WO2007037444A1 - 目的物質を核内又は細胞内に送達するためのベクター - Google Patents

目的物質を核内又は細胞内に送達するためのベクター Download PDF

Info

Publication number
WO2007037444A1
WO2007037444A1 PCT/JP2006/319601 JP2006319601W WO2007037444A1 WO 2007037444 A1 WO2007037444 A1 WO 2007037444A1 JP 2006319601 W JP2006319601 W JP 2006319601W WO 2007037444 A1 WO2007037444 A1 WO 2007037444A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
lipid
lipid membrane
vector
ribosome
Prior art date
Application number
PCT/JP2006/319601
Other languages
English (en)
French (fr)
Inventor
Hidetaka Akita
Asako Kudo
Hideyoshi Harashima
Original Assignee
National University Corporation Hokkaido University
Shionogi & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University, Shionogi & Co., Ltd. filed Critical National University Corporation Hokkaido University
Priority to EP06810956A priority Critical patent/EP1930436B1/en
Priority to JP2007537749A priority patent/JPWO2007037444A1/ja
Priority to US11/992,726 priority patent/US20080241917A1/en
Priority to DE602006021587T priority patent/DE602006021587D1/de
Publication of WO2007037444A1 publication Critical patent/WO2007037444A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle

Definitions

  • the present invention relates to a vector for delivering a target substance into a nucleus or a cell.
  • betaters and carriers for reliably delivering drugs, nucleic acids, peptides, proteins, sugars and the like to target sites has been actively conducted.
  • viral vectors such as retroviruses, adenoviruses, and adeno-associated viruses have been developed as vectors for introducing a target gene into target cells.
  • virus vectors have problems such as difficulty in mass production, antigenicity, and toxicity
  • ribosome vectors and peptide carriers with few such problems are attracting attention.
  • Liposome vectors also have the advantage that the directivity to the target site can be improved by introducing functional molecules such as antibodies, proteins, and sugar chains on the surface.
  • Non-patent literature l Kogure et al., “Journal of Controlled Release”, 2004, 98 ⁇ , pp. 317-323
  • Non-Patent Document 2 Rikiru Ikurami et al., RYAKUGAKU ZASSHIJ, 2004, 124 ⁇ , Suppl. 4, 1 13-116
  • An object of the present invention is to provide a vector for delivering a target substance into a nucleus or a cell.
  • the present invention provides a vector for delivering a target substance into the nucleus as a first vector, the first lipid membrane containing a ergonal lipid being used.
  • a vector having a lipid membrane structure In the first vector, the target substance contained in the first vector can be efficiently transferred into the nucleus by binding and fusing the first lipid membrane with the nuclear membrane.
  • the present invention is a vector for delivering a target substance into a cell as a second vector, the second vector containing a ergonal lipid.
  • a vector having a lipid membrane structure and a lipid membrane.
  • the second lipid membrane can efficiently bind and fuse with the endosomal membrane, macropinosome membrane, and the like. Therefore, after the second vector is incorporated into the cell as an endosome fraction, macropinosome fraction, etc.
  • the second lipid membrane becomes the endosomal membrane, macro
  • the target substance contained in the second vector can escape the endonome, the micropinosome, etc., and efficiently migrate into the cell.
  • the present invention provides a vector for delivering a target substance into the nucleus as a third vector, the first lipid containing a ergonal lipid.
  • a vector comprising a lipid membrane structure having a second lipid membrane containing an anionic lipid outside the membrane is provided.
  • the first lipid membrane can efficiently bind and fuse with the nuclear membrane, and the second lipid membrane can efficiently bind and fuse with the endosomal membrane, macropinosome membrane, etc. Can do. Therefore, the third vector can be used for endosome fractions, macropinosome fractions, etc. via pathways such as endocytosis and macropinocytosis.
  • the target substance contained in the third vector is the endosome, micropinosome, etc. Escape and transfer efficiently into cells. Then, by binding and fusing the first lipid membrane with the nuclear membrane, the target substance contained in the third vector can be efficiently transferred into the nucleus.
  • the first lipid membrane contains a cationic lipid strength S cholesteryl hemisuccinate, phosphatidic acid or cardiolipin.
  • S cholesteryl hemisuccinate phosphatidic acid or cardiolipin.
  • the amount of cation lipid contained in the first lipid membrane is 20 to 80% (mole) of the total lipid contained in the first lipid membrane. Ratio). Thereby, the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved.
  • the cation lipid contained in the first lipid membrane is phosphatidic acid or cardiolipin, and the cation lipid contained in the first lipid membrane.
  • the amount is preferably 40 to 60% (molar ratio) of the total amount of lipid contained in the first lipid membrane.
  • the first lipid membrane preferably contains dioleoylphosphatidylethanolamine. Thereby, the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved.
  • the amount of dioleoylphosphatidylethanolamine contained in the first lipid membrane is 20 to 80% of the total lipid amount contained in the first lipid membrane. (Molar ratio) is preferable. Thereby, the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved.
  • the first lipid membrane preferably has a membrane-permeable peptide.
  • the membrane-permeable peptide is, for example, a peptide having a membrane-permeable domain
  • the membrane-permeable domain is preferably polyarginine
  • the polyarginine is Also preferably a continuous 4-20 arginine residue force.
  • the amount of polyarginine on the vector surface is adjusted to control the major vector.
  • the intracellular migration pathway can be macropinocytosis.
  • macropinocytosis extracellular substances are taken into the cell as a fraction called macropinosome, and unlike macrosomes, macropinosomes do not fuse with lysosomes. It can be avoided. Therefore, when the vector moves into the cell mainly through macropinocytosis, the target substance contained in the vector can be efficiently delivered into the cell.
  • the membrane-permeable peptide is preferably present on the surface of the first lipid membrane.
  • the membrane-permeable peptide By allowing the membrane-permeable peptide to be present on the surface of the first lipid membrane, the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved.
  • the first lipid membrane constitutes the surface of the vector and polyarginine is present as a membrane-permeable domain on the surface of the first lipid membrane, the vector enters the cell mainly via macropinocytosis. Therefore, the target substance contained in the vector can be efficiently delivered into the cell.
  • the cation lipid contained in the first lipid membrane is cholesteryl hemisuccinate, phosphatidic acid or Phosphatidylserine is preferred.
  • the first lipid membrane contains the above-mentioned lipid lipid and has a membrane-permeable peptide, the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved.
  • 1S phosphatidic acid, cardiolipin, dialkyl phosphoric acid or diacyl phosphoric acid is preferred.
  • the second lipid membrane is not exposed to the endosomal membrane or the macropinosome membrane. Binding ability and fusion ability can be improved.
  • the amount of cation lipid contained in the second lipid membrane is 10 to 90% (moles) of the total amount of lipid contained in the second lipid membrane. Ratio). Thereby, the binding ability and fusion ability of the second lipid membrane to the endosomal membrane or macropinosome membrane can be improved.
  • the second lipid membrane preferably contains dioleoylphosphatidylethanolamine. Thereby, the binding ability and fusion ability of the second lipid membrane to the endosome membrane or macropinosome membrane can be improved.
  • the amount of dioleoylphosphatidylethanolamine contained in the second lipid membrane is 10 to 90% of the total amount of lipid contained in the second lipid membrane. (Molar ratio) is preferable. Thereby, the binding ability and fusion ability of the second lipid membrane to the endosomal membrane or macropinosome membrane can be improved.
  • the second lipid membrane preferably has a membrane-permeable peptide.
  • the binding ability and fusion ability of the second lipid membrane to the endosomal membrane or macropinosome membrane can be improved.
  • the membrane-permeable peptide is, for example, a peptide having a membrane-permeable domain, and the membrane-permeable domain is preferably polyarginine,
  • the polyarginine preferably also has a force of 4-20 arginine residues in succession.
  • polyarginine as the membrane-permeable domain, the binding ability and fusion ability of the second lipid membrane to the endosomal membrane or macropinosome membrane can be improved.
  • the vector surface can be controlled by adjusting the amount of polyarginine on the vector surface.
  • the major intracellular translocation pathway can be macropinocytosis.
  • macropinocytosis extracellular substances are taken up into cells as a fraction called macropinosome, and unlike macrosomes, macropinosomes do not fuse with lysosomes. Can be avoided. Therefore, when the vector moves into the cell mainly through macropinocytosis, the target substance contained in the vector can be efficiently delivered into the cell.
  • the membrane-permeable peptide is preferably present on the surface of the second lipid membrane. By allowing the membrane-permeable peptide to be present on the surface of the second lipid membrane, the binding ability and fusion ability of the second lipid membrane to the endosomal membrane or macropinosome membrane can be improved.
  • the vector when the second lipid membrane constitutes the surface of the vector and polyarginine is present as a membrane-permeable domain on the surface of the second lipid membrane, the vector is mainly intracellular through macropinocytosis. Therefore, the target substance contained in the vector can be efficiently delivered into the cell.
  • the lipid membrane structure is preferably a ribosome.
  • the target substance can be efficiently delivered into the cell or nucleus by encapsulating the target substance inside the lipid membrane structure.
  • a vector for delivering a target substance into a nucleus or a cell is provided.
  • the first vector is a vector for delivering a target substance into the nucleus, and is a vector that also has a lipid membrane structure with a first lipid membrane containing a cation lipid, and the second vector.
  • the vector is a vector for delivering a target substance into a cell, and is a vector composed of a lipid membrane structure including a second lipid membrane containing a ergonous lipid.
  • the third vector The first is a vector for delivering a target substance into the nucleus, and is a fat having a second lipid membrane containing an anionic lipid outside the first lipid membrane containing an anionic lipid. It is a vector that has a strong membrane structure.
  • the lipid membrane structure may be any structure of ribosomes, OZW-type emulsions, WZOZW-type emulsions, spherical micelles, string-like micelles, amorphous layered structures, etc., but is a ribosome. It is preferable.
  • the target substance can be efficiently delivered into cells by encapsulating the target substance in the lipid membrane structure.
  • the lipid membrane structure when it is a ribosome, it may be a multilamellar ribosome (MLV), SUV (small unilamellar vesicle), LUV (large unilamellar vesicle), GUV, giant uni lamellar vesicle, etc. Although it may be a single membrane ribosome, it is preferably a multilamellar ribosome.
  • the ribosome has two or more first lipid membranes, the ribosome can break through the two nuclear membranes (outer membrane and inner membrane). Moreover, the ribosome can break through the endosome membrane or the macropinosome membrane by providing the second lipid membrane containing the ergonal lipid outside the first lipid membrane.
  • the number of first lipid membranes possessed by the lipid membrane structure is not particularly limited, but is usually 1 to 5, preferably 1 to 3, and more preferably 2.
  • the number of the second lipid membranes that the lipid membrane structure has is not particularly limited, but is usually 1 to 5, preferably 1 to 3, and more preferably 1.
  • the lipid membrane structure may have a lipid membrane other than the first and second lipid membranes, and may or may not have a lipid membrane other than the first and second lipid membranes. ,.
  • the size of the lipid membrane structure is not particularly limited, but when the lipid membrane structure is a liposome or emulsion, the particle size is usually 50 nm to 5 ⁇ m, and in the case of a spherical micelle, The particle size is usually 5 to: LOOnm, and in the case of string micelles or irregular layered structures, the thickness per layer is usually 5 to: LOnm, and such multiple layers are stacked Is preferred.
  • lipid membrane of the lipid membrane structure examples include, for example, lipids, membranes Stabilizers, antioxidants, charged substances, membrane proteins and the like can be mentioned.
  • Lipid is an essential constituent of the lipid membrane, and the amount of lipid contained in the lipid membrane is usually 70% (molar ratio) or more, preferably 75% (molar ratio) of the total amount of the substance constituting the lipid membrane. ) Or more, more preferably 80% (molar ratio) or more.
  • the upper limit of the amount of lipid contained in the lipid membrane is 100% of the total amount of substances constituting the lipid membrane.
  • lipids examples include phospholipids, glycolipids, sterols, saturated or unsaturated fatty acids exemplified below.
  • Phosphatidylcholine Fattydylcholine, dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, etc.
  • phosphatidylglycerol eg dioleoylphosphatidylglycerol, dilauroylphosphatidylglycerol, dimyristoylphosphatidylglycerol, dipalmitoylphosphatidylglycerol, distearoylphosphatidylglycerol) Diglycerol etc.
  • phosphatidylethanolamine eg dilauroyl phosphatidylethanolamine, dimyristoyl phosphatidylethanolamine, dipalmitoyl phosphatidylethanolamine, distearoyl phosphatidiethanolamine
  • Glycose glycolipid for example, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride), Sphingo glycolipid (for example, galactosyl celeb oral side, latatosyl celeb oral side, gandarioside), etc.
  • Animal-derived sterols eg, cholesterol, cholesterol succinic acid, cholestanol, lanostero monore, dihydrolanostero monore, desmostero monore, dihydrocholesterol
  • plant-derived sterols eg, stigmasterol, Sitosterol, campesterol, brassicasterol
  • sterols derived from microorganisms eg, timosterol, ergosterol.
  • Saturated or unsaturated fatty acids having 12 to 20 carbon atoms such as normitic acid, oleic acid, stearic acid, arachidonic acid and myristic acid.
  • the membrane stabilizer is an optional component of the lipid membrane that can be included to physically or chemically stabilize the lipid membrane or to regulate the fluidity of the lipid membrane.
  • Lipid The amount of membrane stabilizer contained in the membrane is usually 30% (molar ratio) or less, preferably 25% (molar ratio) or less, more preferably 20% (molar ratio) or less of the total amount of the substances constituting the lipid membrane. It is. Note that the lower limit of the content of the membrane stabilizer is zero.
  • Examples of the membrane stabilizer include sterol, glycerin or fatty acid ester thereof.
  • Specific examples of the sterol are the same as those described above, and examples of the glycerin fatty acid ester include triolein and trioctanoin.
  • the antioxidant is an optional component of the lipid membrane that can be contained to prevent lipid membrane acidification, and the amount of antioxidant contained in the lipid membrane is Is usually 30% (molar ratio) or less, preferably 25% (molar ratio) or less, and more preferably 20% (molar ratio) or less.
  • the lower limit of the antioxidant content is 0.
  • antioxidants examples include tocopherol, propyl gallate, ascorbyl palmitate, butylated hydroxytoluene and the like.
  • the charged substance is an optional component of the lipid film that can be contained in order to impart positive charge or negative charge to the lipid film. It is usually 30% (molar ratio) or less, preferably 25% (molar ratio) or less, and more preferably 20% (molar ratio) or less of the total amount of the substances constituting the above. The lower limit of the charged substance content is zero.
  • Examples of the charged substance imparting a positive charge include saturated or unsaturated aliphatic amines such as stearylamine and oleylamine; saturated or unsaturated cationic synthetic lipids such as dioleoyltrimethylammonium propane and the like.
  • Examples of the charged substance that imparts a negative charge include dicetyl phosphate, cholesteryl hemisuccinate, phosphatidylserine, phosphatidylinositol, and phosphatidic acid.
  • a membrane protein is an optional component of a lipid membrane that can be contained in order to maintain the structure of the lipid membrane or to impart functionality to the lipid membrane, and is contained in the lipid membrane.
  • the amount of membrane protein is usually 10% (molar ratio) or less, preferably 5% (molar ratio) or less, more preferably 2% (molar ratio) or less of the total amount of substances constituting the lipid membrane.
  • the lower limit of the membrane protein content is zero.
  • membrane proteins include membrane surface proteins and integral membrane proteins. It is done.
  • the lipid membrane structure as the lipid constituting the lipid membrane, for example, a lipid derivative having a blood retention function, a temperature change sensitivity function, a pH sensitivity function and the like can be used. As a result, one or more of the above functions can be imparted to the lipid membrane structure.
  • a lipid retention function to the lipid membrane structure, the retention of the lipid membrane structure in blood can be improved, and the capture rate by reticuloendothelial tissues such as the liver and spleen can be reduced.
  • the lipid membrane structure with a temperature change sensitive function and a Z or PH sensitive function, the release of the target substance retained in the lipid membrane structure can be enhanced.
  • Examples of the blood retention lipid derivative capable of imparting a blood retention function include, for example, glycophorin, gandarioside GM1, phosphatidylinositol, gandarioside GM3, glucuronic acid derivative, glutamic acid derivative, polyglycerin phospholipid derivative, N- ⁇ Carbonyl-methoxypolyethyleneglycol-2000 ⁇ -1,2-dipalmitoyl-sn-glyce mouth-3-phosphoethanolamine, N- ⁇ Carbonyl-methoxypolyethyleneglycol-5000 ⁇ -1, 2-dipalmitoyl-sn-glycephine-3-phosphoethanolamine, N- ⁇ carbo-methoxypolyethylene glycol-750 ⁇ -1, 2-distearoyl-sn-glycephlo-3-phosphoethanol N- ⁇ Carbonyl-methoxypolyethyleneglycol-2000 ⁇ -1,2-distearoyl-sn-glycos
  • Examples of the temperature change sensitive lipid derivative capable of imparting a temperature change sensitive function include dipalmitoylphosphatidylcholine and the like.
  • Examples of the pH sensitive lipid derivative capable of imparting a pH sensitive function include, for example, di And oleoylphosphatidylethanolamine.
  • the lipid membrane structure can retain a cell containing a target nucleus, an antibody that specifically recognizes an enzyme secreted by the cell, and the like.
  • an antibody it is preferable to use a monoclonal antibody.
  • a monoclonal antibody one type of monoclonal antibody having specificity for a single epitope may be used, or various types of epitopes may be used. It is also possible to use a combination of two or more monoclonal antibodies with specificity.
  • a monovalent antibody or a multivalent antibody may be used, and either a natural type molecule or a fragment or derivative thereof may be used, for example, F (ab '), Fab', Fab, chimera with at least two antigens or epitope binding sites
  • Antibodies or hybrid antibodies double-specific recombinant antibodies such as quadrome and triome, interspecific hybrid antibodies, anti-idiotype antibodies, and derivatives that have been chemically modified, added, etc. Can be used.
  • double-specific recombinant antibodies such as quadrome and triome
  • interspecific hybrid antibodies such as quadrome and triome
  • anti-idiotype antibodies and derivatives that have been chemically modified, added, etc.
  • it can be obtained by synthetic or semi-synthetic technology.
  • An antibody, an antibody having a neutralizing property with respect to a target epitope or an antibody having a binding property can be used.
  • the first or second lipid membrane contains an anionic lipid as a constituent component.
  • the amount of cation lipid contained in the first lipid membrane is not particularly limited, but is usually 20 to 80% (molar ratio) of the total lipid content contained in the first lipid membrane, preferably Is 40 to 60% (molar ratio), more preferably 45 to 55% (molar ratio).
  • the amount of cation lipid contained in the second lipid membrane is not particularly limited, but is usually 10 to 90% (molar ratio) of the total lipid content contained in the second lipid membrane, preferably Is 10 to 50% (molar ratio), more preferably 10 to 30% (molar ratio).
  • the ionic lipid contained in the first or second lipid membrane is not particularly limited, and for example, cholesteryl hemisuccinate, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or Examples include cardiolipin.
  • the first lipid membrane is more preferably phosphatidic acid or cardiolipin, preferably cholesteryl hemisuccinate, phosphatidic acid or cardiolipin.
  • the second lipid membrane consists of cholesteryl hemisuccinate, phosphatidic acid, cardiolipin, More preferred are phosphatidic acid, cardiolipin, dialkylphosphoric acid or diacylphosphoric acid, preferably acid or diacylphosphoric acid!
  • the amount of cation lipid contained in the first lipid membrane is determined based on the total amount contained in the first lipid membrane.
  • the amount of cation lipid contained in the second lipid membrane is determined by The total lipid content in the lipid membrane is 10-50% (molar ratio) (especially 10-30% (molar ratio)), so that the endosomal membrane or macropinosome membrane of the second lipid membrane The binding ability and fusion ability to can be significantly improved.
  • the first or second lipid membrane preferably contains dioleoylphosphatidylethanolamine.
  • the first lipid membrane contains dioleoylphosphatidylethanolamine
  • the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved
  • the second lipid membrane is dioleoyl.
  • the amount of dioleoylphosphatidylethanolamine contained in the first lipid membrane is not particularly limited, but is usually 20 to 80% (moles) of the total lipid content contained in the first lipid membrane.
  • the amount of dioleoylphosphatidylethanolamine contained in the first lipid membrane is not particularly limited, but is usually 10 to 90% (molar ratio) of the total lipid content contained in the second lipid membrane, preferably Is 50 to 90% (molar ratio), more preferably 70 to 90% (molar ratio).
  • Lipids are cone type, syringe according to the proportion of polar and non-polar groups. There are roughly three types: cylindrical type and inverted cone type. Of these, corn type lipids such as dioleoylphosphatidylethanolamine have a larger hydrophobic volume than hydrophilic groups. It is also known as nonbilayer lipid (Naoto Okuni, ribosome production and experimental method, pages 27-33, Hirokawa Shoten). Conical lipids have a reverse hexagonal structure in the lipid bilayer, resulting in the formation of a reverse micelle structure in the lipid bilayer. The formed reverse micelle structure is involved in membrane fusion, membrane permeability, etc. It is considered that.
  • the first or second lipid membrane preferably has a membrane-permeable peptide.
  • the membrane-permeable peptide is present in the first or second lipid membrane in a state capable of binding to the nuclear membrane, and is preferably present on the surface of the first or second lipid membrane.
  • the membrane-permeable peptide By allowing the membrane-permeable peptide to be present on the surface of the first lipid membrane, the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved.
  • the binding ability and fusion ability of the second lipid membrane to the endosomal membrane or macropinosome membrane can be improved.
  • the membrane-permeable peptide is present on the surface of the first or second lipid membrane, at least the membrane-permeable peptide is present on the outer surface of the first or second lipid membrane, Membrane-permeable peptides may or may not be present!
  • the cation lipid contained in the first lipid membrane is preferably cholesteryl hemisuccinate, phosphatidic acid or phosphatidylserine.
  • the first lipid membrane contains the above-described lipid lipid and has a membrane-permeable peptide, the binding ability and fusion ability of the first lipid membrane to the nuclear membrane can be improved.
  • the membrane-permeable peptide possessed by the first or second lipid membrane is not particularly limited as long as it can permeate the lipid membrane.
  • the lipid membrane through which the membrane-permeable peptide can permeate is not particularly limited as long as it has a lipid bilayer structure. Examples thereof include biological membranes such as cell membranes and nuclear membranes, and artificial membranes such as ribosome membranes.
  • Examples of the membrane permeable peptide include a peptide having a membrane transduction domain (PTD).
  • membrane-permeable domains include polyarginine, HIV-1 derived Tat (48-60) (GR KKRRQRRRPPQ), Rev (34-50) from HIV-1 (TRQARRNRRRRWRERQR), and the like. These membrane-permeable domains are rich in arginine residues and can interact electrostatically with negatively charged nuclear membranes.
  • the total number of amino acid residues constituting the peptide having a membrane permeable domain is not particularly limited, but is usually 4 to 40, preferably 6 to 30, more preferably 7 to 20 .
  • the total number of amino acid residues constituting the membrane permeable domain is not particularly limited, but is usually 4 to 40, preferably 6 to 30, and more preferably 7 to 20.
  • Polyarginine as a membrane permeable domain usually has a force of 4 to 20, preferably 6 to 12, more preferably 7 to 10 consecutive arginine residues.
  • a peptide having a membrane-permeable domain consists only of a membrane-permeable domain! / ⁇ , and has an arbitrary amino acid sequence at the C-terminus and / or N-terminus of the membrane-permeable domain. And then ⁇ .
  • the amino acid sequence added to the C-terminal and / or N-terminal of the membrane permeable domain is preferably an amino acid sequence having rigidity (for example, polyproline). Unlike polyethylene glycol (PEG), which is soft and irregularly shaped, polyproline is straight and retains some degree of rigidity.
  • amino acid residue contained in the amino acid sequence added to the C-terminal and Z- or N-terminal of the membrane permeable domain is preferably an amino acid residue other than acidic amino acids. This is because a negatively charged acidic amino acid residue may electrostatically interact with a positively charged arginine residue and attenuate the effects of arginine residues contained in the membrane-permeable domain. .
