WO2007034738A1 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
WO2007034738A1
WO2007034738A1 PCT/JP2006/318293 JP2006318293W WO2007034738A1 WO 2007034738 A1 WO2007034738 A1 WO 2007034738A1 JP 2006318293 W JP2006318293 W JP 2006318293W WO 2007034738 A1 WO2007034738 A1 WO 2007034738A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
subject
boundary
movement
unit
Prior art date
Application number
PCT/JP2006/318293
Other languages
English (en)
French (fr)
Inventor
Takao Suzuki
Makoto Kato
Hisashi Hagiwara
Yoshinao Tan-Naka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/067,203 priority Critical patent/US20090143675A1/en
Priority to EP06798005A priority patent/EP1927317A4/en
Priority to JP2007536468A priority patent/JPWO2007034738A1/ja
Publication of WO2007034738A1 publication Critical patent/WO2007034738A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus for measuring tissue characteristics of a subject.
  • a conventional ultrasonic diagnostic apparatus irradiates an ultrasonic wave to an object and converts the intensity of its reflection echo signal into the brightness of the corresponding pixel, thereby obtaining the structure of the object as a tomographic image. is there. Also, in recent years, an attempt is made to accurately measure the movement of the subject by analyzing the phase of the reflection echo signal mainly, and to obtain tissue characteristics such as strain, elastic modulus, and viscosity of the subject's tissue therefrom. There is.
  • Patent Document 1 can accurately track a subject's tissue by determining the instantaneous position of the subject using both the amplitude and the phase of the detection output signal of the reflection echo signal. A method is described for capturing micro-vibrations on large amplitude displacement motion due to pulsation.
  • the subject tissue tracking method shown in Patent Document 1 will be described with reference to FIG.
  • the received echo signals of the ultrasonic pulse transmitted at an interval of ⁇ in the same direction of the subject are denoted by y (t) and y (t + ⁇ ).
  • the phase difference between y (t) and y (t + ⁇ ) is ⁇ and the center frequency of the ultrasonic wave near t is f
  • the movement amount ⁇ of the measurement point in this period ⁇ is It is expressed by equation 1).
  • Patent Document 2 is a further development of the method of Patent Document 1 in which each large amplitude displacement motion of the measurement points set on the blood vessel wall caused by the heart beat is accurately followed.
  • a method for measuring the amount of strain and obtaining the local elastic modulus from the amount of strain and the blood pressure difference and a device for displaying a spatial distribution of the elastic modulus are described.
  • the probe 101 applies ultrasonic waves to a subject and receives echoes from blood vessels, particularly arteries.
  • Measurement points A, B and C are set on the blood vessel wall at equal intervals Ws in the depth direction, and the received signals from measurement points A, B and C are analyzed by the method shown in Patent Document 1, and measurement is performed.
  • the artery repeats contraction and dilation due to the heartbeat, so the movement of the measurement points A, B, and C becomes periodic as shown by the tracking waveforms TA, TB, and TC, and the blood vessel wall sharply during systole. In the diastole phase, blood vessels contract slowly.
  • ⁇ (AB) AW (AB) / Ws ⁇ ⁇ ⁇ ⁇ (Expression 3)
  • the elastic modulus E (BC) between the measurement points B and C can be determined, and a similar operation is performed on a plurality of points on the tomographic image to obtain an elastic modulus distribution image.
  • FIG. 8 shows an example of an actual diagnostic screen in the conventional example.
  • the screen shows a vertically divided cross section of the blood vessel.
  • a region (ROI) 204 for calculating elastic modulus is set on the monochrome tomographic image 200 displayed on the screen, and a plurality of measurement points are set in the ROI 204 at equal intervals in the vertical and horizontal directions.
  • the motions of all the measurement points are calculated by (Eq. 1) and (Eq. 2), and the elastic modulus of the micro area between the measurement points, that is, in the blood vessel wall is calculated by (Eq. 3) and (Eq. 4).
  • the elastic modulus obtained in this way is converted into a color code, and arranged at a predetermined position, whereby an elastic modulus image 201 is created.
  • the elastic modulus image 201 is displayed superimposed on the corresponding position on the monochrome tomographic image 200. This makes it possible to observe in detail the distribution of elastic modulus in the vessel wall.
  • the distance between measurement points is about several tens of um in the vertical direction and about several hundred um in the horizontal direction.
  • a tomographic image reflection strength scale 202 showing the relationship between the amplitude of the received signal and the brightness on the screen, an elasticity modulus showing the relationship between the elastic modulus and the color on the screen, an elasticity modulus scale for image 203,
  • various information useful for diagnosis such as average elastic modulus value, blood vessel diameter value, and electrocardiographic waveform are displayed.
  • Non-Patent Document 1 has published the relation between the average elastic modulus and the arteriosclerosis risk factor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-5226
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-229078
  • Non-patent literature 1 Okimoto et al. "Relationship between carotid artery elastic properties and arteriosclerosis risk factor by new diagnostic method" The 42nd Annual Meeting of the Japan Diabetes Society Tohoku Branch
  • the average elastic modulus disclosed in Non-Patent Document 1 fixes the reference thickness Ws and averages the elastic modulus values of the fixed small area over the necessary area. It was obtained by On the other hand, the average elastic modulus of the blood vessel wall in FIG. 8 is the average of the elastic modulus of the minute region on the blood vessel wall.
  • the strain of the entire area and the elastic modulus obtained from the force applied to the entire area are considered to be positive and average elastic modulus. Taking the strain and the elastic modulus obtained from the force on average to average it as the whole average elastic modulus will include an error in comparison with the correct average elastic modulus.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an ultrasonic diagnostic apparatus capable of obtaining tissue property values such as more accurate strain, average elastic modulus and average viscosity. .
  • a receiving unit for outputting a reception signal based on an ultrasonic echo reflected from the inside of the object irradiated with the ultrasonic wave, and the reception signal based on the reception signal.
  • a tissue tracking unit for tracking the movement of the tissue boundary; and a tissue characteristic value calculating unit for calculating the tissue characteristic value of the subject based on the movement of the tissue boundary of the subject tracked by the tissue tracking unit; , And.
  • a receiving unit for outputting a reception signal based on an ultrasonic echo reflected from the inside of the object irradiated with the ultrasonic wave, and the reception signal based on the reception signal.
  • a boundary detection unit for detecting a tissue boundary; a tissue tracking unit for tracking the movement of the tissue boundary of the subject detected by the boundary detection unit based on the received signal; and the object tracked by the tissue tracking unit
  • a tissue characteristic value calculation unit that calculates a tissue characteristic value of the subject based on the movement of the tissue boundary of the specimen.
  • a receiving unit for outputting a reception signal based on an ultrasonic echo reflected from inside of the object irradiated with the ultrasonic wave, and the reception signal based on the reception signal.
  • a tissue tracking unit for tracking a movement of a tissue, and a tissue boundary for detecting a tissue boundary of the subject based on at least one of the received signal and the movement of the tissue of the subject tracked by the tissue tracking unit.
  • a tissue detection value for calculating the tissue state value of the subject based on the movement of the tissue of the subject corresponding to the tissue boundary of the subject detected by the boundary detection unit and the tissue boundary detection unit; And a calculation unit. According to the present invention, it is possible to obtain a more correct average tissue property value obtained by straining the entire region.
  • the ultrasonic diagnostic apparatus of the present invention has at least two tissue property value calculation modes, and in the first tissue property value calculation mode, outputs a tissue property value based on the movement of the tissue boundary of the subject.
  • the other tissue property value calculation mode a method for obtaining and outputting a tissue property value of a micro area of a fixed size of the subject is included. According to the present invention, it is possible to determine two different average texture values.
  • the ultrasonic diagnostic apparatus further includes a memory for storing a received signal, and when performing calculation mode switching at the time of freezing, based on the received signal read from the memory, It includes one that outputs the tissue characterization value in the calculation mode after switching. According to the present invention, it is possible to obtain multiple types of tissue property values without measuring again.
  • the ultrasonic diagnostic apparatus of the present invention further includes a display unit for displaying a tissue property value of the subject, the display unit being a tissue property value based on the movement of the tissue boundary of the subject, and It includes those that simultaneously display the tissue characterization value calculated in the small area of the fixed size of the subject. According to the present invention, two different average tissue characterization values can be recognized simultaneously.
  • the twill weave property value based on the movement of the tissue boundary is a numerical value
  • the tissue property value calculated in the small area of the fixed size is a display of a distribution image.
  • two different average tissue characterization values can be recognized simultaneously.
  • the ultrasound diagnostic apparatus further includes a blood pressure value acquiring unit for acquiring the blood pressure value of the subject, and the tissue property value calculating unit acquires the movement of the tissue boundary of the subject and the blood pressure value. And calculating at least one of an elastic modulus and a viscosity as a tissue characteristic value of the subject based on the blood pressure value taken in by a part. According to the present invention, it is possible to obtain a tissue property value that makes it easy to recognize the distortion of the entire region and the characteristics of the subject tissue obtained from the pressure applied to the entire region.
  • tissue property values such as more accurate strain, average elastic modulus or average viscosity can be obtained.
  • FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention.
  • FIG. 2 Operation explanatory view of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention
  • FIG. 3 Operation explanatory view of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention
  • FIG. 4 A block diagram of an ultrasonic diagnostic apparatus according to a second embodiment of the present invention
  • FIG. 5 Operation explanatory view of the ultrasonic diagnostic apparatus according to the second embodiment of the present invention
  • FIG. 6 A method of tracing a subject's tissue using a detection output signal of a reflection echo signal.
  • FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus according to a first embodiment of this invention.
  • the ultrasonic diagnostic apparatus shown in FIG. 1 includes a control unit 100, a probe 101, a transmitting unit 102, a receiving unit 103, a tomographic image processing unit 104, a memory 105, an image combining unit 106, a monitor 107, a tissue tracking unit 108, and tissue characteristics.
  • a value calculation unit 109, a boundary detection unit 110, a memory 111, and a blood pressure value acquisition unit 112 are included.
  • the control unit 100 controls the entire ultrasonic diagnostic apparatus, and although not shown, a user interface such as a keyboard, a track ball, a switch, and a button is also connected to the control unit 100.
  • a user interface such as a keyboard, a track ball, a switch, and a button is also connected to the control unit 100.
  • the transmission unit 102 In response to an instruction from the control unit 100, the transmission unit 102 generates a high-voltage transmission signal for driving the probe 101 at a designated timing.
  • the probe 101 converts a transmission signal generated by the transmission unit 102 into an ultrasonic wave and irradiates the object with the object, and converts an ultrasonic echo reflected from the inside of the object into an electric signal.
  • a plurality of piezoelectric conversion elements are disposed in the probe 101, and selection of these piezoelectric conversion elements and control of deflection angle and focus of ultrasonic waves to be transmitted are performed by timing to apply a voltage to the piezoelectric conversion elements.
  • the receiving unit 103 is determined by amplifying received signals obtained by converting ultrasonic echoes into electrical signals, and adding different delays to each received signal received by each piezoelectric conversion element. Output a received signal based only on ultrasound from position (focus) or direction (deflection angle).
  • the tomographic image processing unit 104 is a filter, a detector, a logarithmic amplifier, etc., analyzes at least the amplitude of the received signal output from the receiving unit 103, and generates an image of the internal structure of the object.
  • the boundary detection unit 110 analyzes at least the amplitude of the received signal to determine the tissue boundary of the subject, specifically, at least the blood intima boundary of the blood vessel wall, the media / outer membrane boundary, the adventitia / peripheral tissue boundary And the boundary position is output to the tissue tracking unit 108.
  • the tissue tracking unit 108 analyzes at least the phase of the received signal to track the movement of the measurement point. For example, the movement of the measurement point may be tracked using (Equation 1) and (Equation 2) shown in the conventional example.
  • the measurement points are set at equal intervals in the depth direction or at the boundary position output from the boundary detection unit 110. It is a fixed position.
  • the blood pressure value acquisition unit 112 is a means for acquiring a blood pressure value, and may be a keyboard used by an examiner for manual input of the blood pressure value, or may be a connected sphygmomanometer itself.
  • the tissue characteristic value calculation unit 109 calculates the amount of strain represented by (Equation 3) from the movement of the boundary portion of the subject tissue that has been traced, and from the obtained amount of strain and the blood pressure value, At least one of the indicated elastic modulus E or the viscosity 7? Represented by (Eq. 5) is calculated.
  • the obtained elastic modulus ⁇ or viscosity? Is output as a numerical value indicating tissue characterization or a tissue characterization distribution image.
  • the image synthesizing unit 106 synthesizes one of a tomographic image and at least a numerical value indicating a tissue characteristic or a tissue characteristic distribution image, and displays the synthesized image on a monitor 107.
  • the memory 111 is for storing the received signal, and is used when recalculating the tissue characterization value when the ultrasound transmission / reception is stopped (hereinafter referred to as the freeze state).
  • the memory 105 stores tomographic images, and outputs a tomographic image synchronized with the tissue property value in the freeze state.
  • Figs. 2 and 3 are the same diagnostic screens as in Fig. 8 displaying the longitudinally divided cross section of the blood vessel.
  • an area (ROI) 204 for calculating a tissue characteristic value is set.
  • the boundary detection unit 110 analyzes the received signal to detect the blood intima boundary 205 and the media-outer membrane boundary 206. Boundary detection may be determined by analyzing the received signal, or the examiner may manually input using a trackball. As an example, since the blood flow and the media have small amplitudes of the received signal, the amplitude of the received signal is analyzed and the place where the amplitude rapidly increases is defined as the boundary. Alternatively, the blood flow-intima boundary 205 may be detected by detecting the blood flow using a color Doppler method or the like.
  • the boundary position is detected In the case where it is clear that there is no need, the boundary detection unit 115 may not be provided, and information may be registered in advance in the apparatus, or an examiner may input the information before measurement. For example, if the location is specified by a modality other than ultrasound, that modality may also obtain information. If the boundary position is the skin surface and a standoff is used between the probe 101 and the skin, the size of the standoff should be set beforehand.
  • the tissue tracking unit 108 sets a measurement point on or near the boundary detected by the boundary detection unit 110, and tracks the movement of this measurement point. In Fig. 2, the measurement points are shown by white circles on the border.
  • the tissue characteristic value calculation unit 109 calculates the amount of strain represented by (Equation 3) from the movement of the boundary portion of the subject tissue which has been traced, and in this case, the reference thickness Ws The width between the membrane and the adventitia boundary 206 (the width indicated by the double-headed arrow in FIG. 2). In this way, it is possible to obtain an accurate average tissue property value of the part between the boundaries (in the intima and media regions in FIG. 2).
  • FIG. 3 shows a diagnostic screen obtained by converting the tissue characteristic values into color codes and superimposing them on the tomographic image 200.
  • the boundaries are displayed in the same color in the vertical direction.
  • the tissue tracking unit 108 sets a plurality of measurement points at equal intervals in the ROI 204, not on the boundary line detected by the boundary detection unit 110, as shown in the conventional example.
  • the tissue characterization value of each minute area of the wall can be determined, and the distribution of tissue characterization values in the blood vessel wall can be observed in detail.
  • FIG. 4 is a block diagram of an ultrasonic diagnostic apparatus according to a second embodiment of the present invention. Parts in common with the ultrasonic diagnostic apparatus in FIG. 1 are assigned the same reference numerals and descriptions thereof will be omitted.
  • the tissue tracking unit 113 tracks the movement of the measurement point positions set at equal intervals in the depth direction using (Equation 1) and (Equation 2) from the phase difference between the received signals.
  • the boundary detection unit 115 Even if there is no received signal, the movement of the tracked measurement point is analyzed, and the tissue boundary, specifically at least the blood intima boundary of the blood vessel wall, the medial-epicardial boundary, the adventitia-peripheral tissue boundary.
  • the boundary position is detected to which measuring point tracked by the tissue tracking unit 113 corresponds.
  • the tissue characteristic value calculation unit 114 calculates the amount of strain represented by (Equation 3) from the movement of the measurement point specified by the boundary detection unit 113, and indicates it by (Equation 4) from the obtained distortion amount and blood pressure value. At least one of the elastic modulus or the viscosity represented by (Equation 5) is calculated. Then, the obtained elastic modulus or viscosity is output as a numerical value indicating tissue characteristics or a tissue characteristics distribution image.
  • the elastic modulus is used as the tissue property value
  • the present invention is not limited to this, and strain, viscosity, and other tissue property values may be used.
  • strain the blood pressure value acquisition unit 112 can be omitted because the blood pressure value is unnecessary.
  • FIG. 5 is a diagnostic screen on which a longitudinally divided cross section of a blood vessel is displayed, as in FIG.
  • An area (ROI) 204 for calculating tissue property values is set on the monochrome tomographic image 200 displayed on the screen, and a plurality of measurement points are set in the ROI 204 at equal intervals in the vertical and horizontal directions.
  • the measurement points are indicated by white circles.
  • the tissue tracking unit 113 tracks the motions of all measurement points using (Equation 1) and (Equation 2) as in the conventional example.
  • the boundary detection unit 115 analyzes at least either the received signal or the movement of the object tissue tracked to detect the blood flow-intima boundary 205 and the media-adventitia boundary 206, and the position of the boundary is a tissue tracking. Identify which measurement point tracked by the part 113 corresponds to. Boundary detection may be determined by analyzing the received signal, or the examiner may manually input it using a trackball.
  • the motion of the blood flow portion may utilize that the motion of the blood vessel wall portion which is noisy is less noisy.
  • the movement of the blood flow part may be made use of the fact that during systole, it moves to the probe side by the influence of multiple echoes on the anterior wall of the blood vessel, and that the posterior wall intima moves to the opposite side.
  • the elastic modulus between the measurement points set at equal intervals determined by the tissue property value calculation unit 114 is high but the blood flow portion is low and the blood vessel intimal portion is high. Good.
  • the second measurement point from the top and the third measurement point from the bottom are measured on the boundary Identified as a point.
  • the tissue structure value calculation unit 114 calculates the amount of strain represented by (Expression 3) from the movement of the measurement point specified by the boundary detection unit 110.
  • the reference thickness Ws is the distance between the specified measurement points, that is, the width between the blood flow-intima boundary 205 and the media-adventitia boundary 206 (the width indicated by the double-headed arrow in FIG. 5).
  • the tissue property value calculation unit 114 can obtain the tissue property value between all the measurement points in the ROI 204 to obtain the tissue of each minute region of the blood vessel wall as shown in the conventional example. It is possible to determine the physical condition value and to observe the distribution of the tissue characteristic value in the blood vessel wall in detail.
  • tissue characteristic value calculation modes may be provided and controlled by the control unit 100.
  • the tissue characterization calculation mode for example, an average tissue characterization value mode and a tissue characterization value distribution mode are provided.
  • the average tissue property value mode the strain and the blood pressure average tissue property values of the entire region are defined with the portion surrounded by the boundary of the blood vessel wall as one region.
  • the tissue characterization value distribution mode is a mode to determine the tissue characterization value of a micro area of a fixed size in the blood vessel wall, as shown in the conventional example (see Non-Patent Document 1).
  • the control of the mode by the control unit 100 may be switched by the examiner using the user interface, or may be simultaneously calculated and displayed on two screens. As described above, by providing the average tissue characterization value mode and the tissue characterization value distribution mode and controlling the distribution of the tissue characterization value so as to be able to observe in detail, more useful diagnosis can be performed.
  • the numerical value calculated by the method described above is displayed, and the distribution of the tissue characterization value obtained by the method shown in the conventional example is displayed on the tomographic image. It may be displayed superimposed as a color.
  • FIG. 2 the average tissue characteristic value of the intima and media of the blood vessel wall has been described, the blood flow-intima boundary and the adventitia-peripheral tissue boundary Using the entire vessel wall You may determine the average texture value of the adventitia using the media-epicardium boundary and the adventitia-peripheral tissue boundary.
  • the tomographic image stored in the memory 105 and the received signal stored in the memory 111 may be read out, recalculated, and displayed again by switching operation during freezing. As a result, two types of tissue property values can be obtained without measuring again.
  • tissue property values such as more accurate strain, average elastic modulus or average viscosity coefficient
  • ultrasonic diagnosis for measuring the tissue property of the object tissue. It is useful as a cutting device.

Abstract

 本発明は、より正確な歪、平均弾性率および平均粘性率などの組織性状値を得ることができる超音波診断装置を提供することを目的とする。  本発明の超音波診断装置は、受信部103からの超音波エコーに基づく受信信号に基づいて、境界検出部110で被検体の組織境界を検出し、組織追跡部108で被検体の組織境界の動きを追跡する。そして、組織性状値算出部109で、組織追跡部108で追跡した前記被検体の組織境界の動きと血圧値取得部112から取り込んだ被検体の血圧値とに基づいて、被検体の組織性状値を算出する。

Description

明 細 書
超音波診断装置
技術分野
[0001] 本発明は、被検体の組織性状を測定する超音波診断装置に関する。
背景技術
[0002] 従来の超音波診断装置は、超音波を被検体に照射し、その反射エコー信号の強 度を対応する画素の輝度に変換することで、被検体の構造を断層画像として得るも のである。また、近年、反射エコー信号の主に位相を解析することで、被検体の動き を精密に計測し、そこから被検体組織の歪みや弾性率、粘性率などの組織性状を求 めるという試みがある。
[0003] 特許文献 1には、反射エコー信号の検波出力信号の振幅と位相の両者を用いて、 被検体の瞬間的な位置を決定することによって被検体組織の追跡を高精度に行な い、拍動による大振幅変位運動上の微小振動を捕らえる方法が記載されている。
[0004] 図 6を用いて、特許文献 1に示された被検体組織追跡方法を説明する。被検体の 同一方向に対して、 ΔΤの間隔をおいて送信された超音波パルスの、それぞれの受 信エコー信号を y(t)と y(t+ ΔΤ)とする。ある位置 (深度 )xに設定された計測点から の反射エコーの受信時刻 tは、パルス送信時刻を t=0、音速を Cとすると、 t =x/( CZ2)となる。このとき、 y(t )と y(t + ΔΤ)の間の位相差を Δ Θ、 t付近での超音波 の中心周波数を fとすると、この期間 ΔΤにおける計測点の移動量 Δχは、(式 1)で表 される。
[0005] Δ θ /Απϊ ··· (式 1)
[0006] これを Xに加算することで、 ΔΤ後の計測点の位置 (深度) χ'は、(式 2)によって求め ることがでさる。
[0007] χ'=χ+ Δχ ··· (式 2)
[0008] そして、これを繰り返すことにより、被検体内の計測点の位置を追跡していくことが できる。つまり、 χ'の深度力も反射されたエコーの受信時刻を t 'とし、続いて送受信さ れた受信信号を y (t+ 2 Δ T)とすると、 y (t ' + Δ T)と y (t ' + 2 Δ T)の位相差 Δ θ ' から (式 1)および (式 2)の演算により、 2 ΔΤ後の計測点の位置 X"を求めることができ る。
[0009] 特許文献 2には、特許文献 1の方法をさらに発展させ、心拍に起因する血管壁に設 定された計測点の各大振幅変位運動を精密に追跡し、その差から血管壁の歪み量 を計測し、歪み量と血圧差から局所弾性率を求める方法および、弾性率の空間分布 を画像表示する装置が記載されて 、る。
[0010] 図 7を用いて、特許文献 2に示された弾性率算出方法を説明する。特許文献 2によ れば、探触子 101は被検体に対して超音波を照射し、血管、特に動脈からのエコー を受信する。血管壁上に深さ方向に等間隔 Wsを隔てて計測点 A、 B、 Cを設定し、 計測点 A、 B、 Cからの受信信号を特許文献 1に示された方法により解析し、計測点 A 、 B、 Cの動きを追跡する。動脈は心拍によって収縮拡張を繰り返しており、このため 計測点 A、 B、 Cの動きは、追跡波形 TA、 TB、 TCに示すような周期的なものとなり、 心臓収縮期には急激に血管壁が広がり、心臓拡張期にはゆっくりと血管が収縮する という動きとなる。
[0011] 追跡波形 TA、 TB、 TCカゝら計測点 A— B間の厚み変化波形 WABおよび計測点 B
C間の厚み変化波形 WBCを求める。厚み変化波形 WABの変化量を AW(AB)と すると、計測点 A— B間の歪み量 ε (ΑΒ)は、(式 3)で表される。
[0012] ε (AB) = AW(AB) /Ws . · · (式 3)
[0013] このときの血圧差 Δ Ρ= (最高血圧) (最低血圧)とすると、計測点 Α— Β間の弾性 率 E (AB)は、(式 4)によって求めることができる。
[0014] Ε (ΑΒ) = Δ Ρ/ ε (ΑΒ) = A P-Ws/ AW(AB) · · · (式 4)
[0015] 同様にして計測点 B— C間の弾性率 E (BC)を求めることができ、さらに同様の操作 を断層画像上の複数点に対して行うことで、弾性率の分布画像が得られる。
[0016] 図 8は、従来例における実際の診断画面の一例である。画面は血管の縦割り断面 を表示している。画面に表示されるモノクロ断層画像 200上には、弾性率を計算する 領域 (ROI) 204が設定され、 ROI204内に縦横それぞれ別の等間隔に複数の計測 点が設定される。全ての計測点の動きは、(式 1)および (式 2)により計算され、計測 点間、つまり血管壁内の微小領域の弾性率は (式 3)および (式 4)により計算される。 このようにして得られた弾性率をカラーコードに変換に変換し、所定位置に配置する ことで、弾性率画像 201画像を作成する。この弾性率画像 201は、モノクロ断層画像 200上の対応する位置に重畳表示される。これにより血管壁内の弾性率の分布を詳 細に観察することができる。計測点間の距離は、縦方向が数十 um、横方向が百数 十 um程度である。画面上にはさらに、受信信号の振幅と画面上の輝度との関係を示 す断層画像用反射強度スケール 202、弾性率と画面上の色との関係を示す弾性率 画像用弾性率スケール 203、さらに図示はしていないが、平均弾性率値や、血管径 値、心電波形など診断に有用な各種情報が表示される。
[0017] 弾性率と実際の疾患との対応はまだ研究段階であるが、一例として非特許文献 1で は平均弾性率と動脈硬化危険因子の関連について発表されている。
[0018] 特許文献 1 :特開平 10— 5226号
特許文献 2:特開 2000 - 229078号
非特許文献 1:沖本他「新規診断法による頸動脈血管弾性特性と動脈硬化危険因子 との関連」第 42回日本糖尿病学会東北支部例会
発明の開示
発明が解決しょうとする課題
[0019] し力しながら、非特許文献 1で発表された平均弾性率は、基準厚み Wsを固定し、 固定された大きさの微小領域の弾性率値を、必要な領域に渡って平均して得られた ものである。一方、図 8における血管壁の平均弾性率は、血管壁上の微小領域の弹 性率を平均したものである。一般に、対象とする領域の平均弾性率といった場合、そ の領域全体の歪と、領域全体に力かる力から求めた弾性率が正 、平均弾性率と考 えられ、領域を分割してそれぞれにおける歪とそれに力かる力から求めた弾性率を 平均して、全体の平均弾性率とすることは、正しい平均弾性率と比較して誤差を含む ことになる。
[0020] 本発明は、上記事情に鑑みなされたもので、より正確な歪、平均弾性率および平均 粘性率などの組織性状値を得ることができる超音波診断装置を提供することを目的と する。
課題を解決するための手段 [0021] 本発明の超音波診断装置は、超音波が照射された被検体内部から反射してきた超 音波エコーに基づく受信信号を出力する受信部と、前記受信信号に基づいて、前記 被検体の組織境界の動きを追跡する組織追跡部と、前記組織追跡部で追跡した前 記被検体の組織境界の動きに基づ ヽて、前記被検体の組織性状値を算出する組織 性状値算出部と、を有するものである。本発明によれば、領域全体の歪から求めたよ り正 、平均組織性状値を得ることができる。
[0022] 本発明の超音波診断装置は、超音波が照射された被検体内部から反射してきた超 音波エコーに基づく受信信号を出力する受信部と、前記受信信号に基づいて、前記 被検体の組織境界を検出する境界検出部と、前記受信信号に基づいて、前記境界 検出部で検出した前記被検体の組織境界の動きを追跡する組織追跡部と、前記組 織追跡部で追跡した前記被検体の組織境界の動きに基づ ヽて、前記被検体の組織 性状値を算出する組織性状値算出部と、を有するものである。本発明によれば、領 域全体の歪力ゝら求めたより正しい平均組織性状値を得ることができる。
[0023] 本発明の超音波診断装置は、超音波が照射された被検体内部から反射してきた超 音波エコーに基づく受信信号を出力する受信部と、前記受信信号に基づいて、前記 被検体の組織の動きを追跡する組織追跡部と、前記受信信号と前記組織追跡部で 追跡した前記被検体の組織の動きとの少なくとも一方に基づ 、て、前記被検体の組 織境界を検出する組織境界検出部と、前記組織境界検出部で検出した前記被検体 の組織境界に対応する前記被検体の組織の動きに基づ!、て、前記被検体の組織性 状値を算出する組織性状値算出部と、を有するものである。本発明によれば、領域 全体の歪力ゝら求めたより正しい平均組織性状値を得ることができる。
[0024] 本発明の超音波診断装置は、少なくとも 2つの組織性状値算出モードを有し、第 1 の組織性状値算出モードでは、前記被検体の組織境界の動きに基づく組織性状値 を出力し、他の組織性状値算出モードでは、前記被検体の固定サイズの微小領域の 組織性状値を求めて出力するものを含む。本発明によれば、異なる 2種類の平均組 織性状値を求めることができる。
[0025] 本発明の超音波診断装置は、受信信号を記憶するメモリをさらに有し、フリーズ時 に算出モード切替を行った場合、前記メモリから読み出した受信信号に基づいて、 切替後の算出モードにおける組織性状値を出力するものを含む。本発明によれば、 再び計測することなく複数種類の組織性状値を得ることができる。
[0026] 本発明の超音波診断装置は、さらに前記被検体の組織性状値を表示する表示部 を有し、前記表示部は、前記被検体の組織境界の動きに基づく組織性状値と、前記 被検体の固定サイズの微小領域で算出した組織性状値とを、同時に表示するものを 含む。本発明によれば、異なる 2種類の平均組織性状値を同時に認識することがで きる。
[0027] 本発明の超音波診断装置は、前記組織境界の動きに基づぐ袓織性状値は数値で 、前記固定サイズの微小領域で算出した組織性状値は分布画像で表示するものを 含む。本発明によれば、異なる 2種類の平均組織性状値を同時に認識することがで きる。
[0028] 本発明の超音波診断装置は、さらに前記被検体の血圧値を取り込む血圧値取得 部を有し、前記組織性状値算出部は、前記被検体の組織境界の動きと前記血圧値 取得部で取り込んだ前記血圧値とに基づ!、て、前記被検体の組織性状値として少な くとも弾性率または粘性率のいずれかを算出するものを含む。本発明によれば、領域 全体の歪と、領域全体に力かる圧力から求めた被検体組織の特性が認識しやす ヽ 組織性状値を得ることができる。
発明の効果
[0029] 本発明によれば、より正確な歪、平均弾性率または平均粘性率などの組織性状値 を得ることができる。
図面の簡単な説明
[0030] [図 1]本発明の第 1の実施の形態の超音波診断装置のブロック図
[図 2]本発明の第 1の実施の形態の超音波診断装置の動作説明図
[図 3]本発明の第 1の実施の形態の超音波診断装置の動作説明図
[図 4]本発明の第 2の実施の形態の超音波診断装置のブロック図
[図 5]本発明の第 2の実施の形態の超音波診断装置の動作説明図
[図 6]反射エコー信号の検波出力信号を利用した被検体組織追跡方法を説明する 図 O
圆 7]組織追跡波形力 歪み量を求める方法を説明する図 圆1—
〇 8]従来の超音波診断装置のモニタ画面の一例を示す図
符号の説明
制御部
101 探触子
102 送信部
103 受信部
104 断層画像処理部
105 メモリ
106 画像合成部
107 モニタ
108 組織追跡部
109 組織性状値算出部
110 境界検出部
111 メモリ
112 血圧値取得部
113 組織追跡部
114 組織性状値算出部
115 境界検出部
200 断層画像
201 弾性率画像
202 断層画像用反射強度スケール
203 弾性率画像用弾性率スケール
204 ROI
205 血流 内膜境界
206 外膜—周辺組織境界
207 計測点
発明を実施するための最良の形態 [0032] 以下、本発明の実施の形態について、図面を用いて説明する。
[0033] (第 1の実施の形態)
図 1は、本発明の第 1の実施の形態の超音波診断装置のブロック図である。図 1の 超音波診断装置は、制御部 100、探触子 101、送信部 102、受信部 103、断層画像 処理部 104、メモリ 105、画像合成部 106、モニタ 107、組織追跡部 108、組織性状 値算出部 109、境界検出部 110、メモリ 111、血圧値取得部 112を含んで構成される
[0034] 制御部 100は、超音波診断装置全体を制御するものであり、図示していないが、キ 一ボードやトラックボール、スィッチ、ボタンといったユーザーインターフェースも制御 部 100に接続されている。
[0035] 送信部 102は、制御部 100の指示を受けて、指定されたタイミングで探触子 101を 駆動する高圧の送信信号を発生する。探触子 101は、送信部 102で発生した送信 信号を超音波に変換して被検体に照射するとともに、被検体内部から反射してきた 超音波エコーを電気信号に変換する。探触子 101内には複数の圧電変換素子が配 置され、これらの圧電変換素子の選択、および、圧電変換素子に電圧を与えるタイミ ングによって送信する超音波の偏向角およびフォーカスを制御する。
[0036] 受信部 103は、超音波エコーを電気信号に変換した受信信号を増幅するとともに、 各圧電変換素子で受信された受信信号毎に異なる遅延を与えて加算することで、定 められた位置 (フォーカス)または方向(偏向角)からの超音波のみに基づく受信信号 を出力する。
[0037] 断層画像処理部 104は、フィルタ、検波器、対数増幅器などカゝらなり、受信部 103 から出力される受信信号の少なくとも振幅を解析して、被検体の内部構造を画像ィ匕 する。境界検出部 110は受信信号の少なくとも振幅を解析して、被検体の組織の境 界、具体的には少なくとも血管壁の血流 内膜境界、中膜一外膜境界、外膜一周辺 組織境界のいずれかを検出し、その境界位置を組織追跡部 108に出力する。組織 追跡部 108は、少なくとも受信信号の位相を解析して計測点の動きを追跡する。例え ば、従来例に示す (式 1)および (式 2)を用いて、計測点の動きを追跡してもよい。計 測点は、境界検出部 110から出力された境界位置、または、深さ方向に等間隔に設 定された位置である。
[0038] 血圧値取得部 112は、血圧値を取得する手段であり、検者が血圧値の手入力に使 用するキーボードであっても、接続された血圧計そのものであってもよい。
[0039] 組織性状値算出部 109は、追跡した被検体組織の境界部の動きから(式 3)で示さ れる歪み量を計算し、得られた歪み量と血圧値から、(式 4)で示される弾性率 E、ま たは (式 5)で示される粘性率 7?の少なくとも一方を算出する。
[0040] Ρ= τ? ά ε /dt+E ε · · · (式 5)
[0041] そして、得られた弾性率 Εまたは粘性率 7?を、組織性状を示す数値や組織性状分 布画像として出力する。
[0042] 画像合成部 106は、断層画像と、少なくとも組織性状を示す数値や組織性状分布 画像のいずれか一方を合成し、モニタ 107に表示する。
[0043] メモリ 111は、受信信号を記憶するものであり、超音波送受信停止時 (以下フリーズ 状態という)に組織性状値を再計算する際に利用される。メモリ 105は、断層画像を 記憶するものであり、フリーズ状態のときに組織性状値に同期した断層画像を出力す る。
[0044] 以上のように構成された超音波診断装置の動作について、図 2および図 3を用いて 説明する。なお、図 2および図 3では、組織性状値として弾性率を利用しているが、こ れに限るものではなぐ歪や粘性率、その他の組織性状値を利用してもよい。歪を利 用する場合は、血圧値が不要であるので、血圧値取得部 112は省略可能である。
[0045] 図 2および図 3は、図 8と同様の、血管の縦割り断面を表示した診断画面である。画 面に表示されるモノクロ断層画像 200上には、組織性状値を計算する領域 (ROI) 20 4が設定されている。
[0046] この超音波診断装置では、まず境界検出部 110は、受信信号を解析して、血流 内膜境界 205、および中膜-外膜境界 206を検出する。境界の検出は、受信信号を 解析して求めてもよいし、検者がトラックボールを使って手動で入力してもよい。一例 として、血流および中膜は受信信号の振幅が小さいので、受信信号の振幅を解析し て、振幅が急激に大きくなるところを境界とする。また、カラードプラ法などを用いて、 血流を検出して、血流-内膜境界 205を検出してもよい。なお、境界位置が検出す るまでもなく明確な場合には、境界検出部 115を設けず、あらかじめ装置に情報を登 録しておいたり、検者が測定前に入力するようにしてもよい。例えば超音波以外のモ ダリティによって位置が特定されている場合では、そのモダリティカも情報を得るよう にしてもよい。また、境界位置が皮膚表面であり、探触子 101と皮膚の間にスタンドォ フ材を用いる場合には、そのスタンドオフ材のサイズをあら力じめ設定するようにして ちょい。
[0047] 組織追跡部 108は、境界検出部 110で検出された境界上、または境界付近に計測 点を設定し、この計測点の動きを追跡する。図 2では、計測点を境界線上の白丸で 示してある。組織性状値算出部 109は、追跡した被検体組織の境界部の動きから( 式 3)で示される歪み量を計算するが、この際、基準厚み Wsは、血流 内膜境界 20 5と中膜-外膜境界 206との間の幅(図 2に両端矢印で示す幅)とする。これにより、 境界間の部分 (図 2では血管内膜および中膜領域)の正確な平均組織性状値を求め ることがでさる。
[0048] 図 3は、組織性状値をカラーコードに変換し、断層画像 200に重畳表示した診断画 面である。図 3の例では、境界の間は縦方向に同じ色で表示される。この組織性状値 を横方向に平均することで、血管壁のより正確な平均組織性状値を求めることができ る。また、境界は一般的に受信信号の振幅が大きいところなので SN比が大きぐ他 の部分よりも正確に組織の動きの追跡を行なうことができるため、さらに正確に組織 性状値を求めることができる。
[0049] なお、組織追跡部 108において、境界検出部 110で検出された境界線上ではなく 、 ROI204中に等間隔に複数の計測点を設定することで、従来例に示したような、血 管壁の微小領域それぞれの組織性状値を求めることができ、血管壁内の組織性状 値の分布を詳細に観察することができる。
[0050] (第 2の実施の形態)
図 4は、本発明の第 2の実施の形態の超音波診断装置のブロック図である。図 1の 超音波診断装置と共通する部分については同じ符号を付し、説明を省略する。
[0051] 組織追跡部 113は、受信信号間の位相差から (式 1)および (式 2)を用いて、深さ 方向に等間隔で設定された計測点位置の動きを追跡する。境界検出部 115は、少 なくとも受信信号、追跡した計測点の動きのいずれかを解析して、組織の境界、具体 的には少なくとも血管壁の血流 内膜境界、中膜一外膜境界、外膜一周辺組織境 界の ヽずれかを検出し、その境界位置が組織追跡部 113で追跡されたどの計測点 に相当するかを特定する。組織性状値算出部 114は、境界検出部 113で特定された 計測点の動きから (式 3)で示される歪み量を計算し、得られた歪み量と血圧値から、 (式 4)で示される弾性率または (式 5)で示される粘性率の少なくとも一方を算出する 。そして、得られた弾性率または粘性率を、組織性状を示す数値や組織性状分布画 像として出力する。
[0052] 以上のように構成された超音波診断装置の動作について、図 5を用いて説明する。
なお、図 5では、組織性状値として弾性率を利用しているが、これに限るものではなく 、歪や粘性率、その他の組織性状値を利用してもよい。歪を利用する場合は、血圧 値が不要であるので、血圧値取得部 112は省略可能である。
[0053] 図 5は、図 8と同様の、血管の縦割り断面を表示した診断画面である。画面に表示 されるモノクロ断層画像 200上には、組織性状値を計算する領域 (ROI) 204が設定 され、 ROI204内に縦横それぞれ等間隔に複数の計測点が設定される。図 5中、計 測点は白丸で示す。
[0054] 組織追跡部 113は、従来例と同様、全ての計測点の動きを (式 1)および (式 2)を用 いて追跡する。境界検出部 115は、少なくとも受信信号または追跡した被検体組織 の動きのいずれかを解析して、血流—内膜境界 205および中膜—外膜境界 206を 検出し、その境界位置が組織追跡部 113で追跡されたどの計測点に相当するかを 特定する。境界の検出は、受信信号を解析して求めてもよいし、検者がトラックボー ルを使って手動で入力してもよい。一例として、前述の受信信号の振幅を使う方法の 他に、血流部分の動きはノイズが多ぐ血管壁部分の動きはノイズが少ないことを利 用してもよい。また、血流部分の動きは、心収縮期には、血管前壁の多重エコーの影 響により探触子側に動き、血管後壁内膜は反対側に動くということを利用してもよい。 また、図示していないが、組織性状値算出部 114によって求められた等間隔に設定 された計測点間の弾性率が、血流部分は低ぐ血管内膜部分は高いことを利用して もよい。図 5では、上から 2つ目の計測点と、下から 3つ目の計測点が境界上の計測 点として特定される。
[0055] 組織性状値算出部 114は、境界検出部 110で特定した計測点の動きから(式 3)で 示される歪み量を計算する。この際、基準厚み Wsは、特定された計測点間の距離、 つまり、血流—内膜境界 205および中膜—外膜境界 206間の幅(図 5に両端矢印で 示す幅)とする。これにより、境界間の部分(図 5では血管内膜および中膜領域)の正 確な平均組織性状値を求めることができる。また、境界は一般的に受信信号の振幅 が大きいところなので SN比が大きぐ他の部分よりも正確に組織の追跡を行なうこと ができるため、さらに正確に組織性状値を求めることができる。
[0056] なお、組織性状値算出部 114で ROI204中の全ての計測点間の組織性状値を求 めるようにすることで、従来例に示したような、血管壁の微小領域それぞれの組織性 状値を求めることができ、血管壁内の組織性状値の分布を詳細に観察することがで きる。
[0057] また、組織性状値算出モードを少なくとも 2つ設け、制御部 100によって制御しても よい。組織性状算出モードとしては、例えば平均組織性状値モードと組織性状値分 布モードを設ける。ここで、平均組織性状値モードは、以上の実施の形態で説明した ように、血管壁の境界に囲まれた部分を 1つの領域として領域全体の歪と血圧力 平 均的な組織性状値を求めるモードであり、組織性状値分布モードは、従来例 (非特 許文献 1参照)に示したように、血管壁内の固定サイズの微小領域の組織性状値を 求めるモードである。
[0058] 制御部 100によるモードの制御は、検者がユーザーインターフェースを用いて切り 換えてもよいし、同時に計算して 2画面表示してもよい。このように、平均組織性状値 モードと組織性状値分布モードを設け、組織性状値の分布を詳細に観察できるよう に制御することにより、さらに有用な診断を行うことができる。
[0059] また、モニタ 107に表示する際、平均組織性状値は、以上説明した方法によって算 出した数値を表示し、断層画像上には従来例に示した方法により求めた組織性状値 の分布をカラーとして重畳表示してもよ ヽ。
[0060] また、図 2、図 3、および図 5の説明では、血管壁の内中膜の平均組織性状値につ いて説明したが、血流—内膜境界と外膜—周辺組織境界を用いて血管壁全体の平 均組織性状値を求めてもよいし、中膜—外膜境界と外膜—周辺組織境界を用いて 外膜の平均組織性状値を求めてもょ ヽ。
[0061] さらに、フリーズ中の切り換え操作により、メモリ 105に記憶された断層画像、メモリ 1 11に記憶した受信信号を読み出し、再計算させて表示しなおすようにしてもよい。こ れにより、再び計測することなく 2種類の組織性状値を得ることができる。
[0062] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 9月 20日出願の日本特許出願 (特願 2005— 272571)に基づくも のであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0063] 以上説明したように、本発明によれば、より正確な歪、平均弾性率または平均粘性 率などの組織性状値を得ることができ、被検体組織の組織性状を計測する超音波診 断装置として有用である。

Claims

請求の範囲
[1] 超音波が照射された被検体内部力 反射してきた超音波エコーに基づく受信信号 を出力する受信部と、
前記受信信号に基づ 、て、前記被検体の組織境界の動きを追跡する組織追跡部 と、
前記組織追跡部で追跡した前記被検体の組織境界の動きに基づ!/ヽて、前記被検 体の組織性状値を算出する組織性状値算出部と、
を有する超音波診断装置。
[2] 超音波が照射された被検体内部力 反射してきた超音波エコーに基づく受信信号 を出力する受信部と、
前記受信信号に基づ 、て、前記被検体の組織境界を検出する境界検出部と、 前記受信信号に基づ 、て、前記境界検出部で検出した前記被検体の組織境界の 動きを追跡する糸且織追跡部と、
前記組織追跡部で追跡した前記被検体の組織境界の動きに基づ!ヽて、前記被検 体の組織性状値を算出する組織性状値算出部と、
を有する超音波診断装置。
[3] 超音波が照射された被検体内部力 反射してきた超音波エコーに基づく受信信号 を出力する受信部と、
前記受信信号に基づ 、て、前記被検体の組織の動きを追跡する組織追跡部と、 前記受信信号と前記組織追跡部で追跡した前記被検体の組織の動きとの少なくと も一方に基づいて、前記被検体の組織境界を検出する組織境界検出部と、 前記組織境界検出部で検出した前記被検体の組織境界に対応する前記被検体の 組織の動きに基づ!、て、前記被検体の組織性状値を算出する組織性状値算出部と を有する超音波診断装置。
[4] 請求項 1な!、し 3の 、ずれか 1項記載の超音波診断装置であって、
少なくとも 2つの組織性状値算出モードを有し、
第 1の組織性状値算出モードでは、前記被検体の組織境界の動きに基づぐ袓織性 状値を出力し、
他の組織性状値算出モードでは、前記被検体の固定サイズの微小領域の組織性 状値を求めて出力する超音波診断装置。
[5] 請求項 4記載の超音波診断装置であって、
受信信号を記憶するメモリをさらに有し、
フリーズ時に算出モード切替を行った場合、前記メモリから読み出した受信信号に 基づいて、切替後の算出モードにおける組織性状値を出力する超音波診断装置。
[6] 請求項 1な!、し 5の 、ずれか 1項記載の超音波診断装置であって、
さらに前記被検体の組織性状値を表示する表示部を有し、
前記表示部は、前記被検体の組織境界の動きに基づぐ袓織性状値と、前記被検体 の固定サイズの微小領域で算出した組織性状値とを、同時に表示する超音波診断 装置。
[7] 請求項 6記載の超音波診断装置であって、
前記組織境界の動きに基づく組織性状値は数値で、前記固定サイズの微小領域 で算出した組織性状値は分布画像で表示する超音波診断装置。
[8] 請求項 1な!、し 7の 、ずれか 1項記載の超音波診断装置であって、
さらに前記被検体の血圧値を取り込む血圧値取得部を有し、
前記組織性状値算出部は、前記被検体の組織境界の動きと前記血圧値取得部で 取り込んだ前記血圧値とに基づいて、前記被検体の組織性状値として少なくとも弾 性率または粘性率のいずれかを算出する超音波診断装置。
PCT/JP2006/318293 2005-09-20 2006-09-14 超音波診断装置 WO2007034738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/067,203 US20090143675A1 (en) 2005-09-20 2006-09-14 Ultrasonic diagnostic apparatus
EP06798005A EP1927317A4 (en) 2005-09-20 2006-09-14 ULTRASOUND DIAGNOSTIC TOOL
JP2007536468A JPWO2007034738A1 (ja) 2005-09-20 2006-09-14 超音波診断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005272571 2005-09-20
JP2005-272571 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007034738A1 true WO2007034738A1 (ja) 2007-03-29

Family

ID=37888783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318293 WO2007034738A1 (ja) 2005-09-20 2006-09-14 超音波診断装置

Country Status (4)

Country Link
US (1) US20090143675A1 (ja)
EP (1) EP1927317A4 (ja)
JP (1) JPWO2007034738A1 (ja)
WO (1) WO2007034738A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173177A (ja) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd 超音波診断装置
WO2010024168A1 (ja) * 2008-08-29 2010-03-04 株式会社 日立メディコ 超音波診断装置
WO2012046433A1 (ja) * 2010-10-08 2012-04-12 パナソニック株式会社 超音波診断装置、及び超音波診断方法
JP2012100850A (ja) * 2010-11-10 2012-05-31 Fujifilm Corp 超音波診断装置および超音波診断方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899336B1 (fr) 2006-03-29 2008-07-04 Super Sonic Imagine Procede et dispositif pour l'imagerie d'un milieu viscoelastique
CA2685886C (en) 2007-05-16 2016-02-23 Super Sonic Imagine Method and device for measuring a mean value of visco-elasticity of a region of interest
KR101060345B1 (ko) * 2008-08-22 2011-08-29 삼성메디슨 주식회사 Arfi를 이용하여 탄성영상을 형성하는 초음파 시스템 및 방법
US10172527B2 (en) * 2009-07-31 2019-01-08 Supersonic Imagine Method and apparatus for measuring a physical parameter in mammal soft tissues by propagating shear waves
JP5209026B2 (ja) * 2010-10-27 2013-06-12 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP5294340B2 (ja) 2010-10-27 2013-09-18 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP6996035B2 (ja) * 2017-11-02 2022-01-17 富士フイルムヘルスケア株式会社 超音波診断装置、および、生体組織の物性評価方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105226A (ja) 1996-06-24 1998-01-13 Kagaku Gijutsu Shinko Jigyodan 超音波診断装置
JP2889568B1 (ja) * 1998-05-18 1999-05-10 正男 伊藤 血管膜厚測定装置及び動脈硬化診断装置
JP2000060853A (ja) * 1998-08-20 2000-02-29 Hitachi Medical Corp 超音波診断装置
JP2000229078A (ja) 1999-02-10 2000-08-22 Japan Science & Technology Corp 血管病変診断システムおよび診断プログラム記憶媒体
JP2000271117A (ja) * 1999-03-25 2000-10-03 Aloka Co Ltd 超音波血管計測装置
JP2004215968A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 超音波診断装置および超音波診断装置の制御方法
JP2004357892A (ja) * 2003-06-04 2004-12-24 Shimadzu Corp 超音波診断装置
JP2005211590A (ja) * 2004-02-02 2005-08-11 Matsushita Electric Ind Co Ltd 超音波距離測定方法、超音波距離測定装置および超音波診断装置
JP2005272571A (ja) 2004-03-24 2005-10-06 Yokohama Rubber Co Ltd:The 重荷重タイヤ用サイドトレッドゴム組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524636A (en) * 1992-12-21 1996-06-11 Artann Corporation Dba Artann Laboratories Method and apparatus for elasticity imaging
US6267728B1 (en) * 1999-06-23 2001-07-31 Steven Mark Hayden Method for evaluating atherosclerosis and its affect on the elasticity of arterial walls
US6882106B2 (en) * 2002-05-24 2005-04-19 Wen-Hao Kao Electroluminescent display device
US20040067591A1 (en) * 2002-10-04 2004-04-08 Wisconsin Alumni Research Foundation Tissue mimicking elastography phantoms
WO2004103185A1 (ja) * 2003-05-20 2004-12-02 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
WO2004110280A1 (ja) * 2003-06-13 2004-12-23 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
EP1786332A4 (en) * 2004-07-30 2009-10-28 Wisconsin Alumni Res Found METHOD AND APPARATUS FOR PERFORMING IMPROVED ULTRASONIC VOLTAGE MEASUREMENTS OF SOFT TISSUE
WO2006022238A1 (ja) * 2004-08-25 2006-03-02 Hitachi Medical Corporation 超音波診断装置
US20060074315A1 (en) * 2004-10-04 2006-04-06 Jianming Liang Medical diagnostic ultrasound characterization of cardiac motion
JP5258291B2 (ja) * 2005-06-07 2013-08-07 株式会社日立メディコ 超音波診断装置及び超音波弾性像取得方法
US20070015994A1 (en) * 2005-07-14 2007-01-18 Hyundae Hong In-vivo measurement of biomechanical properties of internal tissues

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105226A (ja) 1996-06-24 1998-01-13 Kagaku Gijutsu Shinko Jigyodan 超音波診断装置
JP2889568B1 (ja) * 1998-05-18 1999-05-10 正男 伊藤 血管膜厚測定装置及び動脈硬化診断装置
JP2000060853A (ja) * 1998-08-20 2000-02-29 Hitachi Medical Corp 超音波診断装置
JP2000229078A (ja) 1999-02-10 2000-08-22 Japan Science & Technology Corp 血管病変診断システムおよび診断プログラム記憶媒体
JP2000271117A (ja) * 1999-03-25 2000-10-03 Aloka Co Ltd 超音波血管計測装置
JP2004215968A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 超音波診断装置および超音波診断装置の制御方法
JP2004357892A (ja) * 2003-06-04 2004-12-24 Shimadzu Corp 超音波診断装置
JP2005211590A (ja) * 2004-02-02 2005-08-11 Matsushita Electric Ind Co Ltd 超音波距離測定方法、超音波距離測定装置および超音波診断装置
JP2005272571A (ja) 2004-03-24 2005-10-06 Yokohama Rubber Co Ltd:The 重荷重タイヤ用サイドトレッドゴム組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OKIMOTO ET AL.: "Relevance between an elastic characteristic of a carotid artery and a risk factor of an arteriosclerotic disease determined by a new diagnostic method", 42ND REGULAR MEETING HELD AT TOHOKU SUBDIVISION OF JAPAN DIABETES SOCIETY
See also references of EP1927317A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173177A (ja) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd 超音波診断装置
WO2010024168A1 (ja) * 2008-08-29 2010-03-04 株式会社 日立メディコ 超音波診断装置
US8485976B2 (en) 2008-08-29 2013-07-16 Hitachi Medical Corporation Ultrasonic diagnostic apparatus
WO2012046433A1 (ja) * 2010-10-08 2012-04-12 パナソニック株式会社 超音波診断装置、及び超音波診断方法
CN102639064A (zh) * 2010-10-08 2012-08-15 松下电器产业株式会社 超声波诊断装置、以及超声波诊断方法
JP5265810B2 (ja) * 2010-10-08 2013-08-14 パナソニック株式会社 超音波診断装置、及び体内観察方法
JP2012100850A (ja) * 2010-11-10 2012-05-31 Fujifilm Corp 超音波診断装置および超音波診断方法

Also Published As

Publication number Publication date
US20090143675A1 (en) 2009-06-04
EP1927317A4 (en) 2010-09-01
EP1927317A1 (en) 2008-06-04
JPWO2007034738A1 (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
US9826959B2 (en) Ultrasonic diagnostic device
JP4890554B2 (ja) 超音波診断装置
WO2007034738A1 (ja) 超音波診断装置
JP4667394B2 (ja) 超音波診断装置
JP5501999B2 (ja) 超音波診断装置および弾性指標信頼性判定方法
JP5486257B2 (ja) 超音波診断装置及び弾性指標算出方法
US8591417B2 (en) Ultrasonic diagnostic apparatus
JP4667392B2 (ja) 超音波診断装置
JP5292440B2 (ja) 超音波診断装置
JP2007006914A (ja) 超音波診断装置
JP5384919B2 (ja) 超音波診断装置
US9579084B2 (en) Ultrasound diagnostic apparatus
JP4918369B2 (ja) 超音波診断装置
JP5400095B2 (ja) 超音波診断装置
JP2009039277A (ja) 超音波診断装置
JP5346555B2 (ja) 動脈硬化リスク表示機能を備えた超音波診断装置
JP5148203B2 (ja) 超音波診断装置
WO2007080870A1 (ja) 超音波診断装置
JP2004215968A (ja) 超音波診断装置および超音波診断装置の制御方法
JP5346990B2 (ja) 超音波診断装置
EP2005890A2 (en) Image processing device, ultrasonic imaging device using the same, and image processing method
JP2017189192A (ja) 超音波診断装置
JPWO2006126485A1 (ja) 超音波診断装置
JP2008183118A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536468

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006798005

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12067203

Country of ref document: US