WO2007040266A1 - 復水脱塩方法及び装置 - Google Patents

復水脱塩方法及び装置 Download PDF

Info

Publication number
WO2007040266A1
WO2007040266A1 PCT/JP2006/319980 JP2006319980W WO2007040266A1 WO 2007040266 A1 WO2007040266 A1 WO 2007040266A1 JP 2006319980 W JP2006319980 W JP 2006319980W WO 2007040266 A1 WO2007040266 A1 WO 2007040266A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
cationic
condensate
resin layer
layer
Prior art date
Application number
PCT/JP2006/319980
Other languages
English (en)
French (fr)
Inventor
Takeshi Izumi
Masahiro Hagiwara
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to CN2006800354866A priority Critical patent/CN101460406B/zh
Priority to KR1020087008088A priority patent/KR101315182B1/ko
Publication of WO2007040266A1 publication Critical patent/WO2007040266A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor

Definitions

  • the present invention relates to a double bed type condensate desalination process using ion exchange resin, and in particular, a double bed type condensate capable of reducing drug regeneration used in a steam power plant. It relates to desalination methods and equipment.
  • PWR pressurized water reactor
  • the ionic impurities brought in are reduced to an extremely low level to prevent stress corrosion cracking that may occur due to the concentration of ionic impurities in the heat transfer tube of the steam generator.
  • AVT treatment that controls the pH to the alkali side by adding ammonia, hydrazine, etc. to the condensate to suppress the introduction of clad (iron oxide) to the steam generator.
  • Patent Document 1 JP-A-8-117615
  • Patent Document 2 Japanese Patent Laid-Open No. 55-94650
  • Patent Document 3 Japanese Patent Laid-Open No. 4-100587
  • Patent Document 4 Japanese Patent Laid-Open No. 11-352283
  • the present invention has been made in view of the above-described circumstances, and the operation of the condensate demineralization apparatus is changed from ⁇ , ⁇ operation to ammonia operation capable of reducing the frequency of drug regeneration.
  • the reverse regeneration rate during resin regeneration is significantly reduced from the current level, and the treatment water quality during ammonia operation is improved. It is an object of the present invention to provide a double bed type condensate desalination method and apparatus that can be realized. Means for solving the problem
  • the present invention is a multi-bed type condensate demineralization method using ion-exchanged resin, and is separated by partition walls so as not to be mixed with each other.
  • An on-wax-resin layer and a strongly acidic uniform particle size gel-type cation-resin layer having a cross-linking degree of 10% to 16%, preferably 12 to 15%, are reconstituted into a resin layer constituting a multi-bed. It is a condensate desalination method characterized by passing water.
  • the strongly acidic uniform particle size gel-type cationic coffin having a degree of cross-linking of 10% to 16% has an average particle size value of 0 to 1000 ⁇ m, preferably 500 to 800 m. More preferably, the ion-exchange resin should be 550 to 700 ⁇ m, and the average particle size value is within the range of 100 ⁇ m.
  • ion exchange resins that require chemical regeneration are extracted separately from the respective resin layers separated by the partition walls with water and air, and the extracted cation resin and ion resin are extracted. After each fat is regenerated and washed separately, it is directly returned to the partition walls separated by water and air to regenerate the resin oil and cationic resin without mixing with each other. can do.
  • the extracted cationic resin is added with excess cationic resin, and after scrubbing with air , Backwash for 30 minutes or more at a development rate of 100% or more to remove the crushed or fine resin by overflow, and extract the crushed or fine resin that may be mixed in the upper part of the resin layer After that, refill the medicine and remove the surcharged oil soot. After scrubbing with air, scrub with air and backwash for 30 minutes or more at a development rate of 100% or more.
  • the counter flow water is added from the lower part of the tower while adding counterflow water. Only refilling the drug.
  • drug regeneration in order to completely remove the crushed or fine resin that may pass through the partition wall, from the extracted cation resin and cation resin, It is also possible to regenerate the medicine after removing only the fine greaves.
  • the packed bed is divided by partition walls so as not to be mixed with each other.
  • a condensate demineralizer characterized in that it comprises a double bed in which a coagulant layer and a strongly acidic uniform particle size gel type cation coagulant layer having a cross-linking degree of 10% to 16% are alternately combined; It is a thing.
  • each packed bed is connected with a resin extraction pipe, and the resin extraction pipe of the cationic resin layer is connected to the cationic resin regeneration tower. Oil removal from on-oil layer
  • the outlet pipes are respectively connected to a resin recycle tower, and the regenerated chemical resin can be sent back to the respective resin layer.
  • An oscillating sieve device having an opening through which only crushed or fine sallow passes can be provided, respectively.
  • a condensate demineralizer used in a steam power plant is coated with a single bed of a cation resin and a highly crosslinked, uniform particle size gel type cationic resin from a conventional mixed bed type.
  • a double-bed system that is configured according to the quality of the treated water, water quality equivalent to that of the mixed-bed system is secured, and the ⁇ -on resin and the highly crosslinked uniform particle size gel-type cation resin are separately provided.
  • the reverse regeneration rate at the time of reclaiming fat is greatly reduced compared to the current situation, and the water quality during ammonia operation is reduced. Deterioration can be suppressed and water quality equivalent to dredging and dredging operations can be secured.
  • the present invention is a technique that basically does not cause reverse regeneration, which is the biggest problem of a mixed-bed condensate demineralizer, and is composed of a combination of a plurality of stages of resin layers. It is possible to ensure high-purity water quality equivalent to that of mixed beds, and to improve the quality of treated water during operation of ammonia to the same level as that of operation using ⁇ , type ion-exchange resin. .
  • the present invention is a technique that basically does not cause reverse regeneration, which is the biggest problem of the mixed-bed condensate demineralizer, and is capable of removing crushed and fine coagulates. Because there is
  • FIG. 1 is a schematic configuration diagram of a multi-bed desalting tower used in the present invention.
  • FIG. 2 is a schematic configuration diagram of a cation resin regeneration tower used in the present invention.
  • the present invention suppresses the bad water quality at the time of ammonia operation and secures the same water quality level as that of ⁇ , ⁇ operation. In order to improve the quality of treated water during ammonia operation.
  • the reverse regeneration rate (Na type content, C1 type content) by regenerant is reduced to 0.01% or less, which is two orders of magnitude lower than the conventional PWR level.
  • the conventional oil separation technology for mixed-bed desalination equipment has the limit of reducing the current reverse regeneration rate by about an order of magnitude even with ideal separation operations.
  • the present inventors have found that, in a desalting tower for treating condensate, a charcoal resin, a gel-type cationic resin having a uniform particle size of 10 to 16%, respectively,
  • a desalting tower for treating condensate, a charcoal resin, a gel-type cationic resin having a uniform particle size of 10 to 16%, respectively.
  • the resin layer in the desalting tower is formed by, for example, a partition wall having a wedge wire screen attached to a perforated plate or a partition wall having a structure in which a saran net or a wire mesh is sandwiched between perforated plates.
  • the mixed bed type After sampling the ion exchange resin in each layer, the mixed bed type is used by transferring directly to each regeneration tower and regenerating the medicine from the resin extraction pipe installed in each resin layer. Unlike gel-type cationic resins with a cross-linking degree of 10 to 16% and cation resin, it is possible to regenerate without any mixing operation and reverse regeneration with a regenerant. Has found a method that can be completely eliminated. Furthermore, by finding measures to prevent mixing of crushed resin and fine resin into each resin layer, the reverse regeneration rate (Na reverse regeneration rate: 0.05%, C1 reverse regeneration rate: 1.0%) is significantly lower than the conventional reverse regeneration rate. It was verified that high-purity resin regeneration was possible and that high-purity treated water could be secured even during ammonia operation. Details of the invention are described below.