  • the amount of the membrane-permeable peptide present in the first lipid membrane is usually 2 to 20% (molar ratio), preferably 3 to 15% (molar ratio) of the total lipid amount contained in the lipid membrane, Preferably, it is 4 to 10% (molar ratio).
  • the amount of membrane-permeable peptide present in the second lipid membrane is usually 2 to 20% (molar ratio), preferably 3 to 15% (molar ratio) of the total lipid content contained in the lipid membrane, Preferably, it is 4 to 10% (molar ratio).
  • the membrane-permeable peptide is bound to a lipid membrane component (for example, a hydrophobic group, a hydrophobic compound, etc.).
  • a lipid membrane component for example, a hydrophobic group, a hydrophobic compound, etc.
  • the lipid membrane component is retained in the lipid membrane, and part or all of the membrane-permeable peptide is exposed from the lipid membrane.
  • the lipid membrane constituent to which the membrane-permeable peptide binds is not particularly limited.
  • saturated or unsaturated fatty acid groups such as stearyl groups; cholesterol groups or derivatives thereof; phospholipids, glycolipids or Sterols; long-chain aliphatic alcohols (for example, phosphatidylethanolamine, cholesterol, etc.); polyoxypropylene alkyls; glycerin fatty acid esters, etc.
  • fatty acid groups having 10 to 20 carbon atoms for example, Normitoyl group, oleyl group, stearyl group, arachidoyl group, etc. are preferable.
  • the first, second, or third vector can hold a target substance to be delivered into the nucleus or cell.
  • the target substance is retained, for example, in the lipid membrane structure (for example, voids formed in the lipid membrane structure), on the lipid membrane surface, in the lipid membrane, in the lipid membrane layer, on the lipid membrane layer surface, etc. be able to.
  • the lipid membrane structure is a fine particle such as a ribosome
  • the target substance can be encapsulated inside the fine particle.
  • the type of the target substance is not particularly limited, and examples thereof include drugs, nucleic acids, peptides, proteins, sugars, or complexes thereof, and the like, as appropriate depending on the purpose of diagnosis, treatment, prevention, etc. You can choose.
  • the target substance is a substance for the purpose of diagnosing, treating, or preventing a disease
  • the lipid membrane structure retaining the target substance can be used as a component of the pharmaceutical composition.
  • the “nucleic acid” includes DNA or RNA, and analogs or derivatives thereof (for example, peptide nucleic acid (PNA), phosphorothioate DNA, etc.). Further, the nucleic acid may be either single-stranded or double-stranded, and may be either linear or circular.
  • the lipid membrane structure preferably has a compound having a gene transfer function.
  • the compound having a gene transfer function include ⁇ , ⁇ '- ⁇ -didodecanol-N--trimethylammo-oacetyl) -diethanolamine mouthlid, ⁇ , ⁇ '- ⁇ -ditetradecanol- ⁇ - (a -trimethylammo-oacetyl) -diethanolamine mouthlid, ⁇ , ⁇ '- N-dihexadecanol-N- (a -trimethylammo-oacetyl) -diethanolamine mouthlid, ⁇ , ⁇ '- ⁇ -Dioctadecenoyl-N- (a-trimethylammo-oacetyl) -diethanolamine chloride, 0,0 ', 0 "-tridecanol- ⁇ - ( ⁇ -trimethyl) ⁇ -trimethylammoacetyl) -diethanolamine chloride, 0,0
  • These compounds having a gene transfer function are contained in the lipid membrane structure (for example, voids formed in the lipid membrane structure), in the lipid membrane, on the lipid membrane surface, on the lipid membrane. In the layer, it can be present (bound) on the lipid membrane layer surface.
  • the target substance is held as an aggregate of the target substance in the lipid membrane structure (particularly, inside the lipid membrane structure). As a result, the target substance can be efficiently delivered into the nucleus.
  • the aggregate of the target substance may be composed only of the target substance, and may contain a substance other than the target substance (for example, a carrier holding the target substance)! / .
  • an aggregate of the target substance is prepared by electrostatically binding the target substance and the ionic substance to form a composite.
  • an aggregate of the target substance can be prepared by electrostatically binding the target substance and the cationic substance to form a composite.
  • the target substance and a predetermined carrier are combined in an appropriate manner (for example, physical adsorption, hydrophobic bond, chemical bond, etc.) to form a complex.
  • an aggregate of the target substance can be prepared.
  • An aggregate of the target substance that is charged positively or negatively can be prepared.
  • an aggregate of nucleic acids can be prepared by electrostatically binding the nucleic acid and the cationic substance to form a complex. By adjusting the mixing ratio of the nucleic acid and the cationic substance at the time of complexing, an aggregate of nucleic acids that are positively or negatively charged as a whole can be prepared.
  • the cationic substance that can be used in preparing the aggregate of the target substance is not particularly limited as long as it is a substance having a cationic group in the molecule.
  • the cationic substance include a cationic lipid (eg, Lipofectamine (manufactured by Invitrogen)); a polymer having a cationic group; polylysine, polyarginine, a homopolymer of basic amino acids such as a copolymer of lysine and arginine, and the like.
  • Polymers or copolymers or derivatives thereof eg, stearylated derivatives
  • polycationic polymers such as polyethyleneimine, poly (arylamine), poly (diallyldimethylammonium chloride), darcosamine; protamine or derivatives thereof ( For example, protamine sulfate); powers such as chitosan etc.
  • stearylyporine ginin is particularly preferred.
  • the number of arginine residues constituting the polyarginine is usually 4 to 20, preferably 6 to 12, and more preferably 7 to 10.
  • the number of cationic groups possessed by the cationic substance is not particularly limited, but is preferably 2 or more.
  • the cationic group is not particularly limited as long as it can be positively charged.
  • an amino group for example, an amino group; a monoalkylamino group such as a methylamino group or an ethylamino group; a dialkylamino group such as a dimethylamino group or a jetylamino group; an imino group; -Dino group etc. are mentioned.
  • the anionic substance that can be used in preparing the aggregate of the target substance is not particularly limited as long as it is a substance having an anionic group in the molecule.
  • the ionic substance include ionic lipids; polymers having ionic groups; homopolymers or copolymers of acidic amino acids such as polyaspartic acid or derivatives thereof; xanthan gum, carboxybi Diar polymers, carboxymethylcellulose polystyrene sulfonates, polysaccharides, polyarion polymers such as carrageenan, and the like can be used.
  • the terionic group is not particularly limited as long as it can be negatively charged.
  • a functional group having a terminal carboxyl group for example, succinic acid residue, malonic acid Residue), phosphoric acid group, sulfuric acid group and the like.
  • the form of the lipid membrane structure is not particularly limited, and examples thereof include a dried mixture form, a dispersed form in an aqueous solvent, a dried or frozen form, and the like.
  • the structure can be produced using a known method such as a hydration method, an ultrasonic treatment method, an ethanol injection method, an ether injection method, a reverse phase evaporation method, a surfactant method, or a freeze / thaw method. it can.
  • the lipid membrane structure in the form of a dried mixture is prepared by, for example, dissolving all the components of the lipid membrane structure in an organic solvent such as chloroform and then vacuum drying with an evaporator or spraying with a spray dryer. It can be manufactured by drying.
  • the lipid membrane structure in a form dispersed in an aqueous solvent is prepared by adding a lipid membrane structure in the form of a dried mixture to an aqueous solvent, and then an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsification. It can manufacture by emulsifying with a machine etc.
  • a lipid membrane structure in a form dispersed in an aqueous solvent is well known as a method for producing ribosomes, and can be produced by a method such as a reverse phase evaporation method. If you want to control the size of the lipid membrane structure, use a membrane filter with a uniform pore size, etc., and perform extrusion (extrusion filtration) under high pressure.
  • composition of the aqueous solvent is not particularly limited, for example, a buffer solution such as a phosphate buffer solution, a citrate buffer solution, a phosphate buffered saline solution, a physiological saline solution, Examples include a medium for cell culture.
  • aqueous solvents can stably disperse the lipid membrane structure, but in order to disperse the lipid membrane structure more stably, monosaccharides (for example, glucose, galactose, mannose, fructose, Inositol, ribose, xylose, etc.), disaccharides (eg, lactose, sucrose, cellobiose, trehalose, maltose, etc.), trisaccharides (eg, raffinose, merezinose, etc.), polysaccharides (eg, cyclodextrin, etc.), sugar alcohols (E.g., erythritol, xylitol, sorbitol, mannitol, maltitol, etc.) or an aqueous solution thereof; glycerin, diglycerin, polydalyserin, propylene glycol, polypropylene glycol, ethylene glycol
  • the pH of the aqueous solvent (dispersion medium) is set from weakly acidic to near neutral (pH 3.0 to 8.0), or dissolved oxygen is removed by nitrogen publishing. I prefer to do that.
  • a lipid membrane structure in a form in which a lipid membrane structure dispersed in an aqueous solvent is dried or frozen is dried or frozen by a known method such as freeze drying or spray drying of a lipid membrane structure dispersed in an aqueous solvent.
  • a lipid membrane structure dispersed in an aqueous solvent is once produced and then dried, the lipid membrane structure can be stored for a long period of time.
  • an aqueous solution containing a medicinal component can be added to the dried lipid membrane structure. Since the lipid mixture is efficiently hydrated, there is an advantage that the medicinal component can be efficiently held in the lipid membrane structure.
  • trisaccharides eg, raffinose, merezinose, etc.
  • polysaccharides eg, cyclodextrin, etc.
  • sugar alcohols eg, erythritol, xylitol, sorbitol, mannitol, maltitol
  • an aqueous solvent for example, the sugar or an aqueous solution thereof; glycerin, diglycerin, polyglycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol
  • a lipid membrane structure can be stably stored for a long period of time by adding a polyhydric alcohol such as ethylene glycol-monomonorequinoleateol, diethylene glycol monoalkyl ether, 1,3-butylene glycol or an aqueous solution thereof. be able to.
  • the aqueous solvent (dispersion medium) is a combination of sugar and polyhydric alcohol. You may.
  • the concentration of sugar or polyhydric alcohol in the aqueous solvent (dispersion medium) in which the lipid membrane structure is dispersed is not particularly limited, but the sugar concentration is preferably 2 to 20% (W / V). More preferably, it is 5 to 10% (W / V).
  • the concentration of the polyhydric alcohol is preferably 1 to 5% (W / V), more preferably 2 to 2.5% (W / V).
  • the concentration of the buffering agent is preferably 5 to 50 mM, more preferably 10 to 20 mM.
  • the concentration of the lipid membrane structure in the aqueous solvent (dispersion medium) is not particularly limited, but it is preferably 0.1 lmM to 500 mM in terms of the total lipid concentration contained in the lipid membrane structure ImM: More preferably, it is LOOmM.
  • the lipid membrane structure retaining the antibody can be produced by producing an lipid membrane structure, adding an antibody, and binding the antibody to the surface of the lipid membrane.
  • the lipid membrane structure retaining the antibody is prepared by adding a lipid derivative capable of reacting with the antibody and a mercapto group in the antibody after the production of the lipid membrane structure, and binding the antibody to the surface of the lipid membrane. Can be manufactured.
  • the form of the pharmaceutical composition containing the lipid membrane structure holding the target substance is not particularly limited.
  • the form of a dried mixture, the form dispersed in an aqueous solvent, or the dried or frozen form The form can be mentioned, and each form of the pharmaceutical yarn and composition can be produced in the same manner as the lipid membrane structure of each form described above.
  • a pharmaceutical composition in the form of a dried mixture is obtained by, for example, dissolving a component of a lipid membrane structure and a target substance once in an organic solvent such as black mouth form, and then obtaining this mixture. It can be produced by vacuum drying with a vaporizer or spray drying with a spray dryer.
  • a method for producing a pharmaceutical composition in which a lipid membrane structure holding a target substance is dispersed in an aqueous solvent several methods are known as follows.
  • the production method can be appropriately selected according to the retention mode of the target substance to be obtained and the properties of the mixture.
  • the constituents of the lipid membrane structure and the target substance are once combined with a closed mouth form or the like.
  • a mixture is obtained by dissolving with an organic solvent, and this is subjected to vacuum drying with an evaporator or spray drying with a spray dryer to produce a dry mixture containing the lipid membrane structure and the target substance.
  • Production method 2 retains the target substance by dissolving the constituent components of the lipid membrane structure once in an organic solvent and then emulsifying by adding an aqueous solvent containing the target substance to the dried product obtained by distilling off the organic solvent.
  • This is a method for producing a pharmaceutical composition in which a lipid membrane structure is dispersed in an aqueous solvent.
  • In order to control the size (particle diameter) of the lipid membrane structure it is only necessary to perform extrusion (extrusion filtration) under a high pressure using a membrane filter having a uniform pore diameter.
  • Production method 2 is difficult to dissolve in an organic solvent, but can be applied to a target substance that can be dissolved in an aqueous solvent.
  • Production method 2 has the advantage that the target substance can also be retained in the inner aqueous phase when the lipid membrane structure is ribosome.
  • a lipid membrane structure that holds a target substance is added to a lipid membrane structure such as a ribosome, emulsion, micelle, or layered structure dispersed in an aqueous solvent by further adding an aqueous solvent containing the target substance.
  • a lipid membrane structure such as a ribosome, emulsion, micelle, or layered structure dispersed in an aqueous solvent by further adding an aqueous solvent containing the target substance.
  • This is a method for producing a pharmaceutical composition in a form dispersed in an aqueous solvent.
  • Production method 3 can be applied to water-soluble target substances. Is production method 3 a method of adding a target substance from the outside to an already produced lipid membrane structure? Therefore, when the target substance is a polymer, the target substance may not enter the lipid membrane structure and may be present (bound) on the surface of the lipid membrane structure.
  • lipid membrane structure force S ribosome a sandwich structure (generally called “complex” or “complex”) in which the target substance is sandwiched between ribosome particles should be formed by production method 3. It has been known. In production method 3, since the aqueous dispersion of the lipid membrane structure alone is produced by force, it is not necessary to consider the decomposition of the target substance during emulsification, and the size (particle diameter) can be easily controlled. Therefore, as compared with production method 1 and production method 2, a pharmaceutical composition in which a lipid membrane structure holding a target substance is dispersed in an aqueous solvent can be easily produced.
  • the lipid membrane structure holding the target substance is added to the dried product obtained by drying the lipid membrane structure dispersed in the aqueous solvent by adding an aqueous solvent containing the target substance.
  • This is a method for producing a pharmaceutical composition in a form dispersed in a solvent.
  • Manufacturing method 4 can be applied to water-soluble target substances in the same manner as manufacturing method 3.
  • the difference between production method 4 and production method 3 is the presence of the lipid membrane structure and the target substance.
  • the lipid membrane structure dispersed in an aqueous solvent is once produced and then Since a dried product is produced, the lipid membrane structure exists in a solid state as a lipid membrane fragment at this stage.
  • a solvent in which sugar or an aqueous solution thereof, preferably sucrose or an aqueous solution thereof, or lactose or an aqueous solution thereof is added to an aqueous solvent may be used.
  • sugar or an aqueous solution thereof preferably sucrose or an aqueous solution thereof, or lactose or an aqueous solution thereof is added to an aqueous solvent
  • an aqueous solvent containing the target substance is added, the lipid membrane fragments that existed in the solid state immediately begin to hydrate with the invasion of water, and the lipid membrane structure is reconstructed. A lipid membrane structure in a form retained within the structure is produced.
  • the target substance is a polymer, in Production Method 3, the target substance may not enter the lipid membrane structure and may be present on the surface of the lipid membrane structure. 4 differs greatly in this respect.
  • a method for producing a pharmaceutical composition in a form in which a lipid membrane structure holding a target substance is dispersed in an aqueous solvent a method well known as a method for producing ribosome, for example, reverse phase An evaporation method or the like can be employed.
  • a method for producing ribosome for example, reverse phase An evaporation method or the like.
  • Examples of the method for drying a dispersion in which a lipid membrane structure holding a target substance is dispersed in an aqueous solvent include freeze-drying and spray-drying.
  • the aqueous solvent examples include the sugar or an aqueous solution thereof, preferably sucrose. Alternatively, an aqueous solution thereof, or a solvent added with lactose or an aqueous solution thereof is preferably used.
  • a method of freezing a dispersion liquid in which a lipid membrane structure holding a target substance is dispersed in an aqueous solvent a normal freezing method may be mentioned.
  • the aqueous solvent the sugar or an aqueous solution thereof, or the polyhydric alcohol or the It is preferable to use a solvent to which an aqueous solution is added.
  • the first or third vector can be used as a vector for delivering the target substance into the nucleus.
  • the second vector after the second vector is incorporated into the cell as an endosome fraction, a macropinosome fraction, etc. by a pathway such as endocytosis and macropinocytosis, the second vector is used.
  • the lipid membrane binds to the endosomal membrane or the macropinosome membrane, this triggers membrane fusion between the second lipid membrane and the endosomal membrane or macropinosome membrane, and the target substance retained in the lipid membrane structure Escapes endonoms, micropinosomes, etc., and is released into cells.
  • the target substance is delivered into the cell. Therefore, the second vector is used as a vector for delivering the target substance into the cell. be able to.
  • the second vector is used.
  • the lipid membrane binds to the endosomal membrane or the macropinosome membrane, this triggers membrane fusion between the second lipid membrane and the endosomal membrane or macropinosome membrane, and the target substance retained in the lipid membrane structure Escapes endonoms, micropinosomes, etc., and is released into cells.
  • the third vector can be used as a vector for delivering the target substance into the nucleus.
  • the nucleus targeted by the first or third vector may be a nucleus separated from a cell force or a nucleus present in a cell.
  • the biological species derived from the nucleus targeted by the first or third vector is not particularly limited.
  • mammals that are preferable to animals such as animals, plants, and microorganisms are more preferable. Examples of mammals include humans, monkeys, mice, hidges, goats, horses, pigs, rabbits, dogs, cats, rats, mice, guinea pigs and the like.
  • the type of cell containing the nucleus targeted by the first or third vector is not particularly limited, and examples thereof include somatic cells, germ cells, stem cells, and cultured cells thereof.
  • the ribosome that is one embodiment of the first vector includes a lipid membrane 2a and a target substance 3 encapsulated inside the lipid membrane 2a.
  • a membrane-permeable peptide preferably a membrane composed of polyarginine
  • the lipid membrane 2a is the first lipid membrane
  • the surface of the lipid membrane 2a has polyarginine as a membrane-permeable domain.
  • Single membrane ribosome la in which a permeable peptide) exists.
  • Single-membrane ribosome la can be transferred into an extracellular force cell while maintaining its original form (intact state) through a membrane-permeable peptide present on the surface of lipid membrane 2a.
  • the lipid membrane 2a After translocation into the cell, when the lipid membrane 2a binds to the nuclear membrane via a membrane-permeable peptide on its surface, this triggers membrane fusion between the lipid membrane 2a and the outer membrane of the nucleus. Inside the lipid membrane 2a The encapsulated target substance 3 is released into the nucleus.
  • the ribosome which is another embodiment of the first vector includes a lipid membrane 21b, a lipid membrane 22b positioned outside the lipid membrane 21b, and a lipid membrane 21b.
  • the bilayer ribosome lb can be transferred into the extracellular force cell while maintaining its original form (in an intact state) via a membrane-permeable peptide present on the surface of the lipid membrane 22b.
  • a membrane-permeable peptide present on the surface of the lipid membrane 22b.
  • the lipid membrane 22b binds to the outer membrane of the nucleus via a membrane-permeable peptide on its surface, this triggers membrane fusion between the lipid membrane 22b and the outer membrane of the nucleus.
  • the ribosome passes through the outer membrane of the nucleus. In the ribosome that has passed through the outer membrane of the nucleus, the lipid membrane 22b disappears due to membrane fusion with the outer membrane of the nucleus, but the lipid membrane 21b is retained.
  • the lipid membrane 21b After passing through the outer membrane of the nucleus, when the lipid membrane 21b binds to the inner membrane of the nucleus via a membrane-permeable peptide on the surface, this causes the membrane fusion between the lipid membrane 21b and the inner membrane of the nucleus.
  • the target substance 3 encapsulated inside the lipid membrane 21b is released into the nucleus.
  • the membrane-permeable peptide present on the surface of the lipid membrane 21b or 22b can be omitted.
  • the ribosome as an embodiment of the second vector includes a lipid membrane 2c and a target substance 3 encapsulated inside the lipid membrane 2c. It is a membrane ribosome lc, lipid membrane 2c is the second lipid membrane, and a membrane-permeable peptide having polyarginine as a membrane-permeable domain on the surface of lipid membrane 2c (preferably a membrane comprising polyarginine) Single membrane ribosome lc with a penetrating peptide).
  • Single-membrane ribosome lc can be transferred to extracellular force cells through the membrane-permeable peptide existing on the surface of lipid membrane 2c while maintaining its original form (in an intact state).
  • lipid membrane 2c binds to the endosomal membrane or macropinosome membrane via the membrane-permeable peptide on the surface, this causes the lipid membrane 2c and the endosomal membrane or Membrane fusion with the macropinosome membrane is induced, and the target substance 3 encapsulated inside the lipid membrane 2c is released into the cell (in the cytoplasm).
  • the ribosome as an embodiment of the third vector includes a lipid membrane 21d, a lipid membrane 22d located outside the lipid membrane 21d, and a lipid membrane 22d.
  • a triple membrane liposome Id having a lipid membrane 23d located outside and a target substance 3 encapsulated inside the lipid membrane 21d, wherein the lipid membranes 21d and 22d are the first lipid membrane, Membrane 23d is the second lipid membrane, and a membrane-permeable peptide having polyarginine as a membrane-permeable domain on the surface of lipid membranes 21d, 22d and 23d (preferably a membrane-permeable peptide made of polyarginine) )
  • a triple membrane ribosome Id Exists in the form of a triple membrane ribosome Id.
  • the triple membrane ribosome Id can be translocated into the extracellular force cell via the membrane-permeable peptide existing on the surface of the lipid membrane 23 d while maintaining its original form (in an intact state). After translocation into the cell, when the lipid membrane 23d binds to the endosomal membrane or macropinosome membrane via the membrane-permeable peptide on the surface, the lipid membrane 23d and the endosomal membrane or macropinosome membrane As a result, the ribosome escapes the endosome or macropinosome.
  • the lipid membrane 23d In the ribosome that has escaped the endosome or macropinosome, the lipid membrane 23d is lost by membrane fusion with the endosome membrane or macropinosome membrane, but the lipid membranes 21d and 22d are retained. Subsequently, when lipid membrane 22d binds to the outer membrane of the nucleus via a membrane-permeable peptide on its surface, this triggers membrane fusion between lipid membrane 22d and the outer membrane of the nucleus, and ribosomes become nuclear Passes through the outer membrane. In the ribosome that has passed through the outer membrane of the nucleus, the lipid membrane 22b disappears due to membrane fusion with the outer membrane of the nucleus, but the lipid membrane 21b is retained.
  • the lipid membrane 21b After passing through the outer membrane of the nucleus, when the lipid membrane 21b binds to the inner membrane of the nucleus via a membrane-permeable peptide on the surface, the lipid membrane 21b and the inner membrane of the nucleus are triggered by this. Membrane fusion is induced, and the target substance 3 encapsulated inside the lipid membrane 21b is released into the nucleus.
  • the membrane-permeable peptide present on the surface of the lipid membrane 21d or 22d can be omitted.
  • each vector can be used either in vivo or in vitro!
  • examples of the administration route include parenteral administration such as intravenous, intraperitoneal, subcutaneous, nasal administration, etc.
  • the dosage and the number of administration are determined according to the lipid membrane of the present invention. It can be adjusted as appropriate according to the type and amount of the target substance retained in the structure. Example In this embodiment, the following abbreviations are used.
