WO2007040087A1 - 酢酸の製造方法 - Google Patents

酢酸の製造方法 Download PDF

Info

Publication number
WO2007040087A1
WO2007040087A1 PCT/JP2006/319017 JP2006319017W WO2007040087A1 WO 2007040087 A1 WO2007040087 A1 WO 2007040087A1 JP 2006319017 W JP2006319017 W JP 2006319017W WO 2007040087 A1 WO2007040087 A1 WO 2007040087A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
acetic acid
catalyst
group viii
iodide
Prior art date
Application number
PCT/JP2006/319017
Other languages
English (en)
French (fr)
Inventor
Hidetaka Kojima
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to US11/992,129 priority Critical patent/US20090082593A1/en
Priority to EP06810542A priority patent/EP1932823A1/en
Priority to JP2007538709A priority patent/JPWO2007040087A1/ja
Priority to CN200680035866XA priority patent/CN101273004B/zh
Publication of WO2007040087A1 publication Critical patent/WO2007040087A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Definitions

  • the present invention relates to a method for producing acetic acid from methanol and carbon monoxide.
  • Acetic acid is one of basic chemical products, and is an important chemical product in the petrochemical industry, the polymer chemical industry, the organic chemical industry, and the pharmaceutical and agrochemical manufacturing industry. There are various methods for producing acetic acid. Among them, the method for producing acetic acid from methanol and carbon monoxide is the most industrially superior method.
  • methanol and carbon monoxide are continuously introduced into a reactor containing a reaction solution and reacted, and the reaction solution is obtained. Is continuously taken out and separated into a component (low boiling point component) that evaporates in an evaporation tank (for example, a flasher) having a pressure lower than that of the reactor and a component (high boiling point component) that does not evaporate.
  • Low boiling components mainly include methyl iodide, which is one of the cocatalysts, methyl acetate, which also generates methanol as a raw material, water contained in the reaction solution, and acetic acid, which is the product and reaction solvent.
  • methyl iodide methyl acetate, water, and acetic acid that remain in the high boiling point component
  • the components contained in the low boiling point component are not completely evaporated, but also a rhodium complex that is a catalyst and iodide that is a stabilizer for rhodium. Lithium etc. are included.
  • the high-boiling component containing rhodium separated in the evaporation step is treated with at least a hydrogen partial pressure of 0.1 atm or more of hydrogen and 0.1 atm or more of carbon monoxide, and then returned to the reactor for circulation.
  • a method of using a ring is disclosed (Japanese Patent No. 3213392).
  • a mixed gas of hydrogen and carbon monoxide at atmospheric pressure is introduced into the catalyst circulation liquid equivalent solution, heated to 140 ° C., and treated for 30 minutes. This processing time is a processing time that requires a large processing container as an industrial process.
  • Patent Document 1 Japanese Patent Publication No. 4 69136
  • Patent Document 2 Japanese Patent Publication No. 7-23337
  • Patent Document 3 Japanese Patent Publication No. 8-5839
  • Patent Document 4 Patent No. 3213392
  • an object of the present invention is to increase the activity of the catalyst in the reactor without unnecessarily increasing the hydrogen partial pressure in the reactor, suppress the shift reaction, reduce the production of by-products, and reduce acetic acid. Is to provide a method for industrially and efficiently producing high productivity.
  • the present inventor in a method for producing methanol and monoxide-carbon power acetic acid using a periodic group VIII metal catalyst such as a rhodium compound, While the partial pressure of carbon monoxide is lower than that of the reactor (e.g., flasher) or the catalyst solution containing the periodic table group VIII metal compound is returned to the evaporator power reactor, the periodic table group VIII metal (e.g., Rhodium) was found to be inactive trivalent.
  • a periodic group VIII metal catalyst such as a rhodium compound
  • the trivalent periodic table vm group metal contained in the catalyst solution is consumed in the region from the evaporation tank to the reactor, so a specific amount of hydrogen that is not necessarily high as a partial pressure, and a special container
  • the Group VIII metal converted from trivalent to monovalent is converted to monovalent so that the hydrogen content of the reactor Increase the activity of the catalyst in the reactor without increasing the pressure more than necessary, reduce the shift reaction, and reduce the generation of by-products such as acetoaldehyde, propionic acid, formic acid and hydrated carbon. It has also been found that the accumulation of unsaturated compounds such as crotonaldehyde can also be reduced.
  • the present invention is based on these findings.
  • the present invention provides a method for producing acetic acid by continuously reacting methanol and carbon monoxide in the presence of a periodic table vm group metal catalyst, an iodide salt, methyl iodide and water.
  • the reaction solution is continuously withdrawn and introduced into the evaporation process where the pressure is lower than the reaction conditions.
  • hydrogen is introduced in an amount of 0.1 mol times or more with respect to the group VIII metal of the periodic table at 80 ° C.
  • a method for producing acetic acid characterized in that contact is made at the above temperature for at least 6 seconds before returning to the reactor.
  • the periodic table Group VIII metal catalyst includes a rhodium catalyst. This method for producing acetic acid is particularly advantageous when the reaction is carried out under conditions where the water concentration in the reaction solution is 0.1 to 10% by weight.
  • the concentration of the Group VIII metal catalyst of the periodic table in the reaction solution is preferably about 300 to 3000 weight ppm as metal.
  • lithium iodide is used as the iodide salt.
  • the catalyst liquid taken out from the evaporator is brought into contact with hydrogen at a stage before being recycled to the reactor to activate the catalyst, so that the hydrogen partial pressure of the reactor is required.
  • the activity of the catalyst in the reactor can be increased without increasing the above. Therefore, the generation of by-products such as acetoaldehyde, formic acid, propionic acid, and hydrated carbon due to hydrogen, and the generation of unsaturated compounds such as crotonaldehyde, a secondary by-product of acetoaldehyde, are increased. There is no.
  • the catalyst can be activated in a very short time, so no large equipment is required, and therefore costs increase. Therefore, catalytic activity and acetic acid productivity can be improved.
  • acetic acid is produced by reacting methanol and carbon monoxide in the presence of a periodic table group VIII metal catalyst, iodide salt, methyl iodide and water.