  • a multi-bed desalination unit composed of four layers of on-resin will be explained.
  • the multi-bed type desalination equipment has a uniform particle size gel type cation layer with No.1 cross-linking degree of 10-16%, No. 1-on layer, and No.2 cross-linking degree of 10-16%. Combined alternately like particle size gel type cation layer, No.2 Consists of multiple floors.
  • the condensate passes through the inlet header lateral and has a uniform particle size gel type cation layer, No. l-on layer, with a degree of cross-linking of 10-16%. ⁇ 0.2
  • the water is collected by the outlet header lateral and desalted.
  • the resin is extracted from the resin extraction pipes installed in the respective resin layers to the cationic resin regeneration tower and the char-on resin regeneration tower and regenerated.
  • Each resin layer is divided by a partition with a wedge wire screen attached to a perforated plate, and the ion exchange resin of each layer is not mixed.
  • Each resin layer has a uniform particle size gel type cationic layer with an upper cross-linking degree of 10-16%: approx. 600 mm, upper ion layer: approx. 300 mm, and a lower particle cross-linking degree of 10-16%.
  • the type layer is approximately 600 mm
  • the lower key layer is approximately 300 mm. The optimum layer height is adjusted according to the quality of the water to be treated.
  • the cationic resin regenerating tower is composed of a No. 1 uniform particle size gel type cation resin having a crosslinking degree of 10 to 16% and a No. 2 uniform particle size gel type cation having a degree of crosslinking of 10 to 16%. It is composed of an internal pipe for backwashing and regenerating the resin at the same time, and a sebum extraction pipe for transferring the respective sebum to the demineralization tower. Add excess cation resin to the cationic resin transported from the desalting tower, and after scrubbing with air, backwash for 30 minutes or more at a development rate of 100% or more to remove the crushed resin or fine resin. To do.
  • the upper layer of the cation resin is extracted into an excess cation resin tank in order to remove crushed and fine resin that may be mixed into the cation resin layer.
  • the No. 1 cation and the No. 2 cation are returned to the desalting tower in this order.
  • the char-on resin regeneration tower is composed of an internal pipe for backwashing the char-on resin and regenerating the medicine, and a resin extraction pipe for transferring the gas-on resin to the desalting tower.
  • the structure is almost the same as that of the cation resin regeneration tower.
  • Recycle medicine After the medicines that have been passed through are thoroughly rinsed, return them to the desalting tower in the order of No. 1 first and then No. 2 first.
  • the surplus oil resin at the bottom is always put in the char resin regeneration tower, and is sampled and analyzed in a timely manner. If the amount of crushed resin and fine resin is increased, Remove from the outlet of on-oil, and replace with new resin.
  • examples of the uniform particle size gel type cationic resin having a crosslinking degree of 10 to 16% used herein include Dowex MS650HXC (H) and MS575C (H) manufactured by Dow Chemical Company, and Amberjetl006 manufactured by Rohm and Haas Company. , Amberjetl024, Mitsubishi Chemical DIAION UBK14T, etc.
  • Dowex M S550A (OH) SBR—P, SBR—C, SBR—P—C, MS—MP725A, MSA—l—C, Rohm, manufactured by Dow Chemical You can also use IRA400, IRA900, Amberjet9000, and DIAION PA312, SA10A, etc., manufactured by Andhart.
  • MS650HXC a 14% cross-linked uniform particle size cation resin, which is an ion exchange resin (manufactured by Dow Chemical Japan Co., Ltd.) for condensate demineralizers of nuclear power plants, and strongly basic type 1 gel type A water flow test was performed by forming a double bed by combining ON-SOF MS 550A, and the conductivity and ion concentration of the treated water were measured, and the breakthrough time was measured. test was carried out under the following conditions.
  • a column with an inner diameter of 30 mm is packed with a cationic resin and a resin resin at a volume ratio of 2/1.
  • the height of the resin layer was 850 mm and the filling method was as follows.
  • Case 1 Two layers of cationic resin (C) Z-on resin (hereinafter A) from the top • Case 2: Three layers of CZAZC from the top
  • the water line flow velocity was 80 m / h simulating the actual equipment, the treated water temperature was 35 ° C, and the inlet water quality conditions were as follows.
  • Table 1 shows the measured results of conductivity and ion concentration of treated water. As shown in Table 1, there was no difference in the quality of treated water in any case compared to the conventional technology.
  • Table 2 shows the breakthrough time ratio of each case when the breakthrough time of the mixed bed resin, which is the prior art, is 1. As can be seen from Table 2, the breakthrough time was significantly shortened in the two layers of the cation resin-carrying resin in Case 1, but in other cases, it was almost the same as the conventional technology and applied to actual equipment. It can be said that there is no problem.
  • MS650HXC a 14% cross-linked uniform particle size cation resin, which is an ion exchange resin (manufactured by Dow Chemical Japan Co., Ltd.) for condensate demineralizers of nuclear power plants, and strongly basic type 1 gel Using ON550 MS550A, we investigated the removal behavior of crushed resin by backwashing. The test was conducted under the following conditions.
  • MS650HXC a 14% cross-linked uniform particle size cation resin, which is an ion exchange resin (manufactured by Dow Chemical Japan Co., Ltd.) for condensate demineralizers of nuclear power plants, and strongly basic type 1 gel type
  • a cation Z-on Z-force Zion Z-ON resin layer is formed from the top to form a four-layered double bed test.
  • concentration of sulfate ions produced by decomposition was measured.
  • the reverse regeneration rate of the cationic resin and the cation resin does not occur in the double-bed desalting tower, so the new resin level was set to 0.01%.
  • Comparative Example 1 a four-layered double bed combining a particle size gel type cationic resin MS650C with a crosslinking degree of 10% and a strongly basic type 1 gel type resin resin MS550A was used.
  • the reverse regeneration rate of on-resin does not occur in the double-bed desalting tower, so it was set at 0.01%, which is the level of new resin.
  • Comparative Example 2 is a mixed bed combining a 10% particle size gel type cationic resin MS650C with a crosslinking degree of 10% and a strongly basic type 1 gel type resin resin MS550 A, and the reverse regeneration rate is at a normal level. It was 0.1%.
  • a column having an inner diameter of 30 mm is packed with a cationic resin and a resin resin at a volume ratio of 2/1.
  • the height of the resin layer is 850 mm, and the upper floor force is 4 layers of CZAZCZA.
  • the mixed bed was completely mixed.
  • the water flow velocity was 80 m / h simulating the actual equipment, the temperature of the treated water was 35 ° C, and the inlet water quality conditions were as follows.
  • Table 4 shows the measured results of conductivity and ion concentration of treated water.
  • the chemical concentration is increased by increasing the degree of cross-linking of the uniform particle size cationic resin from 10% to 14%, where the sulfuric acid concentration is lower than in Comparative Example 1.
  • the sulfuric acid concentration is lower than in Comparative Example 1.
  • Comparative Example 2 hydrolysis leakage due to reverse regeneration with low sodium and chlorine concentrations was suppressed, confirming that the water quality was good.
  • the sodium concentration and the chlorine concentration due to reverse regeneration are low, drug regeneration can be greatly reduced, and the present invention requires only about 1Z8 as compared with Comparative Example 2. From the above results, it can be said that the present invention is an excellent technique with low concentrations of sulfuric acid, sodium, and chlorine, and with low frequency of drug regeneration.
  • the present invention 0.03
  • the present invention 0.02.
  • Chlorine ion concentration ( ⁇ g / L)
  • the present invention 0.005
  • the present invention every 2 months
  • the present invention is a technology that basically does not cause reverse regeneration, which is the biggest problem of a mixed-bed condensate demineralizer, and uses a multiple bed composed of a combination of multiple stages of resin layers. It is possible to ensure high-purity water quality equivalent to or higher than that of mixed beds, and to improve the quality of treated water during operation of ammonia to the same level as that of operation using H and OH type ion exchange resin. . Furthermore, according to the present invention, it is possible to remove crushed and fine resin during regeneration, and therefore the technology can be widely applied to the purification of reactor water in BWR plants. It can also be applied to measures against aging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