  • BCA bovine serum albumin
  • DNA deoxyribonucleic acid
  • DOPE 1, 2— dioleoy ⁇ sn— glycero— 3— phosphoethanolamine
  • DOTAP 1, 2— dioleoyi— —trimetylammonium propane
  • D'MEM dulbecco's modified eagle medium
  • EDTA ethylenediamine N, N, N, N, tetraacetic acid
  • EPC egg yolk L— -phosphatidylcholine
  • GFP green fluorescence protein
  • NBD DOPE: 1, 2— dioleoy ⁇ sn— glycero— 3— phosphoethanolamine— N— (7— nitro— 2— 1, 3— benzoxadiazol-4-yl)
  • PA 3—sn—phosphatidic acid
  • PBS phosohate-bufFerd saline
  • the sources of reagents and experimental materials are as follows.
  • the method for preparing the reagent is as follows.
  • PBS Dulbecco PBS (—) (-Susi) 4.9 g was dissolved in DDW 500 mL and autoclaved.
  • LB + kan 10 g of Bacto tryptone (Wako Pure Chemical), 5 g of Yeastextract (Wako Pure Chemical) and 10 g of NaCl (SIG MA) were dissolved in DDW to make 1 L. High-pressure steam sterilization was performed, and kanamysine was added to 20 mg / mL.
  • Import buffer (X 10) HEPES (Wako Pure Chemicals) 4.77g, KOAc (Wako) 10.8g, NaOAc (Wako)
  • MgOAc (SIGMA) 0.43 g and EGTA'4Na 0.23 g were dissolved in DDW, adjusted to pH 7.3 with KOH, and then made up to 10 mL with DDW. Immediately before use, 200 mM DTT was added, diluted 10-fold, and sterilized by filtration.
  • DTT 200 mM DTT: 154.25 mg of DTT (nacalai tesque) was dissolved in DTT to make 5 mL.
  • IGEPAL beffer 0.5% (W / V) NP-40 (SIGMA), lOmM NaCl, 3 mM MgCl and lOmM
  • Tris-HC1 was mixed and adjusted to pH 7.4.
  • HBSS NaCl (SIGMA) 4.0g ⁇ KC1 0.2g ⁇ CaCl 0.07g MgSO-7H O O.lg ⁇ KH PO,
  • the volume was increased to 500 mL with DDW.
  • lipids having sugar chains in their structures were also used for screening.
  • lipids present in the nuclear membrane were used for screening.
  • the lipid contained in the nuclear membrane is Cardiolipin 4%, PE 13%, PC 55%, PI 10%, PS 3%, PA 2%, lysoglycose phospholipid 3%, SM 0.5%.
  • D'MEM containing 10% inactivated FCS
  • 10 mL of D'MEM was suspended and suspended in a 10 cm dish and cultured at 37 ° C in a CO incubator.
  • D'MEM in the 10 cm dish was removed with an aspirator and washed with 5 mL of PBS (-).
  • PBS remove PBS (1), add 2 mL of PBS (—) and 200 ⁇ L of 0.5% trypsin / 5 ⁇ L EDTA solution, incubate for 5 minutes at 37 ° C in a 5% CO incubator, and remove the cells attached to the bottom of the dish.
  • D'MEM in the 10 cm dish was removed with an aspirator and washed with 5 mL of PBS (-). Excluding PBS (-), add 2 mL of PBS (-) and 200 ⁇ L of 0.5% trypsin / 5 ⁇ L EDTA solution, and incubate for 5 minutes in a 37 ° C, 5% CO incubator.
  • Cells were collected and collected in a 1.5 mL sample tube and centrifuged at 1000 rpm, 4 ° C. for 5 minutes. After removing the supernatant with an aspirator, add 100 L HBSS / 0.1% BSA, tapping, add 100 ⁇ L HBSS / 0.1% BSA / 0.2% NP-40 solution, and incubate on ice for 5 minutes. . Thereafter, 800 L HBSS / 0.1% BSA was added, and centrifuged at 10,000 rpm, 4 ° C. for 30 seconds. After removing the supernatant with an aspirator, lmL HBSS / 0,02% NP-40 was added, suspended, and centrifuged at 10,000 rpm at 4 ° C for 30 seconds.
  • lmL HBSS / 0,02% NP-40 was added again, suspended, centrifuged at 10,000 rpm, 4 ° C for 30 seconds, and the supernatant was removed with an aspirator.
  • the isolated nucleus obtained was suspended in Import buffer.
  • the number of cells passaging, when plated on 2 days before if plated on 2.5 X 1 0 6 cells / dish , 3 days ago were determined 1.5 X 10 6 cells / dish.
  • HeLa cells Two days ago, an appropriate concentration of HeLa cells was spread in a 10 cm dish. HBSS / 0.1% BSA solution was kept on ice before the experiment. Wash cells twice with PBS (—) / 0.1% BSA / 0.1% NaN
  • Cells were collected and collected in a 1.5 mL sample tube and centrifuged at 1000 rpm, 4 ° C. for 5 minutes. After removing the supernatant with an aspirator, add 100 L HBSS / 0.1% BSA, tapping, add 100 ⁇ L HBSS / 0.1% BSA / 0.2% NP-40 solution, and incubate on ice for 5 minutes. . Thereafter, 800 L HBSS / 0.1% BSA was added and centrifuged at 1,400 g, 4 ° C. for 1 minute. After removing the supernatant with an aspirator , lmL HBSS / 0.02% NP-40 was added, suspended, and centrifuged at 1,400 g, 4 ° C for 1 minute.
  • lmL HBSS / 0.02% NP-40 was added again, suspended, centrifuged at 1,400 g, 4 ° C for 1 minute, and the supernatant was removed with an aspirator.
  • the isolated nucleus obtained was suspended in Import buffer.
  • import buffer was added to a total lipid concentration of 2 mM, hydrated, and then sonicated.
  • 10 mM lipid stock: 10 mM DOPE was mixed at a molar ratio of 2: 1, and a CHC1 solution of NBD-DOPE in an amount of 1 mol% of the total lipid concentration was added.
  • the following is the same as (1).
  • Nuclei were isolated by the procedure described in 1-2-2, stained with Hoechst, and the number of nuclei was counted. In a 1.5 mL sample tube, add 20 ⁇ L of probe lip to each of approximately 5.0 X 10 5 nuclei, im I added a port buffer to 200. In addition, as the maximum fluorescence intensity, 0.5% Triton solution 18
  • Binding rate (%) (Fluorescence intensity of ribosome bound to nucleus) / (Maximum fluorescence intensity of ribosome used)
  • the following lipids were used for the purpose of investigating the influence of electric charges on the nuclear membrane.
  • EPC (Sat), SM (Sat), DOTAP (+), PA (One), PS (One), PI (One), Cardiolipin (One), PG (One), CHEMS (One)
  • Ribosomes were prepared by combining each lipid with Choi or DOPE, and the binding rate to the nuclear membrane was measured. The results are shown in Figure 1. As shown in Fig. 1, the binding rate of neutral lipids, especially EPC, was very low. In addition, the binding rate of the positively charged lipid was high. This is thought to be due to electrostatic interaction, because many lipids constituting the nuclear membrane are negatively charged. On the other hand, high binding was observed even with negatively charged lipids. In addition, the ribosome mainly composed of Choi and the ribosome composed mainly of DOPE showed the same binding rate.
  • GM1 which is a lipid related to physiological functions
  • lectin present in the nucleus is expected.
  • cerebroside which is a lipid containing a sugar residue.
  • the lipids and surfactants used here are shown below.
  • Ribosomes were prepared by combining each lipid with EPC / Chol or EPC / DOPE, and the binding rate to the nuclear membrane was measured. The result is shown in figure 2. As shown in Fig. 2, the coupling rate was very low. Physiological functions require cytoplasmic factors, not just affinity with the nucleus It is disregarded.
  • FRET is a phenomenon observed by the interaction between the excitation wavelength and the fluorescence wavelength when two kinds of fluorescent materials are close to each other. That is, when two fluorescent materials are close to each other, the fluorescence wavelength emitted by exciting one fluorescent material (A) is balanced with the excitation wavelength of the other fluorescent material (B). This is a phenomenon in which (B) is excited by the fluorescence wavelength and emits fluorescence, and the fluorescence of (A) is not observed.
  • ribosomes were prepared by introducing two fluorescent substances, NBD and Rho.
  • nuclear phospholipids were quantified. The quantification was carried out using a phospholipid C-test coco and operated according to the attached operation method.
  • Probe Lip was prepared with the composition shown in Table 1. [0117] [Table 1]
  • ImL was placed in two glass test tubes. Each was dried under nitrogen gas to prepare a lipid film, and PBS (-) was added in an amount of ImL, and hydrated for 10 minutes, followed by sonication to prepare ribosomes. Further, it was diluted 2.5-fold with PBS (—) (pH 7.4 or 4.7). (Final total lipid concentration 2mM)
  • ⁇ L was hydrated for 10 minutes and ribosomes were prepared by sonication.
  • Fmax fluorescence intensity when ribosome is destroyed by final concentration 0.5% Triton
  • 10 mM lipid stock Mix 10 mM Choi in a 2: 1 molar ratio, add 1 mol% of NBD-DOPE CHC1 solution in total lipid concentration, 0.5 mol% Rho-DOPE CHC1 solution, and add C
  • Buffer was added to a total lipid concentration of 2 mM and hydrated, followed by sonication.
  • 10 mM lipid stock 10 mM DOPE was mixed at a molar ratio of 2: 1, and 1 mol% of total lipid concentration NBD-DOPE CHC1 solution and 0.5 mol% Rho-DOPE CHC1 solution were added. The following is (
  • probe-Lip: Import buffer l: 9
  • FRET analysis was performed using lipids and EPCs that were found to bind to the nuclear membrane according to the experimental results in Section 1-4. The following lipids were used in the experiment.
  • EPC (Sat), SM (Sat), DOTAP (+), PA (One), PS (One), PI (One), Cardiolipin (One), PG (One), CHEMS (One)
  • ribosomes were prepared by the procedure described in Section 2-2-3, and TF was measured. The results are shown in Figure 3.
  • Fig. 3 the lipid fusion ability mainly composed of Choi is low, while the lipid composed mainly of DOPE shows a relatively high membrane fusion ability.
  • DOPE itself has a very unstable structure, and by combining other lipids with DOPE, it becomes easier to form a hexagonal structure, thus increasing the membrane fusion ability. Therefore, for those that cannot be analyzed, it is likely that the liposome was broken during incubation and could not be analyzed successfully.
  • STR-R8 (CH (CH) CONHRRRRRRRR) is a very basic peptide.
  • STR-R8-modified ribosomes are taken up by Macropinocytosis and reach the nucleus while retaining the lipid membrane structure (Shiro Futaki: Basic peptide that penetrates the cell membrane. Protein nucleic acid enzyme. 47 (2002) 1415-1419).
  • STR-R8 can be easily modified into a ribosome by adding it to the ribosome solution to give a positive charge, thereby improving the binding to the nuclear membrane. That is, it is considered that an efficient gene vector can be constructed by using a lipid that retains its ability to bind to the nuclear membrane even after modification of STR-R8 and has increased binding ability.
  • ImM lipid stock ImM Choi stock mixed in a 9: 2 molar ratio, lmol% of total lipid concentration of NBD-DOPE in CHC1 solution was added, then dried with CHC1 and dried under nitrogen gas
  • lipid film As an internal aqueous layer, import buffer was added so that the total lipid concentration was 0.55 mM, hydrated, and then sonicated. Furthermore, when modifying with STR-R8, 5 mol% of STR-R8 was added to the ribosome solution after sonication, and left at room temperature for 30 minutes after pipetting.
  • ImM lipid stock ImM Choi stock was mixed at a molar ratio of 9: 2, and 1 mol of NBD-DOPE CHC1 solution in total lipid concentration and 0.5 mol% Rho-DOPE CHC1 solution were added. More
  • Ort buffer was added to a total lipid concentration of 0.55 mM and hydrated, followed by sonication. Further, when modifying with STR-R8, 5 mol% of STR-R8 was added to the ribosome solution after sonication, and left at room temperature for 30 minutes after pipetting.
  • ImM lipid stock ImM DOPE stock was mixed at a molar ratio of 2: 9, and a 1 mol% NBD-DOPE CHC1 solution and a 0.5 mol% Rho-DOPE CHC1 solution were added.
  • Lipid: Chol 2: l, which has a particularly low fusion ability to the nuclear membrane
  • the correlation with fusion ability was analyzed. The result is shown in FIG. As shown in Figure 6, with some exceptions, it can be seen roughly that the slope of DOPE ribosome is larger than that of Choi ribosome. Sarasako, with STR-R8 added, moved to the right while maintaining its tilt. This suggests that lipids using DOPE have a higher nuclear membrane fusion ability per unit binding amount, and that STR-R8 also has binding ability.
  • DOPE / CHEMS, DOPE / PA, and DOPE / PS have particularly excellent fusion ability for negatively charged lipids.
  • EPC and SM which are neutral lipids, have significantly increased the fusion ability and binding ability due to STR-R8 modification.
  • ImM lipid stock ImM DOPE stock is mixed at a molar ratio of 9: 2, and 0.5 mol 1% Rho-DOPE CHCl solution is added to the total lipid concentration.
  • I made a lipid film.
  • GFP protein diluted to 0.125 mg / mL with 10 mM HEPES was added to a total lipid concentration of 0.55 mM, hydrated, and then sonicated.
  • 5 mol% of STR-R8 was added to the ribosome solution after sonication, and after pipetting, it was left at room temperature for 30 minutes.
  • ribosomes were prepared according to the procedure in Section 3-3-1.
  • the nuclei isolated in 1-2-2 were mixed with the same amount of Hoechst and incubated at room temperature for 10 minutes for staining. After counting the number of nuclei, the ribosome and lipid concentrations were aligned by phospholipid quantification as in Section 2-2-4.
  • the mixture was mixed so that the liposome: nucleus was 9: 2, incubated at 37 ° C for 1 hour, centrifuged at 1400 g, 4 ° C for 1 minute, and washed twice with Import buffer. After suspending in an appropriate amount of Import buffer and dropping an appropriate amount onto a slide glass, a cover glass was applied and fixed with a cure. This glass slide was observed with CLSM.
  • Figure 7 shows the observation results.
  • red in the liposome and green in the encapsulated GFP were co-localized and observed as dots around the nuclear membrane.
  • GFP greens are distributed alone along the contour of the nucleus.
  • DOPE / CHEMS, DOPE / PA, and DOPE / PS are fused to the nuclear membrane, and that some of the encapsulated GFP is distributed in the gaps in the nuclear double membrane structure.
  • DOPE / CHEMS there is a part where the green of GFP and the blue of the nucleus co-localize and appear light blue, suggesting the migration by fusion into the nucleus.
  • ImM DOPE lmM lipid stock is mixed at a molar ratio of 9: 2, and N in lmol% of total lipid concentration Add BD-DOPE in CHC1 and 0.5 mol% Rho-DOPE in CHC1.
  • EPES buffer was added to a total lipid concentration of 0.55 mM, hydrated, and then sonicated.
  • ImM DOPE lmM lipid stock was mixed at a molar ratio of 5: 5 and added with 1 mol% of NBD-DOPE CHC1 solution and 0.5 mol% of Rho-DOPE CHC1 solution. More CH
  • EPES buffer was added to a total lipid concentration of 0.55 mM, hydrated, and then sonicated.
  • HeLa cell nuclei were isolated, phospholipids were quantified, and the amount of PC contained in the nuclei was determined. Since the amount of PC contained in the nuclear membrane is 55% from the literature, the total lipid concentration of the nucleus was determined under this assumption and diluted to 0.13 mM. (1/4 of Example 1)
  • the fluorescence intensity (excitation wavelength: 470 nm, absorption wavelength: 530 nm, 590 nm) was measured for each sample to obtain a spectrum.
  • the TF was calculated in the same manner as in Example 1 from the fluorescence intensity at 530 nm obtained here.
  • Ribosomes were prepared by the procedure described in Section 1-1 using the lipids shown below, and experiments were conducted.
  • Figure 8 shows the results for TF.
  • EPC (Sat), SM (Sat), DOTAP (+), PA (One), PS (One), PI (One), Cardiolipin (One), PG (One), CHEMS (One)
  • the ability to fuse with the nuclear membrane is better when the proportion of DOPE, a membrane-fusible lipid, is reduced.
  • PA and CL showed a significant increase in fusion ability.
  • the force that increased fusion ability was observed even with DOTAP, a positively charged lipid. This seems to be due to an increase in the affinity for the nuclear membrane with a negative charge due to an increase in the positive charge by increasing the proportion of DOTAP.
  • PA, CL, and CHEMS which had high fusion ability, we investigated DOPE-independent fusion ability by changing DOPE to EPC. The results are shown in Fig. 9. As shown in Fig. 9, EPC / CHEMS hardly fused with membrane, while PA and CL maintained high fusion ability even when DOPE was changed to EPC.
  • ImM lipid stock ImM DOPE stock is mixed at the specified molar ratio, 0.5 mol% Rho-DOPE CHC1 solution is added to the total lipid concentration.
  • a lipid film was prepared by drying.
  • GFP protein diluted to 0.125 mg / mL with 10 mM HEPES was added to a total lipid concentration of 0.55 mM, hydrated, and then subjected to ultrasonic treatment.
  • EPC / Chol / STR-R8 9: 2: 0.55 (bonded fusion X)
  • EPC / CHEMS 5: 5 (bonded X fusion X) was used as a control.
  • These ribosomes were prepared according to the procedure in Section 2-1. In addition, the isolated nuclei were mixed with the same amount of Hoechst, incubated at room temperature for 10 minutes, stained, and then messed up so that the ribosome and lipid concentrations were the same by phospholipid quantification.
  • Ribosome Mixed so that the nucleus was 9: 2, incubated at 37 ° C for 1 hour, centrifuged at 1400g, 4 ° C for 1 minute, and washed twice with Import buffer. After suspending in an appropriate amount of Import buffer and dropping the appropriate amount onto a slide glass, a cover glass was applied and fixed with a cure. The slide glass was observed with a confocal laser microscope. The result is shown in FIG.
  • EPC / CHEMS which has no affinity for the nuclear membrane, showed almost no fluorescence around the nucleus, but only its ability to bind to the nucleus was high.
  • EPC / Chol / STR-R Some 8 were seen as yellow dots co-localized with lipid red and encapsulated GFP green around the nucleus.
  • PA and CL which have a high fusion ability with the nuclear membrane, many ribosome reds exist alone around the nucleus, and GFP green was distributed along the outline of the nucleus.
  • CL there was a figure suggesting that some of the encapsulated GFP was localized in the nucleus! /.
  • the ribosome containing two types of fluorescent dyes (NBD and Rhodamine) that overlap the fluorescence spectrum and the excitation spectrum is usually ribosome alone, and NBD fluorescence is not observed even when irradiating light with the NBD excitation wavelength.
  • NBD and Rhodamine co-exist in close proximity, NBD: 3 ⁇ 4: because photoenoreggi is used to excite Rhodamine.
  • Fluorescence Resonance Energy Transfer: FRET Fluorescence Resonance Energy Transfer
  • this ribosome undergoes membrane fusion with other lipid membranes (for example, cell membrane), the ribosomal lipid is diluted by the recipient lipid membrane, so the distance between NBD and Rhodamine in the liposome membrane is increased, and FRET is eliminated.
  • the fluorescence intensity was measured using the value measured at the NBD fluorescence wavelength of 530 nm.
  • Transfer efficiency (TF) and binding efficiency (BE) were obtained from the obtained fluorescence data F,, F0, F, max, and F max using the following equations.
  • F the amount of protein contained in the measurement sample is P (F,)
  • F the amount of protein contained in the measurement sample is P (F, max)
  • P the amount of protein contained in one well
  • the fluorescence of the sample corrected to include all the collected cells is F 'collected, and further 10 times the amount of ribosome applied at the time of cell collection is concentrated.
  • F 'max collected is the fluorescence intensity when the ribosome bound to all cells is destroyed with 0.5% Triton, and it is 10 times the amount of ribosome applied at the time of cell collection. F and max recovered were corrected to ((c), (d)).
  • the resulting BE ((e) ⁇ TF ((D, (g)) can be used to deliver the vector into the cytoplasm via membrane fusion. The rate was calculated as Endosomal Escape Efficiency ((h)).
  • the pDNA was condensed with Poly-L-Lysine to prepare a ribosome encapsulating aggregated DNA (final lipid concentration 0.55 mM), and the ribosome surface was modified with an appropriate amount of STR-R8.
  • the lipid composition of the ribosome is as shown in FIG. 12, and the values in Katsuko represent the molar ratio.
  • pDNA luciferase gene expression plasmid pcDNA3.1 (+) luc was used.
  • PcDNA3.1 (+) luc is a plasmid DNA having a total length of about 7 kbp containing a CMV promoter and a luciferase gene linked downstream thereof, and a luciferase gene excised from pGL3 plasmid (Promega) by restriction enzyme. It was prepared by inserting into pcDNA3.1 (+) (Invitrogen). 4 ⁇ 10 4 NIH3T3 cells per well were plated on a 24 well plate and incubated at 24 ° C., 37 ° C., 5% CO. 24 h later with 500 ⁇ L of DMEM (-serum)
  • ribosomes were calored so that 0.04 ⁇ g of DNA was contained in 250 ⁇ L of DMEM (-serum). Further incubation was performed for 3 h at 37 ° C and 5% CO. After 3 h, add lmL of DMEM (+ serum)
  • the cells were further incubated for 21h at 37 ° C and 5% CO. After 21h, with 500 L PBS1X
  • the amount of STR-R8 in DOPE / CHEMS (5%) is lower than the amount of STR-R8 in the OPE / PA system (10%), but it is the same even if the amount of STR-R8 in DOPE / CHEMS is increased to 10%. It was a result. Therefore, there is no increase in activity due to the amount of STR-R8. From these results, it was suggested that the gene expression of the non-viral gene delivery system can be dramatically improved by using the endosome escape promoting lipid discovered in this study. There have been many studies focusing on the endosome escape process, but the membrane fusion process was quantitatively evaluated as in this study, and based on this, lipids with high membrane fusion properties with the endosome were found.
  • a lipid film was prepared by drying under a raw gas.
  • GFP protein diluted to 0.125 mg / mL with 10 mM HEPES Buffer was added to a total lipid concentration of 0.55 mM, hydrated, and then subjected to sonication.
  • a lipid film was prepared by drying under a raw gas. Add GFP protein diluted to 0.125mg / mL with 10mM HEPES Buffer as an internal aqueous layer to a total lipid concentration of 0.55mM, hydrate for 10 minutes, and then use a probe type socket. SUV was prepared by sonication for 10 minutes.
  • the isolated nuclei were mixed with the same amount of Hoechst, incubated at room temperature for 10 minutes, stained, and mixed so that ribosome: nuclear force 3 ⁇ 4: 2 (w / w) was obtained. After incubation at C for 1 hour, the mixture was centrifuged at 1400 X g, 4 ° C, 30 seconds, and washed twice with Import Buffer. After suspending in an appropriate amount of Import Buffer and dropping an appropriate amount onto a slide glass, a cover glass was applied and fixed with nail polish. The slide glass was observed with a confocal laser microscope.
  • the panel also shows the localization of the Hoechst-stained nucleus (blue), the localization of GFP (green), the localization of rhodamine-labeled lipid (red), and the superposition of the three.
  • lipid (red) is localized around the nucleus in both cases of PA and CL! Despite this, the encapsulated GFP (green) diffused inside the nucleus. In contrast, in a single membrane SUV, lipid (red) is localized on the surface of the nuclear membrane, and the encapsulated GFP (green) is also localized independently along the contour of the nucleus. And
  • Plasmid DNA pEGFP / Luc
  • Protamine 0.1 mg / mL
  • ImM DOPE and ImM lipid stock were mixed in a glass test tube at a predetermined molar ratio, and further a CHC1 solution was added, followed by drying under nitrogen gas to prepare a lipid film.
  • a CHC1 solution was added, followed by drying under nitrogen gas to prepare a lipid film.
  • the pDNA / Protamine core prepared by the above method was added to a total lipid concentration of 0.55 mM, hydrated, and then sonicated. Furthermore, STR-R8 (2 mg / mL) was added to a positive charge, and after pipetting, it was incubated at room temperature for 30 minutes.
  • EPES Buffer was added to a total lipid concentration of 0.55 mM, hydrated for 10 minutes, and then sonicated for 10 minutes using a probe type socket to prepare an SUV. .
  • SPE of D OPE / PA 5: 5 and the pDNA / Protamine core prepared by the above method were added at a ratio of 2: 1 to prepare a bilayer ribosome.
  • STR-R8 (2 mg / mL) was added to the bilayer membrane ribosome solution in an amount of 20% of the total lipid concentration, and incubated at room temperature for 30 minutes.
  • DOPE / PA 7: 2 SUV and bilayer ribosome were added at a ratio of 2: 1 to prepare a quadrilayer liposome.
  • STR-R8 (2 mg / mL) was added to the four-membrane ribosome solution in an amount of 10% of the total lipid concentration, and incubated at room temperature for 30 minutes.
  • EPES Buffer was added to a total lipid concentration of 0.55 mM, hydrated for 10 minutes, and then sonicated for 10 minutes using a probe type socket to prepare an SUV. .
  • STR-R8 (2 mg / mL) was added to the bilayer ribosome solution in an amount of 20% of the total lipid concentration, and incubated at room temperature for 30 minutes.
  • DOPE / PA 7: 2 SUV and bilayer ribosome were added at a ratio of 2: 1 to prepare a quadrilayer liposome.
  • STR-R8 (2 mg / mL) was added to the four-membrane ribosome solution in an amount of 10% of the total lipid concentration, and incubated at room temperature for 30 minutes.
  • STR-R8 (2 mg / mL) was added to the 4 membrane ribosome solution in an amount of 5% of the total lipid concentration and incubated for 30 minutes at room temperature.
  • the four-membrane ribosome AF may be collectively referred to as “T-MEND”.
  • JAWSII cells After seeding JAWSII cells in a 24-well plate (8.0 X 10 4 cells) and culturing for 2 days, 0.4 ⁇ g sample is diluted to 250 ⁇ L with ⁇ -MEM without antibiotics and FCS. To help the cells. Naked DNA and HEPES Buffer were similarly diluted as Nefgative controls, added to the cells, and cultured in a 37 ° C, 5% CO incubator. The sample
  • JAWSII cells mouse bone marrow cells
  • JAWSII cells which are non-dividing cells of the immune system, were used for the purpose of reducing the contribution to gene expression by division.
  • Fig. 14 shows the results of measuring the gene expression efficiency for MEND.
  • Con 1 is the result when naked DNA is added
  • Con 2 is the result when only cells are present. The same applies to FIGS. 15 and 16.
  • DOPE / CHEMS ribosome A, B
  • EPC / CHEMS ribosome C
  • DOP E / PA ribosome D
  • DOPE / CL ribosome E
  • FIG. 1 is a graph showing the binding activity (%) of ribosome to the nuclear membrane.
  • FIG. 2 is a graph showing the binding activity (%) of ribosome to the nuclear membrane.
  • FIG. 3 is a graph showing the fusion activity (TF (%)) of the ribosome to the nuclear membrane.
  • FIG. 4 is a graph showing the binding activity (%) of ribosome to the nuclear membrane.
  • FIG. 5 is a graph showing the fusion activity (TF (%)) of the ribosome to the nuclear membrane.
  • FIG. 6 is a diagram showing the correlation between the binding ability and fusion ability of ribosome to the nuclear membrane.
  • FIG. 7 is a diagram showing the results of observation with a confocal laser microscope.
  • FIG. 8 is a graph showing the fusion activity (TF (%)) of the ribosome to the nuclear membrane.
  • FIG. 9 is a graph showing the fusion activity (TF (%)) of the ribosome to the nuclear membrane.
  • FIG. 10 is a diagram showing the results of observation with a confocal laser microscope.
  • FIG. 11 is a graph showing the endosomal escape efficiency (%) of ribosome.
  • FIG. 12 shows the expression activity of genes delivered by ribosomes.
  • FIG. 13 is a view showing an observation result by a confocal laser microscope.
  • FIG. 14 shows the expression activity of genes delivered by ribosomes.
  • FIG. 15 shows the expression activity of genes delivered by ribosomes.
  • FIG. 16 shows the expression activity of genes delivered by ribosomes.
  • FIG. 17 is a partial cross-sectional view schematically showing an embodiment of the ribosomal lipid membrane structure of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)