  • Methanol and carbon monoxide which are raw materials, are continuously charged into the reactor.
  • the reactor is a gas-liquid mixing tank, and even if it has a stirrer, it does not have a stirrer! A type of reactor may also be used.
  • the reaction temperature is usually 150 to 230 ° C, preferably 170 to 220 ° C.
  • the reaction pressure is generally 1.5 to 5 MPa, preferably 2 to 3.5 MPa in terms of total pressure.
  • a periodic table vm group metal catalyst is used as the main catalyst, methyl iodide is used as the co-catalyst, and an iodide salt is used as the co-catalyst.
  • Periodic table Group VIII metals include iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum. Of these, platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, platinum) are preferred, and rhodium is particularly preferred.
  • the group VIII metal catalyst of the periodic table is usually present in the reaction solution as a group VIII metal complex of the periodic table.
  • the Group VIII metal catalyst of the periodic table may be any periodic table VII group I metal complex or periodic group VIII metal complex that can be dissolved in the reaction solution under the reaction conditions. Also good.
  • a group VIII metal complex of the periodic table for example, rhodium catalyst, rhodium iodine complex such as Rhl, [Rh (CO) I ⁇ , rhodium carbol complex, etc.
  • the amount of Group VIII metal catalyst used is the concentration in the reaction solution, generally 300 to 3000 ppm by weight (for example, 300 to 2000 ppm by weight) as a metal! If the concentration of the Group VIII metal is too high, the iodide of the metal (for example, rhodium iodide) is likely to precipitate. Therefore, it is preferable that the productivity is high in the range of 500 to 2000 ppm by weight.
  • Methyl iodide is preferably used in a concentration of 5 to 20% by weight in the reaction solution.
  • the reaction is promoted when the concentration of methyl iodide is high, but the concentration of the process for the recovery of methyl iodide and the circulation process to the reactor and the amount of energy used are selected at the most economically advantageous concentration.
  • the In the reaction solution 0.1 to 30% by weight of methyl acetate is present due to the equilibrium of the raw materials methanol and acetic acid.
  • the concentration of water in the reaction solution is controlled in the range of, for example, 0.1 to: L0% by weight, preferably 0.1 to 5% by weight.
  • Table VIII metal catalysts tend to be unstable.
  • reaction promotion and periodic table group VIII metal catalyst stability Iodide salts are used for conversion.
  • the iodide salt may be any as long as it generates iodide ions in the reaction solution.
  • alkali metal iodide salts such as Lil, Nal, KI, Rbl, and Csi
  • Bel Alkaline earth metal iodide salts such as Mgl and Cal;
  • Examples thereof include aluminum group metal iodide salts such as BI and All. Iodide salt is
  • organic iodide salts such as quaternary phosphonium iodide salts (for example, methyl iodide adducts or hydrogen iodide adducts of phosphines such as tributylphosphine and triphenylphosphine) can be used.
  • quaternary ammonium iodide salts eg, iodine methyl addition products or hydrogen iodide addition products of nitrogen-containing compounds such as tertiary amines, pyridines, imidazoles, imides, etc.
  • alkali metal iodide salts such as L ⁇ (lithium iodide) are particularly preferable.
  • the amount of iodide salt used is, for example, from 0.07 to 2.5 molZL, preferably from about 0.25 to: 5 molZL, as iodide ions in the reaction solution, and the concentration in the reaction solution is 3 -40% by weight, preferably about 4.5-30% by weight.
  • acetic acid as a product is generally used, but any solvent may be used as long as it does not adversely affect the reaction, separation, and purification.
  • the reaction liquid is continuously withdrawn from the reactor, and is usually led to an evaporation tank (for example, a flasher) having a pressure lower than the reaction conditions through a valve and a pipe.
  • the pressure in the evaporation tank is, for example, about 0.05 to 0.3 MPaG (gauge pressure).
  • the low boiling point components of the reaction liquid extracted from the reactor that is, the majority of methyl iodide and methyl acetate, and part of water and acetic acid, are removed, and the low boiling point recovery process, product Lead to acetic acid purification process.
  • methyl iodide, methyl acetate and water are separated and each is normally circulated to the reactor by a pump.
  • the liquid component (circulating catalyst liquid) containing the periodic table group VIII metal and iodide salt that did not evaporate in the evaporation tank is usually circulated to the reactor by a pump.
  • a region until the high-boiling component containing the Group VIII metal and iodide salt separated in the evaporation step is returned to the reactor (preferably a region where the pressure is increased by a pump). Then, at least 0.1 mole times hydrogen is introduced into the Group VIII metal of the periodic table, and contact is made at a temperature of 80 ° C or higher for at least 6 seconds before returning to the reactor.
  • an inert trivalent periodic table group VIII metal contained in the circulating catalyst liquid returned to the reactor for example, mouth Is converted to an active monovalent periodic table group VIII metal (eg rhodium) and regenerated.
  • the concentration of the Group VIII metal catalysts (including inert ones) in the periodic catalyst solution used for the hydrogen contact treatment is, for example, 370 to 5000 ppm by weight, preferably 600 to 3300 ppm by weight as metals. Degree.
  • the amount of hydrogen used is 0.1 mol times or more (eg, 0.1 to 10 mol times), preferably 0.1 to 5 mol times relative to Group VIII metal (eg, rhodium) of the periodic table. More preferably, it is 0.5 to 5 mole times.
  • Group VIII metal eg, rhodium
  • the activation of the catalyst proceeds promptly, so that it can be carried out with a small apparatus or equipment. If the amount of hydrogen used is less than 0.1 mole relative to the Group VIII metal of the periodic table, a large facility is needed to ensure sufficient contact time and sufficient catalyst activity. Necessary.
  • Hydrogen may be pure hydrogen gas or a mixed gas containing carbon monoxide, carbon dioxide, nitrogen, methane, etc. in addition to hydrogen, such as gas discharged from the reactor.
  • the content ratio of hydrogen in the case of using a mixed gas is not particularly limited, but is usually 0.05% by volume or more, preferably 1.0% by volume or more, and more preferably 5.0% by volume or more.
  • the pressure (total pressure) when the circulating catalyst solution is brought into contact with hydrogen is, for example, 0.05 MPa or more (for example, 0.05 to 5 MPa), preferably about 0. IMPa or more (for example, 0.1 to 5 MPa). The pressure may be almost the same as the reaction pressure.