 本発明は、樹脂再生時の逆再生率を現状より大幅に低減し、アンモニア運用時の処理水質の向上を図ることができる複床式の復水脱塩方法と装置を提供する。  複床式でイオン交換樹脂を用いる復水脱塩方法において、相互で混じり合わないように隔壁により区分されたアニオン樹脂層及び架橋度が10%から16%である強酸性均一粒径ゲル型カテオン樹脂層を、交互に組み合わせた複床を構成する樹脂層に復水を通水することとしたものであり、前記架橋度が10%から16%である強酸性均一粒径ゲル型カチオン樹脂は、平均粒径値が500~800μmであり、平均粒径値±100μmの範囲に樹脂粒存在率が95%以上、均一係数が1.2以下となるようなイオン交換樹脂であり、通薬再生が必要なったイオン交換樹脂は、夫々別々に抜き出して通薬再生され、元の隔壁内に返送することができる。

Description

明 細 書
復水脱塩方法及び装置
技術分野
[0001] 本発明は、複床式でイオン交換榭脂を用いる復水脱塩処理に係り、特に、汽カ発 電プラントに使用される通薬再生の低減が可能な複床式の復水脱塩方法と装置に 関する。
背景技術
[0002] 加圧水型軽水炉 (PWR)プラントの二次系に設置されて ヽる復水脱塩装置は、復 水中のイオン性不純物 (Na、 Cl、 SOなど)を脱塩処理し、給水系から蒸気発生器に
4
持ち込まれるイオン性不純物を極低レベルに低減し、蒸気発生器の伝熱管部にお 、て、イオン性不純物の濃縮により発生する恐れのある応力腐食割れの防止を図つ ている。また、 PWRプラント二次系では、蒸気発生器へのクラッド (鉄酸化物)の持ち 込みを抑制するため、復水中にアンモニアやヒドラジンなどを添カ卩し、 pHをアルカリ 側にコントロールする AVT処理を行って!/、る。
[0003] このため、 PWR復水脱塩装置では、高純度の水質を確保するため、 H型カチオン 榭脂及び OH型ァ-オン樹脂の混床式脱塩器による運用を行っている力 復水中に 添加されるアンモニアやヒドラジンなどがカチオン樹脂の大きな負荷となり、カチオン 榭脂のイオンブレークが早まるため、頻繁な通薬再生が必要となる。このため、 PWR プラントでは、イオン交換樹脂の交換頻度の増加、再生剤、純水、蒸気、空気等の大 量消費、及び処理する必要のある化学廃液の増加などの経済的問題、運転員の負 荷増大、並びに、通薬再生時におけるカチオン樹脂の酸化劣化の進行ゃァ-オン 榭脂の反応速度の低下など、解決する必要のある幾つかの問題を抱えている。
[0004] カロえて、イオン交換榭脂は経年使用に伴 、、頻繁に通薬再生を実施するために力 チオン樹脂の酸化劣化が徐々に進行し、溶出する有機性不純物量が徐々に増加す るため、有機物の分解により生成する硫酸イオン濃度が徐々に増加すると共に、溶 出した有機性不純物によりァ-オン樹脂の表面汚染が発生し、反応速度の低下によ り処理水質が低下する事象が発生して!/ヽる。 [0005] この問題を解決する手段として、通薬再生の低減が可能な復水脱塩装置のアンモ ニァ運用が考えられるが、従来のアンモニア運用は、 Η,ΟΗ運用と比べて処理水質 が悪化するため、そのまま PWRプラントには適用できない。
[0006] 逆再生率を低減する方法としては、特開平 8— 117615号公報のように中間榭脂を 使用する方法や、特開昭 55— 94650号公報のように榭脂分離に苛性ソーダを使用 する方法、特開平 4— 100587号公報のように榭脂移送方法を工夫する方法、など が提唱されているが、カチオン樹脂とァニオン榭脂を混床にて使用する限り、逆再生 率を大幅に低減することは困難である。また、特開平 11— 352283号公報のように 高架橋度の強酸性ゲル型カチオン榭脂を使用して酸化劣化の進行による水質低下 を抑止する方法がある力 混床にて運用すると前述の通り逆再生が発生して水質の 低下が否めない。
特許文献 1:特開平 8— 117615号公報
特許文献 2:特開昭 55— 94650号公報
特許文献 3 :特開平 4— 100587号公報
特許文献 4:特開平 11― 352283号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、前述した事情に鑑みてなされたものであり、復水脱塩装置の運用を Η, ΟΗ運用から、通薬再生頻度の低減が可能なアンモニア運用とすると共に、アンモ- ァ運用時の水質悪化を抑制し、 Η,ΟΗ運用と同等の水質レベルを確保するため、榭 脂再生時の逆再生率を現状より大幅に低減し、アンモニア運用時の処理水質の向 上を図ることができる複床式の復水脱塩方法と装置を提供することを課題とする。 課題を解決するための手段
[0008] 上記課題を解決するために、本発明では、複床式でイオン交換榭脂を用いる復水 脱塩方法にぉ 、て、相互に混じり合わな 、ように隔壁により区分されたァ-オン榭脂 層及び架橋度が 10%〜 16%、好ましくは 12〜 15%である強酸性均一粒径ゲル型 カチオン榭脂層を、交互に組み合わせた複床を構成する榭脂層に、復水を通水する ことを特徴とする復水脱塩方法としたものである。 [0009] 前記復水脱塩方法において、架橋度が 10%から 16%である強酸性均一粒径ゲル 型カチオン榭脂は、平均粒径値力 00〜1000 μ m、好ましくは 500〜800 m、更 に好ましくは 550〜700 μ mであり、平均粒径値士 100 μ mの範囲に榭脂粒存在率 力 S95%以上、均一係数が 1. 2以下となるようなイオン交換樹脂がよぐまた、薬品再 生が必要になったイオン交換榭脂は、隔壁により区分された夫々の榭脂層から、別 々に水及び空気により榭脂を抜き出し、抜き出したカチオン樹脂とァ-オン榭脂を夫 々別々に通薬再生して洗浄した後、直接、水及び空気により夫々区分された隔壁内 に返送することにより、ァ-オン榭脂及びカチオン榭脂を互いに混じり合うことなく再 生することができる。