Abstract

 目的物質を核内又は細胞内に送達するためのベクターを提供することを目的とし、この目的を達成するために、目的物質を核内又は細胞内に送達するためのベクターであって、アニオン性脂質、例えば、ホスファチジン酸、カルジオリピン等を含有する脂質膜を備えた脂質膜構造体からなるベクターを提供する。

Description

明 細 書
目的物質を核内又は細胞内に送達するためのベクター
技術分野
[0001] 本発明は、 目的物質を核内又は細胞内に送達するためのベクターに関する。
背景技術
[0002] 薬物、核酸、ペプチド、タンパク質、糖等を標的部位に確実に送達するためのベタ ターやキャリアーの開発が盛んに行われている。例えば、遺伝子治療においては、 目的の遺伝子を標的細胞へ導入するためのベクターとして、レトロウイルス、アデノウ ィルス、アデノ関連ウィルス等のウィルスベクターが開発されている。し力しながら、ゥ ィルスべクタ一は、大量生産の困難性、抗原性、毒性等の問題があるため、このよう な問題点が少ないリボソームベクターやペプチドキャリアーが注目を集めている。リポ ソームベクターは、その表面に抗体、タンパク質、糖鎖等の機能性分子を導入するこ とにより、標的部位に対する指向性を向上させることができるという利点も有している。
[0003] 遺伝子治療に用いるための効率的なベクターを開発する上で、核膜の透過は非常 に大きな障壁となる。細胞質—核間の物質輸送には、核膜に存在する核膜孔複合 体を介して行われており、低分子のタンパク質やイオンはこの核膜孔複合体を自由 拡散することにより核膜を透過するのに対し、高分子はその大きさのために自由に透 過することができない。そのため、遺伝子をそのまま細胞内に導入しても、核内へ効 率よく送達するのは困難である。
[0004] 最近、凝縮ィ匕 DNA封入リボソームの表面をステアリルィ匕ォクタアルギニンで修飾す ることにより、凝縮ィ匕 DNAの細胞導入効率が 1000倍、凝縮ィ匕 DNA封入リボソーム の細胞への導入効率が 100倍向上したことが報告されている(非特許文献 1)。また、 表面をステアリルィ匕ォクタアルギニンで修飾したリボソームは、原形を保ったまま (イン タクト (intact)な状態で)細胞内に導入できることが報告されて 、る (非特許文献 1, 2
) o
非特許文献 l : Kogure等, 「Journal of Controlled Release] , 2004年, 98卷, 317-323 頁 非特許文献 2 :力リル'イクラミ等, rYAKUGAKU ZASSHIJ , 2004年, 124卷, Suppl.4, 1 13-116頁
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、目的物質を核内又は細胞内に送達するためのベクターを提供すること を目的とする。
課題を解決するための手段
[0006] 上記課題を解決するために、本発明は、第 1のベクターとして、目的物質を核内に 送達するためのベクターであって、ァ-オン性脂質を含有する第 1の脂質膜を備えた 脂質膜構造体力もなるベクターを提供する。第 1のベクターにおいて、第 1の脂質膜 が核膜と結合及び融合することにより、第 1のベクターに含まれる目的物質は、核内 に効率よく移行することができる。
[0007] また、上記課題を解決するために、本発明は、第 2のベクターとして、目的物質を細 胞内に送達するためのベクターであって、ァ-オン性脂質を含有する第 2の脂質膜 を備えた脂質膜構造体力もなるベクターを提供する。第 2のベクターにおいて、第 2 の脂質膜は、エンドソーム膜、マクロピノソーム膜等と効率よく結合及び融合すること ができる。したがって、第 2のベクターがエンドサイト一シス、マクロピノサイト一シス等 の経路によりエンドソーム画分、マクロピノソーム画分等として細胞内に取り込まれた 後、第 2の脂質膜がエンドソーム膜、マクロピノソーム膜等と結合及び融合すること〖こ より、第 2のベクターに含まれる目的物質は、エンドノーム、マイクロピノソーム等を脱 出し、細胞内に効率よく移行することができる。
[0008] さらに、上記課題を解決するために、本発明は、第 3のベクターとして、目的物質を 核内に送達するためのベクターであって、ァ-オン性脂質を含有する第 1の脂質膜 の外側に、ァニオン性脂質を含有する第 2の脂質膜を備えた脂質膜構造体からなる ベクターを提供する。第 3のベクターにおいて、第 1の脂質膜は、核膜と効率よく結合 及び融合することができ、第 2の脂質膜は、エンドソーム膜、マクロピノソーム膜等と効 率よく結合及び融合することができる。したがって、第 3のベクターがエンドサイトーシ ス、マクロピノサイト一シス等の経路によりエンドソーム画分、マクロピノソーム画分等 として細胞内に取り込まれた後、第 2の脂質膜がエンドソーム膜、マクロピノソーム膜 等と結合及び融合することにより、第 3のベクターに含まれる目的物質は、エンドソー ム、マイクロピノソーム等を脱出し、細胞内に効率よく移行することができる。そして、 第 1の脂質膜が核膜と結合及び融合することにより、第 3のベクターに含まれる目的 物質は、核内に効率よく移行することができる。
[0009] 第 1又は第 3のベクターにおいて、前記第 1の脂質膜に含有されるァ-オン性脂質 力 Sコレステリルへミスクシネート、ホスファチジン酸又はカルジォリピンであることが好 ましい。これにより、第 1の脂質膜の核膜に対する結合能及び融合能を向上させるこ とがでさる。
[0010] 第 1又は第 3のベクターにおいて、前記第 1の脂質膜に含有されるァ-オン性脂質 量が、前記第 1の脂質膜に含有される総脂質量の 20〜80% (モル比)であることが 好ましい。これにより、第 1の脂質膜の核膜に対する結合能及び融合能を向上させる ことができる。
[0011] 第 1又は第 3のベクターにおいて、前記第 1の脂質膜に含有されるァ-オン性脂質 がホスファチジン酸又はカルジォリピンであって、前記第 1の脂質膜に含有されるァ ユオン性脂質量が、前記第 1の脂質膜に含有される総脂質量の 40〜60% (モル比) であることが好ましい。これにより、第 1の脂質膜の核膜に対する結合能及び融合能 を向上させることができる。
[0012] 第 1又は第 3のベクターにおいて、前記第 1の脂質膜がジォレオイルホスファチジル エタノールアミンを含有することが好ましい。これにより、第 1の脂質膜の核膜に対す る結合能及び融合能を向上させることができる。
[0013] 第 1又は第 3のベクターにおいて、前記第 1の脂質膜に含有されるジォレオイルホス ファチジルエタノールァミン量が、前記第 1の脂質膜に含有される総脂質量の 20〜8 0% (モル比)であることが好ましい。これにより、第 1の脂質膜の核膜に対する結合能 及び融合能を向上させることができる。
[0014] 第 1又は第 3のベクターにおいて、前記第 1の脂質膜が膜透過性ペプチドを有する ことが好ましい。これにより、第 1の脂質膜の核膜に対する結合能及び融合能を向上 させることがでさる。 [0015] 第 1又は第 3のベクターにおいて、前記膜透過性ペプチドは、例えば、膜透過性ド メインを有するペプチドであり、前記膜透過性ドメインは、好ましくはポリアルギニンで あり、前記ポリアルギニンは、好ましくは連続した 4〜20個のアルギニン残基力もなる 。膜透過性ドメインをポリアルギニンとすることにより、第 1の脂質膜の核膜に対する結 合能及び融合能を向上させることができる。また、第 1の脂質膜がベクターの表面を 構成しており、第 1の脂質膜が膜透過性ドメインとしてポリアルギニンを有する場合、 ベクター表面のポリアルギニン量を調節することにより、ベクターの主要な細胞内移 行経路をマクロピノサイト一シスとすることができる。マクロピノサイト一シスでは、細胞 外物質がマクロピノソームという画分として細胞内に取り込まれ、マクロピノソームはェ ンドソームと異なりリソノームと融合しないため、マクロピノソーム内封物はリソノームに よる分解を回避することができる。したがって、ベクターが主としてマクロピノサイトーシ スを介して細胞内に移行する場合、ベクターに含まれる目的物質を効率よく細胞内 に送達することができる。
[0016] 第 1又は第 3のベクターにおいて、前記膜透過性ペプチドが前記第 1の脂質膜の表 面に存在することが好ましい。膜透過性ペプチドを第 1の脂質膜の表面に存在させる ことにより、第 1の脂質膜の核膜に対する結合能及び融合能を向上させることができ る。また、第 1の脂質膜がベクターの表面を構成しており、第 1の脂質膜の表面に膜 透過性ドメインとしてポリアルギニンが存在する場合、ベクターが主としてマクロピノサ イト一シスを介して細胞内に移行することができるので、ベクターに含まれる目的物質 を効率よく細胞内に送達することができる。
[0017] 第 1又は第 3のベクターにおいて、前記第 1の脂質膜が膜透過性ペプチドを有する 場合、前記第 1の脂質膜に含有されるァ-オン性脂質がコレステリルへミスクシネート 、ホスファチジン酸又はホスファチジルセリンであることが好ましい。第 1の脂質膜が上 記ァ-オン性脂質を含有するとともに膜透過性ペプチドを有することにより、第 1の脂 質膜の核膜に対する結合能及び融合能を向上させることができる。
[0018] 第 2又は第 3のベクターにおいて、前記第 2の脂質膜に含有されるァ-オン性脂質
1S ホスファチジン酸、カルジォリピン、ジアルキルリン酸又はジァシルリン酸であるこ とが好ましい。これにより、第 2の脂質膜のエンドソーム膜又はマクロピノソーム膜に対 する結合能及び融合能を向上させることができる。
[0019] 第 2又は第 3のベクターにおいて、前記第 2の脂質膜に含有されるァ-オン性脂質 量が、前記第 2の脂質膜に含有される総脂質量の 10〜90% (モル比)であることが 好ましい。これにより、第 2の脂質膜のエンドソーム膜又はマクロピノソーム膜に対す る結合能及び融合能を向上させることができる。
[0020] 第 2又は第 3のベクターにおいて、前記第 2の脂質膜がジォレオイルホスファチジル エタノールアミンを含有することが好ましい。これにより、第 2の脂質膜のエンドソーム 膜又はマクロピノソーム膜に対する結合能及び融合能を向上させることができる。
[0021] 第 2又は第 3のベクターにおいて、前記第 2の脂質膜に含有されるジォレオイルホス ファチジルエタノールァミン量が、前記第 2の脂質膜に含有される総脂質量の 10〜9 0% (モル比)であることが好ましい。これにより、第 2の脂質膜のエンドソーム膜又は マクロピノソーム膜に対する結合能及び融合能を向上させることができる。
[0022] 第 2又は第 3のベクターにおいて、前記第 2の脂質膜が膜透過性ペプチドを有する ことが好ましい。これにより、第 2の脂質膜のエンドソーム膜又はマクロピノソーム膜に 対する結合能及び融合能を向上させることができる。
[0023] 第 2又は第 3のベクターにお 、て、前記膜透過性ペプチドは、例えば、膜透過性ド メインを有するペプチドであり、前記膜透過性ドメインは、好ましくはポリアルギニンで あり、前記ポリアルギニンは、好ましくは連続した 4〜20個のアルギニン残基力もなる 。膜透過性ドメインをポリアルギニンとすることにより、第 2の脂質膜のエンドソーム膜 又はマクロピノソーム膜に対する結合能及び融合能を向上させることができる。また、 第 2の脂質膜がベクターの表面を構成しており、第 2の脂質膜が膜透過性ドメインとし てポリアルギニンを有する場合、ベクター表面のポリアルギニン量を調節することによ り、ベクターの主要な細胞内移行経路をマクロピノサイト一シスとすることができる。マ クロピノサイト一シスでは、細胞外物質がマクロピノソームという画分として細胞内に取 り込まれ、マクロピノソームはエンドノームと異なりリソノームと融合しないため、マクロ ピノソーム内封物はリソソームによる分解を回避することができる。したがって、ベクタ 一が主としてマクロピノサイト一シスを介して細胞内に移行する場合、ベクターに含ま れる目的物質を効率よく細胞内に送達することができる。 [0024] 第 2又は第 3のベクターにおいて、前記膜透過性ペプチドが前記第 2の脂質膜の表 面に存在することが好ましい。膜透過性ペプチドを第 2の脂質膜の表面に存在させる ことにより、第 2の脂質膜のエンドソーム膜又はマクロピノソーム膜に対する結合能及 び融合能を向上させることができる。また、第 2の脂質膜がベクターの表面を構成して おり、第 2の脂質膜の表面に膜透過性ドメインとしてポリアルギニンが存在する場合、 ベクターが主としてマクロピノサイト一シスを介して細胞内に移行することができるの で、ベクターに含まれる目的物質を効率よく細胞内に送達することができる。
[0025] 第 1、第 2又は第 3のベクターにおいて、前記脂質膜構造体がリボソームであること が好ましい。脂質膜構造体がリボソームである場合、脂質膜構造体の内部に目的物 質を封入することにより、 目的物質を細胞内又は核内に効率よく送達することができ る。
発明の効果
[0026] 本発明により、 目的物質を核内又は細胞内に送達するためのベクターが提供され る。
発明を実施するための最良の形態
[0027] 以下、本発明のベクターについて詳細に説明する。
第 1のベクターは、 目的物質を核内に送達するためのベクターであって、ァ-オン 性脂質を含有する第 1の脂質膜を備えた脂質膜構造体力もなるベクターであり、第 2 のベクターは、 目的物質を細胞内に送達するためのベクターであって、ァ-オン性脂 質を含有する第 2の脂質膜を備えた脂質膜構造体からなるベクターであり、第 3のべ クタ一は、 目的物質を核内に送達するためのベクターであって、ァ-オン性脂質を含 有する第 1の脂質膜の外側に、ァニオン性脂質を含有する第 2の脂質膜を備えた脂 質膜構造体力 なるベクターである。
[0028] 脂質膜構造体は、リボソーム、 OZW型エマルシヨン、 WZOZW型エマルシヨン、 球状ミセル、ひも状ミセル、不定形の層状構造物等のうち、いずれの構造体であって もよいが、リボソームであることが好ましい。脂質膜構造体がリボソームである場合、脂 質膜構造体の内部に目的物質を封入することにより、 目的物質を細胞内に効率よく 送達することができる。 [0029] 脂質膜構造体がリボソームである場合、多重膜リボソーム (MLV)であってもよ 、し 、 SUV (small unilamellar vesicle)、 LUV (large unilamellar vesicle)、 GUV、giant uni lamellar vesicle)等の 1枚膜リボソームであってもよいが、多重膜リボソームであること が好ましい。リボソームが第 1の脂質膜を 2枚以上有することにより、リボソームは 2枚 の核膜 (外膜及び内膜)を突破することが可能となる。また、リボソームが第 1の脂質 膜の外側に、ァ-オン性脂質を含有する第 2の脂質膜を備えることにより、リボソーム はエンドソーム膜又はマクロピノソーム膜を突破することが可能となる。
[0030] 脂質膜構造体が有する第 1の脂質膜の数は特に限定されるものではないが、通常 1〜5、好ましくは 1〜3、さらに好ましくは 2である。脂質膜構造体が有する第 2の脂質 膜の数は特に限定されるものではないが、通常 1〜5、好ましくは 1〜3、さらに好まし くは 1である。脂質膜構造体は、第 1及び第 2の脂質膜以外の脂質膜を有していても よ!、し、第 1及び第 2の脂質膜以外の脂質膜を有して 、なくてもょ 、。
[0031] 脂質膜構造体のサイズは特に限定されるものではないが、脂質膜構造体がリポソ ーム又はエマルシヨンの場合、粒子径は通常 50nm〜5 μ mであり、球状ミセルの場 合、粒子径は通常 5〜: LOOnmであり、ひも状ミセル又は不定形の層状構造物の場合 、 1層あたりの厚みは通常 5〜: LOnmであり、このような複数の層が積層していることが 好ましい。
[0032] 脂質膜構造体の脂質膜 (第 1の脂質膜、第 2の脂質膜、並びに第 1及び第 2の脂質 膜以外の脂質膜を含む)の構成成分としては、例えば、脂質、膜安定化剤、抗酸ィ匕 剤、荷電物質、膜タンパク質等が挙げられる。
[0033] 脂質は脂質膜の必須の構成成分であり、脂質膜に含有される脂質量は、脂質膜を 構成する総物質量の通常 70% (モル比)以上、好ましくは 75% (モル比)以上、さら に好ましくは 80% (モル比)以上である。なお、脂質膜に含有される脂質量の上限値 は、脂質膜を構成する総物質量の 100%である。
[0034] 脂質としては、例えば、以下に例示するリン脂質、糖脂質、ステロール、飽和又は不 飽和の脂肪酸等が挙げられる。
[リン脂質]
ホスファチジルコリン(例えば、ジォレオイルホスファチジルコリン、ジラウロイルホス ファチジルコリン、ジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコ リン、ジステアロイルホスファチジルコリン等)、ホスファチジルグリセロール(例えば、 ジォレオイルホスファチジルグリセロール、ジラウロイルホスファチジルグリセロール、 ジミリストイルホスファチジルグリセロール、ジパルミトイルホスファチジルグリセロール 、ジステアロイルホスファチジグリセロール等)、ホスファチジルエタノールァミン(例え ば、ジラウロイルホスファチジルエタノールァミン、ジミリストイルホスファチジルェタノ ールァミン、ジパルミトイルホスファチジルエタノールァミン、ジステアロイルホスファチ ジエタノールアミン等)、ホスファチジルセリン、ホスファチジルイノシトール、ホスファ チジン酸、カルジォリピン、スフインゴミエリン、セラミドホスホリルエタノールァミン、セ ラミドホスホリルグリセロール、セラミドホスホリルグリセロールホスフアート、 1,2-ジミリス トイル- 1,2-デォキシホスファチジルコリン、プラスマロゲン、卵黄レシチン、大豆レシ チン、これらの水素添加物等。
[0035] [糖脂質]
グリセ口糖脂質 (例えば、スルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジ ガラクトシルジグリセリド、ガラクトシルジグリセリド、グリコシルジグリセリド)、スフインゴ 糖脂質 (例えば、ガラクトシルセレブ口シド、ラタトシルセレブ口シド、ガンダリオシド)等
[0036] [ステロ一ノレ]
動物由来のステロール(例えば、コレステロール、コレステロールコハク酸、コレスタ ノーノレ、ラノステロ一ノレ、ジヒドロラノステロ一ノレ、デスモステロ一ノレ、ジヒドロコレステロ ール)、植物由来のステロール(フィトステロール)(例えば、スチグマステロール、シト ステロール、カンペステロール、ブラシカステロール)、微生物由来のステロール(例 えば、チモステロール、エルゴステロール)等。
[0037] [飽和又は不飽和の脂肪酸]
ノルミチン酸、ォレイン酸、ステアリン酸、ァラキドン酸、ミリスチン酸等の炭素数 12 〜20の飽和又は不飽和の脂肪酸等。
[0038] 膜安定化剤は、脂質膜を物理的又は化学的に安定させたり、脂質膜の流動性を調 節したりするために含有させることができる、脂質膜の任意の構成成分であり、脂質 膜に含有される膜安定化剤量は、脂質膜を構成する総物質量の通常 30% (モル比) 以下、好ましくは 25% (モル比)以下、さらに好ましくは 20% (モル比)以下である。な お、膜安定化剤の含有量の下限値は 0である。
[0039] 膜安定化剤としては、例えば、ステロール、グリセリン又はその脂肪酸エステル等が 挙げられる。ステロールとしては、上記と同様の具体例が挙げられ、グリセリンの脂肪 酸エステルとしては、例えば、トリオレイン、トリオクタノイン等が挙げられる。
[0040] 抗酸化剤は、脂質膜の酸ィ匕を防止するために含有させることができる、脂質膜の任 意の構成成分であり、脂質膜に含有される抗酸化剤量は、脂質膜を構成する総物質 量の通常 30% (モル比)以下、好ましくは 25% (モル比)以下、さらに好ましくは 20% (モル比)以下である。なお、抗酸化剤の含有量の下限値は 0である。
[0041] 抗酸化剤としては、例えば、トコフエロール、没食子酸プロピル、パルミチン酸ァスコ ルビル、ブチル化ヒドロキシトルエン等が挙げられる。
[0042] 荷電物質は、脂質膜に正荷電又は負荷電を付与するために含有させることができ る、脂質膜の任意の構成成分であり、脂質膜に含有される荷電物質量は、脂質膜を 構成する総物質量の通常 30% (モル比)以下、好ましくは 25% (モル比)以下、さら に好ましくは 20% (モル比)以下である。なお、荷電物質の含有量の下限値は 0であ る。
[0043] 正荷電を付与する荷電物質としては、例えば、ステアリルァミン、ォレイルァミン等の 飽和又は不飽和脂肪族ァミン;ジォレオイルトリメチルアンモ -ゥムプロパン等の飽和 又は不飽和カチオン性合成脂質等が挙げられ、負電荷を付与する荷電物質としては 、例えば、ジセチルホスフェート、コレステリルへミスクシネート、ホスファチジルセリン 、ホスファチジルイノシトール、ホスファチジン酸等が挙げられる。
[0044] 膜タンパク質は、脂質膜の構造を維持したり、脂質膜に機能性を付与したりするた めに含有させることができる、脂質膜の任意の構成成分であり、脂質膜に含有される 膜タンパク質量は、脂質膜を構成する総物質量の通常 10% (モル比)以下、好ましく は 5% (モル比)以下、さらに好ましくは 2% (モル比)以下である。なお、膜タンパク質 の含有量の下限値は 0である。
[0045] 膜タンパク質としては、例えば、膜表在性タンパク質、膜内在性タンパク質等が挙げ られる。
[0046] 脂質膜構造体において、脂質膜を構成する脂質として、例えば、血中滞留性機能 、温度変化感受性機能、 pH感受性機能等を有する脂質誘導体を使用することがで きる。これにより、上記機能のうち 1種又は 2種以上の機能を脂質膜構造体に付与す ることができる。脂質膜構造体に血中滞留性機能を付与することにより、脂質膜構造 体の血液中での滞留性を向上させ、肝臓、脾臓等の細網内皮系組織による捕捉率 を低下させることができる。また、脂質膜構造体に温度変化感受性機能及び Z又は P H感受性機能を付与することにより、脂質膜構造体に保持された目的物質の放出性 を高めることができる。
[0047] 血中滞留性機能を付与することができる血中滞留性脂質誘導体としては、例えば、 グリコフォリン、ガンダリオシド GM1、ホスファチジルイノシトール、ガンダリオシド GM3、 グルクロン酸誘導体、グルタミン酸誘導体、ポリグリセリンリン脂質誘導体、 N-{カルボ 二ル-メトキシポリエチレングリコール- 2000}-1,2-ジパルミトイル -sn-グリセ口- 3-ホスフ ォエタノールァミン、 N-{カルボ-ル-メトキシポリエチレングリコール- 5000}-1,2-ジパ ルミトイル -sn-グリセ口- 3-ホスフォエタノールァミン、 N-{カルボ-ル-メトキシポリエチ レングリコール- 750}-1, 2-ジステアロイル -sn-グリセ口- 3-ホスフォエタノールァミン、 N -{カルボ-ル-メトキシポリエチレングリコール- 2000}-1,2-ジステアロイル -sn-グリセ口 -3-ホスフォエタノールァミン、 N-{カルボ-ル-メトキシポリエチレングリコール- 5000}- 1,2-ジステアロイル -sn-グリセ口- 3-ホスフォエタノールァミン等のポリエチレングリコ ール誘導体等が挙げられる。
[0048] 温度変化感受性機能を付与することができる温度変化感受性脂質誘導体としては 、例えば、ジパルミトイルホスファチジルコリン等が挙げられ、 pH感受性機能を付与 することができる pH感受性脂質誘導体としては、例えば、ジォレオイルホスファチジ ルエタノールァミン等が挙げられる。
[0049] 脂質膜構造体には、標的とする核を含有する細胞、当該細胞が分泌する酵素等を 特異的に認識する抗体を保持させることができる。抗体としては、モノクローナル抗体 を使用することが好ましぐモノクローナル抗体としては、単一のェピトープに対して 特異性を有する 1種のモノクローナル抗体を使用してもよいし、各種ェピトープに対し て特異性を有する 2種以上のモノクローナル抗体を組み合わせて使用してもよ 、。ま た、抗体としては、 1価抗体又は多価抗体のいずれを使用してもよいし、天然型 (intac t)分子又はそのフラグメント若しくは誘導体のいずれを使用してもよぐ例えば、 F(ab') 、 Fab'、 Fab,少なくとも二つの抗原又はェピトープ (epitope)結合部位を有するキメラ
2
抗体若しくは雑種抗体、又はクヮドローム (quadrome)、トリオーム (triome)等の二重特 異性組換え抗体、種間雑種抗体、抗イディォタイプ抗体、さらには化学的に修飾、加 ェ等が施された誘導体を使用することができる。また、公知の細胞融合、ハイプリドー マ技術、抗体工学等を適用し、合成又は半合成技術によって得られる抗体、抗体生 成の観点力 公知である従来技術を適用し、 DNA組換え技術によって得られる抗体 、あるいは標的ェピトープに対して中和特性を有する抗体又は結合特性を有する抗 体等を使用することができる。
[0050] 第 1又は第 2の脂質膜は、その構成成分としてァニオン性脂質を含有する。第 1の 脂質膜に含有されるァ-オン性脂質量は特に限定されるものではないが、第 1の脂 質膜に含有される総脂質量の通常 20〜80% (モル比)、好ましくは 40〜60% (モル 比)、さらに好ましくは 45〜55% (モル比)である。第 1の脂質膜に含有されるァ-ォ ン性脂質量を上記範囲とすることにより、第 1の脂質膜の核膜に対する結合能及び 融合能を向上させることができる。第 2の脂質膜に含有されるァ-オン性脂質量は特 に限定されるものではないが、第 2の脂質膜に含有される総脂質量の通常 10〜90 % (モル比)、好ましくは 10〜50% (モル比)、さらに好ましくは 10〜30% (モル比)で ある。第 2の脂質膜に含有されるァ-オン性脂質量を上記範囲とすることにより、第 2 の脂質膜のエンドソーム膜又はマクロピノソーム膜に対する結合能及び融合能を向 上させることができる。
[0051] 第 1又は第 2の脂質膜に含有されるァ-オン性脂質は特に限定されるものではなく 、例えば、コレステリルへミスクシネート、ホスファチジン酸、ホスファチジルセリン、ホ スファチジルグリセロール、ホスファチジルイノシトール又はカルジォリピン等が挙げら れる。第 1の脂質膜は、コレステリルへミスクシネート、ホスファチジン酸又はカルジォ リピンが好ましぐホスファチジン酸又はカルジォリピンがさらに好ましい。第 2の脂質 膜は、コレステリルへミスクシネート、ホスファチジン酸、カルジォリピン、ジアルキルリ ン酸又はジァシルリン酸であることが好ましぐホスファチジン酸、カルジォリピン、ジ アルキルリン酸又はジァシルリン酸であることがさらに好まし!/、。第 1の脂質膜に含有 されるァ-オン性脂質がホスファチジン酸又はカルジォリピンである場合、第 1の脂質 膜に含有されるァ-オン性脂質量を、第 1の脂質膜に含有される総脂質量の 40〜6 0% (モル比)(特に 45〜55% (モル比))とすることにより、第 1の脂質膜の核膜に対 する結合能及び融合能を顕著に向上させることができる。第 2の脂質膜に含有される ァ-オン性脂質がホスファチジン酸、カルジォリピン、ジアルキルリン酸又はジァシル リン酸である場合、第 2の脂質膜に含有されるァ-オン性脂質量を、第 2の脂質膜に 含有される総脂質量の 10〜50% (モル比)(特に 10〜30% (モル比))とすることによ り、第 2の脂質膜のエンドソーム膜又はマクロピノソーム膜に対する結合能及び融合 能を顕著に向上させることができる。
第 1又は第 2の脂質膜は、ジォレオイルホスファチジルエタノールアミンを含有する ことが好まし ヽ。第 1の脂質膜がジォレオイルホスファチジルエタノールアミンを含有 することにより、第 1の脂質膜の核膜に対する結合能及び融合能を向上させることが でき、第 2の脂質膜がジォレオイルホスファチジルエタノールアミンを含有すること〖こ より、第 2の脂質膜のエンドソーム膜又はマクロピノソーム膜に対する結合能及び融 合能を向上させることができる。第 1の脂質膜に含有されるジォレオイルホスファチジ ルエタノールアミン量は特に限定されるものではないが、第 1の脂質膜に含有される 総脂質量の通常 20〜80% (モル比)、好ましくは 40〜60% (モル比)、さらに好まし くは 45〜55% (モル比)である。第 1の脂質膜に含有されるジォレオイルホスファチジ ルエタノールアミン量を上記範囲とすることにより、第 1の脂質膜の核膜に対する結合 能及び融合能を向上させることができる。第 2の脂質膜に含有されるジォレオイルホ スファチジルエタノールアミン量は特に限定されるものではないが、第 2の脂質膜に 含有される総脂質量の通常 10〜90% (モル比)、好ましくは 50〜90% (モル比)、さ らに好ましくは 70〜90% (モル比)である。第 2の脂質膜に含有されるジォレオイルホ スファチジルエタノールアミン量を上記範囲とすることにより、第 2の脂質膜のエンドソ ーム膜又はマクロピノソーム膜に対する結合能及び融合能を向上させることができる 。なお、脂質は、極性基と非極性基の占める割合に従って、コーン (cone)型、シリン ダー(cylindrical)型、逆コーン(inverted cone)型の 3種類に大別され、そのうち、ジォ レオイルホスファチジルエタノールァミン等のコーン型脂質は、疎水性基が親水性基 に比べて大きな容積を占める脂質であり、非二重層脂質 (nonbilayer lipid)とも称され る (奥直人著,リボソームの作成と実験法, 27-33頁,広川書店)。脂質二重層中でコ ーン型脂質が逆へキサゴナル構造をとることにより、脂質二重層中に逆ミセル構造が 形成され、形成された逆ミセル構造は、膜融合、膜の透過性等に関与すると考えられ ている。
[0053] 第 1又は第 2の脂質膜は、膜透過性ペプチドを有することが好ま 、。膜透過性べ プチドは、核膜と結合可能な状態で第 1又は第 2の脂質膜に存在し、好ましくは第 1 又は第 2の脂質膜の表面に存在する。膜透過性ペプチドを第 1の脂質膜の表面に存 在させることにより、第 1の脂質膜の核膜に対する結合能及び融合能が向上させるこ とができ、膜透過性ペプチドを第 2の脂質膜の表面に存在させることにより、第 2の脂 質膜のエンドソーム膜又はマクロピノソーム膜に対する結合能及び融合能が向上さ せることができる。
[0054] 膜透過性ペプチドが第 1又は第 2の脂質膜の表面に存在する場合、少なくとも第 1 又は第 2の脂質膜の外表面に膜透過性ペプチドが存在すればよぐ内表面には膜 透過性ペプチドが存在して 、てもよ 、し存在して 、なくてもよ!、。第 1の脂質膜が膜 透過性ペプチドを有する場合、第 1の脂質膜に含有されるァ-オン性脂質はコレステ リルへミスクシネート、ホスファチジン酸又はホスファチジルセリンであることが好まし ヽ 。第 1の脂質膜が上記ァ-オン性脂質を含有するとともに膜透過性ペプチドを有する ことにより、第 1の脂質膜の核膜に対する結合能及び融合能を向上させることができ る。
[0055] 第 1又は第 2の脂質膜が有する膜透過性ペプチドは、脂質膜を透過可能である限り 特に限定されるものではない。膜透過性ペプチドが透過可能である脂質膜は、脂質 二重層構造を有する限り特に限定されるものではなぐ例えば、細胞膜、核膜等の生 体膜、リボソーム膜等の人工膜が挙げられる。膜透過性ペプチドとしては、例えば、 膜透過性ドメイン(Protein Transduction Domain (PTD))を有するペプチドが挙げられ る。膜透過性ドメインとしては、例えば、ポリアルギニン、 HIV-1由来の Tat(48-60) (GR KKRRQRRRPPQ)、 HIV- 1由来の Rev(34- 50) (TRQARRNRRRRWRERQR)等が挙げ られる。これらの膜透過性ドメインは、アルギニン残基に富んでおり、負電荷を有する 核膜と静電的に相互作用することができる。
[0056] 膜透過性ドメインを有するペプチドを構成するアミノ酸残基の総数は特に限定され るものではないが、通常 4〜40個、好ましくは 6〜30個、さらに好ましくは 7〜20個で ある。膜透過性ドメインを構成するアミノ酸残基の総数は特に限定されるものではな いが、通常 4〜40個、好ましくは 6〜30個、さらに好ましくは 7〜20個である。膜透過 性ドメインとしてのポリアルギニンは、通常 4〜20個、好ましくは 6〜12個、さらに好ま しくは 7〜 10個の連続したアルギニン残基力もなる。
[0057] 膜透過性ドメインを有するペプチドは、膜透過性ドメインのみからなって!/ヽてもよ!/ヽ し、膜透過性ドメインの C末端及び/又は N末端に任意のアミノ酸配列を有して 、て もよ ヽ。膜透過性ドメインの C末端及び/又は N末端に付加されるアミノ酸配列は、 剛直性を有するアミノ酸配列(例えば、ポリプロリン)であることが好ましい。ポリプロリ ンは、柔ら力べて不規則な形をとつているポリエチレングリコール (PEG)と異なり、直 線的で、ある程度の堅さを保持している。また、膜透過性ドメインの C末端及び Z又 は N末端に付加されるアミノ酸配列に含まれるアミノ酸残基は酸性アミノ酸以外のアミ ノ酸残基であることが好ましい。負電荷を有する酸性アミノ酸残基が、正電荷を有す るアルギニン残基と静電的に相互作用し、膜透過性ドメインに含まれるアルギニン残 基の効果を減弱させる可能性があるためである。