  • the hydrogen partial pressure of the hydrogen-containing gas used for contacting with the circulating catalyst solution is usually 0.0025 MPa or more (for example, 0.0025 to 5 MPa), preferably 0.005 OlMPa. This is about the above (for example, 0.01 to 5 MPa).
  • the temperature at which the circulating catalyst solution is brought into contact with hydrogen is 80 ° C. or higher (for example, 80 to 230 ° C.), preferably in the range of 100 to 200 ° C. If the temperature is less than 80 ° C, the catalyst activity will be insufficient, and a large facility will be required to ensure sufficient contact time.
  • the contact time between the circulating catalyst solution and hydrogen is 6 seconds or more (for example, 6 to 600 seconds), and preferably 30 to 300 seconds. If the contact time is less than 6 seconds, the activation of the catalyst becomes insufficient. If the contact time is too long, a large processing container is required, so the contact time is preferably within 600 seconds.
  • the region where the circulating catalyst solution and hydrogen are brought into contact with each other can be constituted by a general gas-liquid mixing means, for example, a pipe with a jacket, a static mixer such as a static mixer, or the like. Hydrogen contact treatment After the treatment, the circulating catalyst solution may be supplied to the reactor as it is, or gas-liquid separation may be performed to supply only the liquid to the reactor.
  • a general gas-liquid mixing means for example, a pipe with a jacket, a static mixer such as a static mixer, or the like.
  • Hydrogen contact treatment After the treatment, the circulating catalyst solution may be supplied to the reactor as it is, or gas-liquid separation may be performed to supply only the liquid to the reactor.
  • G indicates gauge pressure.
  • the ratio (%) of monovalent rhodium in the mouth complex was determined by infrared absorption spectrum. More specifically, the rhodium complex was precipitated using an aqueous solution of tetraphenylphosphonium chloride, the precipitate was separated and dried, and measurement was performed using FT-IR.
  • the catalyst solution and a mixed gas (6.7 NlZh) with a ratio of hydrogen to carbon monoxide of 1: 3 are connected to the reactor with a jacketed pipe.
  • contact was made at a pressure of 3.0 MPaG and a temperature of 135 ° C for 53 seconds.
  • the ratio of hydrogen to rhodium was 4.0 mole times.
  • the acetic acid production rate is 22. ImolZLZh, the acetaldehyde production rate is 5.5 mmol / L / carbon dioxide production rate in the shift reaction is 10.8 mmol / L / h, and the methane production rate is 39 mmolZLZh. Met.
  • the ratio of monovalent rhodium at the outlet of the reactor as measured by infrared absorption spectrum was 40%.
  • the acetic acid production rate is 21.4 molZLZh
  • the acetaldehyde production rate is 8.5 mmol / L / carbon dioxide produced by the shift reaction is 9.9 mmol / L / h
  • the methane production rate is It was 43 mmol ZLZh.
  • the ratio of monovalent rhodium at the outlet of the reactor as measured by infrared absorption spectrum was 15%.
  • reaction solution water concentration: 1.8% by weight, methyl acetate concentration: 5.5% by weight, methyl iodide concentration: 12. 4 weight 0/0, the rhodium catalyst concentration: 600 ppm by weight of rhodium, lithium iodide concentration: 9. led to the evaporation chamber at a flow rate of 1.
  • the catalyst solution (rhodium catalyst concentration: 820 ppm by weight as rhodium) is pumped up without evaporation. To was circulated through the reactor at a flow rate of 1. 44kgZh. Here, before the catalyst solution enters the reactor, the catalyst solution and a mixed gas (0.95 Nl / h) in which the ratio of hydrogen to carbon monoxide is 1: 1 are obtained up to the reactor. In a jacketed pipe, contact was made at a pressure of 2.7 MPaG and a temperature of 90 ° C. for 53 seconds. The ratio of hydrogen to rhodium was 1.8 mole times.
  • low-boiling components methyl iodide, methyl acetate, water, etc.
  • produced amounts of acetic acid are separated from the components evaporated in the evaporation tank by a distillation column, and low-boiling components containing acetonitrile and butyraldehyde are separated. Circulated to the reactor at a flow rate of 0.3 kgZh.
  • the acetic acid production rate was 12.2 molZLZh
  • the carbon dioxide production rate of the shift reaction was 13.7 mmolZLZh
  • the methane production rate was 8.5 mmolZLZh.
  • the accumulated concentration of butyraldehyde in the reaction solution was 48 ppm by weight, and the accumulated concentration of crotonaldehyde was 2.5 ppm by weight.
  • the proportion of monovalent rhodium at the outlet of the reactor as measured by infrared absorption spectrum was 45%.
  • the reaction was carried out at a reaction pressure of 2.7 MPaG, a hydrogen partial pressure of 34 kPa, a reaction temperature of 184.2 ° C, and a reaction solution (water concentration: 1.9 wt%, methyl acetate concentration: 5.7 wt%, methyl iodide) concentration: 12.0 wt 0/0, the rhodium catalyst concentration: 600 ppm by weight of rhodium, lithium iodide concentration led to the evaporation chamber at a flow rate of 2. 05KgZh 9.
  • the catalyst solution (rhodium catalyst concentration: 840 ppm by weight as rhodium) was pressurized with a pump and circulated through the reactor at a flow rate of 1.45 kgZh.
  • the catalyst solution and a mixed gas (1.16N1 / h) with a ratio of hydrogen to carbon monoxide of 1 to 1 are jacketed up to the reactor.
  • contact was made at a pressure of 2.7 MPaG and a temperature of 135 ° C for 53 seconds.
  • the ratio of hydrogen to rhodium was 2.2 mole times.
  • low-boiling components methyl iodide, methyl acetate, water, etc.
  • generated amounts of acetic acid are separated from the components evaporated in the evaporation tank by a distillation column, and low-boiling components containing acetate aldehyde, butyraldehyde, etc. are removed. Circulated to the reactor at a flow rate of 34 kgZh.
  • the acetic acid production rate was 12.3 molZLZh
  • the carbon dioxide production rate produced by the shift reaction was 11. OmmolZLZh
  • the methane production rate was 13.5 mmolZLZh.
  • the accumulated concentrations of butyraldehyde and crotonaldehyde in the reaction solution were 37 ppm by weight and 2.0 ppm by weight, respectively.
  • the ratio of monovalent gallium at the outlet of the reactor as measured by infrared absorption spectrum was 63%.
  • the activity of the catalyst in the reactor can be increased without unnecessarily increasing the hydrogen partial pressure in the reactor, and the shift reaction can be suppressed and the production of by-products can be reduced.
  • Acetic acid can be produced industrially efficiently with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 周期表VIII族金属触媒、ヨウ化物塩、ヨウ化メチル及び水の存在下、連続的にメタノールと一酸化炭素を反応させて酢酸を製造する方法において、その反応液を連続的に抜き出して反応条件よりも圧力の低い蒸発工程に導入し、低沸点成分と周期表VIII族金属及びヨウ化物塩を含む高沸点成分に分離し、分離した周期表VIII族金属及びヨウ化物塩を含む高沸点成分を、反応器に戻すまでの領域で、周期表VIII族金属に対して0.1モル倍以上の水素を導入し、80°C以上の温度で、反応器に戻るまでに少なくとも6秒間の接触をさせる。この方法によれば、反応器の水素分圧を必要以上に高めることなく反応器での触媒の活性を高め、シフト反応を抑制して副生成物の生成を減少させ、酢酸を工業的に効率よく高い生産性で製造できる。  