[0010] 前記通薬再生において、隔壁を通過する可能性のある破砕榭脂又は微細榭脂を 完全に除去するため、抜き出したカチオン榭脂は、余剰カチオン榭脂を加え、空気 によるスクラビングの後に、展開率 100%以上で 30分以上逆洗して、破砕榭脂又は 微細榭脂をオーバーフロー除去し、榭脂層上部に混在している可能性のある破砕榭 脂又は微細榭脂を抜取った後に通薬再生し、また、抜き出したァ-オン榭脂は、余 剰ァ-オン榭脂を加え、空気によるスクラビングの後に、展開率 100%以上で 30分 以上逆洗して、破砕榭脂又は微細榭脂をオーバーフロー除去すると共に、榭脂層下 部に混在している可能性のある破砕榭脂又は微細榭脂を逆再生させないため、塔下 部よりカウンターフロー水を入れながら、上層のァ-オン榭脂のみを通薬再生するこ とができ、また、前記通薬再生において、隔壁を通過する可能性のある破砕榭脂又 は微細榭脂を完全に除去するため、抜き出したカチオン榭脂及びァ-オン樹脂から 、破砕榭脂又は微細榭脂のみをふる 、で除去した後に通薬再生することもできる。
[0011] また、本発明では、イオン交換榭脂を複床式で充填した充填層を有する復水脱塩 装置において、前記充填層は、相互に混じり合わないように隔壁により区分され、ァ ユオン榭脂層及び架橋度が、 10%から 16%である強酸性均一粒径ゲル型カチオン 榭脂層が交互に組み合わされた複床を構成していることを特徴とする復水脱塩装置 としたものである。
[0012] 前記復水脱塩装置において、各充填層には、夫々榭脂抜出管が接続され、カチォ ン榭脂層の榭脂抜出管はカチオン榭脂再生塔に、また、ァ-オン榭脂層の榭脂抜 出管はァ-オン榭脂再生塔に夫々接続され、薬品再生された榭脂が夫々の榭脂層 に返送される構成とすることができ、また、前記各榭脂抜出管には、夫々破砕榭脂又 は微細榭脂のみが通過する目開きを有する振動ふるい装置が配備されていてもよい 発明の効果
[0013] 本発明によれば、下記のような優れた効果が期待される。
(1)本発明は、汽カ発電プラントに使用されている復水脱塩装置を従来の混床式か ら、ァ-オン樹脂と、高架橋度均一粒径ゲル型カチオン樹脂の単床を被処理水質に 応じて組み合わせて構成される複床式にすることにより、混床式と同等の水質を確保 すると共に、ァ-オン榭脂、高架橋度均一粒径ゲル型カチオン榭脂を夫々、別個に 抜き出し再生することと、再生前に破砕榭脂及び微細榭脂を除去することを組合せ 適用することにより、榭脂再生時の逆再生率を現状より大幅に低減し、アンモニア運 用時の水質悪化を抑制し、 Η,ΟΗ運用と同等の水質レベルを確保することができる。
(2)本発明は、混床式復水脱塩装置の最大の課題である逆再生を基本的に生じさ せない技術であると共に、複数段の榭脂層の組合せにより構成される複床を使用す ることにより、混床と同等の高純度水質を確保することが可能であり、アンモニア運用 時の処理水質を Η,ΟΗ型イオン交換榭脂による運用と同レベルまで向上させること ができる。本発明により、現在の PWR二次系復水脱塩装置の Η,ΟΗ型イオン交換榭 脂による運用の問題点である再生剤、純水、空気等の大量消費、化学廃液の増加、 並びに運転員の負荷増大などを解消することができる画期的技術であり、その経済 効果は絶大である。
(3)本発明は、混床式復水脱塩装置の最大の課題である逆再生を基本的に生じさ せな 、技術であると共に、破砕榭脂及び微細榭脂を除去することが可能であるため
、 BWRプラントの原子炉水の高純度化にも幅広く適用できる技術であり、近年のブラ ント高経年ィ匕対策への適用など、その波及効果は絶大である。
図面の簡単な説明
[0014] [図 1]本発明で用いる複床式脱塩塔の概略構成図。
[図 2]本発明で用いるカチオン榭脂再生塔の概略構成図。 発明を実施するための最良の形態
[0015] 本発明は、アンモニア運用時の水質悪ィ匕を抑制し、 Η,ΟΗ運用と同等の水質レべ ルを確保するため、榭脂再生時の逆再生率を現状より大幅に低減し、アンモニア運 用時の処理水質の向上を図るものである。
[0016] アンモニア運用で処理水質の向上を図るためには、再生剤による逆再生率 (Na型 含率、 C1型含率)を従来の PWRレベルより 2桁以上低い、 0.01%以下にまで低減す る必要がある。従来の混床式脱塩装置の榭脂分離技術では、理想的な分離操作を 行っても、現状の逆再生率を 1桁程度低減するのが限界である。
[0017] 本発明者らは、種々検討を行った結果、復水を処理する脱塩塔において、ァ-ォ ン榭脂、架橋度 10〜16%の均一粒径ゲル型カチオン榭脂、夫々の単床を、被処理 水の水質に応じ複数段、組み合わせて構成される複床式脱塩塔により脱塩処理を行 うことにより、 PWR条件において、混床式脱塩塔と同等の処理水質が確保できること を検証した。続いて、脱塩塔内の榭脂層は、例えば、穴明き板にゥエッジワイヤース クリーンを取り付けた隔壁、又は、穴明き板にサランネットや金網を挟み込んだ構造 を持つ隔壁などにより区分され、各層のイオン交換榭脂を採水終了後、夫々の榭脂 層に設置されている榭脂抜出し管より、直接、各々の再生塔に移送し通薬再生する 方法により、混床式と違い架橋度 10〜16%の均一粒径ゲル型カチオン樹脂とァ- オン榭脂は、一切、混ざることはなぐ分離操作を行わずに再生することが可能となり 、これにより再生剤による逆再生が完全に排除できる方式を見出した。更に、破砕榭 脂及び微細樹脂の各榭脂層への混入防止対策を見出したことにより、従来の逆再生 率 (Na逆再生率: 0.05%、 C1逆再生率: 1.0%)を大幅に下回る高純度の榭脂再生 を可能にすることができ、アンモニア運用にお ヽても高純度の処理水が確保できるこ とを検証した。以下に発明の詳細を記述する。
