WO2007034731A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2007034731A1
WO2007034731A1 PCT/JP2006/318256 JP2006318256W WO2007034731A1 WO 2007034731 A1 WO2007034731 A1 WO 2007034731A1 JP 2006318256 W JP2006318256 W JP 2006318256W WO 2007034731 A1 WO2007034731 A1 WO 2007034731A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fuel
catalyst layer
fuel
fuel supply
liquid
Prior art date
Application number
PCT/JP2006/318256
Other languages
English (en)
French (fr)
Inventor
Nobuyasu Negishi
Hiroyuki Hasebe
Yuichi Yoshida
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to US12/067,189 priority Critical patent/US20090047560A1/en
Publication of WO2007034731A1 publication Critical patent/WO2007034731A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell having a planar arrangement that is effective for the operation of a portable device.
  • Fuel cells have the advantage that they can generate electricity simply by supplying fuel and oxidant, and can continuously generate electricity by replenishing and replacing only the fuel. For this reason, if it can be miniaturized, it can be regarded as an extremely advantageous system for the operation of portable electronic devices.
  • Direct methanol fuel cells DMFCs
  • methanol with high energy density as the fuel
  • electrocatalyst Since it is easy compared to the above, it is promising as a power source for small devices, and its practical application is expected as an optimal power source for cordless portable devices such as notebook computers, mobile phones, portable audio devices and portable game machines.
  • DMFC fuel supply methods include gas supply type DMFC that vaporizes liquid fuel and sends it into the fuel cell with a force blower, etc., and liquid supply type DMFC that sends liquid fuel directly into the fuel cell with a pump or the like, An internal vaporization type DMFC that vaporizes liquid fuel in a cell is known.
  • Patent Documents 1 to 5 describe a solid electrolyte membrane having proton conductivity, a catalyst layer electrode having catalyst-carrying carbon fine particles coated with an ion exchange resin, and supplying reactive fuel to the catalyst layer electrode. Together with a gas diffusion layer that generates electric charge ⁇ from the fuel, water, an anode that generates charges and protons, a catalyst layer electrode having catalyst-supported carbon particles coated with an ion exchange resin, and an oxygen in the catalyst layer electrode.
  • the unit cell has a MEA (Membrane Electrode Assembly) formed from protons and a force sword that generates water from oxygen.
  • a fuel cell comprising a fuel tank and having one or more unit cells covered with a protective cover is disclosed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-317791
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-014148
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-015763
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-235084
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-103262
  • the operating voltage per unit cell is as low as about 0.3 to 0.5 V, it is necessary to arrange multiple unit cells in series in DMFC, especially for notebook computers and mobile phones. When incorporated into small portable devices such as telephones, portable audio devices, and portable game machines, it is necessary to arrange a plurality of unit cells in series on the same plane.
  • the DMFC can extract the current by supplying fuel to the anode side substantially, the fuel supplied to the unit cell must be made as uniform as possible when a current load is applied. .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel cell having good power generation performance without causing variations in power generation operation between cells. .
  • the fuel cell according to the present invention includes an electrolyte membrane, an anode and a force sword that are arranged to face each other with the electrolyte membrane interposed therebetween as a unit cell, and a plurality of unit cells connected in series, A liquid fuel storage chamber for storing liquid fuel disposed on the anode side of the unit cell; and a vaporized component of the liquid fuel disposed between the anode and the liquid fuel storage chamber for supplying to the anode.
  • one end portion of the catalyst layer electrode in the longitudinal direction is positioned higher than the other end portion, and is close to one end portion of the liquid fuel supply frame in the longitudinal direction of the catalyst layer electrode.
  • the fuel supply port is disposed at a corresponding position, and the stationary type does not substantially change the relative positional relationship between the fuel supply port and the catalyst layer electrode during power generation.
  • the stationary type does not substantially change the relative positional relationship between the fuel supply port and the catalyst layer electrode during power generation.
  • the attitude of the fuel cell-equipped equipment during power generation may have a significant impact on the power generation performance.
  • the MEA including the catalyst layer electrode is disposed to be inclined in the longitudinal direction, and one end portion in the longitudinal direction of the catalyst layer electrode is positioned higher than the other end portion, and the fuel supply port of the liquid fuel supply frame is disposed in the longitudinal direction of the electrode. It is formed at a position close to one end in the direction, and liquid fuel is supplied to the liquid fuel impregnated layer laminated on the gas-liquid separation membrane. Liquid vaporized from the separation membrane The fuel can be smoothly and evenly distributed over the MEA including multiple catalyst layer electrodes.
  • the plurality of catalyst layer electrodes may be arranged adjacent to each other at a predetermined interval, and have end portions in the longitudinal direction that are substantially aligned on the same line. In this way, the relative positional relationship of the catalyst layer electrode with respect to the fuel supply port becomes constant, and the spread of fuel is equalized.
  • a fuel supply port of the liquid fuel supply frame is formed at a position corresponding to each of the catalyst layer electrodes, and the liquid fuel impregnated layer is connected to each catalyst layer electrode. It is desirable that fuel be supplied evenly to the corresponding locations.
  • a plurality of fuel supply ports corresponding to a plurality of catalyst layer electrodes in a one-to-one relationship are arranged at positions corresponding to the vicinity of one end of each catalyst layer electrode (see 46A in FIG. 2).
  • one fuel supply port corresponding to a plurality of catalyst layer electrodes can be arranged at a position corresponding to the vicinity of one end of each catalyst layer electrode (see 46C in FIG. 3).
  • the fuel supply port can be disposed at a position corresponding to the one end portion or the center portion in the longitudinal direction of the catalyst layer electrode (see 46B in FIG. 3). If the fuel supply port is disposed at a corresponding position close to the longitudinal center of the catalyst layer electrode, the time until the fuel reaches the longitudinal end of the catalyst layer electrode sufficiently is shortened.
  • the plurality of catalyst layer electrodes may have a plurality of fuel supply ports having substantially the same diameter corresponding to one-to-one (see 46D in FIG. 4). By making each fuel supply port have the same diameter, fuel is evenly supplied to each catalyst layer electrode.
  • FIGS. 2 to 4 for the sake of convenience, only the configuration of the catalyst layer electrode and the liquid fuel supply port is shown for the sake of convenience so that the positional relationship between the catalyst layer electrode and the liquid fuel supply port can be easily understood.
  • the liquid fuel supply port is formed so as to be in contact with the medium layer electrode, in practice, at least a gas-liquid separation membrane and a liquid fuel impregnation layer are provided between them as shown in FIG. ing.
  • the aspect ratio of the catalyst layer electrode in the two-dimensional planar field of view is most preferably in the range of 3 to 8 times, for example, preferably in the range of 1 to 16 times.
  • the aspect ratio is less than 1, the shape of the electrode is horizontally long, so the distance from the fuel supply port to the next fuel supply port becomes too large, which is not preferable in terms of design viewpoint. This is the power that makes the battery body easier to enlarge.
  • the aspect ratio of the catalyst layer electrode exceeds 16 times, even if the fuel supply port is arranged at the longitudinal center of the electrode, it is difficult for a sufficient amount of fuel to reach the both ends in the longitudinal direction of the electrode quickly and quickly. This is because the variation in the amount of power generation between unit cells is not resolved, and the power generation efficiency as a whole decreases.
  • the aspect ratio of the catalyst layer electrode should be in the range of 3 to 8 times.
  • peripheral wall material that defines the fuel supply port examples include polyether ether ketone (PEE K: trademark of Victorex PLC), polyphenylene-sulfide (PPS), and polytetrafluoroethylene (PTFE). It is hard to cause swelling etc. with liquid fuel! It is desirable to use a hard resin, but if a coating with excellent corrosion resistance is applied, a metal material with excellent corrosion resistance such as stainless steel and nickel metal should be used. You can also.
  • methanol aqueous solution pure methanol, ethanol aqueous solution, pure ethanol, dimethyl ether, formic acid, sodium borohydride aqueous solution, potassium borohydride aqueous solution, lithium hydride aqueous solution or the like can be used.
  • fuels with various concentrations in the range from 100% to several percent can be used. In any case, liquid fuel corresponding to the fuel cell is accommodated.
  • FIG. 1 is a side sectional view schematically showing the structure of a fuel cell.
  • FIG. 2 is a plan view showing an electrode arrangement of a fuel cell according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing an electrode arrangement of a fuel cell according to another embodiment.
  • FIG. 4 is a plan view showing an electrode arrangement of another embodiment.
  • FIG. 5 is a plan view showing an electrode arrangement of a conventional fuel cell.
  • Fig. 6 is a characteristic diagram showing variations in voltage at the time of start-up and constant voltage measurement of the fuel cell according to the first embodiment and the fuel cell of the comparative example.
  • Fig. 7 is a characteristic diagram showing variations in voltage during startup and constant voltage measurement between the fuel cell according to the second embodiment and the fuel cell of the comparative example.
  • the fuel cell 1 is entirely covered with a fuel tank 10, a protective cover 20, etc., and has a plurality of unit cells inside.
  • the fuel cell 1 is configured as a single unit in which the internal unit cell is tightened with bolts 28 and nuts 29 through the fuel tank 10 and the protective cover 20 side force via the seal members 18.
  • Various spaces and gaps are formed in the fuel cell 1 by seal members 18 and spacers 19 and 35 as pressing members.
  • the space on the anode side is used as the liquid fuel storage chamber 32 and the vaporization chamber 36
  • the space on the force sword side is the air permeable layer 26, which obstructs the passage of outside air. It is intended to prevent foreign dust, foreign matter, and contact from the outside.
  • a spacer 35 is attached to the opposite side of the negative electrode lead 13, and the vaporization chamber 36 Is stipulated.
  • the vaporization chamber 36 is provided adjacent to the liquid fuel storage chamber 32, and the both 32 and 36 are partitioned by a gas-liquid separation membrane 34.
  • the gas-liquid separation membrane 34 is made of a polytetrafluoroethylene (PTFE) sheet having a large number of pores, blocks liquid fuel (methanol liquid or its aqueous solution), and allows fuel gas (methanol gas) to permeate. It is a thing.
  • liquid fuel impregnation layer 45 laminated on the liquid fuel storage chamber 32 side of the gas-liquid separation membrane 34 and the liquid fuel storage chamber side 32 of the liquid fuel impregnation layer 45 are laminated on the anode catalyst layer electrode 15.
  • a liquid fuel supply frame 44 in which a fuel supply port 46 for supplying liquid fuel to a liquid fuel impregnated layer 45 formed at a position corresponding to substantially the same portion is formed.
  • An exhaust channel (not shown) is provided on the anode side, and CO gas as a by-product is discharged out of the reaction system through the exhaust channel.
  • the negative lead 13 is
  • the liquid fuel storage chamber 32 has a predetermined capacity of space force that is defined by the protective cover 10 and the liquid fuel supply frame 44, and is placed at an appropriate place (for example, the side surface of the fuel tank 10).
  • the liquid inlet 3 la opens.
  • a bayonet type coupler 31 is attached to the liquid receiving port 3 la, and the fuel supply port 3 la is closed by the coupler 31 except when fuel is replenished.
  • the coupler 31 on the fuel cell body side is formed in such a shape that the coupler 43 on the external cartridge side can be liquid-tightly engaged.
  • the built-in valve of the coupler is opened and the cartridge side is opened.
  • the flow path communicates with the flow path on the fuel cell body side, and the internal pressure of the cartridge 40 causes the liquid fuel 2 to flow into the liquid fuel storage chamber 32 from the liquid receiving port 31a through the transport tube 42.
  • the surrounding of the vaporizing chamber 36 is defined by a spacer 35 and a gas-liquid separation membrane 34.
  • the peripheral portion of the spacer 35 is formed in a U-shaped cross section so that the bolts and nuts 28 and 29 can be endured and not deformed, and a space of a predetermined width is secured as the vaporizing chamber 36.
  • a plurality of vaporized fuel supply ports 14 are opened on the upper surface of the spacer 35! /. These vaporized fuel supply ports 14 penetrate the negative electrode lead 13 and communicate with the anode gas diffusion layer 15 side.
  • the fuel gas component enters the vaporization chamber 34 through the gas-liquid separation membrane 34, and further passes through the vaporized fuel supply port 14 from the vaporization chamber 34. It passes through the anode gas diffusion layer 15 and contributes to the power generation reaction.
  • the unit cell of the fuel cell includes an electrolyte membrane 11, an anode, and a force sword.
  • the anode and the cathode are opposed to each other with the electrolyte membrane 11 interposed therebetween.
  • the anode has an anode catalyst layer electrode 12 and an anode gas diffusion layer 15.
  • the anode catalyst layer electrode 12 is The fuel supplied through the gas diffusion layer 15 is oxidized to extract fuel-power electrons and protons, and has a laminated structure in which the catalyst layer electrode 12 and the gas diffusion layer 15 are stacked.
  • the anode catalyst layer electrode 12 is made of, for example, carbon powder containing a catalyst.
  • the catalyst examples include fine particles of platinum (Pt), transition metals such as iron (Fe), nickel (Ni), cobalt (Co), ruthenium (Ru), and molybdenum (Mo) or oxides thereof. ! /, Are fine particles such as alloys thereof. However, if the catalyst is made of an alloy of ruthenium and platinum, it is preferable because it can prevent inactivation of the catalyst due to adsorption of carbon monoxide (CO).
  • Pt platinum
  • transition metals such as iron (Fe), nickel (Ni), cobalt (Co), ruthenium (Ru), and molybdenum (Mo) or oxides thereof.
  • Mo molybdenum
  • the catalyst is made of an alloy of ruthenium and platinum, it is preferable because it can prevent inactivation of the catalyst due to adsorption of carbon monoxide (CO).
  • the anode catalyst layer electrode 12 more preferably contains fine particles of resin used for the solid electrolyte membrane 11 described later. This is to facilitate the movement of the generated protons.
  • the anode gas diffusion layer 15 is made of a thin film made of, for example, a porous carbon material, and specifically made of carbon paper or carbon fiber. Note that the negative electrode lead 13 that is electrically connected to the end of the anode gas diffusion layer 15 extends outward.
  • each of the fuel supply ports 46 A of the liquid fuel supply frame 44 has a pair in the vicinity of the end portion (short side) in the longitudinal direction of the anode gas diffusion layer 15. As long as it has an opening at a position corresponding to 1 and the shape has a width of 60% or more of the short side, the shape is appropriately selected.
  • the anode gas diffusion layer 15 and the anode catalyst layer electrode 12 are approximately the same size, and both of them are heat-press-molded so as to be in close contact over the entire surface. In the vicinity of the end (short side) of the electrode 12 in the longitudinal direction, an opening is made at a position corresponding to one-to-one.
  • Each anode catalyst layer electrode 12 has an elongated rectangular shape with an aspect ratio of 3 to 8 (an aspect ratio of 6 in this embodiment).
  • the interval between the adjacent anode catalyst layer electrodes 12 is about lmm.
  • the diameter of the fuel supply port 14 is about 2 to 5 mm.
  • the shape of the fuel supply port 14 is not limited to a round hole, but may be various shapes such as an ellipse, an ellipse, a rectangle, a triangle, and a pentagon or more polygon.
  • the force sword has a force sword catalyst layer electrode 12 and a force sword gas diffusion layer 16.
  • the force sword catalyst layer electrode 12 generates water by reducing oxygen and reacting electrons with protons generated in the anode catalyst layer electrode 12.
  • the catalyst used for the force sword catalyst layer electrode 12 is the same as that of the anode catalyst layer electrode 12, and the anode catalyst layer electrode 12 may contain fine particles of resin used for the solid electrolyte membrane 11. The same as the catalyst layer electrode 12.
  • a positive electrode lead 17 conducting to the end of the force sword gas diffusion layer 16 extends outward.
  • a plurality of fine air holes 24 are formed in the protective cover 20 on the force sword side, and communicate with the air permeable layer 26, respectively.
  • the electrolyte membrane 11 is for transporting protons generated in the anode catalyst layer electrode 12 to the force sword catalyst layer electrode 12, and is made of a material that does not have electron conductivity and can transport protons. It is configured. For example, it is composed of a polyperfluorosulfonic acid-based resin membrane, specifically a naphtho ion membrane manufactured by DuPont, a Flemion membrane manufactured by Asahi Glass, or an aciplex membrane manufactured by Asahi Kasei Kogyo Co., Ltd. .
  • copolymer films of trifluorostyrene derivatives, polybenzimidazole membranes impregnated with phosphoric acid, aromatic polyether ketone sulfonic acid membranes, or aliphatic An electrolyte membrane 11 capable of transporting protons such as a hydrocarbon-based coconut resin may be configured.
  • a liquid fuel storage chamber 32 having a liquid fuel storage space formed therein On the opposite side of the anode gas diffusion layer 15 from the electrolyte membrane 11, for example, a liquid fuel storage chamber 32 having a liquid fuel storage space formed therein is provided.
  • the use of high-concentration liquid fuel has the advantage that the fuel cell volume efficiency is improved and the size and weight of the fuel cartridge 40 carried with the fuel cell can be kept small.
  • the protective cover 10 and the spacer 35 are made of liquid fuel such as polyetheretherketone (PEEK: trademark of Victorex PLC), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), and the like. It is desirable to make it with a hard plastic that does not easily swell, but if a coating with excellent corrosion resistance is applied, it can also be made of a metal material with excellent corrosion resistance such as stainless steel or nickel metal. When the fuel tank 10 and the spacer 35 are made of metal materials, they are placed in the same battery container. It is necessary to insert an insulating member between the negative electrodes so as not to short-circuit the negative electrodes.
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • liquid fuel impregnated layer 45 Inside the liquid fuel storage chamber 32, there is a liquid fuel impregnated layer 45 stacked on the liquid fuel storage chamber 32 side of the gas-liquid separation membrane 34.
  • the liquid fuel-impregnated layer 45 for example, a multi-rigid fiber such as a porous polyester fiber, a porous polyolefin-based resin, or an open-celled porous resin is preferable.
  • This liquid fuel impregnated layer 45 is disposed between the gas-liquid separation membrane 34 and the liquid fuel supply frame in which the fuel supply port 46A is formed.
  • the fuel cell body Even when the fuel is inclined and the fuel supply is biased, the fuel can be supplied uniformly to the gas-liquid separation membrane, and as a result, it is possible to supply the vaporized liquid fuel to the anode catalyst layer 15 uniformly.
  • polyester fiber it is made of a material that can hold liquid by utilizing the liquid permeability, such as sponge or fiber aggregate, which may be made of various water-absorbing polymers such as acrylic resin. To do.
  • This liquid fuel impregnation part is effective for supplying an appropriate amount of fuel regardless of the posture of the main body.
  • liquid fuel examples include methanol aqueous solution, pure methanol, ethanol aqueous solution, pure ethanol, propanol aqueous solution, formic acid aqueous solution, sodium formate aqueous solution, acetic acid aqueous solution, ethylene glycol aqueous solution, organic aqueous solution containing hydrogen such as dimethyl ether.
  • an aqueous methanol solution is preferable because it has carbon number of 1 and carbon dioxide gas is generated during the reaction, and can generate electricity at a low temperature, and can be produced relatively easily from industrial waste. In any case, liquid fuel corresponding to the fuel cell is accommodated.
  • the protective cover 20 on the force sword side is provided with a large number of ventilation holes 24 for supplying outside air to the force sword gas diffusion layer 16 through a gap, for example, by natural diffusion.
  • These air holes 24 form openings through which the outside air passes, but do not impede the passage of the outside air, and can prevent the entry of minute or needle-like foreign objects into the force sword gas diffusion layer 16 from the outside.
  • the shape is devised.
  • each of the fuel supply ports 46A is opened at a position corresponding to one-to-one in the vicinity of the end (short side) in the longitudinal direction of the anode catalyst layer electrode 12.
  • the amount of fuel supplied to the node catalyst layer electrode 12 is equalized, and at startup and restart Oh! Thus, the power generation amount does not vary between unit cells.
  • a liquid fuel supply frame 44 is provided in which the liquid fuel supply port 46A is opened at a position corresponding to 1: 1 of the longitudinal end (short) of each anode catalyst layer electrode 12. . 10 ml of 99.9% pure methanol was supplied to the liquid fuel storage chamber 32. After that, we measured the voltage at the start of each cell and 2. IV constant voltage at the time of power generation.
  • the liquid fuel supply port has a left end force and a left end force that are the second anode catalyst as in the liquid fuel supply port 114 shown in FIG. It arrange
  • E1-E6 the layer electrodes 112
  • Figure 6 shows the cell voltages corresponding to the anode catalyst layer electrodes E1 to E6 as the voltage ratio (%) when the voltage of the leftmost unit cell is 100.
  • the characteristic line A1 in the figure is the cell voltage characteristic at start-up of Example 1
  • the characteristic line B1 is the cell voltage characteristic at constant voltage measurement in Example 1 (during steady power generation)
  • the characteristic line C is at the start-up of the comparative example
  • Cell voltage characteristics and characteristic line D show the cell voltage characteristics during constant voltage measurement (during steady power generation) in the comparative example.
  • FIG. 6 in the fuel cell according to the present embodiment, it is possible to suppress the voltage variation of each cell and the voltage variation during start-up and power generation to within ⁇ 2%. The variation in power generation is small.
  • the voltage of the unit cell decreases as the distance from the liquid fuel supply port increases, and uniform fuel supply is possible even during startup / power generation! There is no difference in the amount of power generated between unit cells.
  • a second embodiment will be described with reference to FIG. Note that description of portions in which the present embodiment overlaps with the first embodiment is omitted.
  • the fuel supply port 46B or 46C formed by a single slit may be adopted as the fuel supply port of the fuel cell 1A.
  • the fuel supply port 46B or 46C opens in a direction substantially perpendicular to the length of the anode catalyst layer electrode 12. That is, the fuel supply port 46B or 46C force also has a substantially equal distance to the anode catalyst layer electrode 12. Then the fuel supply port 46B or 46C is located.
  • the width of the fuel supply port 46B is preferably in the range of 0.5 to 10% with respect to the long side of the catalyst layer electrode, and more preferably in the range of 1 to 5%. Is preferred.
  • the fuel supply port 46B or 46C may be opened (46C) in the vicinity of one end (one short side) 12a in the longitudinal direction of the anode catalyst layer electrode 12, or the anode catalyst layer electrode. You may make it open (46B) in the 12 longitudinal direction center part. In the latter example, the fuel supplied from the fuel supply port 46 B flows from the central portion in the longitudinal direction of the anode catalyst layer electrode 12 toward both longitudinal ends 12a and 12b. Compared to half, the fuel can be diffused rapidly throughout the anode catalyst layer electrode 12.
  • a liquid fuel supply frame 44 having a slit-like opening is arranged at a position where the liquid fuel supply port 46C as shown in FIG. 3 corresponds to the end portion (short part) of each anode catalyst layer electrode 12 in the longitudinal direction.
  • Methanol purity 99.9 weight 0/0 was 10ml supplied to the liquid fuel chamber 32. After that, we measured the voltage at the start of each cell and 2. IV low voltage.
  • FIG. 7 shows the voltage of each cell as a voltage ratio (%) when the voltage of the leftmost unit cell is 100, together with the result and the measurement result of the fuel cell used in the first embodiment.
  • the characteristic line A2 in the figure is the cell voltage characteristic at the start of Example 2
  • the characteristic line B2 is the cell voltage characteristic at the constant voltage measurement (in steady power generation) of Example 2
  • the characteristic line C is the start of the comparative example.
  • Cell voltage characteristics at time, characteristic line D shows the cell voltage characteristics during constant voltage measurement (steady power generation) in the comparative example.
  • the voltage of the unit cell decreases as the distance from the liquid fuel supply locus increases. / Even if there is a discrepancy, the fuel supply is not evenly distributed, and the variation in power generation between each unit cell is increasing.
  • a third embodiment will be described with reference to FIG. Note that this embodiment is the first The description of the same parts as those in the second embodiment is omitted.
  • the device in which the fuel cell 1B is incorporated is a stationary type (for example, a notebook personal computer) that does not substantially change its posture. That is, in the stationary device, the relative positional relationship between the fuel supply port 46D and the catalyst layer electrode 12 is not substantially changed during power generation.
  • the one end portion 12a in the longitudinal direction of the anode catalyst layer electrode 12 is disposed relatively higher than the other end portion 12b, and the fuel supply port 46D is disposed in the longitudinal direction of the plurality of anode catalyst layer electrodes E1 to E6 (12).
  • One side end is opened near 12a.
  • the MEA including the catalyst layer electrodes E1 to E6 is disposed to be inclined in the longitudinal direction, the longitudinal end portion 12a of the catalyst layer electrode is positioned higher than the other end portion 12b, and the fuel supply port 46D is disposed.
  • the fuel supply port 46D is disposed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 アノード及びカソードの各触媒層電極として実質的に同一の平面上に並列に配置され、所定のアスペクト比を有する形状の複数の触媒層電極(12)と、気液分離膜の液体燃料収容室側に積層された液体燃料含浸層(45)と、液体燃料含浸層の液体燃料収容室側に積層され、アノード触媒層電極の実質的に同じ部位に対応した位置に形成された液体燃料含浸層へ液体燃料を供給する単数又は複数の燃料供給口(46,46A,46B,46C)が形成された液体燃料供給フレーム(44)と、を有する燃料電池。

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は、携帯機器の動作に有効な平面配置の燃料電池に関する。
背景技術
[0002] 近年、パーソナルコンピュータ、携帯電話等の各種電子機器は、半導体技術の発 達と共に小型化され、燃料電池をこれらの小型機器用の電源に用いることが試みら れている。
[0003] 燃料電池は、燃料と酸化剤を供給するだけで発電することができ、燃料のみを補充 •交換すれば連続して発電できるという利点を有している。このため、小型化が出来 れば携帯電子機器の作動に極めて有利なシステムと ヽえる。特に直接メタノール燃 料電池(DMFC)は、エネルギー密度の高いメタノールを燃料に用い、メタノールから 電極触媒上で直接電流を取り出せるため、小型化が可能であり、また燃料の取り扱 いも水素ガス燃料に比べて容易なことから小型機器用電源として有望であることから 、ノートパソコン、携帯電話、携帯オーディオ、携帯ゲーム機などのコードレス携帯機 器に最適な電源としてその実用化が期待されて 、る。
[0004] DMFCの燃料の供給方法としては、液体燃料を気化して力 ブロア等で燃料電池 内に送り込む気体供給型 DMFCと、液体燃料をそのままポンプ等で燃料電池内に 送り込む液体供給型 DMFC、液体燃料をセル内で気化させる内部気化型 DMFC 等が知られている。
[0005] 例えば特許文献 1〜5は、プロトン導電性を有する固体電解質膜と、イオン交換榭 脂で被覆された触媒担持カーボン微粒子を有する触媒層電極と、触媒層電極に反 応燃料を供給するとともに電荷 ^^電するガス拡散層とからなり、燃料と水から電荷と プロトンを生成するアノードと、イオン交換樹脂で被覆された触媒担持カーボン微粒 子を有する触媒層電極と、触媒層電極に酸素を供給するとともに電荷を伝導するガ ス拡散層力もなりプロトンと酸素から水を生成する力ソードとから形成される MEA(M embrane Electrode Assembly)を単位セルとして有し、単位セル周辺に液体燃 料タンクを備え、単数または複数の単位セルを保護カバーで覆ってなる燃料電池を それぞれ開示している。
特許文献 1 :特開 2003— 317791号公報
特許文献 2 :特開 2004— 014148号公報
特許文献 3 :特開 2002— 015763号公報
特許文献 4:特開 2004 - 235084号公報
特許文献 5 :特開 2004— 103262号公報
発明の開示
[0006] し力し、 DMFCは、単位セル当たりの動作電圧が 0. 3〜0. 5V程度と低いため、複 数の単位セルを直列に並べて機器に組み込む必要があり、特にノートパソコン、携帯 電話、携帯オーディオ、携帯ゲーム機などの小型携帯機器に組み込む際には、複数 の単位セルを同一平面に直列に配置することが必要になる。また、 DMFCでは実質 的にアノード側に燃料を供給することで電流を取り出すことが可能であるため、単位 セルに供給する燃料は電流負荷が掛カつた場合には可能な限り均等にしなければ ならない。
[0007] しかし、ポンプ等の補機を持たな 、所謂パッシブ型の DMFCにお 、ては、燃料の 供給は毛細管現象と重力を利用する自然供給方式であり、機器の使用状態によって は燃料の供給バランスが崩れて、燃料の存在量や濃度が不均一になり、セル間に電 圧のばらつきを生じて、転極などを引き起こすおそれがある。
[0008] 例えば、液体燃料を収納する液体燃料収納室と、前記液体燃料の気化成分をァノ ードに供給すための気液分離膜を有する気体供給型燃料電池にお!ヽては、燃料電 池 100の単位セルの図 5に示す位置に対応する位置に形成された燃料供給口 114 から液体燃料を気液分離膜に供給すると、図中の左側と中央側のアノード触媒層電 極 112 (E1〜E6)の隣り合う位置力 順番に気化された液体燃料と接触して発電す る力 セル全体に燃料が十分に行き渡るまでの間において、図中の右側のアノード 触媒層電極 E3〜E6は未だ発電を開始して 、な 、か又は発電量が小さ 、ので、燃 料供給口 114の位置力 触媒層電極 E1〜E6までの相対距離の相違によって発電 動作にばらつきを生じる。 [0009] また、燃料電池 100を一旦停止した後に運転を再開する場合に、各アノード触媒 層電極 E 1〜E6に残つて!、る燃料の残量がばらばらであるので、各セルの発電動作 の立ち上がりにずれを生じ、所望の発電性能を得ることができな!/、。
[0010] 本発明は上記課題を解決するためになされたものであり、セル間の発電動作にば らっきを生じることなぐ良好な発電性能を有する燃料電池を提供することを目的とす る。
[0011] 本発明に係る燃料電池は、電解質膜と、該電解質膜を間に挟んで対向配置された アノードと力ソードを単位セルとして備え、複数の単位セルを直列に接続し、前記複 数の単位セルのアノード側に配置された液体燃料を収容する液体燃料収容室と、前 記アノードと前記液体燃料収容室の間に配置され前記液体燃料の気化成分をァノ ードに供給するための気液分離膜を有する燃料電池であって、前記アノード及び力 ソードの各触媒層電極として実質的に同一の平面上に並列に配置され、所定のァス ぺクト比を有する形状の複数の触媒層電極と、前記気液分離膜の前記液体燃料収 容室側に積層された液体燃料含浸層と、前記液体燃料含浸層の液体燃料収容室側 に積層され、前記アノード触媒層電極の実質的に同じ部位に対応した位置に形成さ れた前記液体燃料含浸層へ液体燃料を供給する単数又は複数の燃料供給口が形 成された液体燃料供給フレームと、を有することを特徴とする。
[0012] この場合に、触媒層電極の長手方向の一端部が他端部よりも相対的に高いところ に位置し、前記液体燃料供給フレームの前記触媒層電極の長手方向の一端部に近 接して対応する位置に前記燃料供給口が配置され、発電時に前記燃料供給口と前 記触媒層電極との相対的な位置関係を実質的に変えない据え置き型であることが好 ましい。ノッシブ型の燃料電池では、燃料供給の駆動力として毛細管現象ば力りで なく重力も利用されるので、発電時における燃料電池搭載機器の姿勢が発電性能に 重大な影響を及ぼすおそれがある。そこで、触媒層電極を含む MEAを長手方向に 傾けて配置し、触媒層電極の長手方向の一端部が他端部よりも高いところに位置さ せ、液体燃料供給フレームの燃料供給口を電極長手方向一端部に近接させる位置 に形成し、液体燃料を気液分離膜に積層された液体燃料含浸層に供給することによ り、高 ヽ位置の燃料供給口から燃料を供給することで気液分離膜から気化した液体 燃料は、複数の触媒層電極を含む MEAにわたつて燃料を円滑に均一に分散させる ことができる。
[0013] また、複数の触媒層電極は、所定の間隔をおいて隣り合って配列され、実質的に 同一線上に揃って並ぶ長手方向端部を有するものとすることができる。このようにす ると燃料供給口に対する触媒層電極の相対的な位置関係が一定になり、燃料の拡 散が均等化される。ちなみに、触媒層電極内にはカーボン等の微粒子の二次粒子 間または三次粒子間に形成される微小な細孔力もなる空隙部が多数存在して 、る。 これらの空隙部は触媒層電極内における反応ガスの拡散経路として機能するもので あり、良好な発電性能を得るためには、燃料は可能な限り触媒層電極の全体に均等 に拡散していくことが望ましい。また、各セル間に生じる発電量のばらつきを抑えるた めには、触媒層電極の各々に対応した位置に液体燃料供給フレームの燃料供給口 が形成され、液体燃料含浸層へ各触媒層電極に対応した位置へ燃料が均等に供給 されることが望まれる。
[0014] 具体的には、複数の触媒層電極に 1対 1に対応する複数の燃料供給口を各触媒層 電極の一方の端部近傍に対応する位置に配置(図 2の 46A参照)、あるいは複数の 触媒層電極に対応する 1個の燃料供給口を各触媒層電極の一方の端部近傍に対 応する位置に配置(図 3の 46C参照)することができる。各燃料供給口が各触媒層に 対応する位置に配置することにより、各触媒層電極に対して燃料が均等に供給され る。
[0015] また、燃料供給口が触媒層電極の長手方向の一端部または中央部に近接して対 応する位置に配置させることができる(図 3の 46B参照)。燃料供給口を触媒層電極 長手方向中央部に近接して対応する位置に配置すると、触媒層電極の長手方向端 部に燃料が十分到達するまでの時間が短縮される。
[0016] また、複数の触媒層電極に 1対 1に対応する実質的に同径の複数の燃料供給口を 有することができる(図 4の 46D参照)。各燃料供給口を同径とすることにより、各触媒 層電極に対して燃料が均等に供給される。
[0017] なお、図 2〜4においては、触媒層電極と液体燃料供給口との位置関係が理解し やすいように便宜上、触媒層電極と液体燃料供給口との構成のみで、一見すると触 媒層電極に接するよう液体燃料供給口が形成されて ヽるように記載して ヽるが、実際 には図 1に示すようにその間には少なくとも気液分離膜および液体燃料含浸層を有 している。
[0018] なお、触媒層電極の二次元平面視野内でのアスペクト比は、例えば 1〜16倍の範 囲とすることが好ましぐ 3〜8倍の範囲とすることが最も好ましい。アスペクト比が 1倍 を下回る場合は、電極の形状が横長となるため、燃料供給口から次の燃料供給口ま での相互間隔が大きくなりすぎて、設計上の観点力も言って好ましいものではなぐ 電池本体が大型化しやすくなる力 である、
一方、触媒層電極のアスペクト比が 16倍を超えると、燃料供給口を電極の長手中 央に配置したとしても、電極の長手方向の両端まで十分な量の燃料が短時間で迅速 に行き渡り難くなり、単位セル間での発電量のばらつきが解消されず、全体として発 電効率が低下するからである。特に良好な発電効率を得るためには、触媒層電極の アスペクト比を 3倍以上 8倍以下の範囲とする。
[0019] 燃料供給口を規定する周壁材料として、例えばポリエーテルエーテルケトン (PEE K:ヴィクトレックスピーエルシー社の商標)、ポリフエ-レンサルファイド(PPS)、ポリ テトラフルォロエチレン (PTFE)などの液体燃料で膨潤等を生じにく!ヽ硬質の榭脂を 用いることが望ま 、が、耐食性に優れたコーティングを施せばステンレス鋼や-ッケ ル金属などの耐食性に優れた金属材料を用いることもできる。
[0020] 燃料には、メタノール水溶液や純メタノール、エタノール水溶液や純エタノール、ジ メチルエーテル、ギ酸、水素化ホウ素ナトリウム水溶液、水素化ホウ素カリウム水溶液 、水素化リチウム水溶液などを用いることができる。また、燃料は濃度 100%から数% までの範囲で種々の濃度のものを用いることができる。いずれにしても、燃料電池に 応じた液体燃料が収容される。
図面の簡単な説明
[0021] [図 1]図 1は、燃料電池の構造を模式的に示す側断面図である。
[図 2]図 2は、本発明の実施形態に係る燃料電池の電極配置を示す平面図である。
[図 3]図 3は、他の実施形態に係る燃料電池の電極配置を示す平面図である。
[図 4]図 4は、他の実施形態の電極配置を示す平面図である。 [図 5]図 5は、従来の燃料電池の電極配置を示す平面図である。
[図 6]図 6は、第 1の実施の形態に係る燃料電池と比較例の燃料電池との起動時と定 電圧測定時の電圧のバラツキを示す特性図である。
[図 7]図 7は、第 2の実施の形態に係る燃料電池と比較例の燃料電池との起動時と定 電圧測定時の電圧のバラツキを示す特性図である。
発明を実施するための最良の形態
[0022] 以下、添付の図面を参照して本発明を実施するための最良の形態を説明する。
[0023] (第 1の実施の形態)
先ず、燃料電池の全体概要について図 1を参照して説明する。燃料電池 1は、全体 が燃料タンク 10、保護カバー 20等で覆われ、内部に複数の単位セルを有するもの である。燃料電池 1は、燃料タンク 10、保護カバー 20側力もシール部材 18,を介して 内部の単位セルをボルト 28とナット 29で締め付けて一体化した 1つのユニットとして 構成されている。燃料電池 1の内部には、押え部材としてのシール部材 18,及びス ぺーサ 19, 35によって種々のスペースや間隙が形成されている。それらのスペース や間隙のうち、例えばアノード側のスペースは液体燃料収容室 32および気化室 36と して用いられ、力ソード側のスペースは空気透過層 26であり、外気の空気の通過を 阻害せず、外部からの微笑の埃や異物の混入、さらには接触などを防止するための ものである。この空気透過層 26としては、好ましくは気孔率が例えば 20〜60%の多 孔性フィルムなどが用いられる。
[0024] アノードガス拡散層 15から負極リード 13に電子を取り出して、発電エネルギーの効 率良い利用を可能とするために、負極リード 13の反対面側にスぺーサ 35を取り付け 、気化室 36を規定している。この気化室 36は液体燃料収容室 32に隣接して設けら れ、両者 32, 36間は気液分離膜 34により仕切られている。気液分離膜 34は、多数 の細孔を有するポリテトラフルォロエチレン (PTFE)シートからなり、液体燃料 (メタノ ール液又はその水溶液)を遮断し、燃料ガス (メタノールガス)を透過させるものであ る。
[0025] そして、気液分離膜 34の液体燃料収容室 32側に積層された液体燃料含浸層 45と 、液体燃料含浸層 45の液体燃料収容室側 32に積層され、アノード触媒層電極 15の 実質的に同じ部位に対応した位置に形成された液体燃料含浸層 45へ液体燃料を 供給する燃料供給口 46が形成された液体燃料供給フレーム 44を有して ヽる。
[0026] なお、アノード側には図示しない排気流路が設けられ、該排気流路を通って副生 物である COガスが反応系外に排出されるようになっている。また、負極リード 13は
2
多くの開口と間隙を有し、燃料成分ガスや副生ガス (CO )の拡散を阻害しな!、形状
2
とすることが望ましい。
[0027] 液体燃料収容室 32は、保護カバー 10および液体燃料供給フレーム 44によって周 囲を規定される所定容量のスペース力 なり、このスペースの適所 (例えば燃料タン ク 10の側面)にお 、て液受入口 3 laが開口して 、る。液受入口 3 laには例えばバイ ォネット式のカプラー 31が取り付けられ、燃料を補給するときを除いて、カプラー 31 により燃料供給口 3 laが閉鎖されている。この燃料電池本体側のカプラー 31は外部 カートリッジ側のカプラー 43が液密に係合され得るような形状に形成されている。例 えばカートリッジ側のカプラー 43の溝を燃料電池本体側のカプラー 31の突起に係合 させて案内しながら、カプラー 43をカプラー 31のなかに押し込むと、カプラーの内蔵 バルブが開 、てカートリッジ側の流路が燃料電池本体側の流路に連通し、カートリツ ジ 40の内圧によって液体燃料 2が輸送チューブ 42を通って液受入口 31aから液体 燃料収容室 32内に流入するようになって 、る。
[0028] 気化室 36は、スぺーサ 35と気液分離膜 34によって周囲を規定されている。ボルト ナット 28, 29の締め付けに耐えて変形しないように、スぺーサ 35の周縁部は断面コ 字状に形成され、気化室 36として所定幅のスペースが確保されて 、る。
[0029] スぺーサ 35の上面にお!、て複数の気化燃料供給口 14が開口して!/、る。これらの 気化燃料供給口 14は、負極リード 13を貫通し、アノードガス拡散層 15の側にそれぞ れ連通している。液体燃料収容室 32内の液体燃料 2の一部がガス化すると、その燃 料ガス成分は気液分離膜 34を通って気化室 34に入り、さらに気化室 34から気化燃 料供給口 14を通ってアノードガス拡散層 15の側に導入され、発電反応に寄与する。
[0030] 燃料電池の単位セルは、電解質膜 11、アノードおよび力ソードを備えて 、る。ァノ 一ドとカソードは電解質膜 11を間に挟んで対向配置されている。アノードはアノード 触媒層電極 12およびアノードガス拡散層 15を有する。アノード触媒層電極 12は、ガ ス拡散層 15を介して供給される燃料を酸ィ匕して燃料力 電子とプロトンとを取り出す ものであり、触媒層電極 12とガス拡散層 15とが積み重ねられた積層構造をなしてい る。アノード触媒層電極 12は、例えば、触媒を含む炭素粉末により構成されている。 触媒には、例えば、白金(Pt)の微粒子、鉄 (Fe)、ニッケル (Ni)、コバルト(Co)、ル テ -ゥム (Ru)あるいはモリブデン(Mo)などの遷移金属あるいはその酸化物ある!/、 はそれらの合金などの微粒子が用いられる。但し、触媒をルテニウムと白金との合金 により構成するようにすれば、一酸ィ匕炭素 (CO)の吸着による触媒の不活性ィ匕を防 止することができるので好ま U、。
[0031] また、アノード触媒層電極 12は、後述する固体電解質膜 11に用いられる榭脂の微 粒子を含むほうがより望ましい。発生させたプロトンの移動を容易とするためである。 アノードガス拡散層 15は、例えば多孔質の炭素材料よりなる薄膜で構成され、具体 的にはカーボンペーパーまたは炭素繊維などで構成されている。なお、アノードガス 拡散層 15の端部に導通する負極リード 13が外方に延び出している。
[0032] 図 2に示すように、本実施の形態では、液体燃料供給フレーム 44の燃料供給口 46 Aの各々は、アノードガス拡散層 15の長手方向端部(短辺)の近傍に 1対 1に対応す る位置にそれぞれ開口し、その形状は短辺の 60%以上の幅を有するものであれば、 その形状は適宜選択される。アノードガス拡散層 15とアノード触媒層電極 12とはサイ ズがほぼ同じであり、両者は全面にわたり密着するように重ねて熱プレス成形される ので、結局、燃料供給口 46の各々はアノード触媒層電極 12の長手方向端部(短辺) の近傍に 1対 1に対応する位置にそれぞれ開口することになる。なお、各アノード触 媒層電極 12はアスペクト比が 3〜8 (本実施例ではアスペクト比 6)の細長い矩形状で ある。また、隣り合うアノード触媒層電極 12の相互間隔は約 lmmである。また、燃料 供給口 14の径は 2〜5mm程度である。燃料供給口 14の形状は丸穴のみに限定さ れるものではなぐ長円、楕円、矩形、三角形、五角形以上の多角形など種々の形状 とすることができる。
[0033] 力ソードは力ソード触媒層電極 12および力ソードガス拡散層 16を有する。力ソード 触媒層電極 12は、酸素を還元して、電子とアノード触媒層電極 12において発生した プロトンとを反応させて水を生成するものであり、例えば上述のアノード触媒層電極 1 2及びガス拡散層 15と同様に構成されている。すなわち、力ソードは、固体電解質膜 11の側から順に触媒を含む炭素粉末よりなる力ソード触媒層電極 12と多孔質の炭 素材料よりなる力ソードガス拡散層 16 (ガス透過層)とが積み重ねられた積層構造を なしている。力ソード触媒層電極 12に用いられる触媒はアノード触媒層電極 12のそ れと同様であり、アノード触媒層電極 12が固体電解質膜 11に用いられる榭脂の微粒 子を含む場合があることもアノード触媒層電極 12と同様である。なお、力ソードガス拡 散層 16の端部に導通する正極リード 17が外方に延び出している。また、力ソード側 の保護カバー 20には複数の細かな通気孔 24が形成され、空気透過層 26にそれぞ れ連通している。
[0034] 電解質膜 11は、アノード触媒層電極 12において発生したプロトンを力ソード触媒層 電極 12に輸送するためのものであり、電子伝導性を持たず、プロトンを輸送すること が可能な材料により構成されている。例えば、ポリパーフルォロスルホン酸系の榭脂 膜、具体的には、デュポン社製のナフイオン膜、旭硝子社製のフレミオン膜、あるい は旭化成工業社製のァシプレックス膜などにより構成されている。なお、ポリパーフル ォロスルホン酸系の榭脂膜以外にも、トリフルォロスチレン誘導体の共重合膜、リン酸 を含浸させたポリべンズイミダゾール膜、芳香族ポリエーテルケトンスルホン酸膜、あ るいは脂肪族炭化水素系榭脂獏などプロトンを輸送可能な電解質膜 11を構成する ようにしてもよい。
[0035] アノードガス拡散層 15の電解質膜 11と反対側には、例えば、内部に形成された液 体燃料貯蔵空間を有する液体燃料収容室 32が設けられて ヽる。高濃度な液体燃料 を使用することで、燃料電池体積効率が向上するとともに、燃料電池と一緒に携帯さ れる燃料カートリッジ 40の大きさと重量が小さく抑えられるという利点がある。
[0036] 保護カバー 10及びスぺーサ 35は、例えばポリエーテルエーテルケトン(PEEK:ヴ イクトレックスピーエルシー社の商標)、ポリフエ-レンサルファイド(PPS)、ポリテトラ フルォロエチレン (PTFE)、などの液体燃料で膨潤等を生じいくい硬質のプラスチッ クでつくることが望ま 、が、耐食性に優れたコーティングを施せばステンレス鋼や- ッケル金属などの耐食性に優れた金属材料でつくることもできる。燃料タンク 10及び スぺーサ 35を金属材料とする場合は、同一電池容器内に配置されて ヽるそれぞれ の負極同士が短絡しな ヽように図示しな ヽ絶縁部材を負極相互間に挿入する必要 がある。
[0037] 液体燃料収容室 32の内部には、気液分離膜 34の液体燃料収容室 32側に積層さ れた液体燃料含浸層 45を有している。液体燃料含浸層 45として、例えば多孔質ポリ エステル繊維、多孔質ォレフイン系榭脂等多硬質繊維や、連続気泡多孔質体榭脂 が好ましい。この液体燃料含浸層 45は、気液分離膜 34と燃料供給口 46Aが形成さ れた液体燃料供給フレームとの間に配置され、燃料タンク 10内の液体燃料 2が減少 した場合や燃料電池本体が傾斜して載置され燃料供給が偏った場合においても、 気液分離膜に均質に燃料供給され、その結果、アノード触媒層 15に均質に気化さ れた液体燃料を供給することが可能となる。ポリエステル繊維以外にも、アクリル酸系 の榭脂などの各種吸水性ポリマーにより構成してもよぐスポンジまたは繊維の集合 体など液体の浸透性を利用して液体を保持することができる材料により構成する。本 液体燃料含浸部は,本体の姿勢に関わらず適量の燃料を供給するのに有効である 。なお、液体燃料としては、例えばメタノール水溶液、純メタノール、エタノール水溶 液、純エタノール、プロパノール水溶液、ギ酸水溶液、ギ酸ナトリウム水溶液、酢酸水 溶液、エチレングリコール水溶液、ジメチルエーテルなどの水素を含む有機系の水 溶液が用いられる。中でもメタノール水溶液は、炭素数が 1で反応の際に発生するの が炭酸ガスであると共に、低温での発電反応が可能であり、産業廃棄物から比較的 容易に製造することができるので好ましい。いずれにしても、燃料電池に応じた液体 燃料が収容される。
[0038] 力ソード側の保護カバー 20には、例えば間隙を介して力ソードガス拡散層 16に外 気を自然拡散により供給するための多数の通気孔 24が開口している。これらの通気 孔 24は、外気が通過する開口を形成するが、外気の通過を阻害せずに、外部から力 ソードガス拡散層 16への微小あるいは針状の異物の浸入'接触を防止しうるような形 状が工夫されている。
[0039] 本実施の形態では、燃料供給口 46Aの各々をアノード触媒層電極 12の長手方向 端部(短辺)の近傍に 1対 1に対応する位置にそれぞれ開口させているので、各ァノ ード触媒層電極 12に供給される燃料の量が均等化され、起動時および再起動時に お!、て単位セル間に発電量のばらつきが発生しなくなる。
[0040] 具体的には、図 1に示した燃料電池評価セルを用い、アスペクト比 1: 5. 8の 6枚の 触媒層電極 12 (E1〜E6)を 1枚の電解質膜 11上に並列に配置し、図 2に示すような 液体燃料供給口 46Aが各アノード触媒層電極 12の長手方向端部(短編)の 1: 1に 対応する位置にそれぞれ開口した液体燃料供給フレーム 44を配置した。液体燃料 収容室 32に純度 99. 9重量%のメタノールを 10ml供給した。その後、各セルの起動 時の電圧と発電時の 2. IV定電圧測定を行った。
[0041] また、比較として、上記第 1の実施の形態と同様の単位セルを用い、液体燃料供給 口を図 5に示す液体燃料供給口 114のように左端および左端力も 2番目のアノード触 媒層電極112 (E1〜E6)の間に配置した。その後、各セルの起動時の電圧と発電時 の 2. IV定電圧測定を行った。それらの結果を左端の単位セルの電圧を 100とした 場合の電圧比率(%)として各アノード触媒層電極 E1〜E6に対応するセルの電圧を 図 6に示す。図中の特性線 A1は実施例 1の起動時のセル電圧特性、特性線 B1は 実施例 1の定電圧測定時 (定常発電時)のセル電圧特性、特性線 Cは比較例の起動 時のセル電圧特性、特性線 Dは比較例の定電圧測定時 (定常発電時)のセル電圧 特性をそれぞれ示す。図 6から明らかなように、本実施の形態のおける燃料電池では 、各セルの電圧のばらつきも起動時および発電時における電圧ばらつきも ± 2%以 内に抑えることが可能となり、単位セル間の発電量のばらつきは小さい。これに対し て、比較例の燃料電池では、液体燃料供給口から離れるに従い単位セルの電圧が 低下しており、起動時および発電時の!/ヽずれにお 、ても均一な燃料供給が行われて おらず、各単位セル間の発電量のばらつきが大きくなつている。
[0042] (第 2の実施の形態)
図 3を用いて第 2の実施の形態について説明する。なお、本実施の形態が上記第 1 の実施の形態と重複する部分の説明は省略する。
[0043] 本実施形態では燃料電池 1Aの燃料供給口として単一のスリットで形成された燃料 供給口 46Bあるいは 46Cを採用して ヽる。燃料供給口 46Bあるいは 46Cはアノード 触媒層電極 12の長手にほぼ直交する向きに開口するものである。すなわち、燃料供 給口 46Bあるいは 46C力もアノード触媒層電極 12までの距離が実質的に等距離と なるところに燃料供給口 46Bあるいは 46Cは位置して 、る。燃料供給口 46Bある ヽ は 46Cの幅は触媒層電極の長辺に対して 0. 5〜 10%の範囲の幅であることが好ま しぐさらには 1〜 5 %の範囲の幅にすることが好ましい。
[0044] 燃料供給口 46Bあるいは 46Cは、アノード触媒層電極 12の長手方向一方側端部( 一方側の短辺) 12aの近傍に開口(46C)させてもよいし、あるいはアノード触媒層電 極 12の長手方向中央部に開口(46B)させてもよい。後者の例では、燃料供給口 46 Bから供給される燃料は、アノード触媒層電極 12の長手方向中央部から長手方向両 端部 12a, 12bに向けて流れるので、その拡散時間が前者の例に比べて半分程度に なり、アノード触媒層電極 12の全体にわたり燃料を迅速に拡散させることができる。
[0045] 具体的には、図 1に示した燃料電池評価セルを用い、アスペクト比 1: 5. 8の 6枚の 触媒層電極 12 (E1〜E6)を 1枚の電解質膜 11上に並列に配置し、図 3に示すような 液体燃料供給口 46Cが各アノード触媒層電極 12の長手方向端部 (短編)に対応す る位置にスリット状に開口した液体燃料供給フレーム 44を配置した。液体燃料収容 室 32に純度 99. 9重量0 /0のメタノールを 10ml供給した。その後、各セルの起動時の 電圧と 2. IV低電圧測定を行った。
[0046] その結果および第 1の実施形態で用いた燃料電池の測定結果と共に、左端の単位 セルの電圧を 100とした場合の電圧比率(%)として各セルの電圧を図 7に示す。図 中の特性線 A2は実施例 2の起動時のセル電圧特性、特性線 B2は実施例 2の定電 圧測定時 (定常発電時)のセル電圧特性、、特性線 Cは比較例の起動時のセル電圧 特性、特性線 Dは比較例の定電圧測定時 (定常発電時)のセル電圧特性をそれぞれ 示す。図 7から明らかなように、本実施の形態のおける燃料電池では、各セルの電圧 のばらつきも起動時および発電時における電圧ばらつきも ± 2%以内に抑えることが 可能となり、単位セル間の発電量のばらつきは小さい。これに対して、比較例の燃料 電池では、液体燃料供給ロカゝら離れるに従い単位セルの電圧が低下しており、起動 時および発電時の!/ヽずれにお!、ても均一な燃料供給が行われておらず、各単位セ ル間の発電量のばらつきが大きくなつている。
[0047] (第 3の実施の形態)
図 4を用いて第 3の実施の形態について説明する。なお、本実施の形態が上記第 1 及び第 2の実施の形態と重複する部分の説明は省略する。
[0048] 本実施形態では燃料電池 1Bが組み込まれる機器を実質的に姿勢を変えない据え 置き型 (例えばノートパソコン)としている。すなわち、据え置き型機器においては発 電時に燃料供給口 46Dと触媒層電極 12との相対的な位置関係を実質的に変えな い。アノード触媒層電極 12の長手方向の一端部 12aが他端部 12bよりも相対的に高 いところに配置し、かつ燃料供給口 46Dを複数のアノード触媒層電極 E1〜E6 (12) の長手方向一方側端部(一方側の短辺) 12aの近傍に開口させている。
[0049] ノ^シブ型の燃料電池では、燃料供給の駆動力として毛細管現象ば力りでなく重 力も利用されるので、発電時における燃料電池搭載機器の姿勢が発電性能に重大 な影響を及ぼすおそれがある。そこで、触媒層電極 E1〜E6を含む MEAを長手方 向に傾けて配置し、触媒層電極の長手方向の一端部 12aを他端部 12bよりも高いと ころに位置させ、燃料供給口 46Dを電極長手方向一端部 12aに近接させることによ り、高い位置の燃料供給口 46Dから燃料を供給し、触媒層電極 E1〜E6を含む ME Aの全体にわたって燃料を円滑に分散させることができる。これにより起動時または 再起動時における単位セル間の発電量のばらつきが抑えられる。
[0050] 以上、種々の実施の形態を挙げて説明したが、本発明は上記各実施の形態のみ に限定されるものではなぐ種々変形および組み合わせることが可能である。
産業上の利用可能性
[0051] 本発明によれば、良好な電池性能が安定して得られるようになり、ノートパソコン、 携帯電話、携帯オーディオ、携帯ゲーム機などのコードレス携帯機器などの電源とし てバラツキの少ない出力特性を得ることができる。

Claims

請求の範囲
[1] 電解質膜と、該電解質膜を間に挟んで対向配置されたアノードと力ソードを単位セ ルとして備え、複数の単位セルを直列に接続し、前記複数の単位セルのアノード側 に配置された液体燃料を収容する液体燃料収容室と、前記アノードと前記液体燃料 収容室の間に配置され前記液体燃料の気化成分をアノードに供給するための気液 分離膜を有する燃料電池であって、
前記アノード及び力ソードの各触媒層電極として実質的に同一の平面上に並列に 配置され、所定のアスペクト比を有する形状の複数の触媒層電極と、
前記気液分離膜の液体燃料収容室側に積層された液体燃料含浸層と、 前記液体燃料含浸層の液体燃料収容室側に積層され、前記アノード触媒層電極 の実質的に同じ部位に対応した位置に形成された前記液体燃料含浸層へ液体燃料 を供給する単数又は複数の燃料供給口が形成された液体燃料供給フレームと、 を有することを特徴とする燃料電池。
[2] 前記触媒層電極は所定のアスペクト比を有する細長形状であり、前記長手方向の 一端部が他端部よりも相対的に高いところに位置し、前記液体燃料供給フレームの 前記触媒層電極の長手方向の一端部に近接して対応する位置に前記燃料供給口 が配置され、発電時に前記燃料供給口と前記触媒層電極との相対的な位置関係を 実質的に変えない据え置き型であることを特徴とする請求項 1記載の燃料電池。
[3] 前記複数の触媒層電極は、所定の間隔をおいて隣り合って配列され、実質的に同 一線上に揃って並ぶ長手方向端部を有することを特徴とする請求項 1又は 2のいず れか 1項記載の燃料電池。
[4] 前記液体燃料供給フレームの前記燃料供給口が前記触媒層電極の長手方向一 端部に近接して対応する位置に配置されることを特徴とする請求項 1記載の燃料電 池。
[5] 前記液体燃料供給フレームの前記燃料供給口が前記触媒層電極の長手方向中 央部に近接して対応する位置に配置されることを特徴とする請求項 1記載の燃料電 池。
[6] 前記液体燃料供給フレームは、前記複数の触媒層電極に 1対 1に対応する実質的 に同径の複数の燃料供給口を有することを特徴とする請求項 1記載の燃料電池。
PCT/JP2006/318256 2005-09-20 2006-09-14 燃料電池 WO2007034731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/067,189 US20090047560A1 (en) 2005-09-20 2006-09-14 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-272543 2005-09-20
JP2005272543A JP2007087655A (ja) 2005-09-20 2005-09-20 燃料電池

Publications (1)

Publication Number Publication Date
WO2007034731A1 true WO2007034731A1 (ja) 2007-03-29

Family

ID=37888776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318256 WO2007034731A1 (ja) 2005-09-20 2006-09-14 燃料電池

Country Status (5)

Country Link
US (1) US20090047560A1 (ja)
JP (1) JP2007087655A (ja)
CN (1) CN101263626A (ja)
TW (1) TW200729597A (ja)
WO (1) WO2007034731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210679A (ja) * 2007-02-27 2008-09-11 Toshiba Corp 燃料電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243491A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 燃料電池
US8252482B2 (en) 2007-05-14 2012-08-28 Nec Corporation Solid polymer fuel cell
JP2011054447A (ja) * 2009-09-02 2011-03-17 Seiko Instruments Inc 燃料電池
JP5382725B2 (ja) * 2010-01-14 2014-01-08 シャープ株式会社 燃料電池
JP7018010B2 (ja) * 2018-11-16 2022-02-09 本田技研工業株式会社 燃料電池システム
CN109950594B (zh) * 2019-04-22 2020-06-09 哈尔滨工业大学 一种利用废热驱动的甲醇燃料输运与燃料电池发电系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2002083604A (ja) * 2000-06-30 2002-03-22 Toshiba Corp 触媒担持カーボンナノファイバーの製造方法、燃料電池電極用スラリー組成物、および燃料電池
JP2003317791A (ja) * 2002-04-24 2003-11-07 Hitachi Maxell Ltd 液体燃料電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447941B1 (en) * 1998-09-30 2002-09-10 Kabushiki Kaisha Toshiba Fuel cell
DE10392147T5 (de) * 2002-02-14 2004-09-02 Hitachi Maxell Ltd. Flüssigbrennstoff-Zelle
KR100639284B1 (ko) * 2004-07-21 2006-10-30 가부시끼가이샤 도시바 양성자 전도성 고체 전해질, 양성자 전도성 막, 연료전지용 전극, 막 전극 조립품 및 연료 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2002083604A (ja) * 2000-06-30 2002-03-22 Toshiba Corp 触媒担持カーボンナノファイバーの製造方法、燃料電池電極用スラリー組成物、および燃料電池
JP2003317791A (ja) * 2002-04-24 2003-11-07 Hitachi Maxell Ltd 液体燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210679A (ja) * 2007-02-27 2008-09-11 Toshiba Corp 燃料電池

Also Published As

Publication number Publication date
JP2007087655A (ja) 2007-04-05
TW200729597A (en) 2007-08-01
US20090047560A1 (en) 2009-02-19
CN101263626A (zh) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4296625B2 (ja) 発電デバイス
JP4568053B2 (ja) 燃料電池
WO2007034731A1 (ja) 燃料電池
JP2003068325A (ja) 燃料電池
JPWO2006100782A1 (ja) 燃料電池
JPWO2007080763A1 (ja) 固体高分子型燃料電池
JP4810082B2 (ja) 燃料電池
JP5093640B2 (ja) 固体電解質型燃料電池及びその製造方法
US20110275003A1 (en) Fuel cell
JPWO2008023634A1 (ja) 燃料電池
JP5127267B2 (ja) 燃料電池および燃料電池システム
JP2004095208A (ja) 燃料電池
WO2008068886A1 (ja) 燃料電池
TW200836392A (en) Fuel cell
JPWO2008068887A1 (ja) 燃料電池
WO2011052650A1 (ja) 燃料電池
JP2009021111A (ja) 燃料電池とそれを用いた充電器および電子機器
JP2011096468A (ja) 燃料電池
JP2008041401A (ja) 燃料電池
JP5272364B2 (ja) 燃料電池用カートリッジ
JP4403465B2 (ja) 発電方法
JPWO2008062551A1 (ja) 固体高分子型燃料電池
JP2006286416A (ja) 燃料電池
JPWO2008023633A1 (ja) 燃料電池
JP2009043720A (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034017.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12067189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797968

Country of ref document: EP

Kind code of ref document: A1