Description

明 細 書
酢酸の製造方法
技術分野
[0001] 本発明はメタノールと一酸ィ匕炭素から酢酸を製造する方法に関する。
背景技術
[0002] 酢酸は基礎化学品の一つであり、石油化学工業、高分子化学工業、有機化学ェ 業、医薬農薬製造工業において重要な化学品である。酢酸の製造方法としては様々 な方法があるが、それらのなかでも、メタノールと一酸化炭素から酢酸を製造する方 法は工業的に最も優秀な方法である。
[0003] この方法の改良法として、反応液中の水の濃度を下げることが提案されている(特 公平 4— 69136号公報、特公平 7— 23337号公報)。すなわち、反応液中の水分濃 度を下げることにより、酢酸の生産性を高め、且つ、副生成物の発生量を低減できる 技術が開示されている。これらの技術では、水の濃度が 10重量%以下ではロジウム 触媒の安定性が低下するため、アルカリ金属ヨウ化物、 4級化アンモニゥム塩、 4級化 ホスホ-ゥム塩などを添加することが有効であることも開示されている。さらに、反応 液中の水の濃度が 10重量%以下では反応速度が有意に低下するため、 5〜30重 量%のヨウ化リチウムを添加し、反応速度を増大させる技術も開示されている。
[0004] 通常、メタノールと一酸ィ匕炭素力 酢酸を製造する工業的な方法においては、メタ ノールと一酸化炭素を反応液を含む反応器に連続的に導入して反応させ、その反応 液を連続的に反応器力 取り出し、反応器よりも低い圧力の蒸発槽 (例えば、フラッ シヤー)で蒸発する成分 (低沸点成分)と蒸発しな 、成分 (高沸点成分)に分離する。 低沸点成分には助触媒の一つであるヨウ化メチル、原料のメタノール力も発生する酢 酸メチル、反応液に含まれる水、生成物であり反応溶媒である酢酸が主に含まれる。 高沸点成分には、低沸点成分に含まれる成分の蒸発しきれずに残ったヨウ化メチル 、酢酸メチル、水、酢酸のほかに、触媒であるロジウム錯体、ロジウムの安定化剤であ るヨウ化リチウムなどが含まれる。
[0005] し力しながら、水の濃度を 10重量%以下に減少させた時には、工業的に行われる 連続反応の場合に反応速度が徐々に低下する弊害があることがわ力つた。これは、 主触媒であるロジウムが反応に活性な 1価力 不活性な 3価に変化するために起るも のである。水分の多い反応条件下では原料である一酸ィヒ炭素と水とがシフト反応を 起こし、水素と二酸化炭素が発生する。ここで発生する水素は 3価のロジウムを 1価に 変換する作用を有している。すなわち、水素の発生量が多いと不活性な 3価のロジゥ ムが速やかに 1価に変換されるために触媒の活性が保たれる。一方、水分が少ない 反応条件では水素の発生量が少なぐそのため 3価のロジウムが速やかに 1価に変 換される度合いが小さくなり、触媒活性とともに反応速度が徐々に低下してしまう。さ らに、 3価のロジウムが不溶性のヨウ化ロジウムに変化して沈降してしまうという問題も ある。
[0006] 水分を低下させることによる上記のような弊害に対して、反応系に水素を仕込み、 反応系における水素分圧をある一定の圧力以上に保つことによりロジウムの 3価を 1 価に変換する速さを保ち、反応活性を維持することができることが開示されている (特 公平 8— 5839号公報)。しカゝしながら、反応器に水素を仕込み水素分圧を高く保つ ことは、反応液中の水濃度を下げることによって得られるメリットの一つである副生成 物減少という効果をなくしてしまう。すなわち、反応液中の水分を減らすことで、一酸 化炭素と水のシフト反応が抑制されて水素分圧が低下し、それによつて、プロピオン 酸ゃギ酸、ハイド口カーボンといった水素化反応によって生成する副生成物の減少 効果がなくなってしまう。すなわち、水の濃度が 10重量%以下の反応条件でロジウム の活性を維持しょうとして水素分圧を一定の圧力以上に保っために水素を反応器に 供給すると水素分圧に比例してギ酸、プロピオン酸、ハイド口カーボンなどの副生成 物が増加する。
[0007] また、蒸発工程で分離したロジウムを含む高沸点成分を、少なくとも水素分圧 0. 1 気圧以上の水素及び 0. 1気圧以上の一酸化炭素で処理した後、反応器に戻し、循 環使用する方法が開示されている(特許第 3213392号)。この実施例では、触媒循 環液相当液に大気圧の水素と一酸化炭素の混合ガスを導入し、 140°Cに加熱して 3 0分間の処理を行って 、る。この処理時間は工業プロセスとしては大きな処理容器が 必要となる処理時間である。 [0008] 特許文献 1 :特公平 4 69136号公報
特許文献 2:特公平 7— 23337号公報
特許文献 3:特公平 8 - 5839号公報
特許文献 4 :特許第 3213392号
発明の開示
発明が解決しょうとする課題
[0009] 従って、本発明の目的は、反応器の水素分圧を必要以上に高めることなく反応器 での触媒の活性を高め、シフト反応を抑制して副生成物の生成を減少させ、酢酸を 工業的に効率よく高い生産性で製造する方法を提供することにある。
課題を解決するための手段
[0010] 本発明者は、上記目的を達成するため鋭意検討した結果、ロジウム化合物等の周 期表 VIII族金属触媒を用いてメタノールと一酸ィ匕炭素力 酢酸を製造する方法にお いて、反応器よりも一酸化炭素の分圧が低い蒸発槽 (例えば、フラッシャー)又は周 期表 VIII族金属化合物を含む触媒液が蒸発槽力 反応器に戻される間において、 周期表 VIII族金属 (例えばロジウム)が不活性な 3価になることを見いだした。そして、 触媒液に含まれる 3価の周期表 vm族金属を、蒸発槽から反応器に戻すまでの領域 で、消費されていくので必ずしも分圧としては高くない特定量の水素と、特別な容器 を設置するまでもなくパイプラインだけでも効果が出せるような極めて短い時間の接 触で反応させて、 3価に変化した周期表 VIII族金属を 1価に変換することにより、反応 器の水素分圧を必要以上に高めることなく反応器での触媒の活性を高め、且つ、シ フト反応を減少させ、ァセトアルデヒド、プロピオン酸、ギ酸、ハイド口カーボンなどの 副生成物の発生を減少させることができ、また、クロトンアルデヒドなどの不飽和化合 物の蓄積も減少させることができることを見いだした。本発明はこれらの知見に基づ
V、て完成されたものである。
[ooi i] すなわち、本発明は、周期表 vm族金属触媒、ヨウ化物塩、ヨウ化メチル及び水の 存在下、連続的にメタノールと一酸化炭素を反応させて酢酸を製造する方法におい て、その反応液を連続的に抜き出して反応条件よりも圧力の低い蒸発工程に導入し