[0018] 一例として、榭脂層上部より架橋度 10〜16%の均一粒径ゲル型カチオン榭脂、ァ ユオン榭脂、架橋度 10〜16%の均一粒径ゲル型カチオン榭脂、ァ-オン樹脂の 4 層により構成した複床式脱塩装置の説明を行う。複床式脱塩装置は、図 Iのように No .1架橋度 10〜16%の均一粒径ゲル型カチオン層、 No.lァ-オン層、 No.2架橋度 10〜16%の均一粒径ゲル型カチオン層、 No.2ァ-オン層のように、交互に組み合 わせた複床により構成される。復水は、入口へッダラテラルを通り、 No. l架橋度 10〜 16%の均一粒径ゲル型カチオン層、 No. lァ-オン層、?^0.2架橋度10〜16%の均 一粒径ゲル型カチオン層、 No.2ァニオン層を交互に通過し脱塩処理された後、出 口ヘッダラテラルにより集水され、脱塩処理される。採水を終了した榭脂は、夫々の 榭脂層に設置されている榭脂抜出管より、カチオン榭脂再生塔、ァ-オン榭脂再生 塔に抜き出され再生される。各榭脂層は、穴明き板にゥエッジワイヤースクリーンを取 り付けた隔壁により区分され、各層のイオン交換榭脂は混ざらない構造になっている 。各榭脂層の層高は、上部架橋度 10〜16%の均一粒径ゲル型カチオン層:約 600 mm、上部ァ-オン層:約 300mm、下部架橋度 10〜16%の均一粒径ゲル型カチォ ン層:約 600mm、下部ァ-オン層:約 300mm程度を目安に決め、被処理の水質に より最適層高を調整するものとする。
[0019] 脱塩塔力も抜き出された架橋度 10〜16%の均一粒径ゲル型カチオン榭脂は直接 カチオン榭脂再生塔に移送される。
[0020] 図 2のように、カチオン榭脂再生塔は、 No. l架橋度 10〜16%の均一粒径ゲル型 カチオン樹脂と No.2架橋度 10〜16%の均一粒径ゲル型カチオン樹脂とを、同時に 逆洗及び通薬再生するための内装管と、それぞれの榭脂を脱塩塔に移送するため の榭脂抜出管より構成されている。脱塩塔カゝら移送されるカチオン樹脂に余剰カチ オン榭脂を加え、空気によるスクラビングの後に、展開率 100%以上で 30分以上逆 洗して、破砕榭脂又は微細榭脂をオーバーフロー除去する。
[0021] 逆洗終了後、カチオン榭脂層に混入する可能性のある破砕榭脂及び微細榭脂を 除去するため、カチオン樹脂の上層を余剰カチオン榭脂タンクに抜き出す。通薬を 実施した榭脂は、十分にリンスを行った後に No. lカチオン、 No.2カチオンの順で脱 塩塔に返送する。
[0022] 脱塩塔力も抜き出された No. l及び No.2ァ-オン榭脂も、カチオン樹脂と同様に、 No. lァ-オン、 No.2ァ-オンの順で、ァ-オン榭脂再生塔に移送される。
[0023] ァ-オン榭脂再生塔は、ァ-オン榭脂を逆洗及び通薬再生するための内装管とァ ユオン榭脂を脱塩塔に移送するための榭脂抜出管より構成されており、カチオン榭 脂再生塔とほぼ同じ構成である。 [0024] 脱塩塔力も移送されるァ-オン樹脂に余剰ァ-オン榭脂を加え、空気〖こよるスクラ ビングの後に、展開率 100%以上で 30分以上逆洗して、破砕榭脂又は微細榭脂を オーバーフロー除去する。逆洗終了後、榭脂層下部に混在している可能性のある破 砕榭脂又は微細榭脂を逆再生させないため、塔下部よりカウンターフロー水を入れ ながら、上層のァ-オン榭脂のみを通薬再生する。通薬を終了した榭脂は十分にリ ンスを行った後に、 No.1ァ-オン、 No.2ァ-オンの順で脱塩塔に返送する。底部の 余剰ァ-オン榭脂は、常時ァ-オン榭脂再生塔に入れておき、適時サンプリングして 分析し、破砕榭脂及び微細樹脂の混入量が増カロしてきたならば、余剰ァ-オン榭脂 出口より抜き出し新品樹脂と交換する。
[0025] また、上述の複床式脱塩塔にお!、て、隔壁のスクリーンの目開きを通過する可能性 のある破砕榭脂又は微細榭脂を完全に除去するため、脱塩塔力 移送されるカチォ ン榭脂及びァ-オン榭脂を、破砕榭脂又は微細榭脂のみが通過する目開きを有す る振動ふるい装置などにより、夫々別個にふるい、破砕榭脂又は微細榭脂を除去し た後に通薬再生するプロセスを入れることも可能である。
[0026] また、ここで使用する架橋度 10〜16%の均一粒径ゲル型カチオン樹脂の一例とし ては、ダウケミカル社製 Dowex MS650HXC (H)や MS575C (H)、ロームアンドハ 一ス社製 Amberjetl006、 Amberjetl024、三菱化学社製 DIAION UBK14T 等がある。ァ-オン榭脂については特に限定はないが、ダウケミカル社製 Dowex M S550A(OH)、 SBR— P、 SBR— C、 SBR— P— C、 MS— MP725A、 MSA—l— Cや、ロームアンドハース社製 IRA400、 IRA900、 Amberjet9000、三菱化学社製 DIAION PA312、 SA10Aなどを使用しても良い。
実施例
[0027] 以下、実施例により本発明を具体的に説明する。
[実施例 1]
原子力発電プラントの復水脱塩装置向けイオン交換榭脂 (ダウケミカル日本 (株)製 )である架橋度 14%の均一粒径ゲル型カチオン榭脂 MS650HXCと、強塩基性 1型 ゲル型ァ-オン榭脂 MS 550Aを組み合わせて複床を形成して通水試験を行 、、処 理水の導電率及びイオン濃度の測定を行うと共に、破過時間の測定を行った。試験 は、次の条件にて実施した。
[0028] 内径 30mmのカラムに、カチオン樹脂とァ-オン榭脂を体積比で 2/1にて充填す る。榭脂層高は 850mmとし、充填方法は次の通りとした。
•ケース 1 :上部からカチオン榭脂(以下、 C) Zァ-オン榭脂(以下、 A)の 2層 •ケース 2:上部から CZAZCの 3層
•ケース 3:上部から CZAZCZAの 4層
•ケース 4:上部から CZAZCZAZCの 5層
•従来技術:混床
通水線流速は、実装置を模擬した 80m/hとし、被処理水温度は 35°C、入口水質 条件は次の通りとした。
Figure imgf000010_0001
処理水の導電率及びイオン濃度測定結果を表 1に示す。表 1からわ力るように、従 来技術と比較していずれのケースでも処理水質に差は認められな力つた。
[0029] [表 1]
Figure imgf000010_0002
[0030] また、従来技術である混床榭脂の破過時間を 1としたときの各ケースの破過時間比 を表 2に示す。表 2からわ力るように、ケース 1のカチオン榭脂 Ζァ-オン樹脂の 2層 では、破過時間が著しく短縮したが、その他のケースでは、従来技術とほぼ同等であ り実機適用上、問題はないと言える。
[0031] [表 2] 比破過時間
ケース 1 0. 85
ケース 2 0. 95
ケース 3 0. 95
ケース 4 0. 95
従来技術 1. 00
[0032] [実施例 2]
原子力発電プラントの復水脱塩装置向けイオン交換榭脂 (ダウケミカル日本 (株)製 )である架橋度 14%の均一粒径ゲル型カチオン榭脂 MS650HXCと、強塩基性 1型 ゲル型ァ-オン榭脂 MS550Aを用い、逆洗による破砕榭脂の除去挙動を調査した 。試験は、次の条件にて実施した。
[0033] 榭脂 500mLを 1Lビーカに入れ、純水を 500mL添加し、マグネチックスターラにて 30分間撹拌する。この榭脂を内径 30mmのカラムに充填し、展開率が 100%となる よう流量を調整し、逆洗廃液中に含まれる微細榭脂量を測定した。試験結果を表 3に 示す。表力 わ力るように、逆洗開始初期は微細樹脂のリークが認められるが、逆洗 時間と共に徐々に減少し、 30分経過後には微細樹脂のリークがほとんど認められな かった。
[0034] [表 3]
Figure imgf000011_0001
[実施例 3]
原子力発電プラントの復水脱塩装置向けイオン交換榭脂 (ダウケミカル日本 (株)製 )である架橋度 14%の均一粒径ゲル型カチオン榭脂 MS650HXCと、強塩基性 1型 ゲル型ァ-オン榭脂 MS550Aとを組み合わせて、上部よりカチオン Zァ-オン Z力 チオン Zァ-オン榭脂層の 4層の複床を形成して通水試験を行 、、処理水に紫外線 を照射して、分解により生成する硫酸イオン濃度の測定を行った。カチオン樹脂とァ ユオン樹脂の逆再生率は、複床式脱塩塔では発生しないことから、新品樹脂のレべ ルである 0. 01%とした。比較例 1としては、架橋度 10%の粒径ゲル型カチオン榭脂 MS650Cと、強塩基性 1型ゲル型ァ-オン榭脂 MS550Aとを組み合わせた 4層の 複床とし、カチオン樹脂とァ-オン樹脂の逆再生率は、複床式脱塩塔では発生しな いことから、新品樹脂のレベルである 0. 01%とした。比較例 2としては、架橋度 10% の粒径ゲル型カチオン榭脂 MS650Cと、強塩基性 1型ゲル型ァ-オン榭脂 MS550 Aとを組み合わせた混床とし、逆再生率は通常のレベルである 0. 1%とした。
[0036] 試験は、次の条件にて実施した。
[0037] 内径 30mmのカラムに、カチオン樹脂とァ-オン榭脂を体積比で 2/1にて充填す る。榭脂層高は 850mmとし、複床の充填方法は上部力も CZAZCZAの 4層とした
。混床は完全に混合状態とした。
[0038] 通水線流速は、実装置を模擬した 80m/hとし、被処理水温度は 35°C、入口水質 条件は次の通りとした。
Figure imgf000012_0001
処理水の導電率及びイオン濃度測定結果を表 4に示す。表 4からわ力るように、比 較例 1と比較して硫酸濃度は低ぐ均一粒径カチオン樹脂の架橋度を 10%から 14% に高めることにより化学的な安定性が高まっていることが確認された。また、比較例 2 と比べ、ナトリウム濃度と塩素濃度が低ぐ逆再生による加水分解リークが低く押さえ られており、良好な水質であることが確認された。更に、逆再生に起因するナトリウム 濃度と塩素濃度が低いことから、通薬再生を大幅に低減でき、本発明は比較例 2に 比べ 1Z8程度の回数で良いこととなった。以上の結果から、本発明は硫酸、ナトリウ ム、塩素濃度も低く且つ、通薬再生頻度が少ない、優れた技術であると言える。
[0039] [表 4] 紫外線照射後硫酸イオン濃度( μ g/L)
本発明 0. 003
比較例 1 0. 010
比較例 2 0. 010
ナトリウムイオン濃度(μ g/L)
本発明 0. 002
比較例 1 0. 002
比較例 2 0. 005
塩素イオン濃度( β g/L)
本発明 0. 005
比較例 1 0. 005
比較例 2 0. 020
通薬再生頻度
本発明 2ヶ月毎
比較例 1 1ヶ月毎
比較例 2 10日毎 産業上の利用可能性
本発明は、混床式復水脱塩装置の最大の課題である逆再生を基本的に生じさせ ない技術であると共に、複数段の榭脂層の組合せにより構成される複床を使用する ことにより、混床と同等以上の高純度水質を確保することが可能であり、また、アンモ ユア運用時の処理水質を H、 OH型イオン交換榭脂による運用と同レベルまで向上さ せることができる。さらに、本発明によれば、再生時に破砕榭脂及び微細榭脂を除去 することが可能であるため、 BWRプラントの原子炉水の高純度化にも幅広く適用でき る技術であり、近年のプラント高経年ィ匕対策への適用も可能である。

Claims

請求の範囲
[1] ァ-オン榭脂層とカチオン榭脂層とを交互に組合せた複床を構成するイオン交換 榭脂に、復水を通水する復水脱塩方法において、
前記ァ-オン榭脂層と前記カチオン榭脂層とは相互に混じり合わないように隔壁に より区分されており、
前記カチオン榭脂層を構成するカチオン榭脂は、架橋度が 10%から 16%である 強酸性均一粒径ゲル型カチオン榭脂である、
ことを特徴とする復水脱塩方法。
[2] 前記架橋度が 10%から 16%である強酸性均一粒径ゲル型カチオン榭脂は、平均 粒径値が 500〜800 μ mであり、平均粒径値士 100 μ mの範囲に榭脂粒存在率が 9 5%以上、均一係数が 1. 2以下となるようなイオン交換榭脂であることを特徴とする請 求項 1記載の復水脱塩方法。
[3] 薬品再生が必要になったァ-オン榭脂又はカチオン榭脂を、隔壁により区分され た夫々の榭脂層から、別々に水及び空気により榭脂を抜き出し、
抜き出したカチオン樹脂とァ-オン榭脂を夫々別々に通薬再生して洗浄し、 夫々区分された隔壁内に水及び空気により直接、返送することにより、ァニオン榭 脂及びカチオン榭脂を互いに混じり合うことなく再生すること、
を特徴とする請求項 1又は 2に記載の復水脱塩方法。
[4] 前記通薬再生のために抜き出したカチオン榭脂は、余剰カチオン榭脂を加えた後 、空気によるスクラビングし、
展開率 100%以上で 30分以上逆洗して、榭脂層上部に混在している隔壁を通過 する可能性のある破砕榭脂又は微細榭脂をオーバーフロー除去した後に通薬再生 し、洗浄し、
夫々区分された隔壁内力チオン樹脂層に水及び空気により直接、返送することによ り、破砕榭脂又は微細樹脂が再生カチオン榭脂層に混入することがない、ことを特徴 とする請求項 3に記載の復水脱塩方法。
[5] 前記通薬再生のために抜き出したァ-オン榭脂は、余剰ァ-オン榭脂を加えた 後、空気によるスクラビングし、 展開率 100%以上で 30分以上逆洗して、榭脂層上部に混在している隔壁を通過 する可能性のある破砕榭脂又は微細榭脂をオーバーフロー除去した後にァ-オン 榭脂を通薬再生、洗浄し、
夫々区分された隔壁内のァニオン榭脂層に水及び空気により直接、返送すること により、破砕榭脂又は微細樹脂が再生ァ-オン榭脂層に混入することがない、ことを 特徴とする請求項 3に記載の復水脱塩方法。
[6] 前記通薬再生において、抜き出したカチオン榭脂及びァ-オン樹脂から、隔壁を 通過する可能性のある破砕榭脂又は微細榭脂をふる 、で除去した後に、カチオン榭 脂及びァ-オン榭脂を通薬再生することを特徴とする請求項 3に記載の復水脱塩方 法。
[7] 少なくとも一対のカチオン榭脂層及びァニオン榭脂層を複床式で充填したイオン交 換榭脂充填層、及び
該カチオン榭脂層と該ァ-オン榭脂層とを相互に混じり合わないように区分する隔 壁、を有する復水脱塩装置であって、
該カチオン榭脂層には、架橋度が 10%から 16%である強酸性均一粒径ゲル型力 チオン樹脂層が充填されていることを特徴とする復水脱塩装置。
[8] 前記各充填層のそれぞれに接続されたカチオン榭脂抜出管及びァ-オン榭脂抜 出官、該カチオン榭脂層の榭脂抜出管はカチオン榭脂再生塔に、また、ァ-オン榭 脂層の榭脂抜出管はァニオン榭脂再生塔に接続されており、
各再生塔において薬品再生された榭脂を夫々の榭脂層に返送する接続管、 から構成される請求項 7に記載の復水脱塩装置。
[9] 前記各榭脂抜出管には、夫々破砕榭脂又は微細榭脂のみが通過する目開きを有 する振動ふる 、装置が配備されて ヽることを特徴とする請求項 8に記載の復水脱塩 装置。
PCT/JP2006/319980 2005-10-06 2006-10-05 復水脱塩方法及び装置 WO2007040266A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800354866A CN101460406B (zh) 2005-10-06 2006-10-05 冷凝水脱盐方法及装置
KR1020087008088A KR101315182B1 (ko) 2005-10-06 2006-10-05 복수탈염방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-293366 2005-10-06
JP2005293366A JP4931178B2 (ja) 2005-10-06 2005-10-06 復水脱塩方法及び装置

Publications (1)

Publication Number Publication Date
WO2007040266A1 true WO2007040266A1 (ja) 2007-04-12

Family

ID=37906308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319980 WO2007040266A1 (ja) 2005-10-06 2006-10-05 復水脱塩方法及び装置

Country Status (5)