[0058] 第 1の脂質膜に存在する膜透過性ペプチド量は、脂質膜に含有される総脂質量の 通常 2〜20% (モル比)、好ましくは 3〜15% (モル比)、さらに好ましくは 4〜10% ( モル比)である。第 1の脂質膜に存在する膜透過性ペプチド量を上記範囲とすること により、第 1の脂質膜の核膜に対する結合能を向上させることができ、第 1の脂質膜と 核膜との結合を契機として、第 1の脂質膜と核膜との膜融合を効率よく誘起することが できる。
[0059] 第 2の脂質膜に存在する膜透過性ペプチド量は、脂質膜に含有される総脂質量の 通常 2〜20% (モル比)、好ましくは 3〜15% (モル比)、さらに好ましくは 4〜10% ( モル比)である。第 2の脂質膜に存在する膜透過性ペプチド量を上記範囲とすること により、第 2の脂質膜のエンドソーム膜又はマクロピノソーム膜に対する結合能を向上 させることができ、第 2の脂質膜とエンドソーム膜又はマクロピノソーム膜との結合を契 機として、第 2の脂質膜とエンドソーム膜又はマクロピノソーム膜との膜融合を効率よ く誘起することがでさる。
[0060] 第 1又は第 2の脂質膜における膜透過性ペプチドの存在態様としては、例えば、膜 透過性ペプチドが脂質膜構成成分 (例えば、疎水性基、疎水性化合物等)に結合し ており、脂質膜構成成分が脂質膜内に保持され、膜透過性ペプチドの一部又は全 部が脂質膜から露出して 、る態様が挙げられる。
[0061] 膜透過性ペプチドが結合する脂質膜構成成分は特に限定されるものではなぐ例 えば、ステアリル基等の飽和又は不飽和の脂肪酸基;コレステロール基又はその誘 導体;リン脂質、糖脂質又はステロール;長鎖脂肪族アルコール (例えば、ホスファチ ジルエタノールァミン、コレステロール等);ポリオキシプロピレンアルキル;グリセリン 脂肪酸エステル等が挙げられるが、これらのうち特に炭素数 10〜20の脂肪酸基 (例 えば、ノルミトイル基、ォレイル基、ステアリル基、ァラキドイル基等)が好ましい。
[0062] 第 1、第 2又は第 3のベクターには、核内又は細胞内に送達しょうとする目的物質を 保持させることができる。 目的物質は、例えば、脂質膜構造体の内部 (例えば、脂質 膜構造体の内部に形成された空隙)、脂質膜の表面、脂質膜中、脂質膜層中、脂質 膜層表面等に保持させることができる。脂質膜構造体が例えばリボソーム等の微粒 子である場合、微粒子内部に目的物質を封入することができる。
[0063] 目的物質の種類は特に限定されるものではなぐ例えば、薬物、核酸、ペプチド、タ ンパク質、糖又はこれらの複合体等が挙げられ、診断、治療、予防等の目的に応じて 適宜選択することができる。目的物質が疾病の診断、治療、予防等を目的とした物質 である場合、目的物質を保持した脂質膜構造体は、医薬組成物の構成成分として使 用することができる。なお、「核酸」には、 DNA又は RNAにカロえ、これらの類似体又 は誘導体 (例えば、ペプチド核酸 (PNA)、ホスホロチォエート DNA等)が含まれる。 また、核酸は一本鎖又は二本鎖のいずれであってもよいし、線状又は環状のいずれ であってもよい。
[0064] 目的物質が遺伝子である場合、細胞内への遺伝子導入効率を向上させる点から、 脂質膜構造体は、遺伝子導入機能を有する化合物を有することが好ましい。遺伝子 導入機能を有する化合物としては、例えば、 Ο,Ο'-Ν-ジドデカノィル -N- -トリメチ ルアンモ-オアセチル)-ジエタノールァミンク口リド、 Ο,Ο'- Ν-ジテトラデカノィル- Ν-( a -トリメチルアンモ-オアセチル)-ジエタノールァミンク口リド、 Ο,Ο'- N-ジへキサデ カノィル- N-( a -トリメチルアンモ-オアセチル)-ジエタノールァミンク口リド、 Ο,Ο'-Ν- ジォクタデセノィル- N-( a -トリメチルアンモ-オアセチル)-ジエタノールァミンクロリド 、 0,0', 0"-トリデカノィル- Ν-( ω -トリメチルアンモ -ォデカノィル)ァミノメタンブロミド 、ノル [ α -トリメチルアンモ-オアセチル]-ジドデシル- D-グルタメート、ジメチルジォ クタデシルアンモ-ゥムブロミド、 2,3-ジォレイルォキシ- Ν-[2- (スペルミンカルボキサ ミド)ェチル]- Ν,Ν-ジメチル- 1-プロパンアンモ-ゥムトリフルォロアセテート、 1,2-ジミ リスチルォキシプロピル- 3-ジメチルーヒドロキシェチルアンモ-ゥムブロミド、 3- β -[η -(Ν',Ν'-ジメチルアミノエタン)力ルバモイル]コレステロール等が挙げられる。これらの 遺伝子導入機能を有する化合物は、脂質膜構造体の内部 (例えば、脂質膜構造体 の内部に形成された空隙)、脂質膜中、脂質膜表面、脂質膜層中、脂質膜層表面に 存在 (結合)させることができる。
[0065] 目的物質は、脂質膜構造体 (特に脂質膜構造体の内部)に、目的物質の凝集体と して保持されていることが好ましい。これにより、目的物質を効率よく核内に送達する ことができる。
[0066] 目的物質の凝集体は、目的物質のみ力も構成されて 、てもよ 、し、目的物質以外 の物質 (例えば、目的物質を保持する担体)を含んで!/、てもよ!、。
[0067] 目的物質が正に帯電している場合、例えば、目的物質とァ-オン性物質とを静電 的に結合させて複合体ィ匕することにより、目的物質の凝集体を調製することができる 。 目的物質が負に帯電している場合、例えば、目的物質とカチオン性物質とを静電 的に結合させて複合体ィ匕することにより、目的物質の凝集体を調製することができる 。 目的物質が負及び正のいずれにも帯電していない場合、目的物質と所定の担体と を適当な様式 (例えば、物理的吸着、疎水結合、化学結合等)で結合させて複合体 ィ匕することにより、目的物質の凝集体を調製することができる。複合体化の際、目的 物質とカチオン性物質又はァニオン性物質との混合比率を調整することにより、全体 として正又は負に帯電する目的物質の凝集体を調製することができる。
[0068] 目的物質が核酸である場合、核酸とカチオン性物質と静電的に結合させて複合体 化することにより、核酸の凝集体を調製することができる。複合体化の際、核酸とカチ オン性物質との混合比率を調整することにより、全体として正又は負に帯電する核酸 の凝集体を調製することができる。
[0069] 目的物質の凝集体を調製する際に使用できるカチオン性物質は、分子中にカチォ ン性基を有する物質である限り特に限定されるものではない。カチオン性物質として は、例えば、カチオン性脂質(例えば、 Lipofectamine (Invitrogen社製));カチオン性 基を有する高分子;ポリリジン、ポリアルギニン、リジンとアルギニンの共重合体等の 塩基性アミノ酸の単独重合体若しくは共重合体又はこれらの誘導体 (例えばステアリ ル化誘導体);ポリエチレンィミン、ポリ(ァリルァミン)、ポリ(ジァリルジメチルアンモ- ゥムクロライド)、ダルコサミン等のポリカチオン性ポリマー;プロタミン又はその誘導体 (例えば硫酸プロタミン);キトサン等が挙げられる力 これらのうち特にステアリルィ匕ポ リアルギニンが好まし 、。ポリアルギニンを構成するアルギニン残基の数は通常 4〜2 0個であり、好ましくは 6〜12個、さらに好ましくは 7〜10個である。カチオン性物質が 有するカチオン性基の数は特に限定されるものではないが、好ましくは 2個以上であ る。カチオン性基は正に荷電し得る限り特に限定されるものではなぐ例えば、ァミノ 基;メチルァミノ基、ェチルァミノ基等のモノアルキルアミノ基;ジメチルァミノ基、ジェ チルァミノ基等のジアルキルアミノ基;イミノ基;グァ-ジノ基等が挙げられる。
[0070] 目的物質の凝集体を調製する際に使用できるァニオン性物質は、分子中にァニォ ン性基を有する物質である限り特に限定されるものではない。ァ-オン性物質として は、例えば、ァ-オン性脂質;ァ-オン性基を有する高分子;ポリアスパラギン酸等の 酸性アミノ酸の単独重合体若しくは共重合体又はこれらの誘導体;キサンタンガム、 カルボキシビ二ルポリマー、カルボキシメチルセルロースポリスチレンスルホン酸塩、 ポリサッカライド、カラギーナン等のポリア-オン性ポリマー等を使用することができる 。ァ-オン性物質が有するァ-オン性基の数は特に限定されるものではないが、好ま しくは 2個以上である。ァ-オン性基は負に荷電し得る限り特に限定されるものでは なぐ例えば、末端カルボキシル基を有する官能基 (例えば、コハク酸残基、マロン酸 残基等)、リン酸基、硫酸基等が挙げられる。
[0071] 脂質膜構造体の形態は特に限定されるものではなぐ例えば、乾燥した混合物の 形態、あるいは水系溶媒に分散した形態又はこれを乾燥若しくは凍結した形態等が 挙げられ、各形態の脂質膜構造体は、例えば、水和法、超音波処理法、エタノール 注入法、エーテル注入法、逆相蒸発法、界面活性剤法、凍結'融解法等の公知の方 法を用いて製造することができる。
[0072] 以下、各形態の脂質膜構造体の製造方法を説明するが、脂質膜構造体の形態及 びその製造方法はこれらに限定されるものではない。
乾燥した混合物の形態の脂質膜構造体は、例えば、脂質膜構造体の構成成分全 てをー且クロ口ホルム等の有機溶媒に溶解させた後、エバポレータによる減圧乾固 又は噴霧乾燥機による噴霧乾燥を行うことによって製造することができる。
[0073] 水系溶媒に分散した形態の脂質膜構造体は、乾燥した混合物の形態の脂質膜構 造体を水系溶媒に添加した後、ホモジナイザー等の乳化機、超音波乳化機、高圧噴 射乳化機等により乳化することによって製造することができる。また、水系溶媒に分散 した形態の脂質膜構造体は、リボソームを製造する方法としてよく知られて 、る方法、 例えば逆相蒸発法等によって製造することができる。脂質膜構造体の大きさを制御し たい場合には、孔径のそろったメンブランフィルタ一等を使用して、高圧下でイクスト ルージョン (押し出し濾過)を行えばょ 、。
[0074] 水系溶媒 (分散媒)の組成は、特に限定されるべきものではなぐ例えば、リン酸緩 衝液、クェン酸緩衝液、リン酸緩衝ィ匕生理食塩液等の緩衝液、生理食塩水、細胞培 養用の培地等が挙げられる。これら水系溶媒 (分散媒)は脂質膜構造体を安定に分 散させることができるが、脂質膜構造体をさらに安定して分散させるために、単糖類( 例えば、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、 キシロース等)、二糖類 (例えば、乳糖、ショ糖、セロビオース、トレハロース、マルトー ス等)、三糖類 (例えば、ラフイノース、メレジノース等)、多糖類 (例えば、シクロデキス トリン等)、糖アルコール(例えば、エリスリトール、キシリトール、ソルビトール、マン-ト ール、マルチトール等)等の糖又はその水溶液;グリセリン、ジグリセリン、ポリダリセリ ン、プロピレングリコール、ポリプロピレングリコール、エチレングリコーノレ、ジエチレン グリコール、トリエチレングリコール、ポリエチレングリコール、エチレングリコーノレモノ アルキルエーテル、ジエチレングリコールモノアルキルエーテル、 1,3-ブチレングリコ ール等の多価アルコール又はその水溶液等を加えてもよい。水系溶媒 (分散媒)に 分散した形態の脂質膜構造体を安定に長期間保存するには、物理的安定性の面( 例えば、凝集等を防止する面)から、水系溶媒 (分散媒)中の電解質を極力なくすこと が好ましい。また、脂質の化学的安定性の面から、水系溶媒 (分散媒)の pHを弱酸 性から中性付近 (pH3. 0〜8. 0)に設定すること、又は窒素パブリングにより溶存酸 素を除去することが好まし 、。
[0075] 水系溶媒に分散した脂質膜構造体を乾燥又は凍結させた形態の脂質膜構造体は 、水系溶媒に分散した脂質膜構造体を凍結乾燥、噴霧乾燥等の公知の方法により 乾燥又は凍結することによって製造することができる。水系溶媒に分散した脂質膜構 造体を一旦製造した後、これを乾燥する場合、脂質膜構造体の長期保存が可能とな る他、乾燥した脂質膜構造体に薬効成分含有水溶液を添加すると、効率よく脂質混 合物が水和されるため、薬効成分を効率よく脂質膜構造体に保持させることが可能と なる等の利点がある。
[0076] 凍結乾燥又は噴霧乾燥する場合、水系溶媒 (分散媒)に、例えば、単糖類 (例えば 、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロ ース等)、二糖類 (例えば、乳糖、ショ糖、セロビオース、トレハロース、マルトース等) 、三糖類 (例えば、ラフイノース、メレジノース等)、多糖類 (例えば、シクロデキストリン 等)、糖アルコール(例えば、エリスリトール、キシリトール、ソルビトール、マン-トール 、マルチトール等)等の糖又はその水溶液を加えておくことにより、脂質膜構造体を 安定に長期間保存することができる。また、凍結する場合、水系溶媒 (分散媒)に、例 えば、上記糖又はその水溶液;グリセリン、ジグリセリン、ポリグリセリン、プロピレンダリ コーノレ、ポリプロピレングリコール、エチレングリコーノレ、ジエチレングリコール、トリエ チレングリコール、ポリエチレングリコール、エチレングリコーノレモノァノレキノレエーテノレ 、ジエチレングリコールモノアルキルエーテル、 1,3-ブチレングリコール等の多価アル コール又はその水溶液を加えておくことにより、脂質膜構造体を安定に長期間保存 することができる。水系溶媒 (分散媒)には、糖と多価アルコールとを組み合わせてカロ えてもよい。脂質膜構造体が分散した水系溶媒 (分散媒)における糖又は多価アルコ ールの濃度は特に限定されないが、糖の濃度は 2〜20% (W/V)であることが好まし く、 5〜10% (W/V)であることがさらに好ましい。また、多価アルコールの濃度は、 1 〜5% (W/V)であることが好ましぐ 2〜2. 5% (W/V)であることがさらに好ましい。 水系溶媒 (分散媒)として緩衝液を用いる場合、緩衝剤の濃度は 5〜50mMであるこ と力 子ましく、 10〜20mMであることがさらに好ましい。水系溶媒 (分散媒)における 脂質膜構造体の濃度は特に限定されないが、脂質膜構造体に含有される脂質総量 の濃度に換算して 0. lmM〜500mMであることが好ましぐ ImM〜: LOOmMである ことがさらに好ましい。
[0077] 抗体を保持させた脂質膜構造体は、脂質膜構造体を製造した後、抗体を添加し、 抗体を脂質膜の表面に結合させることにより製造することができる。また、抗体を保持 させた脂質膜構造体は、脂質膜構造体を製造した後、抗体及び抗体中のメルカプト 基と反応し得る脂質誘導体を添加し、抗体を脂質膜の表面に結合させることにより製 造することができる。
[0078] 目的物質を保持する脂質膜構造体を含有する医薬組成物の形態は特に限定され るものではなぐ例えば、乾燥した混合物の形態、あるいは水系溶媒に分散した形態 又はこれを乾燥若しくは凍結した形態が挙げられ、各形態の医薬糸且成物は、上記し た各形態の脂質膜構造体と同様に製造することができる。
[0079] 乾燥した混合物の形態の医薬組成物は、例えば、脂質膜構造体の構成成分と目 的物質とを一旦クロ口ホルム等の有機溶媒で溶解させて混合物を得た後、これをェ バポレータによる減圧乾固又は噴霧乾燥機による噴霧乾燥に付することにより製造 することができる。
[0080] 目的物質を保持する脂質膜構造体が水系溶媒に分散した形態の医薬組成物の製 造方法としては、以下のように複数の方法が公知となっており、脂質膜構造体におけ る目的物質の保持様式、混合物の性状等に応じて、製造方法を適宜選択することが できる。
[0081] 〔製造方法 1〕
製造方法 1は、脂質膜構造体の構成成分と目的物質とを一旦クロ口ホルム等の有 機溶媒で溶解させて混合物を得た後、これをエバポレータによる減圧乾固又は噴霧 乾燥機による噴霧乾燥に付することにより、脂質膜構造体及び目的物質を含む乾燥 混合物を製造し、次いで、これに水系溶媒を添加した後、ホモジナイザー等の乳化 機、超音波乳化機、高圧噴射乳化機等による乳化を行うことにより、目的物質を保持 する脂質膜構造体が水系溶媒に分散した形態の医薬組成物を製造する方法である 。脂質膜構造体の大きさ (粒子径)を制御する場合には、孔径のそろったメンブランフ ィルターを用いて、高圧力下でイクストルージョン (押し出し濾過)を行えばよい。製造 方法 1は、脂質膜構造体及び目的物質を含む乾燥混合物を製造するために、脂質 膜構造体の構成成分及び目的物質を有機溶媒に溶解する必要があるが、脂質膜構 造体の構成成分と目的物質との相互作用を最大限に利用することができる利点があ る。すなわち、脂質膜構造体が層状構造を有する場合にも、目的物質は多重層の内 部にまで入り込むことが可能であり、目的物質の脂質膜構造体への保持率を向上さ せることができる利点がある。
[0082] 〔製造方法 2〕
製造方法 2は、脂質膜構造体の構成成分を有機溶媒で一旦溶解後、有機溶媒を 留去した乾燥物に目的物質を含む水系溶媒を添加して乳化を行うことにより、目的 物質を保持する脂質膜構造体が水系溶媒に分散した形態の医薬組成物を製造する 方法である。脂質膜構造体の大きさ (粒子径)を制御する場合には、孔径のそろった メンブランフィルターを用いて、高圧力下でイクストルージョン (押し出し濾過)を行え ばよい。製造方法 2は、有機溶媒には溶解しにくいが、水系溶媒には溶解し得る目 的物質に適用することができる。製造方法 2は、脂質膜構造体がリボソームの場合に 内水相部分にも目的物質を保持させることができる利点がある。
[0083] 〔製造方法 3〕
製造方法 3は、水系溶媒に分散したリボソーム、エマルシヨン、ミセル、層状構造物 等の脂質膜構造体に、さらに目的物質を含む水系溶媒を添加することにより、目的 物質を保持する脂質膜構造体が水系溶媒に分散した形態の医薬組成物を製造する 方法である。製造方法 3は、水溶性の目的物質に適用することができる。製造方法 3 は、既に製造された脂質膜構造体に外部から目的物質を添加する方法であることか ら、目的物質が高分子の場合、目的物質が脂質膜構造体の内部に入り込めず、脂 質膜構造体の表面に存在 (結合)した存在様式をとる可能性がある。脂質膜構造体 力 Sリボソームである場合、製造方法 3によって、目的物質がリボソーム粒子同士の間 に挟まったサンドイッチ構造 (一般的には「複合体」又は「コンプレックス」と呼ばれる) を形成されることが知られている。製造方法 3は、脂質膜構造体単独の水系分散液を あら力じめ製造するため、乳化時における目的物質の分解等を考慮する必要がなく 、大きさ (粒子径)の制御を行い易い。したがって、製造方法 1及び製造方法 2に比べ て、目的物質を保持する脂質膜構造体が水系溶媒に分散した形態の医薬組成物を 容易に製造することができる。
[0084] 〔製造方法 4〕
製造方法 4は、水系溶媒に分散した脂質膜構造体を乾燥することにより得られた乾 燥物に、目的物質を含む水系溶媒を添加することにより、目的物質を保持する脂質 膜構造体が水系溶媒に分散した形態の医薬組成物を製造する方法である。製造方 法 4は、製造方法 3と同様に、水溶性の目的物質に適用することができる。製造方法 4と製造方法 3との相違点は、脂質膜構造体と目的物質との存在様式にあり、製造方 法 4では、水系溶媒に分散した脂質膜構造体を一旦製造した後、これを乾燥させた 乾燥物を製造することから、この段階で脂質膜構造体は脂質膜の断片として固体状 態で存在する。この脂質膜の断片を固体状態に存在させるためには、上述したように 水系溶媒に糖又はその水溶液、好ましくはショ糖又はその水溶液、あるいは乳糖又 はその水溶液を添加した溶媒を使用することが好ましい。目的物質を含む水系溶媒 を添加すると、固体状態で存在していた脂質膜の断片は水の侵入とともに速やかに 水和し始め、脂質膜構造体が再構築され、このとき、目的物質が脂質膜構造体内部 に保持された形態の脂質膜構造体が製造される。
[0085] 製造方法 4では、脂質膜構造体単独の水系分散液をあらかじめ製造するため、乳 化時の目的物質の分解等を考慮する必要がなぐ大きさ (粒子径)の制御も行い易い 。したがって、製造方法 1及び製造方法 2に比べて、目的物質を保持する脂質膜構 造体が水系溶媒に分散した形態の医薬組成物を容易に製造することができる。また 、一旦凍結乾燥又は噴霧乾燥を行うため、製剤(医薬組成物)としての保存安定性を 保証し易ぐ乾燥製剤を目的物質の水溶液で再水和しても大きさ (粒子径)を元に戻 せることや、高分子の目的物質であっても、脂質膜構造体内部に目的物質を保持さ せ易いこと等の利点がある。したがって、目的物質が高分子の場合、製造方法 3では 、目的物質が脂質膜構造体内部には入り込めず、脂質膜構造体の表面に結合した 存在様式をとる可能性があるが、製造方法 4ではこの点で大きく異なる。
[0086] 目的物質を保持する脂質膜構造体が水系溶媒に分散した形態の医薬組成物を製 造するための他の方法としては、リボソームを製造する方法としてよく知られた方法、 例えば逆相蒸発法等を採用することができる。脂質膜構造体の大きさ (粒子径)を制 御する場合には、孔径のそろったメンブランフィルターを用いて、高圧力下でイクスト ルージョン (押し出し濾過)を行えばよ ヽ。目的物質を保持する脂質膜構造体が水系 溶媒に分散した分散液を乾燥させる方法としては、凍結乾燥や噴霧乾燥等が挙げら れ、水系溶媒としては、上記糖又はその水溶液、好ましくはショ糖又はその水溶液、 あるいは乳糖又はその水溶液を添加した溶媒を使用することが好ましい。目的物質 を保持する脂質膜構造体が水系溶媒に分散した分散液を凍結させる方法としては、 通常の凍結方法が挙げられ、水系溶媒としては、上記糖又はその水溶液、あるいは 上記多価アルコール又はその水溶液を添加した溶媒を使用することが好ましい。
[0087] 第 1のベクターにおいて、第 1の脂質膜が核膜と結合すると、これを契機として、第 1 の脂質膜と核膜との膜融合が誘起され、脂質膜構造体に保持された目的物質は、核 内に放出される。この結果、目的物質は核内に送達される。したがって、第 1又は第 3 のベクターは、目的物質を核内に送達するためのベクターとして使用することができ る。
[0088] 第 2のベクターにおいて、第 2のベクターがエンドサイト一シス、マクロピノサイトーシ ス等の経路によりエンドソーム画分、マクロピノソーム画分等として細胞内に取り込ま れた後、第 2の脂質膜がエンドソーム膜又はマクロピノソーム膜と結合すると、これを 契機として、第 2の脂質膜とエンドソーム膜又はマクロピノソーム膜との膜融合が誘起 され、脂質膜構造体に保持された目的物質は、エンドノーム、マイクロピノソーム等を 脱出し、細胞内に放出される。この結果、目的物質は細胞内に送達される。したがつ て、第 2のベクターは、目的物質を細胞内に送達するためのベクターとして使用する ことができる。
[0089] 第 3のベクターにおいて、第 3のベクターがエンドサイト一シス、マクロピノサイトーシ ス等の経路によりエンドソーム画分、マクロピノソーム画分等として細胞内に取り込ま れた後、第 2の脂質膜がエンドソーム膜又はマクロピノソーム膜と結合すると、これを 契機として、第 2の脂質膜とエンドソーム膜又はマクロピノソーム膜との膜融合が誘起 され、脂質膜構造体に保持された目的物質は、エンドノーム、マイクロピノソーム等を 脱出し、細胞内に放出される。そして、第 1の脂質膜が核膜と結合すると、これを契機 として、第 1の脂質膜と核膜との膜融合が誘起され、脂質膜構造体に保持された目的 物質は、核内に放出される。この結果、目的物質は核内に送達される。したがって、 第 3のベクターは、目的物質を核内に送達するためのベクターとして使用することが できる。
[0090] 第 1又は第 3のベクターが標的とする核は、細胞力 分離された核であってもよいし 、細胞内に存在する核であってもよい。第 1又は第 3のベクターが標的とする核が由 来する生物種は特に限定されるものではなぐ例えば、動物、植物、微生物等が挙げ られる力 動物が好ましぐ哺乳動物がさらに好ましい。哺乳動物としては、例えば、ヒ ト、サル、ゥシ、ヒッジ、ャギ、ゥマ、ブタ、ゥサギ、ィヌ、ネコ、ラット、マウス、モルモット 等が挙げられる。第 1又は第 3のベクターが標的とする核を含有する細胞の種類は特 に限定されるものではなぐ例えば、体細胞、生殖細胞、幹細胞又はこれらの培養細 胞等が挙げられる。
[0091] 第 1のベクターの一実施形態であるリボソームとしては、図 17 (a)に示すように、脂 質膜 2aと、脂質膜 2aの内側に封入された目的物質 3とを備えた 1枚膜リボソーム la であって、脂質膜 2aが第 1の脂質膜であり、脂質膜 2aの表面に、膜透過性ドメインと してポリアルギニンを有する膜透過性ペプチド (好ましくはポリアルギニンからなる膜 透過性ペプチド)が存在する 1枚膜リボソーム laが挙げられる。 1枚膜リボソーム laは 、脂質膜 2aの表面に存在する膜透過性ペプチドを介して、原形を保ったまま (インタ タト (intact)な状態で)、細胞外力 細胞内に移行することができる。細胞内に移行し た後、脂質膜 2aが、その表面に有する膜透過性ペプチドを介して核膜と結合すると、 これを契機として、脂質膜 2aと核の外膜との膜融合が誘起され、脂質膜 2aの内側に 封入された目的物質 3は、核内に放出される。
[0092] 第 1のベクターの別の実施形態であるリボソームとしては、図 17 (b)に示すように、 脂質膜 21bと、脂質膜 21bの外側に位置する脂質膜 22bと、脂質膜 21bの内側に封 入された目的物質 3とを備えた 2枚膜リボソーム lbであって、脂質膜 21b及び 22bが 第 1の脂質膜であり、脂質膜 21b及び 22bの表面に、膜透過性ドメインとしてポリアル ギニンを有する膜透過性ペプチド (好ましくはポリアルギニンカゝらなる膜透過性ぺプ チド)が存在する 2枚膜リボソーム lbが挙げられる。 2枚膜リボソーム lbは、脂質膜 22 bの表面に存在する膜透過性ペプチドを介して、原形を保ったまま (インタタト (intact )な状態で)、細胞外力 細胞内に移行することができる。細胞内に移行した後、脂質 膜 22bが、その表面に有する膜透過性ペプチドを介して核の外膜と結合すると、これ を契機として、脂質膜 22bと核の外膜との膜融合が誘起され、リボソームは核の外膜 を通過する。核の外膜を通過したリボソームにおいて、脂質膜 22bは核の外膜との膜 融合により消失しているが、脂質膜 21bは保持されている。核の外膜を通過した後、 脂質膜 21bが、その表面に有する膜透過性ペプチドを介して核の内膜と結合すると 、これを契機として、脂質膜 21bと核の内膜との膜融合が誘起され、脂質膜 21bの内 側に封入された目的物質 3は、核内に放出される。なお、脂質膜 21b又は 22bの表 面に存在する膜透過性ペプチドは省略が可能である。
[0093] 第 2のベクターの一実施形態であるリボソームとしては、図 17 (c)に示すように、脂 質膜 2cと、脂質膜 2cの内側に封入された目的物質 3とを備えた 1枚膜リボソーム lc であって、脂質膜 2cが第 2の脂質膜であり、脂質膜 2cの表面に、膜透過性ドメインと してポリアルギニンを有する膜透過性ペプチド (好ましくはポリアルギニンからなる膜 透過性ペプチド)が存在する 1枚膜リボソーム lcが挙げられる。 1枚膜リボソーム lcは 、脂質膜 2cの表面に存在する膜透過性ペプチドを介して、原形を保ったまま (インタ タト (intact)な状態で)、細胞外力 細胞内に移行することができる。細胞内に移行し た後、脂質膜 2cが、その表面に有する膜透過性ペプチドを介して、エンドソーム膜又 はマクロピノソーム膜と結合すると、これを契機として、脂質膜 2cとエンドソーム膜又 はマクロピノソーム膜との膜融合が誘起され、脂質膜 2cの内側に封入された目的物 質 3は、細胞内(細胞質内)に放出される。 [0094] 第 3のベクターの一実施形態であるリボソームとしては、図 17 (d)に示すように、脂 質膜 21dと、脂質膜 21dの外側に位置する脂質膜 22dと、脂質膜 22dの外側に位置 する脂質膜 23dと、脂質膜 21dの内側に封入された目的物質 3とを備えた 3枚膜リポ ソーム Idであって、脂質膜 21d及び 22dが第 1の脂質膜であり、脂質膜 23dが第 2の 脂質膜であり、脂質膜 21d、 22d及び 23dの表面に、膜透過性ドメインとしてポリアル ギニンを有する膜透過性ペプチド (好ましくはポリアルギニンカゝらなる膜透過性ぺプ チド)が存在する 3枚膜リボソーム Idが挙げられる。 3枚膜リボソーム Idは、脂質膜 23 dの表面に存在する膜透過性ペプチドを介して、原形を保ったまま (インタタト (intact )な状態で)、細胞外力 細胞内に移行することができる。細胞内に移行した後、脂質 膜 23dが、その表面に有する膜透過性ペプチドを介して、エンドソーム膜又はマクロ ピノソーム膜と結合すると、これを契機として、脂質膜 23dとエンドソーム膜又はマクロ ピノソーム膜との膜融合が誘起され、リボソームは、エンドソーム又はマクロピノソーム を脱出する。エンドソーム又はマクロピノソームを脱出したリボソームにおいて、脂質 膜 23dはエンドソーム膜又はマクロピノソーム膜との膜融合により消失しているが、脂 質膜 21d及び 22dは保持されている。その後、脂質膜 22dが、その表面に有する膜 透過性ペプチドを介して核の外膜と結合すると、これを契機として、脂質膜 22dと核 の外膜との膜融合が誘起され、リボソームは核の外膜を通過する。核の外膜を通過し たリボソームにおいて、脂質膜 22bは核の外膜との膜融合により消失しているが、脂 質膜 21bは保持されている。核の外膜を通過した後、脂質膜 21bが、その表面に有 する膜透過性ペプチドを介して核の内膜と結合すると、これを契機として、脂質膜 21 bと核の内膜との膜融合が誘起され、脂質膜 21bの内側に封入された目的物質 3は、 核内に放出される。なお、脂質膜 21d又は 22dの表面に存在する膜透過性ペプチド は省略が可能である。
[0095] 各ベクターは、 in vivo及び in vitroの!、ずれにお 、ても使用することもできる。各べク ターを in vivoにおいて使用する場合、投与経路としては、例えば、静脈、腹腔内、皮 下、経鼻等の非経口投与が挙げられ、投与量及び投与回数は、本発明の脂質膜構 造体に保持された目的物質の種類や量等に応じて適宜調節することができる。 実施例 本実施例では、以下の略語を使用する。
BCA : bovine serum albumin
Choi: cholesterol
CHEMS: cholesteryl hemisuccinate
DMSO: dimetyl sulfoxide
DNA: deoxyribonucleic acid
DOPE : 1 , 2— dioleoy卜 sn— glycero— 3— phosphoethanolamine
DOTAP : 1 ,2— dioleoyi— —trimetylammonium propane
DTT : dithiothreitol
D'MEM: dulbecco's modified eagle medium
EDTA: ethylenediamine N,,N,,N,,N,― tetraacetic acid
EGTA: ethylene glycol-bis( β -aminoethyl ether)— N,,N,,N,,N,― tetraacetic acid Em : Emission
EPC: egg yolk L— -phosphatidylcholine
Ex : Excitation
GFP: green fluorescence protein
HBSS : Hank's balanced salt solution
HEPES: 2-[4-(2-Hydroxyethyl)-l -piperazinyl] ethanesulfonic acid
LB : luria- bertani's broth
NBD— DOPE : 1 ,2— dioleoy卜 sn— glycero— 3— phosphoethanolamine— N— (7— nitro— 2— 1 ,3— benzoxadiazol-4-yl)
NLS: nuclear localization signal
NP-40: nonionic detergent
PA : 3—sn— phosphatidic acid
PBS: phosohate-bufFerd saline
PC: Phosphatidylcoline
PLL : Poly-L-Lysine
PS: 3— sn— phosphatidyト L— serine Rho- DOPE: 1 ,2- dioleoyl- sn- glycero- 3- phosphoethanolamine- N- (lissamine rhoda mine B sulfonyl)
STR-R8: stearylated octaarginine
SV40 : Simian Virus 40
rpm: round per minutes
試薬及び実験材料の入手先は以下の通りである。
BCA protein assay kit (PIERCE)
CHEMS (SIGMA)
Cardiolipin (SIGMA)
Cholesterol (AVANTl)
DGDG (SIGMA)
DOPE (AVANTl)
DOTAP (AVANTl)
D' MEM (GIBCO)
EPC (日本油脂)
FCS (GIBCO)
GMl (本研究室で調製)
Galactocerebroside (SIGMA)
Glucocerebroside (SIGMA)
Lactocerebroside (SIGMA)
Luciferase Assay Substrate (Promega)
NBD- DOPE (AVANTl)
Octylglucoside (SIGMA)
PA (SIGMA)
PG (SIGMA)
PI (SIGMA)
PLL (SIGMA)
