WO2007036989A1 - 光信号多重化装置および光信号多重化方法 - Google Patents

光信号多重化装置および光信号多重化方法 Download PDF

Info

Publication number
WO2007036989A1
WO2007036989A1 PCT/JP2005/017781 JP2005017781W WO2007036989A1 WO 2007036989 A1 WO2007036989 A1 WO 2007036989A1 JP 2005017781 W JP2005017781 W JP 2005017781W WO 2007036989 A1 WO2007036989 A1 WO 2007036989A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
optical
multiplexing
wavelength
unit
Prior art date
Application number
PCT/JP2005/017781
Other languages
English (en)
French (fr)
Inventor
Futoshi Izumi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/017781 priority Critical patent/WO2007036989A1/ja
Priority to JP2007537489A priority patent/JP4696122B2/ja
Priority to GB0805129A priority patent/GB2446528B/en
Publication of WO2007036989A1 publication Critical patent/WO2007036989A1/ja
Priority to US12/078,059 priority patent/US7623791B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • the present invention relates to an optical signal multiplexing apparatus that multiplexes optical signals by an optical time division multiplexing method.
  • OT DM Optical Time Division Multiplex
  • This optical multiplexing device that performs OTDM multiplexing, when multiplexing optical signals, remotely controls the transmitting station that outputs the optical signal to adjust the phase of the optical signal, and the phase of each optical signal is adjusted in advance.
  • OTDM multiplexing using optical signals when multiplexing optical signals, remotely controls the transmitting station that outputs the optical signal to adjust the phase of the optical signal, and the phase of each optical signal is adjusted in advance.
  • Patent Document 1 when an optical signal passes through each node constituting the optical fiber communication system, the delay of the optical signal caused by the optical path difference in the node is dispersed with respect to the wavelength of the optical fiber.
  • a technology that enables precise synchronization of an optical signal related to an optical fiber communication system by utilizing and compensating the dependency has been disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-221708
  • the present invention has been made in view of the above, and even when an optical signal whose phase is not adjusted in advance is acquired, the optical signal can be multiplexed as it is.
  • An object of the present invention is to provide a signal multiplexing device.
  • the present invention provides an optical signal multiplexing apparatus that multiplexes an optical signal by an optical time division multiplexing method, and an optical signal to be multiplexed
  • the optical signal is acquired, the wavelength of the acquired optical signal is converted, and the optical signal whose wavelength is converted is passed through a waveguide that generates a propagation delay corresponding to the wavelength in the optical signal, thereby adjusting the delay amount of the optical signal.
  • the optical signal multiplexing device converts the wavelength of the acquired optical signal and generates a propagation delay corresponding to the wavelength in the optical signal when the optical signal to be multiplexed is acquired.
  • the optical signal whose wavelength has been converted is passed through the waveguide, the delay amount of the optical signal is adjusted, and the degradation of the waveform applied to the optical signal is compensated.
  • OTDM can be multiplexed and has the effect.
  • FIG. 1 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the first embodiment.
  • FIG. 2 is a functional block diagram showing a configuration of an optical variable delay unit.
  • FIG. 3 is an explanatory diagram for explaining the difference between a dispersion fiber (DCF) and an FGB dispersion compensator (VIPA dispersion compensator).
  • DCF dispersion fiber
  • VIPA dispersion compensator FGB dispersion compensator
  • FIG. 4 is an explanatory diagram for explaining an FGB dispersion compensator.
  • FIG. 5 is a functional block diagram showing a configuration of a division compensation unit.
  • FIG. 6 is a functional block diagram showing a configuration of the phase control unit shown in FIG. 1.
  • FIG. 7 shows how an optical multiplexing apparatus multiplexes optical signals transmitted from each transmitting station. It is a time chart which shows.
  • FIG. 8 is a diagram of an example of a system when connected to a WDM multiplexer that performs optical multiplexing apparatus power WDM multiplexing according to the second embodiment.
  • FIG. 9 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the second embodiment.
  • FIG. 10 is a functional block diagram showing a configuration of a wavelength adjustment unit.
  • FIG. 11 is a diagram showing a modified example that works on the configuration of the wavelength adjusting unit.
  • FIG. 12 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the third embodiment.
  • FIG. 13 is a functional block diagram showing the configuration of the phase control unit shown in FIG.
  • FIG. 14 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the fourth embodiment.
  • FIG. 15 is a time chart for the optical signal of the optical multiplexing device shown in FIG.
  • FIG. 16 is a functional block diagram showing a configuration of an optical multiplexing apparatus that multiplexes overhead data with a low-speed signal.
  • FIG. 17 is a time chart for the optical signal of the optical multiplexer shown in FIG.
  • FIG. 18 is a diagram (1) illustrating a modified example that works on the configuration of the byte processing unit.
  • FIG. 19 is a diagram (2) showing a modified example that works on the configuration of the byte processing unit.
  • FIG. 20 is an explanatory diagram for explaining a conventional OTDM.
  • FIG. 20 is an explanatory diagram for explaining a conventional OTD M (Optical Time Division Multiplex).
  • an optical multiplexing device 60 that multiplexes optical signals transmitted from the transmitting stations 10 to 40 includes force bras 61 to 64, a multiplexing unit 65, and an optical phase adjustment control unit 66. .
  • the force bras 61 to 64 are devices that branch an optical input signal into two or more outputs.
  • the power bra 61 branches the optical signal input from the transmission station 10 into two optical signals, inputs one optical signal to the multiplexing unit 65, and inputs the other optical signal to the optical phase adjustment control unit 66. input.
  • the multiplexing unit 65 combines (time division multiplexing) each optical signal input from the couplers 61 to 64 and the optical signal input from the FSYN.OH generation unit 66a, and the combined optical signal is an optical splitter. It is a processing part that transmits to Here, the optical splitter receives the optical signal combined by the multiplexer 65.
  • the device demultiplexes the received optical signal.
  • the optical phase adjustment control unit 66 is a processing unit that monitors the phase of the optical signal input from the transmission stations 10 to 40 and remotely controls the phase of the optical signal transmitted from the transmission stations 10 to 40. .
  • the optical phase adjustment control unit 66 includes an FSYN'OH generation unit 66a.
  • the FSYN'OH generator 66a generates data (hereinafter referred to as overhead data) such as a fixed pattern for synchronization, monitoring signal line data, and order wire data, and transmits the generated overhead data to the optical splitter. It is a processing unit. Overhead data is also used when transferring communication warnings.
  • the optical multiplexing device 60 shown in FIG. 20 needs to remotely control the phase of the optical signal transmitted from each of the transmission stations 10 to 40 and OTDM multiplex each optical signal, There is a problem in that the phase control is performed in advance! And the multiplexing for the optical signal cannot be executed.
  • the optical multiplexing apparatus is an optical signal transmitted from each transmission station 10 to 40 without remotely controlling the phase of the optical signal transmitted from each transmission station 10 to 40 ( This optical signal has a different timing), adjusts the timing of each received optical signal as it is, and executes OTDM multiplexing.
  • FIG. 1 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the first embodiment.
  • the optical multiplexing apparatus 100 according to the first embodiment includes optical variable delay units 101 to 104, force bras 105 to 108, optical gates 109 to 112, a multiplexing unit 113, a phase control unit 114, FSYN.OH generator 11 4a.
  • the couplers 105 to 108 are the same as the couplers 61 to 64 shown in FIG.
  • the optical variable delay units 101 to 104 are processing units that perform delay adjustment of the optical signals transmitted from the transmitting stations 10 to 40 in accordance with the control signal input from the phase control unit 114. Since the optical variable delay units 101 to 104 have the same configuration, the configuration of the optical variable delay unit will be described here using the optical variable delay unit 101 as an example.
  • FIG. 2 is a functional block diagram showing a configuration of the optical variable delay unit.
  • the optical variable delay unit 101 includes wavelength shift devices 115 and 117, a waveguide 116, and a dispersion compensation unit 118.
  • the wavelength shift device 115 is a device that converts (shifts) the wavelength of an optical signal. When the optical signal whose wavelength is converted by the wavelength shift device 115 passes through the waveguide 116, a propagation delay corresponding to the converted wavelength is generated in the optical signal.
  • the wavelength shift device 115 adjusts the shift amount of the wavelength to be converted and adjusts the propagation delay amount according to the control signal input from the phase control unit 114.
  • the wavelength shift device 117 is a device that aligns the wavelength of the optical signal converted by the wavelength shift device 115 to a specific wavelength.
  • the dispersion compensator 118 is a device that restores the dispersion waveform caused by the wavelength-shifted optical signal passing through the waveguide 116.
  • the dispersion compensation unit 118 uses a special dispersion compensation means such as FBG (fiber grating) or VIPA (Virtually Imaged Phased Array), and dispersion compensation such as DCF (Dispersion Compensation Fiber). Fiber is not used.
  • FIG. 3 is an explanatory diagram for explaining the difference between a dispersion fiber (DCF) and an FGB dispersion compensator (VIPA dispersion compensator).
  • the delay adjustment may be offset.
  • FIG. 3 is an explanatory diagram for explaining the FGB dispersion compensator.
  • the FGB dispersion compensator uses a fiber grating filter.
  • This fiber grating filter reflects only a specific wavelength by changing the refractive index of the waveguide according to a specific period. That is, by changing this period in steps, the reflection point with respect to the wavelength can be shifted, and the chromatic dispersion can be compensated.
  • dispersion of ⁇ / ⁇ ⁇ (psZnm) is compensated.
  • d ⁇ is the difference between ⁇ (where ⁇ is the wavelength of the reflected light 1) and ⁇ (where ⁇ is the wavelength of the reflected light 3), and dT is The time difference between reflected light 1 and reflected light 3 (dL is the distance from reflected light 1 to reflected light 3 and Vg is the velocity of the wave).
  • the VIPA dispersion compensator uses a VIPA plate or a free-form mirror as a reflection means.
  • FIG. 5 is a functional block diagram showing the configuration of the division compensation unit.
  • the dispersion compensation unit 118 includes a wavelength separation unit 119, waveform correction units 120 to 123, and a wavelength multiplexing unit 124.
  • the wavelength demultiplexing unit 119 is a processing unit that divides each signal included in the optical signal for each wavelength, and inputs each divided optical signal to the waveform correction units 120 to 123.
  • the waveform correction units 120 to 123 are processing units that restore the waveform of the optical signal. Since the waveform correction units 120 to 123 have the same configuration, here, the waveform correction unit 120 will be used to describe the waveform correction unit.
  • the waveform correction unit 120 includes an optical circulator 120a and a variable fiber grating filter 120b.
  • the optical circulator 120a inputs the optical signal acquired from the wavelength demultiplexing unit 119 to the variable fiber grating filter 120b, and inputs the dispersion-compensated optical signal output from the variable fiber grating filter 120b to the wavelength multiplexing unit 124. It is a device to do.
  • the variable fiber grating filter 120b is the same as the fiber grating filter shown in FIG.
  • the optical multiplexing apparatus 100 omits the dispersion compensation unit 118 shown in Fig. 2 when only a part of the waveform is extracted and OTDM multiplexed even if the waveform of the optical signal is distorted. can do.
  • the optical gates 109 to 112 are turned on and off by the control signal input from the phase control unit 114, and the optical signals input from the optical variable delay units 101 to 104 are turned on. It is a device that cuts out at a predetermined timing.
  • the multiplexing unit 113 is a processing unit that multiplexes the optical signal input from the optical gates 109 to 112 and the overhead data input from the phase control unit 114, and transmits the multiplexed data to another device (for example, an optical splitter). is there.
  • the phase control unit 114 is a processing unit that performs switching control on the optical gates 109 to 112 and controls the optical variable delay units 101 to 104 to adjust the delay amount of the optical signal. Note that the phase control unit 114 switches the optical variable delay unit 10 at the timing of switching the optical gates 109 to 112. The delay amount applied to the optical signals of the optical variable delay units 101 to 104 is adjusted so that the change point of the data output from 1 to 104 does not come.
  • FIG. 6 is a functional block diagram showing the configuration of the phase control unit shown in FIG.
  • the phase control unit 114 includes an optical selector 130, a PD 131, a noise circuit 132, a clock extraction unit 134, SEL 135a to 135d, a gate 136a to 136d, a phase discriminator 137a to 137d, and a frequency divider. Sections 138a to 138d, PLLs 139a to 139d, an optical selector, and a CLK free-running switching control section 140.
  • the optical selector 130 is a device that switches an optical signal from each channel in accordance with a control signal input from the optical selector ZCLK free-running switching control unit 140.
  • the optical signal forces input from the force bras 105 to 108 also correspond to the input optical signals.
  • PD (Photo Diode) 131 is a device that converts an optical signal input from optical selector 130 into an electrical signal. Note that the electrical signal converted by the PD 131 is input to the preamplifier 133 after being given a constant noise voltage by the bias circuit 132.
  • the preamplifier 133 is a device that amplifies the electric signal input from the PD 131.
  • the preamplifier 133 inputs the amplified electrical signal to the clock extractor 134.
  • the clock extraction unit 134 is a processing unit that extracts a clock of an electric signal and inputs the extracted clock to the SELs 135a to 135d.
  • SELs (selectors) 135a to 135d are devices that switch an input clock according to a control signal from the optical selector ZCLK free-running switching control unit 140 and input the clock to the phase discriminators 137a to 137d. Since SEL135a to 135d are the same, SEL135a is used here to explain SEL. Similarly, gates 136a to 136d, phase discriminators 137a to 137d, frequency dividers 138a to 138d, and PLL139a to 139d, which will be described below, are also described using the gate 136a, phase discriminator 137a, frequency divider 138a, and PLL139a. To do.
  • the SEL 135a switches between the clock input from the clock extraction unit 134 and the clock input from the PLL 139a according to the control signal from the optical selector ZCLK free-running switching control unit 140, and acquires the acquired clock in phase. Input to discriminator 137a.
  • the SEL 135a is optically controlled by the optical selector ZCLK free-running switching control unit 140.
  • the clock of the clock extractor 134 is acquired.
  • the SEL 135a acquires the clock from the PLL 139a at the timing when the optical selector Z free-running switching control unit 140 is switched to a channel other than channel 1 (any power of channels 2 to 5).
  • the gate 136a is a device that obtains a control signal from the optical selector ZCLK free-running switching control unit 140 and a clock from the SEL 135a, and notifies each optical gate 109 of timing for switching on / off of the optical gate 109. is there.
  • the phase discriminator 137a extracts the difference between the clock input to the SEL135a and the network clock, adjusts the network clock using the difference between the clocks, and optically delays the adjusted clock signal. This is a device for inputting to the unit 101 and the frequency dividing unit 138a. Each of the optical variable delay units 101 to 104 adjusts the delay amount of the optical signal based on the clock input from the phase discriminators 137a to 137d.
  • Frequency divider 138a is a device that adjusts the frequency of the clock input from phase discriminator 137a to a specific frequency and inputs the adjusted clock signal to PLL 139a.
  • the PLL 139a is a device that matches the input signal input to the frequency divider 138a with the output signal output from the PLL 139a.
  • the phase control unit 114 includes an FSYN′OH generation unit 114 a in addition to the configuration shown in FIG.
  • the FSYN'OH generation unit 114 a is a processing unit that generates overhead data such as a fixed pattern for synchronization, monitoring signal line data, and order wire data, and inputs the generated overhead data to the multiplexing unit 113.
  • FIG. 7 is a time chart showing how the optical multiplexing device multiplexes optical signals transmitted from each transmitting station.
  • the optical signals obtained by the power of each channel (CH1 to CH4) at the time of input to the optical multiplexing apparatus 100 do not coincide with each other, but the optical variable delay units 101 to 104 As a result, the timing of each optical signal is aligned, and the phase control unit 114 can OTDM multiplex each optical signal as it is by switching the optical gates 109 to 112.
  • the optical multiplexing apparatus 100 includes the transmitting stations 10 to 40.
  • the optical variable delay units 101 to 104 receive the optical signal, and the phase control unit 114 controls the optical variable delay units 101 to 104 to adjust the delay amount of each optical signal and each optical gate 109 to 1.
  • Switch 12 at a specific timing.
  • the multiplexing unit 113 multiplexes the optical signals input from the optical gates 109 to 112 and the FSYN'OH generating unit 114a, and the combined optical signal is transmitted to another device such as an optical splitter. Since transmission is performed, even if the timing of the optical signal transmitted from each transmitting station 10 to 40 varies, it is possible to OTDM multiplex each optical signal as it is with accuracy.
  • the optical multiplexing apparatus adjusts the wavelength of the optical signal subjected to OTDM multiplexing to a specific wavelength.
  • the optical multiplexing device adjusts the wavelength of the optical signal that has been subjected to OTDM multiplexing to a specific wavelength, thereby efficiently performing WDM (Wavelength Division Multiplexing) using the optical signal that has been multiplexed with OTDM. Can be executed.
  • WDM Widelength Division Multiplexing
  • FIG. 8 is a diagram of an example of a system when connected to a WDM multiplexer that performs optical multiplexing apparatus power WDM multiplexing according to the second embodiment.
  • the optical multiplexer shown in the figure adjusts the wavelength of the OTD M-multiplexed optical signal to a specific wavelength (the wavelength specified for the WDM multiplexer). WMD multiplexing can be performed without adjusting the wavelength of the acquired optical signal.
  • FIG. 9 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the second embodiment.
  • this optical multiplexing apparatus 200 includes optical variable delay units 201 to 204, couplers 205 to 208, optical gates 209 to 212, multiplexing unit 213, phase control unit 214, and wavelength adjustment unit 215. .
  • optical conversion delay units 201 to 204, the couplers 205 to 208, the optical gates 209 to 212, the multiplexing unit 213, and the phase control unit 214 are the optical variable delay units 101 to 104 and the coupler 105 shown in FIG. ⁇ 10 8, optical gates 109 to 112, multiplexing unit 113, and phase control unit 114 are the same as those in FIG.
  • the wavelength adjustment unit 215 is a processing unit that adjusts the wavelength of the optical signal output from the multiplexing unit 213 to a specific wavelength (converts it to a wavelength for performing WDM multiplexing).
  • Figure 10 shows wavelength tuning It is a functional block diagram which shows the structure of a part. As shown in the figure, the wavelength adjustment unit 215 includes SO A 216, 219, LD 217, 220, and filters 218, 221.
  • SOAs semiconductor optical amplifiers
  • SOAs semiconductor optical amplifiers
  • XPM cross-phase modulation
  • the multiplexing unit 215 and the laser light from the LD (Laser Diode) 217 By inputting the optical signal from the multiplexing unit 215 and the laser light from the LD (Laser Diode) 217 to this SOA 216 and cutting out a part of the optical signal by the filter 219, the waveform of the original optical signal is inverted. An optical signal is generated. Then, the optical signal output from the filter 218 and the laser light from the LD 220 are input to the SOA 219, the optical signal output from the SOA 219 is passed through the filter 221 and a part of the optical signal is cut out to obtain the original optical signal.
  • the wavelength of the optical signal can be converted to a specific wavelength.
  • the optical multiplexing apparatus 200 inputs the optical signal output from the multiplexing unit 213 to the wavelength adjustment unit 215, and sets the wavelength of the optical signal to a specific wavelength. Therefore, the WDM multiplexer connected to the optical multiplexer 200 can WDM multiplex the optical signal that is OTDM multiplexed with high efficiency.
  • the configuration of the wavelength adjusting unit 215 is not limited to that shown in FIG. 10, and for example, the wavelength can be adjusted even in the configuration shown in FIG.
  • FIG. 11 is a diagram illustrating a modification of the configuration of the wavelength adjustment unit.
  • the wavelength adjustment unit includes a wavelength shift device 230, a waveguide 230, and a tunable dispersion compensation unit 232.
  • the wavelength adjusting unit performs wavelength conversion of the optical signal output from the multiplexing unit 213 by using the wavelength shift device, and passes the wavelength-converted optical signal through the waveguide 231 to generate an optical signal. causess a propagation delay. Then, the wavelength of the optical signal can be adjusted to a specific wavelength by inputting the optical signal in which the propagation delay has occurred to the tunable dispersion correction unit 232 and adjusting the dispersion compensation amount.
  • the wavelength shift device (wavelength shift device 117 in FIG. 2) included in the components of the optical variable delay units 201 to 204 is used for adjustment. You may do it.
  • Example 3 The optical multiplexing device according to (1) incorporates a delay line that shifts the delay time of each channel force in a fixed manner. As described above, the optical multiplexing apparatus can OTDM multiplex each optical signal without performing complicated delay adjustment by incorporating the delay line.
  • FIG. 12 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the third embodiment.
  • this optical multiplexer 300 includes an optical variable delay unit 301 to 304, a coupler 305 to 308, a delay line 309 to 312, an optical gate 313 to 316, a multiplexing unit 317, and a phase control unit. 318.
  • the optical variable delay units 301 to 304, the couplers 305 to 308, the optical gates 313 to 316, the multiplexing unit 317 are the optical variable delay units 101 to 104, the couplers 105 to 108, and the optical shown in FIG. Since it is the same as that of the gates 109 to 112 and the multiplexing unit 113, description thereof is omitted.
  • the delay lines 309 to 312 are waveguides that delay the optical signal passing through the delay lines 309 to 312 (according to the length of the delay line). By adjusting the length of the delay lines 309 to 312, the delay amount of the optical signal output from the optical variable delays 301 to 304 can be freely adjusted. In other words, the optical variable delay units 301 to 30 can match the phases of the optical signals and adjust the lengths of the delay lines 309 to 312 to execute OTDM multiplexing of the optical signals. In the example of FIG. 12, the delay lines become longer in the order of the delay lines 309, 310, 311 and 312. Therefore, the optical signals reach the optical gates in the order of the delay lines 309, 310, 311 and 312.
  • the phase control unit 318 performs switching control for the optical gates 313 to 316 and controls the optical variable delay units 301 to 304 to control the phase of the optical signal output from each of the optical variable delay units 301 to 304. Is a processing unit for matching the.
  • FIG. 13 is a functional block diagram showing a configuration of the phase control unit shown in FIG. As shown in the figure, this time, U ⁇ 318 ⁇ , PD319a to 319d, noise circuit 320a to 320d, preamplifier 321a to 321d, clock extractor 322a to 322d, SEL323a to 323d, logic Gates 324a to 324d, phase discriminators 325a to 325d, frequency dividers 326a to 326d, PLL327a to 327d, CLK loss detection unit 328a to 328d, error detection calculation circuit 329, FSYN.OH generation unit 330, LD331, optical gate 332 .
  • the optical signals from the respective channels (CH1 to CH4) shown in the figure correspond to the optical signals input from the force bras 305 to 308.
  • PD319a to 319d, noise circuit 320a to 320d, preamplifier 321a to 321d, clock 322a to 322d, phase discriminators 325a to 325d, frequency dividers 326a to 326d, PLL327a to 327d are the PD131, bias circuit 132, preamplifier 133, clock extractor 134, phase discriminator shown in FIG. 137a to 137d, frequency dividers 138a to 138d, and PLL 139a to 139d are the same as the above, and thus the description thereof is omitted.
  • the CLK loss detection units 328a to 328d monitor the clocks extracted by the clock extraction units 322a to 322d, respectively, and when the clock being monitored is interrupted, the clock (clock extraction unit card) This is a processing unit that switches between a free-running clock (network clock) and a free-running clock (network clock). Since the CLK disconnection detection units 328a to 328d are the same, the CLK disconnection detection unit 328a will be described here. Similarly, SE L323a to 323d and logic gates 324a to 324d described below will be described using SEL323a and logic gate 324a.
  • the CLK loss detection unit 328a monitors the clock signal extracted by the clock extraction unit 322a, that is, the clock used for the optical signal from the channel 1, and when this clock is interrupted, the SEL323a and the logic gate 324a This is a processing unit that controls the external clock to switch to the free-running clock.
  • the SE L323a inputs the clock from the clock extraction unit 322a to the phase discriminator 325a and the logic gate 324a.
  • the CLK loss detection unit 328a switches the SEL323a, and the SEL323a inputs the clock signal of the PLL327a to the phase discriminator 325a and the logic gate 324a.
  • the logic gate 324a switches the optical gate 313 according to the external clock when the clock extracted by the clock extraction unit 322a is not interrupted. On the other hand, when the clock extracted by the clock extraction unit 322a is interrupted, the logic gate 214a switches the optical gate 313 with the free-running clock.
  • the error detection arithmetic circuit 329 is an electrical signal of each channel 1 to 4 whose phases are matched (when input to the error detection arithmetic circuit 329, the optical signal of each channel 1 to 4 is an electrical signal by PD319a to 319d. This is a device that computes information for error detection.
  • the error detection arithmetic circuit 329 sends the calculated error detection information to the FSY Input to N ⁇ OH generator 330.
  • the FSYN'OH generating unit 330 is a processing unit that acquires information for error detection from the error detection arithmetic circuit 329 and generates overhead data based on the acquired information.
  • the overhead data generated by the F SYN'OH generating unit 330 is converted into an optical signal by the LD 331 and input to the multiplexing unit 317 via the optical gate 332.
  • the optical multiplexing apparatus matches the phases of the optical signals output from the optical variable delay units 301 to 304, and increases the lengths of the delay lines 309 to 312. By adjusting, delaying each optical signal, and combining by the combining unit 317, it is possible to execute OTDM multiplexing, eliminating the need to perform complex control on the optical variable delay units 301 to 304. Each optical signal can be multiplexed efficiently.
  • the FSYN'OH generation unit 330 is incorporated in the phase control unit 318. 1S
  • the FSYN'OH generation unit 330 may be provided at another position, which is not limited to this. .
  • FIG. 14 is a functional block diagram of the configuration of the optical multiplexing apparatus according to the fourth embodiment.
  • this optical multiplexer 400 includes optical variable delays 401 to 404, couplers 405 to 408, noise processing units 409 to 413, optical gates 414 to 418, a multiplexing unit 419, A phase control unit 420 is provided.
  • the optical variable delay units 401 to 404, the couplers 405 to 408, the optical gates 414 to 418, the multiplexing unit 419, and the phase control unit 420 are the optical variable delay units 101 to 104 and couplers shown in FIG. Since this is the same as 105 to 108, optical gates 109 to 112, multiplexing unit 113, and phase control unit 114, description thereof is omitted.
  • Byte processing units 409 to 413 are processing units that perform byte interleave multiplexing. Since the byte processing units 409 to 413 are the same, here, the byte processing unit 409 will be used to describe the Neut processing unit.
  • Branch CPL430 branches the optical signal input from coupler 405, This is a device for inputting each branched optical signal to each waveguide 431-438.
  • Each of the waveguides 431 to 438 is a waveguide for transmitting an optical signal to the optical gates 439 to 446. Since the waveguides 431 to 438 have different lengths, a delay difference occurs in each optical signal passing through the waveguide. In the example shown in FIG. 14, since the waveguides become longer in the order of waveguides 431, 432, ..., 446, the optical signal passing through the waveguide 431 reaches the optical gate 439 first, and the waveguide The optical signal passing through 446 reaches the optical gate 446 the latest.
  • the optical gates 439 to 446 are devices that are turned on / off by a control signal from a control unit (not shown) and cut out the optical signals from the respective waveguides 431 to 438 at a predetermined timing.
  • the optical signals output from the optical gates 439 to 446 are input to the multiplexing CPL 447.
  • the combined CP L447 is a device that combines optical signals output from the optical gates 439 to 446 and inputs the combined optical signals to the optical gate 414.
  • FIG. 15 is a time chart for the optical signal of the optical multiplexing device shown in FIG.
  • the optical signals output from the optical variable delay units 401 to 404 are subjected to byte interleave multiplexing by the byte processing units 409 to 412 respectively.
  • the overhead data generated by the FSYN'OH generation unit 420a is subjected to byte interleave multiplexing by the byte processing unit 413.
  • the optical signals multiplexed by the byte processing units 409 to 413 are input to the multiplexing unit 419 and multiplexed.
  • the byte processing units 409 to 413 use the branch CPL, the waveguides having different lengths, and the multiplexing CPL, so that the byte of the optical signal is obtained. Since interleave multiplexing is performed with light, Neutral interleave multiplexing can be performed efficiently.
  • the optical signal subjected to byte interleave multiplexing by the multiplexing unit 419 can be further subjected to OTDM multiplexing as it is.
  • the overhead data generated by the FSYN'OH generation unit 420 is multiplexed by the byte processing unit 413.
  • the overhead data may be multiplexed with a low-speed signal. In this way, by multiplexing the overhead data with the low-speed signal, timing extraction by the optical splitter on the receiving side is facilitated.
  • FIG. 16 shows the configuration of an optical multiplexing apparatus that multiplexes overhead data with a low-speed signal. It is a functional block diagram shown. The configuration of each part is the same as that of the optical multiplexing apparatus 400 shown in FIG. In FIG. 16, the overhead data output from the FSYN.OH generation unit 420a is input to the optical gate 418 that is not input to the byte processing unit.
  • FIG. 17 is a time chart for the optical signal of the optical multiplexing apparatus shown in FIG. As shown in the figure, the overhead data is a low-speed signal and is multiplexed by the multiplexing unit 419.
  • this byte processing unit 500 has a 1: N optical gate 501 that divides an optical signal into N (N is 2 or more), and each divided optical signal is connected to each waveguide (waveguide). (There are N paths.)
  • the signals are input to 502 to 509 and subjected to delay adjustment, and each optical signal subjected to delay adjustment is multiplexed by the multiplexing CPL 510.
  • this byte processing unit 600 divides an optical signal into two 1: 2 SW (Switch) 601 to 607 connected in series, and this 1: 2SW 601 to 607 is connected. It is also possible to divide the optical signal using it, adjust the delay of each optical signal, and multiplex each optical signal by the multiplexing CPL608.
  • the optical signal multiplexing device is useful for an optical network that performs communication using optical signals, and in particular, efficiently multiplexes optical signals that have not been adjusted in timing, Suitable for sending to the receiving side.

Abstract

 光多重化装置(100)は、送信局(10)~送信局(40)から光信号を光可変遅延部(101)~光可変遅延部(104)が受信し、位相制御部(114)が、光可変遅延部(101)~光可変遅延部(104)を制御して、各光信号の遅延量を調整すると共に、光ゲート(109)~光ゲート(112)を特定のタイミングで切り替える。そして、合波部(113)が、光ゲート(109)~光ゲート(112)およびFSYN・OH生成部(114a)から入力された各光信号を合波して、合波した光信号を、光分割装置などの他装置に送信する。

Description

明 細 書
光信号多重化装置および光信号多重化方法
技術分野
[0001] 本発明は、光時分割多重方式によって光信号を多重化する光信号多重化装置に 関するものである。
背景技術
[0002] 近年、光ファイバ通信システムにお 、て、光信号を光のまま時間分割多重する OT DM (Optical Time Division Multiplex)が検討されている。この OTDM多重を行う 光多重化装置は、光信号を多重化する場合に、光信号を出力する送信局を遠隔制 御して光信号の位相を調整し、予め各光信号の位相が調整された光信号を利用して OTDM多重している。
[0003] なお、特許文献 1では、光信号が光ファイバ通信システムを構成する各ノード内を 通過する際に、ノード内の光経路差によって発生する光信号の遅延を、光ファイバの 波長に対する分散依存性を利用し、補償することによって、光ファイバ通信システム に係る光信号の精密同期を実現可能とする技術が公開されている。
[0004] 特許文献 1 :特開平 7— 221708号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、上述した従来技術では、光信号を光のまま OTDM多重を実行する 場合には、送信局を遠隔制御し、光信号の位相を予め調整しておく必要があり、光 信号の位相が予め調整されて 、な 、光信号は OTDM多重することができな 、と 、う 問題があった。
[0006] ネットワークの光化を進めるためには、光信号を電気信号に変換するコストより光の ままで処理するほうが安いことが必要であり、また、光信号を光のままで行う処理が電 気信号と同様に多様であることが求められる。つまり、光を光のままで処理する場合 に、単に光信号の位相が調整されていないことのみによって、光信号を多重化できな V、ようでは、多様な処理が可能な電気信号に置き換わってネットワークの光化が普及 するとは考えにくい。
[0007] 本発明は、上記に鑑みてなされたものであって、位相が予め調整されていない光 信号を取得した場合であっても、この光信号を光のまま多重化することができる光信 号多重化装置を提供することを目的とする。
課題を解決するための手段
[0008] 上述した課題を解決し、目的を達成するために、本発明は、光時分割多重方式に よって光信号を多重化する光信号多重化装置であって、多重化対象となる光信号を 取得した場合に、取得した光信号の波長を変換し、波長に応じた伝播遅延を光信号 に発生させる導波路に波長を変換した光信号を通し、前記光信号の遅延量を調整 する遅延量調整手段と、前記遅延量調整手段によって遅延量が調整された光信号 の伝播遅延時間を変化させず、前記光信号の波形の劣化を補償する波形劣化補償 手段と、を備えたことを特徴とする。
発明の効果
[0009] 本発明にかかる光信号多重化装置は、多重化対象となる光信号を取得した場合に 、取得した光信号の波長を変換し、波長に応じた伝播遅延を光信号に発生させる導 波路に波長を変換した光信号を通し、光信号の遅延量を調整し、光信号にかかる波 形の劣化を補償するので、光信号を送信する送信局を遠距離制御しなくとも、精度よ く OTDM多重することができるのと 、う効果を奏する。
図面の簡単な説明
[0010] [図 1]図 1は、本実施例 1にかかる光多重化装置の構成を示す機能ブロック図である
[図 2]図 2は、光可変遅延部の構成を示す機能ブロック図である。
[図 3]図 3は、分散ファイバ (DCF)と、 FGB分散補償器 (VIPA分散補償器)との違い を説明するための説明図である。
[図 4]図 4は、 FGB分散補償器の説明を行うための説明図である。
[図 5]図 5は、分割補償部の構成を示す機能ブロック図である。
[図 6]図 6は、図 1に示した位相制御部の構成を示す機能ブロック図である。
[図 7]図 7は、光多重化装置が、各送信局から送信された光信号を多重化する様子を 示すタイムチャートである。
[図 8]図 8は、本実施例 2にかかる光多重化装置力 WDM多重を行う WDM多重に 接続される場合のシステムの一例を示す図である。
[図 9]図 9は、本実施例 2にかかる光多重化装置の構成を示す機能ブロック図である
[図 10]図 10は、波長調整部の構成を示す機能ブロック図である。
[図 11]図 11は、波長調整部の構成に力かる変形例を示す図である。
[図 12]図 12は、本実施例 3にかかる光多重化装置の構成を示す機能ブロック図であ る。
[図 13]図 13は、図 12に示した位相制御部の構成を示す機能ブロック図である。
[図 14]図 14は、本実施例 4にかかる光多重化装置の構成を示す機能ブロック図であ る。
[図 15]図 15は、図 14に示した光多重化装置の光信号に力かるタイムチャートである
[図 16]図 16は、オーバーヘッドデータを低速信号で多重化する光多重化装置の構 成を示す機能ブロック図である。
[図 17]図 17は、図 16に示した光多重化装置の光信号に力かるタイムチャートである
[図 18]図 18は、バイト処理部の構成に力かる変形例を示す図(1)である。
[図 19]図 19は、バイト処理部の構成に力かる変形例を示す図(2)である。
[図 20]図 20は、従来の OTDMを説明するための説明図である。
符号の説明
10, 20, 30, 40 送信局
50, 116, 231, 432, 432, 433, 434, 435, 436, 437, 438, 502, 503, 504 , 505, 506, 507, 508, 509 導波路
60 光多重化装置
61, 62, 63, 64, 105, 106, 107, 108, 205, 206, 207, 208, 305, 306, 30 7, 308, 405, 406, 407, 408 カプラ 66 光位相調整制御部
66a, 114a, 214a, 330, 420a FSYN,OH生成部
100, 200, 300, 400 光多重ィ匕装置
101, 102, 103, 104, 201, 202, 203, 204, 301 , 302, 303, 304, 401, 402 , 403, 404 光可変遅延部
109, 110, 111, 112, 209, 210, 211, 212, 313, 314, 315, 316, 332、 414 , 415, 416, 417, 418, 439, 440, 441, 442, 443, 444, 445, 446 光ゲー 卜
113, 213, 317 合波部
114, 214, 318, 420 位相制御部
115, 117, 230 波長シフトデバイ
118 分散補償部
119 波長分離部
120, 121, 122, 123 波形補正部
120a 光サーキユレータ
120b 可変ファイバグレーティングフィ
130 光セレクタ
131, 319a, 319b, 319c, 319d PD
132, 320a, 320b, 320c, 320d ノィァス回路
133, 321a, 321b, 321c, 321d 前置増幅部
134, 322a, 322b, 322c, 322d クロック抽出部
135a, 135b, 135c, 135d, 323a, 323b, 323c , 323d SEL
136a, 136b, 136c, 136d ゲート
137a, 137b, 137c, 137d, 325a, 325b, 325c , 325d 位相弁別器
138a, 138b, 138c, 138d, 326a, 326b, 326c , 326d 分周部
139a, 139b, 139c, 139d, 327a, 327b, 327c , 327d PLL
140 光セレクタ ZCLK自走切替制御部 215 波長調整部
217, 220, 331 LD
216, 219 SOA
218, 221 フィルタ
232 可変分散補償部
309, 310, 311, 312 遅延線
324a, 324b, 324c, 324d 論理ゲート
328a, 328b, 328c, 328d CLK断検出部
329 エラー検出演算回路
409, 410, 411, 412, 500, 600 ノ ィ卜処理部
430 分岐 CPL
447, 510, 608 合波 CPL
501 1 :N光ゲート
601, 602, 603, 604, 605, 606, 607 1 : 2SW
発明を実施するための最良の形態
[0012] 以下に、本発明にかかる光信号多重化装置の実施例を図面に基づいて詳細に説 明する。なお、この実施例によりこの発明が限定されるものではない。
実施例 1
[0013] まず、本発明の特徴について従来技術と比較して説明する。図 20は、従来の OTD M (Optical Time Division Multiplex)を説明するための説明図である。図 20に示 すように、各送信局 10〜40から送信される光信号を多重化する光多重化装置 60は 、力ブラ 61〜64、合波部 65、光位相調整制御部 66を有する。
[0014] 力ブラ 61〜64は、光入力信号を 2つ以上の出力に分岐する装置である。例えば、 力ブラ 61は、送信局 10から入力された光信号を 2つの光信号に分岐し、一方の光信 号を合波部 65に入力し、他方の光信号を光位相調整制御部 66に入力する。合波部 65は、カプラ 61〜64から入力される各光信号および FSYN.OH生成部 66aから入 力される光信号を合波 (時分割多重)し、合波した光信号を光分割装置に送信する 処理部である。ここで、光分割装置は、合波部 65によって合波された光信号を受信 し、受信した光信号を多重分離する装置である。
[0015] 光位相調整制御部 66は、送信局 10〜40から入力される光信号の位相を監視し、 この送信局 10〜40から送信される光信号の位相を遠隔制御する処理部である。ま た、光位相調整制御部 66は、 FSYN'OH生成部 66aを有する。 FSYN'OH生成部 66aは、同期用固定パターン、監視用信号回線データ、オーダワイヤデータなどの データ(以下、オーバーヘッドデータと表記する)を生成し、生成したオーバーヘッド データを、光分割装置に送信する処理部である。なお、オーバーヘッドデータは、通 信警告の転送する場合にも利用される。
[0016] しカゝし、図 20において示した光多重化装置 60は、各送信局 10〜40から送信され る光信号の位相を遠隔制御し、各光信号を OTDM多重する必要があり、予め位相 制御されて!、な 、光信号に対する多重化を実行することができな 、と 、う問題があつ た。
[0017] そこで、本実施例 1にかかる光多重化装置は、各送信局 10〜40から送信される光 信号の位相を遠隔制御することなぐ各送信局 10〜40から送信される光信号 (この 光信号はタイミングがばらばらとなっている)を受信し、受信した各光信号のタイミング を光のまま調整し、 OTDM多重を実行する。
[0018] ここで、本実施例 1にかかる光多重化装置の構成について説明する。図 1は、本実 施例 1にかかる光多重化装置の構成を示す機能ブロック図である。同図に示すように 、本実施例 1にかかる光多重化装置 100は、光可変遅延部 101〜104、力ブラ 105 〜108、光ゲート 109〜112、合波部 113、位相制御部 114、 FSYN.OH生成部 11 4aを有する。ここで、カプラ 105〜108は、図 20において示したカプラ 61〜64と同 様であるため説明を省略する。
[0019] 光可変遅延部 101〜104は、位相制御部 114から入力される制御信号にしたがつ て、各送信局 10〜40から送信される光信号の遅延調整を行う処理部である。なお、 光可変遅延部 101〜104はそれぞれ同一の構成であるため、ここでは、一例として、 光可変遅延部 101を用いて光可変遅延部の構成を説明する。
[0020] 図 2は、光可変遅延部の構成を示す機能ブロック図である。同図に示すように、光 可変遅延部 101は、波長シフトデバイス 115, 117、導波路 116、分散補償部 118を 有する。波長シフトデバイス 115は、光信号の波長を変換 (シフト)する装置である。こ の波長シフトデバイス 115によって波長が変換された光信号が、導波路 116を通過 することによって、変換された波長に応じた伝播遅延が光信号に発生する。波長シフ トデバイス 115は、位相制御部 114から入力される制御信号に応じて、変換する波長 のシフト量を調整し、伝播遅延量を調整する。
[0021] 波長シフトデバイス 117は、波長シフトデバイス 115によって変換された光信号の波 長を特定の波長にそろえる装置である。分散補償部 118は、波長シフトした光信号 が導波路 116を通過したことに起因する分散波形をもとに戻す装置である。
[0022] なお、ここでは、分散補償部 118として、 FBG (ファイバグレーティング)や VIPA (Vi rtually Imaged Phased Array)などの特殊な分散補償手段を利用し、 DCF (Disper sion Compensation Fiber)などの分散補償ファイバは利用しない。図 3は、分散ファ ィバ (DCF)と、 FGB分散補償器 (VIPA分散補償器)との違 、を説明するための説 明図である。
[0023] 図 3に示すように、分散補償ファイバによって、光信号の波形をもとに戻そうとすると 、光信号に含まれる各波長のタイミングがずれてしまう(タイミングのずれる量は、分散 補償ファイバの長さによって変化してしまう)。また、波形の歪みは、遅延調整量に応 じて大きくなるが、これを分散補償ファイバによって分散補償しょうとすると、遅延調整 が相殺されてしまう恐れがある。
[0024] 一方、図 3に示すように、 FGB分散補償器を利用することによって、上述した問題 点、すなわち、各波長のタイミングのずれの問題および遅延調整量相殺の問題を解 消することができる。ここで、 FGB分散補償器の説明を行う。図 4は、 FGB分散補償 器の説明を行うための説明図である。
[0025] 図 4に示すように、 FGB分散補償器は、ファイバグレーティングフィルタを利用する 。このファイバグレーティングフィルタは、特定の周期によって導波路の屈折率を変化 させることにより、特定波長のみを反射させる。すなわち、この周期を段階的に変化さ せることで、波長に対する反射点をずらすことができ、波長分散を補償することができ る。図 4に示す例では、 άΎ/ά λ (psZnm)の分散を補償することになる。ここで、 d λは、 λ ( λ は、反射光 1の波長)とえ ( λ は、反射光 3の波長)との差であり、 dTは 、反射光 1から反射光 3までの時間差である(dLは反射光 1から反射光 3までの距離 、 Vgは波の速度)。なお、 VIPA分散補償器は、 VIPA板や、反射手段として自由曲 面ミラーなどを用いる。
[0026] 続いて、図 2おいて示した分散補償部 118の構成について説明する。図 5は、分割 補償部の構成を示す機能ブロック図である。同図に示すように、分散補償部 118は、 波長分離部 119、波形補正部 120〜123、波長多重部 124を有する。波長分離部 1 19は、光信号に含まれる各信号を波長ごとに分割する処理部であり、分割した各光 信号を波形補正部 120〜 123に入力する。
[0027] 波形補正部 120〜123は、光信号の波形をもとに戻す処理部である。波形補正部 120〜123は、同一の構成であるため、ここでは、波形補正部 120を用いて、波形補 正部の説明を行う。波形補正部 120は、光サーキユレータ 120aおよび可変ファイバ グレーティングフィルタ 120bを有する。
[0028] 光サーキユレータ 120aは、波長分離部 119から取得した光信号を可変ファイバグ レーティングフィルタ 120bに入力し、可変ファイバグレーティングフィルタ 120b力ら 出力される分散補償された光信号を波長多重部 124に入力する装置である。可変フ アイバグレーティングフィルタ 120bは、図 4に示したファイバグレーティングフィルタと 同様であるため説明を省略する。
[0029] なお、光多重化装置 100は、光信号の波形の歪みがあっても、波形の一部のみを 取り出して、 OTDM多重する場合には、図 2において示した分散補償部 118を省略 することができる。
[0030] 図 1の説明に戻ると、光ゲート 109〜112は、位相制御部 114から入力される制御 信号によって、オン'オフを行い、光可変遅延部 101〜104から入力される光信号を 所定のタイミングで切り出す装置である。合波部 113は、光ゲート 109〜112から入 力される光信号および位相制御部 114から入力されるオーバーヘッドデータを合波 し、他装置 (例えば、光分割装置など)に送信する処理部である。
[0031] 位相制御部 114は、光ゲート 109〜112に対する切り替え制御を行うと共に、光可 変遅延部 101〜104を制御して、光信号の遅延量を調整する処理部である。なお、 位相制御部 114は、光ゲート 109〜112を切り替えるタイミングで、光可変遅延部 10 1〜104から出力されたデータの変化点が来ないように、光可変遅延部 101〜104 の光信号にかかる遅延量を調整する。
[0032] 続いて、図 1に示した位相制御部 114の構成について説明する。図 6は、図 1に示 した位相制御部の構成を示す機能ブロック図である。同図に示すように、この位相制 御部 114は、光セレクタ 130、 PD131、 ノィァス回路 132、クロック抽出部 134、 SEL 135a〜135d、ゲー卜 136a〜136d、位相弁別器 137a〜137d、分周部 138a〜13 8d、 PLL139a〜139d、光セレクタ, CLK自走切替制御部 140を有する。
[0033] 光セレクタ 130は、光セレクタ ZCLK自走切替制御部 140から入力される制御信 号にしたがって、各チャネルからの光信号を切り替える装置である。なお、力ブラ 105 〜108から入力される光信号力 各チャネル (CH1〜CH4)力も入力される光信号 にそれぞれ対応する。
[0034] PD (Photo Diode) 131は、光セレクタ 130から入力される光信号を電気信号に変 換する装置である。なお、 PD131によって変換された電気信号は、バイアス回路 13 2によって一定のノィァス電圧を与えられた後、前置増幅部 133に入力される。
[0035] 前置増幅部 133は、 PD131から入力された電気信号を増幅する装置である。この 前置増幅部 133は、増幅した電気信号をクロック抽出部 134に入力する。クロック抽 出部 134は、電気信号のクロックを抽出し、抽出したクロックを SEL135a〜135dに 入力する処理部である。
[0036] SEL (セレクタ) 135a〜135dは、光セレクタ ZCLK自走切替制御部 140からの制 御信号によって入力クロックを切替え、位相弁別器 137a〜137dにクロックを入力す る装置である。なお、 SEL135a〜135dは、同様であるため、ここでは、 SEL135aを 利用して、 SELの説明を行う。また、以下に説明するゲート 136a〜136d、位相弁別 器 137a〜137d、分周部 138a〜138d、 PLL139a〜139dも同様に、ゲート 136a、 位相弁別器 137a、分周部 138a、 PLL139aを用いて説明する。
[0037] SEL135aは、光セレクタ ZCLK自走切替制御部 140からの制御信号によって、ク ロック抽出部 134から入力されるクロックと PLL139aから入力されるクロックとを切り替 えて取得し、取得したクロックを位相弁別器 137aに入力する。
[0038] 具体的に、この SEL135aは、光セレクタ ZCLK自走切替制御部 140によって、光 セレクタ 130力 チャネル 1に切り替えられているタイミングでは、クロック抽出部 134 力らのクロックを取得する。一方、 SEL135aは、光セレクタ Z自走切替制御部 140に よって、チャネル 1以外のチャネル(チャネル 2〜5のいずれ力)に切り替えられている タイミングでは、 PLL139aからのクロックを取得する。
[0039] ゲート 136aは、光セレクタ ZCLK自走切替制御部 140からの制御信号および SE L135aからのクロックを取得し、光ゲート 109のオン ·オフを切り替えるタイミングを各 光ゲート 109に通知する装置である。
[0040] 位相弁別器 137aは、 SEL135a力 入力されるクロックと網クロックとの差を抽出す ると共に、各クロックの差を利用して、網クロックを調整し、調整したクロック信号を光 可変遅延部 101および分周部 138aにそれぞれ入力する装置である。各光可変遅延 部 101〜104は位相弁別器 137a〜137dから入力されるクロックを基にして、光信号 の遅延量を調整する。
[0041] 分周部 138aは、位相弁別器 137aから入力されるクロックの周波数を特定の周波 数に調整し、調整したクロック信号を PLL139aに入力する装置である。 PLL139aは 、分周部 138aに入力された入力信号と、 PLL139aから出力される出力信号とを一 致させる装置である。
[0042] 図 1の説明に戻ると、位相制御部 114は、図 6に示した構成以外に、 FSYN'OH生 成部 114aを有する。この FSYN'OH生成部 114aは、同期用固定パターン、監視用 信号回線データ、オーダワイヤデータなどのオーバーヘッドデータを生成し、生成し たオーバーヘッドデータを合波部 113に入力する処理部である。
[0043] ここで、光多重化装置 100が、各送信局 10〜40から送信された光信号を多重化す る様子について説明する。図 7は、光多重化装置が、各送信局から送信された光信 号を多重化する様子を示すタイムチャートである。同図に示すように、光多重化装置 100に入力された時点で、各チャネル (CH1〜CH4)力 取得した光信号は、タイミ ングがそれぞれ一致していないが、光可変遅延部 101〜104によって、各光信号の タイミングがそろえられ、位相制御部 114が、光ゲート 109〜112を切り替えることに よって、各光信号を光のまま OTDM多重することができる。
[0044] 上述してきたように、本実施例 1にかかる光多重化装置 100は、各送信局 10〜40 力も光信号を光可変遅延部 101〜104が受信し、位相制御部 114が、光可変遅延 部 101〜104を制御して、各光信号の遅延量を調整すると共に、各光ゲート 109〜1 12を特定のタイミングで切り替える。そして、合波部 113が、光ゲート 109〜112およ び FSYN'OH生成部 114aから入力された各光信号を合波して、合波した光信号を 、光分割装置などの他装置に送信するので、各送信局 10〜40から送信される光信 号のタイミングがばらばらであっても、精度よぐ各光信号を光のまま OTDM多重す ることがでさる。
実施例 2
[0045] つぎに、本実施例 2にかかる光多重化装置の特徴について説明する。本実施例 2 にかかる光多重化装置は、 OTDM多重を行った光信号の波長を特定の波長に調整 する。このように、光多重化装置が、 OTDM多重を行った光信号の波長を特定の波 長に調整することによって、 OTDM多重された光信号を利用した WDM (Wave leng th Division Multiplexing)を効率よく実行することができる。
[0046] 図 8は、本実施例 2にかかる光多重化装置力 WDM多重を行う WDM多重に接続 される場合のシステムの一例を示す図である。同図に示す光多重化装置が、 OTD M多重された光信号の波長を特定の波長 (WDM多重装置に指定された波長)に調 整するので、 WDM多重装置は、各光多重化装置から取得した光信号の波長を改め て調整することなく、 WMD多重を実行することができる。
[0047] 続いて、本実施例 2にかかる光多重化装置の構成について説明する。図 9は、本実 施例 2にかかる光多重化装置の構成を示す機能ブロック図である。同図に示すように 、この光多重化装置 200は、光可変遅延部 201〜204、カプラ 205〜208、光ゲート 209〜212、合波部 213、位相制御部 214、波長調整部 215を有する。
[0048] なお、光変換遅延部 201〜204、カプラ 205〜208、光ゲート 209〜212、合波部 213、位相制御部 214は、図 1に示した光可変遅延部 101〜104、カプラ 105〜10 8、光ゲート 109〜112、合波部 113、位相制御部 114と同様であるため説明を省略 する。
[0049] 波長調整部 215は、合波部 213から出力された光信号の波長を特定の波長に調 整する (WDM多重を行うための波長に変換する)処理部である。図 10は、波長調整 部の構成を示す機能ブロック図である。同図に示すように、波長調整部 215は、 SO A216, 219、 LD217, 220、フィルタ 218, 221を有する。
[0050] SOA (半導体光増幅器) 216、 219は、相互位相変調(XPMく Cross Phase Mod ulation>)を利用して、光信号の波長を変換する装置である。この SOA216に合波 部 215からの光信号と、 LD (Laser Diode) 217からのレーザ光を入力し、フィルタ 21 9で一部の光信号を切り出すことで、元の光信号が反転した波形の光信号が生成さ れる。そして、フィルタ 218から出力された光信号と、 LD220からのレーザ光を SOA 219に入力し、 SOA219から出力された光信号にフィルタ 221を通過させ、一部の 光信号を切り出すことによって、元の光信号の波長を特定の波長に変換することがで きる。
[0051] 上述してきたように、本実施例 2にかかる光多重化装置 200は、合波部 213から出 力された光信号を波長調整部 215に入力し、光信号の波長を特定の波長に変換す るので、光多重化装置 200に接続された WDM多重装置は、効率よぐ OTDM多重 された光信号を、 WDM多重することができる。
[0052] なお、波長調整部 215の構成は、図 10に限定されるものではなぐ例えば、図 11 に示す構成でも、波長を調整することができる。図 11は、波長調整部の構成にかか る変形例を示す図である。同図に示すように、この波長調整部は、波長シフトデバイ ス 230、導波路 230、可変分散補償部 232を有する。
[0053] すなわち、この波長調整部は、波長シフトデバイスを用いて、合波部 213から出力 される光信号の波長変換を行い、波長変換した光信号を導波路 231に通過させて、 光信号に伝播遅延を発生させる。そして、伝播遅延の発生した光信号を可変分散補 正部 232に入力し、分散補償量を調整することによって、光信号の波長を特定の波 長に調整することができる。
[0054] また、光信号の波長を特定の波長に調整する場合に、光可変遅延部 201〜204の 構成要素に含まれる波長シフトデバイス(図 2における波長シフトデバイス 117)を利 用して調整しても良い。
実施例 3
[0055] つぎに、本実施例 3にかかる光多重化装置の特徴について説明する。本実施例 3 にかかる光多重化装置は、各チャネル力 の遅延時間を固定的にずらす遅延線を 内蔵する。このように、光多重化装置は、遅延線を内蔵することによって、複雑な遅 延調整を行うことなぐ各光信号を光のまま OTDM多重することができる。
[0056] 続いて、本実施例 3にかかる光多重化装置 300の構成について説明する。図 12は 、本実施例 3にかかる光多重化装置の構成を示す機能ブロック図である。同図に示 すように、この光多重ィ匕装置 300は、光可変遅延咅 301〜304、カプラ 305〜308、 遅延線 309〜312、光ゲート 313〜316、合波部 317、位相制御部 318を有する。
[0057] ここで、光可変遅延部 301〜304、カプラ 305〜308、光ゲート 313〜316、合波 部 317は、図 1に示した光可変遅延部 101〜104、カプラ 105〜108、光ゲート 109 〜 112、合波部 113と同様であるため説明を省略する。
[0058] 遅延線 309〜312は、この遅延線 309〜312を通過する光信号を (遅延線の長さ に応じて)遅延させる導波路である。遅延線 309〜312の遅延線の長さを調整するこ とによって、光可変遅延 301〜304から出力される光信号の遅延量を自由に調整す ることができる。すなわち、光可変遅延部 301〜30が、光信号の位相を一致させ、遅 延線 309〜312の長さを調節することで、各光信号の OTDM多重を実行することが できる。図 12の例では、遅延線 309、 310、 311、 312の順で遅延線が長くなつてい るため、遅延線 309、 310、 311、 312の順で、各光ゲートに光信号が到達する。
[0059] 位相制御部 318は、光ゲート 313〜316に対する切り替え制御を行うと共に、光可 変遅延部 301〜304を制御して、各光可変遅延部 301〜304から出力される光信号 の位相を一致させる処理部である。
[0060] 図 13は、図 12に示した位相制御部の構成を示す機能ブロック図である。同図に示 すよう【こ、この位ネ目帘 U御咅 318ίま、 PD319a〜319d、 ノィァス回路 320a〜320d、 前置増幅部 321a〜321d、クロック抽出部 322a〜322d、 SEL323a〜323d、論理 ゲート 324a〜324d、位相弁別器 325a〜325d、分周 326a〜326d、 PLL327a〜 327d、 CLK断検出部 328a〜328d、エラー検出演算回路 329、 FSYN.OH生成 部 330、 LD331、光ゲート 332を有する。なお、同図に示す各チャネル(CH1〜CH 4)からの光信号は、力ブラ 305〜308から入力される光信号に対応する。
[0061] PD319a〜319d、 ノィァス回路 320a〜320d、前置増幅部 321a〜321d、クロッ ク抽出部 322a〜322d、位相弁別器 325a〜325d、分周 326a〜326d、 PLL327a 〜327dは、図 6に示した PD131、バイアス回路 132、前置増幅部 133、クロック抽出 部 134、位相弁別器 137a〜137d、分周 138a〜138d、 PLL139a〜139dとそれぞ れ同様であるため、説明を省略する。
[0062] CLK断検出部 328a〜328dは、クロック抽出部 322a〜322dによって抽出される クロックをそれぞれ監視し、監視中のクロックが途絶えた場合に、外部力ゝらのクロック( クロック抽出部カゝら抽出されるクロック)と、自走クロック (網クロック)とを切り替免る処 理部である。なお、 CLK断検出部 328a〜328dは同様であるため、ここでは、 CLK 断検出部 328aを利用して、 CLK断検出部の説明を行う。また、以下に説明する SE L323a〜323d、論理ゲート 324a〜324dも同様に、 SEL323a、論理ゲート 324aを 用いて説明する。
[0063] CLK断検出部 328aは、クロック抽出部 322aが抽出するクロック信号、すなわち、 チャネル 1からの光信号に力かるクロックを監視し、このクロックが途絶えた場合に、 S EL323aおよび論理ゲート 324aを制御して、外部クロックによる動作を自走クロック に切り替える処理部である。
[0064] すなわち、クロック抽出部 322aが抽出するクロックが途絶えていない場合には、 SE L323aは、クロック抽出部 322aからのクロックを位相弁別器 325aおよび論理ゲート 3 24aに入力する。一方、クロック抽出部 322が抽出するクロックが途絶えた場合には、 CLK断検出部 328aは、 SEL323aを切り替え、 SEL323aは、 PLL327a力ものクロ ック信号を位相弁別器 325aおよび論理ゲート 324aに入力する。
[0065] 論理ゲート 324aは、クロック抽出部 322aが抽出するクロックが途絶えていない場合 には、外部クロックにしたがって、光ゲート 313の切り替えを行う。一方、クロック抽出 部 322aが抽出するクロックが途絶えた場合には、論理ゲート 214aは、自走クロック によって、光ゲート 313の切り替えを行う。
[0066] エラー検出演算回路 329は、位相が一致した各チャネル 1〜4の電気信号 (エラー 検出演算回路 329に入力される時点では、各チャネル 1〜4の光信号は PD319a〜 319dによって電気信号に変換されている)をモニタし、エラー検出用の情報を演算 する装置である。エラー検出演算回路 329は、演算したエラー検出用の情報を FSY N · OH生成部 330に入力する。
[0067] FSYN'OH生成部 330は、エラー検出演算回路 329からエラー検出用の情報を 取得し、取得した情報を基にしてオーバーヘッドデータを生成する処理部である。 F SYN'OH生成部 330によって生成されたオーバーヘッドデータは、 LD331によつ て光信号に変換され、光ゲート 332を介して、合波部 317に入力される。
[0068] 上述してきたように、本実施例 3にかかる光多重化装置は、各光可変遅延部 301〜 304から出力される光信号の位相を一致させ、遅延線 309〜312の長さを調整して、 各光信号を遅延させ、合波部 317で合成波することによって、 OTDM多重を実行す ることができるので、光可変遅延部 301〜304に対する複雑な制御を行う必要が無く なり、効率よく各光信号を多重化することができる。
[0069] なお、本実施例 3では、位相制御部 318に FSYN'OH生成部 330を組み込んだ 1S これに限定されるものではなぐ別の位置に FSYN'OH生成部 330を設けてもよ い。
実施例 4
[0070] つぎに、本実施例 4にかかる光多重化装置の説明を行う。本実施例にかかる光多 重化装置は、各光信号に対して光のままバイトインターリーブ多重を実行する。図 14 は、本実施例 4にかかる光多重化装置の構成を示す機能ブロック図である。同図に 示すように、この光多重ィ匕装置 400は、光可変遅延咅401〜404、カプラ 405〜408 、 ノ ィ卜処理部 409〜413、光ゲー卜 414〜418、合波部 419、位相制御部 420を有 する。
[0071] ここで、光可変遅延部 401〜404、カプラ 405〜408、光ゲート 414〜418、合波 部 419、位相制御部 420は、図 1に示した光可変遅延部 101〜104、カプラ 105〜1 08、光ゲート 109〜112、合波部 113、位相制御部 114と同様であるため説明を省 略する。バイト処理部 409〜413は、バイトインターリーブ多重を実行する処理部であ る。なお、バイト処理部 409〜413は同様であるため、ここでは、バイト処理部 409を 利用して、ノイト処理部の説明を行う。
[0072] ノイト処理咅409ίま、分岐 CPL430、導波路 431〜438、光ゲート 439〜446、合 波 CPL447を備える。分岐 CPL430は、カプラ 405から入力された光信号を分岐し、 分岐した各光信号を各導波路 431〜438に入力させる装置である。
[0073] 各導波路 431〜438は、光信号を光ゲート 439〜446に伝えるための導波路であ る。なお、各導波路 431〜438は、長さが異なっているため、導波路を通過する各光 信号に遅延差が発生する。図 14に示す例では、導波路 431、 432、 · · ·446の順に 導波路が長くなつているため、導波路 431を通過する光信号が、光ゲート 439に一 番早く到達し、導波路 446を通過する光信号が、光ゲート 446に一番遅く到達する。
[0074] 光ゲート 439〜446は、図示しない制御部からの制御信号によってオン ·オフを行 い、各導波路 431〜438からの光信号を所定のタイミングで切り出す装置である。各 光ゲート 439〜446から出力された光信号は、合波 CPL447に入力される。合波 CP L447は、各光ゲート 439〜446から出力された光信号を合波し、合波した光信号を 光ゲート 414に入力する装置である。
[0075] 図 15は、図 14に示した光多重化装置の光信号に力かるタイムチャートである。光 可変遅延部 401〜404から出力された光信号は、バイト処理部 409〜412によって それぞれバイトインターリーブ多重が実行される。また、 FSYN'OH生成部 420aに よって生成されたオーバーヘッドデータは、バイト処理部 413によってバイトインター リーブ多重が実行される。そして、各バイト処理部 409〜413によって多重化された 各光信号は、合波部 419に入力され、合波される。
[0076] このように、本実施例 4にかかる光多重化装置 400は、バイト処理部 409〜413が、 分岐 CPL、長さが異なる導波路、合波 CPLを利用して、光信号のバイトインターリー ブ多重を光のまま行うので、効率よぐノイトインターリーブ多重が実行可能である。 また、合波部 419によってバイトインターリーブ多重を行つた光信号を光のまま更に O TDM多重することができる。
[0077] なお、実施例 4で示した光多重化装置 400は、 FSYN'OH生成部 420が生成した オーバーヘッドデータをバイト処理部 413によって多重化していたが、図 16に示すよ うに、オーバーヘッドデータを直接、光ゲート 418に入力し、オーバーヘッドデータを 低速信号で多重化しても良い。このように、オーバーヘッドデータを低速信号で多重 化することによって、受信側となる光分割装置によるタイミング抽出が容易となる。
[0078] 図 16は、オーバーヘッドデータを低速信号で多重化する光多重化装置の構成を 示す機能ブロック図である。各部の構成は、図 14に示した光多重化装置 400と同様 であるため、説明を省略する。なお、図 16では、 FSYN.OH生成部 420aから出力さ れたオーバーヘッドデータは、バイト処理部に入力されることなぐ光ゲート 418に入 力される。図 17は、図 16に示した光多重化装置の光信号に力かるタイムチャートで ある。同図に示すように、オーバーヘッドデータは、低速信号で、合波部 419に合波 されている。
[0079] ところで、図 14および図 16において説明したバイト処理部の構成は、図 18または 図 19のように構成しても良い。図 18および図 19は、バイト処理部の構成に力かる変 形例を示す図である。図 18に示すように、このバイト処理部 500は、光信号を N (Nは 2以上)分割する 1 :N光ゲート 501を有し、分割された各光信号が、各導波路 (導波 路は N本存在する) 502〜509に入力されて遅延調整され、遅延調整された各光信 号は、合波 CPL510によって合波される。
[0080] また、図 19に示すように、このバイト処理部 600は、光信号を 2分割する 1 : 2SW(S witch) 601〜607を複数直列にて接続し、この 1: 2SW601〜607を利用して光信号 を分割し、各光信号の遅延調整を行い、合波 CPL608によって各光信号を合波して も良い。
産業上の利用可能性
[0081] 以上のように、本発明にかかる光信号多重化装置は、光信号によって通信を行う光 ネットワークに対して有用であり、特に、タイミングが調整されていない光信号を効率 よく多重化し、受信側に送信する場合に適している。

Claims

請求の範囲
[1] 光時分割多重方式によって光信号を多重化する光信号多重化装置であって、 多重化の対象となる光信号を取得した場合に、取得した光信号の波長を変換し、 波長に応じた伝播遅延を光信号に発生させる導波路に波長を変換した光信号を通 し、当該光信号の遅延量を調整する遅延量調整手段と、
前記遅延量調整手段によって遅延量が調整された各光信号間の伝播遅延時間差 を保ったまま、前記光信号の波形の劣化を補償する波形劣化補償手段と、
を備えたことを特徴とする光信号多重化装置。
[2] 前記波形劣化補償手段によって波形の劣化が補償された光信号を多重化する光 信号多重化手段と、前記光信号多重化手段によって多重化された光信号の波長を 特定の波長に変換する波長変換手段とを更に備えたことを特徴とする請求項 1に記 載の光信号多重化装置。
[3] 前記波長変換手段は、半導体増幅器による相互位相変調を利用して、前記光信 号多重化手段によって多重化された光信号の波長を特定の波長に変換することを特 徴とする請求項 2に記載の光信号多重化装置。
[4] 前記波形劣化補償手段は、ファイバブラックグレーティングフィルタを用いた FBG 分散補償器であることを特徴とする請求項 1に記載の光信号多重化装置。
[5] 前記波形劣化補償手段は、 VIPA板を用いた VIPA補償器であることを特徴とする 請求項 1に記載の光信号多重化装置。
[6] 前記遅延量調整手段は、長さの異なる前記導波路を用いて前記光信号の遅延量 を調整することを特徴とする請求項 1に記載の光信号多重化装置。
[7] 自光信号多重化装置は、波長分割多重方式によって光信号を多重化する WDM 多重装置に接続され、
前記波形劣化補償手段によって波形の劣化が補償された光信号を多重化する光 信号多重化手段を更に備え、前記光信号多重化手段によって多重化された光信号 の波長を、波長分割多重方式による多重化に応じた波長に変換し、変換した光信号 を前記 WDM多重装置に出力する変換出力手段を更に備えたことを特徴とする請求 項 1に記載の光信号多重化装置。
[8] 光時分割多重方式によって光信号を多重化する光信号多重化方法であって、 多重化の対象となる光信号を取得した場合に、取得した光信号の波長を変換し、 波長に応じた伝播遅延を光信号に発生させる導波路に波長を変換した光信号を通 し、前記光信号の遅延量を調整する遅延量調整工程と、
前記遅延量調整工程によって遅延量が調整された各光信号間の伝播遅延時間差 を保ったまま、前記光信号の波形の劣化を補償する波形劣化補償工程と、 を含んだことを特徴とする光信号多重化方法。
[9] 前記波形劣化補償工程によって波形の劣化が補償された光信号を多重化する光 信号多重化工程と、前記光信号多重化工程によって多重化された光信号の波長を 特定の波長に変換する波長変換工程とを更に含んだことを特徴とする請求項 8に記 載の光信号多重化方法。
[10] 前記波形劣化補償工程によって波形の劣化が補償された光信号を多重化する光 信号多重化工程と、前記光信号多重化工程によって多重化された光信号の波長を 、波長分割多重方式による多重化に応じた波長に変換し、変換した光信号を、波長 分割多重方式による光信号の多重化を実行する WDM多重装置に出力する出力ェ 程を更に備えたことを特徴とする請求項 8に記載の光信号多重化方法。
PCT/JP2005/017781 2005-09-27 2005-09-27 光信号多重化装置および光信号多重化方法 WO2007036989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2005/017781 WO2007036989A1 (ja) 2005-09-27 2005-09-27 光信号多重化装置および光信号多重化方法
JP2007537489A JP4696122B2 (ja) 2005-09-27 2005-09-27 光信号多重化装置
GB0805129A GB2446528B (en) 2005-09-27 2005-09-27 Optical signal multiplexing device and optical signal multiplexing method
US12/078,059 US7623791B2 (en) 2005-09-27 2008-03-26 Optical signal multiplexing device and optical signal multiplexing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017781 WO2007036989A1 (ja) 2005-09-27 2005-09-27 光信号多重化装置および光信号多重化方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/078,059 Continuation US7623791B2 (en) 2005-09-27 2008-03-26 Optical signal multiplexing device and optical signal multiplexing method

Publications (1)

Publication Number Publication Date
WO2007036989A1 true WO2007036989A1 (ja) 2007-04-05

Family

ID=37899429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017781 WO2007036989A1 (ja) 2005-09-27 2005-09-27 光信号多重化装置および光信号多重化方法

Country Status (4)

Country Link
US (1) US7623791B2 (ja)
JP (1) JP4696122B2 (ja)
GB (1) GB2446528B (ja)
WO (1) WO2007036989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220360339A1 (en) * 2021-05-04 2022-11-10 Electronics And Telecommunications Research Institute Optical transmitter based on optical time division multiplexing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444272B2 (en) * 2010-01-25 2013-05-21 Corning Incorporated Multi-projector system using multiplexed illumination
CN110445568B (zh) * 2016-12-23 2021-04-20 华为技术有限公司 一种时钟传输方法及相关设备
US20190089471A1 (en) * 2017-09-21 2019-03-21 Qualcomm Incorporated System and method for mmwave massive array self-testing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208894A (ja) * 2001-01-11 2002-07-26 Oyokoden Lab Co Ltd 光通信方法およびその方法を用いた光通信装置
JP2003309521A (ja) * 2002-04-17 2003-10-31 Fujitsu Ltd Vipa波長分散補償器
JP2004356742A (ja) * 2003-05-27 2004-12-16 Hitachi Ltd 信号波形劣化補償器
JP2005017385A (ja) * 2003-06-23 2005-01-20 Fujitsu Ltd 分散補償器
JP2005079833A (ja) * 2003-08-29 2005-03-24 National Institute Of Information & Communication Technology 分散補償制御方法及び装置並びに光伝送方法及びシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1272079B (it) * 1993-12-16 1997-06-11 Cselt Centro Studi Lab Telecom Procedimento e dispositivo per la sincronizzazione fine di celle atm in nodi atm ottici
JPH09181380A (ja) 1995-12-25 1997-07-11 Tera Tec:Kk 光三角波発生器
US6587261B1 (en) * 1999-05-24 2003-07-01 Corvis Corporation Optical transmission systems including optical amplifiers and methods of use therein
JP2001274772A (ja) * 2000-03-24 2001-10-05 Kddi Corp Tdm光多重装置、tdm光分離装置、wdm/tdm変換装置及びtdm/wdm変換装置
US7206509B2 (en) * 2002-11-29 2007-04-17 Lucent Technologies Inc. Method and apparatus for temporally shifting one or more packets using wavelength selective delays
JP4444689B2 (ja) * 2004-02-26 2010-03-31 富士通株式会社 光通信用光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208894A (ja) * 2001-01-11 2002-07-26 Oyokoden Lab Co Ltd 光通信方法およびその方法を用いた光通信装置
JP2003309521A (ja) * 2002-04-17 2003-10-31 Fujitsu Ltd Vipa波長分散補償器
JP2004356742A (ja) * 2003-05-27 2004-12-16 Hitachi Ltd 信号波形劣化補償器
JP2005017385A (ja) * 2003-06-23 2005-01-20 Fujitsu Ltd 分散補償器
JP2005079833A (ja) * 2003-08-29 2005-03-24 National Institute Of Information & Communication Technology 分散補償制御方法及び装置並びに光伝送方法及びシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220360339A1 (en) * 2021-05-04 2022-11-10 Electronics And Telecommunications Research Institute Optical transmitter based on optical time division multiplexing
US11606149B2 (en) * 2021-05-04 2023-03-14 Electronics And Telecommunications Research Institute Optical transmitter based on optical time division multiplexing

Also Published As

Publication number Publication date
GB0805129D0 (en) 2008-04-30
GB2446528A (en) 2008-08-13
US7623791B2 (en) 2009-11-24
JPWO2007036989A1 (ja) 2009-04-02
JP4696122B2 (ja) 2011-06-08
US20080181610A1 (en) 2008-07-31
GB2446528B (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US7945165B2 (en) Optical signal synchronizer
US20030020985A1 (en) Receiver for high-speed optical signals
US6396607B1 (en) Multi-wavelength all-optical regenerators (MARS)
US8073333B2 (en) Multiplex delay unit
US7853151B2 (en) Optical communication system, method, and optical transmitting station
WO2007036989A1 (ja) 光信号多重化装置および光信号多重化方法
JP3789784B2 (ja) 光直交周波数分割多重伝送方式及び伝送方法
US7068936B2 (en) Methods and apparatus for optical switching
JP4968073B2 (ja) 光信号分離装置および光信号分離方法
GB2362281A (en) Converting optical time division multiplexed signals to wavelength division multiplexed signals
JP2005260370A (ja) 光信号劣化補償器
US8260142B2 (en) Multi-channel optical arrayed time buffer
JP2019200379A (ja) 波長変換装置、伝送装置、及び伝送システム
JP2018180406A (ja) 波長変換装置、制御光生成装置、波長変換方法、および制御光生成方法
EP1571765B1 (en) Optical synchronizer
JP5398251B2 (ja) 波長分散測定装置及び波長分散測定方法
US6661549B1 (en) Method of and a device for polarization-independent optical demultiplexing
GB2595862A (en) Optical apparatus and associated methods
GB2595861A (en) Optical apparatus and associated methods
GB2595863A (en) Optical apparatus and associated methods
WO2021250393A1 (en) Optical apparatus for and methods of generating optical signals to increase the amount of data in an optical network
JP2003051809A (ja) 波長多重光伝送方式及び伝送方法
JP2000201110A (ja) 光伝送装置
JP5079659B2 (ja) 光アクセスシステム
JPH05235865A (ja) 光ディジタル信号伝送方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537489

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 0805129

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20050927

WWE Wipo information: entry into national phase

Ref document number: 0805129.4

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05787708

Country of ref document: EP

Kind code of ref document: A1