Country Link
US (1) US8007672B2 (ja)
JP (1) JP4931178B2 (ja)
KR (1) KR101315182B1 (ja)
CN (1) CN101460406B (ja)
WO (1) WO2007040266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633491B2 (en) 2003-12-24 2009-12-15 Canon Kabushiki Kaisha Apparatus for effecting display and input

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225813B (zh) * 2011-04-13 2013-03-13 中国石油化工股份有限公司 生化尾水用于循环冷却水的多级流化离子交换脱盐方法
CN103534212B (zh) * 2011-05-17 2015-11-25 奥加诺株式会社 离子交换设备
CN105948172A (zh) * 2016-06-07 2016-09-21 神华集团有限责任公司 离子交换装置和凝结水精处理设备
CN110013889B (zh) * 2018-01-09 2021-11-16 宝山钢铁股份有限公司 一种大型混床阴阳树脂浸泡式再生方法
CN109166636B (zh) * 2018-08-06 2023-08-25 广东核电合营有限公司 一种压水堆核电机组一回路不间断净化的系统及方法
CN110092444A (zh) * 2019-06-12 2019-08-06 西安利能科技有限责任公司 一种处理scal型间接空冷系统循环水水质的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528762A (en) * 1978-08-23 1980-02-29 Ebara Infilco Co Ltd Condensed water treating method
JPH05154474A (ja) * 1991-12-06 1993-06-22 Japan Organo Co Ltd 復水脱塩装置
JPH09248567A (ja) * 1996-03-18 1997-09-22 Kurita Water Ind Ltd イオン交換装置
JPH10137751A (ja) * 1996-11-07 1998-05-26 Japan Organo Co Ltd イオン交換方法及びこのイオン交換方法に用いられるイオン交換塔
JP2000202440A (ja) * 1999-01-12 2000-07-25 Japan Organo Co Ltd 高純度水の製造装置
JP2003236540A (ja) * 2002-02-13 2003-08-26 Ebara Corp 脱塩装置の水質向上方法
JP2004223513A (ja) * 2004-02-19 2004-08-12 Japan Organo Co Ltd 復水脱塩装置におけるイオン交換樹脂の充填方法
JP2004330154A (ja) * 2003-05-12 2004-11-25 Japan Organo Co Ltd 復水脱塩装置およびその装置へのイオン交換樹脂の充填方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719591A (en) * 1971-03-05 1973-03-06 Crane Co Method for condensate filtration and demineralization
NL185708C (nl) * 1977-05-27 1990-07-02 Northern Eng Ind Werkwijze voor de regeneratie van ionenwisselaars.
FR2480736A1 (ja) * 1980-04-17 1981-10-23 Degremont
US4975201A (en) * 1989-10-17 1990-12-04 The Dow Chemical Company Condensate purification process
JP3687829B2 (ja) 1998-06-04 2005-08-24 株式会社荏原製作所 復水処理方法及び復水脱塩装置
JP3594492B2 (ja) 1998-07-27 2004-12-02 株式会社荏原製作所 復水脱塩装置
JP2005296748A (ja) 2004-04-08 2005-10-27 Ebara Corp 復水脱塩装置とその再生方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528762A (en) * 1978-08-23 1980-02-29 Ebara Infilco Co Ltd Condensed water treating method
JPH05154474A (ja) * 1991-12-06 1993-06-22 Japan Organo Co Ltd 復水脱塩装置
JPH09248567A (ja) * 1996-03-18 1997-09-22 Kurita Water Ind Ltd イオン交換装置
JPH10137751A (ja) * 1996-11-07 1998-05-26 Japan Organo Co Ltd イオン交換方法及びこのイオン交換方法に用いられるイオン交換塔
JP2000202440A (ja) * 1999-01-12 2000-07-25 Japan Organo Co Ltd 高純度水の製造装置
JP2003236540A (ja) * 2002-02-13 2003-08-26 Ebara Corp 脱塩装置の水質向上方法
JP2004330154A (ja) * 2003-05-12 2004-11-25 Japan Organo Co Ltd 復水脱塩装置およびその装置へのイオン交換樹脂の充填方法
JP2004223513A (ja) * 2004-02-19 2004-08-12 Japan Organo Co Ltd 復水脱塩装置におけるイオン交換樹脂の充填方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633491B2 (en) 2003-12-24 2009-12-15 Canon Kabushiki Kaisha Apparatus for effecting display and input

Also Published As

Publication number Publication date
KR20080053341A (ko) 2008-06-12
US20070131619A1 (en) 2007-06-14
JP4931178B2 (ja) 2012-05-16
KR101315182B1 (ko) 2013-10-07
CN101460406B (zh) 2012-05-30
JP2007098328A (ja) 2007-04-19
CN101460406A (zh) 2009-06-17
US8007672B2 (en) 2011-08-30

Similar Documents

Publication Publication Date Title
WO2007040266A1 (ja) 復水脱塩方法及び装置
US3385787A (en) Condensate purification process
JP4943378B2 (ja) 復水脱塩方法及び復水脱塩装置
JP4869881B2 (ja) イオン交換装置及びイオン交換方法
JPS61209087A (ja) 貫流型の水脱塩方式及び方法
JP6402754B2 (ja) 再生式イオン交換装置及びその運転方法
JPH10137751A (ja) イオン交換方法及びこのイオン交換方法に用いられるイオン交換塔
US3583908A (en) Condensate purification process
JP4346088B2 (ja) イオン交換樹脂の通薬再生方法と装置
JP2005296748A (ja) 復水脱塩装置とその再生方法
JP3963025B2 (ja) イオン交換樹脂の分離、再生方法
JP2007105558A (ja) 復水脱塩方法及び装置
JP4383091B2 (ja) 復水脱塩方法及び装置
JP6337933B2 (ja) 水質管理システム及び水質管理システムの運転方法
JP4023834B2 (ja) 温床式脱塩装置におけるイオン交換樹脂の保管方法と運転準備方法
RU2205692C2 (ru) Способ ионообменной очистки воды, содержащей органические вещества, с противоточной регенерацией ионообменных материалов
JP3570066B2 (ja) イオン交換装置
JP2597552Y2 (ja) 純水製造設備
RU2447026C2 (ru) Способ и устройство для доочистки воды при ее глубокой деминерализации
JP2941121B2 (ja) 超純水製造装置
JP3963599B2 (ja) 酸成分除去方法
JPH0258996B2 (ja)
JP3598798B2 (ja) 混床式脱塩装置の再生方法
JP3543389B2 (ja) イオン交換樹脂の分離再生方法
JP2001079424A (ja) イオン交換樹脂の再生設備と再生方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035486.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020087008088

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811318

Country of ref document: EP

Kind code of ref document: A1