PS (SIGMA) Protamine sulfate (CALBIOCHEM)
Reporter Lysis Buffer (Promega)
Rho- DOPE (AVANTI)
STR-R8 (京都大学二木史郎先生から入手)
pEGFPluc (本研究室で調製)
[0098] 試薬の調製方法は以下の通りである。
PBS :ダルベッコ PBS(— )(-ッスィ) 4.9gを DDW 500mLに溶解し、高圧蒸気滅菌を行 つた o
LB+kan: Bacto tryptone (和光純薬) 10g、 Yeastextract (和光純薬) 5g及び NaCl(SIG MA) 10gを DDWに溶解し、 1Lとした。高圧蒸気滅菌を行い、 kanamysineを 20mg/mLと なるように加えた。
HEPES buffer (10mM) : HEPES (和光純薬) 119mgを DDW 50mLに溶解し、 IN NaO Hで pH 7.4とした後、フィルターろ過滅菌を行った。
HEPES buffer 5% glucose (10mM, pH 5.5) : HEPES (和光純薬) 119mg及び D- gluco se (片山化学) 2.5gを DDW 50mLに溶解し、 IN NaOHで pH 7.4とした後、クリーンベン チ内でフィルターろ過滅菌を行った。
Import buffer (X 10) : HEPES (和光純薬) 4.77g、 KOAc(Wako) 10.8g、 NaOAc(Wako)
0.25g、 MgOAc(SIGMA) 0.43g及び EGTA'4Na 0.23gを DDWに溶解し、 KOHで pH 7. 3に調整した後、 DDWで lOOmLにメスアップした。使用直前に 200mM DTTを加え、 10 倍希釈し、フィルターろ過滅菌を行った。
200mM DTT: DTT(nacalai tesque) 154.25mgを DTTに溶解し、 5mLとした。 IGEPAL beffer: 0.5% (W/V) NP— 40(SIGMA)、 lOmM NaCl、 3mM MgCl及び lOmM
2
Tris- HC1を混合し、 pH 7.4に調整した。
HBSS :NaCl(SIGMA) 4.0gゝ KC1 0.2gゝ CaCl 0.07gゝ MgSO - 7H O O.lgゝ KH PO 、
2 4 2 2 4 グルコース 0.5g及び NaHCO 0.18gを DDWに溶解し、 NaOHで pH 7.5に調整した後、
3
DDWで 500mLにメスアップした。
[0099] 〔実施例 1〕核膜融合性脂質のスクリーニング
1.核の単離法及び核膜との結合実験系の確立 1-1.はじめに
核膜への融合を評価する上で、核膜への結合は必要不可欠な要素となる。そこで 、核膜融合性脂質のスクリーニングの第一段階として、脂質の核膜への結合を評価 することにした。過去の報告に、 PA、 PS等を核膜と融合させている報告があることから (R. Lawaczeck.: Intraction or negatively charged liposomes with nuclear membranes: adsorption, lipid mixing and lysis of the vesicles. Biochim. Biophys. Acta. 903 (1987) 123-131)、本実施例では電荷、特に負電荷を有する脂質に着目した。また、核に存 在するレクチンに糖鎖が親和性を有することが報告されているため、構造中に糖鎖を 持つ脂質もスクリーニングに用いた。その他、核膜に存在する脂質をスクリーニング に用いた。なお、核膜に含まれる脂質は、 Cardiolipin 4%、 PE 13%、 PC 55%、 PI 10%、 P S 3%、 PA 2%、リゾグリセ口リン脂質 3%、 SM 0.5%である。
[0100] 1-2.核の単離法の確立
1-2-1.細胞培養
(1) HeLa細胞の立ち上げ
あらかじめ 50mLのコ-カルチューブに 20mLの D'MEM (10%非働化 FCSを含む)を 入れておき、 HeLa細胞ストックを溶かしながら混ぜた。そのチューブを 1000rpm、 25°C 、 5分間遠心し、上清を取り除いた後、 10mLの D'MEMをカ卩えて懸濁させ、 10cmデイツ シュにまいて、 37°C、 COインキュベーターで培養した。
2
[0101] (2)細胞の継代
10cmディッシュ中の D'MEMをァスピレーターにて除き、 PBS (―) 5mLで洗った。 PBS (一)を除き、 PBS (—) 2mLと 0.5%トリプシン/ 5 μ L EDTA溶液 200 μ Lを加え、 37°C、 5% COインキュベーターで 5分間インキュベートし、ディッシュの底に付着した細胞をは
2
がした。 8mLの D'MEMをカ卩え、懸濁させた後、 50mLのコ-カルチューブに移して 100 0rpm、 25°C、 5分間遠心した。上清を除き、 D'MEMを 10mLカ卩えて懸濁させたものをセ ルカウントし、適当な濃度になるように細胞溶液を D'MEMで希釈して 10cmディッシュ にまいた。なお、次の継代までに何日も培養するときは、 D'MEMを 2日に 1回は交換 するようにした。
[0102] (3)セノレカウント 細胞を D'MEMで懸濁させた懸濁液を 1.5mLサンプルチューブに 10 Lとり、 0.3%トリ パンブルー溶液 10 Lを混合してよくピペッティングした。その溶液を 10 Lとり、血 球係数板に注入し、カウントした。
[0103] (4)細胞のストック調整
70%コンフルェントな細胞を用いて行った。 10cmディッシュ中の D'MEMをァスピレ 一ターにて除き、 PBS (―) 5mLで洗った。 PBS (―)を除き、 PBS (—) 2mLと 0.5%トリプシ ン /5 μ L EDTA溶液 200 μ Lを加え、 37°C、 5% COインキュベーターで 5分間インキュ
2
ペートし、ディッシュの底に付着した細胞をはがした。 8mLの D'MEMを加え、懸濁させ た後、 50mLのコ-カルチューブに移して 1000rpm、 25°C、 5分間遠心した。上清を除 き、 D'MEMを 10mLカ卩えて懸濁させたものをセルカウントし、再度 1000rpm、 25°C、 5分 間遠心した。上清を除去した後、 D'MEM:DMSOを 9:1で混合した溶液で、細胞が目 的濃度となるように希釈し、懸濁した後、キャップ付 1.5mLサンプルチューブに lmLず つ分注してから、イソプロパノールの入った容器に移し、 - 80°Cフリーザーで 4時間以 上保存し、その後、液体窒素の入ったセルストッカーに保存した。
[0104] 1-2-2.核の単離法
(1)プロトコール案
(a) IGEPAL bufferを用いたプロトコール
前日に 6 X 105 cells/dishの濃度の HeLa細胞を 6cmディッシュにまいておいた。 IGEP AL buffer及び PBSは室温に戻しておいた。細胞を PBS (—)で 2回洗い、 PBS (—)を 500 L添加した。それからセルスクレーパーで細胞を集め、 1.5mLサンプルチューブに 回収し、 1000rpm、 4°C、 5分間遠心した。上清をァスピレーターで除去後、 IGEPAL b efferを 500 L添カ卩し、ピペッティングした後、 1400g、 4°C、 5分間遠心した。ァスピレ 一ターで上清を除去後、再び IGEPAL befferを 500 μ L添加し、ピペッティングした後、 1400g、 4°C、 5分間遠心した。得られた単離核は Import buffer〖こ懸濁した。
[0105] (b) HBSSを用いたプロトコール (J. Hasbold.: Flow cytometric cell division tracking us ing nuclei. Cytometry. 40 (2000) 230—237)
2日前に適当濃度の HeLa細胞を 10cmディッシュにまいておいた。 HBSS/0.1% BSA 溶液は実験前に氷上に置いておいた。細胞を PBS(— )/0.1% BSA/0.1% NaNで 2回洗 い、 PBS(-)/0.1% BSA/0.1% NaNを 500 L添加した。それからセルスクレーパーで
3
細胞を集め、 1.5mLサンプルチューブに回収し、 1000rpm、 4°C、 5分間遠心した。上 清をァスピレーターで除去後、 100 L HBSS/0.1% BSAを添カ卩し、タッピングした後、 さらに 100 μ L HBSS/0.1% BSA/0.2% NP- 40溶液を加え、氷上で 5分間インキュベート した。その後、 800 L HBSS/0.1% BSAを添カ卩し、 10,000rpm、 4°C、 30秒間遠心した。 ァスピレーターで上清を除去後、 lmL HBSS/0,02% NP- 40をカ卩え、懸濁し、 10,000rp m、 4°C、 30秒間遠心した。ァスピレーターで上清を除去後、再び lmL HBSS/0,02% N P- 40を加え、懸濁し、 10,000rpm、 4°C、 30秒間遠心し、ァスピレーターで上清を除去 した。得られた単離核は Import bufferに懸濁した。
[0106] (c)へキストによる核染色
ノッファーで 50倍希釈したへキス Klmg/lmL) 10 Lに適当濃度に希釈した核単離 サンプル 10 Lを混合し、室温で 10分間インキュベートした。その後、セルカウントに 用いた血球係数板に注入し、蛍光顕微鏡で観察しながらカウントした。
[0107] (2)考察
IGEPAL bufferを用いたプロトコールで操作を行った結果、操作中に核が凝集して しまい、全く攪拌できなくなってしまった。主な原因として IGEPAL befferに含まれる NP
-40により細胞が凝集しやすくなつていたこと、遠心速度が速すぎたことが原因と考え られる。そこで、 2回目の 1400g、 4°C、 5分間の遠心条件を 2000rpm、 4°C、 5分間に変 更してみたが、やはり凝集は起こってしまい、特に変化は見られな力つた。次に、 2回 目の IGEPAL befferを 500 μ L添加の際、 bufferを NP-40の含まれていないものに変え てみたところ、やはり凝集は見られたが若干懸濁できるようになった。 HBSSを用いた プロトコールで操作を行った結果、凝集は特に起こらず、容易に懸濁できた。前日に
2 X 106cells/dishでまいた細胞力も核を抽出し、へキストでラベルし、カウントした結果 は 1.329 X 106nucsであった。まいた細胞の濃度力も算出した抽出効率は 69.5%であ つた。遠心の速度が 10,000rpmでは早すぎて核以外の分画も沈殿してしまう可能性も あること力ら、 l,000rpm、 4°C、 5分間に変更してみたところ、ペレットがゆるすぎてァス ピレーターで上清とともに核まで取ってしまう恐れがあつたのでこの変更はやめること にした。今度は l,400g、 4°C、 1分に変更したところ、適度に攪拌しやすい硬さのペレツ トとなり、顕微鏡で観察した結果もほかの分画の存在は確認できなカゝつたので、この 条件を今後採用することにした。また、継代する細胞数は、 2日前にまく場合は 2.5 X 1 06 cells/dish, 3日前にまく場合は 1.5 X 106 cells/dishに決定した。
[0108] (3)核抽出プロトコールの決定
2日前に適当濃度の HeLa細胞を 10cmディッシュにまいておいた。 HBSS/0.1% BSA 溶液は実験前に氷上に置いておいた。細胞を PBS(— )/0.1% BSA/0.1% NaNで 2回洗
3 い、 PBS(-)/0.1% BSA/0.1% NaNを 500 L添加した。それからセルスクレーパーで
3
細胞を集め、 1.5mLサンプルチューブに回収し、 1000rpm、 4°C、 5分間遠心した。上 清をァスピレーターで除去後、 100 L HBSS/0.1% BSAを添カ卩し、タッピングした後、 さらに 100 μ L HBSS/0.1% BSA/0.2% NP- 40溶液を加え、氷上で 5分間インキュベート した。その後、 800 L HBSS/0.1% BSAを添カ卩し、 l,400g、 4°C、 1分間遠心した。ァス ピレーターで上清を除去後、 lmL HBSS/0.02% NP-40を加え、懸濁し、 l,400g、 4°C、 1分間遠心した。ァスピレーターで上清を除去後、再び lmL HBSS/0.02% NP-40を加 え、懸濁し、 l,400g、 4°C、 1分間遠心し、ァスピレーターで上清を除去した。得られた 単離核は Import bufferに懸濁した。
[0109] 1-3.核膜との結合実験の(Binding assay)系の確立
1-3-1.膜標識リボソームの調製
(1) lipid: Chol=2:l
10mM脂質ストック: 10mM Choiを 2:1のモル比で混合し、総脂質濃度の lmol%量の N BD- DOPEの CHC1溶液を添加し、さら〖こ CHC1を添加後、窒素ガス下で乾燥させ、 li
3 3
pid filmを作成した。内部水層として import bufferを、総脂質濃度 2mMになるように添 加し、水和させた後、超音波処理を行った。
(2) lipid:DOPE=2:3
10mM脂質ストック: 10mM DOPEを 2:1のモル比で混合し、総脂質濃度の lmol%量の NBD- DOPEの CHC1溶液を添カ卩した。以下は (1)と同じ。
3
[0110] 1-3-2. Binding assay実験方法
1-2- 2項の操作法で核を単離し、へキストで染色後、核数をカウントした。 1.5mLサ ンプルチューブ内で、約 5.0 X 105個の核に probe lipをそれぞれ 20 μ Lずつ添加し、 im port bufferをカ卩え、 200 しとした。また、蛍光強度の最大値として 0.5% Triton溶液 18
0 μ Lに同様に probe lipをそれぞれ 20 μ Lずつ添加した。それぞれのサンプルを 37°C
、 1時間インキュベート後、 1400g、 4°C、 1分間遠心し、 2回 washした。その後、 100 L の 0.5% Triton溶液で懸濁し、 530nmでの蛍光強度を測定した。核膜との結合率は下 記の式に従って算出し、用いた核の個数は 5.0 X 105個に補正した。
結合率 (%) = (核と結合したリボソームの蛍光強度)/ (用いたリボソームの最大蛍光強度
) X 100
[0111] 1-4.核膜結合性脂質のスクリーニング (実験結果)
1-4-1.電荷による核膜結合能評価
電荷による核膜への影響を調べる目的で以下の脂質を用いた。
EPC (土), SM (土), DOTAP (+), PA (一), PS (一), PI (一), Cardiolipin (一), PG ( 一), CHEMS (一)
各脂質と Choi又は DOPEとを組み合わせてリボソームを調製し、核膜に対する結合 率を測定した。結果を図 1に示す。図 1に示すように、中性脂質、特に EPCでは結合 率が非常に低くかった。また、正電荷脂質では結合率が高力つた。これは、核膜を構 成する脂質に負電荷のものが多く含まれて 、ることから、静電的相互作用によるもの であると考えられる。一方、負電荷の脂質でも高い結合が見られた。また、 Choiを主 体としたリボソームでも DOPEを主体としたリボソームでも同程度の結合率であった。
[0112] 1-4-2.その他の細胞機能性脂質による核膜結合能評価
次に、電荷ではなく他の因子による結合能への影響を評価するため、核膜にも存 在し、生理的な機能に関する脂質である GM1、核に存在するレクチンとの相互作用 が期待される、糖残基を含む脂質である cerebroside等を用いて実験を行った。ここで 用いた脂質及び界面活性剤を下記に示した。
Ml, DGDG, Galactocerebroside , Glucocerebroside , Lactocerebroside, Octylgluco side
各脂質と EPC/Chol又は EPC/DOPEとを組み合わせてリボソームを調製し、核膜に 対する結合率を測定した。結果を図 2に示す。図 2に示すように、どれも結合率が非 常に低力つた。生理的機能には核との親和性のみではなぐ細胞質因子が必要であ ると考免られる。
[0113] 1-5.まとめ
以上の実験から、核の単離法及び核膜との結合実験方法を確立した。また、実験 結果より、単離した核膜への結合には電荷が必要であることが示唆された。核膜にお ける生理機能に関する脂質の作用、糖残基との相互作用等は、単離した試験管内 の条件下では、核移行に関連のある Importinや ATP等が存在しな!、ために起こらな いと考えられる。したがって、以降の実験には電荷を持つ脂質を使用することにした。
[0114] 2. FRETを用いた核膜融合脂質の検証実験系の確立
2-1.はじめに
FRETは 2種の蛍光物質が近接する際に、それぞれの励起波長と蛍光波長との相 互作用により観測される現象である。すなわち、 2種の蛍光物質が互いに近接してい るとき、一方の蛍光物質 (A)を励起することで発せられる蛍光波長が、もう一方の蛍光 物質 (B)の励起波長に均衡している場合には、(B)がその蛍光波長により励起されて 蛍光を発し、(A)の蛍光が観測されなくなる現象である。本研究では、 NBDと Rhoの 2 種の蛍光物質を導入してリボソームを調製した。リボソームが核膜と融合して 、な 、と きには、 NBDに由来した蛍光エネルギーが Rhoへ移動し、 NBDの蛍光が抑制され Rho の蛍光波長である 590nmの蛍光が上昇する。一方、核膜との融合が起こると 2つの蛍 光物質間の距離が広がり、 Rhoへのエネルギーの移動が解消され、 NBDの蛍光波長 である 530nmの蛍光が回復する。この原理を利用し、 1章での実験に用いた電荷を有 する脂質を用いて蛍光ラベルリボソームを調製し、核膜との融合能を評価した。
[0115] 2-2. FRETを用いた核膜融合性脂質の検証
2-2-1.リン脂質の定量法
単離した核の濃度とリボソームの濃度をそろえるため、核のリン脂質を定量した。定 量にはリン脂質 C-テストヮコーを用いて、添付の操作方法に従って操作し、測定した
[0116] 2-2-2.蛍光脂質の条件検討
最も感度の高!、FRET解除の様子を観測するために、蛍光脂質濃度を!、くつか変 えて検討した。表 1に示す組成で probe Lipを作成した。 [0117] [表 1]
NBD-DOPE Rho- DOPE
2 mol% lmol %
1. 5 mol% 0. 5 mol%
1 raol 0. 5 mol%
[0118] (1) Non-probe Lipの調製(pH 7.4又は pH 4.7で調製)
EPC 6.65mg (8.65 μ mol)及び Choi 1.7mg (4.35 μ mol)をとり、 CHC1 2.5mLに溶かし
3
、 voltex後、 ImLずつガラス試験管 2本に入れた。それぞれ窒素ガス下で乾燥させ、 li pid filmを作成し、 PBS (―)を ImLずつ加え、 10分間水和させた後、超音波処理を行い 、リボソームを調製した。さらに、 PBS(— ) (pH 7.4又は 4.7)により 2.5倍希釈した。(最 終総脂質濃度 2mM)
[0119] (2) Probe Lipの調製
10mM DOPE 30 μ L及び 10mM CHEMS 20 μ Lをガラス試験管にとり(脂質濃度 0.5 μ mol)、 NBD-DOPE x mol%量及び Rho- DOPE y mol%量(表 1参照)添加後、さらに C HC1を添加し、窒素ガス下で乾燥させ、 lipid filmを作成した。 PBS (—)(pH 7.4)を 250
3
μ Lカ卩えて 10分間水和させ、超音波処理によりリボソームを調製した。
[0120] (3) FRETの解析
1.5mLサンプルチューブ内で、上記により調製したそれぞれ 2 mMの probe Lip及び non-probe Lipを、 probe Lip:non— probe Lip=l:9となるよつに混合した。ま 7こ、 FRETコ ントロールとして、 probe-Lip:PBS=l:9、最大蛍光強度用コントロールとして、 probe-Li p:0.5% Triton(pH 7.4)=1:9をそれぞれ混合し、 37°C、 1時間インキュベートした。その 後、 pHを IN HC1〖こより調整し、 ex: 470nm、 em: 530nm、 590nmにおける蛍光強度を 測定した。それぞれの 530nmにおける蛍光強度により、 Transfer Efficiencyを下記の 式に従って算出した。
TF = (F-F0)/(Fmax-F0) X 100
TF: Transfer Efticiency
F:サンプルの蛍光強度 F0 :ブランクの蛍光強度
Fmax:最終濃度 0.5% Tritonによりリボソームを破壊したときの蛍光強度
[0121] 結果を表 2に示す。 DOPE/CHEMSは pH依存的に膜融合する脂質なので、 pH4.7 ではほとんど膜融合が見られず、 pH7.4で融合が見られるはずである。表 2に示すよう に、 pH4.7と pH7.4の TFの差が最も大きいのは NBD:Rho=l:0.5のときであり、 pH7.4で の TFが最も大きくなつて 、ることから、この条件が最も FRET解除の観測の感度が良 いと考えられ、以後この濃度を用いることにした。
[0122] [表 2]
Figure imgf000039_0001
[0123] 2-2-3.膜標識リボソームの調製
(1) lipid: Chol=2:l
10mM脂質ストック: 10mM Choiを 2:1のモル比で混合し、総脂質濃度の lmol%量の NBD- DOPEの CHC1溶液、 0.5mol%量の Rho- DOPEの CHC1溶液を添カ卩し、さらに C
3 3
HC1を添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層として import
3
bufferを、総脂質濃度 2mMになるように添加し、水和させた後、超音波処理を行った。
[0124] (2) lipid:DOPE=2:3
10mM脂質ストック: 10mM DOPEを 2:1のモル比で混合し、総脂質濃度の lmol%量 N BD- DOPEの CHC1溶液、 0.5mol%量の Rho- DOPEの CHC1溶液を添カ卩した。以下は(
3 3
1)と同じ。
[0125] 2-2-4. FRET
1-2-2項の操作法で単離した核でリン脂質の定量を行 、、核中に含まれる PCの量 を求めた。核膜に含まれる PCの量は文献より 55%であるので、これより核の総脂質濃 度を求め、リボソームと同じ濃度(2mM)に希釈した。 1.5mLサンプルチューブ内で、 2 -2-3項で調製した probe Lip及び 2mM単離核溶液を、 probe Lip:核 =1:9で混合し、 37 °C、 1時間インキュベートした。また、コントロールとして、 probe- Lip:Import buffer=l:9 、最大蛍光強度用コントロールとして、 probe-Lip:0.5% Triton=l:9をそれぞれ混合し、 同様に 37°C、 1時間インキュベートした。インキュベート後に、それぞれのサンプルを 0 .ImMに希釈し、蛍光強度 (励起波長: 470nm、吸光波長: 530nm、 590nm)を測定した 。得られた蛍光強度の値を 2mMに算出しなおし、 530nmでの蛍光強度により、 TFを 2- 2-2項に示した式力 算出した。
[0126] 2-3核膜融合性脂質のスクリーニング (実験結果)
1-4項の実験結果により核膜との結合の見られた脂質及び EPCを用いて FRET解析 を行った。実験には以下の脂質を用いた。
EPC (土), SM (土), DOTAP (+), PA (一), PS (一), PI (一), Cardiolipin (一), PG ( 一), CHEMS (一)
これらの脂質について 2-2-3項の操作法でリボソームを調製し、 TFを測定した。結 果を図 3に示す。図 3に示すように、大まかに見ると、 Choiを主体とした脂質の融合能 が低いのに対し、 DOPEを主体とした脂質では比較的高い膜融合能を示している。伹 し、 DOPE主体の脂質では解析不可能なスペクトルが多力つたり、データを取得でき なかったりしたので、良い結果とはいえない。 DOPEはそれ自体がとても不安定な構 造をしており、他の脂質を DOPEと組み合わせることで逆へキサゴナル構造をとりやす くするため、膜融合能が上昇する。よって解析不可能なものについてはおそらくリポソ ームがインキュベーション中に壊れており、うまく解析できなかったものと思われる。 C hoi主体の脂質は FRET解除が見られないスペクトルが再現良く見られるので、こちら のデータは正しいと思われる。 Choiは脂質に組み合わせることで、膜の裏打ち構造と して機能するため、脂質が硬くなる。このことからも膜融合は下がると予想されたが、 C hoi主体の脂質の中で比較的膜融合の高い Cardiolipin、 PI、 PGについては、脂質そ のものの膜融合能が高 、ために Choiによりリボソームを硬くしても、高 、融合が見ら れたものと思われる。リボソームを構成する脂質のうち DOPEが増えることで、若干膜 融合能に何らかの影響があり、融合能が減少してしまったの力もしれな 、。
[0127] 2-4.まとめ
以上の実験により、 FRETを用いた核膜融合性脂質の検証実験系を確立した。また 、実験結果より、電荷を持つ脂質では結合と同様に核膜との融合も起こることが認め られた。しかし、実験中にリボソームが破壊されている可能性もあり、インキュベートの 仕方を工夫する必要があると思われる。 DOPE、 Choiの脂質中の割合等、脂質組成 についても、さらに膜融合能の上昇が見られるような条件を検討することも重要である と考えられる。
[0128] 3. STR- R8修飾リボソームの核膜親和性評価
3-1.はじめに
STR-R8(CH (CH ) CONHRRRRRRRR)は非常に塩基性の高いペプチドである。 ST
3 2 16
R-R8修飾リボソームは Macropinocytosisにより取り込まれ、脂質膜の構造を保持した まま核まで到達されることが報告されて ヽる(二木四郎:細胞膜を透過する塩基性べ プチド.蛋白質核酸酵素. 47 (2002) 1415-1419)。また、 STR-R8はリボソーム溶液 中に添加することで容易にリボソームに修飾され、正電荷を持たせることができ、これ により核膜への結合性が向上する。すなわち、 STR-R8を修飾してもなお核膜への融 合能を保持し、結合能の上昇した脂質を用いることで、効率的な遺伝子ベクターが 構築できると考えられる。そこで、本研究においては、 STR-R8修飾による核膜への親 和性の変化及びその結合能と融合能の相関を得ることを目的とし、実験を行った。な お、リボソームを構成する脂質の割合は、 STR-R8を修飾しやすい、 Lipid: DOPE(Ch ol)= 9:2で調製した。
[0129] 3-2. STR- R8修飾リボソームの核膜親和性評価
3-2-1.膜標識リボソームの調製
(1) Binding assay用リボソームの調製
(a) Lipid: Chol= 9:2
ImM脂質ストック: ImM Choiストックを 9:2のモル比で混合し、総脂質濃度の lmol% 量の NBD- DOPEの CHC1溶液を添加し、さら〖こ CHC1を添加後、窒素ガス下で乾燥
3 3
させ、 lipid filmを作成した。内部水層として import bufferを、総脂質濃度 0.55mMにな るように添加し、水和させた後、超音波処理を行った。さらに STR-R8で修飾する場合 は、超音波処理後のリボソーム溶液に 5mol%量の STR-R8を添カ卩し、ピペッティング後 、 30分間室温で放置した。
(b) Lipid:DOPE=2:9 ImM脂質ストック: ImM DOPEストックを 2:9のモル比で混合し、総脂質濃度の lmol %量の NBD-DOPEの CHC1溶液を添カ卩した。以下は (1)と同じ。
3
[0130] (2) FRET解析用リボソームの調製
(a) Lipid: Chol= 9:2
ImM脂質ストック: ImM Choiストックを 9:2のモル比で混合し、総脂質濃度の lmol% 量の NBD- DOPEの CHC1溶液、 0.5mol%量の Rho- DOPEの CHC1溶液を添カ卩し、さら
3 3
に CHC1を添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層として imp
3
ort bufferを、総脂質濃度 0.55mMになるように添加し、水和させた後、超音波処理を 行った。さらに STR-R8で修飾する場合は、超音波処理後のリボソーム溶液に 5mol% 量の STR-R8を添カ卩し、ピペッティング後、 30分間室温で放置した。
(b) Lipid:DOPE=2:9
ImM脂質ストック: ImM DOPEストックを 2:9のモル比で混合し、総脂質濃度の lmol% 量の NBD- DOPEの CHC1溶液、 0.5mol%量の Rho- DOPEの CHC1溶液を添カ卩した。
3 3
以下は (1)と同じ。
[0131] 3-2-2. Binding assay
ここでは、結合率の高かった 1-4-1項の脂質を用いて、 STR-R8 +/—について検 討を行った。操作は 1-3-2項に従って行った。結果を図 4に示す。
図 4に示すように、ほとんど全ての脂質において、核膜との結合の上昇が見られた。 なお、 DOPE主体の脂質については 1-4-1項の結果と比較するとかなり結合率が下が つて 、るが、これは脂質中の DOPEの割合が先ほどよりも増して 、るために起こってし まったものと思われる。 DOPEの構造的な何らかの性質が原因で、結合しに《なって しまったの力もしれない。逆に Choi主体の脂質では、 1-4-1項よりも Choiの割合が減 少して 、るため膜の流動性が上昇し、結合しやすくなつたものと思われる。
[0132] 3-2-3. FRET解析
3- 2- 2項と同じ脂質を用いて FRETの解析を行った。操作は 2- 2- 4項の手順で行つ た。 TFに関する結果を図 5に示す。
図 5に示すように、 STR-R8修飾により、結合率とは異なり、 TFのすベての脂質にお ける上昇は認められな力つた。逆にまったく FRETの解除が起こらなくなってしまうもの もあった。 DOPE/PGは脂質組成が Lipid:DOPE=2:3のときよりもかなり融合能が減少 してしまったので、この脂質においては、 DOPEと組み合わせることで融合能が減少 するという性質を持つことが示唆された。しかし、 STR-R8修飾前はほとんど結合も融 合も見られな力つた DOPE/EPCや DOPE/SMは飛躍的に融合能が上昇していた。 ST R-R8により電荷を持つようになったことでこれまで見られな力つた細胞への親和性が 見られるようになったと考えられる。
これまでに行った実験の中で、核膜への融合能が特に低い Lipid:Chol=2:lと、融合 能の高い Lipid:DOPE=2:9及びその STR-R8修飾リボソームにおける結合能と融合能 との相関を解析した。結果を図 6に示す。図 6に示すように、いくつかの例外はあるが 、大まかに見て Choiリボソームよりも DOPEリボソームのほうが傾きが大きいことがわか る。さら〖こ、 STR- R8添加により、その傾きをだいたい保持したまま右に移動している。 このことから、 DOPEを用いた脂質のほうが単位結合量あたりの核膜融合能が大きい ことが示唆され、さらに STR-R8により結合能を兼ね備えたことが示唆された。これによ り、負電荷脂質では DOPE/CHEMS、 DOPE/PA, DOPE/PSが特に優れた融合能を 持つことが明らかになった。また、中性脂質である EPCや SMの STR-R8修飾による融 合能、結合能の上昇も顕著にわ力るようになった。
[0133] 3-3. STR-R8修飾リボソームの核膜親和性の視覚化
3-3-1. GFP封入膜標識リボソームの調製
ImM脂質ストック: ImM DOPEストックを 9:2のモル比で混合し、総脂質濃度の 0.5mo 1%量の Rho-DOPEの CHCl溶液を添加し、さら〖こ CHC1を添加後窒素ガス下で乾燥さ
3 3
せ、 lipid filmを作成した。内部水層として、 10mM HEPESで 0.125mg/mLに希釈した G FPタンパクを、総脂質濃度 0.55mMになるように添加し、水和させた後、超音波処理 を行った。さらに超音波処理後のリボソーム溶液に 5mol%量の STR-R8を添カ卩し、ピぺ ッティング後、 30分間室温で放置した。
[0134] 3-3-2.共焦点レーザー顕微鏡による核膜親和性の解析
(1)操作方法
実験には次の脂質糸且成のリボソームを用いた。
EPC/Chol/STR— R8, DOPE/CHEMS/STR-R8, DOPE/PA/STR— R8, DOPE/PS/ST R-R8
これらのリボソームを 3-3-1項の手順で調製した。また、 1-2-2項で単離した核を同 量のへキストと混合し、室温で 10分間インキュベートして染色した。核の数をカウント した後、 2-2-4項と同様にリン脂質の定量によりリボソームと脂質濃度をそろえた。リポ ノーム:核 =9:2となるように混合し、 37°Cで 1時間インキュベート後、 1400g、 4°C、 1分間 遠心し、 Import bufferで 2回 washした。適量の Import bufferに懸濁し、スライドガラスに 適量を滴下した後、カバーガラスをかけ、マ-キュアで固定した。このスライドガラスを 、 CLSMにより観察した。
[0135] (2)観察結果