、低沸点成分と周期表 VIII族金属及びヨウ化物塩を含む高沸点成分に分離し、分離 した周期表 VIII族金属及びヨウ化物塩を含む高沸点成分を、反応器に戻すまでの領 域で、周期表 VIII族金属に対して 0. 1モル倍以上の水素を導入し、 80°C以上の温 度で、反応器に戻るまでに少なくとも 6秒間の接触をさせることを特徴とする酢酸の製 造方法を提供する。
[0012] 前記周期表 VIII族金属触媒にはロジウム触媒が含まれる。この酢酸の製造方法は、 反応液中の水濃度が 0. 1〜10重量%の条件で反応を行う場合に特に大きな利益が 得られる。反応液中の周期表 VIII族金属触媒の濃度は金属として 300〜3000重量 p pm程度であるのが好ましい。ヨウ化物塩としては、例えばヨウ化リチウムが用いられる 発明の効果
[0013] 本発明によれば、蒸発器から取り出した触媒液を、反応器にリサイクルする前の段 階で水素と接触させて触媒の活性ィ匕を行うため、反応器の水素分圧を必要以上に 高めることなく反応器での触媒の活性を高めることができる。従って、水素に起因する ァセトアルデヒド、ギ酸、プロピオン酸、ハイド口カーボンなどの副生成物の生成や、 ァセトアルデヒドの二次副生物であるクロトンアルデヒドなどの不飽和化合物の生成 が増大することがない。また、触媒の不活性化の原因とされる水分の低減を行っても 触媒の再利用(再生)が可能となるので、反応系における水分低減による酢酸の生 産性向上が実現できる。さらに、この水分低減により、シフト反応 (CO+H 0→CO
2 2
+ H )が抑制されるので、この反応で生成する水素に起因する前記副生成物の生成
2
を低減させることができる。また、触媒液中の周期表 VIII族金属に対して 0. 1モル倍 以上の水素を用いるため、触媒を極めて短時間で活性ィ匕できることから、大きな設備 は不要であり、従ってコストをかけることなく触媒活性ィ匕及び酢酸の生産性向上を実 現できる。
発明を実施するための最良の形態
[0014] 本発明では、周期表 VIII族金属触媒、ヨウ化物塩、ヨウ化メチル及び水の存在下、 メタノールと一酸化炭素とを反応させて酢酸を製造する。原料となるメタノールと一酸 化炭素は、それぞれ、連続的に反応器に仕込まれる。反応器は気液混合槽で、撹拌 機を有する撹拌混合槽でも、撹拌機を有しな!/ヽ液循環式の混合槽ある!/ヽは気泡塔 形式の反応器でもよい。反応温度は、通常 150〜230°C、好ましくは 170〜220°Cで ある。反応圧力は、全圧で、通常、 1. 5〜5MPa、好ましくは 2〜3. 5MPaの範囲で ある。
[0015] 主触媒として周期表 vm族金属触媒、助触媒としてヨウ化メチル、安定剤および助 触媒としてヨウ化物塩が用いられる。周期表 VIII族金属には、鉄、コバルト、ニッケル、 ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金が含まれる。これらの なかでも白金族元素 (ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金) が好ましぐ特にロジウムが好ましい。
[0016] 周期表 VIII族金属触媒は反応液中で通常周期表 VIII族金属錯体として存在する。
従って、周期表 VIII族金属触媒としては、反応条件下で反応液に溶解する周期表 VII I族金属錯体又は該周期表 VIII族金属錯体を生成可能なものであればどのようなもの であってもよい。具体的には、周期表 VIII族金属錯体としては、ロジウム触媒を例にと ると、 Rhl、 [Rh (CO) I Γ等のロジウムヨウ素錯体、ロジウムカルボ-ル錯体などが
3 2 2
好ましく用いられる。周期表 VIII族金属触媒の使用量は、反応液中の濃度で、金属と して、一般に 300〜3000重量 ppm (f列えば、 300〜2000重量 ppm)で用!/、られる力 S 、周期表 VIII族金属の濃度が高すぎると該金属のヨウ化物 (例えばヨウ化ロジウム)の 沈降が起きやす 、ので、 500〜2000重量 ppmの範囲で高!、生産性を発揮させるの が好ましい。
[0017] ヨウ化メチルは、反応液中の濃度で 5〜20重量%の範囲で使用することが好ましい 。ヨウ化メチルの濃度が高いと反応は促進されるが、ヨウ化メチルの回収、反応器へ の循環の工程の設備の大きさと使用するエネルギーの量力も経済的に最も有利な濃 度が選択される。反応液中には原料のメタノールと酢酸の平衡により 0. 1〜30重量 %の酢酸メチルが存在して 、る。
[0018] 本発明の方法においては、反応液中の水の濃度は、例えば 0. 1〜: L0重量%、好 ましくは 0. 1〜5重量%の範囲で制御される。水の濃度が低いほど、シフト反応によ る水素の発生量が少なくなり、ギ酸、プロピオン酸、ハイド口カーボンなどの副生成物 の生成量が減少して有利である力 反応速度の低下や周期表 VIII族金属触媒の不 安定化を招きやすくなる。これに対しては、反応促進と周期表 VIII族金属触媒の安定 化のためにヨウ化物塩が用いられる。このヨウ化物塩は、反応液中でヨウ化物イオン を生成するものであればいかなるものであってもよぐ例えば、 Lil、 Nal、 KI、 Rbl、 C si等のアルカリ金属ヨウ化物塩; Bel、 Mgl、 Cal等のアルカリ土類金属ヨウ化物塩;
2 2 2
BI、 All等のアルミニウム族金属ヨウ化物塩などが例示される。また、ヨウ化物塩は、
3 3
上記金属ヨウ化物塩以外に、有機物ヨウ化物塩でもよぐ例えば、第四級ホスホニゥ ムヨウ化物塩(例えば、トリブチルホスフィン、トリフエ-ルホスフィンなどのホスフィン類 のヨウ化メチル付加物又はヨウ化水素付加物等)、第四級アンモ-ゥムヨウ化物塩( 例えば、第三級ァミン、ピリジン類、イミダゾール類、イミド類等の含窒素化合物のヨウ ィ匕メチル付加物又はヨウ化水素付加物等)などが挙げられる。これらの中でも、特に L Π (ヨウ化リチウム)等のアルカリ金属ヨウ化物塩が好ましい。ヨウ化物塩の使用量とし ては、反応液中のヨウ化物イオンとして、例えば 0. 07-2. 5molZL、好ましくは 0. 25〜: L 5molZL程度であり、反応液中の濃度としては、 3〜40重量%、好ましくは 4. 5〜30重量%程度である。
[0019] 反応の溶媒としては、生成物である酢酸を用いるのが一般的であるが、反応および 分離、精製に悪影響を及ぼすものでなければどのような溶媒でもよ 、。
