WO2007034741A1 - 抗ウイルス剤、及びウイルス感染細胞の処理方法 - Google Patents

抗ウイルス剤、及びウイルス感染細胞の処理方法 Download PDF

Info

Publication number
WO2007034741A1
WO2007034741A1 PCT/JP2006/318342 JP2006318342W WO2007034741A1 WO 2007034741 A1 WO2007034741 A1 WO 2007034741A1 JP 2006318342 W JP2006318342 W JP 2006318342W WO 2007034741 A1 WO2007034741 A1 WO 2007034741A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
antibody
infected
cell
cells
Prior art date
Application number
PCT/JP2006/318342
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Yoshinaka
Naoki Yamamoto
Satoshi Ozawa
Jun-Ichiro Arai
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007034741A1 publication Critical patent/WO2007034741A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • Antiviral agent and method for treating virus-infected cells are provided.
  • the present invention relates to an antiviral agent for removing or inactivating virus in infected cells and a method for treating virus-infected cells.
  • Viruses have DNA or RNA as a gene, enter into a host cell, and propagate using a metabolic system in the host cell.
  • the processes common to all viral infections are the adsorption and entry of viruses into host cells, the synthesis of viral components, the assembly of viral components (formation of viral particles), and the release of the virus out of the cell.
  • anti-viral agents have been used to adsorb, invade, dehull (especially, reverse-copy and incorporate in retro 'viruses), nucleic acid transcription, replication, protein synthesis and repair, particle formation, and release of these viruses. ! /, Based on inhibiting any step of the Tatsuta virus growth cycle.
  • Patent Document 1 describes a harmful substance removing material having a structure in which an antibody is carried on a carrier.
  • An air purification filter and a mask provided with a hazardous substance removing material having a structure in which an antibody is supported on a carrier are disclosed.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-313755
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an antiviral agent for removing or inactivating a virus in an infected cell and a method for treating a virus-infected cell.
  • an antiviral agent having an antibody specific to a target virus is provided.
  • Antiviral agents have a means of maintaining the concentration of antibodies around the infected cells of the virus.
  • the concentration of the antibody specific to the infected virus is maintained around the infected cell infected with the virus, so that the antibody binds to the periphery of the virus and adheres to the virus cell. Can be removed, and the virus in the infected cells can be removed or inactivated.
  • the antiviral agent contains an antibody, an adhesive patch, a bandage, a gauze, a non-woven fabric, a gel-like notch, an ointment, a lotion, a nasal drop, a spray, an inhalant of liquid droplets, a driver powder inhalation
  • One of the group powers selected as an agent, an internal medicine having a structure that is difficult to digest, a suppository, an enema, an eye drop, and an eye ointment force.
  • the antibody is sprayed on or supported on the patch. And, when these come into contact with the affected area, the antibody concentration can be maintained around the infected cells.
  • the antibodies are contained in the gel-like antiviral agent having a high viscosity, so that the antibodies remain in the areas where these antiviral agents are applied. It is possible to maintain the antibody concentration around the infected cells.
  • the antibody stays in the nasal cavity, pharyngeal mucosa, etc.
  • the antibody when the antibody is pre-administered to the nasal cavity, pharyngeal mucosa, etc. It is possible to maintain the antibody concentration around the infected cells.
  • the intestinal cells When the virus is infected, the antiviral agent is not digested in the stomach and the antibody can reach the intestinal mucosa and localize in the intestinal mucosa. As a result, the antibody concentration can be maintained around the infected cells. About a suppository and an enema, when these are hold
  • eye drops it is possible to maintain the concentration of antibodies around infected cells by instilling eye drops containing a high concentration of antibodies.
  • the antibody is contained in the ointment having a high viscosity, so that the antibody stays in the area where the antiviral agent is applied, and the antibody concentration can be maintained around the infected cells. .
  • the virus is a human immunodeficiency virus (HIV), papilloma virus, infectious molluscumoma virus, wart virus, herpes virus, influenza virus, parine fluenza virus, adenovirus, rhinovirus. , Coronavirus, norwalk virus, rotavirus, echovirus, and enterovirus.
  • HIV human immunodeficiency virus
  • the antibody is a chicken egg antibody. In this case, since the egg egg antibody is easily available, it is possible to prepare a large amount of the antibody at a low cost.
  • a method for treating virus-infected cells comprises the step of removing or inactivating the virus of the infected cell by maintaining the concentration of the virus-specific antibody around the virus-infected cell.
  • the antibody binds to the periphery of the virus to prevent the virus from adhering to the cells, and the virus in the infected cells can be removed or inactivated.
  • the virus is a human immunodeficiency virus (HIV), papilloma virus, infectious molluscum virus, wart virus, herpes virus, influenza virus, parine fluenza virus, adenovirus, rhinovirus. , Coronavirus, Norwalk Wines, Mouth Tawinores, Echo Winores, Entero Winores, Norino Inoles, Kohenolepes Virus, Iridovirus, Rhabdovirus Group, and White Spot Virus is there.
  • the antibody is a chicken egg antibody. In this case, since the egg egg antibody is easily available, it is possible to prepare a large amount of the antibody at a low cost.
  • FIG. 1 is a graph showing the titer of purified anti-SARS-SARS-CoV spike protein IgY antibody. BEST MODE FOR CARRYING OUT THE INVENTION
  • an antiviral agent for removing or inactivating virus in infected cells and a method for treating virus-infected cells are described.
  • SARS coronavirus SARS coronavirus
  • SARS-CoV SARS coronavirus coronavirus
  • the life cycle of viruses will be described as a premise of the present invention.
  • the processes common to all virus infections are the adsorption and entry of viruses into the host cells, the synthesis of virus components, the assembly of virus components (formation of virus particles), and the extracellular movement of viruses. Release.
  • SARS coronavirus is a virus having a single-stranded positive RNA as a gene.
  • the basic structure of SARS coronavirus consists of a shell (core) wrapped in a protein (N, nucleocapsid) that stabilizes and protects gene RNA, and a lipid membrane (envelope) that protects the core structure.
  • N nucleocapsid
  • lipid membrane envelope
  • S (Spike) lipid membrane protein embedded in the envelope.
  • This membrane protein is necessary to introduce the core viral gene into the cell because it binds to the receptor and promotes the fusion reaction between the cell membrane and the viral membrane upon adsorption of the virus to the cell.
  • a coronavirus binds to a cell having a receptor for spike protein (S protein) (a cell having sensitivity).
  • SARS coronavirus has proven that one of the bacterial receptors is the receptor for angiotensin 2. Binding results in a change in the conformation of the spike protein, and the spike protein is sensitive to certain cell-derived proteases. Then, a specific site of the snook protein is cleaved. By exposing the terminal having affinity for the cell membrane by this cleavage, the virus particles are attracted to the cell to a distance where the virus membrane and the cell membrane can be fused. And it is thought that the virus core and the cell membrane fuse and the virus core enters the cell.
  • S protein spike protein
  • RNA gene in the core of the virus that has entered it immediately starts protein synthesis on RER (rough ER) without being destroyed. This step is characteristic of viruses with positive mRNA. Influenza viruses and the like have negative mRNA as a gene, and the above steps are started after a positive mRNA is first created using an enzyme in a virus particle.