観察の結果を図 7に示す。膜融合の見られない EPC/Chol/STR-R8においては、リ ポソームの赤と内封した GFPの緑が共局在して核膜の周りにドット状に観察された。こ れに対し、他の 3種の膜融合性リボソームは、リボソームの赤が単独で存在するもの が多ぐさらに GFPの緑が単独で核の輪郭に沿って分布しているのが見られる。この こと力 、 DOPE/CHEMS, DOPE/PA、 DOPE/PSが核膜に融合し、内封した GFPの一 部が核の二重膜構造の間隙に分布していることが示唆された。また、 DOPE/CHEMS にお 、ては GFPの緑と核の青が共局在して水色に見られる部分もあることから、核内 への融合による移行も示唆された。
[0136] 3-4.まとめ
STR-R8を修飾することにより、結合率が上昇し、膜融合能はほとんど変化しない、 あるいは上昇した脂質をいくつか見つけることができた。また、予想と反して中性脂質 においても STR-R8修飾後の結合、融合の上昇を見ることができた。共焦点画像から は、膜融合を視覚化することに成功し、核膜への融合による遺伝子送達への可能性 が大きく上昇した。
[0137] 〔実施例 2〕核膜融合性脂質のスクリーニング
1. FRETを用いたスクリーニング
1-1.膜標識リボソームの調製
(1) DOPE:lipid=9:2
ImM DOPE:lmM脂質ストックを 9:2のモル比で混合し、総脂質濃度の lmol%量の N BD- DOPEの CHC1溶液、 0.5mol%量の Rho- DOPEの CHC1溶液を添カ卩し、さらに CH
3 3
CIを添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層として 10mM H
3
EPES bufferを、総脂質濃度 0.55mMになるように添カ卩し、水和させた後、超音波処理 を行った。
[0138] (2) DOPE:lipid=5:5
ImM DOPE:lmM脂質ストックを 5:5のモル比で混合し、総脂質濃度の lmol%量の N BD- DOPEの CHC1溶液、 0.5mol%量の Rho- DOPEの CHC1溶液を添カ卩し、さらに CH
3 3
C1を添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層として 10mM H
3
EPES bufferを、総脂質濃度 0.55mMになるように添カ卩し、水和させた後、超音波処理 を行った。
[0139] 1-2. FRETによる膜融合能評価
HeLa細胞力 核を単離し、リン脂質定量を行い、核中に含まれる PCの量を求めた 。核膜に含まれる PCの量は文献より 55%であるので、この仮定の下に核の総脂質濃 度を求め、 0.13mMとなるように希釈した。(実施例 1の 1/4)
1.5mLサンプルチューブ内で、 1-1項で調製した probe Lip及び単離核溶液を、 pro be Lip:核 =1:9で混合し、 37°C、 30分間インキュベートした。また、コントロールとして、 p robe-Lip: Import buffer=l:9、最大蛍光強度用コントロールとして、 probe- Lip :0.5% Tri ton=l:9をそれぞれ混合し、同様に 37°C、 30分間インキュベートした。インキュベート 後に、それぞれのサンプルについて蛍光強度 (励起波長: 470nm、吸光波長: 530nm 、 590nm)を測定し、スペクトルを得た。また、ここで得られた 530nmでの蛍光強度によ り、 TFを実施例 1と同様に算出した。
[0140] 1-1-3.結果
以下に示した脂質を用いて 1-1項の操作法でリボソームを調製し、実験を行った。 T Fに関する結果を図 8に示す。
EPC (土), SM (土), DOTAP (+), PA (一), PS (一), PI (一), Cardiolipin (一), PG ( 一), CHEMS (一)
図 8に示すように、 DOPE:lipid=9:2よりも DOPE:lipid=5:5のほうが融合能が高いのが わかる。つまり、膜融合性脂質である DOPEの割合が減少したほうが核膜との融合能 が上昇するという結果が得られた。また、特に PAと CLでは大きな融合能の上昇が見 られた。正電荷脂質である DOTAPでも融合能の上昇が見られた力 これは DOTAP の割合を増やすことで正電性が上昇したため、負電荷を持つ核膜との親和性が上昇 したものと思われる。融合能の高かった PA及び CL並びに CHEMSについて、 DOPEを EPCに変えることで膜融合性脂質 DOPE非依存的な融合能を検討した。結果を図 9 に示す。図 9に示すように、 EPC/CHEMSはほとんど膜融合しなかったのに対し、 PA、 CLは DOPEを EPCに変えても高い融合能が保持された。
以上の結果より、負電荷の脂質の核膜への親和性が示され、さらに PA、 CLという核 膜への特に親和性の高い脂質をスクリーニングすることに成功した。
[0141] 2.共焦点レーザー顕微鏡による膜融合性脂質の視覚化
2-1. GFP封入膜標識リボソームの調製
ImM脂質ストック: ImM DOPEストックを指定のモル比で混合し、総脂質濃度の 0.5 mol%量の Rho- DOPEの CHC1溶液を添加し、さら〖こ CHC1を添加後窒素ガス下で乾
3 3
燥させ、 lipid filmを作成した。内部水層として、 10mM HEPESで 0.125mg/mLに希釈し た GFPタンパクを、総脂質濃度 0.55mMになるように添加し、水和させた後、超音波処 理を行った。
[0142] 2-2.共焦点レーザー顕微鏡による解析
ここでは融合性脂質として DOPE/PA = 5:5 DOPE/CL = 5:5を用いた。また、コント ロールとして EPC/Chol/STR- R8=9:2:0.55 (結合〇 融合 X) EPC/CHEMS=5:5 (結 合 X 融合 X )を用いた。これらのリボソームを 2-1項の手順で調製した。また、単離し た核を、同量のへキストと混合し、室温で 10分間インキュベートして染色した後、リン 脂質の定量によりリボソームと脂質濃度が同じになるようにメスアップした。リボソーム: 核 =9:2となるように混合し、 37°Cで 1時間インキュベート後、 1400g、 4°C、 1分間遠心し 、 Import bufferで 2回 washした。適量の Import bufferに懸濁し、スライドガラスに適量を 滴下した後、カバーガラスをかけ、マ-キュアで固定した。このスライドガラスを、共焦 点レーザー顕微鏡により観察した。結果を図 10に示す。
[0143] 図 10に示すように、核膜とのまったく親和性のない EPC/CHEMSでは核の周りにほ とんど蛍光が見られなかったのに対し、核への結合能のみが高 、EPC/Chol/STR-R 8は核の周りに脂質の赤と内封した GFPの緑が共局在した黄色のドットとしていくらか 見られた。一方核膜との融合能の高い PA、 CLでは核の周りにリボソームの赤が単独 で存在するものが多ぐ GFPの緑が核の輪郭に沿って分布していた。また、 CLでは内 封した GFPの一部が核の中に局在して!/、ることも示唆される図が得られた。このことか ら、 DOPE/PA、 DOPE/CLで構成されたリボソームが核膜に融合し、内封した GFPが 一部核内に到達しうることが示唆された。これは核を膜融合によって突破しうることを 確信させるものであり、今後の遺伝子デリバリーに大いに貢献できるものであると思わ れる。
[0144] 〔実施例 3〕エンドソーム脱出促進脂質探索
蛍光スペクトルと励起スペクトルが重なる 2種類の蛍光色素(NBDと Rhodamine)を脂 質膜に含有するリボソームは、通常リボソーム単独では、 NBDの励起波長の光を照 射しても NBDの蛍光は観察されない(NBDと Rhodamineが近接して共存する場合、 NB Dの: ¾:光エネノレギ一が Rhodamineの励起に使われるため。 Fluorescence Resonance Energy Transfer: FRETと呼ばれる)。このリボソームが他の脂質膜 (例えば、細胞膜) と膜融合を起こすと、リボソーム脂質は受け手側脂質膜により希釈されるため、リポソ ーム膜中の NBDと Rhodamineの距離が離れ、 FRETは解消される。本研究では、この 現象を利用して、細胞膜 (エンドソーム膜)に対して高い膜融合能を有する脂質 (ェン ドソーム脱出促進脂質)の探索を行った。なお、本研究では、リボソームと細胞を接触 させる条件を、初期エンドソーム内 pH 6.5にすることで、エンドソーム環境を再現し、 FRETを用いてリボソームとエンドソーム膜との膜融合を定量的に評価した。
[0145] 1.方法
(1)リボソームの調製
試験管内で NBD- DOPE , Rhodamine-DOPEで二重標識した Lipid Filmを作成し HE PES-Glucose(5%)を加えて十分に水和させた後、バスタイプのソ-ケ一ターで超音波 処理を行った。 STR-R8は必要に応じてカ卩えた (脂質量の 5, 10, 20 mol%)。リボソーム 終濃度は 0.55mM、 NBD- DOPE , Rhodamine- DOPEは総脂質量の 1%、 0.5%である。 リボソーム調製後、粒子径と Ζ電位を測定した。なお、リボソームの脂質組成は図 11 に示すとおりであり、カツコ内の数値はモル比を表す。 [0146] (2)サンプルの調製'蛍光強度の測定
実験 24時間前に、 6 well plateに lwellあたり 5 X 105個の NIH3T3を platingして、 24時 間インキュベーションした。 24時間インキュベーションした後、培地 DMEMを除去し D MEM (Serum Free)で洗った。 lwellに 800 μ Lの DMEM (pH6.5, Serum Free)と 200 μ L のリボソームをカ卩え 1時間インキュベーションした (Cell Suspension: Liposome = 4:1)。 1時間後、膜と融合していない溶媒 'リボソーム溶液を除去し、 PBSで洗った。トリプシ ンによって細胞を回収し、 10,000rpm、 4°C、 5分遠心して上清を除去した。得られた 細胞を 100 Lの HEPES-(5%)Glucoseで懸濁させ、 2つに分けた。一方には、さらに 50 μ Lの HEPES-(5%)Glucoseをカ卩え、これの蛍光強度を F'とした。残りの一方には、 50 μ Lの Tritonを加え細胞を溶解した(Triton終濃度 0.5%)。この蛍光強度を F' maxとし た。ブランクの蛍光強度を F0 (Buffer: Liposome = 80 L: 20 L)、終濃度 0.5%の Triton (0.5% Triton: liposome = 80 ^ L: 20 ^ L)でリボソームを破壊したときの蛍光強 度を F maxとした。 BCA TM Protein Assay Kit (PIERCE)を用いて蛍光強度 F' , F,ma xを測定したサンプルのタンパク量を測定し、得られた!7' , F ' maxのサンプルの吸光 度からサンプルチューブ内のタンパク量、 6-well plateの 1 wellに含まれるタンパク量 を換算した。
[0147] (3)蛍光強度の解析
蛍光強度は NBDの蛍光波長 530nmで測定した数値を使用して ヽた。得られた蛍光 度のデータ F, , F0 , F, max , F maxを以下の式を用いて Transfer Efficiency (TF), B inding Efficiency (BE)を求めた。 F,測定用サンプルに含まれているタンパク量を P (F ,)、 F, max測定用サンプルに含まれているタンパク量を P (F,max)、 1 wellに含まれ るタンパク量を P (total)とした。回収したすべての細胞が含まれている状態に補正し たサンプルの蛍光度を F' collected,さらに細胞の回収時にアプライしたリボソーム量 の 10倍濃縮したことになるので 1/10に補正したものを F' recoveredとした((a)、(b))。 すべての細胞に結合したリボソームを 0.5%Tritonで破壊した場合の蛍光強度を換 算したものを F' max collectedとし、細胞の回収時にアプライしたリボソーム量の 10倍 濃縮したことになるので 1/10に補正したものを F, max recoveredとした((c)、(d))。得ら れた BE ((e)^TF ((D、(g))から、膜融合を介して細胞質中へベクターを送達できる効 率をエンドソーム脱出効率(Endosomal Escape Efficiency: (h))として算出した。
F, collected = F, / P (F' ) X P (total) · · - (a)
F' recovered = F' collected / 10 · · · (b)
F' max collected = r max / P (r max) X P (total) · · - (c)
F' max recovered = P max collected / 10 · · - (d)
BE = (F' max recovered Z Fmax) X 100 · · ' (e)
F = F' recovered X (1/BE)
= F' recovered X (P max/F' max recovered) · · · (!)
TF = [(F - F0) Z (F max F0)] X 100 · · - (g)
Endosomal Escape Efficiency = BE (結合率) X TF (融合率) X 100 (%) · · - (h)
(4)トランスフエクシヨンアツセィ
pDNAを Poly- L- Lysineで凝縮ィ匕し、凝集化 DNAが封入されたリボソームを調製し( 脂質終濃度 0.55mM)、リボソーム表面を適量の STR-R8で修飾した。リボソームの脂 質組成は図 12に示すとおりであり、カツコ内の数値はモル比を表す。 pDNAとして、ル シフェラーゼ遺伝子発現プラスミド pcDNA3.1(+)lucを使用した。 PcDNA3.1(+)lucは、 C MVプロモーター及びその下流に連結されたルシフェラーゼ遺伝子を含有する全長 約 7kbpのプラスミド DNAであり、 pGL3プラスミド(Promega社製)から制限酵素によって 切り出したルシフェラーゼ遺伝子をプラスミド pcDNA3.1(+) (Invitrogen社製)に挿入す ることによって作製した。 24well plateに lwellあたり 4 X 104個の NIH3T3細胞を platingし て 24h、 37°C、 5% COでインキュベーションした。 24h後 500 μ Lの DMEM (- serum)で w
2
ashした後、 250 μ Lの DMEM (- serum)中に DNAを 0.04 μ g含むようにリボソームをカロえ た。さらに 3h、 37°C、 5% COでインキュベーションした。 3h後 lmLの DMEM(+ serum)を
2
加え、さらに 21h 37°C、 5% COでインキュベーションした。 21h後、 500 Lの PBS1Xで
2
washし、 75 μ Lの Lysis Reporter Buffer IXをカ卩えて、 30分、 - 80°Cで凍結させた。 4°C で融解させてから 15,000rpm , 4°C, 4分の条件下で遠心した。上清から 50 μ Lを別の チューブに移した。 20 μ Lのサンプルと 50 μ Lのルシフェラーゼ基質とを混ぜ合わせ て、ルシフェラーゼ活性を測定した。残ったサンプルカゝら 5 Lを 20 Lの Η 0で希釈
2 してタンパク定量を行った。得られたルシフェラーゼ活性をタンパク量で除することに よって単位細胞タンパク質量あたりのルシフェラーゼ活性(R丄. U I mg protein)として 評価した。
2.結果,考察
(1) Endosomal Escape Efficiencyによるエンドソーム膜融合促進脂質の探索
2種の蛍光色素と STR-R8 (マクロピノサイト一シス経路選択のため)を含み、種々の 脂質から構成されたリボソームの Endosomal Escape Efficiencyを比較した(図 11)。こ れまでに、エンドソーム環境にぉ 、て高 、膜融合能を示す脂質として知られて 、る D OPE/CHEMS/STR-R8をポジティブコントロールとし、それの Endosomal Escape Effici ency (3%)よりも高い値を示すリボソーム組成を「エンドソーム膜融合促進脂質」とし て評価した。その結果、従来の常識に基づいた化学構造力もは予想できな力つた脂 質 (ホスファチジン酸 PA及びカルジォリピン CL)が高 、膜融合能力を有すること見出 した(図 11)。これらの結果から、 CL及び PAは CHEMS以上に高いエンドソーム膜融 合能を有する脂質であると判断した。これらの脂質は、負電荷を有しており、同様に 負電荷脂質が豊富な細胞膜 Zエンドソーム膜とは反発しあうのではないかと予想し ていたが、意外にもこれらの脂質の方が、正電荷脂質などよりも、高い融合能を有し ていた。これは、世界で初めての発見である。これらの脂質が実際にキャリアの細胞 内動態を促進しているかどうかを評価するために、実際に、発見した脂質 (PA)をリポ ノームの脂質膜として用い、トランスフエクシヨンアツセィを行った。その結果、従来の 脂質組成 (DOPE/CHEMS)では、 106程度の活性であったもの力 PAを含有すること により 30倍以上も高い活性を示した(図 12)。なお、 DOPE/CHEMSの STR-R8量(5%) カ¾OPE/PA系の STR- R8量(10%)よりも低いが、 DOPE/CHEMSの STR- R8量を 10%ま であげても同じ結果であった。したがって、 STR-R8量による活性の増大はない。この 結果から、本研究において発見したエンドソーム脱出促進脂質を用いることにより、 非ウィルス性遺伝子デリバリーシステムの遺伝子発現を飛躍的に向上させうることが 示唆された。これまでにも、エンドソーム脱出過程に着目した研究は数多くなされて いるが、本研究のように膜融合過程を定量的に評価し、それに基づいてエンドソーム と高い膜融合性を有する脂質を見出したものは皆無であり、世界初の成果である。本 研究の成果は、非ウィルス性遺伝子ベクターの in vivoにおける遺伝子デリバリー技 術を飛躍的に向上させることが期待される。特に、最近「実現可能な遺伝子治療法」 として注目されている siRNAのデリバリーは、エンドソームからの脱出がボトルネックで あるため、本研究によって見出された新規脂質を応用することで、これまでにない高 い治療効果が得られることが予想される。そのため、本研究は、 siRNAをはじめとする 遺伝子治療分野や DNAワクチン等による免疫医療分野における欠くことのできない 基盤技術であると思われる。
[0150] 〔実施例 4〕融合による内封物質送達様式の解析
(1) GFP封入膜標識 MLVの調製
10mM DOPE及び 10mM脂質ストックを 5:5のモル比でガラス試験管内で混合し、総 脂質濃度の lmol%量の Rho-DOPEの CHC1溶液を添加し、さらに CHC1を添加後、窒
3 3
素ガス下で乾燥させ、 lipid filmを作製した。内部水層として、 10mM HEPES Bufferで 0 .125 mg/mLに希釈した GFP蛋白質を、総脂質濃度 0.55mMになるように添カ卩し、水 和させた後、超音波処理を行った。
[0151] (2) GFP封入膜標識 SUVの調製
10mM DOPE及び 10mM脂質ストックを 5:5のモル比でガラス試験管内で混合し、総 脂質濃度の lmol%量の Rho-DOPEの CHC1溶液を添加し、さらに CHC1を添加後、窒
3 3
素ガス下で乾燥させ、 lipid filmを作製した。内部水層として 10mM HEPES Bufferで 0.1 25mg/mLに希釈した GFP蛋白質を、総脂質濃度 0.55mMになるように添カ卩し、 10分間 水和させた後、 Probe Typeのソ-ケ一ターを用いて 10分間超音波処理を行い、 SUV を調製した。
[0152] (3)共焦点レーザー顕微鏡による解析
ここでは融合性脂質として DOPE/PA=5:5又は DOPE/CL=5:5を用い、上記の手順 で MLVおよび SUVを調製した。また、単離した核を、同量のへキストと混合し、室温で 10分間インキュベートして染色した後、リボソーム:核力 ¾:2 (w/w)となるように混合し、 3 7°Cで 1時間インキュベート後、 1400 X g、 4°C、 30秒間遠心し、 Import Bufferで 2回ゥォ ッシュした。適量の Import Bufferに懸濁し、スライドガラスに適量を滴下した後、カバ 一ガラスをかけ、マニキュアで固定した。このスライドガラスを共焦点レーザー顕微鏡 により観察した。 [0153] この結果を図 13に示す。なお、パネルは左力も順にへキスト染色核 (青)の局在、 G FP (緑)の局在、ローダミン標識脂質 (赤)の局在、 3者の重ね合わせを示す。
多重膜構造を有する MLVにおいては、 PA、 CLいずれの場合においても、脂質 (赤 )が核の周りに局在して!/、るにもかかわらず、内封した GFP (緑)は核の内部に拡散し ていた。これに対して、 1枚膜構造の SUVにおいては、脂質 (赤)が核膜表面に局在 して 、るとともに、内封した GFP (緑)も核の輪郭に沿って単独で局在して 、た。
この結果から、 SUVでは、膜が 1枚しか存在しないために、核の二重膜構造を突破 できず、核膜間隙に捕捉されたことが示唆され、 MLVでは融合により、段階的に核膜 の二枚膜構造を突破し、内封した GFPが核内に放出されたことが示唆された。
[0154] 〔実施例 5〕非分裂細胞における遺伝子発現評価
(1)
Figure imgf000052_0001
プラスミド DNA(pEGFP/Luc)及び Protamineを HEPES Bufferで希釈し、 Protamine (0 .1 mg/mL)にプラスミド DNA(0.1 mg/mL)をボルテックス条件下で滴下した。(重量比 1:1.5 N/P ratio = 2.2)
[0155] (2)リボソームの調製
ImM DOPEおよび ImM脂質ストックを所定のモル比でガラス試験管内で混合し、さ らに CHC1溶液を添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層と
3
して、上記の方法で調製した pDNA/Protamineコアを総脂質濃度 0.55mMになるように 添加し、水和させた後、超音波処理を行った。さらに、 STR-R8 (2 mg/mL)を正電荷 になるように添加し、ピペッティング後、 30分間室温でインキュベートした。
こうして、 DOPE/CHEMS = 9:2 (5% STR— R8)のリボソーム A、 DOPE/CHEMS = 5:5 ( 5% STR— R8)のリボソーム B、 EPC/CHEMS = 9:2 (5% STR— R8)のリボソーム C、 DOPE/ PA = 5:5 (20% STR- R8)のリボソーム D、 DOPE/CL = 5:5 (20% STR- R8)のリボソーム E 、 DOPE/PA = 7:2 (10% STR- R8)のリボソーム Fを調製した。なお、リボソーム A- Fを総 称して「MEND」と呼ぶ場合がある。 MENDは 1〜複数枚の脂質膜を備えたリボソーム である。
[0156] (3)リボソームリボソームの調製
(a)内側の脂質膜 DOPE/PA = 5:5 外側の脂質膜 DOPE/PA = 7:2 10mM DOPEおよび 10 mM PAを 5:5のモル比でガラス試験管内で混合し、さらに CH C1を添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層として 10mM H
3
EPES Bufferを、総脂質濃度 0.55mMになるように添カ卩し、 10分間水和させた後、 Prob e Typeのソ-ケ一ターを用いて 10分間超音波処理を行い、 SUVを調製した。次に、 D OPE/PA = 5:5の SUVと上記の方法で調製した pDNA/Protamineコアを 2:1の割合で 添加し、 2枚膜リボソームを調製した。 2枚膜リボソーム溶液に STR- R8 (2 mg/mL)を総 脂質濃度の 20%量添加し、 30分室温でインキュベートした。
また、 DOPE/PA = 7:2の SUVと 2枚膜リボソームを 2:1の割合で添カ卩し、 4枚膜リポソ ームを調製した。 4枚膜リボソーム溶液に STR-R8 (2 mg/mL)を総脂質濃度の 10%量 添加し、 30分室温でインキュベートした。
こうして、内側の 2枚の脂質膜が DOPE/PA = 5:5で外側の 2枚の脂質膜が DOPE/P A = 7:2である 4枚膜リボソーム Aを調製した。
[0157] (b)内側の脂質膜 DOPE/CL = 5:5 外側の脂質膜 DOPE/PA = 7:2
10mM DOPEおよび 10mM CLを 5:5のモル比でガラス試験管内で混合し、さらに CH C1を添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層として 10mM H
3
EPES Bufferを、総脂質濃度 0.55mMになるように添カ卩し、 10分間水和させた後、 Prob e Typeのソ-ケ一ターを用いて 10分間超音波処理を行い、 SUVを調製した。
次に、 DOPE/PA = 5:5の SUVと上記の方法で調製した pDNA/Protamineコアを 2:1 の割合で添加し、 2枚膜リボソームを調製した。 2枚膜リボソーム溶液に STR-R8 (2 mg /mL)を総脂質濃度の 20%量添加し、 30分室温でインキュベートした。
また、 DOPE/PA = 7:2の SUVと 2枚膜リボソームを 2:1の割合で添カ卩し、 4枚膜リポソ ームを調製した。 4枚膜リボソーム溶液に STR-R8 (2 mg/mL)を総脂質濃度の 10%量 添加し、 30分室温でインキュベートした。
こうして、内側の 2枚の脂質膜が DOPE/CL = 5:5で外側の 2枚の脂質膜が DOPE/P A = 7:2である 4枚膜リボソーム Bを調製した。
[0158] (c)内側の脂質膜 DOPE/PA = 5:5 (DOPE/CL=5:5) 外側の脂質膜 EPC/CHEMS=9:
2
DOPE/PA = 5:5 (DOPE/CL=5:5)の SUVは上記の方法で調製した。次に、 10mM E PCおよび 10 mM PA (CL)を 9:2のモル比でガラス試験管内で混合し、さらに CHC1を
3 添加後、窒素ガス下で乾燥させ、 lipid filmを作成した。内部水層として 10mM HEPES Bufferを、総脂質濃度 0.55mMになるように添カ卩し、 10分間水和させた後、 Probe Type のソ-ケ一ターを用いて 10分間超音波処理を行 、、 SUVを調製した。
DOPE/PA = 5:5 (DOPE/CL=5:5)の SUVと上記の方法で調製した pDNA/Protamine コアを 2:1の割合で添加し、 2枚膜リボソームを調製した。さらに、 2枚膜リボソーム溶液 に STR-R8 (2 mg/mL)を総脂質濃度の 20%量添加し、 30分室温でインキュベートした また、 EPC/CHEMS=9:2の SUVと 2枚膜リボソームを 2:1の割合で添カ卩し、 IN HC1を 適量混合して膜融合を誘起させ、 4枚膜リボソームを調製した。 4枚膜リボソーム溶液 に STR-R8 (2 mg/mL)を総脂質濃度の 5%量添加し、 30分室温でインキュベートした こうして、内側の 2枚の脂質膜が DOPE/PA = 5:5で外側の 2枚の脂質膜力 ¾PC/CH EMS=9:2である 4枚膜リボソーム C、内側の 2枚の脂質膜が DOPE/CL = 5:5で外側の 2 枚の脂質膜が EPC/CHEMS = 9:2である 4枚膜リボソーム Dを調製した。
(d)内側の脂質膜 EPC/CHEMS = 9:2 外側の脂質膜 DOPE/PA = 7:2 (EPC/CHEM S = 9:2)
EPC/CHEMS = 9:2および DOPE/PA= 7:2の SUVは上記の方法で調製した。
次に、 EPC/CHEMS = 9:2の SUVと上記の方法で調製した pDNA/Protamineコアを 2 :1の割合で添加し、 IN HC1を適量混合して膜融合を誘起させ、 2枚膜リボソームを調 製した。 2枚膜リボソーム溶液に STR-R8 (2 mg/mL)を総脂質濃度の 5%量添加し、 30 分室温でインキュベートした。
また、 DOPE/PA = 7:2又は EPC/CHEMS = 9:2の SUVと 2枚膜リボソームを 2:1の割 合で添加し、 4枚膜リボソームを調製した。 4枚膜リボソーム溶液に STR- R8 (2 mg/mL) を総脂質濃度の 5%量添加し、 30分室温でインキュベートした。
こうして、内側の 2枚の脂質膜力 ¾PC/CHEMS = 9:2で外側の 2枚の脂質膜が DOPE /PA = 7:2である 4枚膜リボソーム E、内側の 2枚の脂質膜力 ¾PC/CHEMS = 9:2で外 側の 2枚の脂質膜が EPC/CHEMS = 9:2である 4枚膜リボソーム Fを調製した。 なお、 4枚膜リボソーム A-Fを総称して「T- MEND」と呼ぶ場合がある。
[0160] (4)トランフエクシヨン
JAWSII細胞を 24wellプレートにまき(8.0 X 104 cells)、 2日間培養した後、 0.4 μ g相 当のサンプルを、抗生物質および FCSを含まない α - MEMで 250 μ Lとなるように希釈 して細胞に添力卩した。 Nefgative controlとして Naked DNAおよび HEPES Bufferを同様 に希釈し、細胞に添カ卩し、 37°C、 5% COインキュベーターで培養した。サンプルを
2
添カ卩してから 3時間後に 10% FCSを含む α - MEMを 500 し添カ卩し、再び 37°C、 5% COインキュベーターで培養した。サンプルを添カ卩してから 24時間後に回収し、ルシ
2
フェラーゼ活性測定およびタンパク定量を行った。なお、ここでは分裂による遺伝子 発現への寄与を減らす目的で、免疫系の非分裂細胞である、 JAWSII細胞 (マウス骨 髄榭状細胞)を用いた。
[0161] (5)遺伝子発現評価
MENDに関する遺伝子発現効率の測定結果を図 14に示す。なお、図 14中、「Con 1」は裸の DNAを添カ卩した場合の結果であり、「Con2」は細胞だけの場合の結果であ る。図 15及び 16についても同様である。
DOPE/CHEMS (リボソーム A, B)及び EPC/CHEMS (リボソーム C)と比較して、 DOP E/PA (リボソーム D)及び DOPE/CL (リボソーム E)においては、有意な遺伝子発現の 上昇が見られた。
T-MENDに関する遺伝子発現効率の測定結果を図 15及び 16に示す。 MENDよりも T-MENDを用いた場合の方がさらに高 、遺伝子発現の上昇が見られ た。 4枚膜リボソーム A及び Bを比較すると、 PAよりも核膜融合能の高い CLを用いた場 合の方が高い発現が得られた。この結果は、 T-MENDにより細胞を構成する膜構造 を段階的に融合により突破しており、非分裂細胞である JAWSII細胞にも応用可能な ベクターを構築することができたことを示唆する結果であると思われる。
T-MENDの内側および外側の膜を、核膜または細胞膜と親和性の低 、EPC/CHE MS=9:2に変えた場合(図 16)、どの場合においても有意な発現の減少が見られた。 つまり、外側を EPC/CHEMSに変えることで細胞内への取り込み過程が律速となり、 内側を変えることで核内への移行が律速となることが明ら力となった。これらの結果は 、細胞内への取り込み、核膜の突破が膜融合を介していることを強く示唆する結果で あると考えられる。
図面の簡単な説明
[0162] [図 1]リボソームの核膜に対する結合活性(%)を示す図である。
[図 2]リボソームの核膜に対する結合活性 (%)を示す図である。
[図 3]リボソームの核膜に対する融合活性 (TF (%) )を示す図である。
[図 4]リボソームの核膜に対する結合活性 (%)を示す図である。
[図 5]リボソームの核膜に対する融合活性 (TF (%) )を示す図である。
[図 6]リボソームの核膜に対する結合能及び融合能の相関関係を示す図である。
[図 7]共焦点レーザー顕微鏡による観察結果を示す図である。
[図 8]リボソームの核膜に対する融合活性 (TF (%) )を示す図である。
[図 9]リボソームの核膜に対する融合活性 (TF (%) )を示す図である。
[図 10]共焦点レーザー顕微鏡による観察結果を示す図である。
[図 11]リボソームのエンドソーム脱出効率(%)を示す図である。
[図 12]リボソームにより送達された遺伝子の発現活性を示す図である。
[図 13]共焦点レーザー顕微鏡による観察結果を示す図である。
[図 14]リボソームにより送達された遺伝子の発現活性を示す図である。
[図 15]リボソームにより送達された遺伝子の発現活性を示す図である。
[図 16]リボソームにより送達された遺伝子の発現活性を示す図である。
[図 17]本発明のリボソーム脂質膜構造体の実施形態を模式的に示す一部断面図で ある。
符号の説明
[0163] la, lb, lc, Id' "リボソーム
2a, 21b, 22b, 2c, 21d, 22d, 23d…脂質膜
3 · · ·目的物質

Claims

請求の範囲
[I] 目的物質を核内に送達するためのベクターであって、
ァニオン性脂質を含有する第 1の脂質膜を備えた脂質膜構造体からなるベクター。
[2] 目的物質を細胞内に送達するためのベクターであって、
ァニオン性脂質を含有する第 2の脂質膜を備えた脂質膜構造体からなるベクター。
[3] 目的物質を核内に送達するためのベクターであって、
ァニオン性脂質を含有する第 1の脂質膜の外側に、ァニオン性脂質を含有する第 2 の脂質膜を備えた脂質膜構造体力もなるベクター。
[4] 前記第 1の脂質膜に含有されるァ-オン性脂質が、コレステリルへミスクシネート、 ホスファチジン酸又はカルジオリピンである請求項 1又は 3記載のベクター。
[5] 前記第 1の脂質膜に含有されるァ-オン性脂質量が、前記第 1の脂質膜に含有さ れる総脂質量の 20〜80% (モル比)である請求項 1又は 3記載のベクター。
[6] 前記第 1の脂質膜に含有されるァ-オン性脂質が、ホスファチジン酸又はカルジォ リピンであって、前記第 1の脂質膜に含有されるァ-オン性脂質量が、前記第 1の脂 質膜に含有される総脂質量の 40〜60% (モル比)である請求項 1又は 3記載のベタ ター。
[7] 前記第 1の脂質膜がジォレオイルホスファチジルエタノールアミンを含有する請求 項 1又は 3記載のベクター。
[8] 前記第 1の脂質膜に含有されるジォレオイルホスファチジルエタノールァミン量が、 前記第 1の脂質膜に含有される総脂質量の 20〜80% (モル比)である請求項 7記載 のベクター。
[9] 前記第 1の脂質膜が膜透過性ペプチドを有する請求項 1又は 3記載のベクター。
[10] 前記膜透過性ペプチドが膜透過性ドメインを有するペプチドである請求項 9記載の ベクター
[I I] 前記膜透過性ドメインがポリアルギニンである請求項 10記載のベクター。
[12] 前記ポリアルギニン力 連続した 4〜20個のアルギニン残基力もなる請求項 11記 載のベクター。
[13] 前記膜透過性ペプチドが前記第 1の脂質膜の表面に存在する請求項 9記載のベタ ター。
[14] 前記第 1の脂質膜に含有されるァ-オン性脂質が、コレステリルへミスクシネート、 ホスファチジン酸又はホスファチジルセリンである請求項 9記載のベクター。
[15] 前記第 2の脂質膜に含有されるァ-オン性脂質が、ホスファチジン酸、カルジオリピ ン、ジアルキルリン酸又はジァシルリン酸である請求項 2又は 3記載のベクター。
[16] 前記第 2の脂質膜に含有されるァ-オン性脂質量が、前記第 2の脂質膜に含有さ れる総脂質量の 10〜90% (モル比)である請求項 2又は 3記載のベクター。
[17] 前記第 2の脂質膜がジォレオイルホスファチジルエタノールアミンを含有する請求 項 2又は 3記載のベクター。
[18] 前記第 2の脂質膜に含有されるジォレオイルホスファチジルエタノールアミン量力 前記第 2の脂質膜に含有される総脂質量の 10〜90% (モル比)である請求項 17記 載のベクター。
[19] 前記第 2の脂質膜が膜透過性ペプチドを有する請求項 2又は 3記載のベクター。
[20] 前記膜透過性ペプチドが膜透過性ドメインを有するペプチドである請求項 19記載 のベクター。
[21] 前記膜透過性ドメインがポリアルギニンである請求項 20記載のベクター。
[22] 前記ポリアルギニン力 連続した 4〜20個のアルギニン残基力もなる請求項 21記 載のベクター。
[23] 前記膜透過性ペプチドが前記第 2の脂質膜の表面に存在する請求項 19記載のベ クタ一。
[24] 前記脂質膜構造体がリボソームである請求項 1、 2又は 3記載のベクター。
PCT/JP2006/319601 2005-09-30 2006-09-29 目的物質を核内又は細胞内に送達するためのベクター WO2007037444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06810956A EP1930436B1 (en) 2005-09-30 2006-09-29 Vector for delivering target substance into nucleus or cell
JP2007537749A JPWO2007037444A1 (ja) 2005-09-30 2006-09-29 目的物質を核内又は細胞内に送達するためのベクター
US11/992,726 US20080241917A1 (en) 2005-09-30 2006-09-29 Vector For Delivering Target Substance Into Nucleus or Cell
DE602006021587T DE602006021587D1 (de) 2005-09-30 2006-09-29 Vektor zur zuführung einer zielsubstanz in den zellkern oder die zelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005289411 2005-09-30
JP2005-289411 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007037444A1 true WO2007037444A1 (ja) 2007-04-05

Family

ID=37899864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319601 WO2007037444A1 (ja) 2005-09-30 2006-09-29 目的物質を核内又は細胞内に送達するためのベクター

Country Status (5)

Country Link
US (1) US20080241917A1 (ja)
EP (1) EP1930436B1 (ja)
JP (1) JPWO2007037444A1 (ja)
DE (1) DE602006021587D1 (ja)
WO (1) WO2007037444A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102481A1 (ja) * 2006-03-07 2007-09-13 National University Corporation Hokkaido University 目的物質の核内送達用ベクター
WO2011074578A1 (ja) * 2009-12-14 2011-06-23 国立大学法人北海道大学 脂質膜構造体に細胞透過能を付与および/または脂質膜構造体の細胞透過能を増強するペプチド、ならびにそれらペプチドと結合した脂質を構成脂質として含む、細胞透過能を有するまたは細胞透過能が増強された脂質膜構造体
WO2012117971A1 (ja) * 2011-02-28 2012-09-07 国立大学法人北海道大学 脂質膜構造体、脂質膜構造体の製造方法および1の目的物質を1枚の脂質膜で封入する方法
JP2012533534A (ja) * 2009-07-17 2012-12-27 インダストリー アカデミック コーポレーション ファウンデーション, ハルリム ユニバーシティー リポソームに被包されたオリゴヌクレオチド及びエピトープを含む免疫増強用組成物
WO2020054851A1 (ja) * 2018-09-14 2020-03-19 国立大学法人北海道大学 光機能性化合物及び脂質ナノ粒子
KR20220020392A (ko) * 2013-09-06 2022-02-18 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 기능성 뉴클레아제의 전달 시스템
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006101201A1 (ja) * 2005-03-24 2008-09-04 国立大学法人 北海道大学 目的物質を効率的に核内に送達可能なリポソーム
KR101587343B1 (ko) * 2014-04-08 2016-01-20 성균관대학교산학협력단 핵산 하이드로젤을 포함하는 코어-쉘 나노입자체 및 이의 제조방법
US20180344641A1 (en) * 2015-09-04 2018-12-06 C. Jeffrey Brinker Mesoporous silica nanoparticles and supported lipid bi-layer nanoparticles for biomedical applications
WO2017120504A1 (en) 2016-01-08 2017-07-13 Durfee Paul N Osteotropic nanoparticles for prevention or treatment of bone metastases
WO2017127567A1 (en) * 2016-01-19 2017-07-27 Genebiologics, Llc Production of arginine-rich proteins and use as a fertilizer and germination enhancer
US20210284998A1 (en) * 2016-10-03 2021-09-16 Precision Nanosystems Inc. Compositions for Transfecting Resistant Cell Types
US11344629B2 (en) 2017-03-01 2022-05-31 Charles Jeffrey Brinker Active targeting of cells by monosized protocells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538096A (ja) * 1999-03-02 2002-11-12 ザ リポソーム カンパニー、インコーポレーテッド 生理活性複合体のリポソームへのカプセル化

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9014221D0 (en) * 1990-06-26 1990-08-15 Janssen Pharmaceutica Nv Method of treating alopecia
JPH09248182A (ja) * 1996-03-15 1997-09-22 Oyo Seikagaku Kenkyusho プラスミド包埋多重膜リポソーム
CN100566810C (zh) * 2005-01-18 2009-12-09 国立大学法人北海道大学 用脂质膜被覆粒子的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538096A (ja) * 1999-03-02 2002-11-12 ザ リポソーム カンパニー、インコーポレーテッド 生理活性複合体のリポソームへのカプセル化

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
KHALIL IKRAMY ET AL., YAKUGAKU ZASSHI, vol. 124, no. 4, 2004, pages 113 - 116
KOGURE ET AL., JOURNAL OF CONTROLLED RELEASE, vol. 98, 2004, pages 317 - 323
KOGURE K. ET AL.: "Development of a non-viral multifunctional envelope-type nano device by a novel liquid film hydration method", J. CONTROL. RELEASE, vol. 98, 2004, pages 317 - 323
KOGURE K. ET AL.: "Development of a non-viral multifunctional envelope-type nano device by a novel liquid film hydration method", J. CONTROL. RELEASE, vol. 98, 2004, pages 317 - 323, XP004521720 *
MORIGUCHI R. ET AL.: "A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 301, no. 1-2, 2005, pages 277 - 285
N. OKU: "Preparation and Experimentation of Liposome", HIROKAWA-SHOTEN LTD, pages: 27 - 33
PATIL S. D. ET AL.: "Anionic liposomal delivery system for DNA transfection", THE AAPS JOURNAL, vol. 6, no. 4, 2004, pages E29
See also references of EP1930436A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102481A1 (ja) * 2006-03-07 2007-09-13 National University Corporation Hokkaido University 目的物質の核内送達用ベクター
JP2012533534A (ja) * 2009-07-17 2012-12-27 インダストリー アカデミック コーポレーション ファウンデーション, ハルリム ユニバーシティー リポソームに被包されたオリゴヌクレオチド及びエピトープを含む免疫増強用組成物
WO2011074578A1 (ja) * 2009-12-14 2011-06-23 国立大学法人北海道大学 脂質膜構造体に細胞透過能を付与および/または脂質膜構造体の細胞透過能を増強するペプチド、ならびにそれらペプチドと結合した脂質を構成脂質として含む、細胞透過能を有するまたは細胞透過能が増強された脂質膜構造体
CN102686603A (zh) * 2009-12-14 2012-09-19 国立大学法人北海道大学 对脂质膜结构体赋予细胞透过能力和/或增强脂质膜结构体的细胞透过能力的肽、以及含有与这些肽结合了的脂质作为构成脂质的具有细胞透过能力或细胞透过能力得到增强的脂质膜结构体
US8809495B2 (en) 2009-12-14 2014-08-19 National University Corporation Hokkaido University Peptides imparting cell permeability to lipid membrane structure and/or enhancing cell permeability of lipid membrane structure, and lipid membrane structure comprising lipid bound to such peptide as constituent lipid and having cell permeability or showing enhanced cell permeability
CN102686603B (zh) * 2009-12-14 2014-12-17 国立大学法人北海道大学 对脂质膜结构体赋予细胞透过能力和/或增强脂质膜结构体的细胞透过能力的肽、以及含有与这些肽结合了的脂质作为构成脂质的具有细胞透过能力或细胞透过能力得到增强的脂质膜结构体
WO2012117971A1 (ja) * 2011-02-28 2012-09-07 国立大学法人北海道大学 脂質膜構造体、脂質膜構造体の製造方法および1の目的物質を1枚の脂質膜で封入する方法
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
KR102668726B1 (ko) * 2013-09-06 2024-05-24 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 기능성 뉴클레아제의 전달 시스템
KR20220020392A (ko) * 2013-09-06 2022-02-18 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 기능성 뉴클레아제의 전달 시스템
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
WO2020054851A1 (ja) * 2018-09-14 2020-03-19 国立大学法人北海道大学 光機能性化合物及び脂質ナノ粒子
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
EP1930436A4 (en) 2009-05-20
DE602006021587D1 (de) 2011-06-09
EP1930436A1 (en) 2008-06-11
US20080241917A1 (en) 2008-10-02
JPWO2007037444A1 (ja) 2009-04-16
EP1930436B1 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2007037444A1 (ja) 目的物質を核内又は細胞内に送達するためのベクター
US7329807B2 (en) High-efficiency fusogenic vesicles, methods of producing them, and pharmaceutical compositions containing them
Troutier et al. An overview of lipid membrane supported by colloidal particles
JP4628955B2 (ja) 核移行能を有するポリアルギニン修飾リポソーム
US20090305409A1 (en) Liposome Capable of Effective Delivery of Given Substance Into Nucleus
JPH10506395A (ja) 二層安定化成分及びプログラムできる融合性リポソームの形成のためへのそれらの使用
JP5067733B2 (ja) 目的物質をミトコンドリア内に送達可能な脂質膜構造体
US20100166840A1 (en) Liposome having lipid membrane containing bacterial cell component
JPWO2007102481A1 (ja) 目的物質の核内送達用ベクター
KR20220119434A (ko) 표적된 카고 전달을 위한 생물학적 작용성화된 거대 단일막 소포체의 미세유체역학적 생산
KR20140048404A (ko) 저밀도 지단백질 유사 나노입자 및 이를 포함하는 간 표적 진단 및 치료용 조성물
Versluis et al. Coiled coil driven membrane fusion between cyclodextrin vesicles and liposomes
US6875448B1 (en) Method of intracellular sustained-release of drug and preparations
US8097276B2 (en) Method for coating particle with lipid film
JP2006167521A (ja) Suv型リポソームの膜融合を利用した遺伝子等の新規封入技術
JP2006238839A (ja) 核酸の細胞内送達効率又は細胞内発現効率を向上させた組成物
JP2007166946A (ja) 標的遺伝子の発現を抑制するための組成物
Leung Biophysical characterization of lipid nanoparticles containing nucleic acid polymers as produced by microfluidic mixing
Sukumaran et al. Liposome NanocarrierSynthesis, Characterization, and Applications
Crommelin et al. Liposomes
JP2009221165A (ja) 一遺伝子ナノ粒子のパッケージング法
WO2012117971A1 (ja) 脂質膜構造体、脂質膜構造体の製造方法および1の目的物質を1枚の脂質膜で封入する方法
Vadrucci Influenza virus hemagglutinin-mediated membrane fusion: mechanistic studies and potential applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537749

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11992726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006810956

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE