WO2007037354A1 - 新規耐酸性改変型s-ヒドロキシニトリルリアーゼ - Google Patents

新規耐酸性改変型s-ヒドロキシニトリルリアーゼ Download PDF

Info

Publication number
WO2007037354A1
WO2007037354A1 PCT/JP2006/319422 JP2006319422W WO2007037354A1 WO 2007037354 A1 WO2007037354 A1 WO 2007037354A1 JP 2006319422 W JP2006319422 W JP 2006319422W WO 2007037354 A1 WO2007037354 A1 WO 2007037354A1
Authority
WO
WIPO (PCT)
Prior art keywords
shnl
amino acid
modified
enzyme
reaction
Prior art date
Application number
PCT/JP2006/319422
Other languages
English (en)
French (fr)
Inventor
Eita Ichige
Hisashi Semba
Toshiaki Shijuku
Shigeaki Harayama
Original Assignee
Nippon Shokubai Co., Ltd.
National Institute Of Technology And Evaluation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd., National Institute Of Technology And Evaluation filed Critical Nippon Shokubai Co., Ltd.
Priority to EP06810828A priority Critical patent/EP1944366A4/en
Publication of WO2007037354A1 publication Critical patent/WO2007037354A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/002Nitriles (-CN)
    • C12P13/004Cyanohydrins

Definitions

  • the present invention relates to a novel acid-resistant modified S-hydroxybutryl lyase (SHNL). More specifically, the present invention relates to SHNL having improved acid resistance compared to natural SHNL obtained by modifying the amino acid sequence at a specific site.
  • SHNL novel acid-resistant modified S-hydroxybutryl lyase
  • S-Hydroxytolyl lyase is an industrially important enzyme that catalyzes the reaction of hydrocyanic acid with aldehydes or ketones to produce optically active cyanohydrins.
  • SHNL examples include SHNL derived from cassava (Manihot esculenta),
  • SHNL derived from (Hevea brasiliensis) or SHNL derived from sorghum (Sorghum bicolor) is known.
  • SHNL derived from sorghum Sorghum bicolor
  • Recombinant SHNL can be produced using Escherichia coli, yeast, or the like as a host, but industrially, modified SHNL with improved resistance and activity is desirable in order to further improve cost performance.
  • modified SHNL with improved resistance and activity is desirable in order to further improve cost performance.
  • a racemization reaction that does not depend on the enzyme proceeds simultaneously. It is known that this competitive reaction can be suppressed by reacting under acidic conditions. . Therefore, if a modified SHNL having acid resistance can be produced, optically active cyanohydrins can be produced more efficiently.
  • modified SHNL As modified SHNL, modified SHNL is known in which enzyme activity is improved by substituting the 128th tryptophan of SHNL amino acid sequence with alanine (Patent Document 1, Non-Patent Document). Reference 1). However, SHNL with improved acid resistance has never been reported.
  • Patent Document 1 JP 2000-125886 A
  • Non-patent literature l Lauble et al. Protein science. 2002 11: ⁇ 65- 71
  • An object of the present invention is to provide a novel SHNL having significantly improved acid resistance as compared with natural SHNL, and to enable more efficient production of an optically active cyanohydrin.
  • the inventors have intensively studied to solve the above-mentioned problems, and obtained an enzyme with significantly improved acid resistance compared to the enzyme before modification by genetically replacing the amino acid of SHNL.
  • the present invention has been completed.
  • the present invention relates to a natural SHNL amino acid sequence (SEQ ID NO: 2) derived from cassava (Manihot esculenta)! /, At least 36 amino acids selected from the 36th, 140th, and 209th amino acids. 36th, 139th, and 208th powers in the amino acid sequence of modified SHNL or natural SHNL derived from Hevea brasiliensis (SEQ ID NO: 3) obtained by replacing one with another amino acid The present invention relates to a modified SHNL obtained by substituting at least one of the selected amino acids with another amino acid.
  • modified SHNL include the following amino acid substitutions in the amino acid sequence (SEQ ID NO: 2) of natural SHNL derived from cassava (Manihot esculenta):
  • the modified SHNL further includes the following amino acid substitutions:
  • the 163rd threonine may have at least one amino acid substitution that is also selected for the substitution power of aspartic acid, glutamic acid, or serine.
  • the present invention also provides DNA encoding the amino acid sequence of the modified SHNL.
  • the present invention also provides a method for producing modified SSHNL, which comprises culturing a host into which the DNA has been introduced, and recovering a protein having SHNL activity from the obtained culture.
  • the present invention also provides a method for producing an optically active cyanohydrin, which comprises contacting the modified SHNL of the present invention with a carbonyl compound and a cyan compound.
  • the acid-resistant modified SHNL of the present invention has significantly improved acid resistance compared to conventional enzymes. Therefore, the reaction under acidic conditions becomes possible, and the optically active cyanohydrin can be efficiently produced while suppressing the competing racemization reaction.
  • Fig. 1 shows an alignment of the amino acid sequences of SHNL derived from Manihot esculenta and Hevea brasiliensis.
  • FIG. 2 shows the results of an evaluation of acid resistance of mutant strains.
  • FIG. 3 shows the results of evaluating the acid resistance of the composite mutant.
  • FIG. 4 shows the results of an evaluation of the heat resistance of an acid-resistant enzyme.
  • FIG. 5 shows the results of evaluating the solvent resistance of the thermostable mutant enzyme gene (A: ethanol resistance, B: ethyl acetate resistance).
  • FIG. 6 shows the results of improving heat resistance by newly combining an acid-resistant mutation site with a heat-resistant mutant enzyme gene.
  • FIG. 7 is a graph comparing the thermal stability of Wild-SHNL and Actmt-001f2-SHNL.
  • FIG. 8 is a photograph showing the analysis results by SDS-PAGE of heat-treated samples of Wild-SHNL and Actmt-00112-SHNL.
  • FIG. 9 is a graph showing changes in protein concentration of heat-treated samples of Wild-SHNL and Actmt-00112-SHNL.
  • FIG. 10 is a graph comparing the heat stability of Wild-SHNL and Actmt-00112-SHNL.
  • FIG. 11 is a photograph showing the results of SDS-PAGE analysis of heat-treated samples (supernatant) of Wild-SHNL and Actmt-00112-SHNL.
  • FIG. 12 is a graph showing the resistance of Actmt-001f2-SHNL to organic solvents (A: ethanol resistance, B: ethyl acetate resistance).
  • FIG. 13 is a graph showing the optical purity of S-mande mouth-tolyl after 1 hour of reaction in the repeated reaction of Actmt-001f2-SHNL.
  • FIG. 14 is a graph showing the conversion rate of benzaldehyde in the repetitive reaction of Actmt-00112-SHNL (A: change in the conversion rate at the first hour of the reaction, B: conversion rate at the first time of reaction 1) Over time).
  • FIG. 15 is a graph showing changes in enzyme activity due to heating of various modified SHNLs.
  • FIG. 16 is a graph showing heat stability of the modified enzyme T163S-SHNL.
  • FIG. 17 is a graph comparing the thermal stability of Wild-SHNL, Actmt-00112-SHNL, and VI 73L-SHNL.
  • FIG. 18 is a graph showing the organic solvent resistance of V173L-SHNL (A: ethanol resistance, B: ethyl acetate resistance).
  • FIG. 19 is a graph showing the heat stability of the modified enzyme Actmt020-b8-SHNL.
  • FIG. 20 is a graph showing the stability of Lys21-modifying enzyme to heat.
  • FIG. 21 is a graph showing the heat stability of SHNL combined with a modified site.
  • FIG. 22 is a graph showing ethanol properties of G165E, V173L-SHNL.
  • FIG. 23 is a graph showing the ethyl acetate properties of G165E.V173L and M174L-SHNL.
  • FIG. 24 is a graph showing the amount of 2CMN produced in the reaction 1 hour in the repetitive reaction using G165E, V173L-SHNL.
  • FIG. 25 is a graph showing the optical purity of S-2CMN obtained in the first repeated synthesis reaction under each pH condition.
  • FIG. 26 is a graph showing the optical purity of S-2CMN obtained in the fourth repeated synthesis reaction under each pH condition.
  • SHNL naturally S-hydroxybutryl lyase
  • SHNL refers to SHNL isolated from a plant and purified, or SHNL having the same amino acid sequence as the SHNL. means.
  • the origin of the natural SHNL is not particularly limited.
  • SHNL derived from gramineous plants such as Sorghum bicolor
  • SHNL derived from Euphorbiaceae such as Manihot esculenta and Hevea brasiliensis
  • SHNL derived from a tattered plant such as Ximenia america.
  • the amino acid sequences of these SHNLs and the nucleotide sequences of genes are already known and can be easily obtained through public databases such as GenBank.
  • the SHNL gene from Japanese rubber tree is Accession No. U40402 (SEQ ID NO: 3 corresponds to the CDS of U40402), the SHNL gene from cassava is Accession No. Z29091, and the SHNL gene from sorghum is Accession No. AJ421152, respectively. It is registered in.
  • Fig. 1 shows an alignment of amino acid sequences of SHNL derived from cassava (Manihot esculenta) and para rubber tree (Hevea brasiliensis).
  • the amino acid homology of both SHNLs is 74%, and the individual amino acids are not necessarily completely identical.
  • SHNL derived from Japanese rubber tree the amino acid corresponding to position 139 of cassava-derived SHNL is deleted, so that the amino acid number of helix D3 is shifted by one.
  • the 36th, 140th, and 209th amino acids are the amino acid sequence of SHNL derived from Hevea brasiliensis (SEQ ID NO: 4).
  • SEQ ID NO: 4 the amino acid sequence of SHNL derived from Hevea brasiliensis
  • cassava-derived SHNL and the Para rubber tree-derived SHNL are V, both of which belong to the ⁇ / ⁇ hydrolase superfamily, and their three-dimensional structures are very similar. Therefore, from the effect of modification of amino acid sequence by cassava-derived SHNL, the same effect can be expected for para-rubber tree-derived SHNL by modifying the amino acid sequence of the corresponding site.
  • the present invention relates to the acid resistance modification obtained by modifying (substituting or inserting) the amino acid sequence of a specific site in the amino acid sequence of the natural SHNL derived from cassava.
  • Variant SHNL related obtained by modifying (substituting or inserting) the amino acid sequence of a specific site in the amino acid sequence of the natural SHNL derived from cassava.
  • modified SHNL obtained by substituting at least one of the 36th, 140th and 209th amino acids with another amino acid;
  • the present invention relates to a modified SHNL obtained by substituting at least one of the 36th, 139th, and 208th amino acids in the amino acid sequence of natural SHNL derived from Para rubber tree (SEQ ID NO: 4) with another amino acid.
  • modified SHNL having at least one amino acid sequence modification that is also selected for force.
  • SHNL combined with the modified sites has higher acid resistance.
  • modified SHNL that combines the 36th and 140th amino acid substitutions, and the 36th, 140th, and 209th amino acid substitutions
  • the combined modified SHNL has high acid resistance.
  • modified sites for improving heat resistance that have already been reported by the inventors: the 21st, 163rd, 165th, 169th, 172nd, 173th, and 174th
  • modified SHNL which combines amino acid substitutions at one or more sites where force is also selected, has both high acid resistance and heat resistance.
  • the modified SHNL of the present invention has the following amino acid substitution for improving heat resistance:
  • High acid resistance and heat resistance are achieved by combining one or more amino acid substitutions selected from the substitution of 163 threonine with aspartic acid, glutamic acid, or serine. It will become.
  • site-specific mutations may be introduced into the gene encoding the amino acid sequence according to a known method.
  • site-specific mutation can be easily performed using a commercially available kit (for example, QuikChange XL Site-Directed Mutagenesis kit (STRATAGENE), Transformer TM Site-Directed Mutagenesis Kit (CLONTECH), etc.).
  • STRATAGENE QuikChange XL Site-Directed Mutagenesis kit
  • CLONTECH Transformer TM Site-Directed Mutagenesis Kit
  • the modified SHNL of the present invention has improved acid resistance compared to natural SHNL, the reaction under acidic conditions with suppressed racemization reaction is possible, and the industrial production process of optically active cyanohydrin is possible. It is a very useful enzyme.
  • a DNA encoding a modified SHNL protein useful for the present invention can be obtained by introducing a site-specific mutation into a known natural SHNL gene. That is, if a primer that can be changed to a codon encoding the target amino acid is designed as a codon at the substitution site, and the primer V is used, and the extension reaction is performed using the DNA encoding the natural SHNL as a cage, Site-specific mutation introduction can be easily performed using a commercially available kit (for example, QuikChange XL Site-Directed Mutagenesis kit (STRATAGENE), Transformer TM Site-Directed Mutagenesis Kit (CLONTECH), etc.).
  • STRATAGENE QuikChange XL Site-Directed Mutagenesis kit
  • CLONTECH Transformer TM Site-Directed Mutagenesis Kit
  • a DNA encoding the acid-resistant modified SHNL is ligated (inserted) into a known vector such as a plasmid to produce a recombinant vector.
  • the vector is not particularly limited as long as it can be replicated in a host, and examples thereof include plasmid DNA and phage DNA.
  • Examples of the plasmid DNA include plasmids derived from Escherichia coli (for example, a PET21 vector having a particularly strong T7 promoter such as pBR322, pBR325, pUC18, pUC119, pHCE IIB, pTrcHis, pBlueBacHis, etc.), a plasmid derived from Bacillus subtilis. (For example, pUBllO, pTP5, etc.), yeast-derived plasmids (eg, YEpl3, YEp24, YCp50, pYE52, etc.) and the like.
  • Escherichia coli for example, a PET21 vector having a particularly strong T7 promoter such as pBR322, pBR325, pUC18, pUC119, pHCE IIB, pTrcHis, pBlueBacHis, etc.
  • a plasmid derived from Bacillus subtilis for example
  • the promoter is not particularly limited, and any promoter known to function in the host can be used. The promoters are described in detail for each host in the transformant described later. Further, if necessary, a cis-element such as an enzyme sensor, a splicing signal, a poly A-attached signal, a ribosome binding sequence (SD sequence), a terminator sequence and the like may be arranged.
  • a cis-element such as an enzyme sensor, a splicing signal, a poly A-attached signal, a ribosome binding sequence (SD sequence), a terminator sequence and the like may be arranged.
  • the recombinant vector is introduced into a host so that the target gene can be expressed, and a modified SHNL expression system is prepared.
  • the host is not particularly limited as long as it can express the DNA of the present invention.
  • Escherichia such as Escherichia coli
  • Bacillus subtilis such as Bacillus subtilis
  • C. communis C. communis.
  • the recombinant vector of the present invention can autonomously replicate in the bacterium, and at the same time comprises a promoter, a ribosome binding sequence, a gene of the present invention, and a transcription termination sequence. It is preferable that A gene that controls the promoter may also be included.
  • Escherichia coli include Escherichia coli HMS174 (DE3), K12, DH1, and koji strains, and examples of Bacillus subtilis include Bacillus subtilis MI 114, 207- 21 etc. are mentioned.
  • the promoter is not particularly limited as long as it can be expressed in the above-mentioned host such as Escherichia coli, and examples thereof include a trough promoter, a lac promoter, a P promoter, and a P promoter.
  • a promoter derived from the fuzzy An artificially designed and modified promoter such as tac promoter may be used.
  • Introduction of thread change vector to bacteria The method of entering is not particularly limited, and for example, a method using calcium ions [Cohen, SN et al .: Proc. Natl. Acad. Sci., USA, 69: 2110-2114 (1972)] or the electoral position method. Etc.
  • yeast When yeast is used as a host, for example, Saccharomyces cerebiche, Schizosaccharomyces bomb, Pichia pastoris and the like are used.
  • the promoter is not particularly limited as long as it can be expressed in yeast.For example, gall promoter, gallO promoter, heat shock protein promoter, MFa 1 promoter, PH05 promoter, PGK promoter motor, GAp promoter, ADH Examples include promoters and AOX1 promoters.
  • the method for introducing a vector into yeast is not particularly limited, and examples thereof include the electrovolution method [Becker, DM et al: Methods EnzymoL, 194: 182-187 (1990)], the Sueguchi plast method [Hinnen, A. et. al .: Proc. Natl. Acad. Sci., USA, 75: 1929-1933 (1978)], lithium acetate method Dtoh, H .: J. BacterioL, 153: 163-168 (1983)], etc. it can
  • the modified SHNL of the present invention can be obtained by culturing the transformant of the present invention in an appropriate medium and collecting the protein having the enzyme activity from the culture.
  • the method for culturing the transformant of the present invention is appropriately determined depending on the host. For example, in the case of a transformant having a microorganism such as Escherichia coli as a host, a medium containing a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the microorganism, and a medium that can efficiently culture the transformant. As long as it exists, either a natural medium or a synthetic medium may be used.
  • an antibiotic such as ampicillin or tetracycline may be added to the medium as needed.
  • an inducer may be added to the medium as necessary.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • IAA indoleacrylic acid
  • the culture solution is used as it is or collected by centrifugation or the like.
  • the enzyme activity of the modified SHNL of the present invention is to detect the optically active cyanohydrin produced by adding the enzyme to a reaction solution containing an appropriate cyanide compound and aldehyde or ketone that can serve as a substrate. Can be confirmed.
  • an appropriate cyanide compound and aldehyde or ketone that can serve as a substrate can be confirmed.
  • gas chromatography, high performance liquid chromatography and the like can be used.
  • an antibody that specifically binds to the modified SHNL of the present invention can be prepared, and expression can be confirmed by Western blotting using the antibody.
  • the enzyme activity of SHNL can be confirmed by measuring the amount of aldehyde produced per unit time by the decomposition of mandemouth-tolyl by SHNL (also calculating the absorbance power at a wavelength of 249.6).
  • JP-A-10-373246, JP-A-10-373248, and JP-A-11-367251 can be referred to.
  • the modified SHNL of the present invention is higher in production efficiency and optical purity than the natural SHNL, and can synthesize optically active cyanohydrins. Synthesis of optically active cyanohydrins using the acid-resistant modified SHNL of the present invention can be carried out in the same manner as natural SHNL.
  • the optically active cyanohydrin can be synthesized by adding the modified SHNL of the present invention and the reaction substrate to the reaction solvent and reacting at a reaction temperature of 1050 ° C. for 20 minutes to 24 hours.
  • the reaction time is appropriately adjusted according to the conversion rate of the substrate.
  • carbo-louis compound and cyanide compound can be used as the reaction substrate.
  • the carbocycle is an aldehyde or ketone represented by COR1R2, wherein R1 and R2 are a hydrogen atom, a substituted or unsubstituted linear or branched saturated alkyl group having 118 carbon atoms, which is substituted or
  • the unsubstituted ring member is an aromatic group having 522 (however, R1 and R2 do not represent hydrogen atoms at the same time).
  • the cyanide compound is not particularly limited as long as it is a substance that generates cyanide ions (CN—).
  • cyanide solution such as sodium cyanide and potassium cyanide is used.
  • Cyanhydrins such as elementary salts and acetone cyanohydrin can be used.
  • reaction solvent As a reaction solvent, when a large amount of water is present in the reaction system, racemization of the optically active cyanohydrin produced by the enzyme reaction is likely to occur, or when an aldehyde or ketone having low solubility in water is used as a raw material. In view of the reduction in production efficiency, it is preferable to use a reaction solvent mainly composed of an organic solvent that is hardly soluble or insoluble in water. As such an organic solvent, there is no particular limitation as long as it does not affect the synthesis reaction of the optically active cyanohydrin by the enzymatic reaction, the physical properties of the raw aldehyde or ketone used in the synthesis reaction, the product cyanohydrin of the product.
  • aliphatic or aromatic linear, branched or cyclic saturated or unsaturated hydrocarbon solvents which may be halogenated, such as pentane, hexane, toluene, xylene, methylene chloride.
  • Aliphatic or aromatic linear or branched or cyclic saturated or unsaturated alcohol solvents which may be halogenated, such as isopropylpyr alcohol, n-butanol, isobutanol, t-butanol , Hexanol, cyclohexanol, n-amyl alcohol, etc .; aliphatic or aromatic linear or branched or cyclic saturated or unsaturated ether solvents which may be halogenated, for example, Jetyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, methyl t-butyl ether, etc .; halogenated , Aliphatic or aromatic linear, branched, or cyclic saturated or unsaturated ester solvents such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, and methyl propionate. Or may be used in combination. Moreover, the said solvent can also use what contained
  • the modified SHNL may be used as an immobilized enzyme immobilized on an appropriate inorganic carrier (see, for example, JP-A-2002-176974).
  • Suitable methods for synthesizing cyanohydrin using the modified SH NL of the present invention include, for example, JP 2002-355085, JP 2002-176974, JP 2001-363840, JP 2001-346596, Examples thereof include methods described in JP-A-2001-190275, JP-A-2000-245286, JP-A-2001-120289, JP-A-2000-217590, and the like.
  • the SHNL gene used in the present invention is a sequence obtained by converting the gene sequence of SHNL cloned from Cyanassano (Manihot esculenta) into an E. coli type codon (SEQ ID NO: 1 # 112002-365675 (hereinafter referred to as “SHNL” Wild-SHNL ”)) was used.
  • the SHNL-Wild gene was introduced into the vector pET21a (Novagen) and the vector plasmid SHNL-Wild / pET21a was used as a saddle, and mutations were randomly introduced using the GeneMorph TM PCR Mutagenesis Kit (STRATAGENE). A random mutation SHNL library was prepared.
  • the prepared random mutation SHNL library was inserted into the multicloning site of the vector plasmid pKK223-3 (manufactured by Amersham Bioscience), and cryopreserved in a state of being incorporated into Escherichia coli DH5a.
  • the random mutation SHNL library clone was inoculated into a deep well plate dispensed with NS-2 medium shown in Table 1, and cultured with shaking at 20 ° C. and lOOrpm.
  • the culture solution was centrifuged to obtain a cell pellet.
  • the bacterial cell pellet was suspended in 150 ⁇ L of pH 5.5 sodium citrate buffer, and then the bacterial cell was crushed using a shake master (manufactured by BMS) to obtain a crude enzyme solution.
  • the crude enzyme solution 10 / z L was added to ⁇ 4.15
  • the acid treatment was performed by stirring for 2 hours under the conditions of 1100 rpm and 20 ° C.
  • 150 L of PH4.15 sodium citrate buffer was added to the crude enzyme solution after acid treatment, and 0.04 L of DL-mande mouth-tolyl as a substrate was added, and the enzyme reaction was carried out by shaking.
  • the acid resistance index of Wild-SHNL was calculated from the same measurement using a crude enzyme solution prepared from a culture solution of SHNL-Wild / pKK223-3 / DH5a. Mutants with a higher acid tolerance index than Wild-SHNL were selected as acid-resistant mutants. The selected acid-resistant mutant strains were subjected to plasmid extraction, and the mutation site was identified by sequence analysis using this as a saddle type.
  • the selected acid-resistant enzyme strain and, as a comparison, SHNL-Wild / pKK223-3 / DH5a were cultured in a test tube, and after completion of the culture, a crude enzyme solution was prepared by crushing the culture solution. PH5.5 sodium citrate buffer and E. coli-derived inactive protein were added to the resulting crude enzyme solution, and the activity value of the enzyme solution was adjusted to 2 U / mL and the protein concentration was adjusted to 1 mg / mL.
  • an acid treatment was performed by adding 150 L of pH 4.15 citrate buffer to 30 L of the prepared crude enzyme solution and stirring at 20 ° C for 2 hours. Activity was measured using the crude enzyme solution after acid treatment, and the residual activity was calculated with the activity before acid treatment as 100%.
  • Table 2 shows the mutation sites of the selected acid-resistant mutation SHNL strain.
  • the 106th cytosine of the SHNL gene sequence shown in SEQ ID NO: 1 was mutated to adenine. Mutated to S-methionine.
  • the 419th cytosine of the SHNL gene sequence shown in SEQ ID NO: 1 was mutated to thymine, and as a result, the SHNL amino acid sequence 140th threonine shown in SEQ ID NO: 2 was mutated to isoleucine.
  • Lot016G12 has mutated the 627th adenine of the SHNL gene sequence shown in SEQ ID NO: 1 to thymine. It was.
  • acid-resistant SHNL obtained by culturing Lot002H6 or Lot034B10 is referred to as L36M-SHNL
  • acid-resistant SHNL obtained from Lot023F12 is also referred to as T140I-SHNL
  • acid-resistant SHNL obtained from Lot016G12 is referred to as K209N-SHNL.
  • Mutation sites were combined using the QuikChange XL Site-Directed Mutagenesis Kit (manufactured by STRATAGE NE), and site-specific mutagenesis was carried out using various combinations of the three mutations of L36M, T140I, and ⁇ 209 ⁇ in the SHNL amino acid sequence. .
  • a vector plasmid SHNL-Wild / pKK223-3 10 ng in which the SHNL-Wild gene was incorporated was used as the saddle type.
  • primers of SEQ ID NOs: 5 and 6 shown below were used for site-directed mutagenesis of L36M.
  • primers shown in SEQ ID NOs: 7 and 8 were used for site-directed mutagenesis of T140I
  • primers shown in SEQ ID NOs: 9 and 10 were used for site-directed mutagenesis of K209N.
  • Sequence number 8 CATGGTAGTGATGGTTTCGCCGATGATGTTGGTGAACGTG GC AAT
  • the obtained PCR product was transformed into a competent cell DH5a to prepare a complex mutant SHNL recombinant E. coli strain.
  • Example 2 the recombinant Escherichia coli strain obtained according to the method shown in 3) of Example 1 was cultured, and the acid resistance of the complex mutant was evaluated using the obtained crude enzyme solution.
  • pH 5.5 sodium citrate buffer and inactive protein derived from Escherichia coli were appropriately added so that the activity of the enzyme solution was 43 U / mL and the protein concentration was 19.25 mg / mL.
  • SHNL_Wild / pKK2 23-3 / DH5a and Lot002H6, Lot016G12 and Lot023F12 were also cultured in the same manner, and crude enzyme solutions were prepared and used for evaluation.
  • Acid-resistant enzymes L36M-SHNL and T140I-SHNL each having a single mutation site, each had a residual activity of about 70% after acid treatment, but the L36M and T140 I-SHNL strains combined with two mutations and three mutations L36M, T140I, and K209D-SHNL strains combined with The acid resistance further improved, and both remained at 80% or more after acid treatment at pH 4.15 for 2 h (Fig. 3). From these results, it became clear that acid resistance can be further improved by combining individual mutation sites on one gene.
  • DH5a / pKK223-3 / SHNL-K209D was cultured in the same manner as in Example 1 3) to obtain an enzyme solution.
  • a buffer and bovine serum albumin were added to the obtained enzyme solution, and the enzyme solution was treated with ethanol and ethyl acetate after measuring the activity value and protein concentration of the enzyme solution to a constant value, and the residual activity was measured.
  • K209D-SHNL remained 50% active during the same treatment time (Fig. 4). Even with ethyl acetate, K209D-SHNL was highly resistant and remained at least 50% active after 48 hours of treatment. From these results, it was shown that acid-resistant mutant enzymes also have organic solvent resistance.
  • the enzyme solution was heated to 60 ° C., and the residual activity was measured after 30 minutes.
  • FIG. 5 shows the residual activity of the acid-resistant enzyme after heat treatment. It was shown that acid-resistant enzymes have improved heat resistance as well as acid resistance.
  • Example 5 Complex of acid resistant and different parts Heat resistant and different parts
  • the heat-resistant compound mutant enzyme gene which was newly combined with L36M or T140I, was further improved in heat resistance and remained at 100% at 70 ° C and 90% or more at 72.5 ° C (Fig. 6). ).
  • heat resistance can be further improved by newly combining an acid-resistant mutation site with a heat-resistant complex mutant enzyme gene.
  • the acid-resistant modified SHNL of the present invention has markedly improved acid resistance compared to conventional enzymes. Therefore, it is considered that the reaction can be performed more stably under acidic conditions than before, and an efficient optically active cyanohydrin can be synthesized while suppressing the competing racemization reaction.
  • E. coli strains BL21 (DE3) / pET21a / SHNL-L36M, G165E, V173L and BL21 (DE3) / pET21a / SHNL-T140I, G165E, V173L were cultured according to the method described in Example 1 3).
  • acid-resistant mutations were introduced, and BL21 (DE3) / pET21a / SHNL-G165E and V173L were also cultured in the same manner, and the cells were collected by centrifugation after the completion of the culture.
  • a 0.2 M sodium citrate buffer was added to the collected cells so as to be twice the weight of the cells, and the cells were sonicated to obtain a crude enzyme solution.
  • E. coli-derived inactive protein was obtained by disrupting the culture solution of E. coli strain BL21 (DE3) / pET21a. Silica gel was mixed at a ratio of 300 mg to 0.3 ml of these crude enzyme solutions to obtain immobilized enzyme.
  • 0.2 M citrate buffer 0.337 mL was added to 4.492 mL of t-butyl methyl ether in which HCN was dissolved to a final concentration of 1.61 M, and the mixture was allowed to stand after stirring for 30 minutes to remove the separated aqueous phase.
  • 0.2 M citrate buffer three kinds of pHs of normal 5.5 and more acidic conditions 4.5 and 4.1 were used. This solution was added to a 9 mL screw vial containing 600 mg of the immobilized enzyme prepared above.
  • 2-chlorobensaldehyde (2CBA) was added at a final concentration of 1.0 M, and the enzyme reaction was carried out by stirring with a bottle roller.
  • Figure 25 shows the optical purity of S-2CMN obtained in the first round of the repeated synthesis reaction under each pH condition. As a result, it was confirmed that S-2CMN was obtained with high optical purity as the pH became acidic regardless of the presence or absence of acid-resistant mutation.
  • FIG. 26 shows the optical purity of S-2CMN obtained in the fourth repeated synthesis reaction.
  • the optical purity of the enzymes G165E and V173L-SHNL was greatly reduced regardless of pH conditions.
  • the enzyme L36M, G165E, V173L-S HNL and T140I, G165E, V173L-SHNL introduced acid-resistant mutation showed a gradual decrease in optical purity, and T140I, G165E, V173L-SHNL had a pH of 4.5.
  • % ee ⁇ L36M, G165E, V173L-SHNL S-2CMN could be obtained with an optical purity of 74% ee.
  • Wild-SHNL S-hydroxyltolyl lyase gene (SEQ ID NO: 1) derived from Manyhot esculenta using GeneMorph TM PCR Mutagenesis Kit (manufactured by STRATAGE NE).
  • the wild-SHNL gene is incorporated into the multicloning site of PKK223-3 (Amersham's Biosciences)! /, PKK223-3 / S HNL-Wild plasmid 600ng PCR was performed using as a primer.
  • the obtained PCR product (SHNL-Mutants) was digested with restriction enzymes EcoRI and Hindlll (manufactured by TOYOBO), and the multicloning site was digested with restriction enzymes EcoRI and Hindlll as well as the vector PKK223-3. A ligation was performed. LigaFast TM Rapid DNA Ligation System (Promega) was used for ligation. The ligation reaction solution was transformed into a combinatorial cell DH5a (manufactured by TOYOBO) to obtain a plurality of DH5a / pKK223-3 / SHNL- Actmt.
  • a plurality of DH5a / pKK223-3 / SHNL-Actmt was cultured in a test tube, each lm L of the culture solution was taken, centrifuged, and the supernatant was removed to obtain a cell pellet.
  • the obtained cells were resuspended in 200 L of sodium citrate buffer (PH5.5), and then the cells were disrupted with an ultrasonic cell disrupter.
  • the cell lysate was centrifuged at 15000 rpm for 5 min to obtain a cell lysate. This cell lysate is heated at 60 ° C for 2 hours.
  • SHNL activity was measured.
  • the yield force per unit time of aldehyde generated by the decomposition of mande mouth-tolyl with SH NL at a reaction temperature of 20 ° C was also calculated.
  • the amount of aldehyde produced per unit time is calculated by measuring the absorbance at a wavelength of 249.6 (using a spectrophotometer manufactured by Shimadzu Corporation).
  • DH5a / pKK223-3 / SHNL- Actmt00112 was selected as a heat-resistant strain, having activity even after heating.
  • the selected strains were subjected to colony PCR, and the obtained PCR product was used as a saddle to perform a sequencing reaction. From the analysis results of the reaction product, it was confirmed that DH5 a / pKK223-3 / SHNL-Actmt 0011 has a base sequence in which the 494th guanine of the base sequence shown in SEQ ID NO: 1 is modified to adenine.
  • Actmt001f2-SHNL was confirmed to be a modified SHNL having an amino acid sequence in which the 165th glycine of the amino acid sequence of Wild-SHNL was replaced with aspartic acid.
  • this modified SHNL SHNL in which the 165th glycine is replaced with aspartic acid
  • Actmt-00112-SHNL is referred to as Actmt-00112-SHNL.
  • the SHNL- Actmt001f2 gene was introduced into a high protein expression vector pET21 (Novagen).
  • PKK223-3 / SHNL- Actmt001f2 plasmid was prepared, and it was added to both ends of the saddle by PCR using the following primers and DNA polymerase KODplus (TOYOBO).
  • the restriction enzyme site Ndel BamHI was attached instead of the restriction enzyme site EcoRI Hindlll.
  • Reverse primer 5 '-GGG GGA TCC TTA AGC GTA TGC ATC AGC AAC TTC T TG CAG-3' (SEQ ID NO: 14)
  • E. coli BL21 (DE3) / pET21 a / SHNL-Wild BL21 (DE3) / pET21 a / SHNL- ActmtOO 112 was cultured at 37 ° C. for 12 h using 5 mL of LB medium. 100 ⁇ L of the obtained culture solution was inoculated into 5 mL of S-2 medium shown below, added with IPTG, and cultured at 20 ° C. for 60 hours. After completion of the culture, the culture broth was centrifuged to recover the cells. The cells were suspended in 0.2 M Na citrate buffer (pH 5.5), and the cells were disrupted by ultrasonic waves.
  • the disrupted solution was centrifuged, and the supernatant was recovered to obtain a Wild-SHN L Actmt-00112-SHNL enzyme solution.
  • the enzyme solution has an activity value of 74 U / mL for Wild-SHNL, a protein concentration of 6.29 mg / mL, and an activity value of 69 U / mL for Actmt-001f2-SHNL and a protein concentration of 5.96 mg / mL.
  • Wild-SHNL Actmt- 00112- SHNL enzyme solution 200 ⁇ L was placed in an Eppendorf tube and heated with a heat block so that the enzyme solution temperature was 45 70 ° C. Centrifugation was performed after 30 min, the sample was collected, and the residual activity relative to the enzyme activity at the start was measured. The measurement of enzyme activity is as described in Reference Example 1.
  • the heated enzyme solution sample was analyzed by SDS-PAGE (Fig. 8). Since the sample is heated and centrifuged as described above, proteins that have been denatured by heat and insoluble in water have been removed.
  • FIG. 6 shows changes in protein concentration in the sample due to heating.
  • many proteins derived from the host E. coli are observed ( Figures 11 and 12), but this protein is also denatured by heating and becomes insoluble, so it is removed from the sample as the heating temperature increases. Is done. For this reason, the protein concentration in the sample decreased almost linearly with increasing heating temperature, even though there was a gap between Wild-SHNL and Actmt-001f2-SHNL.
  • Actmt-001f2-SHNL is heat-treated so that the enzyme activity is maintained by an operation such as centrifugation. Proteins derived from E. coli can be removed. Therefore, Actmt-001f2-SHNL could be easily purified at low cost.
  • E. coli BL21 (DE3) / pET21 a / SHNL- Wild and BL21 (DE3) / pET21 a / SHNL- ActmtOO lf2 were cultured at 37 ° C for 12 h using 5 mL of LB medium. 100 ⁇ L of the obtained culture solution was inoculated into 5 mL of NS-2 medium, IPTG was added, and the mixture was cultured at 20 ° C. for 60 hours. After completion of the culture, the culture solution was centrifuged to collect cells. The cells were suspended in 0.2 M Na citrate buffer (pH 5.5), and the cells were disrupted by ultrasound.
  • the disrupted solution was centrifuged, and the supernatant was collected to obtain Wild-SHNL and Actmt-00 112-SHNL enzyme solutions.
  • the concentration of the enzyme solution was Wild-SHNL with an activity value of 83 U / mL protein concentration of 7.01 mg / mL, and Actmt-00112-SHNL with an activity value of 81 U / mL protein concentration of 6.65 mg / mL.
  • the obtained sample was analyzed by SDS-PAGE. From the results of SDS-PAGE (Fig. 15), in the state of Oh (no heating), many proteins derived from E. coli are mixed, but in the sample after heating, both Wild-SHNL and Actmt-00112-SHNL It was clear that the protein derived from was removed from the sample.
  • the protein concentration in the Actmt-001f2-SHNL sample at the heating time lh was 4.25 mg / mL, decreasing to 64% of the initial value (Table 4).
  • the residual activity of Actmt-00 112-SHNL at the heating time lh was 80% or more. Therefore, it has been clarified that Actmt-00112-SHNL can remove proteins derived from E. coli while retaining enzyme activity by heat treatment.
  • the protein concentration at lh was 4.21 mg / mL, and the residual activity decreased to 60% although it decreased to 63% in the initial stage.
  • Actmt-001f2-SHNL may have improved stability against organic solvents. Therefore, we examined the organic solvent resistance of Actmt-001f2-SHNL.
  • An enzyme solution was prepared in the same manner as in Reference Example 2.
  • a coherent protein in the sample may act as a protective agent, which may improve the visual resistance. Therefore, the above samples were diluted with bovine serum albumin and buffer, respectively, and all samples were prepared with an activity value of 44.19 U / mL and a specific activity value of 6.50 U / mg, thus eliminating the influence of contaminating proteins from the experimental system.
  • Ethanol and ethyl acetate were used as organic solvents and added to the enzyme solution.
  • the final concentration of ethanol was 30%, and ethyl acetate was 40%.
  • the sample was then held for 50 hours with stirring. Centrifugation was performed every few hours, 10 L of the supernatant (aqueous phase) was taken as a sample, and the activity was measured. [0099] 2. Experimental results
  • Actmt-00112-SHNL was clearly more resistant to ethanol (Figure 12A) and ethyl acetate (Figure 12B) than Wild-SHNL.
  • SHNL is an enzyme that catalyzes the reaction of aldehydes and ketones with hydrocyanic acid to synthesize optically active cyanohydrins.
  • the catalytic ability of Actmt-001f2-SHNL for the above reaction was examined by comparison with Wild-SHNL.
  • BL21 (DE3) / pET21 a / SHNL- Wild and BL21 (DE3) / pET21 a / SHNL- ActmtOO 11 were cultivated, and the culture medium was centrifuged to remove the supernatant to obtain a cell pellet. After 0.66 g of sodium citrate buffer (pH 5.5) was added to 0.33 g of this cell pellet and resuspended, the cells were disrupted with an ultrasonic cell disrupter. The cell lysate was centrifuged at 15000 rpm for 5 min to obtain a cell lysate. The cell lysate was heated at 50 ° C. for 3 hours, and after the heating, the cell lysate was centrifuged.
  • sodium citrate buffer pH 5.5
  • the supernatant was filtered through a 0.45 m filter and concentrated by ultrafiltration.
  • Sodium citrate buffer (PH5.5) was added to these concentrated enzyme solutions, and the activities of both were prepared as shown in the table below.
  • 0.3 mL of the prepared enzyme solution was mixed with 300 mg of silica gel to obtain an immobilized enzyme.
  • thermophilic enzyme Actmt-00112-SHNL produced S-mande mouth-tolyl at the same reaction rate as Wild-SHNL. From this result, it became clear that Actmt-001f2-SHNL has the same ability as Wild-SHNL in the synthesis of optically active cyanohydrin. By repeating the reaction, the reaction rate gradually decreased in both cases, but the degree of decrease in the reaction rate was slower in Act mt-00112-SHNL. ( Figure 16A).
  • Actmt-00112-SHNL clearly synthesizes optically active cyanohydrin with the same productivity and optical purity as Wild-SHNL. Furthermore, in repeated reactions, a life extension of about 10% was observed.
  • thermostable enzyme Actmt001f2-SHNL had its amino acid sequence 165th replaced with the acidic amino acid aspartate. Therefore, an SHNL expression system BL21 (DE3) / pET21a / SHNL-G165E was produced in which the 165th amino acid was replaced with glutamic acid, which is the same acidic amino acid.
  • Reverse primer 5 '-CAT TTT TGC CAG TTC ATA TTC TTC ATC AGT GCA TT T GGT GAA CAG GTT TTC ACG-3' (SEQ ID NO: 16)
  • the obtained restriction enzyme-treated reaction product was transformed into the competent cell XLIO-Gold included in the kit, and the obtained strain was subjected to colony PCR. Sequencing reactions were performed using this PCR product as a cocoon, and the reaction product was analyzed to select strains in which the 494th to 495th GCs of the base sequence were altered to AA. Plasmid pET21a / SHNL-G165E was prepared from this strain, transformed into the competent cell BL21 (DE3) (Novagen), and the SHNL expression system BL21 (Glu was replaced with the 165th amino acid) DE3) / pET21 a / SHNL-G 165E was prepared.
  • Participant Example 7 Change of heat-resistance due to amino-koji at the placement site
  • the amino acid sequence of SHNL was replaced with amino acid of various polarities, and it was confirmed how it affects the heat resistance of SHNL.
  • Glutamic acid like aspartic acid, is an amino acid having an acidic residue. Lysine and arginine are basic, and alanine is a neutral amino acid like glycine.
  • a heating test was conducted in the same manner as in Reference Example 2 using these 4 strains and a total of 6 strains including DH5a / pKK223-3 / SHNL- ActmtOOl-1 and SHNL-Wild.
  • the modified SHNL was found to contain the introduced amino acid residue.
  • three heat-resistant patterns were shown (Fig. 15).
  • Participant Example 8 Alteration of Helix D3'—Preparation of BL21 (DE3) A) ET21a / SHNL-SD173-le9
  • amino acids up to 165-173 of helix D3, (163-174) and the amino acids up to 17-21 of helix A are arranged to cross each other and close to each other. By substituting amino acids in these sections, heat resistance may change. Therefore, the amino acid sequence 173 of SHNL was replaced with Val force Leu, and it was confirmed how it affects the heat resistance of HNL.
  • SHNL was prepared by replacing the 173rd amino acid with Leu using STRATAGENE.
  • Reverse primer 5 '-C AG AGA GCC CTT GCG CAT NNN CAT TTT TGC CAG T TC ATA TTC GCC-3 (SEQ ID NO: 18) 2. Transformation and heat-resistant assembly
  • the restriction enzyme-treated reaction product thus obtained was transformed into the competent cell XL10-Gold supplied with the kit, and all the colonies obtained on the LB (Amp) plate were suspended in the LB (Amp) liquid medium. Plasmid pET21a / SHNL-SD173-INNNMutants is prepared from this suspension, and transformed into a competent cell BL21 (DE3) (Novagen) to produce BL21 (DE3) / pET21a / pET21a / SHNL-SD 173-INNNMutants strain did.
  • SHNL-SD173-le9 has GTT (V) in the 517th to 519th bases changed to CTG (L), and that 173rd parin has been replaced with leucine. It became.
  • SH NL-SD173-le9 is referred to as SHNL-V173L.
  • the other three strains were all mutants in which 173rd palin was replaced with leucine.
  • V173- SHNL was compared with Wild-SHNL and ActmtOOl-12-SHNL.
  • the SHNL amino acid Val 173 is close to the amino acid Val of the other monomer during dimer formation (distance between ends is about 4.5 angstroms). Substitution of palin to mouth ysine extends the 173rd amino acid residue by one carbon. Therefore, there is a high possibility that the distance between residues is shortened by the extension of carbon chains to each other, and the hydrophobic interaction between nonpolar amino acid residues is strengthened.
  • Participant examples ⁇ Organic VI 73 enzyme ⁇ 3 ⁇ 4 resistance
  • the modified enzyme Actmt001-f2-SHNL which has thermostability, was more resistant to ethanol and ethyl acetate compared to Wild-SHNL.
  • the modified enzyme V173L-SHNL described in Reference Example 9 also has almost the same heat resistance as ActmtOOl-12-SHNL. Therefore, V173L-SHNL was also confirmed to be resistant to ethanol and ethyl acetate.
  • E. coli BL21 (DE3) / pET21 a / SHNL- Wild, BL21 (DE3) / pET21 a / SHNL- ActmtOO 1- f 2, BL21 (DE3) / pET21a / SHNL-V173L were cultured in the same manner as in Reference Example 2.
  • An enzyme solution was prepared. Furthermore, these prepared enzyme solutions were diluted with bovine blood albumin and 0.2 M sodium citrate buffer, and all samples were prepared with an activity value of 45 U / mL and a specific activity value of 6.5 U / mg. Was excluded from the experimental system.
  • VI 73L-SHNL has resistance to ethanol (FIG. 18A) and ethyl acetate (FIG. 18B) compared to Wild-SHNL. Furthermore, V173L-SHNL showed a metamorphosis higher than that of ActmtOOl-12-SHNL for ethanol, and the residual activity of ActmtOOl-12-SHNL was 23% at 16 hours after addition, whereas V173L-SHNL SHNL remained 34% active. The resistance of the two modified enzymes was almost equivalent to ethyl acetate.
  • the obtained PCR product was ligated into the vector pKK223-3, and then transformed into the competent cell DH5a to obtain multiple DH5a / pKK223-3 / SHNL- Actmt020.
  • DH5 a / pKK223-3 / SH NL-Actmt020-b8 that had activity after heating was selected.
  • the strains selected using the primers of SEQ ID NO: 11 and SEQ ID NO: 12 are subjected to PCR using the same primers, and the obtained PCR product is subjected to a sequencing reaction using the same primers. It was. From the analysis result of the reaction product, it was confirmed that SHNL-Actmt020-b8 has a base sequence in which the 520th adenine of the base sequence shown in SEQ ID NO: 1 is modified to thymine.
  • SHNL-Actmt020-b8 is a modified SHNL having an amino acid sequence in which the 174th methionine in the amino acid sequence of Wild-SHNL is replaced with leucine.
  • this modified SHNL is referred to as Actmt020-b8-SHN L.
  • the enzyme solution was heated to 60 ° C.
  • the enzyme solution was centrifuged every 30 min after the start of heating, and the residual activity relative to the enzyme activity before heating was measured using the supernatant.
  • Actmt020-b08-SHNL was greatly improved in thermal stability compared to Wild-SHNL ( Figure 19). Therefore, it has become clear that the thermal stability of SHNL can be improved by replacing methionine, the 174th amino acid constituting helix D3, with leucine.
  • the obtained PCR product was ligated to the vector pKK223-3, and then transformed into the recombinant cell DH5a to obtain a plurality of DH5a / pKK223-3 / SHNL- Actmt022.
  • DH5 a / pKK223-3 / SH NL-Actmt022-gl2 that had activity after heating was selected.
  • the strains selected using the primers of SEQ ID NO: 11 and SEQ ID NO: 12 were subjected to PCR in a vertical pattern, and the obtained PCR product was subjected to a sequencing reaction using the same primers in a vertical pattern. . From the analysis result of the reaction product, it was confirmed that SHNL-Actmt02 2-gl2 has a base sequence in which the 63rd adenine of the base sequence shown in SEQ ID NO: 1 is modified to thymine.
  • Actmt022-gl2-SHNL was confirmed to be a modified SHNL having an amino acid sequence in which the 21st lysine of the amino acid sequence of Wild-SHNL was replaced with asparagine.
  • Amino acid sequence 21st lysine is dimer It is one of the amino acids that constitute helix A, the formation site.
  • the 21st amino acid sequence of SHNL was replaced with various amino acids, and the effect on the heat resistance of SHNL was confirmed.
  • the obtained restriction enzyme-treated reaction product was similarly transformed into a competent cell XL10-Gold attached to the kit and cultured on an LB (Amp) plate.
  • the colonies obtained on the plates were resuspended in LB (Amp) liquid medium to prepare plasmid pET21a / SHNL-SDLys21NNN.
  • This plasmid was transformed into a competent cell BL21 (DE3) (manufactured by Novagen), and a plurality of V21 and BL21 (DE3) / pET21a / SHNL-SDLys21NNN strains were prepared.
  • the prepared E. coli strain BL21 (DE3) / pET21a / SHNL-SDLys21NNN was cultured in the same manner as in Reference Example 2. Using these cultures, the modified strains with improved heat resistance were selected by the same selection method as in Reference Example 1.As a result, BL21 (DE3) / pET21a / SHNL-SDLys21-RAMl, B L21 (DE3) / pET21 a / Three modified strains of SHNL-SDLys21-RAM6 and BL21 (DE3) / pET21a / SHNL-SDLys21-RAM8 were active even after heating.
  • SHNL-SDLys21-RAM6 has a base sequence in which AAA of 61-63 of the base sequence shown in SEQ ID NO: 1 is modified to GAC. Therefore, SDLys2 RAM6-SHNL is an amino acid sequence of Wild-SHNL.
  • SHNL-SDLys21_RAM8 is a base sequence in which the 63rd adenine of the base sequence shown in SEQ ID NO: 1 is modified to cytosine Therefore, SDLys21-RAM8 SHNL was confirmed to be a modified SHNL having an amino acid sequence in which the 21st lysine of the amino acid sequence of Wild-SHNL was replaced with asparagine.
  • SDLys21-RAMl SHNL will be referred to as K21E-SHNL.
  • RAM6 will be referred to as K21D-SHNL
  • RAM8 will be referred to as K21N-SHNL.
  • Participant Example 15 Metabolic fever of K21E-SHNL K21D-SHN and K21N-SHNL
  • Example 14 the E. coli strains BL21 (DE3) / pET21a / SHNL-K21E, BL21 (DE3) / pET21a / SHNL-K21D and BL21 (DE3) / pET21a / SHNL-K21N constructed in Example 14 were compared.
  • BL21 (DE3) / pET21a / SHNL-Wild was cultured in the same manner as in Reference Example 2 to prepare an enzyme solution. Furthermore, these prepared enzyme solutions were diluted with bovine blood albumin and 0.2 M sodium citrate buffer, and all samples were prepared with an activity value of llU / mL and a protein concentration of 6.8 (mg / mL). The effect was excluded from the experimental system.
  • the enzyme solution was heated to 45-65 ° C. At 30 min after the start of heating, the enzyme solution was centrifuged, and the residual activity relative to the enzyme activity before heating was measured using the supernatant.
  • Modified SHNL ActmtOOl- ⁇ -SHNL, V173L-SHNL, and Actmt020-b8-SHNL each have one amino acid modification site and have superior heat resistance and solvent resistance compared to Wild-SHNL. It was. We tried to further improve heat resistance and solvent resistance by combining these individual modified sites on one gene.
  • the resulting restriction enzyme-treated reaction product was transformed into the combi- tive cell XL10-Gold, also included in the kit, and the obtained colonies were picked on an LB (Amp) plate and washed at 37 ° C with LB (Amp) liquid medium. For 12 hours.
  • a plasmid is prepared from this culture solution, this plasmid is used as a template, an extension reaction is performed using the primers of SEQ ID NO: 11 and SEQ ID NO: 12, and the obtained reaction product is used as a template to perform a sequence reaction using the same primer. went.
  • the reaction product was analyzed, and plasmids pET21a / SHNL-G165E and V173L carrying the SHNL gene having two amino acid mutations, Glyl65Glu and Vall73Leu, were selected.
  • This plasmid was transformed into a competent cell BL21 (DE3) (Novagen) to prepare BL21 (DE3) / pET21 a / SHNL-Gl 65E, VI 73L strain.
  • the resulting restriction enzyme-treated reaction product is transformed into the XLIO-Gold that is also supplied with the kit, and the colonies obtained on the LB (Amp) plate are picked up and incubated at 37 ° C in LB (Amp) liquid medium. For 12 hours.
  • a plasmid is prepared from this culture solution, this plasmid is used as a template, an extension reaction is performed using the primers of SEQ ID NO: 11 and SEQ ID NO: 12, and the obtained reaction product is used as a template to perform a sequence reaction using the same primer. went.
  • the reaction product was analyzed, and plasmids pET21a / SHNL-G165E, V173L, and M174L carrying the SHNL gene having three amino acid mutations of Glyl65Glu, V173L, and Metl74Leu were selected.
  • This plasmid was transformed into a competent cell BL21 (DE3) (Novagen) to prepare BL21 (DE3) / pET21a / SHNL-G165E, V173L, M174L strains.
  • Participant Example 17 Thermal Stabilization of ⁇ 3 ⁇ 4 Site Complex SHNL Genes G165E.V173L.M174L-SHNL and G165E.V1 73 M174L-SHNL
  • E. coli strains BL21 (DE3) / pET21a / SHNL-G165E, V173 L, BL21 (DE3) / pET21 a / SHNL constructed in Reference Example 16— Gl 65E, VI 73L, M 174L and BL21 (DE3) / pET21 a / SHN L-Wild was cultured in the same manner as in Reference Example 2 to prepare an enzyme solution. Furthermore, these prepared enzyme solutions were diluted with bovine blood albumin and 0.2M Na citrate Na buffer, respectively, and all samples were prepared with an activity value of 70 U / mL and a protein concentration of 6 mg / mL. Excluded from the experimental system.
  • the enzyme solution was heated to a temperature of 45-75 ° C. At 30 min after the start of heating, the enzyme solution was centrifuged, and the residual activity relative to the enzyme activity before heating was measured using the supernatant.
  • G165E, V173L—SHNL and G165E, V173L, M174L—SHNL compared to Wild—SHNL The thermal stability was greatly improved, and both remained at about 90% activity at 70 ° C (Fig. 21).
  • G165E and V173L-SHNL rapid deactivation was observed at 75 ° C, and the remaining activity was 2%.
  • G165E, V173L, and M174L-SHNL combined with three modified sites remained 13% active at 75 ° C. From these results, it became clear that heat resistance can be further improved by combining individual modified sites on one gene.
  • Reference Example 18 Solvent resistance of mutation site complex SHNL-G165E.V173L-SHNL and G165E.V173 and M174L-S HNL
  • E. coli BL21 (DE3) / pET21 a / SHNL- Wild, BL21 (DE3) / pET21 a / SHNL-G 165E.V173 L, BL21 (DE3) / pET21a / SHNL-G165E, V173L, M174L The enzyme solution was prepared by culturing by the method. Furthermore, these prepared enzyme solutions were diluted with bovine blood albumin and 0.2 M sodium citrate buffer, and all samples were prepared with an activity value of 45 U / mL and a specific activity value of 6.5 U / mg. Was excluded from the experimental system.
  • the enzyme solution was treated with ethanol and ethyl acetate in the same manner as in Reference Example 4, and the residual activity was measured.
  • optically active cyanohydrin was repeatedly synthesized using the mutation site complex enzyme Gl 65E, VI 73L-SHNL, and the stability in the enzyme reaction system was examined. In addition, the substrate specificity may change due to the modification, or the asymmetric synthesis ability may be lost. Therefore, it was confirmed that optically active cyanohydrin can be produced in the same way as normal SHNL.
  • E. coli strains BL21 (DE3) / pET21 a / SHNL-Wild and BL21 (DE3) / pET21 a / SHNL-G 165 E, V173L were cultured in the same manner as in Reference Example 2 to prepare an enzyme solution. Furthermore, sodium citrate buffer (PH5.5) was added to these prepared enzyme solutions, and the activities of both were adjusted to 500 U / mL. B165 was added to the G165E, V173L-SHNL enzyme solution, and the total protein concentration was matched with that of Wild-SHNL. Silica gel was mixed at a ratio of 300 mg to 0.3 mL of these enzyme solutions to obtain an immobilized enzyme.
  • the enzyme reaction was performed under the reaction conditions shown in Reference Example 5. However, 2-chlorobenzaldehyde (2CBA) was used as the reaction substrate instead of benzaldehyde at a final concentration of 1.0M. Samples were collected every hour and the 2CBA concentration and (R / S) -2-chlormande mouth-tolyl concentration in the reaction solution were measured. The end of the reaction was defined as the time when the conversion rate of 2_chlorbensaldehyde exceeded 95%, and 4 mL of the reaction solution was collected after the reaction.
  • 2CBA 2-chlorobenzaldehyde
  • G165E, V173L-SHNL produced (S) -2-chlormande mouth-tolyl with an average optical purity of 95% ee in four repeated reactions.
  • Wild-SHNL also had an optical purity of about 95% ee. Therefore, G165E, V173L-SHNL can be used to produce optically active cyanohydrins. In terms of optical purity, it was revealed that it has almost the same ability as Wild-SHNL.
  • G165E, V173L-SHNL produced (S) -2-quamande mouth-tolyl at the same rate as Wild-SHNL. Therefore, it was revealed that G165E, V173L-SHNL has the same ability as Wild-SHNL in terms of productivity for the production of optically active cyanohydrin. As the reaction was repeated, the enzyme activity decreased and the reaction rate decreased in both cases. G165E and V173L-SHNL were clearly less gradual compared to Wild-SHNL (Fig. 24). Therefore, it was revealed that G165E, V173L-SHNL has improved stability in enzyme reaction system as well as heat resistance alone.
  • Participant Example 20 Construction of a falsification enzyme with modified amino acids at the TM63 site
  • the obtained restriction enzyme-treated reaction product was similarly transformed into a competent cell XL10-Gold attached to the kit and cultured on an LB (Amp) plate.
  • the colonies obtained on the plates were resuspended in LB (Amp) liquid medium to prepare plasmid pET21a / SHNL-SDThrl63NNN.
  • This plasmid was transformed into a competent cell BL21 (DE3) (manufactured by Novagen), and a plurality of V, BL21 (DE3) / pET21a / SHNL-SDThrl63NNN strains were prepared.
  • SHNL-SD163-lb5 has a base sequence in which the 487th to 489th base sequences shown in SEQ ID NO: 1 are modified to GAT. Accordingly, SD1 63-lb5-SHNL was confirmed to be a modified SHNL having an amino acid sequence in which the threonine at position 163 in the wild-SHNL amino acid sequence was substituted with aspartic acid.
  • SH NL-SD163-115 has a base sequence in which 487-489 of the base sequence shown in SEQ ID NO: 1 is modified to GAA. Therefore, SD163-115-SHNL is an amino acid sequence of Wild-SHNL.
  • the modified threonine was a modified SHNL having an amino acid sequence in which the 3rd threonine was replaced with glutamic acid.
  • SHNL-SD163-117 has a nucleotide sequence in which the 487th to 489th positions of the nucleotide sequence shown in SEQ ID NO: 1 are modified with TCT, and therefore SD163-117-SHNL is an amino acid sequence of Wild-SHNL. It was confirmed that this was a modified SHNL having an amino acid sequence in which the 163rd threonine was substituted with serine.
  • SD163-lb5-SHNL is referred to as T165D-SHNL
  • SD163-lf5-SHNL is referred to as T163E-SHNL
  • SD163-117-SHNL is referred to as T163S-SHNL.
  • Reference Example 21 f-thermal properties of modified enzymes T163D-SHN and T163E-SHN and T163S-SHNL
  • Escherichia coli strains BL21 (DE3) / pET21a / SHNL-T163D, BL21 (DE3) / pET21a / SHNL-T163E and BL21 (DE3) / pET21a / SHNL-T163S constructed in Reference Example 20 were used as Reference Example 2 and The enzyme solution was prepared by culturing in the same manner. Furthermore, these prepared enzyme solutions were diluted with bovine blood albumin and 0.2 M sodium citrate buffer, and BL21 (DE3) / pET21a / SHNL-T163D and BL21 (DE3) / pET21a / SHNL-T163E were used.
  • the activity value was 70 U / mL, the protein concentration was 7 mg / mL, and BL21 (DE3) / pET21a / SHNL-T163S was prepared to have an activity value of 70 U / mL and a protein concentration of 14 mg / mL.
  • BL21 (DE3) / pET21a / SHNL-Wild prepared at the same concentration was used.
  • the enzyme solution was heated to 50-70 ° C. At 30 min after the start of heating, the enzyme solution was centrifuged, and the residual activity relative to the enzyme activity before heating was measured using the supernatant.
  • T163S-SHNL greatly improved thermal stability compared to Wild-SHNL! /, (Fig. 16).
  • T163D-SHNL and T163E-SHNL also had better thermal stability at 60 ° C than Wild-SHNL. Therefore, it became clear that the thermal stability of SHNL can be improved by replacing the 163rd amino acid threonine constituting helix D3 with aspartic acid, glutamic acid, or serine.
  • the acid-resistant mutation SHNL of the present invention has improved acid resistance compared to natural SHNL.
  • the reaction can be performed under acidic conditions, and a highly pure optically active cyanohydrin can be synthesized with high efficiency while suppressing competing racemization reactions. Therefore, the acid resistant mutation SHNL of the present invention is extremely useful as an enzyme for industrial production of optically active cyanohydrin.
  • SEQ ID NO: 8 Description of artificial sequence: primer SEQ ID NO: 9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、新規な耐酸性改変型S-ヒドロキシニトリルリアーゼ(SHNL)に関する。より詳細には、天然型SHNLのアミノ酸配列(配列番号2)において、36番目、140番目、及び209番目から選ばれるアミノ酸のうち、少なくとも1つを他のアミノ酸に置換して得られる、天然型SHNLよりも耐酸性が向上したSHNLに関する。

Description

明 細 書
新規耐酸性改変型 s-ヒドロキシニトリルリアーゼ
技術分野
[0001] 本発明は、新規な耐酸性改変型 S-ヒドロキシュトリルリアーゼ (SHNL)に関する。よ り詳細には、特定部位のアミノ酸配列を改変して得られる天然型 SHNLよりも耐酸性 が向上した SHNLに関する。
背景技術
[0002] S-ヒドロキシュトリルリアーゼ(SHNL)は、青酸とアルデヒド、あるいはケトンとの反応 を触媒し、光学活性シァノヒドリン類を生成させる工業上重要な酵素である。
[0003] SHNLとしては、例えば、キヤッサバ(Manihot esculenta)由来の SHNL、ノ ラゴムノキ
(Hevea brasiliensis)由来の SHNL、又はイネ科植物であるモロコシ(Sorghum bicolor) 由来の SHNLなどが知られている。しかしながら、酵素を生物より分離するコストが高 額であるため、工業的には、天然の SHNLにカ卩えて組換え型 SHNLが用いられている
[0004] 組換え型 SHNLは、大腸菌や酵母等を宿主として製造することが出来るが、工業的 にはさらにコストパフォーマンスを向上させるため、耐性や活性の向上した改変型 SH NLが望ましい。特に SHNLの触媒するカルボ二ルイ匕合物と青酸の反応では、同時に 酵素に因らないラセミ化反応が進行するが、この競合反応は酸性条件で反応するこ とによって抑制できることが知られている。したがって、耐酸性を有する改変 SHNLを 作製できれば、より効率よく光学活性シァノヒドリン類を製造することができる。
[0005] 改変型 SHNLとしては、これまで SHNLのアミノ酸配列の 128番目のトリプトファンをァ ラニンに置換することで酵素活性を向上させた改変型 SHNLが知られている (特許文 献 1、非特許文献 1)。し力しながら、耐酸性を向上させた SHNLについてはこれまで 報告されたことはない。
特許文献 1:特開 2000-125886号公報
非特許文献 l : Lauble et al. protein science. 2002 11:ρ65- 71
発明の開示 [0006] 本発明の課題は、天然の SHNLに比較して顕著に耐酸性が向上した新規な SHNL を提供し、光学活性シァノヒドリンのより効率的な製造を可能にすることにある。
[0007] 発明者らは、上記課題を解決するために鋭意検討し、 SHNLのアミノ酸を遺伝子ェ 学的に置換することで、改変前の酵素に比較して著しく耐酸性の向上した酵素が得 られることを見出し、本発明を完成させた。
[0008] すなわち本発明は、キヤッサバ(Manihot esculenta)由来の天然型 SHNLのアミノ酸 配列(配列番号 2)にお!/、て、 36番目、 140番目、及び 209番目力 選ばれるアミノ酸 のうち、少なくとも 1つを他のアミノ酸に置換して得られる、改変型 SHNL、あるいはパ ラゴムノキ (Hevea brasiliensis)由来の天然型 SHNLのアミノ酸配列(配列番号 3)にお いて 36番目、 139番目、及び 208番目力 選ばれるアミノ酸のうち少なくとも 1つを他の アミノ酸に置換して得られる、改変型 SHNLに関する。
[0009] 前記改変型 SHNLの具体例としては、キヤッサバ(Manihot esculenta)由来の天然型 SHNLのアミノ酸配列(配列番号 2)において、以下のアミノ酸置換:
a) 36番目のロイシンのメチォニンへの置換、
b) 140番目のトレオニンのイソロイシンへの置換、
c) 209番目リジンのァスパラギンへの置換
力も選ばれる少なくとも 1つのアミノ酸置換を有する改変型 SHNLを挙げることができる
[0010] 前記改変型 SHNLは、さらに以下のアミノ酸置換:
a) 21番目のリジンのァスパラギン酸、グルタミン酸、又はァスパラギンへの置換、 b) 165番目のグリシンのァスパラギン酸又はグルタミン酸への置換、
c) 173番目のパリンのロイシンへの置換、
d) 174番目のメチォニンのロイシンへの置換、及び
e) 163番目のトレオニンのァスパラギン酸、グルタミン酸、又はセリンへの置換 力も選ばれる少なくとも 1つのアミノ酸置換を有して 、てもよ 、。
[0011] 本発明は、前記改変型 SHNLのアミノ酸配列をコードする DNAも提供する。
[0012] また本発明は、前記 DNAを導入した宿主を培養し、得られる培養物から SHNL活性 を有するタンパク質を回収することを特徴とする、改変型 SSHNLの製造方法も提供す る。
[0013] さらに本発明は、本発明の改変型 SHNLをカルボ二ルイ匕合物及びシアンィ匕合物と 接触させることを特徴とする光学活性シァノヒドリンの製造方法も提供する。
[0014] 本発明の耐酸性改変型 SHNLは、従来の酵素に比較して耐酸性が著しく向上して いる。そのため、酸性条件下での反応が可能となり、競合するラセミ化反応を抑えて 、光学活性シァノヒドリンの効率的生産を行うことができる。
図面の簡単な説明
[0015] [図 1]図 1は、キヤッサノ (Manihot esculenta)及びパラゴムノキ(Hevea brasiliensis)由 来 SHNLのアミノ酸配列をアラインメントした図である。
[図 2]図 2は、変異株の耐酸性を評価した結果である。
[図 3]図 3は、複合変異株の耐酸性を評価した結果である。
[図 4]図 4は、耐酸性酵素の耐熱性を評価した結果である。
[図 5]図 5は、耐熱性変異酵素遺伝子に耐溶媒性を評価した結果である (A:エタノー ル耐性、 B:酢酸ェチル耐性)。
[図 6]図 6は、耐熱性変異酵素遺伝子に耐酸性変異部位を新たに複合することによる 耐熱性の向上をみた結果である。
[図 7]図 7は、 Wild-SHNLと Actmt-001f2-SHNLの熱に対する安定性を比較したグラフ である。
[図 8]図 8は、 Wild- SHNLと Actmt- 00112- SHNLの加熱処理サンプルの SDS- PAGEに よる解析結果を示す写真である。
[図 9]図 9は、 Wild- SHNLと Actmt- 00112- SHNLの加熱処理サンプルのタンパク質濃 度の変化を示すグラフである。
[図 10]図 10は、 Wild- SHNLと Actmt- 00112- SHNLの熱に対する安定性を比較したグ ラフである。
[図 11]図 11は、 Wild- SHNLと Actmt- 00112- SHNLの加熱処理サンプル(上清)の SDS -PAGEによる解析結果を示す写真である。
[図 12]図 12は、 Actmt-001f2-SHNLの有機溶媒耐性を示すグラフである(A:エタノー ル耐性、 B:酢酸ェチル耐性)。 [図 13]図 13は、 Actmt-001f2-SHNLの繰り返し反応における反応 1時間目の S-マン デ口-トリルの光学純度を示すグラフである。
[図 14]図 14は、 Actmt- 00112- SHNLの繰り返し反応におけるベンズアルデヒド転換率 を示すグラフである (A:反応 1時間目の転換率の繰り返し回数による変化、 B :反応 1 1回目の転換率の経時的変化)。
[図 15]図 15は、種々の改変型 SHNLの加熱による酵素活性の変化を示すグラフであ る。
[図 16]図 16は、改変酵素 T163S-SHNLの熱に対する安定性を示すグラフである。
[図 17]図 17は、 Wild- SHNL、 Actmt- 00112- SHNL、 VI 73L- SHNLの熱に対する安定 性を比較したグラフである。
[図 18]図 18は、 V173L-SHNLの有機溶媒耐性を示すグラフである (A:エタノール耐 性、 B:酢酸ェチル耐性)。
[図 19]図 19は、改変酵素 Actmt020-b8-SHNLの熱に対する安定性を示すグラフであ る。
[図 20]図 20は、 Lys21改変酵素の熱に対する安定性を示すグラフである。
[図 21]図 21は、改変部位を複合した SHNLの熱に対する安定性を示すグラフである。
[図 22]図 22は、 G165E,V173L-SHNLのエタノール而性を示すグラフである。
[図 23]図 23は、 G165E.V173L,M174L-SHNLの酢酸ェチル而性を示すグラフである
[図 24]図 24は、 G165E,V173L-SHNLを用いた繰り返し反応における反応 1時間目の 2CMN生産量を示すグラフである。
[図 25]図 25は、各 pH条件下での繰り返し合成反応 1回目で得られた S-2CMNの光学 純度を示すグラフである。
[図 26]図 26は、各 pH条件下での繰り返し合成反応 4回目で得られた S-2CMNの光学 純度を示すグラフである。
本明細書は、本願の優先権の基礎である特願 2005— 285049号の明細書に記載 された内容を包含する。
発明を実施するための最良の形態 [0017] 以下、本発明について詳細に説明する。
[0018] 1.天然型 S-ヒドロキシュトリルリアーゼ
本発明にお 、て、「天然型 S-ヒドロキシュトリルリアーゼ(以下 SHNLと略記する)」と は、植物から単離'精製された SHNL、あるいは当該 SHNLと同じアミノ酸配列を有す る SHNLを意味する。前記天然型 SHNLの由来は特に限定されず、例えば、モロコシ( Sorghum bicolor)などのイネ科植物由来の SHNL、キヤッサノ (Manihot esculenta)や パラゴムノキ (Hevea brasiliensis)などのトウダイグサ科植物由来の SHNL、キシメユア( Ximenia america)などのボロボロノキ植物由来の SHNL等を挙げることができる。これら SHNLのアミノ酸配列や遺伝子の塩基配列は既に公知であり、 GenBank等の公共デ ータベースを通じて容易に入手することができる。例えば、ノ ラゴムノキ由来 SHNL遺 伝子は Accession No.U40402 (配列番号 3は U40402の CDSに該当)、キヤッサバ由来 の SHNL遺伝子は Accession No. Z29091、モロコシ由来 SHNL遺伝子は Accession No .AJ421152として、それぞれ GenBankに登録されている。
[0019] 図 1は、キヤッサバ(Manihot esculenta)及びパラゴムノキ(Hevea brasiliensis)由来 の SHNLのアミノ酸配列をアラインメントしたものである。両 SHNLのアミノ酸の相同性 は 74%であり、個々のアミノ酸は必ずしも完全に同一ではない。例えば、ノ ラゴムノキ 由来の SHNLでは、キヤッサバ由来の SHNLの 139番に該当するアミノ酸が欠失してい るため、ヘリックス D3,領域のアミノ酸番号が 1つずれている。すなわち、キヤッサバ由 来の SHNLのアミノ酸配列(配列番号 2)にお!/、て 36番目、 140番目、及び 209番目の アミノ酸は、パラゴムノキ (Hevea brasiliensis)由来の SHNLのアミノ酸配列(配列番号 4 )において、それぞれ 36番目、 139番目、及び 208番目に該当する。
[0020] キヤッサバ由来の SHNLとパラゴムノキ由来の SHNLは、 V、ずれも α / βヒドロラーゼ スーパーファミリーに属し、その立体構造は酷似している。従って、キヤッサバ由来の SHNLによるアミノ酸配列の改変効果から、パラゴムノキ由来の SHNLについても該当 部位のアミノ酸配列の改変により同様の効果を期待することができる。
[0021] 2.改変型 S-ヒドロキシュトリルリアーゼ
本発明は、キヤッサバある ヽはパラゴムノキ由来の天然型 SHNLのアミノ酸配列にお いて、特定部位のアミノ酸配列を改変(置換あるいは挿入)して得られる、耐酸性改 変型 SHNLに関する。具体的には:
キヤッサバ由来の天然型 SHNLのアミノ酸配列(配列番号 2)において、 36番目、 140 番目、及び 209番目力 選ばれるアミノ酸のうち、少なくとも 1つを他のアミノ酸に置換 して得られる改変型 SHNL;
パラゴムノキ由来の天然型 SHNLのアミノ酸配列(配列番号 4)において、 36番目、 139 番目、及び 208番目力 選ばれるアミノ酸のうち、少なくとも 1つを他のアミノ酸に置換 して得られる改変型 SHNLに関する。
[0022] より具体的には、配列番号 2に示されるアミノ酸配列において、
a) 36番目のロイシンのメチォニンへの変異、
b) 140番目のトレオニンのイソロイシンへの変異、
c) 209番目リジンのァスパラギンへの変異
力も選ばれる少なくとも 1つ以上のアミノ酸配列の改変を有する改変型 SHNLを挙げる ことができる。
[0023] さらに、上記改変部位を複合させた SHNLはより高 、耐酸性を有する。例えば、キヤ ッサバ由来の天然型 SHNLのアミノ酸配列(配列番号 2)において、前記 36番目と 140 番目のアミノ酸置換を複合させた改変型 SHNLや、 36番目、 140番目、及び 209番目 のアミノ酸置換を複合させた改変型 SHNLは高い耐酸性を有する。
[0024] さらにまた、上記改変部位に、既に発明者らが報告している耐熱性向上のための 改変部位: 21番目、 163番目、 165番目、 169番目、 172番目、 173番目、及び 174番目 力も選ばれる 1以上の部位におけるアミノ酸置換を複合させた改変型 SHNLは高い耐 酸性と耐熱性を併せ持つ。具体的には、本発明の改変型 SHNLは、耐熱性向上のた めの以下のアミノ酸置換:
a) 21番目のリジンのァスパラギン酸、グルタミン酸、又はァスパラギンへの置換、 b) 165番目のグリシンのァスパラギン酸又はグルタミン酸への置換、
c) 173番目のパリンのロイシンへの置換、
d) 174番目のメチォニンのロイシンへの置換、
e) 163番目のトレオニンのァスパラギン酸、グルタミン酸、又はセリンへの置換、から 選ばれる 1以上のアミノ酸置換を複合させることにより、高い耐酸性と耐熱性を併せ持 つようになる。
[0025] こうしたアミノ酸の置換及び挿入は、周知の方法に従い、当該アミノ酸配列をコード する遺伝子に部位特異的変異を導入すればよい。そのような部位特異的変異は、巿 販のキット(例えば、 QuikChange XL Site-Directed Mutagenesis kit (STRATAGENE) 、 Transformer™Site- Directed Mutagenesis Kit (CLONTECH)等)を用いて容易に行 うことができる。本発明の改変型 SHNLは、天然型 SHNLと比較して耐酸性が向上して いるため、ラセミ化反応を抑えた酸性条件下での反応が可能になり、光学活性シァノ ヒドリンの工業的生産工程において非常に有用な酵素といえる。
[0026] 3.耐酸性改変型 S-ヒドロキシュトリルリアーゼの製造
3. 1 耐酸性改変型 SHNLをコードする DNA
本発明に力かる改変型 SHNLタンパク質をコードする DNAは、公知の天然型 SHNL 遺伝子に、部位特異的変異を導入して得られる。すなわち、置換部位のコドンを目的 とするアミノ酸をコードするコドンに改変しうるプライマーを設計し、該プライマーを用 V、て天然型 SHNLをコードする DNAを铸型として伸長反応を行えばょ 、。部位特的変 異導入は、市販のキット(例えば、 QuikChange XL Site-Directed Mutagenesis kit (ST RATAGENE)、 Transformer™ Site-Directed Mutagenesis Kit (CLONTECH)等)を用 いて容易に行うことができる。
[0027] 3. 2 組換えベクター
次 、で、前記耐酸性改変型 SHNLをコードする DNAをプラスミド等の公知のベクタ 一に連結 (挿入)して組換えベクターを作製する。前記ベクターは宿主中で複製可能 なものであれば特に限定されず、例えばプラスミド DNA、ファージ DNA等が挙げられ る。
[0028] 前記プラスミド DNAとしては、大腸菌由来のプラスミド(例えば pBR322, pBR325, pU C18, pUC119, pHCE IIB, pTrcHis, pBlueBacHis等、特に強力な T7プロモーターを 有する PET21ベクターが好ましい)、枯草菌由来のプラスミド (例えば pUBllO, pTP5 等)、酵母由来のプラスミド(例えば YEpl3, YEp24, YCp50, pYE52等)など力 ファ ージ DNAとしてはえファージ等が挙げられる。
[0029] 前記ベクターへの本発明の遺伝子の挿入は、まず、精製された DNAを適当な制限 酵素で切断し、ベクター DNAの適当な制限酵素部位又はマルチクローユングサイト に挿入してベクターに連結する方法が採用される。
[0030] 宿主内で外来遺伝子を発現させるためには、構造遺伝子の前に、適当なプロモー ターを配置させる必要がある。前記プロモーターは特に限定されず、宿主内で機能 することが知られて!/、る任意のものを用いることができる。なおプロモーターにつ!/、て は、後述する形質転換体において、宿主ごとに詳述する。また、必要であればェンノヽ ンサ一等のシスエレメント、スプライシングシグナル、ポリ A付カ卩シグナル、リボソーム 結合配列(SD配列)、ターミネータ一配列等を配置させてもよい。
[0031] 3. 3 改変型 SHNL発現系(形質転換体)
次いで、前記組換えベクターを目的遺伝子が発現しうるように宿主中に導入し、改 変型 SHNL発現系を作製する。ここで宿主としては、本発明の DNAを発現できるもの であれば特に限定されず、例えば、エッシェリヒァ 'コリ(Escherichia coli)等のエツシェ リヒア属、バチルス'ズブチリス(Bacillus subtilis)等のバチルス属、シユードモナス 'プ チダ(Pseudomonas putida)等のシユードモナス属、リゾビゥム 'メリロティ(Rhizobium meliloti)等のリゾビゥム属に属する細菌、またサッカロミセス'セルピシェ(Saccharomy ces cervisiae)、チゾサッカロ^セス'ポンべ (¾chizosaccnaromyces. pombeノ、ピャ 7 · パストリス(Pichia pastoris)等の酵母、その他 COS細胞、 CHO細胞等の動物細胞、あ るいは Sfl9、 Sf21等の昆虫細胞を挙げることができる。
[0032] 大腸菌等の細菌を宿主とする場合は、本発明の組換えベクターが該細菌中で自律 複製可能であると同時に、プロモーター、リボゾーム結合配列、本発明の遺伝子、転 写終結配列により構成されていることが好ましい。また、プロモーターを制御する遺伝 子が含まれていてもよい。大腸菌としては、例えば、エッシェリヒァ 'コリ (Escherichia c oli)HMS174(DE3)、 K12、 DH1、 Β株等が挙げられ、枯草菌としては、例えば、バチル ス'ズブチリス (Bacillus subtilis)MI 114、 207-21等が挙げられる。プロモーターとして は、大腸菌等の上記宿主中で発現できるものであれば特に限定されず、例えば、 trp プロモーター、 lacプロモーター、 Pプロモーター、 Pプロモーター等の、大月昜菌ゃフ
L R
ァージに由来するプロモーターが挙げられる。また、 tacプロモーター等のように、人 為的に設計改変されたプロモーターを用いてもよい。細菌への糸且換えベクターの導 入方法は、特に限定されず、例えば、カルシウムイオンを用いる方法 [Cohen, S.N. et al. : Proc. Natl. Acad. Sci., USA, 69 : 2110—2114 (1972)]や、エレクト口ポレーシヨン法 等を挙げることができる。
[0033] 酵母を宿主とする場合は、例えば、サッカロミセス'セレピシェ、シゾサッカロミセス' ボンべ、ピキア'パストリス等が用いられる。プロモーターとしては、酵母中で発現でき るものであれば特に限定されず、例えば、 gallプロモーター、 gallOプロモーター、ヒー トショックタンパク質プロモーター、 MF a 1プロモーター、 PH05プロモーター、 PGKプ 口モーター、 GApプロモーター、 ADHプロモーター、 AOX1プロモーター等を挙げるこ とができる。酵母へのベクターの導入方法は、特に限定されず、例えば、エレクトロボ レーシヨン法 [Becker, D.M. et al : Methods EnzymoL, 194: 182-187 (1990)]、スフエ 口プラスト法 [Hinnen, A.et al. : Proc. Natl. Acad. Sci., USA, 75 : 1929-1933 (1978)]、 酢酸リチウム法 Dtoh, H. :J. BacterioL, 153 : 163-168 (1983)]等を挙げることができる。
[0034] 3. 4 形質転換体の培養
本発明の改変型 SHNLは、本発明の形質転換体を適当な培地で培養し、その培養 物から該酵素活性を有するタンパク質を採取することによって得ることができる。本発 明の形質転換体を培養する方法は、宿主に応じて、適宜決定される。例えば、大腸 菌ゃ酵母等の微生物を宿主とする形質転換体の場合は、微生物が資化しうる炭素 源、窒素源、無機塩類等を含有し、形質転換体を効率的に培養しうる培地であれば 、天然培地、合成培地のいずれを用いても良い。
[0035] 培養中は必要に応じてアンピシリンやテトラサイクリン等の抗生物質を培地に添カロ しても良 、。プロモーターとして誘導性のものを用いた発現ベクターで形質転換した 微生物を培養する場合は、必要に応じてインデューサーを培地に添加しても良い。 例えば、 lacプロモーターを用いた発現ベクターで形質転換した微生物を培養する場 合は、イソプロピル- β -チォガラクトピラノシド(IPTG)等を、 trpプロモーターを用いた 発現ベクターで形質転換した微生物を培養する場合は、インドールアクリル酸 (IAA) 等を培地に添加しても良い。
[0036] 培養後、本発明の酵素タンパク質が菌体内又は細胞内に生産される場合は、菌体 又は細胞を破砕する。一方、本発明のタンパク質が菌体外又は細胞外に分泌される 場合は、培養液をそのまま用いるか、遠心分離等によって回収する。
[0037] タンパク質の単離'精製には、例えば硫安沈澱、 SDS— PAGE、ゲルろ過、イオン 交換クロマトグラフィー、ァフィユティークロマトグラフィー等を単独である 、は適宜組 み合わせて用いればよい。
[0038] 本発明の改変型 SHNLの酵素活性は、基質となりうる適当なシアンィ匕合物とアルデ ヒド、あるいはケトンを含む反応液に該酵素を添加し、生成する光学活性シァノヒドリ ンを検出することにより確認することができる。光学活性シァノヒドリンの確認は、例え ば、ガスクロマトグラフィー、高速液体クロマトグラフィー等を用いることができる。ある いは、本発明の改変型 SHNLに特異的に結合する抗体を作製し、該抗体を用いたゥ エスタンブロッテイングによって発現を確認することもできる。例えば、 SHNLの酵素活 性は、マンデ口-トリルの SHNLによる分解によって生じるアルデヒドの単位時間あたり の生成量 (波長 249.6 における吸光度力も算出)を測定することによって確認できる
[0039] 本発明の改変型 SHNLの製造法としては、例えば、特開平 10-373246号、特開平 10 -373248号、特開平 11-367251号を参考にすることができる。
[0040] 4.耐酸性改変型 SHNLによる光学活性シァノヒドリンの合成
本発明の改変型 SHNLは、天然型 SHNLよりも高 、生産効率で光学純度の高!、光 学活性シァノヒドリンを合成できる。本発明の耐酸性改変型 SHNLを用いた光学活性 シァノヒドリンの合成は、天然型 SHNLと全く同様の方法で実施できる。
[0041] すなわち、反応溶媒中に、本発明の改変型 SHNL及び反応基質を加え、反応温度 10 50°Cにおいて、 20分間〜 24時間反応させることによって、光学活性シァノヒドリン を合成することができる。反応時間は、基質の転換速度に応じて適宜調整する。反応 基質としては、カルボ-ルイ匕合物及びシアン化合物を使用することができる。カルボ -ル化合物は、 COR1R2で示されるアルデヒド又はケトンであり、 R1と R2は水素原子、 置換又は非置換の炭素数 1 18の線状又は分枝鎖状の飽和アルキル基、ある 、は 置換又は非置換の環員が 5 22の芳香族基である(ただし、 R1と R2は同時に水素原 子を表すことはない)。シアンィ匕合物は、シアンィ匕物イオン (CN—)を生じる物質であれ ば特に限定されず、例えば、シアンィ匕ナトリウムやシアン化カリウムなどのシアンィ匕水 素塩、アセトンシアンヒドリンなどのシァノヒドリン類を用いることができる。
[0042] 反応溶媒としては、反応系内に水が大量に存在すると、酵素反応によって生成した 光学活性シァノヒドリンのラセミ化が起こりやすくなつたり、水に対する溶解度の小さい アルデヒド又はケトンを原料として用いる場合には生産効率が低下するなどの点から 、水に難溶又は不溶である有機溶媒を主成分とする反応溶媒を用いることが好まし い。このような有機溶媒としては、酵素反応による光学活性シァノヒドリンの合成反応 に影響を与えな 、ものであれば特に制限はなぐ合成反応に用いる原料のアルデヒ ド又はケトンの物性、生成物であるシァノヒドリンの物性に応じて適宜選択することが できる。具体的には、ハロゲンィ匕されていてもよい脂肪族又は芳香族の直鎖状又は 分枝状又は環状の飽和又は不飽和炭化水素系溶媒、例えば、ペンタン、へキサン、 トルエン、キシレン、塩化メチレンなど;ハロゲンィ匕されていてもよい脂肪族又は芳香 族の直鎖状又は分枝状又は環状の飽和又は不飽和アルコール系溶媒、例えば、ィ ソプルピルアルコール、 n—ブタノール、イソブタノール、 tーブタノール、へキサノー ル、シクロへキサノール、 n—ァミルアルコールなど;ノヽロゲン化されていてもよい脂肪 族又は芳香族の直鎖状又は分枝状又は環状の飽和又は不飽和エーテル系溶媒、 例えば、ジェチルエーテル、ジプロピルエーテル、ジイソピルエーテル、ジブチルェ 一テル、メチル t—ブチルエーテルなど;ハロゲンィ匕されて 、てもよ 、脂肪族又は 芳香族の直鎖状又は分枝状又は環状の飽和又は不飽和エステル系溶媒、例えば、 ギ酸メチル、酢酸メチル、酢酸ェチル、酢酸ブチル、プロピオン酸メチルなどが挙げ られ、これらを単独で用いても、また複数を混合して用いてもよい。また、上記溶媒は 水又は水系の緩衝液を含有又は飽和させたものを用いることもできる。
[0043] 工業的生産工程において、改変型 SHNLは適当な無機担体に固定ィ匕させた固定 化酵素として用いてもよい (例えば、特開 2002-176974号参照)。本発明の改変型 SH NLを用いたシァノヒドリンの好適な合成方法としては、例えば、特開 2002-355085号、 特開 2002-176974号、特開 2001-363840号、特開 2001-346596号、特開 2001-19027 5号、特開 2000-245286、特開 2001-120289号、特開 2000-217590号等に記載された 方法を挙げることができる。
実施例 [0044] 以下、実施例及び参考例を用いて本発明についてより詳細に説明するが、本発明 はこれらの実施例及び参考例に限定されるものではない。
[0045] 実施例 1 ランダム変異 SHNLライブラリ一力 の耐酸性変異 SHNLのスクリーニング
[材料及び方法]
1)ランダム変異 SHNLライブラリ一
本発明で用いた SHNL遺伝子は、キヤッサノ (Manihot esculenta)よりクロー-ングさ れた SHNLの遺伝子配列を大腸菌型のコドンに変換した配列 (配列番号 1: #112002 - 365675 (以下、この SHNLを「Wild- SHNL」と記載する))を用いた。この SHNL- Wild遺 伝子がベクター pET21a(Novagen社製)に組み込まれたベクタープラスミド SHNL- Wild /pET21aを铸型として、 GeneMorph™PCR Mutagenesis Kit (STRATAGENE社製)によ り無作為に変異を導入し、ランダム変異 SHNLライブラリーを作製した。作製したラン ダム変異 SHNLライブラリ一は、ベクタープラスミド pKK223- 3 (アマシャム'バイオサイ エンス社製)のマルチクロー-ングサイトに挿入し、大腸菌 Escherichia coli DH5 aに 組み込んだ状態で凍結保存した。
[0046] 2)耐酸性変異酵素のスクリーニング
前記ランダム変異 SHNLライブラリークローンを表 1に示される NS-2培地が分注され たディープゥエルプレートに接種し、 20°C、 l lOOrpmの条件で振盪培養を行った。
[表 1]
NS-2培地組成
Glycerol 40g
(NH4) 2S04 10g
H2P04 2g
K2HP04 6g
Yeast ext. (Ebios P2G) 40g
MgS04 · 7H20 1 g
アンピシリン ig
IPTG 0. 238g
蒸留水 1L
[0047] 菌体が十分増殖した後、培養液を遠心分離し、菌体ペレットを得た。 pH5.5クェン酸 Naバッファー 150 μ L中に菌体ペレットを懸濁した後シェイクマスター(BMS社製)を用 いて菌体を破砕し、粗酵素液を得た。次に粗酵素液 10 /z Lを ρΗ4.15クェン酸 Naバッ ファー 150 /z Uこ添加し、 1100rpm、 20°Cの条件で 2hの攪拌による酸処理を行った。次 に酸処理後の粗酵素液に PH4.15クェン酸 Naバッファー 150 Lをカ卩え、更に基質で ある DL-マンデ口-トリルを 0.04 L添カ卩し、振盪により酵素反応を行った。 20min後に リン酸を 30 L添加し、反応を停止させ、反応液を UVプレートに移し、プレートリーダ 一(GENios : TECAN社製)により波長 260nmにおける吸光度を測定し、活性値とした。 次にコントロールとして、 pH5.5クェン酸 Naバッファ一中 1100rpm、 20°Cの条件で 2hの 攪拌を行った粗酵素液を用いて、 PH5.5における酵素反応を行い、同様に活性値を 測定した。酸処理済み酵素液の活性値をコントロールの活性値で除して得られる値 を耐酸性の指標として用いた。比較として SHNL-Wild/pKK223-3/DH5 aの培養液よ り調製された粗酵素液を用いた同様の測定より Wild-SHNLの耐酸性指標を算出した 。 Wild-SHNLと比較して高 ヽ耐酸性指標を有する変異株を耐酸性変異株として選抜 した。選抜された耐酸性変異株は、プラスミド抽出を行い、これを铸型とした配列解析 により変異部位の特定をした。
[0048] 3)選抜した変異株の耐酸性評価
選抜した耐酸性酵素株、及び比較として SHNL-Wild/pKK223-3/DH5 aを試験管 で培養し、培養終了後培養液の破砕により粗酵素液を調製した。得られた粗酵素液 に PH5.5クェン酸 Naバッファー及び大腸菌由来非活性タンパク質を添加し、酵素液 の活性値を 2U/mL、タンパク質濃度を lmg/mLに調製した。
[0049] 上記大腸菌株の培養には、表 1に示される NS-2培地 5mLを用いた。培養は 20°C、 1 20rpmの振盪攪拌で行った。 SHNL酵素活性は DL-マンデ口-トリルを基質として、 DL -マンデ口-トリルが酵素により分解されて精製するべンズアルデヒドの生成速度を 24 9.6nmの吸光度変化の測定力 算出した。タンパク質濃度は BCA protein assay kit ( Pierce社製)を用い、 BSAを標準品として測定した。大腸菌由来非活性タンパク質は 大腸菌株 PKK223- 3/DH5 a培養液を破砕することで得た。
[0050] 次に、調製済み粗酵素液 30 Lに pH 4.15クェン酸バッファー 150 Lを添カ卩し 20°C 、 2h攪拌する酸処理を行った。酸処理後の粗酵素液を用いて活性測定を行い、酸処 理前の活性を 100%として残存活性を算出した。
[0051] [結果] 選抜された耐酸性変異 SHNL株の変異箇所を表 2に示した。選抜された耐酸性変 異株 Lot002H6及び Lot034B10は配列番号 1に示される SHNL遺伝子配列の 106番目 のシトシンがアデニンに変異しており、その結果、配列番号 2に示される SHNLアミノ酸 配列 36番目ロイシン力 Sメチォニンへ変異して 、た。同じく Lot023F12は配列番号 1に 示される SHNL遺伝子配列の 419番目のシトシンがチミンに変異しており、その結果、 配列番号 2に示される SHNLアミノ酸配列 140番目トレオニンがイソロイシンへ変異して いた。また Lot016G12は配列番号 1に示される SHNL遺伝子配列の 627番目のアデ- ンがチミンに変異しており、その結果、配列番号 2に示される SHNLアミノ酸配列 209番 目リジンがァスパラギンへ変異して 、た。
[表 2] 耐酸性変異 SHNL株の変異箇所
Figure imgf000015_0001
[0052] 耐酸性評価結果を図 2に示した。この結果より、 SHNLのアミノ酸配列(配列番号 2) のうち、 36番目ロイシンのメチォニンへの変異(以下 L36Mと表記する)、 140番目トレ ォニンのイソロイシンへの変異(以下 T140Iと表記する)、及び 209番目リジンのァスパ ラギンへの変異 (以下 K209Nと表記する)のうち少なくとも 1つの変異を有する SHNLは 耐酸性が向上することが明ら力となった。
[0053] 以下、 Lot002H6又は Lot034B10を培養して得られる耐酸性 SHNLを L36M-SHNLと 、同じく Lot023F12より得られる耐酸性 SHNLを T140I- SHNL、 Lot016G12より得られる 耐酸性 SHNLを K209N- SHNLと記載する。
[0054] 実施例 2 栾¾部位の複合による耐酸件の向十.
ランダム変異 SHNLライブラリーより選抜された耐酸性酵素株はそれぞれ 1つのアミノ 酸変異部位を有していた。そこで、これらの変異部位を 1つの遺伝子上に複合するこ とで、耐酸性を更に向上させることを試みた。 [0055] [材料及び方法]
変異部位の複合は、 QuikChange XL Site-Directed Mutagenesis Kit (STRATAGE NE社製)を用い、 SHNLアミノ酸配列に L36M、 T140I、 Κ209Νの 3つの変異を様々な組 み合わせで部位特異的変異導入を行った。铸型としては SHNL-Wild遺伝子が組み 込まれたベクタープラスミド SHNL-Wild/pKK223- 3 10ngを用いた。
[0056] L36Mの部位特異的変異導入には以下に示す配列番号 5、 6のプライマーを用いた 。同様に T140Iの部位特異的変異導入には配列番号 7、 8を、 K209Nの部位特異的変 異導入には配列番号 9、 10で示されるプライマーを用いた。
配列番号 8: CATGGTAGTGATGGTTTCGCCGATGATGTTGGTGAACGTG GC AAT
得られた PCR産物をコンビテントセル DH5 aに形質転換し、複合変異 SHNL組換え 大腸菌株を作成した。
[0058] 次に実施例 1の 3)に示された方法に従って得られた組換え大腸菌株を培養し、得 られた粗酵素液を用いて複合変異株の耐酸性の評価を行った。ただし酵素液の活 性は 43U/mL、タンパク質濃度は 19.25mg/mLとなるよう、 pH5.5クェン酸 Naバッファ 一及び大腸菌由来非活性タンパク質を適宜添カ卩した。比較として SHNL_Wild/pKK2 23- 3/DH5 a及び Lot002H6、 Lot016G12及び Lot023F12も同様に培養し、粗酵素液 を調製し、評価に用いた。
[0059] [結果]
それぞれ単独の変異部位を有する耐酸性酵素 L36M- SHNL及び T140I- SHNLは酸 処理後それぞれ 70%程度の残存活性であつたが、 2つの変異を複合した L36M,T140 I-SHNL株及び 3つの変異を複合した L36M,T140I,K209D-SHNL株はこれらと比較し てさらに耐酸性が向上し、両者とも pH4.15、 2hの酸処理の後、活性が 80%以上残存 した(図 3)。これらの結果より、個々の変異部位を 1つの遺伝子上に複合することで、 耐酸性を更に向上させられることが明らかとなつた。
[0060] 実施例 3 耐酸件 SHNLの耐溶媒件
[材料及び方法]
DH5 a /pKK223-3/SHNL-K209Dを実施例 1の 3)と同様の方法で培養し、酵素液 を得た。得られた酵素液にバッファー及び牛血清アルブミンを添加し、酵素液の活性 値、タンパク質濃度を一定値に揃えた後、エタノール及び酢酸ェチルを用いて酵素 液を処理し、残存活性を測定した。
[0061] [結果]
エタノールを用いて酵素液を処理した結果、 K209D-SHNLは同処理時間において 50%の活性が残存した(図 4)。酢酸ェチルにつ ヽても K209D-SHNLは高 、耐性を有 し、 48時間の処理後も 50%以上活性が残存した。これらの結果から、耐酸性変異酵 素は有機溶媒耐性をも有して 、ることが示された。
[0062] ¾施例4 耐酸件酵素の耐熱件
[材料及び方法]
実施例 2で作成した耐酸性酵素液及び Wild-SHNLを用いて、酵素液温が 60°Cとな るよう加熱し、 30min後に残存活性を測定した。
[0063] [結果]
耐酸性酵素の熱処理後の残存活性につ!ヽて図 5に示した。耐酸性酵素は耐酸性 のみならず、耐熱性も向上していることが示された。
[0064] 実施例 5 耐酸件栾異部位 耐熱件栾異部位の複合
[材料及び方法]
改変部位の複合には QuikChange XL Site-Directed Mutagenesis Kit (STRATAGE NE社製)を用いた。铸型として SHNL- G165E,V173L I pET21aプラスミドを用い、 3つ の変異部位アミノ酸をそれぞれ SHNL-G165E,V173L遺伝子上に複合した。構築した 複合変異株及び比較として BL21(DE3)/pET21a/SHNL- Wild、 SHNL- G165E,V173L を用いて酵素液を作成し、酵素液の活性は 43U/mL、タンパク質濃度は 19.25mg/mL となるよう、 PH5.5クェン酸 Naバッファー及び大腸菌由来非活性タンパク質を適宜添 カロした。次に酵素液温が 45〜70°Cとなるよう加熱し、 30min後に残存活性を測定した
[0065] [結果]
耐熱性複合変異酵素遺伝子に L36M又は T140Iを新たに複合した複合変異酵素は 更に耐熱性が向上し、 70°Cにおいて 100%、 72.5°Cにおいても 90%以上の活性が残 存した(図 6)。
[0066] 従って耐熱性複合変異酵素遺伝子に耐酸性変異部位を新たに複合することで、更 に耐熱性を向上することができる。
[0067] me 耐酸件改 型 SHNT 用いた光学活件シァノヒドリンの合成
本発明の耐酸性改変型 SHNLは従来の酵素に比較して耐酸性が著しく向上してい る。従って従来よりも酸性な条件下で安定に反応が可能であり、競合するラセミ化反 応を抑えた効率的な光学活性シァノヒドリンの合成が行えると考えられる。
[0068] そこで実施例 5で作成した、耐酸性変異を導入した酵素 L36M,G165E,V173L-SHN L及び T140I,G165E,V173L- SHNLを用い、通常の 5.5及び、より酸性である 4.5、 4.1の 3つの pH条件下で光学活性シァノヒドリンの繰り返し合成反応を行 ヽ、耐酸性変異が 導入されて ヽな 、酵素 G165E,V173L- SHNLとの比較を行った。
[0069] [材料及び方法]
1)酵素液調製
大腸菌株 BL21(DE3)/pET21a/SHNL- L36M,G165E,V173L及び BL21(DE3)/pET21 a/SHNL-T140I,G165E,V173Lを実施例 1の 3)に示された方法に従って培養した。比 較として耐酸性変異を導入して 、な ヽ BL21(DE3)/pET21a/SHNL- G165E,V173Lも 同様に培養し、培養終了後遠心分離により菌体を回収した。回収菌体に 0.2Mクェン 酸ナトリウムバッファーを菌体の重量の 2倍となるように添加し、菌体を超音波破砕す ることで粗酵素液を得た。
[0070] これらの粗酵素液に、更に 0.2Mクェン酸ナトリウムバッファー及び大腸菌由来非活 性タンパク質を加え、全て活性 87.4U/ml、比活性値 8.2U/mLに調製した。大腸菌由 来非活性タンパク質は、大腸菌株 BL21(DE3)/pET21a培養液を破砕することで得た。 これら粗酵素液 0.3mlに対しシリカゲルを 300mgの比率で混合し、固定ィ匕酵素を得た
[0071] 2)酵素反応
終濃度 1.61Mとなるよう HCNを溶解した t-ブチルメチルエーテル 4.492mLに 0.2Mク ェン酸バッファー 0.337mLを加え、 30分間攪拌後に静置し、分離した水相を除去した 。使用した 0.2Mクェン酸バッファ一は pHを通常の 5.5、及びより酸性条件である 4.5、 4.1の 3種類を用いた。この溶液を上記で調製した固定化酵素 600mgを入れた 9mLの スクリューバイアルへ添カ卩した。ここに 2-クロルべンズアルデヒド(2CBA)を終濃度 1.0 Mで添加し、ボトルローラーで攪拌することにより酵素反応を実施した。反応開始 3時 間後に反応液 4mLを回収した。弓 Iき続き同じ処理を行った HCNZt-ブチルメチルェ 一テル溶液及び 2CBAを同量添加して、酵素反応を行い、反応開始 3時間後に反応 液 5mLを回収し、反応液の(R/S) - 2-クロルマンデ口-トリルの濃度測定から、合成さ れた S-2-クロルマンデ口-トリル(S-2CMN)光学純度及び 2CBAからの転換率を算出 した。この反応操作を繰り返し行い、計 4回の酵素反応を行った。(ただし酵素 L36M, G165E,V173L-SHNLについては pH5.5の条件での反応は 1回目のみ実施し、繰り返 し反応は行わな力つた。 )
[結果]
各 pH条件下での繰り返し合成反応 1回目で得られた S-2CMNの光学純度を図 25に 示した。この結果、耐酸性変異の有無に関らず、 pHが酸性になるに従い光学純度の 高!、S-2CMNが得られることが確認された。
[0072] 次に繰り返し合成反応 4回目で得られた S-2CMNの光学純度を図 26に示した。耐 酸性変異を導入して 、な 、酵素 G165E,V173L-SHNLでは、 pH条件に関らず光学純 度は大きく低下していた。一方、耐酸性変異を導入した酵素 L36M,G165E,V173L-S HNL及び T140I,G165E,V173L-SHNLでは光学純度の低下は緩やかであり、 pH4.5の 条件で T140I,G165E,V173L- SHNLで 63%eeゝ L36M,G165E,V173L- SHNLでは 74%ee の光学純度で S-2CMNを得ることができた。この結果から、耐酸性変異を導入した酵 素は耐酸性変異を導入していない酵素と比較して低 PH条件下で安定であり、繰り返 し 4回後も高い光学純度で S-2CMNを生産できることが確認された。 [0073] 以上のとおり、耐酸性変異を導入した酵素を用いることで、光学純度の高い光学活 性シァノヒドリンを安定に製造できることが示された。
[0074] 以下、耐熱性向上のための SHNLの改変に関する例を参考例として示す。
[0075] 参考例 1:改変酵素 Actmt- 00112- SHNLの調製
1.変異導入
キヤッサノ (Manihot esculenta)由来の S-ヒドロキシュトリルリアーゼ(Wild- SHNL)遺 伝子(配列番号 1)への変異導入は GeneMorph™PCR Mutagenesis Kit (STRATAGE NE社製)を用いて行った。铸型として、 PKK223- 3 (アマシャム'バイオサイエンス社製 )のマルチクローユングサイトに Wild-SHNL遺伝子が組み込まれて!/、る pKK223-3/S HNL-Wildプラスミド 600ngを用い、下記のオリゴ DNAをプライマーとして、 PCRを行つ た。
[0076] Forward primer: 5,— GGG GAA TTC ATG GTT ACT GCA CAC TTC GTT CTG A TT CAC- 3 ' (配列番号 11)
Reverse primer: 5,— GGG AAG CTT TTA AGC GTA TGC ATC AGC AAC TTC T TG CAG-3 ' (配列番号 12)
2.形質転換
得られた PCR産物 (SHNL- Mutants)を制限酵素 EcoRI、 Hindlll (TOYOBO社製)を用 いて消化し、同じく制限酵素 EcoRI、 Hindlllによりマルチクローユングサイトが消化さ れて 、るベクター PKK223- 3とライゲーシヨンを行った。ライゲーシヨンには LigaFast™ Rapid DNA Ligation System(Promega社製)を用いた。ライゲーシヨン反応液をコンビ テントセル DH5 a (TOYOBO社製)に开質転換し、複数の DH5 a /pKK223- 3/SHNL- Actmtを得た。
[0077] 3.選抜及び高発現ベクターへの組換え
複数の DH5 a /pKK223-3/SHNL- Actmtを試験管で培養し、培養液をそれぞれ lm Lずつ取り、遠心分離を行って上清を除去し、細胞ペレットを得た。得られた細胞をク ェン酸ナトリウムバッファー (PH5.5) 200 Lで再懸濁した後、超音波細胞破砕機で細 胞を破砕した。細胞破砕物を 15000rpm、 5minの条件で遠心分離し、細胞破砕液を得 た。この細胞破砕液を 60°C、 2hの条件で加熱し、加熱後にそれぞれの細胞破砕液の SHNL活性を測定した。 SHNL活性は、反応温度 20°Cにおいてマンデ口-トリルの SH NLによる分解によって生じるアルデヒドの単位時間あたりの生成量力も算出した。な お、アルデヒドの単位時間あたりの生成量は、波長 249.6 における吸光度を測定す ること (島津製作所製 分光光度計使用)によって算出される。
[0078] この結果、加熱後も活性を有して 、た DH5 a /pKK223- 3/SHNL- Actmt00112を耐 熱株として選抜した。選抜された株をコロニー PCRし、得られた PCR産物を铸型として シーケンス反応を行った。反応物の解析結果より、 DH5 a /pKK223-3/SHNL-Actmt 0011 は配列番号 1に示される塩基配列の 494番目のグァニンがアデニンに改変され た塩基配列を有することが確認された。したがって、 Actmt001f2-SHNLは Wild-SHNL のアミノ酸配列の 165番目のグリシンがァスパラギン酸へ置き換えられたアミノ酸配列 を有する改変型 SHNLであることが確認された。以下、この改変型 SHNL (165番目の グリシンをァスパラギン酸に置換した SHNL)を Actmt- 00112- SHNLと呼ぶ。
[0079] 次に、 SHNL- Actmt001f2遺伝子をタンパク質高発現ベクター pET21 (Novagen社製 )へ導入した。 PKK223- 3/SHNL- Actmt001f2プラスミドを調製し、これを铸型として、 下記のプライマーと DNAポリメラーゼ KODplus(TOYOBO社製)を用いて PCRを行うこ とで、铸型の両末端に付加されている制限酵素サイト EcoRI Hindlllを除き、代わりに 制限酵素サイト Ndel BamHIを付カ卩した。
[0080] Forward primer: 5 GGG GGG GGG CAT ATG GTT ACT GCA CAC TTC GTT C TG ATT CAC AC- 3 ' (配列番号 13)
Reverse primer: 5 ' -GGG GGA TCC TTA AGC GTA TGC ATC AGC AAC TTC T TG CAG-3 ' (配列番号 14)
得られた PCR産物を制限酵素 Ndel (New England Bio Labs社製)、 BamHI (TOYOB O社製)を用いて消化し、同じく制限酵素 Ndel BamHIによりマルチクローユングサイ トが消化されているベクター pET21a (Novagen社製)とライゲーシヨンを行った。ライゲ ーシヨンには LigaFast™Rapid DNA Ligation System(Promega社製)を用いた。ライゲ ーシヨン反応液をコンビテントセル BL21(DE3) (Novagen社製)に形質転換し、 165番 目のアミノ酸が Aspに置換された SHNLの発現系 BL21 (DE3)/pET21 a/SHNL- ActmtO 011を得た。 [0081] 参考例 2 :Actmt001 2- SHNLの熱安定性実験
1.実験方法
1)酵素液の調製
大腸菌 BL21 (DE3)/pET21 a/SHNL- Wild BL21 (DE3)/pET21 a/SHNL- ActmtOO 112 を LB培地 5mLを用いて 37°Cで 12h培養した。得られた培養液 100 μ Lを下記に示す Ν S-2培地 5mLに接種し、 IPTGを添加して 20°C 60hで培養を行った。培養終了後培養 液を遠心分離し、細胞を回収した。この細胞を 0.2Mクェン酸 Na buffer(pH5.5)に懸濁 し、超音波により細胞を破砕した。この破砕液を遠心分離し、上清を回収し Wild-SHN L Actmt- 00112- SHNL酵素液を得た。酵素液は Wild- SHNLが活性値 74U/mL、タン パク質濃度 6.29mg/mL Actmt-001f2-SHNLが活性値 69U/mL、タンパク質濃度 5.96 mg/mLであつ 7こ。
[表 3]
[NS-2培地組成 (PH6)〕
ίι ycero 40g
(NH4) 2S04 10g
ΚΗΞΡ04 2g
K2HP04 6g
east Ext 40g
MgS04 lg
アデ力ノ一ル 20滴
p T 1L (蒸留水により合計 1Lに調整)
[0082] 上記を加熱滅菌した後、フィルター滅菌したアンピシリン 100mg/L (終濃度)、及びフ ィルター滅菌した IPTG 238mg/L (終濃度)を添加する。
[0083] 2)酵素液の加熱処理
Wild- SHNL Actmt- 00112- SHNL酵素液 200 μ Lをエツペンドルフチューブに入れ、 ヒートブロックにより酵素液温が 45 70°Cとなるよう加熱した。 30min後に遠心分離し、 サンプルを回収し、開始時の酵素活性に対する残存活性を測定した。酵素活性の測 定は参考例 1に記載したとおりである。
[0084] 2.実験結果
この結果、 Wild-SHNLでは温度 65°Cにおいて活性が半減したのに対し、 Actmt-00 112- SHNLは 90%以上の残存活性を示した(図 7)。 Actmt- 00112- SHNLにつ!/、て活 性の半減がみられたのは 70°C付近で、 Wild-SHNLと比較して約 5°Cの耐熱性向上が 見られた。この結果より、キヤッサバ由来の SHNLでは、 165番目のアミノ酸がグリシン 力 ァスパラギン酸へ置換されることにより、熱に対する安定性が向上することが明ら カゝとなった。
[0085] 加熱後の酵素液サンプルを SDS-PAGEにより解析した (図 8)。サンプルは前述のよう に加熱後遠心分離されているため、熱により変性し、水に不溶となったタンパク質は 除去されている。
[0086] 図 5に示すよう、 Wild-SHNLにおいては、加熱温度 60°Cより酵素量(図 11の矢印部 分のバンド 参照)が急激に減少し、 70°Cではバンドがほぼ消滅している。一方、 Act mt-001f2-SHNLにおいても、酵素量の減少はみられる力 70°Cにおいても酵素は十 分残存している。この SDS-PAGEの結果は、酵素活性の測定結果(図 7)と一致して いる。
[0087] 図 6に加熱によるサンプル中のタンパク質濃度の変化を示す。 45°Cのサンプルでは ホストである大腸菌に由来するタンパク質が多く認められる (図 11及び図 12)が、この タンパク質も加熱により変性し不溶ィ匕するため、加熱温度の上昇と共にサンプル中か ら除去される。そのため、サンプル中のタンパク質濃度は Wild-SHNLと Actmt-001f2- SHNLの 、ずれにっ 、ても、加熱温度の上昇に伴 、ほぼ直線的に減少した。
[0088] 一般に、酵素を精製する際にはゲルろ過クロマトグラフィー等の操作が必要である 力 Actmt-001f2-SHNLは加熱処理を行うことで、遠心分離などの操作により酵素活 性を保持したまま大腸菌に由来するタンパク質を除去することができる。したがって、 Actmt-001f2-SHNLは低コストで簡便に精製を行うことが可能であると考えられた。
[0089] 参考例 3: Actmt-001 2-SHNLの 60°C加熱処理における安定性、及びタンパク濃度 栾ィ の枪討
加熱処理により、酵素活性を保持したまま大腸菌に由来するタンパク質を除去する ことが実際に可能であることを確認するため、次の実験を行った。
[0090] 1.実験方法
1)酵素液の調製 大腸菌 BL21 (DE3)/pET21 a/SHNL- Wild、 BL21 (DE3)/pET21 a/SHNL- ActmtOO lf2 を LB培地 5mLを用いて 37°Cで 12h培養。得られた培養液 100 μ Lを NS-2培地 5mLに 接種し、 IPTGを添加して 20°C、 60hで培養を行った。培養終了後培養液を遠心分離 し、細胞を回収した。この細胞を 0.2Mクェン酸 Na buffer(pH5.5)に懸濁し、超音波に より細胞を破砕した。この破砕液を遠心分離し、上清を回収し Wild-SHNL、 Actmt-00 112- SHNL酵素液を得た。酵素液の濃度は Wild- SHNLが活性値 83U/mLタンパク質 濃度 7.01mg/mL、 Actmt- 00112- SHNLが活性値 81U/mLタンパク質濃度 6.65mg/mL であった。
[0091] 2)酵素液の加熱処理
Wild- SHNL、 Actmt- 00112- SHNL酵素液 200 μ Lをエツペンドルフチューブに入れ、 ヒートブロックにより酵素液温が 60°Cとなるよう加熱した。 30min毎に遠心分離し、サン プルを 10 Lずつ回収し、残存活性、タンパク濃度を測定した。
[0092] 2.実験結果
1)残存活性
Wild- SHNLは加熱時間 1.5hで活性が半減したのに対し、 Actmt- 00112- SHNLは加 熱時間 1.5hでも 75%の活性が残存して 、た(図 14)。
[0093] 2)タンパク濃度変化
得られたサンプルを SDS-PAGEにより解析した。 SDS-PAGEの結果(図 15)から、 Oh (加熱なし)の状態では大腸菌に由来するタンパク質が多く混合しているが、加熱後 のサンプルでは、 Wild-SHNLも Actmt-00112-SHNLも、大腸菌に由来するタンパク質 がサンプル中から除去されていることが明ら力となった。
[0094] 加熱時間 lhにおける Actmt-001f2-SHNLサンプル中のタンパク質濃度は 4.25mg/m Lであり、初期の 64%まで減少していた(表 4)。一方、加熱時間 lhにおける Actmt-00 112- SHNLの残存活性は 80%以上であった。したがって、 Actmt- 00112- SHNLは、加熱 処理により酵素活性を保持したまま大腸菌に由来するタンパク質を除去できることが 明らかになった。 Wild-SHNLについては、 lhにおけるタンパク質濃度が 4.21mg/mLで あり、初期の 63%まで減少したものの残存活性は 60%まで減少した。
[表 4] 60°C加熱処理における安定性、 及ぴタンパク濃度 (mg/mL-sample) 変化
Figure imgf000025_0001
*括弧内はその時点での残存活性(%)
[0095] 以上より、 Wild-SHNLは、 60°Cの加熱処理では他の共雑タンパク質と共に変性、失 活してしまうため、この温度以上の加熱処理による分離精製は困難であることがわか つた。なお、 45°C〜55°Cの範囲で加熱処理することも可能である力 図 13から明らか なように、この温度範囲では共雑タンパク質の変性が極めて緩やかであるため、十分 な分離精製を行うためには、かなりの時間を要することになる。
[0096] 参考例 4: Actmt- 00112- SHNLの有機溶媒而ォ性
一般に、酵素の熱安定性と他の環境ストレス、例えば有機溶媒などに対する安定 性には高い関連性がある。したがって、 Actmt-001f2-SHNLは有機溶媒に対する安 定性も向上している可能性がある。このため Actmt-001f2-SHNLの有機溶媒耐性に 関する検討を行った。
[0097] 1.実験方法
1)酵素液の調製
参考例 2と同様の方法で酵素液を調製した。ストレスに対する酵素の耐性を測定す る場合、サンプル中の共雑タンパク質が保護剤として働き、見力ゝけ上耐性が向上する 場合がある。したがって上記のサンプルをそれぞれ牛血清アルブミン及びバッファー で希釈し、全てのサンプルを活性値 44.19U/mL、比活性値 6.50U/mgで揃え、共雑タ ンパク質の影響を実験系から排除した。
[0098] 2)有機溶媒処理
有機溶媒としてエタノール及び酢酸ェチルを用い、これを酵素液に添加した。エタ ノールの終濃度は 30%、酢酸ェチルは 40%とした。その後サンプルを攪拌しながら 5 0時間保持した。数時間毎に遠心分離を行い、上清 (水相)をサンプルとして 10 L取 り、活性測定を行った。 [0099] 2.実験結果
Actmt- 00112- SHNLは Wild- SHNLと比較して、エタノール(図 12A)、及び酢酸ェチ ル(図 12B)に対して耐性を有することが明ら力となった。
[0100] 参考例 5 :Actmt-001 2-SHNLによる光学活性シァノヒドリンの製造
SHNLはアルデヒド及びケトンと青酸の反応を触媒し、光学活性なシァノヒドリンを合 成する酵素である。 Actmt-001f2-SHNLの上記反応に対する触媒能を、 Wild-SHNL との比較により検討した。
[0101] 1.実験方法
1)酵素液調製
BL21 (DE3)/pET21 a/SHNL- Wild及び BL21 (DE3)/pET21 a/SHNL- ActmtOO 11 を培 養し、培養液を遠心分離して上清を除去し、細胞ペレットを得た。この細胞ペレット 0. 33gにクェン酸ナトリウムバッファー (pH5.5) 0.66gをカ卩えて再懸濁した後、超音波細胞 破砕機で細胞を破砕した。細胞破砕物を 15000rpm、 5minの条件で遠心分離し、細 胞破砕液を得た。この細胞破砕液を 50°C、 3hの条件で加熱し、加熱後に細胞破砕液 を遠心分離した。この上清を 0.45 mフィルターでろ過した後、限外ろ過濃縮した。こ れらの濃縮酵素液にクェン酸ナトリウムバッファー (PH5.5)を加え、両者の活性を下 表のように揃えた。調製した酵素液 0.3mLをシリカゲル 300mgと混合し、固定化酵素を 得た。
[表 5]
Figure imgf000026_0001
2)酵素反応
1.61Mの HCNを溶解した t-ブチルメチルエーテル 4.492mLに 0.2Mクェン酸バッファ 一 (pH5.5)0.337mLをカ卩え、 30分間攪拌した後、静置し水相を除去した。この溶液を 上記で調製した固定ィ匕酵素 300mgを入れた 9mLのスクリューバイアルへ添カ卩した。こ こにベンズアルデヒド 0.508mLを添カ卩し、ボトルローラーで攪拌することにより酵素反 応を実施した。反応開始 1時間後に反応液 4mLを回収した。引き続き同じ処理を行つ た HCNZt-ブチルメチルエーテル溶液を同量添カ卩し、ベンズアルデヒドを同量添カロ して、酵素反応を行った。反応開始 1時間後に反応液 5mLを回収した。この反応操作 を繰り返し行い、計 11回の酵素反応を行った。 11回目では、酵素反応経過を測定す るため、反応時間を延長し、経過分析を行った。
[0103] 2.実験結果
而熱性酵素 Actmt- 00112- SHNLは、 Wild- SHNLと同じ反応速度で S-マンデ口-トリ ルを生成した。この結果から、 Actmt-001f2-SHNLは光学活性シァノヒドリン合成にお いて Wild-SHNLと同等の能力を有していることが明ら力となった。反応を繰り返すこと により、両者ともに反応速度が徐々に低下してきたが、反応速度の減少度合いは Act mt- 00112- SHNLの方が緩やかであった。(図 16A)。
[0104] 反応 11回目の反応経過を比較したところ、 Actmt- 00112-SHNLの方が反応速度が 1 0%程度高くなつた (図 16B)。この原因として、耐熱性酵素 Actmt- 00112- SHNLは、耐 熱性だけではなぐ酵素反応系での安定性も向上している可能性があると考えられた
[0105] 3.結論
Actmt- 00112- SHNLは Wild- SHNLと同じ生産性、光学純度で光学活性シァノヒドリ ンを合成できることが明ら力となった。更に繰り返し反応においては、 10%程度の寿命 延長が認められた。
[0106] 参考例 6 : BL21(DE3)/pET21a/SHNL-G165Eの作製
耐熱性酵素 Actmt001f2-SHNLはそのアミノ酸配列の 165番目が酸性アミノ酸のァス ノ ラギン酸に置き換えられていた。そこで、 165番目のアミノ酸を、同じ酸性アミノ酸で あるグルタミン酸で置換した SHNLの発現系 BL21(DE3)/pET21a/SHNL- G165Eを作 製した。
[0107] 1.変異導入
参考例 1と同様、 165番目のアミノ酸の改変には、 QuikChange XL Site-Directed M utagenesis Kit (STRATAGENE社製)を用いた。铸型として pET21a/SHNL- Wildプラス ミド 10 ngを用い、下記のオリゴ DNAをプライマーとして、伸長反応を行った。次に得 られた反応産物をキット付属の制限酵素 Dpnlで消化した。
[0108] Forward primer: 5,— CGT GAA AAC CTG TTC ACC AAA TGC ACT GAT GAA G AA TAT GAA CTG GCA AAA ATG- 3 ' (配列番号 15)
Reverse primer: 5 ' -CAT TTT TGC CAG TTC ATA TTC TTC ATC AGT GCA TT T GGT GAA CAG GTT TTC ACG- 3 ' (配列番号 16)
2.形質転換
得られた制限酵素処理済反応産物をキット付属のコンビテントセル XLIO-Goldに形 質転換し、得られた株をコロニー PCRした。この PCR産物を铸型としてシーケンス反応 を行い、反応物を解析することで塩基配列 494-495番目の GCが AAに改変されてい る株を選抜した。この株よりプラスミド pET21a/SHNL-G165Eを調製し、コンビテントセ ル BL21(DE3) (Novagen社製)に形質転換を行 、、 165番目のアミノ酸が Gluに置換さ れた SHNLの発現系 BL21 (DE3)/pET21 a/SHNL- G 165Eを作製した。
[0109] 参者例 7:置橼部位のアミノ酴糠による耐熱件の 化
SHNLのアミノ酸配列 165番目を様々な極性のアミノ酸に置換し、それが SHNLの耐 熱性にどのように影響するのかを確認した。
[0110] 1.実験方法
参考例 1及び参考例 6にしたがい、 QuikChange XL Site-Directed Mutagenesis kit ( STRATAGENE)を用いて 165Glyへの変異導入を行 、、以下の変異株を作製した。
[0111] i) DH5 a /pKK223-3/ Actmt00112-Glu (165アミノ酸がグルタミン酸に置換)
ii) DH5 a /pKK223-3/ Actmt001f2- Lys (165アミノ酸がリジンに置換)
iii) DH5 a /pKK223-3/ Actmt001f2- Arg (165アミノ酸がアルギニンに置換) iv) DH5 a /pKK223- 3/ Actmt001f2- Ala (165アミノ酸がァラニンに置換)
グルタミン酸はァスパラギン酸と同様、酸性残基を持つアミノ酸である。リジン、アル ギニンは塩基性であり、ァラニンはグリシンと同様中性アミノ酸である。これら 4株と、 D H5 a /pKK223- 3/SHNL- ActmtOOl- 1及び SHNL- Wildを合わせた合計 6株を用いて 、参考例 2と同様の方法で加熱試験を行った。
[0112] 2.実験結果
参考例 2にしたがって加熱試験を行った結果、改変 SHNLは導入されたアミノ酸残 基の性質の違 、により、大きく 3つの耐熱性パターンを示した(図 15)。
[0113] 1)塩基性アミノ酸 (Arg、Lys)への置換:
30minで活性がほぼ完全に消滅した。 Wild-SHNLと比較して明らかに耐熱性が低 下した。
[0114] 2)中性アミノ酸 (Ala)への置換:
Wild- SHNL (165Gly、中性)と同程度の耐熱性であった。
[0115] 3)酸性アミノ酸 (Glu)への置換:
Actmt-001f2-SHNL (165Asp、酸性)とほぼ同じパターンで活性が変化した。 3種の アミノ酸グループの中で、最も高 、耐熱性を示した。
[0116] 以上の結果より、 165番目のアミノ酸が酸性アミノ酸に置換された改変 SHNLでは耐 熱性が向上し、塩基性アミノ酸に置換された改変 SHNLでは逆に耐熱性が大きく減少 することが明ら力となった。
[0117] 参者例 8 :ヘリックス D3'の改栾— BL21(DE3)A)ET21a/SHNL- SD173- le9の作製
ヘリックス D3,(163- 174)の 165- 173までのアミノ酸と、ヘリックス Aの 17- 21までのアミ ノ酸とは交差するように配置され、近接している。これらの区間のアミノ酸を置換する ことで、耐熱性が変化する可能性がある。そこで、 SHNLのアミノ酸配列 173番目のアミ ノ酸を Val力 Leuに置換し、それ力 HNLの耐熱性にどのように影響するのかを確認 した。
[0118] 1.変異導入
参考例 1及び参考例 6にしたがい、 QuikChange XL Site-Directed Mutagenesis kit (
STRATAGENE)を用いて 173番目のアミノ酸を Leuに置換した SHNLを調製した。
[0119] 铸型として pET21a/SHNL- Wildプラスミド 10 ngを用い、下記のオリゴ DNAをプライ マーとして、伸長反応を行った。次に得られた反応産物をキット付属の制限酵素 Dpnl で消化した。
[0120] Forward primer: 5 '— GGC GAA TAT GAA CTG GCA AAA ATG NNN ATG CGC A AG GGC TCT CTG- 3' (配列番号 17)
Reverse primer : 5 ' -C AG AGA GCC CTT GCG CAT NNN CAT TTT TGC CAG T TC ATA TTC GCC- 3,(配列番号 18) 2.形質転換と耐熱性アツセィ
得られた制限酵素処理済反応産物を同じくキット付属のコンビテントセル XL10-Gol dに形質転換し、 LB (Amp)プレート上に得られたコロニーを全て LB (Amp)液体培地 に懸濁した。この懸濁液よりプラスミド pET21a/SHNL- SD173- INNNMutantsを調製し 、コンビテントセル BL21(DE3) (Novagen社製)に形質転換を行い BL21(DE3)/pET21a /SHNL-SD 173- INNNMutants株を作成した。
[0121] 複数の BL21 (DE3)/pET21 a/SHNL- SD 173- INNNMutants株を試験管で培養し、培 養液をそれぞれ lmLずつ取り、遠心分離を行って上清を除去し、細胞ペレットを得た 。得られた細胞をクェン酸ナトリウムノ ッファー (PH5.5) 200 Lで再懸濁した後、超音 波細胞破砕機で細胞を破砕した。細胞破砕物を 15000rpm、 5minの条件で遠心分離 し、細胞破砕液を得た。この細胞破砕液を 60°C、 2hの条件で加熱し、加熱後に細胞 破砕液それぞれの SHNL活性を測定した。この結果加熱後も活性を有して!/、た BL21( DE3)/pET21a/SHNL-SD173-le9他 3株を耐熱株として選抜した。選抜された株をコ 口-一 PCRし、得られた PCR産物を铸型としてシーケンス反応を行った。これら反応 物の解析より、 SHNL-SD173-le9は塩基配列 517-519番目の GTT(V)が CTG(L)に改 変され、 173番目のパリンがロイシンに置換されていることが明ら力となった。以下、 SH NL-SD173-le9を SHNL-V173Lと呼ぶ。他の 3株も全て 173番目のパリンがロイシンに 置換した変異株であった。
[0122] 参者例 9: V173L-SHNLの而ォ熱件評価
V173- SHNLの而ォ熱性を Wild- SHNL及び ActmtOOl- 12- SHNLと比較した。
[0123] 1.実験方法
1)酵素液の調製
大腸菌 BL21 (DE3)/pET21 a/SHNL- Wild、 BL21 (DE3)/pET21 a/SHNL- ActmtOO 1-f 2、 BL21(DE3)/pET21a/SHNL-V173Lをそれぞれ参考例 2と同様の方法で培養し、 酵素液を得た。上記のサンプルをそれぞれ牛血清アルブミン及びバッファーで希釈 し、全てのサンプルを活性値 17.6 U/mL、比活性値 4.5U/mg、タンパク濃度 3.9 mg/m Lで揃え、共雑タンパク質の影響を実験系から排除した。
[0124] 2)酵素液の加熱処理 Wild- SHNL、 ActmtOOl- f2- SHNL及び V173L- SHNL酵素液 200 μ Lをエツペンドル フチューブに入れ、ヒートブロックにより酵素液温が 45〜70°Cとなるよう加熱した。 30m in後に遠心分離し、サンプルを回収し、残存活性を測定した(図 17)。
[0125] その結果、上記サンプル条件において、酵素活性が半減した加熱温度は Wild-SH NLが 60°Cであったのに対し、 V173L- SHNL及び ActmtOOl- 12- SHNLでは 65°C付近で あり、 Wild-SHNLに比較して約 5°Cの耐熱性向上が見られた。以上の結果より、 V173 L- SHNLは、 ActmtOOl- 12- SHNLと同等の耐熱性を有することが明ら力となった。
[0126] SHNLの 173番目のアミノ酸 Valは、ダイマー形成時において、もう一方のモノマーの アミノ酸 Valと近接している(末端同士の距離が約 4.5オングストローム)。パリンから口 イシンへの置換により、 173番目のアミノ酸残基は炭素一つ分伸長することになる。し たがって、炭素鎖が互いに伸長することで残基同士の距離が縮まり、非極性アミノ酸 残基同士の疎水性相互作用が強まった可能性が高い。
[0127] 参者例 ίθ:改 酵素 VI 73 の有機^ ¾耐件
参考例 4にお 、て示されたように、熱安定性を有する改変酵素 Actmt001-f2-SHNL は Wild-SHNLと比較して、エタノール、酢酸ェチルに対して耐性を有していた。
[0128] 一方、参考例 9に記載の改変酵素 V173L- SHNLも ActmtOOl- 12- SHNLとほぼ同等 の耐熱性を示している。従って、 V173L-SHNLについても同様にエタノール、酢酸ェ チルに対する耐性を確認した。
[0129] 1.実験方法
1)酵素液の調製
大腸菌 BL21 (DE3)/pET21 a/SHNL- Wild、 BL21 (DE3)/pET21 a/SHNL- ActmtOO 1- f 2、 BL21(DE3)/pET21a/SHNL-V173Lを参考例 2と同様の方法で培養し、酵素液を 調製した。さらにこれらの調製された酵素液をそれぞれ牛血製アルブミン及び 0.2Mク ェン酸 Naバッファーで希釈し、全てのサンプルを活性値 45U/mL、比活性値 6.5U/mg で揃え、共雑タンパク質の影響を実験系から排除した。
[0130] 2)有機溶媒処理
エタノール及び酢酸ェチルを用いて、参考例 4と同様の方法で酵素液を処理し、残 存活性を測定した。 [0131] 2.実験結果
VI 73L-SHNLは Wild-SHNLと比較して、エタノール(図 18 A)及び酢酸ェチル (図 1 8B)に対して耐性を有することが明ら力となった。更に V173L-SHNLはエタノールに 対して ActmtOOl- 12- SHNL以上の而性を示し、添カ卩後 16時間の時点で ActmtOOl- 12- SHNLの残存活性が 23%であったのに対し、 V173L-SHNLは 34%活性が残存してい た。酢酸ェチルに対しては 2つの改変酵素の耐性はほぼ同等であった。
[0132] 参考例 11:改変酵素 Actmt020-b8-SHNLの獲得
1.変異導入
参考例 1と同様、 GeneMorph™ PCR Mutagenesis Kitを用いて Wild- SHNL遺伝子 へ変異導入を行った。铸型、プライマーとも参考例 1と同じものを用いた。
[0133] 2.形質転換
参考例 1と同様、得られた PCR産物をベクター pKK223-3にライゲーシヨン後、コンビ テントセル DH5 aへ开質転換し、複数の DH5 a /pKK223- 3/SHNL- Actmt020を得た
[0134] 3.熱安定性酵素の選抜と配列解析
参考例 1と同様の選抜法により、加熱後も活性を有していた DH5 a /pKK223-3/SH NL-Actmt020-b8を選抜した。配列番号 11及び配列番号 12のプライマーを用いて選 抜された株を铸型にコ口-一 PCRを行 、、更に得られた PCR産物を铸型に同じプライ マーを用いてシーケンス反応を行った。反応物の解析結果より、 SHNL-Actmt020-b8 は配列番号 1に示される塩基配列の 520番目のアデニンがチミンに改変された塩基 配列を有していることが確認された。従って、 SHNL- Actmt020- b8は Wild- SHNLのァ ミノ酸配列の 174番目のメチォニンがロイシンへ置き換えられたアミノ酸配列を有する 改変型 SHNLであることが確認された。以下、この改変型 SHNLを Actmt020- b8- SHN Lと呼ぶ。
[0135] 参考例 12:改変酵素 Actmt020- b8- SHNLの熱安定性
1.実験方法
1)酵素液の調製
参考例 11にお 、て構築された大腸菌株 DH5 a /pKK223- 3/SHNL- Actmt020-b8、 及び比較として DH5 a /pKK223-3/SHNL-Wildを参考例 2と同様の方法で培養し、 酵素液を調製した。更にこれらの調製された酵素液をそれぞれ牛血製アルブミン及 び 0.2Mクェン酸 Naバッファーで希釈し、全てのサンプルを活性値 3.15U/mL、タンパ ク質濃度 1.38mg/mLで揃え、共雑タンパク質の影響を実験系から排除した。
[0136] 2)酵素液の加熱処理
参考例 3と同様の方法で、酵素液温が 60°Cとなるよう加熱を行った。加熱開始後 30 min毎に酵素液を遠心分離し、上清を用いて加熱前の酵素活性に対する残存活性を 測定した。
[0137] 2.実験結果
Actmt020-b08-SHNLは Wild-SHNLと比較して大きく熱安定性が向上していた(図 1 9)。従ってへリックス D3,を構成する 174番目アミノ酸であるメチォニンをロイシンへ置 換することで SHNLの熱安定性を向上できることが明らかとなつた。
[0138] 参者例 13:改栾酵素 Actmt022- gl2- SHNLの獲得
1.変異導入
参考例 1と同様、 GeneMorph™ PCR Mutagenesis Kitを用いて Wild- SHNL遺伝子 へ変異導入を行った。铸型、プライマーとも参考例 1と同じものを用いた。
[0139] 2.形質転換
参考例 1と同様、得られた PCR産物をベクター pKK223-3ライゲーシヨン後、コンビテ ントセル DH5 aへ开質転換し、複数の DH5 a /pKK223- 3/SHNL- Actmt022を得た。
[0140] 3.熱安定性酵素の選抜と配列解析
参考例 1と同様の選抜法により、加熱後も活性を有していた DH5 a /pKK223-3/SH NL-Actmt022-gl2を選抜した。配列番号 11及び配列番号 12のプライマーを用いて 選抜された株を铸型にコ口-一 PCRを行 、、更に得られた PCR産物を铸型に同じプ ライマーを用いてシーケンス反応を行った。反応物の解析結果より、 SHNL-Actmt02 2-gl2は配列番号 1に示される塩基配列の 63番目のアデニンがチミンに改変された塩 基配列を有していることが確認された。従って、 Actmt022-gl2-SHNLは Wild-SHNL のアミノ酸配列の 21番目のリジンがァスパラギンへ置き換えられたアミノ酸配列を有 する改変型 SHNLであることが確認された。アミノ酸配列 21番目のリジンは、ダイマー 形成部位であるへリックス Aを構成するアミノ酸の一つである。
[0141] 参考例 14: Lvs21部位のアミノ酸を改変した改変酵素の構築
SHNLのアミノ酸配列 21番目を様々なアミノ酸で置換し、 SHNLの耐熱性に対する影 響を確認した。
[0142] 1)変異導入
参考例 8と同様、 QuikChange XL Site-Directed Mutagenesis Kit (STRATAGENE 社製)を用いた。铸型として pET21a/SHNL-Wild 10ngを用い、配列番号 19及び配列 番号 20で示されるプライマーを用いて、伸長反応を行った。次に得られた反応産物 をキット付属の制限酵素 Dpnlで消化した。
[0143] ggcgcatgga tttggcacnn nctgaaaccg gccctggaa (酉己列番号 19)
ttccagggcc ggtttcagnn ngtgccaaat ccatgcgcc (目 ti列 ¾·号 20)
2)形質転換
得られた制限酵素処理済反応産物を同じくキット付属のコンビテントセル XL10-Gol dに形質転換し、 LB (Amp)プレート上で培養した。この結果プレート上に得られたコロ ニーを LB (Amp)液体培地で再懸濁し、プラスミド pET21a/SHNL- SDLys21NNNを調 製した。このプラスミドをコンビテントセル BL21 (DE3) (Novagen社製)に形質転換を行 Vヽ、 BL21(DE3)/pET21a/SHNL- SDLys21NNN株を複数作成した。
[0144] 3)改変 SHNLの選抜
作成した大腸菌株 BL21 (DE3)/pET21 a/SHNL-SDLys21NNN株を参考例 2と同様の 方法により培養した。これら培養液を用いて、参考例 1と同様の選抜法により耐熱性 が向上した改変株を選抜した結果、 BL21(DE3)/pET21a/SHNL-SDLys21-RAMl、 B L21 (DE3)/pET21 a/SHNL- SDLys21- RAM6、 BL21 (DE3)/pET21 a/SHNL- SDLys21- RAM8の 3つの改変株が加熱後も活性を有していた。次に、配列番号 11及び配列番 号 12のプライマーを用いてこれら選抜された株を铸型としてコロニー PCRを行 ヽ、更 に得られた PCR産物を铸型に同じプライマーを用いてシーケンス反応を行った。反応 物を解析した結果、 SHNL-SDLys21_RAMlは配列番号 1に示される塩基配列の 61 番目のアデニンがグァニンに改変された塩基配列を有していることが確認された。従 つて、 SDLys2 RAMI- SHNLは Wild- SHNLのアミノ酸配列の 21番目のリジンがグルタ ミン酸へ置き換えられたアミノ酸配列を有する改変型 SHNLであることが確認された。 同様に SHNL-SDLys21-RAM6は配列番号 1に示される塩基配列の 61-63番の AAA が GACに改変された塩基配列を有しており、従って、 SDLys2 RAM6-SHNLは Wild- SHNLのアミノ酸配列の 21番目のリジンがァスパラギン酸へ置き換えられたアミノ酸配 列を有する改変型 SHNLであり、更に SHNL-SDLys21_RAM8は配列番号 1に示され る塩基配列の 63番目のアデニンがシトシンに改変された塩基配列を有しているため、 SDLys21 -RAM8 SHNLは Wild- SHNLのアミノ酸配列の 21番目のリジンがァスパラギン へ置き換えられたアミノ酸配列を有する改変型 SHNLであることが確認された。以下、 SDLys21-RAMl SHNLを K21E- SHNLと呼ぶこととし、同様に RAM6を K21D- SHNL、 R AM8を K21N- SHNLと呼ぶ。
[0145] 参者例 15 :改栾酵素 K21E- SHNL K21D- SHNし及び K21N- SHNLの而ォ熱件
1.実験方法
1)酵素液の調製
参考例 14にお 、て構築された大腸菌株 BL21 (DE3)/pET21 a/SHNL- K21 E、 BL21 ( DE3)/pET21a /SHNL- K21D及び BL21(DE3)/pET21a/SHNL- K21N、更に比較とし て BL21(DE3)/pET21a/SHNL-Wildを参考例 2と同様の方法で培養し、酵素液を調製 した。更にこれらの調製された酵素液をそれぞれ牛血製アルブミン及び 0.2Mクェン 酸 Naバッファーで希釈し、全てのサンプルを活性値 llU/mL、タンパク質濃度 6.8(mg /mL)で揃え、共雑タンパク質の影響を実験系から排除した。
[0146] 2)酵素液の加熱処理
参考例 2と同様の方法で、酵素液温が 45-65°Cとなるよう加熱を行った。加熱開始 後 30minの時点で酵素液を遠心分離し、上清を用いて加熱前の酵素活性に対する 残存活性を測定した。
[0147] 2.実験結果
K21E-SHNL, K21D-SHNL,及び K21N- SHNLは Wild- SHNLと比較して大きく熱安 定性が向上して!/、た(図 20)。従ってへリックス Aを構成する 21番目のアミノ酸リジンを グルタミン酸、ァスパラギン酸及びァスパラギンで置換することで SHNLの熱安定性を 向上できることが明ら力となった。 [0148] 参考例 16:改変部位を複合した SHNL遣伝子 SHNL-G165E.V173L及び SHNL-G165
E.V173し M174Lの調製
改変 SHNL: ActmtOOl- β- SHNL、 V173L- SHNL及び Actmt020- b8- SHNLはそれ ぞれ 1つのアミノ酸改変部位を有し、 Wild-SHNLと比較して優れた耐熱性、耐溶媒性 を有していた。これら個々の改変部位を 1つの遺伝子上に複合することで、耐熱性、 耐溶媒性を更に向上させることを試みた。
[0149] 1.改変部位複合 SHNL遺伝子 SHNL-G165E,V173Lの構築
1)変異導入
参考例 8と同様、 QuikChange XL Site-Directed Mutagenesis Kit (STRATAGENE 社製)を用いた。铸型として pET21a/SHNL-SD173-le9プラスミド 10ngを用い、配列 番号 15及び配列番号 16で示されるプライマーを用いて、伸長反応を行った。次に得 られた反応産物をキット付属の制限酵素 Dpnlで消化した。
[0150] 2)形質転換
得られた制限酵素処理済反応産物を同じくキット付属のコンビテントセル XL10-Gol dに形質転換し、 LB (Amp)プレート上に得られたコロニーを取り、 LB (Amp)液体培地 で 37°C、 12hの培養を行った。この培養液よりプラスミドを調製し、このプラスミドを铸 型として配列番号 11及び配列番号 12のプライマーを用いて伸長反応を行い、更に得 られた反応産物を铸型に同じプライマーを用いてシーケンス反応を行った。反応物 を解析し、 Glyl65Gluと Vall73Leuの 2つのアミノ酸変異を持つ SHNL遺伝子を保有す るプラスミド pET21a/SHNL-G165E,V173Lを選抜した。このプラスミドをコンビテントセ ル BL21 (DE3) (Novagen社製)に开質転換し、 BL21 (DE3)/pET21 a/SHNL-Gl 65E, VI 73L株を作成した。
[0151] 2.改変部位複合 SHNL遺伝子 SHNL- G165E,V173L,M174Lの構築
1)変異導入
参考例 8と同様、 QuikChange XL Site-Directed Mutagenesis Kit (STRATAGENE 社製)を用いた。铸型として上記で構築された pET21a/SHNL- G165E,V173Lプラスミ ド 10ngを用い、配列番号 21及び配列番号 22で示されるプライマーを用いて、伸長反 応を行った。次に得られた反応産物をキット付属の制限酵素 Dpnlで消化した。 [0152] tatgaactgg caaaaatgct gctgcgcaag ggctctctgt tc (酉己列番号 21)
gaacagagag cccttgcgca gcagcatttt tgccagttca ta (酉己列番号 22)
2)形質転換
得られた制限酵素処理済反応産物を同じくキット付属のコンビテントセル XLIO-Gol dに形質転換し、 LB (Amp)プレート上に得られたコロニーを取り、 LB (Amp)液体培地 で 37°C、 12hの培養を行った。この培養液よりプラスミドを調製し、このプラスミドを铸 型として配列番号 11及び配列番号 12のプライマーを用いて伸長反応を行い、更に得 られた反応産物を铸型に同じプライマーを用いてシーケンス反応を行った。反応物 を解析し、 Glyl65Glu、 V173L及び Metl74Leuの 3つのアミノ酸変異を持つ SHNL遺伝 子を保有するプラスミド pET21a/SHNL- G165E,V173L,M174Lを選抜した。このプラス ミドをコンビテントセル BL21 (DE3) (Novagen社製)に形質転換し、 BL21(DE3)/pET21 a/SHNL- G165E,V173L,M174L株を作成した。
[0153] 参者例 17 :栾¾部位複合 SHNL遣伝子 G165E.V173L.M174L- SHNL及び G165E.V1 73し M174L- SHNLの熱安定件
1.実験方法
1)酵素液の調製
参考例 16において構築された大腸菌株 BL21(DE3)/pET21a/SHNL- G165E,V173 L、 BL21 (DE3)/pET21 a/SHNL— Gl 65E, VI 73L,M 174L及び BL21 (DE3)/pET21 a/SHN L-Wildを参考例 2と同様の方法で培養し、酵素液を調製した。更にこれらの調製され た酵素液をそれぞれ牛血製アルブミン及び 0.2Mクェン酸 Naバッファーで希釈し、全 てのサンプルを活性値 70U/mL、タンパク質濃度 6mg/mLで揃え、共雑タンパク質の 影響を実験系から排除した。
[0154] 2)酵素液の加熱処理
参考例 2と同様の方法で、酵素液温が 45-75°Cとなるよう加熱を行った。加熱開始 後 30minの時点で酵素液を遠心分離し、上清を用いて加熱前の酵素活性に対する 残存活性を測定した。
[0155] 2.実験結果
G165E,V173L— SHNL及び G165E,V173L,M174L— SHNLは Wild— SHNLと比較して 大きく熱安定性が向上し、両者とも 70°Cにおいて活性が 90%近く残存した(図 21)。 G165E,V173L-SHNLでは 75°Cにお 、て急激な失活が観察され、残存した活性は 2% であった。一方で 3つの改変部位を複合した G165E,V173L,M174L-SHNLは 75°Cに おいて 13%の活性が残存した。これらの結果より、個々の改変部位を 1つの遺伝子上 に複合することで、耐熱性を更に向上させられることが明ら力となった。
[0156] 参考例 18 :変異部位複合 SHNL- G165E.V173L- SHNL及び G165E.V173し M174L- S HNLの耐溶媒件
1.実験方法
1)酵素液の調製
大腸菌 BL21 (DE3)/pET21 a/SHNL- Wild、 BL21 (DE3)/pET21 a/SHNL- G 165E.V173 L、 BL21(DE3)/pET21a/SHNL- G165E,V173L,M174Lを参考例 2と同様の方法で培 養し、酵素液を調製した。更にこれらの調製された酵素液をそれぞれ牛血製アルブミ ン及び 0.2Mクェン酸 Naバッファーで希釈し、全てのサンプルを活性値 45U/mL、比活 性値 6.5U/mgで揃え、共雑タンパク質の影響を実験系から排除した。
[0157] 2)有機溶媒処理
エタノール及び酢酸ェチルを用いて、参考例 4と同様の方法で酵素液を処理し、残 存活性を測定した。
[0158] 2.実験結果
エタノールを用いて酵素液を処理した結果、 Wild-SHNLは処理 16時間目で活性が ほぼ消滅したが、改変部位複合 G165E,V173L-SHNLは 73%もの活性が残存した(図 22)。参考例 4、 11で示されたようにアミノ酸 1つの変異を持つ ActmtOOl- 12、 V173L- SHNLにおいて、エタノールに対して 16時間の処理後に 20-30%活性が残存すること から、改変部位複合 SHNLは複合によりエタノール耐性が大幅に向上していたことが 明らかとなった。
[0159] 酢酸ェチルを用いた場合、 G165E,V173L,M174L-SHNLは 24時間の処理後も 80% 以上の活性が残存した(図 23)。エタノール耐性と同様に、個々の改変部位の複合 により、大幅に有機溶媒耐性を向上することができた。
[0160] 参考例 19 :変異部位複合酵素 G165E.V173L- SHNLを用いた光学活性シァノヒドリン の合成
変異部位複合酵素 Gl 65E, VI 73L-SHNLを用いた光学活性シァノヒドリンの繰り返し 合成反応を行い、酵素反応系での安定性についての検討を行った。また、改変によ り基質特異性が変化したり、不斉合成能力が消滅したりしている恐れがある。従って 通常の SHNLと同様に光学活性シァノヒドリンの製造が行えることも合わせて確認した
[0161] 1.実験方法
1)酵素液調製
大腸菌株 BL21 (DE3)/pET21 a/SHNL- Wild及び BL21 (DE3)/pET21 a/SHNL- G 165 E,V173Lを参考例 2と同様の方法で培養し、酵素液を調製した。更にこれらの調製さ れた酵素液にクェン酸ナトリウムバッファー(PH5.5)をカ卩え、両者の活性を 500 U/mL に揃えた。 G165E,V173L- SHNL酵素液には BSAを添カ卩し、総タンパク質濃度を Wild- SHNLと一致させた。これら酵素液 0.3mLに対しシリカゲルを 300mgの比率で混合し、 固定化酵素を得た。
[0162] 2)酵素反応
参考例 5に示した反応条件で酵素反応を行った。ただし反応基質としてべンズアル デヒドの代わりに、 2-クロルべンズアルデヒド(2CBA)を終濃度 1.0Mで用いた。 1時間 毎にサンプルを回収し、反応液の 2CBA濃度及び(R/S) -2-クロルマンデ口-トリルの 濃度を測定した。反応の終了は 2_クロルべンズアルデヒドの転換率が 95%を超えた 時点と定義し、反応終了後に反応液 4mLを回収した。引き続き同じ処理を行った HC N/t-ブチルメチルエーテル溶液を同じ量添カ卩し、ベンズアルデヒドを同じ量添カ卩して 、 2回目の酵素反応を行った。 2回目以降は反応終了後に反応液 5mLを回収した。こ の反応操作を繰り返し行!ヽ、計 4回の酵素反応を行った。
[0163] 2.実験結果
1)光学純度
G165E,V173L-SHNLは、 4回の繰り返し反応において、平均 95%eeの光学純度で( S)-2-クロルマンデ口-トリルを生産した。一方で Wild-SHNLも同様に 95%ee程度の 光学純度であった。従って、 G165E,V173L-SHNLは光学活性シァノヒドリンの製造に 関して、光学純度の点からは Wild-SHNLとほぼ同等の能力を有していることが明らか となった。
[0164] 2)反応速度及び活性低下度合いの比較
G165E,V173L- SHNLは、反応 1回目において、 Wild- SHNLと同様の速度で (S)- 2-ク 口ルマンデ口-トリルを生産した。従って、 G165E,V173L-SHNLは光学活性シァノヒド リンの製造に関して、生産性の点からは Wild-SHNLと同等の能力を有していることが 明らかとなった。反応を繰り返すに従い、両者とも酵素活性が低下し、反応速度が減 少していく力 G165E,V173L-SHNLは Wild-SHNLと比較して明らかに減少度合いが 緩やかであった(図 24)。従って G165E,V173L-SHNLは、耐熱性だけではなぐ酵素 反応系での安定性も向上していることが明らかとなった。
[0165] 参者例 20 : TM63部位のアミノ酸を改変した改栾酵素の構築
SHNLのアミノ酸配列 163番目を様々なアミノ酸で置換し、 SHNLの耐熱性に対する 影響を確認した。
[0166] 1)変異導入
参考例 8と同様、 QuikChange XL Site-Directed Mutagenesis Kit (STRATAGENE 社製)を用いた。铸型として pET21a/SHNL-Wild 10ngを用い、配列番号 23及び配列 番号 24で示されるプライマーを用いて、伸長反応を行った。次に得られた反応産物 をキット付属の制限酵素 Dpnlで消化した。
[0167] tgaaaacctg ttcaccaaat gcnnngatgg cgaatatgaa ctggc (酉己列^ 号 23)
gccagttcat attcgccatc nnngcatttg gtgaacaggt tttca (目己列番号 24)
2)形質転換
得られた制限酵素処理済反応産物を同じくキット付属のコンビテントセル XL10-Gol dに形質転換し、 LB (Amp)プレート上で培養した。この結果プレート上に得られたコロ ニーを LB (Amp)液体培地で再懸濁し、プラスミド pET21a/SHNL- SDThrl63NNNを調 製した。このプラスミドをコンビテントセル BL21 (DE3) (Novagen社製)に形質転換を行 V、ゝ BL21(DE3)/pET21a/SHNL- SDThrl63NNN株を複数作成した。
[0168] 3)改変 SHNLの選抜
作成した大腸菌株 BL21 (DE3)/pET21 a/SHNL-SDThrNNN株を参考例 2と同様の方 法により培養した。これら培養液を用いて、参考例 1と同様の選抜法により耐熱性が 向上した改変株を選抜した結果、 BL21(DE3)/pET21a/SHNL- SD163- lb5、 BL21(DE 3)/pET21 a/SHNL-SD 163- lf5、 BL21 (DE3)/pET21 a/SHNL- SD 163- lf7の改変株が 加熱後も活性を有していた。次に、以下に示すプライマーを用いてこれら選抜された 株を铸型としてコロニー PCRを行い、更に得られた PCR産物を铸型に同じプライマー を用いてシーケンス反応を行った。
[0169] Forward primer: 5 ' - TGAAAACCTGTTCACCAAATGCNNNGATGGCGAATATGA ACTGGC-3' (配列番号 25)
Reverse primer: 5,— GCCAGTTCATATTCGCCATCNNNGCATTTGGTGAACAGG TTTTCA-3' (配列番号 26)
反応物を解析した結果、 SHNL-SD163-lb5は配列番号 1に示される塩基配列の 487 -489番目が GATに改変された塩基配列を有していることが確認された。従って、 SD1 63- lb5- SHNLは Wild- SHNLのアミノ酸配列の 163番目のトレオニンがァスパラギン酸 へ置換されたアミノ酸配列を有する改変型 SHNLであることが確認された。同様に SH NL-SD163-115は配列番号 1に示される塩基配列の 487-489番が GAAに改変された 塩基配列を有しており、従って、 SD163-115-SHNLは Wild-SHNLのアミノ酸配列の 16 3番目のトレオニンがグルタミン酸へ置換されたアミノ酸配列を有する改変型 SHNLで あることが確認された。更に SHNL-SD163-117は配列番号 1に示される塩基配列の 48 7-489番目が TCTに改変された塩基配列を有しており、従って、 SD163-117-SHNLは Wild-SHNLのアミノ酸配列の 163番目のトレオニンがセリンへ置換されたアミノ酸配列 を有する改変型 SHNLであることが確認された。
[0170] 以下、 SD163- lb5- SHNLを T165D- SHNLと呼ぶこととし、同様に SD163-lf5- SHNL を T163E- SHNL、 SD163- 117- SHNLを T163S- SHNLと呼ぶこととする。
[0171] 参考例 21 :改変酵素 T163D- SHNし T163E- SHNし T163S- SHNLの f熱性
1.実験方法
1)酵素液の調製
参考例 20において構築された大腸菌株 BL21(DE3)/pET21a/SHNL- T163D、 BL21 (DE3)/pET21a /SHNL- T163E及び BL21(DE3)/pET21a/SHNL- T163Sを参考例 2と 同様の方法で培養し、酵素液を調製した。更にこれらの調製された酵素液をそれぞ れ牛血製アルブミン及び 0.2Mクェン酸 Naバッファーで希釈し、 BL21(DE3)/pET21a/ SHNL- T163D、 BL21(DE3)/pET21a /SHNL- T163Eについては活性値 70U/mL、タ ンパク質濃度 7mg/mLとし、 BL21(DE3)/pET21a/SHNL- T163Sについては活性値 70 U/mL、タンパク質濃度 14mg/mLに調製した。比較としてそれぞれ同濃度に調製され た BL21 (DE3)/pET21 a/SHNL- Wildを用 、た。
[0172] 2)酵素液の加熱処理
参考例 2と同様の方法で、酵素液温が 50-70°Cとなるよう加熱を行った。加熱開始 後 30minの時点で酵素液を遠心分離し、上清を用いて加熱前の酵素活性に対する 残存活性を測定した。
[0173] 2.実験結果
T163S-SHNLは Wild-SHNLと比較して大きく熱安定性が向上して!/、た(図 16)。ま た T163D- SHNL、 T163E- SHNLも 60°Cにおける熱安定性は Wild- SHNLを上回ってい た。従ってへリックス D3,を構成する 163番目のアミノ酸トレオニンをァスパラギン酸、 グルタミン酸、又はセリンで置換することで SHNLの熱安定性を向上できることが明ら カゝとなった。
[0174] 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本 明細書中にとり入れるものとする。
産業上の利用の可能性
[0175] 本発明の耐酸性変異 SHNLは、天然型 SHNLと比較して耐酸性が向上しているため
、酸性条件下での反応が可能となり、競合するラセミ化反応を抑えて高純度の光学 活性シァノヒドリンを高効率で合成することができる。したがって、本発明の耐酸性変 異 SHNLは光学活性シァノヒドリンの工業的生産用酵素として極めて有用である。 配列表フリーテキスト
[0176] 配列番号 5—人工配列の説明:プライマー
配列番号 6—人工配列の説明:プライマー
配列番号 7—人工配列の説明:プライマー
配列番号 8—人工配列の説明:プライマー 配列番号 9 人工配列の説明:プライマー 配列番号 10 -人工配列の説明 :プライマ 配列番号 11 -人工配列の説明 :プライマ 配列番号 12 -人工配列の説明 :プライマ 配列番号 13 -人工配列の説明 :プライマ 配列番号 14- -人工配列の説明 :プライマ 配列番号 15 - -人工配列の説明 :プライマ 配列番号 16 - -人工配列の説明 :プライマ 配列番号 17- -人工配列の説明 'プライマ 配列番号 18 - -人工配列の説明 プライマ 配列番号 19 - -人工配列の説明 プライマ 配列番号 20- -人工配列の説明 プライマ 配列番号 21 - -人工配列の説明 プライマ 配列番号 22- -人工配列の説明 プライマ 配列番号 23 - -人工配列の説明 プライマ 配列番号 24- -人工配列の説明 プライマ 配列番号 25 - -人工配列の説明 プライマ 配列番号 26 - -人工配列の説明 プライマ

Claims

請求の範囲
[1] キヤッサバ(Manihot esculenta)由来の天然型 S-ヒドロキシュトリルリアーゼのアミノ酸 配列(配列番号 2)にお!/、て、 36番目、 140番目、及び 209番目力 選ばれるアミノ酸 のうち、少なくとも 1つを他のアミノ酸に置換して得られる、改変型 S-ヒドロキシュトリル リアーゼ、あるいはパラゴムノキ (Hevea brasiliensis)由来の天然型 S-ヒドロキシュトリル リアーゼのアミノ酸配列(配列番号 3)にお!/、て 36番目、 139番目、及び 208番目から 選ばれるアミノ酸のうち少なくとも 1つを他のアミノ酸に置換して得られる、改変型 S-ヒ ドロキシュトリルリアーゼ。
[2] キヤッサバ(Manihot esculenta)由来の天然型 S-ヒドロキシュトリルリアーゼのアミノ酸 配列(配列番号 2)において、以下のアミノ酸置換:
a) 36番目のロイシンのメチォニンへの置換、
b) 140番目のトレオニンのイソロイシンへの置換、
c) 209番目リジンのァスパラギンへの置換
力 選ばれる少なくとも 1つのアミノ酸置換を有する改変型 S-ヒドロキシュトリルリア一 ゼ。
[3] さらに、以下のアミノ酸置換:
a) 21番目のリジンのァスパラギン酸、グルタミン酸、又はァスパラギンへの置換、 b) 165番目のグリシンのァスパラギン酸又はグルタミン酸への置換、
c) 173番目のパリンのロイシンへの置換、
d) 174番目のメチォニンのロイシンへの置換、及び
e) 163番目のトレオニンのァスパラギン酸、グルタミン酸、又はセリンへの置換 力 選ばれる少なくとも 1つのアミノ酸置換を有する請求項 2に記載の改変型 S-ヒドロ キシュトリルリアーゼ。
[4] 請求項 1〜3のいずれか 1項に記載の改変型 S-ヒドロキシュトリルリアーゼのアミノ酸 配列をコードする DNA。
[5] 請求項 4記載の DNAを導入した宿主を培養し、得られる培養物から S-ヒドロキシュトリ ルリアーゼ活性を有するタンパク質を回収することを特徴とする、改変型 S-ヒドロキシ 二トリルリアーゼの製造方法。 請求項 1〜3のいずれ力 1項に記載の改変型 S-ヒドロキシュトリルリアーゼをカルボ- ルイ匕合物及びシアンィ匕合物と接触させることを特徴とする光学活性シァノヒドリンの 製造方法。
PCT/JP2006/319422 2005-09-29 2006-09-29 新規耐酸性改変型s-ヒドロキシニトリルリアーゼ WO2007037354A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06810828A EP1944366A4 (en) 2005-09-29 2006-09-29 NOVEL ACID RESISTANT MUTANT S-HYDROXYNITRILE LYASE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-285049 2005-09-29
JP2005285049A JP2007089513A (ja) 2005-09-29 2005-09-29 新規耐酸性改変型s−ヒドロキシニトリルリアーゼ

Publications (1)

Publication Number Publication Date
WO2007037354A1 true WO2007037354A1 (ja) 2007-04-05

Family

ID=37899775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319422 WO2007037354A1 (ja) 2005-09-29 2006-09-29 新規耐酸性改変型s-ヒドロキシニトリルリアーゼ

Country Status (3)

Country Link
EP (1) EP1944366A4 (ja)
JP (1) JP2007089513A (ja)
WO (1) WO2007037354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106167A (ja) * 2007-10-26 2009-05-21 Nippon Shokubai Co Ltd キメラ組換え(r)−ヒドロキシニトリルリアーゼ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125886A (ja) * 1998-07-02 2000-05-09 Dsm Fine Chemicals Austria Gmbh 改良された基質受容を有する(s)―ヒドロキシニトリルリア―ゼ及びその使用方法
JP2004242533A (ja) * 2003-02-12 2004-09-02 Mitsubishi Rayon Co Ltd 改変型エチレンジアミン−n,n’−ジコハク酸:エチレンジアミンリアーゼ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69928206T2 (de) * 1998-12-28 2006-08-03 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung von S-Hydroxynitrillyasen
AT412156B (de) * 2003-03-20 2004-10-25 Dsm Fine Chem Austria Gmbh R-hydroxynitrillyasen mit verbesserter substratakzeptanz und deren verwendung
JP2005245242A (ja) * 2004-03-02 2005-09-15 Mitsubishi Rayon Co Ltd ヒドロキシニトリルリアーゼの製造方法
WO2005095602A1 (en) * 2004-03-31 2005-10-13 Nippon Shokubai Co., Ltd. Novel modified s-hydroxynitrile lyase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125886A (ja) * 1998-07-02 2000-05-09 Dsm Fine Chemicals Austria Gmbh 改良された基質受容を有する(s)―ヒドロキシニトリルリア―ゼ及びその使用方法
JP2004242533A (ja) * 2003-02-12 2004-09-02 Mitsubishi Rayon Co Ltd 改変型エチレンジアミン−n,n’−ジコハク酸:エチレンジアミンリアーゼ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1944366A4 *
YAN G. ET AL.: "A single residual replacement improves the folding and stability of recombinant cassava hydroxynitrile lyase in E. coli", BIOTECHNOL. LETT., vol. 25, no. 13, 2003, pages 1041 - 1047, XP002989606 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106167A (ja) * 2007-10-26 2009-05-21 Nippon Shokubai Co Ltd キメラ組換え(r)−ヒドロキシニトリルリアーゼ

Also Published As

Publication number Publication date
JP2007089513A (ja) 2007-04-12
EP1944366A4 (en) 2009-06-10
EP1944366A1 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US6645746B1 (en) Carbonyl reductase, gene thereof and method of using the same
US6706507B2 (en) (R)-2-octanol dehydrogenases, methods for producing the enzymes, DNA encoding the enzymes, and methods for producing alcohols using the enzymes
JPWO2019107516A1 (ja) 3−ヒドロキシアジピン酸、α−ヒドロムコン酸および/またはアジピン酸を生産するための遺伝子改変微生物および当該化学品の製造方法
KR101642583B1 (ko) 버콜데리아 타일란덴시스 유래 지방산화효소에 의한 13-수산화 리놀레익산의 고수율 제조방법 및 그 조성물
JP2020174686A (ja) 酵素を用いた4−アミノ桂皮酸の製造方法
JP5142268B2 (ja) 改良型没食子酸合成酵素および没食子酸の製造法
JP5140848B2 (ja) 没食子酸の製造法
US7531330B2 (en) Modified S-hydroxynitrile lyase
WO2012124513A1 (ja) N-サクシニル-dl-アミノ酸に対する向上されたd体選択性を有する改変型d-サクシニラーゼ
US20030134402A1 (en) Process for producing optically active 4-halo-3-hydroxybutanoate
WO2023088077A1 (en) Biocatalysts and methods for the synthesis of pregabalin intermediates
WO2007037354A1 (ja) 新規耐酸性改変型s-ヒドロキシニトリルリアーゼ
JP4854202B2 (ja) 新規改変型s−ヒドロキシニトリルリアーゼ
US9783796B2 (en) Amidase, gene for the same, vector, transformant, and method for production of optically active carboxylic acid amide and optically active carboxylic acid by using any one of those items
EP3489361B1 (en) Microorganism having activity of acyltransferase and use thereof
JP2010187658A (ja) D−フェニルセリンデアミナーゼ及びその利用
US20020102662A1 (en) Methods for racemizing N-acylamino acids and producing optically active amino acids
JP4494286B2 (ja) 新規高活性改変型s−ヒドロキシニトリルリアーゼ
JPWO2008013262A1 (ja) L−ロイシンヒドロキシラーゼおよび該酵素をコードするdna
WO2008041272A1 (fr) S-hydroxynitrile lyase modifiÉe et hautement active inÉdite
JP2010022334A (ja) 立体選択性を有するニトリルヒドラターゼ遺伝子
JP4397088B2 (ja) 還元酵素をコードする遺伝子
US20140335575A1 (en) Novel amidase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810828

Country of ref document: EP