  • the first protein produced is a number of enzymes required for viral RNA synthesis and a protease that shapes these enzymes into active forms. Using these enzymes, positive to negative RNA is synthesized. A large amount of positive RNA (genomic RNA) having a full length that can be incorporated into virus particles and mRMA with various lengths necessary for the synthesis of viral structural proteins, using negative RNA as a saddle type . Next, the assembly (shell) of genomic RNA and N protein recognizes the viral membrane protein incorporated in the RER membrane, and buoys and forms viral particles inside the intracellular RER. The RER with virus particles fuses with the Golgi apparatus, which is an intracellular excretion device, moves to the cell surface, fuses with the cell membrane again, and releases the virus particles inside the cell.
  • Golgi apparatus which is an intracellular excretion device
  • the inventors examined the growth of virus in cultured cells sensitive to SARS coronavirus and the state of survival of infected cells.
  • the most typical mode of acute infection is the Vero cell, and the virus develops acute infection within 1 to 3 days after infection, and rapid virus growth is observed. Observed. From day 4 onward, virus production decreased (maximum 1Z100), but the cells began to grow again, resulting in persistently infected cells that could be passaged while producing virus.
  • a cultured cell line that is completely killed by infection with SARS coronavirus has been found.
  • anti-SARS coronavirus egg antibody anti-SARS coronavirus' spike protein IgY antibody
  • IgY antibody anti-SARS coronavirus' spike protein IgY antibody
  • the antibody in the culture medium binds to extracellular virus particles and prevents the virus from infecting the cells. From this fact, it is considered that reinfection of the virus is prevented by binding to the virus particles released from the antibody cells added in the culture solution.
  • the inventors maintain a high concentration of antibodies specific to the infected virus around the infected cell as a method of removing or inactivating the virus in the infected cell. I thought it was effective. Infected cell force This method is not limited to persistently infected cells because the antibody binds to the released virus particles to prevent the virus from re-infecting the cells. [0028] From such a viewpoint, studies were made on available antibodies, application examples, and the like. This will be explained below!
  • an antibody that binds to a virus particle of the target virus is prepared.
  • an antibody against a component exposed on the outer surface of the virus particle particularly an antibody against a protein necessary for binding to a host cell when the virus infects a cell, is particularly effective.
  • the inventors conducted experiments using antibodies against spike proteins.
  • this spike protein is a membrane protein embedded in the envelope. Spike protein is necessary for introducing the core viral gene into the cell because it binds to the receptor upon the adsorption of the virus to the cell and promotes the fusion reaction between the cell membrane and the virus membrane.
  • Examples of antibody production methods include the following four methods.
  • the method of obtaining an antibody from a chicken egg is particularly suitable when a large amount of antibody is used as in the present invention, since the antibody can be easily obtained in a large amount.
  • the chicken egg antibody may be purified to remove allergic components such as albumin as a countermeasure against egg allergy.
  • antibodies can be obtained easily and in large quantities, as with chicken egg antibodies.
  • the present invention is applicable to antiviral agents that remove or inactivate viruses when the antibody is maintained at a sufficiently high concentration. This can be achieved by having an antibody specific to the virus targeted for antiviral activity and a means of maintaining this antibody at a sufficiently high concentration around the infected cells.
  • “sufficiently high concentration” means a concentration necessary to prevent reinfection of the virus.
  • the antibody binds to the periphery of the virus, thereby adhering the virus to the cells. It is a high concentration that interferes and does not infect cells with extracellular viruses.
  • the application method includes the following forms, but the application method is not limited to this.
  • an antiviral agent having the form of a patch, ointment, or lotion, it becomes possible to maintain the antibody at a sufficiently high concentration in the affected area.
  • an antiviral agent in a state where an antibody is sprayed thereon or in a state where an antibody is supported thereon is provided.
  • Examples of the method of supporting the antibody on a carrier include the method disclosed in JP-A-2004-313755.
  • patches, bandages, gauze, and non-woven fabrics containing the antibody come into contact with the affected area, it becomes possible to maintain the antibody at a sufficiently high concentration around the affected area, that is, the infected cells.
  • anti-viral agents in the form of high-viscosity gel-like patches, ointments, or lotions contain antibodies, so that these anti-viral agents are applied. The antibody stays in the area where the antibody is Can be maintained.
  • an antiviral agent containing an antibody in the form of nasal drops, sprays, or inhalants is provided to the affected area. It becomes possible to maintain the antibody at a sufficiently high concentration.
  • the antibody is pre-administered to the nasal cavity and pharyngeal mucosa, for example, so that the antibody stays in the nasal cavity and pharyngeal mucosa.
  • the antibody is maintained at a sufficiently high concentration around the cells of the pharyngeal mucosa.
  • the antibody when the nasal cavity and pharyngeal mucosa cells are infected with the virus, the antibody is maintained at a high concentration around the infected cells. If the antibody cannot be maintained at a sufficiently high concentration over a long period of time by a single administration, an antiviral agent containing such an antibody is appropriately added. Further, in order to maintain the virus and unreacted antibody at a sufficiently high concentration around the infected cells, an antiviral agent containing such an antibody is appropriately administered.
  • an antiviral agent containing such an antibody and having an indigestible composition, a suppository, or an enema is provided.
  • an antiviral agent having a form of a capsule in which an antibody is encapsulated for example, is provided as an inner moon ⁇ agent that is difficult to digest and has a constitution.
  • the capsule is not digested in the stomach, and the antibody can be maintained at a sufficiently high concentration around the infected cells.
  • an antiviral agent can be administered as an internal preparation.
  • an antiviral agent containing an antibody as a suppository or enemas is provided, and the suppositories or enemas are retained in the affected area, so that the antibodies are maintained at a sufficiently high concentration around the infected cells. If the antibody is not maintained at a sufficiently high concentration over a long period of time after a single administration, an antiviral agent containing such an antibody is appropriately added. In addition, in order to maintain the virus and unreacted antibody at a high concentration around the infected cells, an antiviral agent containing such an antibody is appropriately administered.
  • an eye drop containing such an antibody or an antiviral agent in the form of an eye ointment is provided to maintain the antibody at a sufficiently high concentration in the affected area.
  • an antiviral agent having a form of an eye drop containing a high concentration of antibody is instilled, so that the antibody is maintained at a sufficiently high concentration around the affected area, that is, the infected cell.
  • the antibody is contained in an antiviral agent having a form of eye ointment having a high viscosity, so that the antibody remains in the portion where these antiviral agents are applied, and the affected part, that is, an infected cell.
  • Examples of the types of viruses targeted and their main diseases include the following.
  • the types of target viruses and their main disease names are described as “target virus types and main disease names>”.
  • viruses to be treated and the main disease names include, for example, human immunodeficiency virus Kuids>, papillomavirus papilloma, benign skin tumor>, infectious molluscumoma virus worms!
  • Warp> wart virus, warp, herpes virus, lupus eczema, chickenpox, idiopathic eczema>, influenza virus ⁇ influenza>, parainfluenza virus, upper respiratory tract infection , Pneumonia>, adenovirus respiratory infection, pharyngeal conjunctivitis, epidemic keratitis, intestinal infection>, rhinovirus ⁇ cold syndrome>, coronavirus ⁇ cold syndrome, severe acute respiratory syndrome (SARS)>, Norwalk virus acute gastroenteritis>, rotavirus winter infant diarrhea>, echovirus gastrointestinal infection>, and enterovirus acute conjunctivitis> That.
  • the target virus type and its disease are not limited to these.
  • the method for removing or inactivating the virus of infected cells using the above-mentioned antibody is to remove or remove the virus of infected cells from individuals infected with the virus in the culture of oysters, shrimp, moths, etc. It can be applied to inertness.
  • This method is performed by immersing the infected individual in a solution containing a high concentration of antibody.
  • the concentration of the antibody is When the body binds around the virus, it prevents the virus from adhering to the cells, and the extracellular virus does not infect the cells! That is, a sufficiently high concentration of antibody is necessary to prevent virus reinfection.
  • the method is specifically performed as follows. That is, when aquatic organisms are infected with a virus, the infected individual is isolated and immersed in the antibody solution.
  • This antibody solution needs to be a solution containing a high concentration of antibody that prevents the virus from adhering to the cells by binding the antibody to the surroundings of the virus and infecting the cells with extracellular virus. It is.
  • an individual infected with a virus is immersed in such an antibody solution, the cell force of the virus-infected individual is released. The released virus particle force. become unable.
  • the individual is returned to the original environment (aquaculture container, sardine, etc.).
  • an individual infected with a virus is cultivated, and a sufficiently high concentration of antibody is mixed in a container for aquaculture, V-scrub, etc.
  • the antibody is maintained at a sufficiently high concentration in the aquaculture container, soot, etc. It can also be removed or inactivated.
  • target cultured organisms and viruses examples include the following.
  • target aquaculture organisms and viruses are described as “Target aquaculture organisms: Viruses”.
  • the target aquaculture organisms and viruses include oysters: norovirus, moth: koi herpes virus, red sea bream: iridovirus, flounder: rhabdovirus group, and shrimp: white spot virus. .
  • the target aquaculture organisms and viruses are not limited to these.
  • SARS-CoV SARS coronavirus
  • SARS-CoV SARS coronavirus
  • SARS-CoV SARS coronavirus
  • the anti-SARS coronavirus activity of the test substance was measured by the following method.
  • FFM-1 strain distributed by Dr. HW. Doerr. Frankfrut University of Medicine, Germ any
  • Vero cells purchased from Dainippon Pharmaceutical Co., Ltd. were used as cultured cells.
  • Dulbecco's minimum essential (DMEM) supplemented with 10% urine fetal serum was used. Cultivate Vero cells at 37 ° C in the presence of 5% CO.
  • the virus titer was measured by the following plaque formation method.
  • the collected culture supernatant was treated with PBA (—) (Mg 2+ , Ca 2+ free 0.05M phosphate buffer, 0.15M NaCl, pH 7.0, virus containing 1% ushi serum albumin.
  • PBA
  • 0.2 ml each was inoculated into each well (6 well plate, cultured cells in which 90% monolayer was formed).
  • the cells were cultured for 4 days in DMEM (containing 5% urinary fetal serum) with 1.0% methylcellulose. After incubation, methylcellulose was removed and the cells were stained with 2.5% crystal violet (30% ethyl alcohol, 1% ammonium oxalate).
  • the cells were washed 3 times with PBS (-), Z-decolored, and the amount of virus in lml was calculated as "PFU (Plaque Forming Unit) / ml, from the average number of plaques (3 wells). (Tuker, PC et al., J. Virol. 71: 6106, 1997) 0
  • SARS coronavirus was acutely infected in Vero cells by 1 to 3 days after infection, and rapid virus growth was observed. On the 4th day, maximum cell death was observed. From day 4 onward, virus production decreased (maximum value of 1Z100). Power cells started to proliferate again, and became persistently infected cells that could be passaged while producing virus (Yoshiyuki Yoshinaka, Nao Yamamoto ⁇ : Edited by Shigeharu Ueda, Antibacterial 'Anti-fungal latest technology and DDS in practice, NTS, ppl4-25, 2 005).
  • Antigen for immunization “SARS CoV Spike ⁇ S” ⁇ ”manufactured by Protein Sciences was used as an immunization antigen.
  • the virus solution 400PFUZ200 1 whose titer was measured in advance was placed in the antibody solution 200 1 diluted 10-fold in steps with a virus diluent. Then, after reacting at room temperature (22 ° C) for 1 hour, it was reacted at 4 ° C for 16 hours, and the amount of virus was measured by the plaque method. Then, the reciprocal of the dilution of the antibody that reduced the number of plaques by 50% compared to the control without antibody was taken as the neutralizing antibody titer.
  • SARS coronavirus persistent infection Vero cells treated with anti-SARS coronavirus spike protein IgY antibody (anti-SARS-CoV spike IgY antibody)
  • SARS coronavirus persistently infected by treatment with IgY antibody specific for viral spike protein Vero cell virus removal or inactivation Continued to be cultured in the presence of (renewed medium containing new antibody every 4 days, subcultured every 10 days), and virus titer measurement, intracellular viral protein, and detection of viral RNA were performed as appropriate until 35 days. .
  • the titer of the virus was measured by the above plaque method for the culture supernatant.
  • For intracellular protein detection persistently infected Vero cells (2.5 ml medium, 106 cells per well) cultured on 6 well plates were treated with 0.3 ml SDS-polyacrylamide gel electrophoresis (S (DS-PAGE) was collected in a sample buffer, and all proteins were separated by SDS-PAGE.
  • S SDS-polyacrylamide gel electrophoresis
  • FIG. 1 shows the titer of purified anti-SARS-SARS-CoV spike protein IgY antibody.
  • Purified SARS-CoV spike protein IgY (lOmgZml) After preparing 200 ⁇ 1 dilution series, prepare 400PFUZ200 1 virus solution, react at 22 ° C for 1 hour, and then react at 4 ° C for 16 hours I let you. Then, the active virus was measured for the reaction solution 2001 by the plaque method, and the neutralizing antibody titer was determined from the dilution of the antibody that inactivates 50% virus. The titer of this antibody was 20,000.
  • SARS coronavirus persistently infected Vero cells have the ability to remove or inactivate the virus. Measurement of virus titer, virus nucleocapsid in cells It was shown by detection of protein and detection of viral RNA, respectively.
  • the antiviral agent and the method for treating virus-infected cells according to the present invention can be used not only in the medical field but also in a wide range of fields, for example, when cells are infected with cells in aquaculture.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 対象とするウイルスに特異的な抗体を有する抗ウイルス剤が提供される。この抗ウイルス剤は、ウイルスの感染細胞の周囲における抗体の濃度を維持する手段を有している。また、ウイルス感染細胞の処理方法が提供される。この方法は、ウイルスの感染細胞の周囲において、前記ウイルスに特異的な抗体の濃度を維持することにより、前記感染細胞のウイルスを除去ないしは不活性化する工程を備えている。抗ウイルス剤、及びウイルス感染細胞の処理方法では、抗体がウイルスの周囲に結合してウイルスの細胞への接着を妨害し、感染細胞のウイルスの除去ないしは不活性化が行われる。

Description

明 細 書
抗ウィルス剤、及びウィルス感染細胞の処理方法
技術分野
[0001] 本発明は、感染細胞のウィルスを除去ないしは不活性ィ匕するための抗ウィルス剤 及びウィルス感染細胞の処理方法に関する。
背景技術
[0002] ウィルスは DNAまたは RNAを遺伝子として有しており、宿主細胞内に侵入して該 宿主細胞内の代謝系を使って増殖する。すべてのウィルス感染に共通な過程は、ゥ ィルスの宿主細胞への吸着、進入、ウィルス構成成分の合成、ウィルス構成成分の 集合 (ウィルス粒子の形成)、及びウィルスの細胞外への放出である。従来、抗ウィル ス剤は、これらのウィルスの細胞への吸着、侵入、脱殻 (特にレトロ'ウィルスでは逆転 写、組み込み)、核酸の転写、複製、タンパク質合成及び修復、粒子形成、並びに放 出と!/、つたウィルスの増殖サイクルの 、ずれかのステップを阻害することを基本として いる。
[0003] 一方、ウィルス感染の予防は、細胞にウィルスが感染する前にウィルスを除去ない しは不活性ィ匕することによって行われ得る。このため、ウィルスを除去する技術が多 数開発されている (例えば、特許文献 1参照。 ) oこの特許文献 1には、担体に抗体が 担持されて!ゝる構成を有する有害物質除去材からなる空気浄化フィルタ、及び担体 に抗体が担持されている構成を有する有害物質除去材を備えたマスクが公開されて いる。
[0004] しかし、下記特許文献 1においては、細胞がウィルスに感染しないように例えば空 気中のウィルスを除去することにつ!/、ては示されて!/、るが、ウィルスに感染した細胞 のウィルスを除去ないしは不活性ィ匕することについては示されていない。一方、ウイ ルスは巧妙に宿主細胞の RNA合成及びタンパク合成のしくみを利用して増殖するこ とから、現在知られて!/ヽる RNA合成及びタンパク合成の阻害剤を用いてウィルス増 殖を阻害することは、宿主細胞の死をも誘導する。細胞内にウィルスを有する状態で 分裂増殖して 、る細胞は持続感染細胞と称される。従来の抗ウィルス剤が用いられ る場合、持続感染細胞からウィルスを消失させるためには高価な医薬品が高濃度で 用いられなければならず、また、ウィルスを完全に消失させることは困難であった。 特許文献 1 :特開 2004— 313755号公報
発明の開示
[0005] 本発明は、上記課題を鑑みてなされ、感染細胞のウィルスを除去な 、しは不活性 化するための抗ウィルス剤及びウィルス感染細胞の処理方法を提供することを目的 とする。
[0006] 本発明の一態様では、対象とするウィルスに特異的な抗体を有する抗ウィルス剤が 提供される。抗ウィルス剤は、ウィルスの感染細胞の周囲における抗体の濃度を維持 する手段を有している。
[0007] 上記構成により、ウィルスが感染した感染細胞の周囲において、感染したウィルス に特異的な抗体の濃度が維持されることにより、抗体がウィルスの周囲に結合してゥ ィルスの細胞への接着を妨害することができ、感染細胞のウィルスを除去な 、しは不 活性ィ匕することができる。
[0008] 好ましくは、抗ウィルス剤は、抗体を含有する、貼付剤、絆創膏、ガーゼ、不織布、 ゲル状のノツチ、軟膏、ローション、点鼻剤、スプレー、液滴の吸入剤、ドライバウダ 一の吸入剤、消化され難い構成を有する内服剤、座剤、浣腸剤、点眼剤、及び眼軟 膏力 なる群力 選択される一つである。
[0009] この場合、抗体を含有する貼付剤、絆創膏、ガーゼ、及び不織布につ!ヽては、これ らに抗体が散布されたり、これらに抗体が担持されたりする。そして、これらが患部に 接触することにより、感染細胞の周囲において抗体の濃度を維持することが可能とな る。抗体を含有するゲル状のパッチ、軟膏、及びローションについては、高い粘度を 有するゲル状の抗ウィルス剤に抗体が含有されることにより、これらの抗ウィルス剤が 塗布された部分に抗体が留まり、感染細胞の周囲において抗体の濃度を維持するこ とが可能となる。点鼻剤、スプレー、液滴の吸入剤、及びドライパウダーの吸入剤に ついては、抗体が鼻腔、咽頭粘膜等に予め投与されることにより、鼻腔、咽頭粘膜等 に抗体が留まり、鼻腔、咽頭粘膜等の感染細胞の周囲において抗体の濃度を維持 することが可能となる。消化され難い構成を有する内月 β剤については、腸の細胞がゥ ィルスに感染している場合に、抗ウィルス剤が胃で消化されず、抗体が腸の粘膜に 達して腸の粘膜に局在することができる。その結果、感染細胞の周囲において抗体 の濃度を維持することが可能となる。座剤、及び浣腸剤については、これらが患部に 保持されることで、感染細胞の周囲において抗体の濃度を維持することが可能となる 。点眼剤については、高濃度の抗体を含む点眼剤が点眼されることで、感染細胞の 周囲において抗体の濃度を維持することが可能となる。眼軟膏については、高い粘 度を有する眼軟膏に抗体が含有されることにより、抗ウィルス剤が塗布された部分に 抗体が留まり、感染細胞の周囲において抗体の濃度を維持することが可能となる。
[0010] 好ましくは、ウィルスは、ヒト免疫不全ウィルス (HIV)、パピローマウィルス、伝染性 軟属腫ウィルス、疣贅ウィルス、ヘルぺスウィルス、インフルエンザウイルス、パライン フルェンザウィルス、アデノウイルス、ライノウィルス、コロナウィルス、ノーウォークウイ ルス、ロタウィルス、エコーウィルス、及びェンテロウィルスからなる群から選択される 一つである。好ましくは、抗体は鶏卵抗体である。この場合、鶏卵抗体は容易に入手 可能であることから、抗体を安価、且つ大量に準備することが可能となる。
[0011] 本発明の別の態様では、ウィルス感染細胞の処理方法が提供される。この方法は、 ウィルスの感染細胞の周囲において、ウィルスに特異的な抗体の濃度を維持するこ とにより、感染細胞のウィルスを除去ないしは不活性ィ匕する工程を備えている。上記 構成により、抗体がウィルスの周囲に結合してウィルスの細胞への接着を妨害し、感 染細胞のウィルスを除去ないしは不活性ィ匕することができる。
[0012] 好ましくは、ウィルスは、ヒト免疫不全ウィルス (HIV)、パピローマウィルス、伝染性 軟属腫ウィルス、疣贅ウィルス、ヘルぺスウィルス、インフルエンザウイルス、パライン フルェンザウィルス、アデノウイルス、ライノウィルス、コロナウィルス、ノーウォークウイ ノレス、口タウイノレス、エコーウイノレス、ェンテロウイノレス、ノロウイノレス、コィへノレぺスウイ ルス、イリドウィルス、ラブドウィルス群、及びホワイトスポットウィルスからなる群から選 択される一つである。好ましくは、抗体は鶏卵抗体である。この場合、鶏卵抗体は容 易に入手可能であることから、抗体を安価、且つ大量に準備することが可能となる。 図面の簡単な説明
[0013] [図 1]精製された抗 SARS- SARS-CoVスパイクタンパク質 IgY抗体の力価を示すグラフ 発明を実施するための最良の形態
[0014] 以下、本発明を具体化した実施形態を説明する。本実施形態では、感染細胞のゥ ィルスを除去ないしは不活性ィ匕するための抗ウィルス剤及びウィルス感染細胞の処 理方法が説明されている。
[0015] 発明者らは、 SARSコロナウィルス (SARS-CoV)のスパイクタンパク質を鶏に免役し 、スノイクタンパク質についての抗 SARSコロナウィルス鶏卵抗体を作成した。この抗 体力 SARSコロナウィルスに持続感染している細胞の培養液中に共存すると、感染 細胞からウィルスが消失することが実験により確認された (実施例参照)。
[0016] 本実験では、細胞培養液中に 100 μ
Figure imgf000006_0001
、う高濃度で抗体が添加されて 、る 。通常、このような高濃度で抗体が用いられることはない。また、従来の抗体はあまり に高価であることから、このような高濃度で抗体が用いられることは考えられな力つた 。産卵鶏の免疫機構を利用してその鶏卵より得られる特異的鶏卵抗体は、ゥサギ、ャ ギ等の血液力も得られる特異的抗体と比較して、量産が可能であることから生産コス トが低い。このため、鶏卵抗体が用いられることにより、多量の抗 SARSコロナウィル ス抗体が比較的安価なコストで得られた。このように、発明者らは多量の抗体を得るこ とができたことから、前記のような実験を行うことを想起した。
[0017] (ウィルスの生活環)
まず、本発明の前提として、ウィルスの生活環について説明する。すなわち、すべ てのウィルス感染において共通な過程は、ウィルスの宿主細胞への吸着、進入、ウイ ルス構成成分の合成、ウィルス構成成分の集合(ウィルス粒子の形成)、及びウィル スの細胞外への放出である。
[0018] ここで、本実験で用いられた SARSコロナウィルスを例にして、ウィルス粒子の構造 、及び生活環について説明する。