[0020] 反応液は反応器から連続的に抜き取られ、通常バルブ、配管を通じて、反応条件 より圧力の低い蒸発槽 (例えば、フラッシャー)に導かれる。蒸発槽の圧力は、例えば 0. 05〜0. 3MPaG (ゲージ圧)程度である。この蒸発工程では、反応器力も抜き出 された反応液のうちの低沸点成分、すなわちヨウ化メチルと酢酸メチルの大部分、水 と酢酸の一部が取り出され、低沸分の回収工程、製品酢酸の精製工程へと導かれる 。低沸分の回収工程ではヨウ化メチル、酢酸メチルおよび水が分離され、それぞれ通 常ポンプによって反応器に循環される。蒸発槽で蒸発しな力つた周期表 VIII族金属 及びヨウ化物塩を含む液成分 (循環触媒液)も、通常ポンプで反応器に循環される。
[0021] 本発明においては、蒸発工程で分離された周期表 VIII族金属及びヨウ化物塩を含 む高沸点成分を、反応器に戻すまでの領域 (好ましくはポンプにより圧力の高められ た領域)で、周期表 VIII族金属に対して 0. 1モル倍以上の水素を導入し、 80°C以上 の温度で、反応器に戻るまでに少なくとも 6秒間の接触をさせる。この操作により、反 応器に戻される循環触媒液に含まれる不活性な 3価の周期表 VIII族金属 (例えば口 ジゥム)が活性な 1価の周期表 VIII族金属 (例えばロジウム)に変換、再生される。
[0022] 水素接触処理に供する循環触媒液中の周期表 VIII族金属触媒 (不活性なものも含 む)の濃度は、金属として、例えば 370〜5000重量 ppm、好ましくは 600〜3300重 量 ppm程度である。
[0023] 水素の使用量は周期表 VIII族金属(例えばロジウム)に対して 0. 1モル倍以上 (例 えば 0. 1〜10モル倍)であり、好ましくは 0. 1〜5モル倍、さらに好ましくは 0. 5〜5 モル倍である。本発明では、周期表 VIII族金属に対して特定量以上の水素を用いる ことから触媒の活性化が速やかに進行するため、小さな装置や設備で実施すること ができる。水素の使用量が周期表 VIII族金属に対して 0. 1モルよりも少ない場合は、 触媒の活性ィ匕が充分に行われな力つたり、接触時間を充分に確保するため大きな設 備が必要となる。水素としては純粋な水素ガスでも反応器カゝら排出されるガスのような 、水素のほかに一酸化炭素、二酸化炭素、窒素、メタンなどを含む混合ガスであって もよい。混合ガスを使用する場合の水素の含有比率は特に限定されないが、通常 0. 05容積%以上、好ましくは 1. 0容積%以上、さらに好ましくは 5. 0容積%以上である 。また、循環触媒液と水素とを接触させる際の圧力(全圧)は、例えば 0. 05MPa以 上(例えば 0. 05〜5MPa)、好ましくは 0. IMPa以上(例えば 0. l〜5MPa)程度で あり、反応圧力とほぼ同じ圧力であってもよい。循環触媒液と接触させるために用い る水素含有ガスの水素分圧 (接触領域の入り口での水素分圧)は、通常 0. 0025M Pa以上(例えば 0. 0025〜5MPa)、好ましくは 0. OlMPa以上(例えば 0. 01〜5M Pa)程度である。循環触媒液と水素とを接触させる際の温度は、 80°C以上 (例えば 8 0〜230°C)であり、好ましくは 100〜200°Cの範囲である。温度が 80°C未満では触 媒の活性ィ匕が不十分となったり、接触時間を充分に確保するため大きな設備が必要 となる。循環触媒液と水素との接触時間は、 6秒以上 (例えば 6〜600秒)であり、好 ましくは 30〜300秒である。接触時間が 6秒未満では触媒の活性化が不十分となる 。なお、接触時間が長すぎる場合には、大きな処理容器が必要となるので、接触時 間としては 600秒以内が好まし 、。
[0024] 循環触媒液と水素とを接触させる領域は、一般的な気液混合手段、例えば、ジャケ ット付き配管、スタティックミキサー等の静止型混合器などで構成できる。水素接触処 理を施した後の循環触媒液は、そのまま反応器に供給してもよぐまた気液分離を行 つて液体のみを反応器に供給してもよ 、。
実施例
[0025] 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実 施例により限定されるものではない。圧力の単位において、 Gはゲージ圧を示す。口 ジゥム錯体中の 1価のロジウムの割合(%)は、赤外線吸収スペクトルにより求めた。よ り具体的には、テトラフェニルホスホ-ゥムクロリド水溶液を用いてロジウム錯体を沈殿 させ、沈殿物を分離して乾燥し、 FT— IRを用いて測定した。 1970cm 1付近に 1価の ロジウムを含む錯体、 2080cm— 1付近に 3価のロジウムを含む錯体、 2040cm―1〜 20 30cm 1付近に 1価と 3価のロジウムを含む錯体に起因するピークが検出されるので、 ピーク高さ或いは面積から 1価のロジウムの割合を算出した。
[0026] 実施例 1
全て 3価のロジウムの錯体([Rh (CO) I
2 4 Γ)を含む触媒組成液 (ロジウム触媒濃度: ロジウムとして 700重量 ppm、溶媒:酢酸 86重量%、水 2重量%、ヨウ化リチウム 12重 量%)を 28. 8mlの加熱ジャケットを備えた容器に連続的に導き、水素と一酸化炭素 の比率が 1対 3の混合ガスを、ロジウムに対する水素の倍率が 2. 3モル倍となる量で 供給し、圧力 2. 8MPaG、表 1に記載の温度で 53秒間接触させた。赤外線吸収スぺ タトルの測定による 1価のロジウムの生成の割合(%)を表 1に示す。
[0027] [表 1]
表 1
Figure imgf000009_0001
実施例 2
全て 3価のロジウムの錯体を含む触媒組成液 (ロジウム触媒濃度:ロジウムとして 70 0重量 ppm、溶媒:酢酸 86重量%、水 2重量%、ヨウ化リチウム 12重量%)を 28. 8m 1の加熱ジャケットを備えた容器に連続的に導き、水素と一酸化炭素の比率が 1対 3の 混合ガスを、ロジウムに対する水素の倍率が 1. 1モル倍となる量で供給し、圧力 2. 8 MPaG、温度125でで53秒間接触させた。赤外線吸収スペクトルの測定による 1価 のロジウムの生成の割合は 72%であった。
[0029] 実施例 3
内容積 1Lの反応器に連続的に反応原料のメタノール (0. 21kg/h)と一酸化炭素 、ロジウム触媒及びヨウ化リチウムを含む触媒液、およびヨウ化メチル (0. 28kg/h) 、酢酸メチル (0. 095kgZh)、水(0. 008kgZh)力もなる低沸成分を供給して、反 応圧力 3. 0MPaG、水素分圧 29kPa、反応温度 196°Cで反応させ、反応液 (水濃 度: 0. 45重量%、酢酸メチル濃度: 4. 7重量%、ヨウ化メチル濃度: 14. 5重量%、 ロジウム触媒濃度:ロジウムとして 930重量 ppm、ヨウ化リチウム濃度: 11. 7重量0 /0) を 2. 07kgZhの流量で蒸発槽に導いて、低沸成分と生成した酢酸を蒸発させ、蒸 発しな 、触媒液 (ロジウム触媒濃度:ロジウムとして 1480重量 ppm)をポンプで昇圧 して 1. 30kgZhの流量で反応器に循環させた。ここでは、触媒液が反応器に入る前 に、該触媒液と、水素と一酸化炭素の比率が 1対 3の混合ガス (6. 7NlZh)とを、反 応器に至るまでのジャケット付き配管中で、圧力 3. 0MPaG、温度 135°Cで 53秒間 接触させた。ロジウムに対する水素の倍率は 4. 0モル倍であった。
酢酸の生成速度は 22. ImolZLZhであり、ァセトアルデヒドの生成速度が 5. 5m mol/L/ シフト反応で生成する二酸化炭素の生成速度が 10. 8mmol/L/h, メタンの生成速度が 39mmolZLZhであった。また、赤外線吸収スペクトルの測定 による 1価のロジウムの反応器出口での割合は 40%であった。
[0030] 比較例 1
内容積 1Lの反応器に連続的に反応原料のメタノール (0. 20kg/h)と一酸化炭素 、ロジウム触媒及びヨウ化リチウムを含む触媒液、およびヨウ化メチル (0. 26kg/h) 、酢酸メチル (0. 096kgZh)、水(0. 007kgZh)力もなる低沸成分を供給して、反 応圧力 3. 0MPaG、水素分圧 30kPa、反応温度 195°Cで反応させ、反応液 (水濃 度: 0. 59重量%、酢酸メチル濃度: 5. 2重量%、ヨウ化メチル濃度: 13. 6重量%、 ロジウム触媒濃度:ロジウムとして 780重量 ppm、ヨウ化リチウム濃度: 11. 3重量0 /0) を 2. 04kgZhの流量で蒸発槽に導いて、低沸成分と生成した酢酸を蒸発させ、蒸 発しな 、触媒液 (ロジウム触媒濃度:ロジウムとして 1225重量 ppm)をポンプで昇圧 して 1. 30kgZhの流量で反応器に循環させた。 酢酸の生成速度は 21. 4molZLZhであり、ァセトアルデヒドの生成速度が 8. 5m mol/L/ シフト反応で生成する二酸化炭素の生成速度が 9. 9mmol/L/h,メ タンの生成速度が 43mmolZLZhであった。また、赤外線吸収スペクトルの測定に よる 1価のロジウムの反応器出口での割合は 15%であった。
[0031] 実施例 4
内容積 1Lの反応器に、一酸化炭素 91NlZh、及び後述の触媒循環液、蒸留塔か らの循環液、さらに反応器と蒸留塔のオフガスを内径 40mm、段数 10段のオールダ 一ショウ型塔を用いてメタノールと 5°Cで向流接触させて、オフガス中のヨウ化メチル 、ァセトアルデヒド等を吸収させたメタノール溶液を反応原料として、 0. l lkgZhの 流量で供給して、反応圧力 2. 7MPaG、水素分圧 28kPa、反応温度 186. 5°Cで反 応させ、反応液 (水濃度: 1. 8重量%、酢酸メチル濃度: 5. 5重量%、ヨウ化メチル濃 度: 12. 4重量0 /0、ロジウム触媒濃度:ロジウムとして 600重量 ppm、ヨウ化リチウム濃 度: 9. 8重量%)を 1. 96kgZhの流量で蒸発槽に導いて、低沸成分と生成した酢酸 を蒸発させ、蒸発しな 、触媒液 (ロジウム触媒濃度:ロジウムとして 820重量 ppm)を ポンプで昇圧して 1. 44kgZhの流量で反応器に循環させた。ここでは、触媒液が反 応器に入る前に、該触媒液と、水素と一酸化炭素の比率が 1対 1の混合ガス (0. 95 Nl/h)とを、反応器に至るまでのジャケット付き配管中で、圧力 2. 7MPaG、温度 9 0°Cで 53秒間接触させた。ロジウムに対する水素の倍率は 1. 8モル倍であった。また 、蒸発槽で蒸発した成分から蒸留塔で低沸成分 (ヨウ化メチル、酢酸メチル、水など) と生成量の酢酸とを分離し、ァセトアルデヒドやブチルアルデヒドなどを含む低沸成 分を 0. 33kgZhの流量で反応器に循環した。
酢酸の生成速度は 12. 2molZLZhであり、シフト反応で生成する二酸化炭素の 生成速度が 13. 7mmolZLZh、メタンの生成速度が 8. 5mmolZLZhであった。 また、反応液中のブチルアルデヒドの蓄積濃度は 48重量 ppm、クロトンアルデヒドの 蓄積濃度は 2. 5重量 ppmであった。赤外線吸収スペクトルの測定による 1価のロジゥ ムの反応器出口での割合は 45%であった。
[0032] 実施例 5
内容積 1Lの反応器に、一酸化炭素 97NlZh、及び後述の触媒循環液、蒸留塔か らの循環液、実施例 4と同様の方法で反応器と蒸留塔のオフガス中のヨウ化メチルや ァセトアルデヒド等を吸収させたメタノール溶液を反応原料として、 0. l lkgZhの流 量で供給して反応圧力 2. 7MPaG、水素分圧 34kPa、反応温度 184. 2°Cで反応さ せ、反応液 (水濃度: 1. 9重量%、酢酸メチル濃度: 5. 7重量%、ヨウ化メチル濃度: 12. 0重量0 /0、ロジウム触媒濃度:ロジウムとして 600重量 ppm、ヨウ化リチウム濃度: 9. 7重量%)を 2. 05kgZhの流量で蒸発槽に導いて、低沸成分と生成した酢酸を 蒸発させ、蒸発しな 、触媒液 (ロジウム触媒濃度:ロジウムとして 840重量 ppm)をポ ンプで昇圧して 1. 45kgZhの流量で反応器に循環させた。ここでは、触媒液が反応 器に入る前に、該触媒液と、水素と一酸化炭素の比率が 1対 1の混合ガス(1. 16N1 /h)とを、反応器に至るまでのジャケット付き配管中で、圧力 2. 7MPaG、温度 135 °Cで 53秒接触させた。ロジウムに対する水素の倍率は 2. 2モル倍であった。また、 蒸発槽で蒸発した成分から蒸留塔で低沸成分 (ヨウ化メチル、酢酸メチル、水など)と 生成量の酢酸とを分離し、ァセトアルデヒドやブチルアルデヒドなどを含む低沸成分 を 0. 34kgZhの流量で反応器に循環した。
酢酸の生成速度は 12. 3molZLZhであり、シフト反応で生成する二酸化炭素の 生成速度が 11. OmmolZLZh、メタンの生成速度が 13. 5mmolZLZhであった。 また、反応液中のブチルアルデヒド及びクロトンアルデヒドの蓄積濃度はそれぞれ 37 重量 ppm及び 2. 0重量 ppmであった。赤外線吸収スペクトルの測定による 1価の口 ジゥムの反応器出口での割合は 63%であった。
産業上の利用可能性
本発明によれば、反応器の水素分圧を必要以上に高めることなく反応器での触媒 の活性を高めることができ、シフト反応を抑制して副生成物の生成を減少させること ができるので、酢酸を工業的に効率よく高い生産性で製造できる。

Claims

請求の範囲
[1] 周期表 VIII族金属触媒、ヨウ化物塩、ヨウ化メチル及び水の存在下、連続的にメタノ ールと一酸化炭素を反応させて酢酸を製造する方法にぉ ヽて、その反応液を連続 的に抜き出して反応条件よりも圧力の低い蒸発工程に導入し、低沸点成分と周期表
VIII族金属及びヨウ化物塩を含む高沸点成分に分離し、分離した周期表 VIII族金属 及びヨウ化物塩を含む高沸点成分を、反応器に戻すまでの領域で、周期表 VIII族金 属に対して 0. 1モル倍以上の水素を導入し、 80°C以上の温度で、反応器に戻るま でに少なくとも 6秒間の接触をさせることを特徴とする酢酸の製造方法。
[2] 周期表 VIII族金属触媒がロジウム触媒である請求の範囲第 1項記載の酢酸の製造 方法。
[3] 反応液中の水濃度が 0. 1〜10重量%の条件で反応を行う請求の範囲第 1項又は 第 2項記載の酢酸の製造方法。
[4] 反応液中の周期表 VIII族金属触媒の濃度が金属として 300〜3000重量 ppmであ る請求の範囲第 1項〜第 3項の何れかの項に記載の酢酸の製造方法。
[5] ヨウ化物塩がヨウ化リチウムである請求の範囲第 1項〜第 4項の何れかの項に記載 の酢酸の製造方法。
PCT/JP2006/319017 2005-10-03 2006-09-26 酢酸の製造方法 WO2007040087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/992,129 US20090082593A1 (en) 2005-10-03 2006-09-26 Process for the Production of Acetic Acid
EP06810542A EP1932823A1 (en) 2005-10-03 2006-09-26 Process for production of acetic acid
JP2007538709A JPWO2007040087A1 (ja) 2005-10-03 2006-09-26 酢酸の製造方法
CN200680035866XA CN101273004B (zh) 2005-10-03 2006-09-26 乙酸的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005289584 2005-10-03
JP2005-289584 2005-10-03

Publications (1)

Publication Number Publication Date
WO2007040087A1 true WO2007040087A1 (ja) 2007-04-12

Family

ID=37906130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319017 WO2007040087A1 (ja) 2005-10-03 2006-09-26 酢酸の製造方法

Country Status (7)

Country Link
US (1) US20090082593A1 (ja)
EP (1) EP1932823A1 (ja)
JP (1) JPWO2007040087A1 (ja)
KR (1) KR20080061390A (ja)
CN (1) CN101273004B (ja)
TW (1) TW200716535A (ja)
WO (1) WO2007040087A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081416A1 (ja) * 2010-12-15 2012-06-21 株式会社ダイセル 酢酸の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153708A2 (en) * 2007-05-21 2008-12-18 Celanese International Corporation Reaction product of rhodium-catalyzed methanol carbonylation
KR102257562B1 (ko) 2016-10-28 2021-05-31 주식회사 다이셀 아세트산의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640998A (ja) * 1992-07-28 1994-02-15 Daicel Chem Ind Ltd 酢酸の製造法
WO1995005356A1 (fr) * 1993-08-18 1995-02-23 Daicel Chemical Industries, Ltd. Procede pour produire de l'anhydride acetique seul ou en combinaison avec de l'acide acetique
JP2005524704A (ja) * 2002-05-02 2005-08-18 ディビー プロセス テクノロジー リミテッド カルボン酸およびその誘導体を水素化するための均一系プロセス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222070B1 (en) * 1999-09-07 2001-04-24 Eastman Chemical Company Method for reducing EDA in acetic anhydride production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640998A (ja) * 1992-07-28 1994-02-15 Daicel Chem Ind Ltd 酢酸の製造法
WO1995005356A1 (fr) * 1993-08-18 1995-02-23 Daicel Chemical Industries, Ltd. Procede pour produire de l'anhydride acetique seul ou en combinaison avec de l'acide acetique
JP2005524704A (ja) * 2002-05-02 2005-08-18 ディビー プロセス テクノロジー リミテッド カルボン酸およびその誘導体を水素化するための均一系プロセス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081416A1 (ja) * 2010-12-15 2012-06-21 株式会社ダイセル 酢酸の製造方法
US9115071B2 (en) 2010-12-15 2015-08-25 Daicel Corporation Process for producing acetic acid

Also Published As

Publication number Publication date
CN101273004B (zh) 2011-08-24
US20090082593A1 (en) 2009-03-26
EP1932823A1 (en) 2008-06-18
CN101273004A (zh) 2008-09-24
JPWO2007040087A1 (ja) 2009-04-16
KR20080061390A (ko) 2008-07-02
TW200716535A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
EP2621881B1 (en) Production of acetic acid with high conversion rate
JP5876111B2 (ja) 促進された反応及びフラッシングを伴うカルボニル化による酢酸の製造
US8697908B2 (en) Removal of amine compounds from carbonylation process stream containing corrosion metal contaminants
JP5198075B2 (ja) 触媒安定剤として少なくとも1種の金属塩を組み込む酢酸製造方法
SA98190163B1 (ar) طريقة التفاعل الكربونيلي carbonylation plant المحفز بالاريديم iridium catalysed لإنتاج حمض الخليك acetic acid
NZ329329A (en) Preparation of a carboxylic acid by carbonylation of an alkyl alcohol with carbon monoxide in the presence of an iridium catalyst
TW201217328A (en) Pump around reactor for production of acetic acid
RU2320638C2 (ru) Способ получения уксусной кислоты
WO2007040087A1 (ja) 酢酸の製造方法
JPH10231267A (ja) 有機カルボン酸の製造方法
KR102397805B1 (ko) 아세트산 생산 방법
CA2498821C (en) Process for the production of acetic acid
TWI508943B (zh) 醋酸與醋酸酐之共同生產
EP2864283B1 (en) Process for the production of acetic acid
JP2009525271A (ja) 酢酸の製造方法
TWI532712B (zh) 提高生產速率之醋酸製程
CA2637325C (en) Process for the production of acetic acid
CN115636745A (zh) 通过去除铁改进乙酸产率的方法
JP2005528456A (ja) 酢酸の製造方法
EP1360165B1 (en) Method for reducing eda in acetic anhydride production
JPS62273932A (ja) 2−クロロプロピオンアルデヒドの製造法
TW201323395A (zh) 具鑭系金屬共催化劑穩定作用與降低之無機碘含量之以銠催化的低水甲醇羰化方法
JP2004018464A (ja) 4−オキサヘプタン−1,7−ジオールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035866.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11992129

Country of ref document: US

Ref document number: 2006810542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2399/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087010688

Country of ref document: KR