WO2012046433A1 - 超音波診断装置、及び超音波診断方法 - Google Patents

超音波診断装置、及び超音波診断方法 Download PDF

Info

Publication number
WO2012046433A1
WO2012046433A1 PCT/JP2011/005568 JP2011005568W WO2012046433A1 WO 2012046433 A1 WO2012046433 A1 WO 2012046433A1 JP 2011005568 W JP2011005568 W JP 2011005568W WO 2012046433 A1 WO2012046433 A1 WO 2012046433A1
Authority
WO
WIPO (PCT)
Prior art keywords
contour
epicardial
blood vessel
ultrasonic diagnostic
diagnostic apparatus
Prior art date
Application number
PCT/JP2011/005568
Other languages
English (en)
French (fr)
Inventor
文平 田路
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11830367.6A priority Critical patent/EP2626009A4/en
Priority to CN201180004808.1A priority patent/CN102639064B/zh
Priority to JP2012515040A priority patent/JP5265810B2/ja
Publication of WO2012046433A1 publication Critical patent/WO2012046433A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic diagnostic method, and more particularly to an ultrasonic diagnostic apparatus that performs in-vivo observation based on reflected ultrasonic waves acquired from the body of a subject using an ultrasonic probe.
  • an ultrasonic diagnostic apparatus has been used to detect arteriosclerosis and vascular disease at an early stage. Specifically, the intima-media thickness (hereinafter referred to as IMT), which is the thickness of the intima and intima of the blood vessel wall, is measured using an ultrasonic diagnostic apparatus. Yes. In addition, the presence or absence of plaque generated by narrowing of the lumen of a blood vessel has been confirmed using an ultrasonic diagnostic apparatus. This is because it has become clear that as the arteriosclerosis progresses, the IMT becomes thicker and plaques are formed. Arteriosclerosis is considered to progress systemically, and mainly the superficial carotid artery is a measurement target at the time of IMT measurement and determining the presence or absence of plaque.
  • IMT intima-media thickness
  • the plaque means a raised lesion in which the inner wall of the blood vessel locally protrudes inside the blood vessel (lumen).
  • This plaque takes various forms such as thrombus, fatty and fibrous and can cause stenosis and occlusion of the carotid artery, as well as cerebral infarction and cerebral ischemia.
  • the detection of the plaque shape by the ultrasonic diagnostic apparatus is performed using an ultrasonic image of the blood vessel.
  • the ultrasonic diagnostic apparatus transmits an ultrasonic wave into a subject via a probe, and forms an ultrasonic image (for example, a B-mode image) based on a reflected wave generated from the subject. Then, the examiner determines the presence or absence of plaque by looking at the ultrasonic image.
  • the examiner determines the presence or absence of plaque
  • the examiner manually designates (sketches) the shape of the epivascular and intima in the ultrasound image, and makes a diagnosis based on this sketch. I was going. Specifically, the examiner sketches the peripheral shape of the adventitia as the adventitia contour line, and further sketches the peripheral shape of the lumen as the lumen contour line with respect to the B-mode image. Finally, based on the shape of the sketch, the inspector makes a diagnosis such as the presence or absence of plaque (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 it is necessary to manually specify the positions of the epicardial contour and the lumen contour of the blood vessel wall on the ultrasonic image in an offline state after image acquisition. That is, when plaque detection is performed by this conventional diagnostic method, manual contour designation is required, which takes time for the inspector. As a result, there are problems that the inspection time becomes long and fluctuations in the inspection result by the inspector occur.
  • Non-Patent Document 2 and Patent Document 1 automatically extract a blood vessel wall contour by applying a dynamic contour search process to a B-mode image that is an ultrasonic diagnostic image. Is described. By this method, it is possible to reduce the burden on the inspector by reducing manual labor and shorten the inspection time.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide an ultrasonic diagnostic apparatus that can more accurately extract the contour of a blood vessel wall.
  • an ultrasonic diagnostic apparatus is an ultrasonic diagnostic apparatus that performs in-vivo observation based on reflected ultrasonic waves acquired from the body of a subject using an ultrasonic probe.
  • a B-mode image generation unit that generates a B-mode image based on the reflected ultrasound, and a blood flow information generation unit that generates blood flow information indicating a region in which blood flow flows based on the reflected ultrasound
  • a lumen contour extracting unit that extracts a lumen contour of a blood vessel based on the blood flow information
  • a temporary epicardial contour setting unit that sets a temporary epicardial contour that includes the lumen contour
  • the temporary epicardium an epicardial contour extracting unit that extracts the epicardial contour of the blood vessel using the B-mode image using the contour as a first initial contour.
  • the ultrasonic diagnostic apparatus extracts a lumen contour based on blood flow information.
  • the ultrasonic diagnostic apparatus can extract the lumen contour more accurately than when extracting the lumen contour using the B-mode image.
  • the ultrasonic diagnostic apparatus sets a temporary epicardial contour using the lumen contour extracted based on the blood flow information, and extracts the epicardial contour using the temporary epicardial contour.
  • the ultrasonic diagnostic apparatus can extract the outer membrane contour more accurately. In this way, the ultrasonic diagnostic apparatus can extract the contour of the blood vessel wall more accurately.
  • the ultrasonic diagnostic apparatus further includes a blood vessel wall extracting unit that extracts a blood vessel wall region in which a blood vessel wall exists from the lumen contour and the outer membrane contour, and a plaque region in which plaque exists from the blood vessel wall region. And a plaque region extracting unit for extracting.
  • the ultrasonic diagnostic apparatus can extract the plaque region more accurately.
  • the ultrasonic diagnostic apparatus may further include a three-dimensional data generation unit that generates three-dimensional data indicating the blood vessel wall region and the plaque region, and a display unit that displays the three-dimensional data.
  • the ultrasonic diagnostic apparatus can display the plaque region as three-dimensional data.
  • the temporary epicardial contour setting unit may set the circular temporary epicardial contour that includes the lumen contour.
  • the ultrasonic diagnostic apparatus can set a temporary epicardial contour that is close to the shape of the epicardial contour.
  • the temporary epicardial contour setting unit sets a circle having a radius larger than the maximum distance from the central point to the lumen contour, with the center point of the lumen contour as the center, and the set circle Is used as a second initial contour to search for a contour that minimizes the sum of the internal deformation energy of the contour line and the image energy representing the degree of matching between the contour line and the image with respect to the blood flow information.
  • One dynamic contour search process may be performed, and the contour obtained by the search may be set as the temporary epicardial contour.
  • the ultrasonic diagnostic apparatus can set a temporary epicardial contour that is close to the shape of the epicardial contour.
  • the temporary epicardial contour setting unit may perform the convergence process by making the weight of the image energy smaller than the internal deformation energy in the first active contour search process.
  • the ultrasonic diagnostic apparatus can perform shape restriction so that the contour line does not protrude inward in the active contour search.
  • the epicardial contour extraction unit uses the temporary epicardial contour as the first initial contour, and matches the internal deformation energy of the contour line and the degree of matching between the contour line and the image with respect to the B-mode image.
  • a second active contour search process for searching for a contour that minimizes the sum with the image energy representing the contour may be performed, and the contour obtained by the search may be extracted as the epicardial contour.
  • the ultrasonic diagnostic apparatus can extract the outer membrane contour more accurately.
  • the epicardial contour extraction unit calculates a weight of the image energy with respect to the internal deformation energy in the second dynamic contour search process as a second value. If the clarity is a third value greater than the first value, the weight may be set to a fourth value greater than the second value.
  • the ultrasonic diagnostic apparatus can accurately extract the epicardial contour according to the drawing state of the blood vessel contour.
  • the epicardial contour extraction unit may change the weight according to the clarity for each contour point in the B-mode image.
  • the ultrasonic diagnostic apparatus can extract the outer membrane contour more accurately.
  • the blood flow information generation unit may generate the blood flow information using a color Doppler method.
  • the epicardial contour extraction unit further includes an initial contour position adjustment unit, and the initial contour position adjustment unit calculates a center point of a blood vessel region from the B-mode image, and the temporary epicardium is set at the center point.
  • the temporary epicardial contour may be moved to bring the center point of the contour closer.
  • the ultrasonic diagnostic apparatus can stably and correctly provide an epicardial contour even when an image shift occurs between a B-mode image and blood flow information. Can be extracted.
  • the present invention can be realized not only as such an ultrasonic diagnostic apparatus, but also as an ultrasonic diagnostic method, a blood vessel contour extraction method, a blood vessel wall extraction method, which has characteristic means included in the ultrasonic diagnostic apparatus as a step, or It can be realized as a plaque region extraction method or as a program for causing a computer to execute such characteristic steps. Needless to say, such a program can be distributed via a non-transitory computer-readable recording medium such as a CD-ROM and a transmission medium such as the Internet.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such an ultrasonic diagnostic apparatus, or as an ultrasonic diagnostic system including such an ultrasonic diagnostic apparatus. You can.
  • LSI semiconductor integrated circuit
  • the present invention can provide an ultrasonic diagnostic apparatus that can more accurately extract the contour of a blood vessel wall.
  • FIG. 1 is a block diagram of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of the blood vessel according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart of blood vessel wall extraction processing by the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 5A is a diagram showing a B-mode image of a blood vessel according to Embodiment 1 of the present invention.
  • FIG. 5B is a diagram showing an outline displayed on the B-mode image according to Embodiment 1 of the present invention.
  • FIG. 6A is a diagram showing an active contour search result when a normal energy function is set according to Embodiment 1 of the present invention.
  • FIG. 6B is a diagram illustrating a dynamic contour search result when an energy function that places importance on an outward search is set according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing a high luminance region (noise) in the blood vessel wall according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing a temporary epicardial contour extraction process according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing the extracted temporary epicardial contour according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart of contour extraction processing by the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a block diagram of an ultrasonic diagnostic apparatus according to a modification of the first embodiment of the present invention.
  • FIG. 12A is a diagram showing a three-dimensional data generation process according to a modification of the first embodiment of the present invention.
  • FIG. 12B is a diagram showing a three-dimensional data generation process according to a modification of the first embodiment of the present invention.
  • FIG. 13 is a block diagram of an ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention.
  • Embodiment 1 The ultrasound diagnostic apparatus according to Embodiment 1 of the present invention extracts a lumen contour of a blood vessel based on a blood flow image, and sets a temporary epicardial contour that includes the extracted lumen contour. Further, the ultrasonic diagnostic apparatus uses the set provisional epicardial contour as the initial contour, and extracts the epicardial contour of the blood vessel using the B-mode image.
  • the ultrasonic diagnostic apparatus can more accurately extract the contour of the blood vessel wall.
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus 150 shown in FIG. 1 performs in-vivo observation based on the reflected ultrasonic wave 201 acquired from the body of the subject with an ultrasonic probe.
  • the ultrasonic diagnostic apparatus 150 includes a B-mode image generation unit 104, a blood flow image generation unit 105, a lumen contour extraction unit 106, a temporary epicardial contour setting unit 107, and an epicardial contour extraction unit 108. .
  • the B mode image generation unit 104 generates a B mode image 202 based on the reflected ultrasound 201.
  • the blood flow image generation unit 105 corresponds to the blood flow information generation unit of the present invention.
  • the blood flow image generation unit 105 generates a blood flow image 203 indicating a region where the blood flow is flowing based on the reflected ultrasound 201.
  • the blood flow image 203 corresponds to the blood flow information of the present invention.
  • the lumen contour extraction unit 106 extracts the lumen contour 402 of the blood vessel based on the blood flow image 203.
  • the temporary epicardial contour setting unit 107 sets a temporary epicardial contour 407 that includes the lumen contour 402.
  • the epicardial contour extracting unit 108 extracts the epicardial contour 401 of the blood vessel using the B-mode image 202 using the temporary epicardial contour 407 as an initial contour.
  • FIG. 2 is a block diagram showing a detailed configuration of the ultrasonic diagnostic apparatus 150 according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus main body 100 includes a control unit 102, a transmission / reception unit 103, a B-mode image generation unit 104, a blood flow image generation unit 105, a lumen contour extraction unit 106, and a temporary epicardial contour setting unit 107.
  • Probe 101 is an ultrasonic probe including an ultrasonic transducer that transmits and receives ultrasonic waves.
