel hydrogen storage battery.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-40442 discloses a general formula MmNi Mn Al Co X (where Mm is Misch metal, X is Fe and / or C). abede
  • Patent Document 2 includes a general formula MmNi Mn Al Co (where Mm a b e d
  • a hydrogen storage alloy characterized by being 9pm or more has been proposed.
  • Patent Document 1 JP 2001-40442
  • Patent Document 2 Patent No. 3493516
  • the present invention relates to an AB-type hydrogen storage alloy such as an Mm—Ni—Mn—Al—Co alloy.
  • the output characteristics particularly the output characteristics at low temperatures (low temperature capacity) and the life characteristics are At the same time, we intend to provide a low-Co hydrogen storage alloy that can be excellent.
  • the present invention provides a general formula MmNi Mn Al Co Fe (where Mm is L a b c d e
  • the output characteristics at low temperature Batteries with excellent low temperature capacity and lifetime characteristics can be realized.
  • the output characteristics at low temperature were 201 to 229 mAhZg in the example of Patent Document 2 (Table 1 to Table 4), and 250 mAhZg or more in the example of the present invention. can do.
  • the capacity retention rate after 100 cycles can be 90% or more in terms of force and life characteristics.
  • the low Co hydrogen storage alloy of the present invention can provide a hydrogen storage alloy excellent in output characteristics and life characteristics at low cost, and can be used for an anode of a battery used in an electric vehicle or a hybrid electric vehicle. It can be used effectively as a substance.
  • X to Y (X and ⁇ are arbitrary numbers) is described, it means “X or more and ⁇ or less”, and “ Is larger than X and smaller than ⁇ .
  • FIG. 1 is a diagram in which the measurement results for the hydrogen storage alloys obtained in Examples and Comparative Examples are plotted in the coordinates where the horizontal axis is the full width at half maximum and the vertical axis is the 100 cycle capacity retention ratio. is there.
  • FIG. 2 is a diagram in which the measurement results for the hydrogen storage alloys obtained in Examples and Comparative Examples are plotted in coordinates consisting of a horizontal axis: lattice volume and a vertical axis: low temperature capacity.
  • FIG. 3 A graph in which the measurement results of the hydrogen storage alloys obtained in the examples and comparative examples are plotted in the coordinates of horizontal axis: low temperature capacity, vertical axis: 100 cycle capacity retention ratio. is there.
  • FIG. 4 is a side cross-sectional view illustrating the configuration of an open type test cell produced in a test.
  • the hydrogen storage alloy of the present embodiment (hereinafter referred to as “the present hydrogen storage alloy” t) is represented by the general formula MmNi Man Al Co or the general formula MmNi Mn Al Co Fe, and the CaCu type crystal structure is bedabcde.
  • This hydrogen storage alloy has a ratio of the total number of moles of elements composing the B site to the total number of moles of elements composing the A site in the ABx composition a + b + c + d or a + b + c + d + It is important that e (this ratio is referred to as “ABx”, “BZA” or “a + b + c + d (+ e)”) is 5. 025 ⁇ ABx ⁇ 5.200. B-site-rich non-stoichiometric composition power is also provided, and ABx within this range suppresses deterioration of output characteristics, particularly output characteristics at low temperatures (low temperature capacity) and life characteristics (capacity maintenance ratio). be able to. From this point of view, ABx is more preferably 5.050 or more, and more preferably 5.150 or less.
  • the lattice volume of the type 5 crystal structure is 88.70 ⁇ 10 6 (pm 3 ) or less.
  • the lattice volume of the CaCu type crystal structure is 87.00 X 10 6 (pm 3 ) to 88. 70 X 10 6 (pm 3 ) to 88.
  • pm 3) a and even 88.
  • also preferred tool in 00 X 10 6 (pm 3) ⁇ 88. is the force S more preferably 70 X 10 6 (pm 3) .
  • the preferred means for controlling the lattice volume of the CaCu-type crystal structure is, for example, forging
  • the full width at half maximum of the (002) plane is not more than 0.39 (°), preferably 0.13 to 0.39 (°). It is preferably 0.13 to 0.27 (°), and more preferably 0.20 to 0.24 (°).
  • Co can be provided at low cost if its amount is reduced, but it is difficult to maintain its life characteristics, so the ratio (d) of Co in this hydrogen storage alloy is 0.2 ⁇ d ⁇ 0. It is important to set it to 5.
  • alloy composition other than Co that is, the composition ratio of Ni, Mn, A1 and Fe, as described above, 5. 025 ⁇ ABx (; a + b + c + d (+ e)) ⁇ 5. 200 It may be adjusted as appropriate within the range.
  • the effects in the present invention particularly the low temperature capacity and the lifetime Power capable of obtaining the effect of improving the characteristics (capacity retention ratio) Further, it is more preferable to adjust the amounts of Ni, Mn, Al and Fe from the following viewpoints.
  • the ratio (d) of Co is 0.2 ⁇ d ⁇ 0.5 as described above, and is preferably adjusted within the range of 0.2 ⁇ d ⁇ 0.4. Is good.
  • 0.18 ⁇ d ⁇ 0.50 is preferred, 0.18 ⁇ d ⁇ 0.45, and 0 of them. 18 ⁇ d ⁇ 0. 40 force force! /
  • Fe is not an essential alloy element, but by adding an appropriate amount of Fe, it is possible to suppress fine dust, that is, to improve the life characteristics.
  • the proportion (e) of Fe in this hydrogen storage alloy is preferably 0 ⁇ e ⁇ 0.1, but is preferably 0.01 ⁇ e ⁇ 0.1, and more preferably 0.0 02 ⁇ e ⁇ 0.1. It is preferable to adjust within the range.
  • the Fe ratio (e) with the first decimal place being a significant figure, it is preferable to adjust within the range of 0.01 ⁇ e ⁇ 0.10, especially 0.02 ⁇ e ⁇ 0.10. I can say that.
  • Ni damage ij (a) i 3. 70 ⁇ a ⁇ 4.30, preferably ⁇ 3. 70 ⁇ a ⁇ 4.25, more preferred 3. Adjust within 70 ⁇ a ⁇ 4. 3. If it is within the range of 70 ⁇ a ⁇ 4.30, it is easy to maintain the output characteristics, and the fine powder characteristics and life characteristics are not deteriorated.
  • the ratio (b) of Mn should be adjusted within the range of 0 ⁇ b ⁇ 0.7. If the ratio of Mn is in the range of 0 ⁇ b ⁇ 0.7, fine powder can be suppressed. Considering the ratio of Mn (b) with the first decimal place as the effective number, it can be said that it should be adjusted within the range of 0 ⁇ b ⁇ 0.70.
  • the ratio (c) of A1 should be adjusted within the range of 0.1.l ⁇ c ⁇ 0.5. If it is within the range of 0.l ⁇ c ⁇ 0.5, the plateau pressure becomes higher than necessary and it is possible to suppress the deterioration of the energy efficiency of charging / discharging, and the hydrogen storage capacity also decreases. Can also be suppressed. Considering the ratio of A1 (c) with the first decimal place as significant figures, it can be said that it is better to adjust within the range of 0.10 ⁇ c ⁇ 0.5.
  • Mm may be a rare earth-based mixture (misch metal) containing at least La and Ce.
  • Normal Mm contains rare earths such as Pr, Nd and Sm in addition to La and Ce.
  • the La content is It is important to occupy 13-27 wt%, preferably 15-27 wt%, especially 17-27 wt%! / ,.
  • the hydrogen storage alloy may contain any impurity of Ti, Mo, W, Si, Ca, Pb, Cd, and Mg as long as it is about 0.05% by weight or less. .
  • the preferred hydrogen storage alloy has a general formula MmNi Mn Al Co or a general formula a b e d
  • the range is from 00 X 10 6 (pm 3 ) to 88.70 X 10 6 (pm 3 ), and the full width at half maximum of the (002) plane is 0.13-0.29 (°). be able to.
  • the lattice volume of the CaCu-type crystal structure obtained by refining the lattice constant along with the X-ray diffraction measurement is 88.17 X
  • Examples thereof include 10 6 (pm 3 ) to 88.69 X 10 6 (pm 3 ) and a (002) plane full width at half maximum of 0.20 to 0.29 (°).
  • the method for producing this hydrogen storage alloy is, for example, the general formula MmNi Mn Al Co Fe (3. 70 ⁇ abcdea ⁇ 4.30, 0 ⁇ b ⁇ 0.7, 0.l ⁇ c ⁇ 0.5, 0.2. ⁇ d ⁇ 0.5, 0 ⁇ e ⁇ 0.1, 5. 025 ⁇ a + b + c + d + e ⁇ 5.200, La content is 13-27wt% in hydrogen storage alloy)
  • each hydrogen storage alloy raw material is weighed and mixed, and the hydrogen storage alloy raw material is melted into a molten metal using, for example, an induction heating high-frequency heating melting furnace.
  • This is a vertical type, for example, a water-cooled type.
  • the temperature drop rate after the heat treatment as well as ABx and the heat treatment conditions are one of the important factors for controlling the lattice volume and the full width at half maximum of the (002) plane. That is, the lattice volume can be adjusted by adjusting the temperature and time of ABx and heat treatment, and changing the temperature drop rate after heat treatment. As a preferred example, it is preferable to rapidly cool from the heat treatment temperature (maintenance temperature) to 15 to 25 ° CZmin, particularly about 20 ° C to 25 ° CZmin, and then cool to around 500 ° C, and then naturally cool! /, .
  • the above production method is an example of the production method of the present hydrogen storage alloy, and is not limited thereto.
  • the forging method is one of U. Forging methods.
  • the Twin Roll method specifically, paragraph [0013] of JP-A-2004-131825.
  • the obtained hydrogen storage alloy (ingot) is made into a hydrogen storage alloy powder having a required particle size by coarse pulverization or fine pulverization, if necessary. For example, it can be pulverized to a particle size (-500 ⁇ m) that passes through a 500 ⁇ m sieve to obtain a hydrogen storage alloy powder.
  • the surface of the alloy is coated with a metal material, polymer resin, or the like, or the surface is treated with an acidic aqueous solution or an alkaline aqueous solution. It can be used as an active material.
  • the present hydrogen storage alloy (including ingot and powder) can be used to prepare a battery negative electrode by a known method. That is, a hydrogen storage alloy negative electrode can be produced by mixing and forming a binder, a conductive additive and the like by a known method.
  • the hydrogen storage alloy negative electrode thus obtained can be used not only for secondary batteries but also for primary batteries (including fuel cells).
  • a nickel-MH (Metal Hydride) secondary battery can be composed of a positive electrode using nickel hydroxide nickel as an active material, an electrolytic solution made of alkaline aqueous solution, and a separator. It can be suitably used for power supply applications such as equipment, electric tools, electric vehicles, hybrid electric vehicles, and fuel cells (including hybrid fuel cells used in combination with other batteries such as lithium batteries).
  • “Hybrid electric vehicle” means a vehicle that uses two power sources, an electric motor and an internal combustion engine. In this case, "internal combustion engine” includes diesel engines and other engines that are not just gasoline engines. .
  • the hydrogen storage alloy has a depth of charge / discharge, such as an electric vehicle or a hybrid electric vehicle battery, which is not connected to a battery that is charged / discharged between the limits of the charge / discharge depth, such as a battery of an electric tool or a digital camera.
  • a negative electrode active material for a battery that is charged / discharged in the central region
  • the negative electrode of the battery that is charged / discharged in the central region of such a charge / discharge depth in order to exhibit performance with excellent life characteristics (cycle characteristics).
  • Particularly preferred as an active material is particularly preferred as an active material.
  • the battery is controlled so that it is not fully charged and fully discharged, and is always kept in a state where energy can be taken in and out.
  • the "battery charged / discharged in the central region of the charge / discharge depth" does not satisfy the limit region of the charge / discharge depth! / ⁇ means battery which is mainly charged and discharged hydrogen storage capacity area, for example, state of charge (SOC: state of charge) power 40 to: L00 0 / o, especially 60 to 85 0/0, further 70 to 85 0 / 0 , 55-65%, etc.
  • batteries with a very limited range of use are preferred. Specific examples include batteries mounted on vehicles such as electric vehicles and hybrid electric vehicles. it can.
  • the obtained alloy lump is placed in a stainless steel container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken). After heat treatment in an argon gas atmosphere at 1060 ° C for 3 hours, Cooling water was circulated through the cooling water pipes arranged on the outside and cooled to 500 ° C at a temperature drop rate of 20 ° CZmin. Thereafter, the cooling water flow was stopped and natural cooling was performed to room temperature.
  • the obtained alloy is coarsely crushed using a jaw crusher (Fuji Paudal: modell021-B) and further passed through a 500 ⁇ m sieve with a horizontal brown crusher (Yoshida Seisakusho). (500 m) was pulverized to obtain hydrogen storage alloy powder.
  • a hydrogen storage alloy powder was produced in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was changed to the composition shown in Table 1.
  • Each raw material is weighed and mixed so as to have the composition shown in Table 1, and this mixture is put into a crucible. Is fixed to a high frequency melting furnace, the furnace atmosphere 10- 4 ⁇ : LO- 5 was evacuated to Torr, was dissolved by heating in alcoholic argon gas atmosphere until 1450 ° C, pouring molten metal into a water-cooled copper ⁇ An alloy was obtained.
  • the obtained alloy (ingot) is roughly crushed using a jaw crusher (manufactured by Fuji Paudal: modell021-B), and further passed through a 500 ⁇ m sieve using a horizontal brown grinder (manufactured by Yoshida Seisakusho). Grinding to particle size (500 m).
  • the obtained alloy powder is placed in a stainless steel container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken). After heat treatment at the heat treatment temperature shown in Table 1 for 3 hours, Cooling water was circulated through the cooling water pipes arranged on the outside and cooled to 500 ° C at a temperature drop rate of 20 ° CZmin. Thereafter, the cooling water flow was stopped and natural cooling was performed to room temperature.
  • the obtained heat-treated alloy was coarsely crushed again using a jaw crusher (manufactured by Fuji Paudal: modellO 21-B), and further screened with 500 ⁇ m using a horizontal brown crusher (manufactured by Yoshida Seisakusho). Grinding was performed until the particle size passed (500 m), and hydrogen storage alloy powder was obtained.
  • Hydrogen storage alloy powders were produced in the same manner as in Example 1 except that each raw material was weighed and mixed so as to have the composition shown in Table 1 and the heat treatment temperature was changed to the temperature shown in Table 1.
  • the hydrogen storage alloy powder was produced in the same manner as in Example 1 except that each raw material was weighed and mixed so as to have the composition shown in Table 1, and the rate of temperature reduction to 500 ° C after heat treatment was changed to 5 ° C Zmin. .
  • Alloy activation treatment treatment to reveal the hydrogen storage characteristics of the alloy: The PCT device sample holder was taken out of the mantle heater, 3MPa hydrogen pressure was introduced, and held for 10 minutes. After that, evacuation was performed for 10 minutes while the PCT device sample holder was heated in a mantle heater (250 ° C). This series of operations was performed twice.
  • the refinement at this time was carried out using the application software (software name: refinement of the lattice constant) attached to RINT-2200V, and the added S was used to correct the angle by the internal standard method.
  • the lattice constant was refined by the method of least squares. Details at the time of measurement and analysis just in case Detailed setting conditions are shown below.
  • Knock ground removal method straight line touching both ends
  • the 117th and 118th cycles were performed under the same measurement conditions as the activation.
  • the value at the 17th cycle is shown in the table as the low temperature capacity.
  • the 100-cycle capacity retention rate was determined by the following formula.
  • Heat treatment Axle length (002) 100 cycles Heat treatment S degree Time Lattice volume during heat treatment Low temperature capacity
  • Example 1 1060 3 Ingot 20 13 3.70 0.5 0.3 0.5 0.025 5.025 0.832 0.034 500.5 406.5 88.17 0.22 272 93 Par 2 1060 3 Ingot 20 17 3.95 0.5 0.3 0.4 0 5.150 0.831 0.037 501.1 406.6 88.41 0.24 274 94
  • Example 3 1060 3 Incot 20 19 3.95 0.3 0.4 0.4 0 5.050 0.328 0.037 501.3 405.7 88.30 0.23 277 92
  • Example 4 1060 3 In: 3 mm 20 27 4.20 0.2 0.4 0.3 0.025 5.125 0.849 0.037 503.1 404.6 88.69 0.27 289 91 Implementation Example 5 1060 3 Ingot 20 17 3.95 0.6 0.2 0.4 0 5.150 0.841 0.039 501.1 406.6 88.41 0.22 275 94
  • Example 6 1060 3 Ingot 20 17 3.95 0.7 0.1 0.4 0 5.150 0.852 0.042 501.0 406.7 88.41
  • Heat treatment (002) 100 cycles Heat treatment temperature Time Lattice volume during heat treatment Low temperature capacity
  • Example 1 1060 3 Ingot 20 13 3.70 0.50 0.30 0.50 0.03 5.03 0,832 0.034 500.5 406.5 88.17 0.22 272 93
  • Example 2 1060 3 Ingot ⁇ 20 17 3.95 0.50 0.30 0.40 ⁇ . ⁇ 5.15 0. ⁇ 31 0.037 501.1 406.6 88.41 0.24 274 94
  • Implementation «3 1060 3 inches ⁇ ⁇ 20 19 3.95 0.30 0.40 0.40 0.00 5.05 0.828 0.037 501.3 405.7 88.30 0.23 111 92
  • Example 4 1060 3 Incot 20 27 4.20 0.20 040 0.30 0.03 5.13 0.849 0.037 503.1 404 8B.G9 0.27 289 ⁇ 1
  • Example 5 1060 3 Ingot 20 17 3.95 0.60 0—20 0.40 0.00 5. ⁇ 5 0.841 0.039 501.1 406.6 86.41 0.22 275 94
  • Practical example 6 10SO 3 Ingot 20 17 3.95 0.70 0.10 0.40 ⁇ .
  • Table 2 shows the ratio of Mn, Al, and Co in Table 1 as significant figures up to the second decimal place. Examples 1 to 12 and Mn and Al in Comparative Examples 1 to 7 The amount of Co itself is not different from Table 1.
  • FIG. 1 shows the hydrogen storage alloys obtained in the examples and comparative examples! Based on the above measurement results, the horizontal axis: full width at half maximum, the vertical axis: 100 cycle capacity retention ratio.
  • FIG. 2 is a diagram plotted in coordinates where the horizontal axis is the lattice volume and the vertical axis is the low-temperature capacity based on the above measurement results for the hydrogen storage alloys obtained in Examples and Comparative Examples.
  • FIG. 3 is a graph plotted based on the above measurement results in coordinates consisting of a horizontal axis: low temperature capacity and a vertical axis: 100 cycle capacity maintenance rate, and the straight lines in FIG. It is a straight line connecting the plot group of “Example group” and “Comparative example” (“Comparative example group” t) with an approximate expression that also obtains the least square method force.
  • FIGS. 1 and 2 are summarized in FIG. 3 based on the relationship between the low-temperature capacity and the life characteristics.
  • the example group is shown by an arrow in the drawing on the extension line of the comparative example group.
  • Fig. 4 it was found that it was in an unexpected position. This is thought to be due to a synergistic effect by combining the optimal range of La%, lattice volume, and full width at half maximum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 低温での出力特性(低温容量)と寿命特性とがともに優れた低Co水素吸蔵合金を提供する。そのため、一般式MmNiaMnbAlcCodFee(式中、MmはLaを含むミッシュメタル、0.2≦d≦0.5、5.025≦a+b+c+d+e≦5.200)で表すことができるCaCu5型結晶構造を有する低Co水素吸蔵合金であって、Laの含有量が水素吸蔵合金中13~27wt%であり、X線回折測定と共に格子定数の精密化を行って得られる、CaCu5型結晶構造の格子体積が88.70×106(pm3)以下であって、且つ、(002)面の半値全幅が0.29(°)以下であることを特徴とする水素吸蔵合金を提案する。

Description

明 細 書
低 Co水素吸蔵合金
技術分野
[0001] 本発明は、 CaCu型の結晶構造を有する AB型水素吸蔵合金に関し、詳しくは、
5 5
負極活物質として用いることにより優れた低温容量及び寿命特性を備えた電池を実 現することができる低 Co水素吸蔵合金に関する。
背景技術
[0002] 水素吸蔵合金は、水素と反応して金属水素化物となる合金であり、室温付近で多 量の水素を可逆的に吸蔵 ·放出し得るため、電気自動車 (EV: Electric Vehicle)、ハ イブリツド電気自動車 (HEV: Hybrid Electric Vehicle;電気モータと内燃エンジンと V、う 2つの動力源を併用した自動車)やデジタルスチルカメラに搭載されるニッケル' 水素電池や燃料電池等、様々な分野で実用化が進められている。
[0003] 水素吸蔵合金としては、 LaNiに代表される AB 型合金、 ZrV Ni に代表される
5 5 0.4 1.5
AB型合金、そのほカゝ AB型合金や A B型合金など様々な合金が知られている。そ
2 2
の多くは、水素との親和性が高く水素吸蔵量を高める役割を果たす元素グループ (C a、 Mg、希土類元素、 Ti、 Zr、 V、 Nb、 Pt、 Pdなど)と、水素との親和性が比較的低く 吸蔵量は少な 、が、水素化反応が促進し反応温度を低くする役割を果たす元素グ ループ(Ni、 Mn、 Cr、 Feなど)との組合せで構成されている。
[0004] これらの中で、 CaCu型の結晶構造を有する AB 型水素吸蔵合金、例えば Aサイ
5 5
トに希土類系の混合物である Mm (ミッシュメタル)を用い、 Bサイトに Ni、 Al、 Mn、 C o等の元素を用いてなる合金(以下、この種の合金を「Mm— Ni— Mn— A1— Co合 金」と称する)は、他の合金組成に比べて、比較的安価な材料で負極を構成でき、し 力もサイクル寿命が長ぐ過充電時の発生ガスによる内圧上昇が少ない密閉型-ッ ケル水素蓄電池を構成できるなどの特徴を備えて 、る。
[0005] ところで、今後、水素吸蔵合金の用途として、電気自動車やハイブリッド電気自動 車への普及拡大を図るためには、寿命特性及び出力特性をさらに向上させつつ安 価に提供できるようにする必要がある力 上記のような AB型水素吸蔵合金において は、 Coが合金の微粉ィ匕を抑制し、寿命特性を向上させる重要な役割を果たす反面、 非常に高価であるため、 Coの量を減らしつつ、何らかの方法によって寿命特性及び 出力特性を高めることが研究課題となってきた。
[0006] 力かる課題の解決手段として、従来、例えば特許文献 1 (特開 2001—40442)に は、一般式 MmNi Mn Al Co X (式中、 Mmはミッシュメタル、 Xは Fe及び/又は C a b e d e
u、 3. 7≤a≤4. 2、 0≤b≤0. 3、 0≤c≤0. 4、 0. 2≤d≤0. 4、 0≤e≤0. 4、 5. 0 0≤a+b + c + d+e≤5. 20、但し b = c = 0の場合を除く、また 0< b≤0. 3、力つ 0 < c≤0. 4の場合は、 b + c< 0. 5である)で表される CaCu型の結晶構造を有する
5
水素吸蔵合金が提案されて ヽる。
[0007] また、特許文献 2 (特許第 3493516)には、一般式 MmNi Mn Al Co (式中、 Mm a b e d
ίまミッシュメタノレ、 4. 0< a≤4. 3、 0. 25≤b≤0. 4、 0. 25≤c≤0. 4、 0. 3≤d≤0 . 5、 5. 05≤a+b + c + d≤5. 25)若しくは一般式 MmNi Mn Al Co X (式中、 M a b e d e miまミッシュメタノレ、 Χίま Cu及び/又 ίま Fe、 4. 0< a≤4. 3、 0. 25≤b≤0. 4、 0. 2 5≤c≤0. 4、 0. 3≤d≤0. 5、 0< e≤0. 1、 5. 05≤a+b + c + d+e≤5. 25)で表 される CaCu型の結晶構造を有する AB型水素吸蔵合金であって、 c軸の格子長が
5 5
404. 9pm以上であることを特徴とする水素吸蔵合金が提案されて 、る。
[0008] 特許文献 1 :特開 2001— 40442
特許文献 2 :特許第 3493516
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、例えば Mm— Ni— Mn— Al— Co合金のような AB 型水素吸蔵合金に
5
おいて、 Co量を低減し、具体的には Mmに対する Coのモル比率で 0. 5以下とした 場合であっても、出力特性、特に低温での出力特性 (低温容量)と寿命特性とをとも に優れたものとし得る低 Co水素吸蔵合金を提供せんとするものである。
課題を解決するための手段
[0010] 力かる課題解決のため、本発明は、一般式 MmNi Mn Al Co Fe (式中、 Mmは L a b c d e
aを含むミッシュメタル、 0. 2≤d≤0. 5、 5. 025≤a+b + c + d+e≤5. 200)で表 すことができる CaCu型結晶構造を有する低 Co水素吸蔵合金であって、 Laの含有 量が水素吸蔵合金中 13〜27wt%であり、 X線回折測定と共に格子定数の精密化を 行って得られる、 CaCu型結晶構造の格子体積が 88. 70 X 106(pm3)以下であって
5
、且つ、(002)面の半値全幅が 0. 29 (° )以下であることを特徴とする水素吸蔵合 金を提案する。
[0011] 本発明の低 Co水素吸蔵合金によれば、 Co量を低減し、具体的には Mmに対する Coのモル比率で 0. 5以下とした場合であっても、低温での出力特性 (低温容量)と 寿命特性とがともに優れた電池を実現することができる。中でも、低温での出力特性( 低温容量)については、上記特許文献 2の実施例では 201〜229mAhZgのレベル であったものを (表 1〜表 4)、本発明の実施例では、 250mAhZg以上とすることが できる。し力もこの際、寿命特性についても、 100サイクル後の容量維持率を 90%以 上とすることができる。このように、本発明の低 Co水素吸蔵合金は、出力特性及び寿 命特性に優れた水素吸蔵合金を安価に提供することができ、電気自動車やハイプリ ッド電気自動車に使われる電池の負極活物質として有効に利用することができる。
[0012] 本明細書にぉ 、て、「X〜Y」 (X, Υは任意の数字)と記載した場合、特にことわらな い限り「X以上 Υ以下」の意を示し、同時に「好ましくは Xより大きぐ Υより小さい」の意 を包含するものである。
また、本明細書において数値範囲を特定した場合、特にことわらない限り、四捨五 入してその数値範囲に属するものを包含する意である。
図面の簡単な説明
[0013] [図 1]実施例及び比較例で得た水素吸蔵合金についての測定結果を、横軸:半値全 幅、縦軸: 100サイクル容量維持率カゝらなる座標中にプロットした図である。
[図 2]実施例及び比較例で得た水素吸蔵合金にっ 、ての測定結果を、横軸:格子体 積、縦軸:低温容量からなる座標中にプロットした図である。
[図 3]実施例及び比較例で得た水素吸蔵合金にっ 、ての測定結果を、横軸:低温容 量、縦軸: 100サイクル容量維持率カゝらなる座標中にプロットした図である。
[図 4]試験で作製した開放型試験セルの構成を説明した側断面図である。
発明を実施するための形態
[0014] 以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明 する実施形態に限定されるものではない。
[0015] 本実施形態の水素吸蔵合金(以下「本水素吸蔵合金」 t 、う)は、一般式 MmNi M a n Al Co又は一般式 MmNi Mn Al Co Feで表すことができ CaCu型結晶構造を b e d a b c d e 5
有する低 Co水素吸蔵合金である。
[0016] (ABx)
本水素吸蔵合金は、 ABx組成における Aサイトを構成する元素の合計モル数に対 する Bサイトを構成する元素の合計モル数の比率 a + b + c + d又は a + b + c + d+e ( この比率を「ABx」「BZA」或いは「a + b + c + d ( + e)」と称する)が、 5. 025≤ ABx ≤5. 200であることが重要である。 Bサイトリッチの非化学量論組成力もなるものであ り、この範囲の ABxであれば、出力特性、特に低温での出力特性 (低温容量)及び 寿命特性 (容量維持率)の低下を抑制することができる。このような観点から、 ABxは 5. 050以上であるのがより好ましぐまた 5. 150以下であるのがより好ましい。
[0017] なお、有効数字を小数点第 2位までとすると、 5. 03≤ABx≤5. 20であることが重 要であり、 5. 05≤ABxがより好ましぐまた ABx≤5. 15であるのがより好ましいと言 える。
[0018] (格子体積)
本水素吸蔵合金においては、出力特性、特に低温での出力特性 (低温容量)を高 め、同時に寿命特性、特に 100サイクル容量維持率を 90%以上にする観点から、上 記の条件のほか、 X線回折測定と共に格子定数の精密化を行って得られる、 CaCu
5 型結晶構造の格子体積が、 88. 70 X 106 (pm3)以下であることが重要である。
[0019] また、出力特性、特に低温での出力特性 (低温容量)と寿命特性とをさらに高める 観点から、 CaCu型結晶構造の格子体積は、 87. 00 X 106(pm3)〜88. 70 X 106(
5
pm3)であるのが好ましぐ中でも 88. 00 X 106 (pm3)〜88. 70 X 106 (pm3)であるの 力 Sさらに好ましい。
[0020] なお、 CaCu型結晶構造の格子体積を制御する手段の好ま 、一例として、铸造
5
後の熱処理条件と共に熱処理後の降温速度を適宜調整することを挙げることができ る力 力かる手段に限定されるものではない。
[0021] (半値全幅) 本水素吸蔵合金においては、 X線回折測定において、(002)面の半値全幅が 0. 29 (° )以下であることが重要であり、好ましくは 0. 13〜0. 29 (° ) ,中でも好ましく は 0. 13〜0. 27 (° )、その中でも好ましくは 0. 20〜0. 24 (° )である。
[0022] (組成)
Coについては、その量を低減すれば安価に提供できるが、その寿命特性を維持す ることが難しくなるため、本水素吸蔵合金における Coの割合 (d)は、 0. 2≤d≤0. 5 に設定することが重要である。
[0023] Co以外の合金組成、すなわち Ni、 Mn、 A1及び Feの組成割合に関しては、上述の ように 5. 025≤ABx ( ; a+b + c + d (+e) )≤5. 200の範囲内で適宜調整すればよ い。
[0024] Co量を特定し、 a + b + c + d (+e)、すなわち ABxを特定した上で、格子体積及び 半値全幅を所定範囲にすれば本発明における効果、特に低温容量及び寿命特性( 容量維持率)を高める効果を得ることができる力 さらに次に示す観点で Ni、 Mn、 Al 、 Feの各量を調整するのがより一層好ましい。この際、組成割合を決定する手順の 一例として、 Co、 Fe、 Niの順に組成割合 (モル比)を調整し、次いで Mn、 Alの割合 および ABxを調整するとともに製造条件を調整することによって、格子体積及び半値 全幅を調整する手順を挙げることができる。
[0025] Coの割合 (d)は、上述のように 0. 2≤d≤0. 5とすることが重要であり、好ましくは 0 . 2≤d≤0. 4の範囲内で調整するのがよい。なお、小数点第 2位までを有効数字と して Coの割合(d)を検討すると、 0. 18≤d≤0. 50が好ましぐ中でも 0. 18≤d≤0 . 45、その中でも 0. 18≤d≤0. 40力 子まし!/、と言える。
[0026] Feは、必須の合金元素ではないが、 Feを適当量添加することにより微粉ィ匕の抑制 、すなわち寿命特性を高めることができる。本水素吸蔵合金における Feの割合 (e)は , 0≤e≤0. 1であるのが好ましぐ中でも 0. 01≤e≤0. 1、その中でも 0. 02≤e≤0 . 1の範囲内で調整するのが好ましい。小数点第 2位までを有効数字として Feの割合 (e)を検討すると、 0. 01≤e≤0. 10、その中でも 0. 02≤e≤0. 10の範囲内で調整 するのが好ましいと言える。
[0027] Niの害 ij合(a) iま、 3. 70≤a≤4. 30、好ましく ίま 3. 70≤a≤4. 25、更に好ましく【ま 3. 70≤a≤4. 20の範囲内で調整する。 3. 70≤a≤4. 30の範囲内であれば、出力 特性を維持し易く、しかも微粉ィ匕特性や寿命特性を格別に悪化させることもな!、。
[0028] Mnの割合(b)は、 0≤b≤0. 7の範囲内で調整するのがよい。 Mnの割合が 0≤b ≤0. 7の範囲であれば、微粉ィ匕を抑制することができる。小数点第 2位までを有効数 字として Mnの割合 (b)を検討すると、 0≤b≤0. 70の範囲内で調整するのがよいと 言える。
[0029] A1の割合(c)は、 0. l≤c≤0. 5の範囲内で調整するのがよい。 0. l≤c≤0. 5の 範囲内であれば、プラトー圧力が必要以上に高くなつて充放電のエネルギー効率を 悪ィ匕させるのを抑えることができ、し力も水素吸蔵量が低下するのを抑えることもでき る。小数点第 2位までを有効数字として A1の割合 (c)を検討すると、 0. 10≤c≤0. 5 0の範囲内で調整するのがよいと言える。
[0030] 上記組成において「Mm」は、少なくとも La及び Ceを含む希土類系の混合物(ミツ シュメタル)であればよい。通常の Mmは、 La及び Ceのほかに Pr、 Nd、 Sm等の希土 類を含んでいる。例えば Ce(40〜50%)、 La(20〜40%)、 Pr、 Ndを主要構成元素と する希土類混合物を挙げることができる力 本水素吸蔵合金においては、 Laの含有 量が水素吸蔵合金中 13〜27wt%を占めることが重要であり、 15〜27wt%、特に 1 7〜27wt%であるのが好まし!/、。
[0031] なお、本水素吸蔵合金は、 Ti, Mo, W, Si, Ca, Pb, Cd, Mgのいずれかの不純 物を 0. 05重量%程度以下であれば含んで 、てもよ 、。
[0032] 本水素吸蔵合金の好まし ヽー態様として、一般式 MmNi Mn Al Co又は一般式 a b e d
MmNi Mn Al Co Feで表すことができる CaCu型結晶構造を有する水素吸蔵合 a b c d e 5
金であって、前記一般式中、 0. 18≤d≤0. 45、 5. 050≤a+b + c + d+e≤5. 20 0で表すことができ、 Laの含有量が水素吸蔵合金中 15〜27wt%であり、 X線回折 測定と共に格子定数の精密化を行って得られる、 CaCu型結晶構造の格子体積が 8
5
7. 00 X 106(pm3)〜88. 70 X 106 (pm3)であって、且つ、(002)面の半値全幅が 0 . 13-0. 29 (° )であるものを挙げることができる。
[0033] また、好まし!/、別の一態様として、一般式 MmNi Mn Al Co又は一般式 MmNi a b e d a
Mn Al Co Feで表すことができる CaCu型結晶構造を有する水素吸蔵合金であつ b c d e 5 て、前記一般式中、 0. 18≤d≤0. 50、 5. 025≤a+b + c + d+e≤5. 150で表す ことができ、 Laの含有量が水素吸蔵合金中 13〜27wt%であり、 X線回折測定と共 に格子定数の精密化を行って得られる、 CaCu型結晶構造の格子体積が 88. 17 X
5
106 (pm3)〜88. 69 X 106 (pm3)であって、且つ、(002)面の半値全幅力 0. 20〜0 . 29 (° )であるものを挙げることができる。
[0034] (低 Co水素吸蔵合金の製造方法)
本水素吸蔵合金の製造方法は、例えば、一般式 MmNi Mn Al Co Fe (3. 70≤ a b c d e a≤4. 30、 0≤b≤0. 7、 0. l≤c≤0. 5、 0. 2≤d≤0. 5、 0≤e≤0. 1、 5. 025≤a + b + c + d+e≤5. 200、 La含有量は水素吸蔵合金中 13〜27wt%)の合金組成 となるように、各水素吸蔵合金原料を秤量及び混合し、例えば誘導加熱による高周 波加熱溶解炉を用いて上記水素吸蔵合金原料を溶解して溶湯となし、これを铸型、 例えば水冷型の铸型に流し込んで 1350〜1550°Cの铸湯温度で铸造し、所定の冷 却速度 (所定の冷却水量)で冷却し、次いで不活性ガス雰囲気中、例えばアルゴン ガス中で、 1040〜1080°C、 3〜6時間で熱処理した後、所定の降温速度で急冷す ることにより、得ることがでさる。
[0035] この際、 ABx、熱処理の条件と共に熱処理後の降温速度は、格子体積及び (002) 面の半値全幅を制御するための重要な要素の一つである。すなわち、 ABx、熱処理 の温度及び時間を調整すると共に、熱処理後の降温速度を変化させることにより、格 子体積を調整することができる。好ましい一例としては、熱処理温度 (維持温度)から 15〜25°CZmin、特に 20〜25°CZminの降温速度で 500°C前後まで急冷し、そ の後は自然冷却させるのが好まし!/、。
[0036] 上記の製造方法は、本水素吸蔵合金の製造方法の一例であって、これに限定され るものではない。
[0037] 例えば铸造条件 (铸造方法、铸造温度、冷却速度など)、熱処理条件などの製造 条件は、合金組成に合わせて適宜選択、制御するのが好ましい。
[0038] 铸造方法につ!、ても、铸型铸造法は好ま U、铸造方法の一つであるが、例えばッ インロール法(具体的には特開 2004—131825号の段落[0013]〜[0016]参照) 、その他の铸造法でも製造可能である。 [0039] 得られた水素吸蔵合金 (インゴット)は、必要に応じて、粗粉砕、微粉砕により必要 な粒度の水素吸蔵合金粉末とする。例えば 500 μ mの篩目を通過する粒子サイズ( - 500 μ m)まで粉砕を行 、水素吸蔵合金粉末とすることができる。
[0040] また、必要に応じて、金属材料や高分子榭脂等により合金表面を被覆したり、酸性 水溶液やアルカリ性水溶液で表面を処理したりするなど適宜表面処理を施し、各種 の電池の負極活物質として用いることができる。
[0041] (低 Co水素吸蔵合金の利用)
本水素吸蔵合金 (インゴット及び粉末を含む)は、公知の方法により、電池用負極を 調製することができる。すなわち、公知の方法により結着剤、導電助剤などを混合、 成形すれば水素吸蔵合金負極を製造できる。
[0042] このようにして得られる水素吸蔵合金負極は、二次電池のほか一次電池 (燃料電池 含む)にも利用することができる。例えば、水酸ィ匕ニッケルを活物質とする正極と、ァ ルカリ水溶液よりなる電解液と、セパレータからニッケル一 MH (Metal Hydride)二次 電池を構成することができ、小型又は携帯型の各種電気機器、電動工具、電気自動 車、ハイブリッド電気自動車、燃料電池(リチウム電池など他の電池と組み合わせて 使用するハイブリッド型の燃料電池も含む)などの電源用途に好適に利用することが できる。「ハイブリッド電気自動車」とは、電気モータと内燃エンジンという 2つの動力 源を併用した自動車の意味であり、この際「内燃エンジン」にはガソリンエンジンばか りでなぐディーゼルエンジン、その他のエンジンも含まれる。
[0043] また、ヒートポンプ、太陽'風力などの自然エネルギーの貯蔵、水素貯蔵、ァクチュ エータなどに使用される水素吸蔵合金への利用も可能である。
[0044] 本水素吸蔵合金は、電動工具やデジタルカメラなどの電池のように充放電深度の 限界域間で充放電される電池ではなぐ電気自動車やハイブリッド電気自動車用電 池など、充放電深度の中心領域で充放電される電池の負極活物質に用いた場合に 、寿命特性 (サイクル特性)に優れた性能を発揮するため、このような充放電深度の 中心領域で充放電される電池の負極活物質として特に好ましい。
ハイブリッド電気自動車にお!ヽては、電池は満充電と完全放電を行なわな!/ヽよう制御 され、常にエネルギーを出し入れできる状態に維持される。 [0045] ここで、「充放電深度の中心領域で充放電される電池」とは、充放電深度の限界域 には満たな!/ヽ水素吸蔵量領域で主に充放電される電池を意味し、例えば充電深度( SOC : state of charge)力40〜: L000/o、特に 60〜850/0、さらに 70〜850/0、また 55〜 65%など、極めて限定的な幅を主な使用領域とする電池が好ましぐ具体的には電 気自動車及びハイブリッド電気自動車などの自動車に搭載される電池を挙げることが できる。
実施例
[0046] 以下、本発明を実施例に基づき具体的に説明する。
[0047] (実施例 1)
Mm(Lal3%) Ni Al Mn Co Fe (ABx= 5. 025、 Mmは La、 Ce、 Nd
3.70 0.30 0.50 0.50 0.025
、 Prの希土類金属の混合物であるミッシュメタル)の組成の水素吸蔵合金が得られる ように、各元素の重合比率で、 Mm: 33. 0%、Ni: 51. 3%、Mn: 6. 5%、A1: 1. 9 %、 Co : 7. 0%、 Fe : 0. 3%となるように样量し、混合した。
[0048] この混合物をルツボに入れて高周波溶解炉に固定し、炉内雰囲気を 10—4〜: L0—5T orrまで減圧にした後、アルゴンガス雰囲気中で 1450°Cまで加熱溶解し、溶湯を水 冷式銅铸型に流し込み合金を得た。
[0049] 得られた合金塊をステンレス鋼製容器に入れて真空熱処理装置(日新技研製)に セットし、アルゴンガス雰囲気中で 1060°Cで 3時間熱処理を行った後、真空熱処理 装置の外側に配設された冷却水道管に冷却水を流通させて 20°CZminの降温速 度で 500°Cまで冷却し、それ以降は冷却水の流通を止めて室温まで自然冷却した。
[0050] 得られた合金をジョークラッシャー(Fuji Paudal社製: modell021— B)を用いて 粗砕し、さらに横型ブラウン粉砕機 (吉田製作所製)で 500 μ mの篩目を通過する粒 子サイズ( 500 m)まで粉砕を行 、、水素吸蔵合金粉末を得た。
[0051] (実施例 2— 8、比較例 1 4)
水素吸蔵合金の組成が表 1に示した組成となるようにした以外は、実施例 1と同様 に水素吸蔵合金粉末を製造した。
[0052] (実施例 9、比較例 6)
表 1に示した組成となるように各原料を秤量及び混合し、この混合物をルツボに入 れて高周波溶解炉に固定し、炉内雰囲気を 10— 4〜: LO— 5Torrまで減圧にした後、アル ゴンガス雰囲気中で 1450°Cまで加熱溶解し、溶湯を水冷式銅铸型に流し込み合金 を得た。
[0053] 得られた合金(インゴット)をジョークラッシャー(Fuji Paudal社製: modell021— B)を用いて粗砕し、さらに横型ブラウン粉砕機 (吉田製作所製)で 500 μ mの篩目を 通過する粒子サイズ( 500 m)まで粉砕を行った。
[0054] 得られた合金粉末を、ステンレス鋼製容器に入れて真空熱処理装置(日新技研製) にセットし、表 1に示した熱処理温度で 3時間熱処理を行った後、真空熱処理装置の 外側に配設された冷却水道管に冷却水を流通させて 20°CZminの降温速度で 500 °Cまで冷却し、それ以降は冷却水の流通を止めて室温まで自然冷却した。
[0055] 得られた熱処理後の合金を再度ジョークラッシャー(Fuji Paudal社製: modellO 21 -B)を用いて粗砕し、さらに横型ブラウン粉砕機 (吉田製作所製)で 500 μ mの 篩目を通過する粒子サイズ( 500 m)まで粉砕を行 、、水素吸蔵合金粉末を得 た。
[0056] (実施例 10— 12、比較例 5)
表 1に示した組成となるように各原料を秤量及び混合し、熱処理温度を表 1に示し た温度とした以外は、実施例 1と同様に水素吸蔵合金粉末を製造した。
[0057] (比較例 7)
表 1に示した組成となるように各原料を秤量及び混合し、熱処理後に 500°Cまで降 温する速度を 5°CZminとした以外は、実施例 1と同様に水素吸蔵合金粉末を製造 した。
[0058] [特性及び物性評価]
上記実施例及び比較例で得られた水素吸蔵合金粉末にっ 、て、下記に示す方法 によって諸物性値を測定し、結果を表 1及び図 1及び図 2に示した。
[0059] < PCT測定 >
実施例及び比較例で得た 500 μ m (500 m φの篩目を通過する粒子)の水素 吸蔵合金粉末 20gをサイクロミル( (型式 1033— 200)株式会社吉田製作所製)で 1 分間粉砕し、目開き 45 μ mの篩で分級して— 45 m(45 m φの篩目を通過する 粒子)の水素吸蔵合金粉末 (サンプル)を得た。
[0060] 得られたサンプル 4gを PCT装置サンプルホルダーに投入し、 PCT特性測定装置(
(株)鈴木商館製)に接続した。
[0061] PCT測定の前に次のような操作を実施した。
1)合金付着水分処理:マントルヒーター(250°C)中、 PCT装置サンプルホルダーを 加熱した状態で 1. 7MPaの水素圧を導入し、 10分間放置後、真空引きを行う一連 の操作を 2回実施した。
2)合金活性化処理 (合金の水素吸蔵特性を出現させる処理):マントルヒーターから PCT装置サンプルホルダーを取り出し、 3MPaの水素圧を導入し、 10分間保持をし た。その後、マントルヒーター(250°C)中で PCT装置サンプルホルダーを加熱した状 態で 10分間真空引きを行った。この一連の操作を 2回実施した。
[0062] マントルヒーター力 PCT装置サンプルホルダーを取り出し、 45°Cに設定した恒温 槽内にホルダーを移動させた後、真空引きを 30分行い、その後、吸蔵終了圧力 1. 7 MPaまで PCT測定を行った。得られた 45°Cにおける PCT曲線から、 H/M = 0. 5 のときの平衡水素圧を P0. 5 (MPa)として求め、平衡水素圧力が 0. 5MPaのときの 水素吸蔵量を (HZM) O. 5として求めた。
[0063] < a軸長、 c軸長、格子体積の測定 >
実施例及び比較例で得た 500 μ m (500 m φの篩目を通過する粒子)の水素 吸蔵合金粉末 20gをサイクロミル (株式会社吉田製作所製:型式 1033— 200)で 1分 間粉砕し、 目開き 20 μ mの篩で分級して— 20 m (20 m φの篩目を通過する粒 子)の水素吸蔵合金粉末を得た。こうして得られた水素吸蔵合金粉末 100重量部に 対し 10重量部の Si粉を内部標準として混合し、 X線回折用のサンプルとした。
[0064] ガラスサンプルホルダーに上記サンプルを充填し、 RINT- 2200V ( (株)リガク製) を使用し、下記条件で測定すると共に、所定の精密化を行なって a軸長、 c軸長およ び格子体積を求めた。
[0065] この際の精密化は、上記 RINT—2200V附属のアプリケーションソフト(ソフト名:格 子定数の精密化)を用いて実施し、添加した S ゝら内部標準法による角度補正を行 い、最小二乗法により格子定数の精密化を行った。念のために測定及び解析時の詳 細な設定条件を以下に示す。
[0066] (平滑化)
•平滑化方法:加重平均
•平滑化点数: 15
•高調波: 128
(バックグラウンド除去)
• ノ ックグラウンド除去方法:両端に接する直線 •低角側平均点数:3
•高角側平均点数: 3
α2除去)
•強度比(Κ α 2 ΖΚ α 1): 0. 500 (ピークサーチ方法)
•ピークトップ法
(重み関数)
• sin(2 Θ ) X sin(2 Θ)ΧΓ(Θ)Χ Γ(Θ ) (系統誤差補正関数)
• sin(20)Xsin(2 Θ)Χ (1 / sin( θ)+ 1 /θ)
[0067] (管球) CuKo;線
(管電圧) 40kV
(管電流) 40mA
(発散スリット) ldeg.
(散乱スリット) ldeg
(受光スリット)0. 3mm
(ゴ-オメータ) RINT2000縦型ゴ-ォメータ
(アタッチメント) ASC— 43 (縦型)
(スリット)全自動広角ゴ-ォメータスリット
(モノクロメータ)全自動モノクロメータ
(カウンター)シンチレーシヨンカウンター (開始角度) 20°
(終了角度) 90°
(ステップ幅) 0. 010'
(スキャンスピード) 2°
(走査軸) 2 Θ / Θ
(測定方法)連続
(スピンスピード) 30
[0068] また 、格子定数の精密化を行う際に使用したピークは、以下の通りである。
•22。 付近にあるミラ -指数 (001)で指数付けされるピ -ク
•30。 付近にあるミラ -指数(101)で指数付けされるピ -ク
•36。 付近にあるミラ -指数 (110)で指数付けされるピ -ク
•42。 付近にあるミラ -指数 (200)で指数付けされるピ -ク
•43。 付近にあるミラ -指数 (111)で指数付けされるピ -ク
•45。 付近にあるミラ -指数 (002)で指数付けされるピ -ク
•59。 付近にあるミラ -指数 (112)で指数付けされるピ -ク
•61。 付近にあるミラ -指数 (211)で指数付けされるピ -ク
•63。 付近にあるミラ -指数 (202)で指数付けされるピ -ク
•65。 付近にあるミラ -指数 (300)で指数付けされるピ -ク
•69。 付近にあるミラ -指数 (301)で指数付けされるピ —ク
[0069] なお、内部標準として格子定数の精密化に用いた Siのピークについても、念のため に下記に示す。
• 28° 付近にあるミラー指数(111)で指数付けされるピーク
•47° 付近にあるミラー指数 (220)で指数付けされるピーク
• 56° 付近にあるミラー指数 (311)で指数付けされるピーク
• 88° 付近にあるミラー指数 (422)で指数付けされるピーク
[0070] <半値全幅 >
格子体積の測定同様に調整したサンプルを使用し、下記条件のみ変更して (002) 面の半値全幅 (° )の測定および解析を実施した。 [0071] (軸長測定との変更部分)
•開始角度: 40°
•終了角度: 46°
•スキャンスピード: 0. 25° /min
•ステップ幅: 0. 002°
[0072] (平滑化)
•平滑化方法:加重平均
•平滑化点数: 15
•高調波: 128
(バックグラウンド除去)
•ノックグラウンド除去方法:両端に接する直線
•低角側平均点数:3
•高角側平均点数: 3
[0073] (K a 2除去)
• 強度比(K a 2/K a l) : 0. 500
[0074] <低温容量 · 100サイクル容量維持率 >
実施例及び比較例で得た 500 μ m (500 m φの篩目を通過する粒子)の水素 吸蔵合金粉末 20gをサイクロミル( (型式 1033— 200)株式会社吉田製作所製)で 1 分間粉砕し、目開き 45 μ mの篩で分級して— 45 m (45 m φの篩目を通過する 粒子)の水素吸蔵合金粉末 (サンプル)を得た。
[0075] 得られたサンプル lgに、導電材としての Ni粉末を 3gと、結着材としてのポリエチレ ン粉末 0. 12gを加えて混合し、得られた混合粉 1. 24gを発泡 Ni上に加圧成形し、 直径 15mm、厚さ 1. 8mmのペレット型とし、 150°C X 1時間真空焼成を行って結着 させてペレット電極を作製した。
[0076] このペレット電極を負極とし、十分な容量の正極 (焼結式水酸ィ匕ニッケル)でセパレ ータ(日本バイリーン製)を介して挟み込み、 30wt%の KOH水溶液中に浸漬させて 開放型試験セル (図 4参照)を作製し、装置 (TOSCAT3000 (東洋システム) )を使 用して下記条件下で充放電試験を行なった。 [0077] (充放電条件-活性化)
•充電 0. 2C— 120% ;放電 0. 2C-0. 7Vカツ卜
•サイクル: 1 15サイクル
•温度: 20°C
(低温サイクル)
•充電 1. OC— 120% ;放電 1. OC-0. 7Vカツ卜
•サイクノレ: 16、 17サイクノレ
•温度: 0°C
(サイクル試験)
•充電 1. OC— 120% ;放電 1. OC-O. 7Vカツ卜
•サイクル: 18— 116サイクル
•温度: 20°C
なお、 117及び 118サイクル目は、活性化と同様の測定条件で実施した。
[0078] 17サイクル目の値を低温容量として表に記載した。また、 100サイクル容量維持 率は下記の式により求めた。
100サイクル容量維持率(%) = (118サイクル目容量) / (15サイクル目容量) X 1
00
[0079] [表 1]
熱処理 軸長 (002) 100サイクル 熱処理 S度 時間 熱処理時の 格子体積 低温容量
降温速度
(°C) (hr) 合金状態 (H/ )0.5 P0.5 a軸畏 c軸長 半値全幅
(°C/min) La Ni π Al Co Fe B/A
(-) CMPa) Cpm) Cpm) ( x ioW)) (mAh/g) 容量維持率
(。 ) (%) 実施例 1 1060 3 インゴッ卜 20 13 3.70 0.5 0.3 0.5 0.025 5.025 0.832 0.034 500.5 406.5 88.17 0.22 272 93 議 2 1060 3 インコッ卜 20 17 3.95 0.5 0.3 0.4 0 5.150 0.831 0.037 501.1 406.6 88.41 0.24 274 94 実施例 3 1060 3 インコット 20 19 3.95 0.3 0.4 0.4 0 5.050 0.328 0.037 501.3 405.7 88.30 0.23 277 92 実施例 4 1060 3 イン: 3ッ卜 20 27 4.20 0.2 0.4 0.3 0.025 5.125 0.849 0.037 503.1 404.6 88.69 0.27 289 91 実施例 5 1060 3 インゴッ卜 20 17 3.95 0.6 0.2 0.4 0 5.150 0.841 0.039 501.1 406.6 88.41 0.22 275 94 実施例 6 1060 3 インコッ卜 20 17 3.95 0.7 0.1 0.4 0 5.150 0.852 0.042 501.0 406.7 88.41 0.20 277 93
31細 7 1060 3 インコット 20 27 4.30 0.1 0.4 0.3 0.025 5.125 0.849 0.059 502.4 403.8 88.27 0.27 284 93 実施例 8 1060 3 インゴット 20 27 4.30 0 0.5 0.3 0.025 5.125 0.837 0.057 501.1 406.7 88.44 0.29 290 91 実施例 9 1040 3 500/i m以下 20 27 4.20 0.2 0.4 0.3 0.025 5.125 0.859 0.037 502.9 404.7 88.64 0.23 290 90 実施例 10 1080 3 インゴット 20 19 395 0.3 0.4 0.4 0 5.050 0.824 0.042 501.6 405.9 88.44 0.22 267 95 実施例 11 1060 3 インコッ卜 20 23 4.20 0.4 0.3 0.2 0.1 5.200 0.823 0.043 502.2 406.0 88.68 0.26 285 90 実施例 12 1060 3 インゴッ卜 20 23 4.22 0.4 0.3 0.2 0.1 5.200 0.827 0.043 502.2 405.9 88.65 0.25 287 Θ0 比較例 1 1060 3 インコッ卜 20 23 3.95 0.5 02 0.5 0.1 5.250 0.825 0.042 502.5 406.2 88.83 0.22 228 95 比較例 2 1060 3 インゴット 20 27 4.20 0.5 0.2 0.4 0.075 5.375 0.813 0.043 503.2 406.0 89.02 0.23 240 95 比較例 3 1060 3 インコッ卜 20 27 4.20 0.5 0.2 0.4 0.1 5.400 0.807 0.045 503.0 406.1 89.00 0.23 240 95 比較例 4 1060 3 インコッ卜 20 20 4.20 0.5 0.3 0.3 0 5.300 0.804 0.059 501.6 407.2 88.73 0.27 220 94 比較例 5 1000 3 インゴット 20 27 4.20 0.2 0.4 0.3 0.025 5.125 0.859 0.035 503.4 404.2 88.71 0.37 280 82 比較例 6 1000 3 500jL/ m以下 20 27 4.20 0.2 0.4 0.3 0.025 5.125 0.847 0.037 503.3 404.4 88.71 0.31 273 88 比較例 7 1060 3 インゴッ卜 5 27 4.20 0.2 0.4 0.3 0.025 5.125 0.850 0.036 5013 404.6 88.76 0.30 290 86
/v:/ O 9600s900ifcl£ /-/-ioさ/ -OSAV ¾u §00
熱処理 (002) 100サイクル 熱処理温度 時間 熱処理時の 格子体積 低温容量
C°C) (hr) 降温速度
合金状態 (Η/ )0.5 Ρ0.5 a 半値全蝠 容量榷持率
(°C/min) La ί Μη Al Co 軸畏 c軸長
Fe Β/Α ( x 10Vn3)) (mAh/E)
Η C Pa) Cpm) Cpm) 〕 {%) 実施例 1 1060 3 インゴット 20 13 3.70 0.50 0.30 0.50 0.03 5.03 0,832 0.034 500.5 406.5 88.17 0.22 272 93 実施例 2 1060 3 インゴツ卜 20 17 3.95 0.50 0.30 0.40 ο.οο 5.15 0.Β31 0.037 501.1 406.6 88.41 0.24 274 94 実施 «3 1060 3 イン ツ卜 20 19 3.95 0.30 0.40 0.40 0.00 5.05 0.828 0.037 501.3 405.7 88.30 0.23 111 92 実施例 4 1060 3 インコット 20 27 4.20 0.20 040 0.30 0.03 5.13 0.849 0.037 503.1 404 8B.G9 0.27 289 Θ1 実施例 5 1060 3 インゴット 20 17 3.95 0.60 0—20 0.40 0.00 5.Ϊ5 0.841 0.039 501.1 406.6 86.41 0.22 275 94 実榫例 6 10SO 3 インゴット 20 17 3.95 0.70 0.10 0.40 ο.οο 5.15 0.852 0.042 501 ,0 406.7 88.41 0.20 111 93 n mi 1060 3 インゴッ卜 20 27 4.30 0.10 0.40 0.30 0.03 5.13 .84Θ 0.059 502.4 403.8 88.27 0.27 284 93 施例 8 1060 3 インコット 20 27 4.30 0.00 0.50 0.30 0.03 5.13 0.837 0.057 501.1 406.7 88.44 0.29 290 91 実施例 9 1040 3 500 m以下 20 27 4.20 0.20 0.40 0.30 0.03 5.13 0.859 0.037 502.9 404.7 S8.B4 0,23 290 90 実施例 10 1080 3 インゴッ卜 20 19 3.95 0.30 0.40 0.40 0.00 5.05 0.824 0.042 501.6 405.9 S8.44 0.22 267 95 実施例 11 1060 3 インゴット 20 23 4.20 0.40 0.30 0.20 0.10 5.20 0.823 0.043 502,2 406.0 88.68 0.26 2S5 90 実施例 1060 3 インゴッ卜 20 23 4.22 0.40 0.30 0.16 0.10 5.20 Ο.Β27 0.043 502.2 405.9 88.65 0.25 287 go 比較例 1 1060 3 インコッ卜 20 23 3.95 0.50 0.20 0.50 0.10 5.25 0.825 0.042 502.5 406.2 88.83 0.22 228 95 比較例:! 1060 3 インゴッ卜 20 27 4.20 0.50 0.20 0.40 0.08 5.3 & 0.813 0.043 503.2 406.0 89.02 0,23 240 95 比較例 3 1060 3 インコット 20 27 4.20 0.50 0,20 0.40 0.10 5.40 0.807 0.045 503.0 406.1 89.00 0.23 240 95
1060 3 インゴ'ソト 20 20 4.20 α.5ΰ 0.30 0,30 0 0 5.30 0.804 0.059 501.6 407.2 88J3 0.27 220 94 比較例 5 tooo 3 インゴット 20 27 4.20 0.20 0.40 0.30 0.03 5.13 0.859 0.035 503.4 404.2 88.71 0.37 280 82 比較例 6 1000 3 500/i m以下 20 27 4.20 0.20 0.40 0.30 0.03 5.13 0.β47 0,037 503.3 404.4 58.71 0.31 273 88 比較例 7 1060 3 インゴッ卜 5 27 4.20 0,20 0.40 0.30 0.03 5.13 0.850 0.036 503.3 404.6 88.76 0.30 290 86
[0081] なお、表 2は、表 1中の Mn、 Al、 Coの割合を小数点第 2位まで有効数字として示し たものであり、実施例 1〜12、比較例 1〜7の Mn、 Al、 Coの量自体は表 1と変わりは ない。
[0082] (考察)
図 1は、実施例及び比較例で得た水素吸蔵合金につ!、ての上記測定結果に基づ き、横軸:半値全幅、縦軸: 100サイクル容量維持率カゝらなる座標中にプロットした図 であり、図 2は、実施例及び比較例で得た水素吸蔵合金についての上記測定結果に 基づき、横軸:格子体積、縦軸:低温容量力もなる座標中にプロットした図であり、図 3 は、上記測定結果に基づき、横軸:低温容量、縦軸: 100サイクル容量維持率からな る座標中にプロットした図であり、図 3中の直線はそれぞれ、実施例のプロット群(「実 施例群」と 、う)及び比較例のプロット群(「比較例群」 t 、う)を最小二乗法力も得られ る近似式で結んだ直線である。
[0083] 図 1の結果を見ると、実施例群及び比較例群を総合して、(002)面の半値全幅が 0 . 29° 以下であれば、 100サイクル容量維持率が 90%以上になる傾向があることが 判明した。
[0084] また、図 2の結果を見ると、実施例群及び比較例 5— 7が示す低温容量と、比較例 1
4が示す低温容量とは明らかに異なっており、実施例群及び比較例 5— 7の方が 低温容量が高いことが分る。
[0085] さらに、図 1、図 2から判明した結果を、図 3に低温容量と寿命特性の関係でまとめ なおしたところ、実施例群は、比較例群の延長線上にはなぐ図中の矢印で示した様 に予想してもいない位置にあることが判明した。これは、 La%と格子体積と半値全幅 の最適範囲を組み合わせたことによる相乗効果によるものと考えられる。

Claims

請求の範囲
[1] 一般式 MmNi Mn Al Co Fe (式中、 Mmは Laを含むミッシュメタル、 0. 2≤d≤0 a b c d e
. 5、 5. 025≤a + b + c + d + e≤5. 200)で表すことカできる CaCu型結晶構造を
5
有する水素吸蔵合金であって、
Laの含有量が水素吸蔵合金中 13〜27wt%であり、
X線回折測定と共に格子定数の精密化を行って得られる、 CaCu
5型結晶構造の格 子体積が 88. 70 X 106 (pm3)以下であって、且つ、(002)面の半値全幅が 0. 29 ( ° )以下であることを特徴とする水素吸蔵合金。
[2] 上記一般式中、 0. 18≤d≤0. 50であることを特徴とする請求項 1記載の水素吸蔵 合金。
[3] 上記一般式中、 0. 18≤d≤0. 45、 5. 050≤a+b + c + d+e≤5. 200で表すこ とができる CaCu型結晶構造を有する水素吸蔵合金であって、 Laの含有量が水素
5
吸蔵合金中 15〜27wt%であり、 X線回折測定と共に格子定数の精密化を行って得 られる、 CaCu型結晶構造の格子体積が 87. 00 X 106 (pm3)〜88. 70 X 106 (pm3)
5
であって、且つ、(002)面の半値全幅が 0. 13-0. 29 (° )であることを特徴とする 請求項 1又は 2記載の水素吸蔵合金。
[4] 上記一般式中、 0. 18≤d≤0. 50、 5. 025≤a+b + c + d+e≤5. 150で表すこ とができる CaCu型結晶構造を有する水素吸蔵合金であって、 Laの含有量が水素
5
吸蔵合金中 13〜27wt%であり、 X線回折測定と共に格子定数の精密化を行って得 られる、 CaCu型結晶構造の格子体積が 88. 17 X 106 (pm3)〜88. 69 X 106 (pm3)
5
であって、且つ、(002)面の半値全幅が 0. 20-0. 29 (° )であることを特徴とする 請求項 1又は 2記載の水素吸蔵合金。
[5] Laの含有量が水素吸蔵合金中 17〜27wt%であることを特徴とする請求項 1乃至
4の何れかに記載の水素吸蔵合金。
[6] (002)面の半値全幅が 0. 20-0. 24 (° )であることを特徴とする請求項 1乃至 5 の何れかに記載の水素吸蔵合金。
[7] 上記一般式【こお ヽて、 3. 70≤a≤4. 30、 0≤b≤0. 7、 0. l≤c≤0. 5、 0≤e≤0
. 1である請求項 1乃至 6の何れかに記載の水素吸蔵合金。
[8] 上記一般式【こお ヽて、 3. 70≤a≤4. 25、 0≤b≤0. 7、 0. l≤c≤0. 5、 0≤e≤0
. 1である請求項 1乃至 6の何れかに記載の水素吸蔵合金。
[9] 電気自動車或 ヽはハイブリッド電気自動車に搭載する電池の負極活物質として用 いることを特徴とする請求項 1乃至 8の何れかに記載の水素吸蔵合金。
[10] 請求項 1乃至 9の何れかに記載の水素吸蔵合金を負極活物質として備えた電池。
PCT/JP2006/320096 2005-10-06 2006-10-06 低Co水素吸蔵合金 WO2007040277A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006549729A JP3944237B2 (ja) 2005-10-06 2006-10-06 低Co水素吸蔵合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-293398 2005-10-06
JP2005293398 2005-10-06

Publications (1)

Publication Number Publication Date
WO2007040277A1 true WO2007040277A1 (ja) 2007-04-12

Family

ID=37906319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320096 WO2007040277A1 (ja) 2005-10-06 2006-10-06 低Co水素吸蔵合金

Country Status (2)

Country Link
JP (1) JP3944237B2 (ja)
WO (1) WO2007040277A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738952B2 (en) 2014-03-26 2017-08-22 Mitsui Mining & Smelting Co., Ltd. Hydrogen storing alloy
WO2018123752A1 (ja) 2016-12-26 2018-07-05 三井金属鉱業株式会社 水素吸蔵合金
WO2021220824A1 (ja) 2020-04-28 2021-11-04 三井金属鉱業株式会社 水素吸蔵合金

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213319A (ja) * 1996-02-05 1997-08-15 Matsushita Electric Ind Co Ltd 密閉型アルカリ蓄電池
JPH11297319A (ja) * 1998-04-08 1999-10-29 Shin Etsu Chem Co Ltd 水素吸蔵電極材料及びアルカリ蓄電池
JP2000234133A (ja) * 1998-12-15 2000-08-29 Mitsui Mining & Smelting Co Ltd 水素吸蔵合金及びその製造方法
JP2001040442A (ja) * 1999-05-26 2001-02-13 Mitsui Mining & Smelting Co Ltd 水素吸蔵合金
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213319A (ja) * 1996-02-05 1997-08-15 Matsushita Electric Ind Co Ltd 密閉型アルカリ蓄電池
JPH11297319A (ja) * 1998-04-08 1999-10-29 Shin Etsu Chem Co Ltd 水素吸蔵電極材料及びアルカリ蓄電池
JP2000234133A (ja) * 1998-12-15 2000-08-29 Mitsui Mining & Smelting Co Ltd 水素吸蔵合金及びその製造方法
JP2001040442A (ja) * 1999-05-26 2001-02-13 Mitsui Mining & Smelting Co Ltd 水素吸蔵合金
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738952B2 (en) 2014-03-26 2017-08-22 Mitsui Mining & Smelting Co., Ltd. Hydrogen storing alloy
WO2018123752A1 (ja) 2016-12-26 2018-07-05 三井金属鉱業株式会社 水素吸蔵合金
US11094932B2 (en) 2016-12-26 2021-08-17 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy
WO2021220824A1 (ja) 2020-04-28 2021-11-04 三井金属鉱業株式会社 水素吸蔵合金

Also Published As

Publication number Publication date
JP3944237B2 (ja) 2007-07-11
JPWO2007040277A1 (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
US9219277B2 (en) Low Co hydrogen storage alloy
EP1799874B1 (en) Hydrogen storage alloys having reduced pct hysteresis
US11094932B2 (en) Hydrogen storage alloy
JP6608558B1 (ja) 表面処理を必要としないニッケル水素二次電池負極活物質及びニッケル水素二次電池
JP3965209B2 (ja) 低Co水素吸蔵合金
JP3992075B1 (ja) 水素吸蔵合金およびニッケル−水素電池用電極
JP5001809B2 (ja) 水素吸蔵合金
JP3992289B2 (ja) 低Co水素吸蔵合金
JP5342669B2 (ja) 水素吸蔵合金
WO2007040277A1 (ja) 低Co水素吸蔵合金
JP5367296B2 (ja) 水素吸蔵合金
JP3834329B2 (ja) 寿命特性に優れたab5型水素吸蔵合金
CN112913057A (zh) 碱性蓄电池用吸氢合金和使用该吸氢合金的碱性蓄电池
JP4663451B2 (ja) アルカリ蓄電池用水素吸蔵合金、アルカリ蓄電池用水素吸蔵合金の製造方法及びアルカリ蓄電池
JP2014198907A (ja) 水素吸蔵合金
JP2013108105A (ja) 水素吸蔵合金及びこの水素吸蔵合金を用いたニッケル水素二次電池
CN114946051A (zh) 碱性蓄电池用氢吸留合金
JP5617094B2 (ja) 水素吸蔵合金
JP2004285406A (ja) 水素吸蔵合金及びそれを用いたニッケル−水素電池用電極
JP2016126837A (ja) 水素吸蔵合金ならびに負極および電池
JP2000144278A (ja) 水素吸蔵合金及びその製造方法
JP2016125068A (ja) 水素吸蔵合金ならびに負極および電池
JP2003247037A (ja) 水素吸蔵合金
JP2011231363A (ja) 水素吸蔵合金の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006549729

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811423

Country of ref document: EP

Kind code of ref document: A1