[0019] SARSコロナウィルスは、一本鎖の正の RNAを遺伝子として有するウィルスである 。 SARSコロナウィルスの基本構造は、遺伝子 RNAを安定ィ匕して保護するタンパク 質 (N,ヌクレオキヤプシッド))で包まれた殻 (コア)、コア構造を保護する脂質膜 (ェン ベロープ、宿主細胞を構成している細胞小胞体(ER, endoplasmic Reticulum)由来と 考えられる)、及びエンベロープに埋め込まれた膜タンパク質 (S (スパイク (Spike) )な ど)から成る。この膜タンパク質は、ウィルスの細胞への吸着に際して、レセプターと 結合して細胞膜とウィルス膜との融合反応を促進することから、コアのウィルス遺伝子 を細胞へ導入するのに必要である。
[0020] コロナウィルスは、スパイクタンパク質(Sタンパク質)のレセプターを有する細胞 (感 受性を有する細胞)に結合する。 SARSコロナウィルスでは細菌のレセプターの 1つ がアンジォテンシン 2のレセプターであることが証明されて 、る。結合によりスパイクタ ンパク質の立体構造に変化が起こり、スパイクタンパク質は、ある種の細胞由来プロ テアーゼに対する感受性を有することになる。そして、スノイクタンパク質の特定部位 が開裂される。この開裂によって細胞膜に対する親和性を有する端末が露出すること により、ウィルス膜と細胞膜とが融合可能な距離までウィルス粒子が細胞に引き寄せ られる。そして、ウィルス粒子と細胞膜とが融合してウィルスのコアが細胞内へと進入 すると考えられている。
[0021] 進入したウィルスのコアの RN A遺伝子は、壊されることなく直ちに RER (粗面小胞 体、 Rough ER)上でタンパク質合成を開始する。このステップは正の mRNAを有する ウィルスの特徴である。インフルエンザウイルスなどは負の mRNAを遺伝子として有 しており、最初にウィルス粒子中の酵素を用いて正の mRNAが作成されてから前記 ステップが始まる。
[0022] 最初に作られるタンパク質は、ウィルス RNA合成に必要ないくつかの酵素及びそ れらの酵素を活性型に整形するプロテアーゼである。それらの酵素を用いて正から 負の RNAが合成される。負の RNAを铸型にして、ウィルス構造タンパク質の合成に 必要な様々な長さを有する mRMA、及びウィルス粒子に取り込まれる完全長を有す る正の RNA (ゲノム RNA)が多量に合成される。次いで、ゲノム RNAと Nタンパク質 の集合体 (殻)とが、 RERの膜に組み込まれたウィルス膜タンパク質を認識し、細胞 内 RERの内側に向力つてウィルス粒子を出芽形成する。ウィルス粒子を有する RER は、細胞内排泄装置であるゴルジ体と融合して細胞表面に移動し、再び細胞膜と融 合して内部のウィルス粒子を細胞外へと放出する。
[0023] 以上のようにウィルスの複製過程の概略はかなり明らかにされているものの、ウィル ス増殖の制御法の開発に至るほど詳しくは解明されていない。ウィルスは巧妙に宿 主細胞の RNA合成及びタンパク質合成の装置を利用して増殖することから、現在知 られて ヽる RNA合成及びタンパク質合成の阻害剤を用いてウィルス増殖を阻害する ことは、宿主細胞の死をも誘導する。
[0024] (持続感染細胞)
発明者らは、 SARSコロナウィルスに対する感受性を有する培養細胞におけるウイ ルス増殖と感染細胞の生存の様子とを調べた。一番典型的な急性感染様式を示す のは Vero細胞であり、感染後 1〜3日目までにウィルスは急性感染を起こして急激な ウィルス増殖が見られ、 4日目に最大の細胞死が観察された。 4日目以降、ウィルス 産生は減少した (最高値の 1Z100)が、細胞は再度増殖を始めており、ウィルスを産 生しながら継代可能な持続感染細胞となった。 SARSコロナウィルスの感染で完全 に死滅する培養細胞系は見つかって ヽな 、。
[0025] (持続感染細胞にお!ヽて確認された現象及び予想されるメカニズム)
上述のように、発明者らは、抗 SARSコロナウィルス鶏卵抗体 (抗 SARSコロナウイ ルス'スパイクタンパク質 IgY抗体)力 SARSコロナウィルスに持続感染している細胞 の培養液中に共存すると、感染細胞からウィルスが消失することを確認した(実施例 参照)。持続感染細胞は、細胞内にウィルスを有する状態で分裂増殖している細胞 である力 この状態でのウィルスのライフサイクルは多くの未知の部分を含む。
[0026] 培養液中の抗体 (抗 SARSコロナウィルス 'スパイクタンパク質 IgY抗体)は細胞外の ウィルス粒子に結合し、ウィルスが細胞に感染することを防いでいると考えられる。こ のことから、培養液中に添加された抗体力 細胞カゝら放出されたウィルス粒子に結合 することによって、ウィルスの再感染が防止されていると考えられる。
[0027] (感染細胞のウィルスを除去な!/、しは不活性化する方法)
このような観点から、発明者らは、感染細胞のウィルスを除去ないしは不活性ィ匕す る方法として、感染細胞の周囲に、感染しているウィルスに特異的な抗体が高濃度で 維持されることが効果的であると考えた。感染細胞力 放出されたウィルス粒子に抗 体が結合することにより、ウィルスが細胞に再感染することを防ぐことから、この方法の 適用対象は持続感染細胞に限られない。 [0028] このような観点から、利用可能な抗体、適用例等の検討を行った。これにつ!/、て以 下に説明する。
[0029] (抗体)
抗体としては、対象となるウィルスのウィルス粒子に結合する抗体が用意される。こ こで、ウィルス粒子の外面に露出している成分に対する抗体、特に、そのウィルスが 細胞に感染する際に、宿主細胞との結合に必要なタンパク質に対する抗体が特に効 果的である。例えば、 SARSコロナウィルスについて、発明者らは、スパイクタンパク 質に対する抗体を用いて実験を行った。 SARSコロナウィルスにおいて、このスパイ クタンパク質はエンベロープに埋め込まれた膜タンパク質である。スパイクタンパク質 は、ウィルスの細胞への吸着に際してレセプターと結合して細胞膜とウィルス膜との 融合反応を促進することから、コアのウィルス遺伝子を細胞へ導入するのに必要であ る。
[0030] 抗体の製造方法としては、例えば以下の 4つの方法が挙げられる。
[0031] (1)ャギ、ゥマ、ヒッジ、ゥサギ等の動物に抗原が投与され、その血液力 ポリクロー ナル抗体が精製される方法。
[0032] (2)抗原が投与された動物の脾臓細胞と培養癌細胞とが細胞融合し、その培養液 又は融合細胞を含む動物の体液 (腹水等)カゝらモノクローナル抗体が精製される方 法。
[0033] (3)抗体産生遺伝子が導入された遺伝子組み換え細菌、植物細胞、又は動物細 胞の培養液から抗体が精製される方法。
[0034] (4)抗原が投与されたニヮトリから免疫卵が得られた後、卵黄液の殺菌及び噴霧乾 燥により得られた卵黄粉末から鶏卵抗体が精製される方法。
[0035] これらのうちでも、鶏卵から抗体を得る方法は、容易、且つ大量に抗体が得られるこ とから、本発明のように多量の抗体が用いられる場合に特に適している。鶏卵抗体に おいては、卵アレルギーについての対処として、アルブミン等のアレルギー成分を除 去するための精製が行われてもよい。また、 -ヮトリ以外の鳥類の免疫卵を用いて抗 体が製造される場合も、鶏卵抗体と同様に、容易、且つ大量に抗体を得ることができ る。 [0036] (適用例)
以下、適用例について説明するが、本発明は以下の適用例に限定されるものでは ない。
[0037] <適用例 1 >
上述の、感染しているウィルスに特異的な抗体が感染細胞の周囲に十分に高濃度 で維持されることにより、感染細胞のウィルスを除去ないし不活性ィ匕することは、患部 にこのような抗体が十分に高濃度で維持されることによりウィルスを除去ないしは不 活性ィ匕する抗ウィルス剤に適用可能である。これは、抗ウィルス剤力 対象とするウイ ルスに特異的な抗体と、この抗体を感染細胞の周囲に十分に高濃度で維持する手 段とを有することにより実現可能である。ここで、「十分に高濃度」とは、ウィルスの再 感染を防ぐために必要な濃度のことであり、具体的には、前記抗体がウィルスの周囲 に結合することによりウィルスの細胞への接着を妨害し、細胞外のウィルスが細胞に 感染しな 、程度の高濃度のことである。
[0038] 適用方法としては次のような形態が挙げられるが、適用方法は、これに限られるもの ではない。
[0039] 皮膚及び粘膜のウィルスに対しては、感染して!/ヽるウィルスに特異的な抗体 (以下 、単に「抗体」という)を含有する、貼付剤、絆創膏、ガーゼ、不織布、ゲル状のパッチ 、軟膏、又はローションの形態を有する抗ウィルス剤が提供されることにより、患部に 抗体を十分に高濃度で維持することが可能となる。具体的には、貼付剤、絆創膏、ガ ーゼ、及び不織布については、これらに抗体が散布された状態、又はこれらに抗体 が担持された状態の抗ウィルス剤が提供される。抗体を担体 (ここでは、貼付剤、絆 創膏、ガーゼ、不織布)に担持させる方法としては、例えば特開 2004— 313755号 公報に開示されている方法が挙げられる。抗体を含有するこれらの貼付剤、絆創膏、 ガーゼ、及び不織布が患部に接触することにより、患部、すなわち感染細胞の周囲 に抗体を十分に高濃度で維持することが可能となる。ゲル状のパッチ、軟膏、及び口 ーシヨンについては、高い粘度を有するゲル状のパッチ、軟膏、又はローションの形 態を有する抗ウィルス剤が抗体を含有することにより、これらの抗ウィルス剤が塗布さ れた部分に抗体が留まり、患部、すなわち感染細胞の周囲に抗体を十分に高濃度 に維持することが可能となる。ウィルスと未反応の抗体を感染細胞の周囲に十分に高 濃度で維持する必要があることから、このような抗体を含有する貼付剤、絆創膏、ガ ーゼ、及び不織布は適宜取り換えられる。ゲル状のパッチ、軟膏、及びローションに つ!ヽては、これらの抗ウィルス剤が患部に適宜塗布される。
[0040] 呼吸器系のウィルスに対しては、抗体を含有する、点鼻剤、スプレー、又は吸入剤 ( 液滴、ドライパウダー)の形態を有する抗ウィルス剤が提供されることにより、患部に 抗体を十分に高濃度で維持することが可能となる。具体的には、点鼻剤、スプレー、 及び吸入剤 (液滴、ドライパウダー)については、抗体が例えば鼻腔及び咽頭粘膜に 予め投与されることで、鼻腔及び咽頭粘膜に抗体が留まり、鼻腔及び咽頭粘膜の細 胞の周囲に抗体が十分に高濃度で維持される。このため、鼻腔及び咽頭粘膜の細 胞にウィルスが感染している場合、感染細胞の周囲に抗体が高濃度で維持される。 一度の投与では長期間にわたって抗体を十分に高濃度で維持することができない場 合は、このような抗体を含有する抗ウィルス剤が適宜投入される。また、ウィルスと未 反応の抗体を感染細胞の周囲に十分に高濃度で維持するためにも、このような抗体 を含有する抗ウィルス剤の投与が適宜行われる。
[0041] 消ィ匕器系のウィルスに対しては、このような抗体を含有する、消化され難い構成を 有する内服剤、座剤、又は浣腸剤の形態を有する抗ウィルス剤が提供されることによ り、患部に抗体を十分に高濃度で維持することが可能となる。具体的には、消化され 難 、構成を有する内月 β剤として、例えば抗体がカプセルに封入されたカプセル剤の 形態を有する抗ウィルス剤が提供される。これにより、例えば腸の粘膜の細胞がウイ ルスに感染している場合に、カプセルが胃で消化されず、抗体を感染細胞の周囲に 十分に高濃度で維持することが可能となる。すなわち、このような場合、内服剤として 抗ウィルス剤が投与されることが可能となる。また、座剤又は浣腸剤として抗体を含有 する抗ウィルス剤が提供され、座剤又は浣腸剤が患部に保持されることで、抗体が感 染細胞の周囲に十分に高濃度で維持される。一度の投与では長期間にわたって抗 体が十分に高濃度で維持されな ヽ場合は、このような抗体を含有する抗ウィルス剤 が適宜投入される。また、ウィルスと未反応の抗体を感染細胞の周囲に高濃度で維 持するためにも、このような抗体を含有する抗ウィルス剤の投与が適宜行われる。 [0042] 眼のウィルスに対しては、このような抗体を含有する点眼剤、又は眼軟膏の形態を 有する抗ウィルス剤が提供されることにより、患部に抗体を十分に高濃度で維持する ことが可能となる。具体的には、点眼剤については、高濃度の抗体を含む点眼剤の 形態を有する抗ウィルス剤が点眼されることで、患部、すなわち感染細胞の周囲に抗 体が十分に高濃度で維持される。また、眼軟膏については、高い粘度を有する眼軟 膏の形態を有する抗ウィルス剤に抗体が含有されることで、これらの抗ウィルス剤が 塗布された部分に抗体が留まり、患部、すなわち感染細胞の周囲に抗体を十分に高 濃度で維持することが可能となる。ウィルスと未反応の抗体を感染細胞の周囲に十 分に高濃度で維持する必要があることから、このような点眼剤の投与が適宜行われ、 又は、このような眼軟膏が患部に適宜塗布される。
[0043] 対象となるウィルスの種類及びその主な疾患については、例えば以下のものが挙 げられる。以下において、対象となるウィルスの種類と、その主な疾患名とが、「対象 となるウィルスの種類く主な疾患名 >」のように記載されている。
[0044] すなわち、対象となるウィルスの種類及びその主な疾患名として、例えばヒト免疫不 全ウィルスくエイズ〉、パピローマウイルスく乳頭腫、皮膚良性腫瘍〉、伝染性軟属 腫ウィルスくみず!/、ぼ >、疣贅(ゆうぜ ヽ)ウイルスく 、ぼ >、ヘルぺスウィルスくへ ルぺス性湿疹、水ぼうそう、突発性湿疹 >、インフルエンザウイルス <インフルエンザ >、パラインフルエンザウイルスく上気道感染症、肺炎〉、アデノウイルスく呼吸器 感染症、咽頭結膜炎、流行性角膜炎、腸管感染症 >、ライノウィルス <かぜ症候群 >、コロナウィルス <カゝぜ症候群、重症急性呼吸器症候群(SARS) >、ノーウォーク ウイルスく急性胃腸炎 >、ロタウイルスく冬季乳児下痢症〉、エコーウイルスく消化 管感染症 >、及びェンテロウイルスく急性結膜炎 >が挙げられる。対象となるウィル スの種類及びその疾患は、これらに限定されるものではない。
[0045] <適用例 2>
上述の抗体を用いて感染細胞のウィルスを除去な 、しは不活性ィ匕する方法は、牡 蠣、ェビ、鯉等の養殖において、ウィルスが感染した個体について感染細胞のウィル スを除去ないしは不活性ィ匕することに適用され得る。この方法は、高濃度の抗体を含 有する溶液中に感染した個体を浸すことにより行われる。ここで、抗体の濃度は、抗 体がウィルスの周囲に結合することによりウィルスの細胞への接着を妨害して細胞外 のウィルスが細胞に感染しな!、程度の高濃度である。即ち抗体が十分に高濃度であ ることが、ウィルスの再感染を防ぐために必要である。
[0046] 上記の方法が、牡蠣、ェビ、鯉等の養殖生物に対して適用される場合、該方法は、 具体的には以下のように行われる。すなわち、養殖生物にウィルスが感染した場合、 感染した個体が隔離されて抗体溶液に浸される。この抗体溶液は、抗体がウィルス の周囲に結合することによりウィルスの細胞への接着を妨害して細胞外のウィルスが 細胞に感染しな 、程度の高濃度の抗体を含む溶液であることが必要である。ウィル スに感染した個体がこのような抗体溶液に浸されると、ウィルスに感染した個体の細 胞力 放出されたウィルス粒子力 このウィルス粒子に抗体が結合することにより細胞 に再感染することができなくなる。これにより、ウィルスに感染した個体において感染 細胞のウィルスが除去ないしは不活性ィ匕された後、この個体は、もとの環境 (養殖用 容器、いけす等)に戻される。
[0047] また、他の方法としては、ウィルスに感染した個体を養殖して 、る養殖用の容器、 Vヽ けす等に十分に高濃度の抗体が混入される。そして、ウィルスに感染した個体にお いて感染細胞のウィルスが除去ないしは不活性ィ匕されるまで、この養殖用の容器、い けす等に抗体が十分に高濃度で維持されることにより、ウィルスを除去ないしは不活 性ィ匕することも可能である。
[0048] 対象となる養殖生物とウィルスについては、例えば以下のものが挙げられる。以下 において、対象となる養殖生物とウィルスとが、「対象となる養殖生物:ウィルス」のよう に記載されている。
[0049] すなわち、対象となる養殖生物及びウィルスとして、牡蠣:ノロウィルス、鯉:コィへ ルぺスウィルス、マダイ:イリドウィルス、ヒラメ:ラブドウィルス群、及びェビ:ホワイトス ポットウィルスが挙げられる。対象となる養殖生物及びウィルスは、これらに限定され るものではない。
実施例
[0050] 以下、実施例により本発明をさらに詳しく説明するが、本発明は以下の実施例によ り何ら限定されるものではない。 [0051] 以下、 SARSコロナウィルス(SARS— CoV)スパイクタンパク質特異的-ヮトリ IgY 抗体を用いて、 SARSコロナウィルス(SARS— CoV)持続感染 Vero細胞からウィル スを消失させた実験について説明する。
[0052] (1) Vero細胞における SARSコロナウィルスの持続感染
被検物質の抗 SARSコロナウィルス活性を以下の方法により測定した。 SARSコロ ナウィルスとして FFM— 1株(Dr.HW. Doerr.Frankfrut University of Medicine, Germ anyより分与)を用いた。培養細胞として、(株)大日本製薬より購入した Vero細胞を 用いた。培地として、ダルベッコの最小必須 (DMEM)に 10%ゥシ胎児血清が添カロ されたものを用いた。そして、 5%COの存在下において 37°Cで Vero細胞を培養し
2
た。
[0053] ウィルス液の調製は、 90%単層が形成された培養細胞に、細胞 1個当たりのウィル ス量が 0. 1 (MOI=0.1, Multiplicity of infection)となる条件で行い(Tuker, P. C.ら, J. V irol. 71: 6106, 1997)、 24時間後に培養液を回収して— 70°Cで保存し、適宜使用し た。
[0054] ウィルス力価の測定は、以下のようなプラーク形成法で行った。回収した培養上清 を、 1%ゥシ血清アルブミンをカ卩えた PBA (—) (Mg2+, Ca2+を含まない 0. 05Mリン 酸緩衝液、 0. 15M NaCl、 pH7. 0、ウィルス希釈液)で段階的に 10倍希釈した後 、各 0. 2mlずつを各ゥエル(6ゥエルプレート、 90%単層が形成された培養細胞)に 接種した。 25°Cで 60分間感染させた後、 1. 0%メチルセルロースをカ卩えた DMEM ( 5%ゥシ胎児血清含有)で 4日間培養した。培養後にメチルセルロースを取り除き、細 胞を 2. 5%クリスタルバイオレット(30%エチルアルコール、 1%シユウ酸アンモ-ゥム 中)で染色した。そして、細胞を PBS ( -)で 3回洗浄 Z脱色した後、プラーク数の平 均値(3個のゥエル)から lml中のウィルス量を" PFU (Plaque Forming Unit)/ml,,とし て算出した(Tuker, P.C.ら, J.Virol.71:6106, 1997) 0
[0055] SARSコロナウィルスは、 Vero細胞において感染後 1〜3日目までに急性感染を 起こして急激なウィルス増殖が見られ、 4日目に最大の細胞死が観察された。 4日目 以降は、ウィルス産生は減少した (最高値の 1Z100)力 細胞は再度増殖を始めて おり、ウィルスを産生しながら継代可能な持続感染細胞となった (吉仲由之、山本直 榭:上田重晴ら編、抗菌 '抗カビの最新技術と DDSの実際、 NTS社、 ppl4— 25、 2 005)。
[0056] (2)組換え型 SARSコロナウィルス 'スパイクタンパク質(Recombinant SARS- CoVsp ike protein)に対する IgY抗体の作成
a)免疫用抗原:免疫用抗原として、 Protein Sciences社製の「SARS CoV Spike〃S" Δ ΤΜ」を用いた。
[0057] b)産卵鶏への免疫:免疫用抗原(100 μ g/ml) 1mlを等量のアジュバント(FCA
: Difco社製)と混和させた後、 20週齢前後のローラ種の胸筋内に注射した。その 6週 間後に同量の抗原を追加免役し、その 5週間後から採卵した。
[0058] c)抗体の調製:免疫卵を割卵して卵黄を取り出した後、卵黄重量に対して 10倍 量の精製水を加えて脱脂した。そして、上清に 40%飽和になるように硫酸アンモ-ゥ ムを加えた後に攪拌し、遠心により回収した沈殿物を生理的食塩水に溶かした。次 いで、再び 30%飽和塩析を行って沈殿物を得た。この沈殿物を少量の生理的食塩 水に溶解した後、最終濃度が 50%になるように、—20°Cに冷却されたエタノールを、 攪拌しながら徐々に加えた。遠心後、沈殿物を生理的食塩水に溶かして精製抗体溶 液とした。
[0059] d)抗体力価の測定:抗体力価をプラーク減少法による中和反応により測定した。
ウィルス希釈液で段階的に 10倍希釈した抗体溶液 200 1に、予め力価を測定した ウィルス液 400PFUZ200 1をカ卩えた。そして、室温(22°C)で 1時間反応させた後 に 4°Cで 16時間反応させ、上記プラーク法によりウィルス量を測定した。そして、抗体 を含まな ヽ対照と比較し、 50%プラーク数が減少する抗体の希釈倍数の逆数を中和 抗体価とした。
[0060] e)精製抗体の力価:上記中和法により、 20, 000倍希釈まで陽性であるという結 果が得られた(図 1参照)。
[0061] (3) SARSコロナウィルス (SARS-CoV)持続感染 Vero細胞の抗 SARSコロナウイ ルス'スパイクタンパク質 IgY抗体(抗 SARS- CoV spike IgY抗体)による処理
ウィルスのスパイクタンパク質に対して特異的な IgY抗体による処理による、 SARS コロナウィルス持続感染 Vero細胞のウィルスの除去な 、しは不活性ィ匕に関し、抗体 の存在下で培養を続け (4日毎に新しい抗体を含む培地に交換、 10日毎に継代培 養)、 35日までウィルス力価の測定、細胞内ウィルスタンパク質、及びウィルス RNA の検出を適宜行った。
[0062] ウィルスの力価の測定を、培養上清の上記プラーク法により行った。細胞内タンパ ク質の検出では、 6ゥエルプレートに培養した持続感染 Vero細胞(1ゥエル当たり 2. 5mlの培地、 106個の細胞)を 0. 3mlの SDS-ポリアクリルアミドゲル電気泳動法(S DS - PAGE)用のサンプルバッファーに回収し、全タンパク質を SDS - PAGEで分 離した。そして、タンパク質を PVDF膜 (Polyvinylidene fluolide)に転写した後、抗ゥ サギ SARS-ヌクレオキヤプシッドタンパク質抗体(IMGENEX社)、抗ゥサギ SARS-スパ イクタンパク質抗体(IMGENEX社)、ァクチン、 Bel— 2などの標準タンパク質の抗体( サンタクルズ社)で免疫プロットを行った。二次抗体にはアルカリホスファタ一ゼで標 識した抗ゥサギーャギ抗体 (サンタクルズ社)を用い、 NBT (ニトロブルーテトラゾリュ ゥム塩、ベーリンガー社)による発色を用いた検出を行った(Yoshinaka,Y.ら, Biochem. Biophy.Res.Commun.261: 139, 1999)。画像を CCDカメラで撮景し、画像解析ソフト( The Analytical Imaging System AIS.アマシャム/フアルマシア社)を用いて、ァクチン バンドの濃度との相対比より抗原発現の強弱を測定した。ウィルス RNAの検出では 、細胞中のウィルス RNAの存在の有無をリバース PCR法により調べた(表 1参照)。
[0063] (実験結果)
作成した SARSコロナウィルスのスパイクタンパク質に対して特異的な精製 IgY抗体 の力価と、同抗体処理による SARSコロナウィルス持続感染 Vero細胞のウィルスの 除去な 、しは不活性ィ匕に関する実験結果とを図 1及び表 1に示す。
[0064] 図 1は、精製された抗 SARS-SARS-CoVスパイクタンパク質 IgY抗体の力価を示す。
精製された SARS- CoVスパイクタンパク質 IgY ( lOmgZml)について 200 μ 1の希釈 列を作成した後に 400PFUZ200 1のウィルス液をカ卩え、 22°Cで 1時間反応させた 後に 4°Cで 16時間反応させた。そして、反応液 200 1についてプラーク法で活性ゥ ィルスを測定し、 50%ウィルスを不活化する抗体の希釈度から中和抗体力価を求め た。この抗体の力価を 20, 000とした。
[0065] [表 1] ウィルスのスパイクタンパク質に対して特異的な IgY抗体処理による
SARSコロナウィルス持続感染 Vero細胞のウィルスの除去ないしは不活性化
、、、 項目 ウィルス力価 . 細胞にァソシエイトした
日数 * -、、. PCR
CPFU/ml) ウィルスのタンパク質
0 4x10s + + + + + + ****
4 4x10s + + + ND
7 2x10Β + + + ND
14 3 10e + + ND
21 5Χ104 ND
28 <5 ― 土 *****
35 ぐ 5 ― ****
[0066] この実験にぉ 、て、新 、抗体を含む培養液(100 μ g/ml)による溶液の交換を 3 日毎に行いながら、表示日数の間、 SARSコロナウィルス持続感染 Vero細胞を IgY 抗体で処理した(*)。ウィルスの力価を、 IgYが含まれない培養液に細胞を移してか ら 7日後に測定した( * * )。細胞にァソシエイトしたウィルスのヌクレオキヤプシッドタ ンパク質を、ィムノブロット法により検出した(* * *)。ウィルス RNAの検出について は、 0日後では、 PCRの 15反応サイクル後にウィルス RNAが検出された(* * * *) 。 28日後では、 PCRの 30反応サイクル後にウィルス RNAの痕跡が検出された(* * * * *)。 35日後では、 PCRの 40反応サイクル後でもウィルス RNAは検出されな かった(* *****)。表 1において、 "ND"は PCRが実施されていないことを示す
[0067] 表 1に示すように、 SARSコロナウィルス持続感染 Vero細胞にお!、てウィルスが除 去ないしは不活性ィ匕されたこと力 ウィルス力価の測定、細胞中におけるウィルスの ヌクレオキヤプシッドタンパク質の検出、及びウィルス RN Aの検出によりそれぞれ示さ れた。
[0068] 以上のことから、本発明に係る抗ウィルス剤、及びウィルス感染細胞の処理方法は 、医療分野のほか、幅広い分野、例えば養殖においてウィルスが細胞に感染した場 合について利用され得る。

Claims

請求の範囲
[1] 対象とするウィルスに特異的な抗体を有する抗ウィルス剤であって、前記ウィルス の感染細胞の周囲における前記抗体の濃度を維持する手段を有することを特徴とす る抗ウィルス剤。
[2] 前記抗ウィルス剤は、前記抗体を含有する、貼付剤、絆創膏、ガーゼ、不織布、ゲ ル状のパッチ、軟膏、ローション、点鼻剤、スプレー、液滴の吸入剤、ドライパウダー の吸入剤、消化され難い構成を有する内服剤、座剤、浣腸剤、点眼剤、及び眼軟膏 力 なる群力 選択される一つであることを特徴とする請求項 1に記載の抗ウィルス剤
[3] 前記ウィルスは、ヒト免疫不全ウィルス (HIV)、パピローマウィルス、伝染性軟属腫 ウィルス、疣贅ウィルス、ヘルぺスウィルス、インフルエンザウイルス、パラインフルェ ンザウィルス、アデノウイルス、ライノウィルス、コロナウィルス、ノーウォークウィルス、 ロタウィルス、エコーウィルス、及びェンテロウィルスからなる群から選択される一つで あることを特徴とする請求項 1又は請求項 2に記載の抗ウィルス剤。
[4] 前記抗体は鶏卵抗体であることを特徴とする請求項 1から請求項 3の ヽずれか一項 に記載の抗ウィルス剤。
[5] ウィルス感染細胞の処理方法であって、
ウィルスの感染細胞の周囲において、前記ウィルスに特異的な抗体の濃度を維持 することにより、前記感染細胞のウィルスを除去ないしは不活性ィ匕する工程を備える ことを特徴とするウィルス感染細胞の処理方法。
[6] 前記ウィルスは、ヒト免疫不全ウィルス (HIV)、パピローマウィルス、伝染性軟属腫 ウィルス、疣贅ウィルス、ヘルぺスウィルス、インフルエンザウイルス、パラインフルェ ンザウィルス、アデノウイルス、ライノウィルス、コロナウィルス、ノーウォークウィルス、 口タウイノレス、エコーウイノレス、ェンテロウイノレス、ノロウイノレス、コィへノレぺスゥイノレス、 イリドウィルス、ラブドウィルス群、及びホワイトスポットウィルス力 なる群力 選択され る一つであることを特徴とする請求項 5に記載のウィルス感染細胞の処理方法。
[7] 前記抗体は鶏卵抗体であることを特徴とする請求項 5又は請求項 6に記載のウィル ス感染細胞の処理方法。
PCT/JP2006/318342 2005-09-22 2006-09-15 抗ウイルス剤、及びウイルス感染細胞の処理方法 WO2007034741A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005276703A JP2007084495A (ja) 2005-09-22 2005-09-22 ウイルス感染細胞処理方法
JP2005-276703 2005-09-22

Publications (1)

Publication Number Publication Date
WO2007034741A1 true WO2007034741A1 (ja) 2007-03-29

Family

ID=37888786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318342 WO2007034741A1 (ja) 2005-09-22 2006-09-15 抗ウイルス剤、及びウイルス感染細胞の処理方法

Country Status (2)

Country Link
JP (1) JP2007084495A (ja)
WO (1) WO2007034741A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1010195B (el) * 2020-12-30 2022-03-17 Μιχαηλ Γεωργιου Παπαμιχαηλ Προστασια της μολυνσης των ατομων απο τον κορωνοϊο covid-19

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890173B (zh) 2011-08-19 2016-02-03 鸵鸟制药株式会社 抗体和含有抗体的组合物
JP6713013B2 (ja) * 2018-03-06 2020-06-24 株式会社イーダブルニュートリション・ジャパン 貝類のノロウイルス不活化方法
JP7318865B2 (ja) * 2019-08-27 2023-08-01 株式会社イーダブルニュートリション・ジャパン 貝類の受動免疫方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175426A (ja) * 1986-01-27 1987-08-01 Kazufumi Shimizu 抗体及びこれを有効成分とするスプレ−剤
JPH01265034A (ja) * 1988-04-13 1989-10-23 Taiyo Kagaku Co Ltd ウイルス性下痢症予防剤
JPH0665101A (ja) * 1992-08-12 1994-03-08 Nippon Nousan Kogyo Kk 特異抗体含有鶏卵による鮭鱒類ウイルス病の防除方法
JPH06128298A (ja) * 1991-02-16 1994-05-10 Taiyo Kagaku Co Ltd 特異的鶏卵抗体及びその製造方法
JPH08259462A (ja) * 1994-12-05 1996-10-08 Adtec Kk 抗パルボウイルス感染症組成物
JP2001501622A (ja) * 1996-10-02 2001-02-06 オビミュン インコーポレイテッド 病気を治療するための鶏卵黄抗体の経口投与
JP2004041005A (ja) * 2002-07-08 2004-02-12 Gen Corp:Kk 抗ホワイトスポット病組成物
JP2004352693A (ja) * 2003-05-30 2004-12-16 Gen Corp:Kk 抗パルボウイルス感染症組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175426A (ja) * 1986-01-27 1987-08-01 Kazufumi Shimizu 抗体及びこれを有効成分とするスプレ−剤
JPH01265034A (ja) * 1988-04-13 1989-10-23 Taiyo Kagaku Co Ltd ウイルス性下痢症予防剤
JPH06128298A (ja) * 1991-02-16 1994-05-10 Taiyo Kagaku Co Ltd 特異的鶏卵抗体及びその製造方法
JPH0665101A (ja) * 1992-08-12 1994-03-08 Nippon Nousan Kogyo Kk 特異抗体含有鶏卵による鮭鱒類ウイルス病の防除方法
JPH08259462A (ja) * 1994-12-05 1996-10-08 Adtec Kk 抗パルボウイルス感染症組成物
JP2001501622A (ja) * 1996-10-02 2001-02-06 オビミュン インコーポレイテッド 病気を治療するための鶏卵黄抗体の経口投与
JP2004041005A (ja) * 2002-07-08 2004-02-12 Gen Corp:Kk 抗ホワイトスポット病組成物
JP2004352693A (ja) * 2003-05-30 2004-12-16 Gen Corp:Kk 抗パルボウイルス感染症組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HATTA H.: "Kotai o Taberu: Ran'o Kotai (IgY) to kansensho no Yobo", KYOTO JOSHI DAIGAKU SHOKUMOTSUGAKU KASIHI, no. 53, 1998, pages 1 - 11, XP003010851 *
HE Y. ET AL.: "Inactivated SARS-CoA vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 325, no. 2, 2004, pages 445 - 452, XP004626814 *
NAKAMURA T. ET AL.: "Keiran Kotai (IgY) no Kodo Riyo, Sono 4 Ko SARS-CoV IgY Filter", NIPPON NOGEI KAGAKUKAI TAIKAI KOEN YOSHISHU, vol. 2005, 5 March 2005 (2005-03-05), pages 114, ABSTR. NO. 29E161ALPHA, XP003010852 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1010195B (el) * 2020-12-30 2022-03-17 Μιχαηλ Γεωργιου Παπαμιχαηλ Προστασια της μολυνσης των ατομων απο τον κορωνοϊο covid-19

Also Published As

Publication number Publication date
JP2007084495A (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
Wong et al. The SARS-coronavirus infection cycle: a survey of viral membrane proteins, their functional interactions and pathogenesis
Jahangir et al. Coronavirus (COVID-19): history, current knowledge and pipeline medications
Weiss et al. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus
Ahidjo et al. Current perspective of antiviral strategies against COVID-19
CN1815234B (zh) 靶向引起病毒感染的sars相关冠状病毒刺突蛋白上的关键位点的合成肽以及其使用方法
JP3821484B2 (ja) 新しい突然変異ウイルス、抗ウイルス性化合物、および新しいワクチン作成方法
Smith Mechanisms of virus pathogenicity
CN111548413A (zh) 一种抗新型冠状病毒的抗体及其制备方法与应用
Ghosh et al. The emerging roles of silver nanoparticles to target viral life cycle and detect viral pathogens
CN109675042A (zh) 用于治疗和/或预防流感的组合物、方法和用途
WO2007034741A1 (ja) 抗ウイルス剤、及びウイルス感染細胞の処理方法
Pyrc et al. Antiviral strategies against human coronaviruses
Ghosh et al. Drawing comparisons between SARS-CoV-2 and the animal coronaviruses
Raja et al. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches
CN104353063B (zh) 预防和控制人呼吸道合胞病毒感染的生物制剂及制备方法
EA025624B1 (ru) Модифицированные пептиды с антивирусными свойствами и способ их получения
Capraro et al. Virus growth and antibody responses following respiratory tract infection of ferrets and mice with WT and P/V mutants of the paramyxovirus Simian Virus 5
Clayton et al. The molecular virology of coronaviruses with special reference to SARS-CoV-2
Singh et al. Basic Virology and Pathophysiology of COVID-19
He et al. Experimental infection of macaques with the human reovirus BYD1 strain: an animal model for the study of the severe acute respiratory syndrome
CN115605193A (zh) 用于治疗SARS-CoV-2感染的半胱胺
Shid et al. Hantavirus infection: An overview
CN105754956A (zh) 一种用于检测及分离样本的呼吸道病毒的样本前处理液
WO2007034742A1 (ja) ウイルスが感染した生物由来物の処理方法、並びに感染ウイルスに対する処理済細胞、処理済組織、及び処理済臓器
Ahmad et al. Novel coronavirus (Covid-19) a ubiquitous hazard to human health: a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810184

Country of ref document: EP

Kind code of ref document: A1