  • the probe 101 transmits and receives ultrasonic waves in accordance with instructions from the transmission / reception unit 103. Further, the probe 101 receives the reflected ultrasonic wave 201 (ultrasonic reflection signal) from the subject as an echo signal.
  • the probe 101 may be a probe in which ultrasonic transducers are arranged in a one-dimensional direction, or may be a two-dimensional array probe in which ultrasonic transducers are arranged in a matrix.
  • the control unit 102 controls each processing unit included in the ultrasonic diagnostic apparatus main body 100. Thereafter, although not particularly specified, the operation of each processing unit is controlled by the control unit 102, and the control unit 102 executes the operation of each processing unit while controlling the operation timing and the like.
  • the transmission / reception unit 103 drives the ultrasonic transducer of the probe 101 to generate ultrasonic waves.
  • the transmission / reception unit 103 receives the reflected ultrasonic wave 201 received by the probe 101.
  • the B mode image generation unit 104 generates a B mode image 202 based on the reflected ultrasonic wave 201 received by the transmission / reception unit 103. Specifically, the B-mode image generation unit 104 performs envelope detection after filtering the reflected ultrasonic wave 201. Further, the B-mode image generation unit 104 generates a B-mode image 202 by performing logarithmic conversion and gain adjustment on the detected signal.
  • the blood flow image generation unit 105 generates a blood flow image 203 based on the reflected ultrasound 201 received by the transmission / reception unit 103.
  • the blood flow image 203 is an image showing a region where blood flow is flowing.
  • the blood flow image generation unit 105 detects the velocity of the blood flow in the blood vessel using a change in frequency due to the reflection of the ultrasonic waves into the blood flow. Then, the blood flow image generation unit 105 generates the blood flow image 203 by imaging the detected blood flow velocity as color data.
  • a method for imaging the blood flow velocity for example, a color Doppler method or a power Doppler method can be used.
  • the blood flow image 203 may be displayed in black and white and is not limited to color data.
  • the lumen contour extraction unit 106 extracts the lumen contour 402 of the blood vessel using the blood flow image 203 generated by the blood flow image generation unit 105.
  • FIG. 3 is a cross-sectional view of a blood vessel when a plaque is present.
  • the blood vessel includes a lumen 404 and a blood vessel wall 410.
  • a lumen contour 402 is present on the outer periphery of the lumen 404. That is, the lumen contour 402 is a contour inside the blood vessel, in other words, a boundary between the lumen 404 and the blood vessel wall 410.
  • the adventitia contour 401 of the blood vessel exists outside the lumen contour 402. That is, the outer membrane contour 401 is a contour outside the blood vessel.
  • the inner cavity 404 has a recess, and the plaque 403 exists in the region of the blood vessel wall 410 where the recess exists.
  • the portion where the blood flow is detected is displayed in color.
  • the lumen contour extraction unit 106 extracts a portion where color data is displayed by extracting a region brighter than a specific luminance value from the blood flow image 203.
  • the edge of the portion where the color data is displayed is extracted as the lumen contour 402 of the blood vessel.
  • the lumen contour extraction unit 106 may extract the edge of the portion where the detected color data is displayed as the lumen contour 402 as it is, or extract the edge as the lumen contour 402. Also good.
  • the lumen contour extracting unit 106 extracts a region having an area larger than a predetermined area as a blood flow region when or after extracting the portion where the color data is displayed.
  • the lumen contour extraction unit 106 may detect a region where the luminance difference between adjacent regions is equal to or greater than a predetermined luminance difference, and specify that the boundary is the lumen contour 402.
  • the blood flow image generation unit 105 generates the blood flow image 203, but it is not always necessary to generate an image. That is, the blood flow image generation unit 105 generates information (blood flow information) indicating the region where the blood flow is flowing, and the lumen contour extraction unit 106 extracts the lumen contour 402 using this blood flow information. May be.
  • the lumen contour extracting unit 106 outputs the lumen contour information indicating the extracted lumen contour 402 of the blood vessel to the control unit 102 and the blood vessel wall extracting unit 109.
  • the temporary epicardial contour setting unit 107 may output the lumen contour information to the blood vessel wall extraction unit 109.
  • Each processing unit stores lumen contour information, provisional epicardial contour information, and epicardial contour information in the data storage unit 112 as described later, and each processing unit is required from the data storage unit 112. Information may be acquired.
  • the temporary epicardial contour setting unit 107 sets a temporary epicardial contour 407 that is a temporary epicardial contour using the blood flow image 203 based on the lumen contour 402 of the blood vessel extracted by the lumen contour extracting unit 106. To do. Then, the provisional epicardial contour setting unit 107 sends provisional epicardial contour information indicating the set provisional epicardial contour 407 to the epicardial contour extraction unit 108. A method for setting the temporary epicardial contour 407 will be described in detail later.
  • the epicardial contour extraction unit 108 uses the temporary epicardial contour 407 indicated by the temporary epicardial contour information for the B-mode image 202, uses the temporary epicardial contour 407 as an initial contour, and then uses the temporary epicardial contour 407 from the B-mode image 202. A more detailed outer membrane contour 401 is extracted. Then, the epicardial contour extraction unit 108 outputs epicardial contour information indicating the extracted epicardial contour 401 to the blood vessel wall extraction unit 109.
  • the blood vessel wall extraction unit 109 uses the lumen contour 402 extracted by the lumen contour extraction unit 106 and the epicardial contour 401 extracted by the epicardial contour extraction unit 108 to be a blood vessel that is a region where the blood vessel wall 410 exists. Extract wall regions. Specifically, the blood vessel wall extraction unit 109 extracts a region between the adventitia contour 401 and the lumen contour 402 as a blood vessel wall region.
  • the plaque region extraction unit 110 extracts a plaque region where the plaque 403 exists from the blood vessel wall region extracted by the blood vessel wall extraction unit 109. Specifically, the plaque region extraction unit 110 extracts a region where the thickness of the blood vessel wall 410 is larger than a predetermined threshold value as a plaque region.
  • the threshold value used here is, for example, 1.1 mm. Moreover, this threshold value may be changed according to a test subject's sex, age, etc.
  • the plaque region extraction unit 110 calculates the average value of the thickness of the blood vessel wall 410 for each predetermined region, and compares the thickness of the blood vessel wall 410 at each position with the calculated average value. Then, a portion where the thickness of the blood vessel wall 410 at each position is larger than the average value by a predetermined thickness or more may be extracted as a plaque region.
  • the plaque region extraction unit 110 calculates the length of the overlapping portion that overlaps the blood vessel wall region among the straight lines extending radially from the center of gravity position of the epicardial contour 401, and the length is the overlap in other places. A place larger than the average value of the lengths of the portions may be extracted as a plaque region.
  • the blood vessel wall extraction unit 109 extracts the region between the adventitia contour 401 and the lumen contour 402 as a blood vessel wall region, and then determines the presence or absence of a plaque region.
  • the plaque region extraction unit 110 calculates the distance between the contours, and when the calculated distance is equal to or greater than a predetermined distance, You may judge. In other words, the ultrasonic diagnostic apparatus 150 may extract a plaque region without extracting a blood vessel wall region.
  • the plaque region combining unit 111 combines the extracted plaque region with the B-mode image 202.
  • the inspector observer
  • the region where the plaque exists For example, by displaying the area where the plaque exists with a high luminance value, the observer can easily recognize the plaque.
  • the data storage unit 112 includes a B mode image 202 generated by the B mode image generation unit 104, a blood flow image 203 generated by the blood flow image generation unit 105, lumen contour information generated by the lumen contour extraction unit 106, The temporary epicardial contour information generated by the membrane contour setting unit 107 and the epicardial contour information generated by the epicardial contour extracting unit 108 are stored.
  • the display unit 113 is a display device such as an LCD (liquid crystal display), and displays a B-mode image 202, a blood flow image 203, blood vessel wall 410 data, plaque 403 data, and the like.
  • the first embodiment is particularly characterized by a contour extraction method for more accurately obtaining the lumen contour 402 and the epicardial contour 401 of the blood vessel. Therefore, it is arbitrary whether the ultrasonic diagnostic apparatus 150 includes the blood vessel wall extraction unit 109, the plaque region extraction unit 110, the plaque region synthesis unit 111, the data storage unit 112, the display unit 113, and the like.
  • the B mode image generation unit 104 generates a B mode image 202
  • the blood flow image generation unit 105 generates a blood flow image 203.
  • the transmission / reception unit 103 transmits an ultrasonic wave to the subject through the probe 101 and receives the reflected ultrasonic wave 201 through the probe 101.
  • the B-mode image generation unit 104 and the blood flow image generation unit 105 process the data received by the transmission / reception unit 103 to generate a B-mode image 202 and a blood flow image 203, and the generated B-mode image 202 and blood flow
  • the image 203 is stored in the data storage unit 112.
  • the lumen contour extraction unit 106 extracts the lumen contour 402 from the blood flow image 203.
  • the lumen contour extraction unit 106 first extracts a blood flow region having an area larger than a predetermined value.
  • the blood flow image 203 may include a small region that is erroneously determined as a blood flow region in the process of generating the blood flow image 203. Therefore, the carotid artery can be efficiently extracted from the blood flow image 203 by performing such processing.
  • the lumen contour extraction unit 106 performs edge detection of the blood flow region using a Sobel operator or the like.
  • the lumen contour extracting unit 106 extracts a closed curve representing the edge shape of the blood flow region after removing the isolated line.
  • the lumen contour extraction unit 106 stores information indicating the closed curve in the data storage unit 112 as lumen contour information.
  • the ultrasonic diagnostic apparatus 150 extracts the lumen contour 402 of the blood vessel based on the blood flow image 203 instead of extracting it from the B-mode image 202.
  • the outline of the blood vessel wall 410 may not be clearly displayed depending on the traveling direction of the blood vessel, and accurate detection of the blood vessel wall 410 may be difficult.
  • the ultrasound diagnostic apparatus 150 can more accurately trace the inner wall of the blood vessel regardless of the traveling direction of the blood vessel by extracting the lumen contour 402 of the blood vessel based on the blood flow image 203.
  • the desired blood flow region is specified from the area value, but the blood flow region may be specified in consideration of temporal changes in the blood flow image 203 such as pulsation. In that case, it is desirable to extract the lumen contour 402 in a frame in which the area of the blood flow region is maximized.
  • the ultrasonic diagnostic apparatus 150 calculates the adventitia contour 401 of the blood vessel using the lumen contour 402 extracted in step S202. First, problems in calculating the epicardial contour 401 will be described.
  • FIG. 5A shows an example of a B-mode image 202 of a blood vessel.
  • 5B is a diagram illustrating the lumen contour 402 and the epicardial contour 401 in the B-mode image 202 illustrated in FIG. 5A.
  • the epicardial contour 401 has a concave portion ( (Or projections) are not formed, and the outer membrane contour 401 is often substantially circular.
  • FIG. 6A is a diagram showing the shape of the epicardial contour 405A extracted when a normal energy function is set in the dynamic contour search process.
  • the extracted outer membrane contour 405A is indicated by a dotted line.
  • the extracted epicardial contour 405A is pulled to the shape of the lumen contour 402 that is the initial contour.
  • the contour of the portion where the plaque 403 exists becomes a shape that is recessed from the actual contour.
  • the outward direction It is necessary to set an energy function that places importance on search.
  • FIG. 6B shows the shape of the extracted outer membrane contour 405B in this case.
  • the vertical contour of the adventitia contour 401 of the blood vessel is not substantially displayed. Therefore, when the dynamic contour search process is performed, there is a possibility that the contour is not extracted well in the region where the brightness difference is not clearly displayed, and the dynamic contour search is further performed in the outward direction. . Therefore, when an energy function that places importance on the outward search is set, as shown in FIG. 6B, the shape of the extracted outer membrane contour 405B may be a shape protruding outward.
  • the lumen contour 402 of the blood vessel has a distorted shape as shown in FIG. 5B
  • a method of extracting the substantially circular outer membrane contour 401 by devising the method of the dynamic contour search processing is also considered. It is done.
  • the interval between the intima wall and the adventitia wall of the blood vessel inevitably increases. That is, when the distance between the initial contour and the epicardial contour 401 that is actually searched for increases, the probability that a high-luminance region 406 exists in the search region increases as shown in FIG.
  • the high luminance region 406 means noise. Specifically, a calcified portion or noise due to ultrasonic scattering appears as a high luminance value. Then, since the active contour search converges in the high luminance region 406, there is a problem that it is difficult to obtain a desired outer membrane contour 401.
  • the ultrasonic diagnostic apparatus 150 uses a temporary epicardial contour that is a temporary epicardial contour shape using the blood flow image 203 from the lumen contour 402 obtained using the blood flow image 203. 407 is set.
  • the ultrasonic diagnostic apparatus 150 uses the B-mode image 202 to calculate the epicardial contour 401 of the blood vessel using the temporary epicardial contour 407 as an initial value.
  • step S203 the temporary epicardial contour setting unit 107 sets the temporary epicardial contour 407 using the blood flow image 203 based on the lumen contour 402 extracted in step S202.
  • this process will be described.
  • the temporary epicardial contour 407 which is the initial contour when searching for the epicardial contour 401, is preferably a substantially circular shape close to the shape of the epicardial contour 401. Therefore, as shown in FIG. 8, the temporary epicardial contour setting unit 107 first calculates the coordinates of the temporary center point 411 of the lumen contour 402. For example, the provisional epicardial contour setting unit 107 sets a plurality of contour points on the line of the lumen contour 402 at regular intervals, and obtains the average value of the coordinate values of these contour points, thereby obtaining the coordinates of the provisional center point 411. Is calculated.
  • the temporary epicardial contour setting unit 107 determines a circle 412 that includes the lumen contour 402 with the calculated temporary center point 411 as the center.
  • the circle 412 is a circle having a radius larger than the maximum value (maximum distance) of the length from the temporary center point 411 to the contour point on the lumen contour 402.
  • the temporary epicardial contour setting unit 107 uses the circle 412 as the initial contour, and the contour obtained as a result of performing the dynamic contour search process (such as snakes) on the blood flow image 203 is set as the temporary epicardial contour 407. decide.
  • the dynamic contour search process is a process of extracting a contour by moving the contour point of the initial contour by performing an energy minimization process. This temporary epicardial contour 407 is shown in FIG.
  • the dynamic contour search process is performed toward the inside using the circle 412 as an initial contour. Do. Thereby, even if the coordinates of the temporary center point 411 are set so as to deviate from the original coordinates, a substantially circular temporary epicardial contour 407 along the lumen contour 402 can be obtained.
  • the contour search process here is not performed for the purpose of searching for a correct contour, but is performed in order to obtain an outline of the epicardial contour 401 having a substantially circular shape. For this reason, in the contour search process, it is desirable to perform shape constraint so that the contour line does not protrude inward.
  • This shape constraint can be realized, for example, by increasing the weight of the internal deformation energy when applying the snakes algorithm. That is, the provisional epicardial contour setting unit 107 performs the convergence process by making the image energy weight smaller than the internal deformation energy in the energy minimization process.
  • the contour is determined so as to minimize the energy E snakes defined by the following (Expression 1) to (Expression 3).
  • E int is the internal deformation energy of the contour line
  • E image is the image energy representing the degree of matching between the contour line and the image.
  • v is a parameter expression of the contour line
  • v s is the first derivative of v
  • v ss is the second derivative of v.
  • ⁇ , ⁇ , w 1 and w 2 are constants indicating weights.
  • the G sigma a Gaussian filter
  • ⁇ 2 is the Laplacian filter
  • I is the luminance value of the image.
  • the initial contour has a substantially circular shape close to the actual shape of the epicardial contour 401. Even when the epicardial contour 401 is unclear in 202, the epicardial contour 401 can be extracted with high accuracy.
  • the method for extracting the epicardial contour 401 using the temporary epicardial contour 407 calculated by the above method is compared with the method for extracting the epicardial contour 401 using the lumen contour 402 as an initial contour. The epicardial contour 401 can be extracted with higher accuracy.
  • the temporary epicardial contour setting unit 107 sets the circular temporary epicardial contour 407 including the lumen contour 402.
  • the circular shape means a circular shape, an elliptical shape, and a substantially circular shape as described above.
  • the provisional epicardial contour 407 is set using the blood flow image 203.
  • the blood flow image 203 unlike the B-mode image 202, there is no high brightness region 406 such as noise in the plaque region. Therefore, by setting the temporary epicardial contour 407 closer to the epicardial contour 401 than the lumen contour 402 using the blood flow image 203, the lumen contour 402 and the temporary epicardial contour in the B-mode image 202 are set. Even if there is noise between 407 and 407, the provisional epicardial contour 407 can be set without being affected by the noise. Therefore, when searching for an outer membrane contour, it is possible to reduce the probability of convergence to an incorrect contour due to the influence of noise.
  • the epicardial contour extraction unit 108 extracts the epicardial contour 401 from the B-mode image 202 using the temporary epicardial contour 407 set in step S203 as an initial contour.
  • the epicardial contour extraction unit 108 extracts, as the epicardial contour 401, a contour obtained as a result of performing a dynamic contour search process using the temporary epicardial contour 407 as an initial contour.
  • the epicardial contour extraction unit 108 sets the weight of the image energy for the internal deformation energy in the energy minimization process to the second value, and the clarity If the degree is a third value greater than the first value, the weight is set to a fourth value greater than the second value.
  • the epicardial contour extraction unit 108 may change the weight for each contour point according to the clarity. Specifically, the epicardial contour extraction unit 108 increases the ratio of ⁇ at the contour points located on the front and rear walls of the blood vessel where the depiction is clear (the ratio of the image energy is large), and the left and right walls where the depiction is unclear. At the contour point located, the ratio ⁇ is increased (the weight of the internal deformation energy is increased). Thereby, the epicardial contour 401 can be extracted with high accuracy according to the difference in local depiction of the blood vessel wall 410.
  • the epicardial contour extraction unit 108 may change the weight based on the position of the contour point (for example, the front and rear walls, the left and right walls), or the weight based on the clarity of the description near each contour point. You can change it. The clarity of depiction can be measured, for example, by the difference between the maximum and minimum luminance values near the contour point. The larger the difference, the clearer the wall description.
  • the epicardial contour extraction unit 108 may use another calculation method as the calculation method of the intelligibility.
  • step S205 the blood vessel wall extraction unit 109 extracts a region between the lumen contour 402 and the outer membrane contour 401 obtained in steps S202 and S204 as a blood vessel wall region. Then, the plaque region extraction unit 110 extracts a region having a thickness thicker than a predetermined value from the blood vessel wall region as a plaque region (S206). And the plaque area
  • the ultrasonic diagnostic apparatus 150 may perform only the processes of steps S201 to S204 as shown in FIG.
  • step S207 the plaque region synthesis unit 111 superimposes information indicating at least one of the blood vessel wall region, the lumen contour 402, and the epicardial contour 401 on the B-mode image in addition to the plaque region. May be generated.
  • the ultrasonic diagnostic apparatus 150 may generate a composite image by superimposing information indicating the blood vessel wall region on the B-mode image without displaying the process of step S206, and display the composite image.
  • the ultrasound diagnostic apparatus 150 generates a composite image by superimposing information indicating the lumen contour 402 and the epicardial contour 401 on the B-mode image without performing the processes of steps S205 and S206, and generates the composite image. May be displayed.
  • the ultrasound diagnostic apparatus 150 obtains the shape of the vascular intima from the shape of the blood flow region and extracts the contour of the adventitia using the shape information of the intima. . Thereby, the ultrasonic diagnostic apparatus 150 can obtain the position information of the inner and outer membranes of the blood vessel more stably and more accurately. As a result, the ultrasonic diagnostic apparatus 150 can more accurately determine the presence or absence of plaque.
  • the ultrasonic diagnostic apparatus 150 displays a composite image in which the plaque region is superimposed on the B-mode image 202 .
  • the ultrasonic diagnostic apparatus uses a plurality of tomographic images at different scanning positions.
  • Information indicating the plaque area may be expressed as volume data by performing the above-described processing on each of the above and reconstructing the extracted plurality of plaque areas into three-dimensional data.
  • FIG. 11 is a diagram showing a configuration of the ultrasonic diagnostic apparatus 151 in this case.
  • An ultrasonic diagnostic apparatus 151 illustrated in FIG. 11 includes a three-dimensional data generation unit 115 in addition to the configuration illustrated in FIG.
  • the ultrasound diagnostic apparatus 151 performs the above-described processing for extracting the blood vessel wall region and the plaque region on each of the plurality of tomographic images.
  • the three-dimensional data generation unit 115 generates three-dimensional data indicating the blood vessel wall region and the plaque region based on information on the plurality of blood vessel wall regions and the plurality of plaque regions extracted for the plurality of tomographic images. For example, as illustrated in FIG. 12A, the three-dimensional data generation unit 115 generates three-dimensional data of blood vessels from a lumen contour 402 and an outer membrane contour 401 or a plurality of tomographic images obtained by extracting blood vessel wall regions. Further, as illustrated in FIG.
  • the three-dimensional data generation unit 115 generates three-dimensional data in which the plaque regions in the three-dimensional data are highlighted using the plaque regions extracted from the plurality of cross-sectional images.
  • the display unit 113 displays the three-dimensional data generated by the three-dimensional data generation unit 115.
  • ultrasonic diagnostic apparatus 150 may display the three-dimensional data illustrated in FIG. 12A without performing the process of step S206 described above.
  • FIG. 13 is a block diagram showing a configuration of the ultrasonic diagnostic apparatus 152 according to Embodiment 2 of the present invention.
  • the same components as those in FIG. 13 are identical to FIG. 13 in FIG. 13, the same components as those in FIG. 13 in FIG. 13, the same components as those in FIG. 13
  • 13 includes an initial contour position adjusting unit 114 in addition to the configuration of the ultrasonic diagnostic apparatus 150 shown in FIG.
  • the initial contour position adjustment unit 114 adjusts the position of the temporary epicardial contour 407 based on the B-mode image 202. Specifically, the position of the blood vessel image in each image may differ due to the difference in the acquisition timing between the blood flow image 203 and the B-mode image 202. Since the provisional epicardial contour 407 is obtained based on the blood flow image 203, it is necessary to match the provisional epicardial contour 407 with the position of the epicardial contour 401 in the B-mode image 202. In the present embodiment, the initial contour position adjustment unit 114 calculates the approximate center coordinates of the blood vessel image in the B-mode image 202 from the brightness data of the B-mode image 202 and sets the provisional epicardial contour 407 to the calculated approximate center coordinates.
  • the temporary epicardial contour 407 is moved so as to bring the center of. Specifically, the initial contour position adjustment unit 114 adjusts the position of the temporary epicardial contour 407 so that the center of the temporary epicardial contour 407 is aligned with the calculated approximate center coordinates. In general, since the blood vessel lumen is depicted with low luminance in the B-mode image 202, the initial contour position adjustment unit 114 searches for the low luminance region in the vicinity of the position of the original temporary epicardial contour 407, and the low luminance The center of the region is the center position of the blood vessel image.
  • the ultrasonic diagnostic apparatus 152 is stable even when an image shift occurs between the B-mode image 202 and the blood flow image 203. A correct epicardial contour 401 can be obtained. Thus, the ultrasonic diagnostic apparatus 152 can determine the presence or absence of plaque more accurately.
  • the ultrasonic diagnostic apparatus according to the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment.
  • a part or all of the processing units included in the ultrasonic diagnostic apparatus main body 100 described above may be included in the probe 101.
  • the temporary epicardial contour setting unit 107 determines a quadrangular temporary epicardial contour that includes the lumen contour.
  • the quadrangular shape means a rectangle, a parallelogram, and a substantially quadrangular shape.
  • each processing unit included in the ultrasonic diagnostic apparatus is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • ultrasonic diagnostic apparatus may be realized by a processor such as a CPU executing a program.
  • the present invention may be the above program or a non-transitory computer-readable recording medium on which the above program is recorded.
  • the program can be distributed via a transmission medium such as the Internet.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • the present invention can be applied to an ultrasonic diagnostic apparatus.
  • the present invention is also useful for diagnosing arteriosclerosis using an ultrasonic diagnostic apparatus.
  • the present invention can also be applied to the measurement of the stenosis rate using an ultrasonic diagnostic apparatus.
  • SYMBOLS 100 Ultrasonic diagnostic apparatus main body 101 Probe 102 Control part 103 Transmission / reception part 104 B mode image generation part 105 Blood flow image generation part 106 Lumen outline extraction part 107 Temporary epicardial outline setting part 108 Outer membrane outline extraction part 109 Blood vessel wall extraction part DESCRIPTION OF SYMBOLS 110 Plaque area

Abstract

 超音波プローブ(101)により被験者の体内から取得された反射超音波(201)に基づいて体内観察を行う超音波診断装置(150)であって、前記反射超音波(201)に基づいてBモード画像(202)を生成するBモード画像生成部(104)と、前記反射超音波(201)に基づいて、血流が流れている領域を示す血流画像(203)を生成する血流画像生成部(105)と、前記血流画像(203)に基づいて血管の内腔輪郭(402)を抽出する内腔輪郭抽出部(106)と、前記内腔輪郭(402)を内包する仮外膜輪郭(407)を設定する仮外膜輪郭設定部(107)と、前記仮外膜輪郭(407)を初期輪郭として、前記Bモード画像(202)を用いて血管の外膜輪郭(401)を抽出する外膜輪郭抽出部(108)とを備える。

Description

超音波診断装置、及び超音波診断方法
 本発明は超音波診断装置及び超音波診断方法に関し、特に、超音波プローブにより被験者の体内から取得された反射超音波に基づいて体内観察を行う超音波診断装置に関する。
 近年、動脈硬化及び血管疾患等を早期に発見するために、超音波診断装置が用いられている。具体的には、超音波診断装置を用いて、血管壁の内膜と中膜とをあわせた膜の厚さである内膜中膜複合体厚(Intima Media Thickness、以下IMT)が計測されている。また、超音波診断装置を用いて、血管の内腔が狭窄することによって発生するプラークの有無が確認されている。これは動脈硬化が進行するほどIMTが厚くなったり、プラークが形成されたりすることが明らかになってきたからである。なお、動脈硬化は全身的に進行すると考えられており、主に表在性の頚動脈がIMT計測時及びプラークの有無を判断する際の計測対象となっている。ここでプラークとは、血管の内壁が局所的に血管の内側(内腔)に突出した隆起性病変を意味している。このプラークは、血栓、脂肪性、及び繊維性など様々な形態をとり、頚動脈の狭窄及び閉塞、並びに、脳梗塞及び脳虚血を起こす原因になる恐れがある。
 超音波診断装置によるプラーク形状の検出は、血管の超音波画像を用いて行われる。超音波診断装置は、探触子を介して被検体内に超音波を送波し、被検体から発生する反射波に基づき超音波画像(例えばBモード画像)を形成する。そして検査者が、この超音波画像を見てプラーク有無を判断する。
 ここで、検査者がプラークの有無を判断する際には、検査者は、超音波画像内の血管外膜及び血管内膜の形状を手動で指定(スケッチ)し、このスケッチを元に診断を行っていた。具体的には、検査者は、Bモード画像に対し、外膜の辺縁形状を外膜輪郭線としてスケッチし、さらに内腔の辺縁形状を内腔輪郭線としてスケッチする。そして最終的にこのスケッチの形状をもとに、検査者は、プラークの有無などの診断を行う(例えば、非特許文献1参照)。
 しかしながら、非特許文献1の手法では、画像取得後にオフライン状態において、超音波画像上に血管壁の外膜輪郭及び内腔輪郭の位置を手動で指定する必要があった。つまり、この従来の診断方法によってプラーク検出を行う場合には手動での輪郭指定が必要となり、検査者の手間がかかる。その結果、検査時間が長くなったり、検査者による検査結果の揺らぎが発生したりするという課題を有していた。
 この課題に対して、非特許文献2及び特許文献1には、超音波診断画像であるBモード画像に対して動的輪郭探索処理を適用することで、自動的に血管壁輪郭を抽出する手法が記載されている。この方法により、手動の手間を減らして検査者の負荷を低減したり、検査時間を短縮したりすることが可能となる。
特許第3468869号公報
Ainsworth CD、Blake CC、Tamayo A、Beletsky V、Fenster A、Spence JD、"3D ultrasound measurement of change in carotid plaque volume:a tool for rapid evaluation of new therapies."、Stroke 2005、36(9):1904-1909. J.C.R.Seabra、L.M.Pedro、J.F.e Fernandes and J.M.Sanches "A 3-D ultrasound-based framework to characterize the echo morphology of carotid plaques"、 IEEE Trans.Biomed.Eng.、vol.56、pp.1442 2009.
 しかしながら、特許文献1及び非特許文献2の診断方法では、超音波診断装置により血管壁の輪郭を正しく抽出しようとしても、正確に血管壁の輪郭を抽出できない場合がある。例えば、対象物の輪郭(境界)が、超音波振動子から送信される超音波と、平行、又は平行に近い状態に位置している場合は、この輪郭線の境界が超音波画像上で明確に表示されないことがある。そのため、血管の走行方向に垂直な画像を生成した場合、上下の血管壁の輪郭に比べて、左右の血管壁の輪郭が明確に表示されにくい傾向がある。この傾向は、血管の内腔輪郭、及び外膜輪郭のどちらの輪郭を表示する場合にも見られる傾向である。このため、超音波画像のデータにより輪郭を探索する従来の手法によると、正確に血管壁の輪郭をトレースすることができなかった。
 本発明は、上記従来の課題を解決するもので、血管壁の輪郭をより正確に抽出することができる超音波診断装置を提供することを目的とする。
 前記従来の課題を解決するために、本発明の一形態に係る超音波診断装置は、超音波プローブにより被験者の体内から取得された反射超音波に基づいて体内観察を行う超音波診断装置であって、前記反射超音波に基づいてBモード画像を生成するBモード画像生成部と、前記反射超音波に基づいて、血流が流れている領域を示す血流情報を生成する血流情報生成部と、前記血流情報に基づいて血管の内腔輪郭を抽出する内腔輪郭抽出部と、前記内腔輪郭を内包する仮外膜輪郭を設定する仮外膜輪郭設定部と、前記仮外膜輪郭を第1の初期輪郭として、前記Bモード画像を用いて血管の外膜輪郭を抽出する外膜輪郭抽出部とを備える。
 この構成によれば、本発明の一形態に係る超音波診断装置は、血流情報に基づいて内腔輪郭を抽出する。これにより、当該超音波診断装置は、Bモード画像を用いて内腔輪郭を抽出する場合に比べて、正確に内腔輪郭を抽出できる。さらに、当該超音波診断装置は、血流情報に基づいて抽出した内腔輪郭を用いて仮外膜輪郭を設定し、当該仮外膜輪郭を用いて外膜輪郭を抽出する。これにより、当該超音波診断装置は、より正確に外膜輪郭を抽出できる。このように、当該超音波診断装置は、血管壁の輪郭をより正確に抽出することができる。
 また、前記超音波診断装置は、さらに、前記内腔輪郭と前記外膜輪郭とから血管壁が存在する血管壁領域を抽出する血管壁抽出部と、前記血管壁領域からプラークが存在するプラーク領域を抽出するプラーク領域抽出部とを備えてもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、プラーク領域をより正確に抽出することができる。
 また、前記超音波診断装置は、さらに、前記血管壁領域及び前記プラーク領域を示す3次元データを生成する3次元データ生成部と、前記3次元データを表示する表示部とを備えてもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、プラーク領域を3次元データで表示できる。
 また、前記仮外膜輪郭設定部は、前記内腔輪郭を内包する、円形状の前記仮外膜輪郭を設定してもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、外膜輪郭の形状に近い仮外膜輪郭を設定できる。
 また、前記仮外膜輪郭設定部は、前記内腔輪郭の中心点を中心とし、かつ当該中心点から前記内腔輪郭までの最大距離よりも大きい半径を有する円を設定し、設定した前記円を第2の初期輪郭として用いて、前記血流情報に対して、輪郭線の内部変形エネルギーと、輪郭線と画像との適合度を表す画像エネルギーとの和が最小となる輪郭を探索する第1の動的輪郭探索処理を行い、探索により得られた輪郭を前記仮外膜輪郭として設定してもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、外膜輪郭の形状に近い仮外膜輪郭を設定できる。
 また、前記仮外膜輪郭設定部は、前記第1の動的輪郭探索処理において前記内部変形エネルギーよりも前記画像エネルギーの重みを小さくして収束処理を行ってもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、動的輪郭探索において、輪郭線が内側に凸とならないような形状拘束を行うことができる。
 また、前記外膜輪郭抽出部は、前記仮外膜輪郭を前記第1の初期輪郭として用いて、前記Bモード画像に対して、輪郭線の内部変形エネルギーと、輪郭線と画像との適合度を表す画像エネルギーとの和が最小となる輪郭を探索する第2の動的輪郭探索処理を行い、探索により得られた輪郭を前記外膜輪郭として抽出してもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、外膜輪郭をより正確に抽出できる。
 また、前記外膜輪郭抽出部は、前記Bモード画像の明瞭度が第1の値の場合、前記第2の動的輪郭探索処理における、前記内部変形エネルギーに対する前記画像エネルギーの重みを第2の値に設定し、前記明瞭度が前記第1の値より大きい第3の値の場合、前記重みを前記第2の値より大きい第4の値に設定してもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、血管輪郭の描写状態に応じて、精度よく外膜輪郭を抽出することができる。
 また、前記外膜輪郭抽出部は、前記Bモード画像における輪郭点毎に、前記明瞭度に応じて前記重みを変更してもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、より精度よく外膜輪郭を抽出することができる。
 また、前記血流情報生成部は、カラードプラ法を用いて前記血流情報を生成してもよい。
 また、前記外膜輪郭抽出部は、さらに、初期輪郭位置調整部を備え、前記初期輪郭位置調整部は、前記Bモード画像から血管領域の中心点を算出し、当該中心点に前記仮外膜輪郭の中心点を近づけるように、前記仮外膜輪郭を移動させてもよい。
 この構成によれば、本発明の一形態に係る超音波診断装置は、Bモード画像と血流情報との間で像のずれが発生するような場合にも、安定して正しい外膜輪郭を抽出できる。
 なお、本発明は、このような超音波診断装置として実現できるだけでなく、超音波診断装置に含まれる特徴的な手段をステップとする超音波診断方法、血管輪郭抽出方法、血管壁抽出方法、又はプラーク領域抽出方法として実現したり、そのような特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の非一時的なコンピュータ読み取り可能な記録媒体、及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
 さらに、本発明は、このような超音波診断装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現したり、このような超音波診断装置を含む超音波診断システムとして実現したりできる。
 以上より、本発明は、血管壁の輪郭をより正確に抽出することができる超音波診断装置を提供できる。
図1は、本発明の実施の形態1に係る超音波診断装置のブロック図である。 図2は、本発明の実施の形態1に係る超音波診断装置のブロック図である。 図3は、本発明の実施の形態1に係る血管の断面図である。 図4は、本発明の実施の形態1に係る超音波診断装置による血管壁抽出処理のフローチャートである。 図5Aは、本発明の実施の形態1に係る、血管のBモード画像を示す図である。 図5Bは、本発明の実施の形態1に係る、Bモード画像に輪郭を表示した図である。 図6Aは、本発明の実施の形態1に係る、通常のエネルギー関数を設定した場合の動的輪郭探索結果を示す図である。 図6Bは、本発明の実施の形態1に係る、外方向への探索を重視するようなエネルギー関数を設定した場合の動的輪郭探索結果を示す図である。 図7は、本発明の実施の形態1に係る、血管壁内の高輝度領域(ノイズ)を示す図である。 図8は、本発明の実施の形態1に係る、仮外膜輪郭の抽出処理を示す図である。 図9は、本発明の実施の形態1に係る、抽出された仮外膜輪郭を示す図である。 図10は、本発明の実施の形態1に係る超音波診断装置による輪郭抽出処理のフローチャートである。 図11は、本発明の実施の形態1の変形例に係る超音波診断装置のブロック図である。 図12Aは、本発明の実施の形態1の変形例に係る3次元データ生成処理を示す図である。 図12Bは、本発明の実施の形態1の変形例に係る3次元データ生成処理を示す図である。 図13は、本発明の実施の形態2に係る超音波診断装置のブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (実施の形態1)
 本発明の実施の形態1に係る超音波診断装置は、血流画像に基づいて血管の内腔輪郭を抽出し、抽出した内腔輪郭を内包する仮外膜輪郭を設定する。さらに、当該超音波診断装置は、設定した仮外膜輪郭を初期輪郭として用い、Bモード画像を用いて、血管の外膜輪郭を抽出する。
 これにより、本発明の実施の形態1に係る超音波診断装置は、血管壁の輪郭をより正確に抽出することができる。
 まず、本発明の実施の形態1に係る超音波診断装置の概略構成を説明する。図1は、本発明の実施の形態1に係る超音波診断装置の概略構成を示すブロック図である。
 図1に示す超音波診断装置150は、超音波プローブにより被験者の体内から取得された反射超音波201に基づいて体内観察を行う。この超音波診断装置150は、Bモード画像生成部104と、血流画像生成部105と、内腔輪郭抽出部106と、仮外膜輪郭設定部107と、外膜輪郭抽出部108とを備える。
 Bモード画像生成部104は、反射超音波201に基づいてBモード画像202を生成する。
 血流画像生成部105は、本発明の血流情報生成部に相当する。この血流画像生成部105は、反射超音波201に基づいて、血流が流れている領域を示す血流画像203を生成する。ここで、血流画像203は、本発明の血流情報に相当する。
 内腔輪郭抽出部106は、血流画像203に基づいて血管の内腔輪郭402を抽出する。
 仮外膜輪郭設定部107は、内腔輪郭402を内包する仮外膜輪郭407を設定する。
 外膜輪郭抽出部108は、仮外膜輪郭407を初期輪郭として、Bモード画像202を用いて血管の外膜輪郭401を抽出する。
 以下、本発明の実施の形態1に係る超音波診断装置150の構成を詳細に説明する。
 図2は、本発明の実施の形態1に係る超音波診断装置150の詳細な構成を示すブロック図である。
 図2に示す超音波診断装置150は、超音波診断装置本体100と、超音波診断装置本体100に接続されたプローブ101及び表示部113とを備える。超音波診断装置本体100は、制御部102と、送受信部103と、Bモード画像生成部104と、血流画像生成部105と、内腔輪郭抽出部106と、仮外膜輪郭設定部107と、外膜輪郭抽出部108と、血管壁抽出部109と、プラーク領域抽出部110と、プラーク領域合成部111と、データ格納部112とを備える。
 プローブ101は、超音波を送受信する超音波振動子を備える超音波プローブである。このプローブ101は、送受信部103の指示に従い超音波を送受信する。また、プローブ101は、被検体からの反射超音波201(超音波反射信号)をエコー信号として受信する。なお、プローブ101は、超音波振動子が1次元方向に配列されているプローブであってもよいし、超音波振動子がマトリックス状に配置された2次元アレイプローブであってもよい。
 制御部102は、超音波診断装置本体100に含まれる各処理部の制御を行う。以降、特に明記しないが、各処理部の動作は、制御部102が司り、当該制御部102が動作タイミングなどを制御しながら各処理部の動作を実行する。
 送受信部103は、プローブ101の超音波振動子を駆動させて超音波を発生させる。また、送受信部103は、プローブ101が受信した反射超音波201を受信する。
 Bモード画像生成部104は、送受信部103が受信した反射超音波201を基に、Bモード画像202を生成する。具体的には、Bモード画像生成部104は、反射超音波201に対しフィルタ処理を行ったのち、包絡線検波を行う。さらに、Bモード画像生成部104は、検波された信号に対数変換及びゲイン調整を行うことでBモード画像202を生成する。
 血流画像生成部105は、送受信部103が受信した反射超音波201を基に、血流画像203を生成する。ここで、血流画像203とは、血流が流れている領域を示す画像である。具体的には、血流画像生成部105は、超音波が血流に反射されることによる周波数の変化を用いて血管内の血流の速度を検出する。そして、血流画像生成部105は、検出した血流の速度を、カラーデータとして画像化することで血流画像203を生成する。なお、血流速度を画像化する方法としては、例えばカラードプラ法又はパワードプラ法を用いることができる。なお、本実施の形態では、血流画像がカラーデータの場合について記載しているが、血流画像203は白黒表示であってもよく、カラーデータに限定されない。
 内腔輪郭抽出部106は、血流画像生成部105によって生成された血流画像203を用いて、血管の内腔輪郭402を抽出する。
 以下、血管壁にプラークが存在する場合の血管の形状について説明する。図3は、プラークが存在する場合の血管の断面図である。
 図3に示すように、血管は、内腔404と、血管壁410とを含む。また、内腔404の外周部に内腔輪郭402が存在する。つまり、内腔輪郭402とは、血管の内側の輪郭であり、言い換えると、内腔404と血管壁410との境界である。
 また、内腔輪郭402の外側に血管の外膜輪郭401が存在する。つまり、外膜輪郭401とは血管の外側の輪郭である。
 また、内腔404には凹部が存在し、凹部が存在する血管壁410の領域にプラーク403が存在している。
 ここで、血流画像203では、血流が検出された部分がカラー表示される。そして、内腔輪郭抽出部106は、この血流画像203に対して、特定の輝度値よりも明るい領域を抽出することで、カラーデータが表示されている部分を抽出する。ここで、カラーデータが表示されている部分の辺縁は、血管の内腔輪郭402として抽出される。なお、内腔輪郭抽出部106は、検出されたカラーデータが表示されている部分の辺縁をそのまま内腔輪郭402として抽出してもよいし、その辺縁を内腔輪郭402として抽出してもよい。
 なお、カラーデータが表示されている部分を全て検出すると、血管ではないノイズ等まで検出してしまう可能性がある。そこで、内腔輪郭抽出部106は、カラーデータが表示されている部分を抽出する際、又は抽出した後で、予め定めた面積よりも大きい面積をもつ領域を血流領域として抽出する。
 なお、内腔輪郭抽出部106は、隣り合う領域との輝度差が所定の輝度差以上になる領域を検出し、その境界が内腔輪郭402であると指定してもよい。
 また、ここでは、血流画像生成部105は、血流画像203を生成するとしたが、必ずしも画像を生成する必要は無い。つまり、血流画像生成部105は、血流が流れている領域を示す情報(血流情報)を生成し、内腔輪郭抽出部106は、この血流情報を用いて内腔輪郭402を抽出してもよい。
 また、内腔輪郭抽出部106は、抽出した血管の内腔輪郭402を示す内腔輪郭情報を制御部102、及び血管壁抽出部109に出力する。なお、仮外膜輪郭設定部107が、内腔輪郭情報を血管壁抽出部109に出力してもよい。また、各処理部は、後述するように内腔輪郭情報、及び仮外膜輪郭情報、外膜輪郭情報を、データ格納部112に格納し、データ格納部112から、それぞれの処理部が必要な情報を取得してもよい。
 仮外膜輪郭設定部107は、内腔輪郭抽出部106が抽出した血管の内腔輪郭402をもとに、血流画像203を用いて仮の外膜輪郭である仮外膜輪郭407を設定する。そして、仮外膜輪郭設定部107は、設定した仮外膜輪郭407を示す仮外膜輪郭情報を外膜輪郭抽出部108に送る。この仮外膜輪郭407の設定方法については後ほど詳述する。
 外膜輪郭抽出部108は、仮外膜輪郭情報で示される仮外膜輪郭407を、Bモード画像202に使用した上で、この仮外膜輪郭407を初期輪郭として用い、Bモード画像202からより詳細な外膜輪郭401を抽出する。そして、外膜輪郭抽出部108は、抽出した外膜輪郭401を示す外膜輪郭情報を、血管壁抽出部109へ出力する。
 血管壁抽出部109は、内腔輪郭抽出部106が抽出した内腔輪郭402と、外膜輪郭抽出部108が抽出した外膜輪郭401とを用いて、血管壁410が存在する領域である血管壁領域を抽出する。具体的には、血管壁抽出部109は、外膜輪郭401と内腔輪郭402との間の領域を血管壁領域として抽出する。
 プラーク領域抽出部110は、血管壁抽出部109で抽出された血管壁領域から、プラーク403が存在する領域であるプラーク領域を抽出する。具体的には、プラーク領域抽出部110は、血管壁410の厚みが予め定められた閾値よりも大きい領域をプラーク領域として抽出する。ここで用いられる閾値は、例えば1.1mmである。また、この閾値は、被験者の性別及び年齢等に応じて変更されてもよい。
 なお、プラーク領域抽出部110は、プラーク領域の抽出においては、所定の領域ごとに血管壁410の厚みの平均値を算出し、各位置の血管壁410の厚みと、算出した平均値とを比較し、各位置の血管壁410の厚みが、平均値より所定の厚み以上厚い箇所をプラーク領域として抽出してもよい。
 また、プラーク領域抽出部110は、外膜輪郭401の重心位置から放射線状に延びる直線のうち、血管壁領域と重複する重複部分の長さを算出し、その長さが、その他の場所における重複部分の長さの平均値よりも大きい場所をプラーク領域として抽出してもよい。
 なお、本実施の形態では、血管壁抽出部109において外膜輪郭401と内腔輪郭402との間の領域を血管壁領域として抽出した上でプラーク領域の有無を判断している。しかし、内腔輪郭及び外膜輪郭が抽出された後に、プラーク領域抽出部110は、各輪郭の間の距離を算出し、算出した距離が所定の距離以上である場合に、プラーク領域であると判断してもよい。言い換えると、超音波診断装置150は、血管壁領域を抽出せずに、プラーク領域を抽出してもよい。
 プラーク領域合成部111は、抽出したプラーク領域をBモード画像202に合成する。プラーク領域をBモード画像に合成することで、プラークが存在する領域を検査者(観測者)が視認することが可能になる。例えば、プラークが存在する領域を、高輝度値で表示することにより、観測者が容易にプラークを認識することが可能になる。
 データ格納部112は、Bモード画像生成部104が生成するBモード画像202、血流画像生成部105が生成する血流画像203、内腔輪郭抽出部106が生成する内腔輪郭情報、仮外膜輪郭設定部107が生成する仮外膜輪郭情報、外膜輪郭抽出部108が生成する外膜輪郭情報を格納する。
 表示部113は、LCD(液晶ディスプレイ)などの表示装置であり、Bモード画像202、血流画像203、血管壁410のデータ、プラーク403のデータなどを表示する。なお、実施の形態1は、血管の内腔輪郭402及び外膜輪郭401をより正確に求める輪郭抽出方法を特に特徴とする。よって、超音波診断装置150が、血管壁抽出部109、プラーク領域抽出部110、プラーク領域合成部111、データ格納部112、及び表示部113等を具備するかどうかは任意である。
 次に、図4に示すフローチャートを参照して、超音波診断装置150による血管壁410を抽出する画像処理のフローを説明する。
 まず、ステップS201において、Bモード画像生成部104はBモード画像202を生成し、血流画像生成部105は血流画像203を生成する。具体的には、送受信部103は、プローブ101を通じて被検体に超音波を発信し、プローブ101を通じて反射超音波201を受信する。Bモード画像生成部104及び血流画像生成部105は、送受信部103が受信したデータを処理することで、Bモード画像202及び血流画像203を生成し、生成したBモード画像202及び血流画像203をデータ格納部112に保存する。
 次にステップS202において、内腔輪郭抽出部106は血流画像203から内腔輪郭402を抽出する。本実施の形態では、内腔輪郭抽出部106は、まず、予め定めた値より大きい面積を持つ血流領域を抽出する。血流画像203には、血流画像203を生成する過程において誤って血流領域と判定される小領域が存在する場合がある。よって、このような処理を行うことで、血流画像203の中から効率よく頚動脈を抽出することができる。さらに、内腔輪郭抽出部106は、Sobelオペレータなどを用いて当該血流領域のエッジ検出を行う。さらに、内腔輪郭抽出部106は、孤立線の除去を行った上で、血流領域の辺縁形状を表す1閉曲線を抽出する。内腔輪郭抽出部106は、この閉曲線を示す情報を内腔輪郭情報として、データ格納部112に保存する。
 このように、本実施の形態に係る超音波診断装置150は、血管の内腔輪郭402をBモード画像202から抽出するのではなく血流画像203に基づいて抽出する。Bモード画像202を用いる場合は、血管の走行方向によっては、血管壁410の輪郭が明確に表示されない場合があり、血管壁410の正確な検出が困難な場合があった。それに対して、超音波診断装置150は、血流画像203に基づいて血管の内腔輪郭402を抽出することで、血管の走行方向に関わらず血管の内壁をより正確にトレースすることができる。
 なお、本実施の形態では面積値から所望の血流領域を特定したが、拍動など血流画像203の時間的変化を加味して血流領域を特定してもよい。また、その場合、血流領域の面積が最大となるフレームにて内腔輪郭402を抽出することが望ましい。
 次に、超音波診断装置150は、ステップS202で抽出した内腔輪郭402を使用して、血管の外膜輪郭401を算出する。まず、外膜輪郭401を算出するにあったっての問題点を説明する。
 図5Aは、血管のBモード画像202の一例を示すである。また、図5Bは、図5Aに示すBモード画像202に、内腔輪郭402及び外膜輪郭401を図示した図である。図5Bから明らかなように、血管壁410にプラーク403が存在し、内腔輪郭402の形状が血管内部に向かって凹状に湾曲している場合であっても、外膜輪郭401には凹部(又は凸部)が形成されず、外膜輪郭401は略円形形状をしていることが多い。
 以下、内腔輪郭402を初期輪郭として使用して、動的輪郭探索処理により外膜輪郭401を算出する場合について説明する。
 図6Aは、動的輪郭探索処理において通常のエネルギー関数を設定した場合に、抽出される外膜輪郭405Aの形状を示す図である。ここでは、抽出される外膜輪郭405Aを点線で示している。通常のエネルギー関数を設定した場合、抽出される外膜輪郭405Aは、初期輪郭である内腔輪郭402の形状に引っ張られる。これにより、プラーク403が存在する部分の輪郭が実際の輪郭よりも凹んだ形状となってしまう。
 そのため、ステップS202で得られた内腔輪郭402を初期輪郭として用いて、Bモード画像202から血管の外膜輪郭401を抽出する場合、動的輪郭探索処理(例えばスネークス)において、外方向への探索を重視するようなエネルギー関数を設定する必要がある。
 次に、外方向への探索を重視するようなエネルギー関数を設定した場合を説明する。この場合の、抽出される外膜輪郭405Bの形状を図6Bに示す。
 前述したようにBモード画像202においては、血管の輪郭側面が一部明確に表示されない場合がある。例えば、図5Aにおいても血管の外膜輪郭401の縦方向の輪郭はほぼ表示されていない。そのため、動的輪郭探索処理を行った場合、このように輝度差が明確に表示されていない領域において、輪郭がうまく抽出されず、更に外側方向へと動的輪郭探索が行われる可能性がある。そのため、外方向への探索を重視するようなエネルギー関数を設定した場合、図6Bに示すように、抽出される外膜輪郭405Bの形状が、外側に突出した形状となってしまうことがある。
 なお、血管の内腔輪郭402が図5Bに示すように歪んだ形状である場合でも、動的輪郭探索処理の方法を工夫することによって、略円形の外膜輪郭401の抽出を図る方法も考えられる。しかしながら、プラーク403が存在する領域では、必然的に血管の内膜壁と外膜壁との間の間隔が広くなる。つまり、初期輪郭と、実際に探索される外膜輪郭401との間の距離が多くなると、図7に示すように探索領域に高輝度領域406が存在する確率が高くなる。なお、高輝度領域406は、ここではノイズを意味する。具体的には、石灰化部分、又は超音波の散乱によるノイズが高輝度値となって現れる。そして、この高輝度領域406において動的輪郭探索が収束してしまうので、所望の外膜輪郭401を得ることが難しいという課題があった。
 そこで、本実施の形態に係る超音波診断装置150は、血流画像203を用いて得られた内腔輪郭402から、血流画像203を用いて仮の外膜輪郭形状である仮外膜輪郭407を設定する。その上で、超音波診断装置150は、Bモード画像202を用いてこの仮外膜輪郭407を初期値として用いて、血管の外膜輪郭401を算出することを特徴とする。
 ステップS203では、仮外膜輪郭設定部107は、ステップS202で抽出した内腔輪郭402を基に、血流画像203を用いて仮外膜輪郭407を設定する。以下、この工程について述べる。
 上述したように、外膜輪郭401を探索する際の初期輪郭である仮外膜輪郭407は、外膜輪郭401の形状に近い略円形形状であることが好ましい。よって、図8に示すように、仮外膜輪郭設定部107は、まず内腔輪郭402の仮中心点411の座標を算出する。例えば、仮外膜輪郭設定部107は、内腔輪郭402の線上に一定間隔で複数の輪郭点を設定し、これらの輪郭点の座標値の平均値を求めることで、仮中心点411の座標を算出する。
 次に、仮外膜輪郭設定部107は、算出した仮中心点411を中心とし、内腔輪郭402が内包される円412を決定する。例えば、この円412は、仮中心点411から内腔輪郭402上の輪郭点までの長さの最大値(最大距離)より大きい半径を有する円である。そして、仮外膜輪郭設定部107は、この円412を初期輪郭として用いて、血流画像203に対する動的輪郭探索処理(スネークスなど)を行った結果得られる輪郭を、仮外膜輪郭407に決定する。ここで、動的輪郭探索処理とは、エネルギー最小化処理を行うことにより初期輪郭の輪郭点を移動させることで輪郭を抽出する処理である。この仮外膜輪郭407を図9に示す。
 ここで、血管壁410にプラーク403が存在する場合は、内腔輪郭402の正確な中心座標を算出することが難しい。これに対して、本実施の形態では、上述したように、内腔輪郭402が内包される円412を設定した上で、その円412を初期輪郭として用い内部に向けて動的輪郭探索処理を行う。これにより、たとえ仮中心点411の座標が本来の座標からずれて設定されていたとしても、内腔輪郭402に沿った略円形形状の仮外膜輪郭407を得ることができる。
 ここでの輪郭探索処理は、正しい輪郭を探す目的ではなく、略円形形状である外膜輪郭401の概形を得るために実施される。そのため、輪郭探索処理において、輪郭線が内側に凸とならないような形状拘束を行うことが望ましい。この形状拘束は、例えば、スネークスアルゴリズムを適用する場合には、内部変形エネルギーの重みを大きくすることで実現できる。つまり、仮外膜輪郭設定部107は、エネルギー最小化処理において内部変形エネルギーよりも画像エネルギーの重みを小さくして収束処理を行う。
 スネークスアルゴリズムでは、例えば下記(式1)~(式3)で定義されるエネルギーEsnakesを最小化するように輪郭を決定する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここでEintは輪郭線の内部変形エネルギーであり、Eimageは輪郭線と画像との適合度を表す画像エネルギーである。vは輪郭線のパラーメータ表現であり、vはvの1階微分、vssはvの2階微分を示している。α、β、w、wは重みを示す定数である。Gσはガウシアンフィルタであり、∇はラプラシアンフィルタであり、Iは画像の輝度値である。より具体的には、スネークスアルゴリズムは、輪郭線を、当該輪郭線を離散化した輪郭点として表現し、輪郭点ごとにエネルギーEsnakesが最小化されるような点を決定する。例えば、α=0.8、β=0.2とすることで、もとの略円形形状を保ちながら輪郭を探索することができる。
 また、血流画像203からは、血管の外膜輪郭401を抽出することは不可能である。しかし、後述するように最終的にBモード画像202を用いて外膜輪郭401を抽出する場合、初期輪郭が実際の外膜輪郭401の形状に近い略円形形状をしているため、Bモード画像202において外膜輪郭401が不明瞭な場合であっても、精度よく外膜輪郭401を抽出することができる。このように、上記の方法で算出した仮外膜輪郭407を用いて外膜輪郭401を抽出する方法は、内腔輪郭402を初期輪郭として用いて外膜輪郭401を抽出する方法に比べて、より精度よく外膜輪郭401を抽出することができる。
 このように、仮外膜輪郭設定部107は、内腔輪郭402を内包する、円形状の仮外膜輪郭407を設定する。ここで円形状とは、円形、楕円形、及び上述したような略円形形状を意味する。
 また、仮外膜輪郭407は血流画像203を用いて設定されている。血流画像203では、Bモード画像202と異なり、プラーク領域にノイズ等の高輝度領域406が存在しない。そのため、血流画像203を用いて、内腔輪郭402よりも外膜輪郭401に近い側に仮外膜輪郭407を設定することで、たとえBモード画像202において内腔輪郭402と仮外膜輪郭407との間にノイズが存在していても、その影響を受けずに仮外膜輪郭407を設定することができる。よって、外膜輪郭探索の際に、ノイズの影響を受けて誤った輪郭に収束する確率を低減することができる。
 次にステップS204において外膜輪郭抽出部108は、ステップS203で設定された仮外膜輪郭407を初期輪郭として用いて、Bモード画像202から外膜輪郭401を抽出する。本実施の形態では、外膜輪郭抽出部108は、仮外膜輪郭407を初期輪郭として用いた動的輪郭探索処理を行った結果得られる輪郭を、外膜輪郭401として抽出する。
 例えば、前述のスネークスアルゴリズムを適用すればよい。外膜輪郭抽出部108は、このときの重みを例えばα=0.5、β=0.5に設定する。なお、外膜輪郭抽出部108は、この重みをBモード画像202の描写状態によって変化させることが望ましい。具体的には、血管輪郭が明瞭な場合にはβの割合を大きく(画像エネルギーの割合を大きく)し、不明瞭な場合にはαの割合を大きく(内部変形エネルギーの重みを大きく)することで、血管輪郭の描写状態に応じてより精度よく外膜輪郭を抽出することができる。つまり、外膜輪郭抽出部108は、Bモード画像202の明瞭度が第1の値の場合、エネルギー最小化処理における、内部変形エネルギーに対する画像エネルギーの重みを第2の値に設定し、当該明瞭度が第1の値より大きい第3の値の場合、上記重みを第2の値より大きい第4の値に設定する。
 より望ましくは、外膜輪郭抽出部108は、輪郭点ごとに明瞭度に応じて重みを変えてもよい。具体的には、外膜輪郭抽出部108は、描写が明瞭な血管の前後壁に位置する輪郭点ではβの割合を大きく(画像エネルギーの割合を大きく)し、描写が不明瞭な左右壁に位置する輪郭点ではαの割合を大きく(内部変形エネルギーの重みを大きく)する。これにより、血管壁410の局所的な描写の違いに応じて精度よく外膜輪郭401を抽出することができる。このとき、外膜輪郭抽出部108は、輪郭点の位置(例えば、前後壁、左右壁)に基づいて重みを変化させてもよいし、各輪郭点近辺の描写の明瞭度に基づいて重みを変化させても構わない。描写の明瞭度は例えば、輪郭点近傍における輝度値の最大値と最小値との差によって測ることができる。この差が大きい方が壁描写は明瞭であるといえる。なお、外膜輪郭抽出部108は、明瞭度の算出方法として、他の算出方法を使っても構わない。
 ステップS205では、血管壁抽出部109は、ステップS202及びS204で得られた内腔輪郭402と外膜輪郭401との間の領域を、血管壁領域として抽出する。そして、プラーク領域抽出部110は、その血管壁領域のうち、予め定めた値より厚い厚みを持つ領域をプラーク領域として抽出する(S206)。そして、プラーク領域合成部111は、そのプラーク領域を示す情報をBモード画像に重畳することで合成画像を生成し(S207)、表示部113は、生成された合成画像を表示する(S208)。
 なお、前述したように血管壁抽出ステップS205、プラーク抽出ステップS206、画像合成ステップS207、及び表示ステップS208を採用するかどうかは任意である。つまり、超音波診断装置150は、図10に示すように、ステップS201~S204の処理のみを行なってもよい。
 また、ステップS207において、プラーク領域合成部111は、プラーク領域に加え、血管壁領域と、内腔輪郭402及び外膜輪郭401との少なくとも一方を示す情報をBモード画像に重畳することで合成画像を生成してもよい。
 また、超音波診断装置150は、ステップS206の処理を行わずに、血管壁領域を示す情報をBモード画像に重畳することで合成画像を生成し、当該合成画像を表示してもよい。また、超音波診断装置150は、ステップS205及びS206の処理を行わずに、内腔輪郭402及び外膜輪郭401を示す情報をBモード画像に重畳することで合成画像を生成し、当該合成画像を表示してもよい。
 以上より、本発明の実施の形態1に係る超音波診断装置150は、血流領域の形状から血管内膜の形状を求め、その内膜の形状情報を利用して外膜の輪郭を抽出する。これにより、超音波診断装置150は、より安定、かつより正確に血管の内膜及び外膜の位置情報を得ることができる。その結果、超音波診断装置150は、より正確にプラークの有無の判断をすることができる。
 なお、上記実施の形態では、超音波診断装置150が、プラーク領域をBモード画像202に重畳した合成画像を表示する場合を説明したが、超音波診断装置は、走査位置の異なる複数の断層像の各々に対して上述した処理を行い、抽出した複数のプラーク領域を3次元データに再構成することで、プラーク領域を示す情報をボリュームデータとして表現してもよい。
 図11は、この場合の超音波診断装置151の構成を示す図である。図11に示す超音波診断装置151は、図2に示す構成に加え、さらに、3次元データ生成部115を備える。
 まず、超音波診断装置151は、上述した血管壁領域及びプラーク領域を抽出する処理を、複数の断層像の各々に対して行う。3次元データ生成部115は、複数の断層像に対して抽出された複数の血管壁領域及び複数のプラーク領域の情報に基づき、血管壁領域及びプラーク領域を示す3次元データを生成する。例えば、3次元データ生成部115は、図12Aに示すように、内腔輪郭402及び外膜輪郭401、又は、血管壁領域を抽出した複数の断層像から血管の3次元データを生成する。さらに、3次元データ生成部115は、図12Bに示すように、複数の断面像において抽出されたプラーク領域を用いて、3次元データにおけるプラーク領域を強調表示した3次元データを生成する。そして表示部113は、3次元データ生成部115により生成された3次元データを表示する。
 なお、超音波診断装置150は、上述したステップS206の処理を行わずに、図12Aに示す3次元データを表示してもよい。
 (実施の形態2)
 本発明の実施の形態2では、上述した実施の形態1の変形例について説明する。
 図13は、本発明の実施の形態2に係る超音波診断装置152の構成を示すブロック図である。なお、図13において、図2と同じ構成要素については同じ符号を用い、説明を省略する。
 図13に示す超音波診断装置152は、図2に示す超音波診断装置150の構成に加え、初期輪郭位置調整部114を備える。
 初期輪郭位置調整部114は、Bモード画像202を基に仮外膜輪郭407の位置を調整する。具体的には、血流画像203とBモード画像202との取得タイミングの違いにより、それぞれの画像中での血管像の位置が異なることがある。仮外膜輪郭407は血流画像203を基に得られているため、この仮外膜輪郭407をBモード画像202における外膜輪郭401の位置に合わせる必要がある。本実施の形態では、初期輪郭位置調整部114は、Bモード画像202の輝度データから、Bモード画像202中の血管像の略中心座標を算出し、算出した略中心座標に仮外膜輪郭407の中心を近づけるように、仮外膜輪郭407を移動させる。具体的には、初期輪郭位置調整部114は、算出した略中心座標に仮外膜輪郭407の中心を合わせるように仮外膜輪郭407の位置を調整する。一般に血管内腔はBモード画像202中では低輝度で描写されるため、初期輪郭位置調整部114は、もともとの仮外膜輪郭407の位置の近辺で低輝度の領域を探索し、当該低輝度の領域の中心を血管像の中心位置とする。
 かかる構成によれば、本発明の実施の形態2に係る超音波診断装置152は、Bモード画像202と血流画像203との間で像のずれが発生するような場合にも、安定して正しい外膜輪郭401を得ることができる。このように、超音波診断装置152は、より正確にプラークの有無の判断をすることができる。
 以上、本発明の実施の形態に係る超音波診断装置について説明したが、本発明は、この実施の形態に限定されるものではない。
 例えば、上述した超音波診断装置本体100に含まれる処理部の一部又は全てが、プローブ101に含まれてもよい。
 また、上記説明では、Bモード画像及び血流画像として、血管が延在する方向に垂直な、当該血管の断面を示す所謂短軸像を用いる場合を例に説明したが、本発明は、血管が延在する方向に平行な、当該血管の断面図である所謂長軸像を用いる場合にも適用できる。この場合、仮外膜輪郭設定部107は、内腔輪郭を内包する四角形形状の仮外膜輪郭を決定する。ここで四角形形状とは、長方形、平行四辺形及び略四角形形状を意味する。
 また、上記実施の形態に係る超音波診断装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、本発明の実施の形態に係る、超音波診断装置の機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。
 さらに、本発明は上記プログラムであってもよいし、上記プログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
 また、上記実施の形態1~2に係る超音波診断装置、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 更に、本発明の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。
 本発明は、超音波診断装置に適用できる。また、本発明は、超音波診断装置を用いた動脈硬化の診断に有用である。また、本発明は、超音波診断装置を用いた狭窄率の測定にも応用できる。
 100 超音波診断装置本体
 101 プローブ
 102 制御部
 103 送受信部
 104 Bモード画像生成部
 105 血流画像生成部
 106 内腔輪郭抽出部
 107 仮外膜輪郭設定部
 108 外膜輪郭抽出部
 109 血管壁抽出部
 110 プラーク領域抽出部
 111 プラーク領域合成部
 112 データ格納部
 113 表示部
 114 初期輪郭位置調整部
 115 3次元データ生成部
 150、151、152 超音波診断装置
 201 反射超音波
 202 Bモード画像
 203 血流画像
 401 外膜輪郭
 402 内腔輪郭
 403 プラーク
 404 内腔
 405A、405B 抽出される外膜輪郭
 406 高輝度領域(ノイズ)
 407 仮外膜輪郭
 410 血管壁
 411 仮中心点
 412 円

Claims (12)

  1.  超音波プローブにより被験者の体内から取得された反射超音波に基づいて体内観察を行う超音波診断装置であって、
     前記反射超音波に基づいてBモード画像を生成するBモード画像生成部と、
     前記反射超音波に基づいて、血流が流れている領域を示す血流情報を生成する血流情報生成部と、
     前記血流情報に基づいて血管の内腔輪郭を抽出する内腔輪郭抽出部と、
     前記内腔輪郭を内包する仮外膜輪郭を設定する仮外膜輪郭設定部と、
     前記仮外膜輪郭を第1の初期輪郭として、前記Bモード画像を用いて血管の外膜輪郭を抽出する外膜輪郭抽出部とを備える
     超音波診断装置。
  2.  前記超音波診断装置は、さらに、
     前記内腔輪郭と前記外膜輪郭とから血管壁が存在する血管壁領域を抽出する血管壁抽出部と、
     前記血管壁領域からプラークが存在するプラーク領域を抽出するプラーク領域抽出部とを備える
     請求項1記載の超音波診断装置。
  3.  前記超音波診断装置は、さらに、
     前記血管壁領域及び前記プラーク領域を示す3次元データを生成する3次元データ生成部と、
     前記3次元データを表示する表示部とを備える
     請求項2記載の超音波診断装置。
  4.  前記仮外膜輪郭設定部は、前記内腔輪郭を内包する、円形状の前記仮外膜輪郭を設定する
     請求項1~3のいずれか1項に記載の超音波診断装置。
  5.  前記仮外膜輪郭設定部は、
     前記内腔輪郭の中心点を中心とし、かつ当該中心点から前記内腔輪郭までの最大距離よりも大きい半径を有する円を設定し、
     設定した前記円を第2の初期輪郭として用いて、前記血流情報に対して、輪郭線の内部変形エネルギーと、輪郭線と画像との適合度を表す画像エネルギーとの和が最小となる輪郭を探索する第1の動的輪郭探索処理を行い、探索により得られた輪郭を前記仮外膜輪郭として設定する
     請求項4記載の超音波診断装置。
  6.  前記仮外膜輪郭設定部は、前記第1の動的輪郭探索処理において前記内部変形エネルギーよりも前記画像エネルギーの重みを小さくして収束処理を行う
     請求項5記載の超音波診断装置。
  7.  前記外膜輪郭抽出部は、前記仮外膜輪郭を前記第1の初期輪郭として用いて、前記Bモード画像に対して、輪郭線の内部変形エネルギーと、輪郭線と画像との適合度を表す画像エネルギーとの和が最小となる輪郭を探索する第2の動的輪郭探索処理を行い、探索により得られた輪郭を前記外膜輪郭として抽出する
     請求項1~6のいずれか1項に記載の超音波診断装置。
  8.  前記外膜輪郭抽出部は、前記Bモード画像の明瞭度が第1の値の場合、前記第2の動的輪郭探索処理における、前記内部変形エネルギーに対する前記画像エネルギーの重みを第2の値に設定し、前記明瞭度が前記第1の値より大きい第3の値の場合、前記重みを前記第2の値より大きい第4の値に設定する
     請求項7記載の超音波診断装置。
  9.  前記外膜輪郭抽出部は、前記Bモード画像における輪郭点毎に、前記明瞭度に応じて前記重みを変更する
     請求項8記載の超音波診断装置。
  10.  前記血流情報生成部は、カラードプラ法を用いて前記血流情報を生成する
     請求項1~9のいずれか1項に記載の超音波診断装置。
  11.  前記外膜輪郭抽出部は、さらに、初期輪郭位置調整部を備え、
     前記初期輪郭位置調整部は、
     前記Bモード画像から血管領域の中心点を算出し、
     当該中心点に前記仮外膜輪郭の中心点を近づけるように、前記仮外膜輪郭を移動させる
     請求項1~10のいずれか1項に記載の超音波診断装置。
  12.  超音波プローブにより被験者の体内から取得された反射超音波に基づいて体内観察を行う超音波診断方法であって、
     前記反射超音波に基づいてBモード画像を生成するBモード画像生成ステップと、
     前記反射超音波に基づいて、血流が流れている領域を示す血流情報を生成する血流情報生成ステップと、
     前記血流情報に基づいて血管の内腔輪郭を抽出する内腔輪郭抽出ステップと、
     前記内腔輪郭を内包する仮外膜輪郭を設定する仮外膜輪郭設定ステップと、
     前記仮外膜輪郭を初期輪郭として、前記Bモード画像を用いて血管の外膜輪郭を抽出する外膜輪郭抽出ステップとを含む
     超音波診断方法。
PCT/JP2011/005568 2010-10-08 2011-10-03 超音波診断装置、及び超音波診断方法 WO2012046433A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11830367.6A EP2626009A4 (en) 2010-10-08 2011-10-03 Ultrasonic diagnostic device and ultrasonic diagnostic method
CN201180004808.1A CN102639064B (zh) 2010-10-08 2011-10-03 超声波诊断装置、以及超声波诊断方法
JP2012515040A JP5265810B2 (ja) 2010-10-08 2011-10-03 超音波診断装置、及び体内観察方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010228284 2010-10-08
JP2010-228284 2010-10-08

Publications (1)

Publication Number Publication Date
WO2012046433A1 true WO2012046433A1 (ja) 2012-04-12

Family

ID=45925678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005568 WO2012046433A1 (ja) 2010-10-08 2011-10-03 超音波診断装置、及び超音波診断方法

Country Status (5)

Country Link
US (1) US20120089025A1 (ja)
EP (1) EP2626009A4 (ja)
JP (1) JP5265810B2 (ja)
CN (1) CN102639064B (ja)
WO (1) WO2012046433A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217745A (ja) * 2013-04-09 2014-11-20 コニカミノルタ株式会社 超音波診断装置、およびその制御方法
JP2015037491A (ja) * 2013-08-19 2015-02-26 コニカミノルタ株式会社 超音波診断装置、超音波画像解析方法、およびプログラム
JP2017524455A (ja) * 2015-04-03 2017-08-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血管を識別する超音波システム及び方法
JP2018143416A (ja) * 2017-03-03 2018-09-20 国立大学法人 東京大学 生体内運動追跡装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748693B2 (ja) * 2012-03-13 2015-07-15 富士フイルム株式会社 画像処理装置および方法並びにプログラム
JP2014121594A (ja) * 2012-11-22 2014-07-03 Toshiba Corp 超音波診断装置、画像処理装置および画像処理方法
US9592027B2 (en) * 2013-03-14 2017-03-14 Volcano Corporation System and method of adventitial tissue characterization
US9468420B2 (en) * 2013-05-02 2016-10-18 Toshiba Medical Systems Corporation Medical imaging data processing apparatus and method
CN110051385B (zh) * 2019-05-29 2023-01-24 深圳华声医疗技术股份有限公司 基于血管识别的全自动测量方法、装置、存储介质及系统
CN110415248B (zh) * 2019-08-29 2023-05-05 新名医(北京)科技有限公司 一种基于超声的血管监测方法、装置、设备及存储介质
CN116030041B (zh) * 2023-02-24 2023-07-25 杭州微引科技有限公司 一种颈总动脉超声波横切图像血管壁分割方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271117A (ja) * 1999-03-25 2000-10-03 Aloka Co Ltd 超音波血管計測装置
JP2000331143A (ja) * 1999-05-14 2000-11-30 Mitsubishi Electric Corp 画像処理方法
JP2005028123A (ja) * 2003-06-19 2005-02-03 Saraya Kk エコーを用いた血管径測定方法およびその装置
WO2005087111A1 (ja) * 2004-03-15 2005-09-22 Hitachi Medical Corporation 医用画像診断装置及び医用画像診断方法
WO2007034738A1 (ja) * 2005-09-20 2007-03-29 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
JP2009028096A (ja) * 2007-07-24 2009-02-12 Yamaguchi Univ 分離測度を用いた重み付け最小二乗法による境界抽出

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352509B1 (en) * 1998-11-16 2002-03-05 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic diagnosis apparatus
US6443894B1 (en) * 1999-09-29 2002-09-03 Acuson Corporation Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging
US6638226B2 (en) * 2001-09-28 2003-10-28 Teratech Corporation Ultrasound imaging system
JP2007502676A (ja) * 2003-08-21 2007-02-15 アイシェム コーポレイション 血管プラーク検出および分析のための自動化方法およびシステム
WO2005020821A1 (ja) * 2003-09-01 2005-03-10 Matsushita Electric Industrial Co., Ltd. 生体信号モニタ装置
CN100522070C (zh) * 2004-03-15 2009-08-05 株式会社日立医药 医用图像诊断装置
US7397935B2 (en) * 2004-05-10 2008-07-08 Mediguide Ltd. Method for segmentation of IVUS image sequences
JP5158690B2 (ja) * 2007-12-20 2013-03-06 国立大学法人岐阜大学 画像処理装置、画像処理プログラム、記憶媒体及び超音波診断装置
US20090177089A1 (en) * 2008-01-04 2009-07-09 Assaf Govari Three-dimensional image reconstruction using doppler ultrasound
US9826959B2 (en) * 2008-11-04 2017-11-28 Fujifilm Corporation Ultrasonic diagnostic device
EP2264483B1 (en) * 2009-06-01 2017-11-29 Samsung Medison Co., Ltd. Ultrasound system and method for providing a motion vector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271117A (ja) * 1999-03-25 2000-10-03 Aloka Co Ltd 超音波血管計測装置
JP2000331143A (ja) * 1999-05-14 2000-11-30 Mitsubishi Electric Corp 画像処理方法
JP2005028123A (ja) * 2003-06-19 2005-02-03 Saraya Kk エコーを用いた血管径測定方法およびその装置
WO2005087111A1 (ja) * 2004-03-15 2005-09-22 Hitachi Medical Corporation 医用画像診断装置及び医用画像診断方法
WO2007034738A1 (ja) * 2005-09-20 2007-03-29 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
JP2009028096A (ja) * 2007-07-24 2009-02-12 Yamaguchi Univ 分離測度を用いた重み付け最小二乗法による境界抽出

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AINSWORTH CD; BLAKE CC; TAMAYO A; BELETSKY V; FENSTER A; SPENCE JD: "3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies", STROKE, vol. 36, no. 9, September 2005 (2005-09-01), pages 1904 - 1909, XP055331096, DOI: doi:10.1161/01.STR.0000178543.19433.20
J.C.R. SEABRA; L.M. PEDRO; J.F. E FERNANDES; J.M. SANCHES: "A 3-D Ultrasound based Framework to Characterize the Echo Morphology of Carotid Plaques", IEEE TRANS. BIOMED. ENG., vol. 56, 2009, pages 1442, XP011342961, DOI: doi:10.1109/TBME.2009.2013964
See also references of EP2626009A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217745A (ja) * 2013-04-09 2014-11-20 コニカミノルタ株式会社 超音波診断装置、およびその制御方法
JP2015037491A (ja) * 2013-08-19 2015-02-26 コニカミノルタ株式会社 超音波診断装置、超音波画像解析方法、およびプログラム
JP2017524455A (ja) * 2015-04-03 2017-08-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血管を識別する超音波システム及び方法
JP2018143416A (ja) * 2017-03-03 2018-09-20 国立大学法人 東京大学 生体内運動追跡装置

Also Published As

Publication number Publication date
CN102639064B (zh) 2015-10-21
JP5265810B2 (ja) 2013-08-14
EP2626009A1 (en) 2013-08-14
EP2626009A4 (en) 2017-02-08
US20120089025A1 (en) 2012-04-12
JPWO2012046433A1 (ja) 2014-02-24
CN102639064A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5265810B2 (ja) 超音波診断装置、及び体内観察方法
JP6020470B2 (ja) 超音波診断装置、および、血管特定方法
US6503202B1 (en) Medical diagnostic ultrasound system and method for flow analysis
Loizou A review of ultrasound common carotid artery image and video segmentation techniques
US10368833B2 (en) Method and system for fetal visualization by computing and displaying an ultrasound measurement and graphical model
US20140303499A1 (en) Ultrasound diagnostic apparatus and method for controlling the same
JP5015513B2 (ja) 解剖学的構造の計測のための一体型超音波デバイス
JP2006204912A (ja) 超音波映像処理方法
JP5984243B2 (ja) 超音波診断装置、医用画像処理装置及びプログラム
JP2008220955A (ja) 超音波映像を形成する超音波システム及び方法
WO2013051279A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2007222533A (ja) 超音波診断装置及び超音波画像処理方法
JP2013183875A (ja) 超音波診断装置及び超音波診断支援方法
JP4709937B2 (ja) 超音波診断装置及び画像処理装置
JP4769260B2 (ja) 超音波診断装置
JP4563788B2 (ja) 超音波診断装置
JP6098641B2 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置の制御器
US11298096B2 (en) Imaging method, controller and imaging system, for monitoring a patient post EVAR
JP6837924B2 (ja) 超音波診断装置及びサンプルゲート設定方法
JP6176043B2 (ja) 超音波診断装置、超音波診断装置の制御器及び超音波診断装置の制御方法
Brandt et al. Vector Concentration used for Stenosis Assessment in the Carotid Artery before and after Carotid Stenting
Jin et al. Automatic measurement of the artery intima-media thickness with image empirical mode decomposition
김창수 Three dimensional wall motion of the carotid artery investigated by high-frequency ultrasound
Zhang A novel ultrasound-based velocimetry technique (Echo PIV) for quantitative assessment of cardiovascular hemodynamics: Recent improvement, in vitro and in vivo validation, and its initial application in vascular profiling of human carotid arteries

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004808.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012515040

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011830367

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4874/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE