WO2007034718A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2007034718A1 WO2007034718A1 PCT/JP2006/318140 JP2006318140W WO2007034718A1 WO 2007034718 A1 WO2007034718 A1 WO 2007034718A1 JP 2006318140 W JP2006318140 W JP 2006318140W WO 2007034718 A1 WO2007034718 A1 WO 2007034718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stress
- channel mosfet
- film
- gate electrode
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 124
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 88
- 229910052710 silicon Inorganic materials 0.000 claims description 88
- 239000010703 silicon Substances 0.000 claims description 88
- 239000000758 substrate Substances 0.000 claims description 57
- 229910021332 silicide Inorganic materials 0.000 claims description 56
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 56
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 239000012528 membrane Substances 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 2
- 239000010408 film Substances 0.000 description 775
- 238000012986 modification Methods 0.000 description 113
- 230000004048 modification Effects 0.000 description 113
- 238000004519 manufacturing process Methods 0.000 description 92
- 239000010410 layer Substances 0.000 description 75
- 238000000034 method Methods 0.000 description 65
- 229910052581 Si3N4 Inorganic materials 0.000 description 36
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 36
- 239000012535 impurity Substances 0.000 description 27
- 238000002955 isolation Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 25
- 230000000694 effects Effects 0.000 description 24
- 239000011229 interlayer Substances 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 19
- 238000005468 ion implantation Methods 0.000 description 19
- 238000005530 etching Methods 0.000 description 12
- 238000000206 photolithography Methods 0.000 description 12
- 238000001312 dry etching Methods 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 230000005669 field effect Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000231 atomic layer deposition Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000005498 polishing Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000002040 relaxant effect Effects 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28035—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
- H01L21/28044—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
- H01L21/28061—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76825—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823835—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823842—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7843—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7845—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being a conductive material, e.g. silicided S/D or Gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a semiconductor device, and more particularly to an n-channel MOSFET semiconductor device and / or a p-channel MOSFET semiconductor device in which distortion is applied to a channel region, or a CMOSFET semiconductor device having both of them.
- Patent Document 1 a silicon nitride film is used as a stopper film when opening a contact hole, and this silicon nitride film is given a strong tensile stress.
- nMOSFET n-channel MOS FET
- Patent Document 2 JP 2002-198368 A
- Patent Document 2 Japanese Patent Laid-Open No. 2003-86708
- FIG. 31 is a cross-sectional view of a MOSFET covered with a silicon nitride film 109.
- the MOSFET includes a silicon substrate 101, an element isolation region 102 formed on the surface of the silicon substrate 101, and a gate insulating film formed on the surface of the silicon substrate 101 partitioned by the element isolation region 102.
- 106 a gate electrode 107 formed on the gate insulating film 106, a sidewall 108 covering the side walls of the gate insulating film 106 and the gate electrode 107, and a source / drain region formed in the surface region of the silicon substrate 101.
- the force is also configured with the impurity diffusion layer 103 and the silicide layer 105 to be.
- the entire MOSFET is covered with a silicon nitride film 109.
- FIG. 32 is a graph showing the stress that each part of the silicon nitride film 109 gives to the channel.
- three portions of the silicon nitride film 109 are selected: a portion A above the gate electrode 107, a portion B beside the gate electrode 107, and a portion C on the source / drain region. ing.
- silicon nitride film 109 a film having a tensile stress was used.
- the positive region on the vertical axis indicates tensile stress (therefore, the negative region on the vertical axis indicates compressive stress! /).
- the stress of the channel is applied mainly by the silicon nitride film 109 (site C) existing on the source / drain region, and the silicon nitride film 1 09 (site) above the gate electrode 107.
- site C silicon nitride film 109
- site C silicon nitride film 1 09
- A stress is applied in the direction to cancel it.
- the silicon nitride film 109 (site B) on the side of the gate electrode 107 applies an extremely small stress to the channel compared to the stress applied by the silicon nitride film 109 (site C) on the source and drain regions. is doing.
- a similar phenomenon occurs when a silicon nitride film 109 having a compressive stress is used.
- an object of the present invention is to provide a semiconductor device capable of improving carrier mobility and thereby improving the performance of nMOSFETs and pMOSFETs.
- the present invention provides a semiconductor device having an n-channel MOSFET, which is formed on the gate electrode of the n-channel MOSFET and has a first compressive stress.
- a semiconductor device characterized by comprising the above-mentioned stressed film is provided.
- the present invention further includes a semiconductor device having a p-channel MOSFET, comprising a second stress-containing film that is formed on the gate electrode of the p-channel MOSFET and has a tensile stress locally.
- a semiconductor device is provided.
- the present invention is further a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, wherein the first device is formed on the gate electrode of the n-channel MOSFET and has a local compressive stress. And a second stress-containing film that is formed on the gate electrode of the p-channel MOSFET and has a tensile stress locally.
- the semiconductor device further includes a third stress-containing film that covers the n-channel MOSFET and has a tensile stress.
- the semiconductor device further includes a fourth stress-containing film that covers the p-channel MOSFET and has a compressive stress.
- the present invention further relates to a semiconductor device having an n-channel MOSFET, the first stress-provided film having a compressive stress formed on a gate electrode of the n-channel MOSFET, and the n-channel MOSFET. Formed on the source and drain regions of the MOSFET, the first MOSFET A semiconductor device comprising: a third stress-containing film having a height substantially equal to the height of the stress-containing film and having a tensile stress.
- the present invention further relates to a semiconductor device having a p-channel type MOSFET, which is formed on a gate electrode of the p-channel type MOSFET, has a second stress-containing film having a tensile stress, and the p-channel type. And a seventh stress-containing film having a height substantially equal to the height of the second stress-containing film and having a compressive stress. Providing equipment.
- the present invention is further a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, wherein the first stress device having a compressive stress is formed on the gate electrode of the n-channel MOSFET.
- a third stress-containing film formed on the source / drain region of the n-channel MOSFET and having a height substantially equal to the height of the first stress-containing film and having a tensile stress; formed on the gate electrode of the p-channel MOSFET and having a second stress-containing film having a tensile stress, and formed on the source drain region of the p-channel MOSFET and the height of the second stress-containing film.
- a seventh stress-containing film having substantially the same height and having a compressive stress.
- the present invention further relates to a semiconductor device having an n-channel MOSFET, which is formed on a source / drain region of the n-channel MOSFET and is substantially equal to the height of the gate electrode of the n-channel MOSFET.
- a semiconductor device is provided.
- the present invention further relates to a semiconductor device having a p-channel MOSFET, which is formed on a source / drain region of the p-channel MOSFET and is substantially equal to a height of the gate electrode of the p-channel MOSFET.
- a seventh stressed film having a compressive stress of the same height; and an eighth stressed film having a tensile stress formed entirely on the gate electrode of the P-channel MOSFET and the seventh stressed film.
- a semiconductor device is provided.
- the present invention further includes a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, wherein the semiconductor device is formed on a source / drain region of the n-channel MOSFET.
- the present invention further relates to a semiconductor device having an n-channel MOSFET, which is formed on a source / drain region of the n-channel MOSFET, and is substantially equal to the height of the gate electrode of the n-channel MOSFET.
- a semiconductor comprising: a fifth stress-containing film having a tensile stress of equal height; and a sixth stress-containing film formed on the gate electrode of the n-channel MOSFET and having a compressive stress.
- the present invention further relates to a semiconductor device having a p-channel MOSFET, which is formed on the source / drain region of the p-channel MOSFET, and is substantially equal to the height of the gate electrode of the p-channel MOSFET.
- the present invention further relates to a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, wherein the semiconductor device is formed on a source / drain region of the n-channel MOSFET.
- a fifth stress-containing film having a height substantially equal to the height of the gate electrode and having a tensile stress; and a sixth stress-containing film having a compressive stress formed on the gate electrode of the n-channel MOSFET.
- a semiconductor device is provided.
- the present invention further relates to a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, wherein the first semiconductor device is formed on the gate electrode of the n-channel MOSFET and has a local compressive stress.
- a second stress-containing film formed on the gate electrode of the p-channel MOSFET and locally having a tensile stress, and a third stress having a tensile stress covering the n-channel MOSFET.
- a semiconductor device comprising: an organic film; and a fourth stress organic film covering the p-channel type MO SFET and having a compressive stress.
- the present invention is further a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, each formed on the gate electrode of the n-channel MOSFET and the gate electrode of the p-channel MOSFET.
- a first stress-bearing film having a local compressive stress a third stress-bearing film having a tensile stress, covering the n-channel MOSFET, and a p-channel MOSFET having a compressive stress. 4.
- a semiconductor device comprising: 4 stress-containing films.
- the present invention is further a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, and is formed on the gate electrode of the n-channel MOSFET and the gate electrode of the p-channel MOSFET.
- a semiconductor device characterized by comprising four stress-containing films and a semiconductor device is provided.
- the present invention further relates to a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, wherein the first semiconductor device is formed on the gate electrode of the n-channel MOSFET and has a local compressive stress.
- a semiconductor device comprising: a third pressure-applied film having a tensile stress.
- the present invention further relates to a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, which is formed on the gate electrode of the n-channel MOSFET and is locally A first stress-containing film having a compressive stress, a second stress-containing film formed on the gate electrode of the p-channel MOSFET and having a local tensile stress, the n-channel MOSFET and the p-channel MOSFET.
- a semiconductor device comprising: a channel type MOSFET; and a fourth stress-bearing film having compressive stress.
- At least one of the third stress-containing film and the fourth stress-containing film may have a portion on the gate electrode where stress is relieved.
- At least one of the third stress-containing film and the fourth stress-containing film includes a notch region on the gate electrode.
- the surface of the third stress-containing film or the fourth stress-containing film covering the source / drain region of the n-channel type MOSFET or the p-channel type MOSFET is the first stress-containing film. Alternatively, it preferably has a thickness that matches the surface of the second stressed film.
- the present invention further includes a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, the source / drain region of the n-channel MOSFET and the source / drain region of the p-channel MOSFET.
- a semiconductor device comprising: an organic film; and an eighth stress organic film formed on the gate electrode of the p-channel MOSFET and having a tensile stress.
- the present invention further includes a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, the source / drain region of the n-channel MOSFET and the source / drain region of the p-channel MOSFET.
- a semiconductor device comprising: an organic film; and an eighth stress organic film formed on the gate electrode of the p-channel MOSFET and having a tensile stress.
- the present invention further relates to a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, which is formed on a source / drain region of the n-channel MOSFET.
- the present invention further includes a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, the source / drain region of the n-channel MOSFET and the source / drain region of the p-channel MOSFET.
- a fifth stressed film formed on the fifth stressed film and having a tensile stress substantially equal to the height of each gate electrode; and the fifth stressed film covering the n-channel MOSFET and compressed on the fifth stressed film.
- a sixth stress-containing film having stress, and an eighth stress-containing film having tensile stress formed on the fifth stress-containing film so as to cover the P-channel MOSFET.
- a semiconductor device is provided.
- the present invention further includes a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, the source / drain region of the n-channel MOSFET and the source / drain region of the p-channel MOSFET A seventh stress-containing film formed on the seventh stress-comprising film and having a compressive stress approximately equal to the height of each gate electrode; and the seventh stress-containing film covering the n-channel MOSFET and formed on the seventh stress-containing film. A sixth stressed film having stress, and an eighth stressed film having tensile stress formed on the seventh stressed film so as to cover the P-channel MOSFET.
- a semiconductor device is provided.
- the present invention further relates to a semiconductor device having an n-channel MOSFET and a p-channel MOSFET, wherein the semiconductor device is formed on a source / drain region of the n-channel MOSFET.
- a fifth stress-containing film having a tensile stress having a height substantially equal to the height of the gate electrode, and a source / drain region of the p-channel MOSFET.
- a semiconductor device comprising any one of an eighth stress-equipped film formed on a seventh stress-equipped film and having a tensile stress.
- the above-described semiconductor device is, for example, formed in at least part of the upper portion of the gate electrode of the n-channel MOSFET instead of the first stress-containing film, and has a first stress-containing conductive material having a compressive stress.
- a membrane can be provided.
- the above-described semiconductor device for example, is formed on at least a part of the upper portion of the gate electrode of the p-channel MOSFET instead of the second stress-containing film, and has a second stress-containing conductive material having a tensile stress. Can be equipped with a membrane.
- the first, second, sixth, or eighth stress-containing film is formed of carbon, oxygen, or nitrogen, or a hydrogenated product thereof, and aluminum, hafnium, tantalum, or zirco. It is preferable to contain at least one of humic or silicon oxides or their nitrogen additives.
- the first or second stress-containing conductive film is made of at least one of silicide containing either cobalt, nickel, or titanium, or tungsten, aluminum, copper, or platinum. It is preferable to include.
- At least one of the n-channel MOSFET and the p-channel MOSFET is formed on a substrate made of any one of silicon, silicon-containing silicon, and carbon-containing silicon. preferable.
- a part of the gate electrode of the nMOSFET is configured by a stressed conductive film having a compressive stress, or the stressed film having a compressive stress is formed on the gate electrode. Covered. Also, a part of the gate electrode of the pMOSFET is made of a stressed conductive film having a tensile stress or on the gate electrode. Is covered with a stressed membrane having a tensile stress.
- the stress applied to the channel region is not weakened by the stress-containing film or the stress-containing conductive film, and it becomes possible to cover strong strain in the channel of the nMOSFET or pMOSFET.
- the semiconductor device of the present invention it is possible to increase the mobility of carriers, and consequently improve the performance of the nMOSFET and the pMOSFET.
- FIG. 1 is a cross-sectional view showing a configuration of an n-channel MOSFET according to a first embodiment of the present invention.
- FIG.2 The stress applied to the channel by the first stress-containing film having compressive stress and the tensile stress film (conventional technology) formed in place of the first stress-containing film It is a graph which shows the stress applied to a channel by the film
- FIG. 3 is a cross-sectional view showing each step in the manufacturing method of the n-channel MOSFET according to the first embodiment of the present invention.
- FIG. 4 is a cross-sectional view of an n-channel MOSFET according to a first modification of the first embodiment.
- FIG. 5 is a cross-sectional view showing each step in the method of manufacturing an n-channel MOSFET according to the second embodiment of the present invention.
- FIG. 6 is a cross-sectional view showing each step in a method for manufacturing an n-channel MOSFET according to a first modification of the second embodiment of the present invention.
- FIG. 7 is a cross-sectional view of an n-channel MOSFET according to a second modification of the second embodiment of the present invention.
- FIG. 8 is a cross-sectional view of an n-channel MOSFET according to a third modification of the second embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing each step in the manufacturing method of the n-channel MOSFET according to the third embodiment of the present invention.
- FIG. 10 shows an n-channel MOSFET according to a first modification of the third embodiment of the present invention. It is sectional drawing.
- FIG. 11 is a cross-sectional view showing a configuration of a p-channel MOSFET according to a fourth embodiment of the present invention.
- FIG. 12 is a cross-sectional view showing a configuration of a p-channel MOSFET according to a fifth embodiment of the present invention.
- FIG. 13 is a cross-sectional view of a p-channel MOSFET according to a first modification of the fifth embodiment of the present invention.
- FIG. 14 is a cross-sectional view of a p-channel MOSFET according to a sixth embodiment of the present invention.
- FIG. 15 is a cross-sectional view showing a configuration of a CMOSFET according to a seventh embodiment of the present invention.
- FIG. 16 is a cross-sectional view showing each step in the method of manufacturing the CMOSFET according to the seventh embodiment of the present invention.
- FIG. 17 is a cross-sectional view of a CMOSFET according to a first modification example of the seventh embodiment of the present invention.
- FIG. 18 is a cross-sectional view showing each step in the method of manufacturing the CMOSFET according to the eighth embodiment of the present invention.
- FIG. 19 is a cross-sectional view showing each step in the method of manufacturing the CMOSFET according to the eighth embodiment of the present invention.
- FIG. 20 is a cross-sectional view of a CMOSFET according to a first modification example of the eighth embodiment of the present invention.
- FIG. 21 is a cross-sectional view showing each step in the method of manufacturing the CMOSFET according to the ninth embodiment of the present invention.
- FIG. 22 is a cross-sectional view showing each step in the method of manufacturing the CMOSFET according to the ninth embodiment of the present invention.
- FIG. 23 is a cross-sectional view showing the configuration of the CMOSFET according to the tenth embodiment of the present invention.
- FIG. 24 is a cross-sectional view showing the configuration of the CMOSFET according to the eleventh embodiment of the present invention.
- 25] A sectional view showing the structure of a CMOSFET according to a twelfth embodiment of the present invention.
- FIG. 26 is a cross-sectional view showing a configuration of a CMOSFET according to a thirteenth embodiment of the present invention.
- FIG. 27 is a cross-sectional view showing a configuration of a CMOSFET according to a fourteenth embodiment of the present invention.
- FIG. 28 is a cross-sectional view showing a configuration of a CMOSFET according to a fifteenth embodiment of the present invention.
- 29] A cross-sectional view showing the structure of the CMOSFET according to the sixteenth embodiment of the present invention.
- FIG. 30 A cross-sectional view showing the structure of the CMOSFET according to the seventeenth embodiment of the present invention.
- FIG. 31 It is sectional drawing of the conventional MOSFET.
- FIG. 32 is a graph showing the stress applied to the channel by each part of the silicon nitride film covering the conventional MOSFET shown in FIG. 31.
- FIG. 1 is a cross-sectional view showing a configuration of an n-channel field effect transistor (MOSFET) 10 according to a first embodiment of the present invention.
- MOSFET n-channel field effect transistor
- An n-channel MOSFET 100 includes a silicon substrate 1, a device isolation region 2 formed on the surface of the silicon substrate 1, and a region sandwiched between adjacent device isolation regions 2 in the silicon substrate. Formed in the surface region of the silicon substrate 1, the gate insulating film 6 formed on the surface of the gate electrode 7, the gate electrode 7 formed of the silicon film 7a and the silicide layer 7b on the gate insulating film 6, and the silicon substrate 1 N-type impurity layer 3 constituting source and drain regions, silicide layer 5 formed on n-type impurity layer 3, and first stress-containing film having compressive stress formed on gate electrode 7 11, a side wall 8 formed to cover the side walls of the gate insulating film 6, the gate electrode 7, and the first stress-containing film 11, an interlayer insulating film 31 formed entirely on the silicon substrate 1, Power composed!
- FIG. 2 shows the stress applied to the channel by the first stressed film 11 having compressive stress, and a film having a tensile stress (prior art) was formed instead of the first stressed film 11.
- Case 2 is a graph showing the stress applied to the channel by the film having the tensile stress.
- the coordinate of the channel stress on the vertical axis in FIG. 2 represents the tensile stress as positive when the stress applied to the channel by the film is zero.
- FIG. 2 shows that the n-channel MOSFETIOO according to the present embodiment applies a stronger tensile stress to the channel than the conventional technology.
- the channel is greatly strained in the tensile direction, and the electron mobility in the channel of the nMOSFET is greatly improved.
- the effect of the actual sample in the present embodiment can be confirmed using a convergent electron diffraction method as described in, for example, Japanese Patent Application Laid-Open No. 2000-9664.
- This method irradiates the sample with focused electrons and determines the amount of diffraction pattern force distortion obtained, and can measure the strain at a specific site with a spatial resolution of about 10 nm.
- the measurement was performed by a convergent electron diffraction method. By comparing the amounts of distortion, it is possible to confirm the effect of the n-channel MOSFETIOO according to the present embodiment on an actual sample.
- the material of the semiconductor substrate is preferably silicon, or silicon containing any of germanium and carbon.
- FIGS. 3A to 3C are cross-sectional views showing respective steps in the manufacturing method of the n-channel MOSFET IOO according to the present embodiment.
- an element isolation region 2 is formed in the surface region of the silicon substrate 1.
- the element isolation region 2 is, for example, an oxide silicon film, a silicon nitride film, or a laminated structure force thereof.
- the gate insulating film 6, the silicon film 7a, the silicide layer 7b, and the first stress-containing film 11 having compressive stress are formed on the surface of the silicon substrate 1. Laminate sequentially To do.
- the gate insulating film 6 is, for example, a silicon oxide film, a high dielectric constant film containing nitrogen, hafnium, aluminum, titanium, zirconium, tantalum, or the like, or a laminated structural force thereof.
- the silicon film 7 is made of, for example, a polycrystalline silicon film, an amorphous silicon film, or a laminated film thereof.
- the silicide layer 7b is made of a silicide containing a metal such as cobalt or nickel, for example.
- the first stress-containing film 11 is an insulating film having a compressive stress, and is made of, for example, a silicon nitride film formed by a plasma chemical vapor deposition method.
- the material of the first stress-containing film 11 includes a silicide containing any of carbon, oxygen, and nitrogen, or those added with hydrogen, or aluminum, hafnium, tantalum, zirconium, Examples thereof include oxides containing any of silicon and those obtained by adding nitrogen or nitrogen oxides to these oxides.
- a resist for forming the gate electrode 7 is applied, and unnecessary resist is removed using a known photolithography technique to form a resist film 41.
- the first stressed film 11, the silicide layer 7 b, the silicon film 7 a, and the gate insulating film 6, which are not covered by the resist film 41, are removed by dry etching to form the gate electrode 7.
- the structure at this stage is shown in Fig. 3 (b).
- a structure shown in FIG. 3C is obtained through ion implantation for forming the n-type impurity layer 3 as a region, annealing for impurity activation, formation of the silicide layer 5 and the n-type impurity layer 3.
- the sidewall 8 is made of, for example, a silicon oxide film, a silicon nitride film, or a laminated structure thereof.
- the silicide layer 5 is made of a silicide film containing a metal such as nickel or nickel. Finally, an interlayer insulating film 31 is laminated on the entire surface of the silicon substrate 1 to obtain the structure shown in FIG.
- FIG. 4 is a cross-sectional view of an n-channel MOSFET 100A according to a first modification of the first embodiment.
- the n-channel MOSFET 100A according to this modified example has a silicide layer 7b and a first layer compared to the n-channel MOSFET IOO according to the first embodiment shown in FIG. Instead of the stressed film 11, a first stressed conductive film 7 c is provided.
- the n-channel MOSFET 100A according to this modification is the first embodiment except that the silicide layer 7b and the first stressed film 11 are replaced with the first stressed conductive film 7c. It has the same structure as the n-channel MOSFETIOO according to the form. For this reason, the same components as those in the n-channel MOSFETIOO according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the first stress-containing conductive film 7c is formed on at least a part of the upper portion of the gate electrode 7 of the n-channel MOSFET 100A, and is made of a high conductivity layer to which compressive stress is applied.
- the first stressed conductive film 7c is made of, for example, silicide containing any of cobalt, nickel, and titanium, or tungsten, aluminum, copper, or platinum.
- the stressed conductive film 7c is formed by a combination of sputtering or chemical vapor deposition and appropriate heat treatment.
- n-channel MOSFET 100A is the same as the manufacturing method of n-channel MOSFET IOO according to the first embodiment, except for the conditions of film formation and dry etching.
- the n-channel MOSFET 100A according to the present modification can also obtain the same effects as those of the n-channel MOSFET IOO according to the first embodiment. That is, the channel is greatly strained in the tensile direction, and the electron mobility in the channel region of the nMOSFET can be greatly improved.
- the material of the semiconductor substrate is not silicon, germanium, or carbon, as in the n-channel MOSFETIOO according to the first embodiment. Desirable to contain silicon. The same applies to the embodiments described below and modifications thereof.
- FIG. 5B is a cross-sectional view showing the configuration of the n-channel MOSFET 101 according to the second embodiment of the present invention.
- the n-channel MOSFET 101 covers the gate electrode 7, the sidewall 8, and the source drain region, as compared with the n-channel MOSFET IOO according to the first embodiment.
- the third stress-containing film 21 having the above is further provided.
- the n-channel MOSFET 101 according to the present embodiment is the same as the n-channel MOS FET 100 according to the first embodiment except that a third stressed film 21 having a tensile stress is further provided. It has the structure of. For this reason, the same components as those in the n-channel MOSFETIOO according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the first stress-containing film 11 formed on the gate electrode 7 and having a compressive stress gives a tensile stress to the channel. Since the third stress-containing film 21 having a tensile stress also applies a tensile stress to the channel, the channel is greatly distorted in the tensile direction, and the mobility of electrons in the channel region of the nMOSFET can be greatly improved.
- 5 (a) and 5 (b) are cross-sectional views showing respective steps in the method for manufacturing the n-channel MOSFET 101 according to the present embodiment.
- FIG. 5 (a) a diagram of a method of manufacturing an n-channel MOSFET IOO according to the first embodiment
- the structure shown in FIG. 5 (a) is obtained through the same manufacturing process as shown in 3 (a) to 3 (c).
- the third stress-containing film 21 is formed so as to cover the gate electrode, the sidewall, and the source / drain region.
- the third stress-containing film 21 is an insulating film having a tensile stress, and is made of, for example, a silicon nitride film formed by a thermal chemical vapor deposition method or an atomic layer deposition method.
- the interlayer insulating film 31 is stacked, and as shown in FIG. 5B, the n-channel MOSFET 101 according to the present embodiment is obtained.
- FIG. 6B is a cross-sectional view of an n-channel MOSFET 101A according to a first modification of the second embodiment.
- the n-channel MOSFET 101A according to this modification is different from the n-channel MOSFET 101 according to the second embodiment shown in Fig. 5 (b) in that the first stress-containing film 21 of the first The point on the stressed film 11 is formed as the stress relaxation part 21a.
- a notch region is formed in the third stressed film 21 above the first stressed film 11, and the third stressed film 21 is formed in the stress relaxation portion 21a, that is, There is no stress on the first stressed film 11.
- the n-channel MOSFET 101A according to this modification has the same structure as the n-channel MOSFET 101 according to the second embodiment except that the stress relaxation portion 21a is provided. For this reason, the same components as those of the n-channel MOSFET 101 according to the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the third stress-containing film 21 having tensile stress on the first stress-containing film 11 having compressive stress gives the channel a compressive strain.
- the portion of the third stressed film 21 on the first stressed film 11 has no stress. Does not give compression distortion. Therefore, compared with the n-channel MOSFET 101 according to the second embodiment, the n-channel MOSFET 101A according to this modification can distort the channel more greatly, and the channel region of the n-channel MOSFET 101 Electron mobility can be further improved.
- FIGS. 6 (a) and 6 (b) are cross-sectional views showing respective steps in the method of manufacturing n-channel MOSFET 101A according to this modification.
- the interlayer oxide film 32 is made of, for example, an oxide silicon film.
- the interlayer oxide film 32 is mechanically polished (C) until the first stressed film 11 is exposed.
- ion implantation Iim is performed on the third stress-containing film 21 using ions such as silicon, germanium, argon, or xenon.
- the ion implantation energy is such that the ion arrival depth is about the thickness of the third stress-containing film 21, and the ion implantation amount is such that the stress of the third stress-containing film 21 is sufficiently relaxed.
- an interlayer insulating film 31 is stacked to obtain an n-channel type MO SFET 101A according to this modification shown in FIG. 6 (b).
- FIG. 7 is a cross-sectional view of an n-channel MOSFET 101B according to a second modification of the second embodiment.
- the third stress-containing film 21 and the interlayer are similar to the n-channel MOSFET 101A according to the first modified example shown in FIG. After forming the oxide film 32, the interlayer oxide film is exposed until the surface of the first stress-containing film 11 is exposed.
- the third stress-containing film 21 having a tensile stress is present on the surface of the first stress-containing film 11, so the first change
- the same effect as that of the n-channel MOSFET 101A according to the example can be obtained.
- the ion implantation step can be reduced as compared with the n-channel MOSFET 101A according to the first modification.
- FIG. 8 is a cross-sectional view of an n-channel MOSFET 101C according to a third modification of the second embodiment.
- the first stressed film 21 is deposited thickly so as to be higher than the height of the gate electrode 7, and then the interlayer oxide film 32 is deposited. Then, chemical mechanical polishing is performed on the third stressed film 21 until the surface of the first stressed film 11 is exposed.
- the interlayer oxide film compared with the n-channel MOSFET 101B according to the second modification, the interlayer oxide film
- the process of depositing 32 can be reduced.
- N-channel MOSFET 101 according to the third modification of the second embodiment shown in FIG.
- the C structure can also be applied to p-channel MOSFETs.
- a p-channel MOSFET according to a fourth modification of the second embodiment is provided with a second stress-containing film 13 having a tensile stress instead of the first stress-containing film 11 (a diagram to be described later) 11), and a seventh stress-containing film 24 (see FIG. 14 described later) having a compressive stress instead of the third stress-containing film 21.
- n-channel MOSFET 101C according to the third modification of the second embodiment and the second
- FIG. 9D is a cross-sectional view of the n-channel MOSFET 102 according to the third embodiment.
- the n-channel MOSFET 102 includes a silicon substrate 1, a device isolation region 2 formed on the surface of the silicon substrate 1, and a region sandwiched between adjacent device isolation regions 2 in the silicon substrate. Formed in the surface region of the silicon substrate 1, the gate insulating film 6 formed on the surface of the gate electrode 7, the gate electrode 7 formed of the silicon film 7a and the silicide layer 7b on the gate insulating film 6, and the silicon substrate 1
- the n-type impurity layer 3 constituting the source / drain region, the silicide layer 5 formed on the n-type impurity layer 3, and the side formed to cover the side walls of the gate insulating film 6 and the gate electrode 7
- a wall 8 and a fifth stress-provided film 22 having the same height as the gate electrode 7 and covering the source / drain region of the n-channel MOSFET 102 and having an I-tension stress; and the gate electrode 7 And on the fifth stressed film 22 Is formed, a sixth stress androgynous film 12 having a compress
- the fifth stress-containing film 22 having a tensile stress up to the height of the gate electrode 7 exists, and the sixth stress-containing film 22 having a compressive stress on the upper portion thereof.
- the sixth stress-containing film 22 having a tensile stress is thickly formed on the side surface portion and the source / drain region of the gate electrode 7, so that the channel is included in the channel. As a result, stronger tensile strain is applied, and the mobility of electrons in the channel region of the n-channel MOSFET can be greatly improved.
- FIGS. 9 (a) to 9 (d) are cross-sectional views showing respective steps in the method for manufacturing the n-channel MOSFET 102 according to the present modification.
- an element isolation region 2 is provided on a silicon substrate 1, and a gate is formed on the substrate in a region partitioned by the element isolation region 2.
- the gate insulating film 6 is formed, and the gate electrode pattern silicon film 7a is formed on the gate insulating film 6.
- the difference from the manufacturing process in the first embodiment shown in FIG. 3 (b) is that the silicide layer 7b and the first stressed film 11 do not exist on the silicon film 7a. It is.
- the silicide layers 5 and 7b are silicide films containing a metal such as nickel or nickel.
- the fifth stress-containing film 22 is an insulating film having a tensile stress, and is made of, for example, a silicon nitride film formed by a thermochemical vapor deposition method or an atomic layer deposition method.
- a sixth stressed film 12 having compressive stress is formed on the fifth stressed film 22 and the gate electrode 7.
- the interlayer insulating film 31 is laminated on the sixth stressed film 12, and
- the sixth stress-containing film 12 is an insulating film having a compressive stress, and is made of, for example, a silicon nitride film formed by a plasma chemical vapor deposition method.
- the material of the sixth stress-containing film 12 those mentioned as being usable as the material for forming the first stress-containing film 11 in the first embodiment may be used as appropriate. it can.
- FIG. 10 is a cross-sectional view of an n-channel MOSFET 102A according to a first modification of the third embodiment.
- the n-channel MOSFET 102A according to the present modification is an n-channel MOSFET according to the third embodiment.
- the shape of the sixth stress-containing film 12 is different. That is, in the n-channel MOSFET 102 according to the third embodiment, the sixth stress-provided film 12 is formed so as to entirely cover the gate electrode 7 and the fifth stress-included film 22.
- the sixth stress-containing film 12 is formed only on the gate electrode 7.
- the sixth stress-equipped film 12 in this modified example is obtained by depositing the sixth stress-equipped film 12 over the entire surface of the gate electrode 7 and the fifth stress-equipped film 22, and then 12 is patterned using photolithographic technology so that it remains only on top of the gate electrode 7.
- the sixth stress-containing film 12 having substantially compressive stress exists above the fifth stress-containing film 22 having tensile stress.
- the stress of the fifth stressed film 22 is not weakened by the stress of the sixth stressed film 12, and a strong tensile strain can be applied to the channel.
- the structure of the n-channel MOSFET 102A according to the first modification of the third embodiment shown in FIG. 10 can also be applied to a p-channel MOSFET.
- the p-channel MOSFET according to the second modification of the third embodiment has a stress-containing film having tensile stress instead of the sixth stress-containing film 12 having compressive stress.
- a stressed film having compressive stress is provided instead of the fifth stressed film 22 having tensile stress.
- FIG. 11 is a cross-sectional view showing a configuration of a p-channel field effect transistor (M OSFET) 200 according to the fourth embodiment of the present invention.
- M OSFET p-channel field effect transistor
- the p-channel MOSFET 200 includes a silicon substrate 1, a device isolation region 2 formed on the surface of the silicon substrate 1, and a region sandwiched between adjacent device isolation regions 2. Formed in the surface region of the silicon substrate 1, the gate insulating film 6 formed on the surface of the gate electrode 7, the gate electrode 7 formed of the silicon film 7a and the silicide layer 7b on the gate insulating film 6, and the silicon substrate 1 P-type impurity layer 4 constituting the source and drain regions and p Silicide layer 5 formed on type impurity layer 4, second stress-containing film 13 having tensile stress formed on gate electrode 7, gate insulating film 6, gate electrode 7 and second stress A side wall 8 formed so as to cover the side wall of the intrinsic film 13, an interlayer insulating film 31 formed entirely on the silicon substrate 1, and a cover are formed.
- the p-channel MOSFET 200 according to this embodiment has a stress between the first stress-containing film 11 and the second stress-containing film 13 as compared with the n-channel MOSFET IOO according to the first embodiment. Since the direction is only reversed, the magnitude of the effect is the same as that of the n-channel MOSFET IOO according to the first embodiment, and the second stress-containing film 13 having tensile stress causes compressive strain to the channel. Therefore, the mobility of holes in the channel region of the pMOSFET can be greatly improved.
- the p-channel MOSFET 200 according to the present embodiment is different from the n-channel MOSFET IOO according to the first embodiment only in the polarity of the MOSFET, so that the p-channel MOSFET 200 according to the present embodiment
- the manufacturing method is basically the same as that of the n-channel MOSFET IOO according to the first embodiment. Only the semiconductor materials chosen are different, as are the polarities of the MOSFETs.
- the second stress-containing film 13 is an insulating film having a tensile stress, and is made of, for example, a silicon nitride film formed by a thermal chemical vapor deposition method or an atomic layer deposition method.
- the material of the second stressed film 13 was cited as being applicable to the formation of the first stressed film 11 in the n-channel MOSFE T100 according to the first embodiment. Materials can be used as appropriate.
- the second stress-bearing film 13 in FIG. 11 and the n-channel MOSFET IOO according to the first embodiment are the same as the first modification of the n-channel MOSFET IOO according to the first embodiment.
- a conductive film having a tensile stress can be used instead of the silicide layer 7b.
- the stressed conductive film used here (corresponding to the stressed conductive film 7c shown in Fig. 4) It is formed using silicide containing any of noret, nickel, and titanium, or tungsten, aluminum, copper, or platinum.
- the stress-containing conductive film is formed by sputtering or chemical vapor deposition and appropriate heat treatment.
- a method of manufacturing a p-channel MOSFET having a stressed conductive film instead of the second stressed film 13 and the silicide layer 7b is the same as that of the present invention except for the film formation and dry etching conditions of the gate portion. This is the same as the manufacturing method of the p-channel MOSFET 200 according to the embodiment.
- the effect similar to that of the P-channel MOSFET 200 according to the present embodiment can also be obtained by using a stressed conductive film instead of the second stressed film 13 and the silicide layer 7b. That is, the channel is greatly distorted in the compression direction, and the hole mobility in the channel region of the pMOSFET can be greatly improved.
- a stress-containing conductive film can be used instead of the second stress-containing film 13 and the silicide layer 7b. .
- FIG. 12 is a cross-sectional view showing a configuration of a p-channel MOSFET 201 according to the fifth embodiment of the present invention.
- the p-channel MOSFET 201 according to the present embodiment is higher than the P-channel MOSFET 200 according to the fourth embodiment shown in FIG. 11 on the gate electrode 7, the sidewall 8, and the source 'drain region.
- a fourth stress-containing film 23 having a compressive stress is further provided so as to cover V, and V is different.
- the p-channel MOSFET 201 according to the present embodiment is the same as the p-channel MOSFE T200 according to the fourth embodiment except that the fourth stress-containing film 23 having a compressive stress is further provided. It has a structure. For this reason, the same components as those of the p-channel MOS FET 200 according to the fourth embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the formed second stress-containing film 13 having a tensile stress applies a compressive stress to the channel, and further has a compressive stress formed so as to cover the gate electrode 7, the sidewall 8 and the source / drain regions. Since the stressed film 23 of 4 also applies compressive stress to the channel, the channel is greatly distorted in the compression direction, and the mobility of holes in the channel region of the pMOSFET can be greatly improved.
- the p-channel MOSFET 201 according to the present embodiment is different from the n-channel MOSFET 101 according to the second embodiment only in the polarity of the MOSFET, and thus the p-channel MOSFET 201 according to the present embodiment.
- the method of manufacturing the type MOSFET 201 is basically the same as the method of manufacturing the n-channel type MOSFET 101 according to the second embodiment. Just as the polarity of the MOSFETs is different, the semiconductor materials chosen are only different.
- the fourth stress-containing film 23 is an insulating film having a compressive stress, and is made of, for example, a silicon nitride film formed by a plasma chemical vapor deposition method.
- FIG. 13 is a cross-sectional view of a p-channel MOSFET 201A according to a first modification of the fifth embodiment.
- the p-channel MOSFET 201A according to this modification is different from the p-channel MOSFET 201 according to the fifth embodiment shown in Fig. 12 in that the fourth stress-provided film 23 has the second stress-provided film 23.
- the portion on the film 13 is formed as the stress relaxation portion 23a. That is, a notched region is formed in the fourth stressed film 23 above the second stressed film 13, and the fourth stressed film 23 is formed in the stress relaxation portion 23 a, that is, the second stressed film 23. There is no stress on the membrane 13 of the stressor.
- a p-channel MOSFET 201A according to this modification has the same structure as the p-channel MOSFET 201 according to the fifth embodiment except that the stress relaxation portion 23a is provided. For this reason, the same components as those of the p-channel MOSFET 201 according to the fifth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the fourth stress-containing film 23 having compressive stress on the second stress-containing film 13 having tensile stress has tensile strain on the channel.
- the p-channel MOSFET 201A according to the present modification is different from the p-channel MOSFET 201 according to the fifth embodiment only in the polarity of the MOSFET.
- the manufacturing method of the type MOSFET 201A is basically the same as the manufacturing method of the p-channel type MOSFET 201 according to the fifth embodiment. Just as the polarity of the MOSFETs is different, the semiconductor materials chosen are only different.
- the portion of the fourth stressed film 23 that exceeds the second stressed film 13 is changed. Can be removed by chemical mechanical polishing.
- the fourth stress-containing film 23 is replaced with the surface height of the second stress-containing film 13. After the film is formed to be thicker than the above, it is possible to polish the fourth stressed film 23 so that the surface of the second stressed film 13 is exposed.
- FIG. 14 is a cross-sectional view of a p-channel MOSFET 202 according to the sixth embodiment.
- the p-channel MOSFET 202 includes a silicon substrate 1, a device isolation region 2 formed on the surface of the silicon substrate 1, and a region sandwiched between adjacent device isolation regions 2 in the silicon substrate. Formed in the surface region of the silicon substrate 1, the gate insulating film 6 formed on the surface of the gate electrode 7, the gate electrode 7 formed of the silicon film 7a and the silicide layer 7b on the gate insulating film 6, and the silicon substrate 1
- the p-type impurity layer 4 constituting the source / drain region, the silicide layer 5 formed on the p-type impurity layer 4, the gate insulating film 6 and the gate electrode 7
- Side wall 8 formed to cover the side wall, and seventh stress component having the same height as gate electrode 7 and having compressive stress formed to cover the source and drain regions of p-channel MOSFET 202
- the film 24, the gate electrode 7 and the seventh stressed film 24 are formed, and the eighth stressed film 14 having tensile stress and the interlayer formed entirely on the eighth stressed film 14 are formed.
- the seventh stress-containing film 24 having a compressive stress up to the height of the gate electrode 7 is present, and an eighth stress having a tensile stress thereon is provided.
- the seventh stress-containing film 24 having a compressive stress is thickly formed on the side surface portion and the source / drain region of the gate electrode 7, so As a result, stronger tensile strain is added, and the mobility of holes in the channel region of p-channel MOSFETs can be greatly improved.
- the p-channel MOSFET 202 according to this embodiment is different from the n-channel MOSFET 102 according to the third embodiment only in the polarity of the MOSFET.
- the method for manufacturing the n-type MOSFET 202 is basically the same as the method for manufacturing the n-channel MOSFET 102 according to the third embodiment. Just as the polarity of the MOSFETs is different, the semiconductor materials chosen are only different.
- the seventh stressed film 24 is an insulating film having a compressive stress, and is made of, for example, a silicon nitride film formed by a plasma chemical vapor deposition method.
- the eighth stress-containing film 14 is an insulating film having a tensile stress, and is made of, for example, a silicon nitride film formed by a thermal chemical vapor deposition method or an atomic layer deposition method.
- the material of the seventh stress-equipped film 24 and the eighth stress-equipped film 14 is used to form the first stress-equipped film 11 in the n-channel MOSFET 100 according to the first embodiment.
- the materials mentioned as being possible can be used as appropriate.
- the eighth stress-containing film 14 can be formed only on the gate electrode 7.
- the eighth stressed film 14 is formed only on the gate electrode 7
- the eighth stressed film 14 is deposited on the entire surface of the gate electrode 7 and the seventh stressed film 24.
- the eighth stress The organic film 14 is patterned so as to remain only on the upper portion of the gate electrode 7 by photolithography.
- the eighth stress-equipped film 14 having a tensile stress is not substantially present above the seventh stress-equipped film 24 having a compressive stress, The stress of the coated film 24 is not weakened by the stress of the eighth stressed coated film 14, and a strong tensile strain can be applied to the channel.
- FIG. 15 is a sectional view showing a configuration of a CMOSFET 300 according to the seventh embodiment of the present invention.
- the CMOSFET 300 according to the present embodiment includes the n-channel MOSFET 100 according to the first embodiment shown in FIG. 1 and the p-channel MOSF ET200 according to the fourth embodiment shown in FIG. Talk!
- the n-channel MOSFET 100 constituting the CMOSFET 300 according to the present embodiment is sandwiched between the silicon substrate 1, the element isolation region 2 formed on the surface of the silicon substrate 1, and the adjacent element isolation region 2.
- a gate insulating film 6 formed on the surface of the silicon substrate 1, a gate electrode 7 composed of a two-layer film of a silicon film 7a and a silicide layer 7b formed on the gate insulating film 6, and silicon
- An n-type impurity layer 3 formed in the surface region of the substrate 1 and constituting a source drain region, a silicide layer 5 formed on the n-type impurity layer 3, and a compression formed on the gate electrode 7
- Interlayer insulating film 31 formed The p-channel type MOSFET 200 constituting the CMOSFET 300 according to the present embodiment is sandwiched between the silicon substrate 1, the element isolation region 2 formed on the surface of the silicon substrate 1, and the adjacent element isolation region 2.
- a gate insulating film 6 formed on the surface of the silicon substrate 1 a gate electrode 7 composed of a two-layer film of a silicon film 7a and a silicide layer 7b formed on the gate insulating film 6, and silicon
- a second stress-containing film 13 having stress, and a gate The insulating film 6, the gate electrode 7, and the sidewall 8 formed to cover the sidewalls of the second stress-containing film 13, and the interlayer insulating film 31 formed on the entire surface of the silicon substrate 1. ing.
- the second stress-containing film 13 formed on the gate electrode 7 and having a tensile stress gives a compressive stress to the channel as in the fourth embodiment. Can be distorted in the compression direction to improve hole mobility
- FIGS. 16 (a) to 16 (e) are cross-sectional views showing each step in the method of manufacturing the CMOSFET 300 according to the embodiment.
- the element isolation region 2 is formed in the surface region of the silicon substrate 1.
- the element isolation region 2 is, for example, an oxide silicon film, a silicon nitride film, or a laminated structure force thereof.
- the gate insulating film 6, the silicon film 7a, the silicide layer 7b, and the first stress-containing film 11 having compressive stress are formed in this order on the silicon substrate 1. Laminate sequentially.
- the gate insulating film 6 is made of, for example, a silicon oxide film, a high dielectric constant film containing nitrogen, hafnium, aluminum, titanium, zirconium, tantalum, or the like, or a laminated structure thereof.
- the silicon film 7a is made of, for example, a polycrystalline silicon film, an amorphous silicon film, or a laminated film thereof.
- the silicide layer 7b contains, for example, a metal such as cobalt or nickel.
- the first stressed film 11 is an insulating film having a compressive stress, for example, plasma chemical vapor. It consists of a silicon nitride film formed by the phase growth method. As the material of the first stressed film 11, the materials mentioned as being applicable for forming the first stressed film 11 in the first embodiment can be appropriately used.
- a resist film 43 serving as an etching mask for the first stress-containing film 11 is formed using a known photolithography technique.
- the resist film 43 is removed, and a second stress-containing film 13 having a tensile stress is formed on the entire surface.
- the second stress-containing film 13 is an insulating film having a tensile stress, and is made of, for example, a silicon nitride film formed by a thermochemical vapor deposition method or an atomic layer deposition method.
- the materials mentioned as being applicable for forming the first stress-containing film 11 in the first embodiment are appropriately used. be able to.
- a resist film 44 serving as an etching mask for the second stress-containing film 13 is removed from the p-channel field effect transistor 20 using a known photolithography technique.
- the second stress-containing film 13 in the region of the n-channel field effect transistor 100 is removed by dry etching, and then the resist film 44 is removed.
- the structure at this stage is shown in Fig. 16 (d).
- a resist film 45 serving as a mask for forming the gate electrode 7 is formed using photolithography technology, and a portion of the first stress-containing film 11 that is not protected by the mask is formed by dry etching. Then, the second stress-containing film 13, the silicide layer 7b, the silicon film 7a, and the gate insulating film 6 are removed to obtain the structure shown in FIG.
- the silicide layer 5 is formed.
- the sidewall 8 is made of, for example, a silicon oxide film, a silicon nitride film, or a laminated structure thereof.
- the silicide layer 5 is made of a silicide film containing a metal such as, for example, nickel or nickel.
- the present manufacturing method first, the first stress-containing film 11 of the n-channel field effect transistor 100 is formed, and then the first stress-containing film 11 of the p-channel field effect transistor 200 is formed.
- the second stressed film 13 was formed, but first the second stressed film 13 was formed, and then the second
- FIG. 17 is a cross-sectional view of a CMOSFET 300A according to a first modification of the seventh embodiment.
- the CMOSFET 300A according to the present modification example includes the n-channel MOSFET IOOA according to the first modification example of the first embodiment shown in FIG. 4 and the p-channel MOSFET 200A.
- n-channel MOSFET IOOA in comparison with the n-channel MOSFET 100 according to the first embodiment shown in FIG. 1, instead of the silicide layer 7b and the first stress-containing film 11, compressive stress is applied. A first stressed conductive film 7c is formed.
- the silicide layer 7b and the second stress-containing film 13 are compared. Instead, a second stressed conductive film 7d having a tensile stress is formed.
- the first stress-containing conductive film 7c or the second stress-containing conductive film 7d is used in place of the silicide layer 7b and the first stress-containing film 11 or the second stress-containing film 13. Except for this, the CMOSFET 300A according to the present modification has the same structure as the CMOSFET 300 according to the seventh embodiment. For this reason, the same components as those of the CMOSFET 300 according to the seventh embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the stress-containing conductive films 7c and 7d are made of silicide containing any one of cobalt, nickel, and titanium, or tungsten, aluminum, copper, or platinum.
- the stressed conductive films 7c and 7d are formed by sputtering or chemical vapor deposition and appropriate heat treatment.
- the manufacturing method of the CMOSFET 300A according to this modified example is that the silicide layer 7b does not exist, and instead of the first stressed film 11 and the second stressed film 13, the first stressed conductive film 7c and the second
- the manufacturing method of the CMO SFET 300 according to the seventh embodiment is the same as that of the second embodiment, except that the conductive film 7d has stress.
- FIG. 19 (e) is a sectional view showing a configuration of the CMOSFET 301 according to the eighth embodiment of the present invention.
- the CMOSFET 301 includes an n-channel MOSFET IOI according to the second embodiment shown in FIG. 5 (b) and a p-channel MO SFET 201 according to the fifth embodiment shown in FIG. It has.
- the CMOSFET 301 according to the present embodiment has the first stress-containing film 11, the sidewall 8 and the source in the region of the n-channel MOSFET IOI. 'A third stressed film 21 formed over the drain region and having tensile stress is formed. In the region of the p-channel MOSFET 201, the second stressed film 13 and sidewall 8 are formed. And a fourth stress-containing film 23 having a compressive stress formed so as to cover the source and drain regions is different.
- the CMOSFET 301 according to the present embodiment has the same structure as the CMOSFET 300 according to the seventh embodiment.
- C according to the seventh embodiment The same components as those of MOSFET 300 are denoted by the same reference numerals, and description thereof is omitted.
- the first stress-containing film 11 formed on the gate electrode 7 and having a compressive stress applies a tensile stress to the channel. Since the first stress-containing film 11, the sidewall 8 and the source / drain regions are formed and the third stress-containing film 21 having tensile stress also applies tensile stress to the channel, the channel is greatly strained in the tensile direction. Thus, the mobility of electrons can be greatly improved.
- the second stress-containing film 13 formed on the gate electrode 7 and having a tensile stress gives a compressive stress to the channel.
- the fourth stress-equipped film 23 formed over the second stress-included film 13, the sidewall 8 and the source / drain regions and having compressive stress also applies compressive stress to the channel, so that the channel is compressed in the compression direction. It is greatly distorted, and the mobility of holes can be greatly improved.
- FIGS. 18 (a) to 18 (c), FIG. 19 (d) and FIG. 19 (e) are cross-sectional views showing respective steps in the method of manufacturing the CMOS FET 301 according to the present embodiment.
- FIGS. 18 (a) to 18 (c), FIG. 19 (d), and FIG. 19 (e) a manufacturing method of the CMOSFET 301 according to the present embodiment will be described.
- FIGS. 16 (a) to 16 (e) showing the manufacturing method of the CMOSFET 300 according to the seventh embodiment is performed. Then, the resist film is removed, and the shallow source drain is removed. 18 (a) through the steps of ion implantation for forming silicon, sidewall 8 formation, ion implantation for deep source / drain formation, annealing for impurity activation, and silicide layer 5 formation. (The structure shown in FIG. 18 (a) is the same as that of the CMOSFET 300 according to the seventh embodiment).
- the third stress-containing film 21 is an insulating film having a tensile stress. It consists of a silicon nitride film formed by a phase growth method or an atomic layer deposition method.
- a silicon oxide film is thinly formed (about lOnm) under the third stress-containing film 21 as a damage protective film in a later etching process. The following may be formed.
- a resist film 46 serving as an etching mask for the third stress-containing film 21 is formed, and a third etching in the region of the p-channel MOSFET 201 is performed by dry etching. Remove the stressed film 21 and, if necessary, the damage protection film.
- the structure at this stage is shown in FIG. 18 (c).
- the fourth stressed film 23 is an insulating film having a compressive stress, and is made of, for example, a silicon nitride film formed by a plasma chemical vapor deposition method.
- a thin silicon oxide film (less than about lOnm) is formed under the fourth stress-containing film 23 as an etching stopper film in a later step. Make a film.
- a resist film 47 serving as an etching mask for the fourth stressed film 23 is formed by photolithography, and the fourth stressed film 23 in the region of the n-channel MOSFET 101 is formed by dry etching. Remove.
- the structure at this stage is shown in Fig. 19 (d).
- the third stress-containing film 21 of the n-channel field effect transistor 101 is formed, and then the second stress of the p-channel field effect transistor 201 is formed.
- the fourth stressed film 23 was formed, but first the fourth stressed film 23 was formed, and then the second
- FIG. 20 is a cross-sectional view of a CMOSFET 301A according to a first modification of the eighth embodiment.
- the difference between the CMOSFET 301A according to the present modification and the CMOSFET 301 according to the eighth embodiment shown in FIG. 19 (e) is that the third stress-included film 21 on the first stress-equipped film 11
- the portion and the portion of the fourth stress-equipped film 23 on the second stress-equipped film 13 are respectively formed as stress relaxation portions.
- the third stress-equipped film 21 and the fourth stress-equipped film 23 have no stress in each stress relaxation portion, that is, on the first stress-equipped film 11 and the second stress-equipped film 13.
- the stress relaxation portion relaxes the stress only in the upper part of the gate electrode 7 in the third stress-containing film 21 and the fourth stress-containing film 23 by the ion implantation Iim. More formed.
- a CMOSFET 301A according to this modification has the same structure as the CMOSFET 301 according to the eighth embodiment except that a stress relaxation portion is provided. For this reason, the same components as those of the CMOSFET 301 according to the eighth embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the third stress-provided film 21 having the tensile stress on the first stress-bearing film 11 having the compressive stress gives the channel a compressive strain, and the tensile stress
- the fourth stress-bearing film 23 having a compressive stress on the second stress-bearing film 13 having a tensile stress on the channel is the third stress-provided film 21 having the tensile stress on the first stress-bearing film 11 having the compressive stress.
- the third stress-equipped film 21 and the fourth stress-equipped film 23 on the first stress-equipped film 11 and the second stress-equipped film 13 are Do not give compressive strain or tensile strain to the channel, because it has stress.
- the CMOSFET 301A according to this modification can distort the channel more greatly.
- the electron It is possible to further improve the mobility and further improve the mobility of the hole in the p-channel MOSFET 201!
- CMOSFET 301A is the same as the first modification of the second embodiment and the first modification of the fifth embodiment.
- a modification example similar to the second and third modification examples of the n-channel MOSFET 101 according to the second embodiment is formed. It is possible.
- the third stress over the first stressed film 11 and the second stressed film 13 The portions of the stress-containing film 21 and the fourth stress-containing film 23 can be removed by mechanical mechanical polishing.
- the third stress-containing film 21 and the fourth stress-containing film 23 are formed as the first The third stress is applied so that the surfaces of the first stressed film 11 and the second stressed film 13 are exposed after being formed thicker than the surface height of the stressed film 11 and the second stressed film 13. It is also possible to polish the natural film 21 and the fourth stress natural film 23.
- FIG. 22 (g) is a sectional view showing a configuration of the CMOSFET 302 according to the ninth embodiment of the present invention.
- the CMOSFET 302 includes an n-channel MOSFET 102 according to the third embodiment shown in FIG. 9 (d), and a p-channel MO SFET 202 according to the sixth embodiment shown in FIG. With /!
- the n-channel MOSFET 102 constituting the CMOSFET 302 includes a silicon substrate 1, an element isolation region 2 formed on the surface of the silicon substrate 1, and a region sandwiched between adjacent element isolation regions 2
- a gate insulating film 6 formed on the surface of the silicon substrate 1
- a gate electrode 7 formed of two layers of a silicon film 7a and a silicide layer 7b formed on the gate insulating film 6, and a silicon substrate 1
- the n-type impurity layer 3 forming the source / drain region, the silicide layer 5 formed on the n-type impurity layer 3, and the side walls of the gate insulating film 6 and the gate electrode 7 are formed.
- the p-channel MOSFET 202 constituting the CMOSFET 302 according to the present embodiment is sandwiched between the silicon substrate 1, the element isolation region 2 formed on the surface of the silicon substrate 1, and the adjacent element isolation region 2.
- a gate insulating film 6 formed on the surface of the silicon substrate 1 a gate electrode 7 formed of two layers of a silicon film 7a and a silicide layer 7b formed on the gate insulating film 6, and the silicon substrate 1
- the side walls of the P-type impurity layer 4 forming the source / drain region, the silicide layer 5 formed on the p-type impurity layer 4, the gate insulating film 6 and the gate electrode 7 are formed.
- a seventh stress-provided film 24 having a compressive stress formed so as to cover the side wall 8 and the gate electrode 7 and to cover the source and drain regions of the p-channel MOSFET 202 is formed. And the gate electrode 7 And the seventh stressed film 14 formed on the seventh stressed film 24 and having tensile stress, and the interlayer insulating film 31 formed entirely on the eighth stressed film 14. ing.
- the fifth stress-containing film 22 having a tensile stress up to the height of the gate electrode 7 exists, and has a compressive stress on the upper part thereof.
- a sixth stressed membrane 12 is present.
- the seventh stress-containing film 24 having a compressive stress up to the height of the gate electrode 7 is present, and the tensile stress is formed above the seventh stress-containing film 24.
- FIGS. 21 (a) to 21 (d), 22 (e) and 22 (g) show the CMOS according to the present embodiment.
- FIG. 21 (a) to FIG. 21 (d), FIG. 22 (e) and FIG. 22 (g), the present embodiment will be described.
- a method of manufacturing the CMOSFET 302 according to the above will be described.
- the element isolation region 2 is provided in the silicon substrate 1, and the gate insulating film 6 is formed on the substrate in the region partitioned by the element isolation region 2.
- the silicon film 7a with the gate electrode pattern on the gate insulating film 6, ion implantation for shallow source 'drain formation, sidewall 8 formation, ion implantation for deep source' drain formation, impurity activation
- the structure shown in FIG. 21 (a) is obtained.
- a fifth stress-containing film 22 having a tensile stress is formed to a thickness equal to or greater than the thickness of the silicon film 7a.
- the fifth stress-containing film 22 is mechanically polished until the upper part of the gate electrode 7 is exposed, thereby obtaining the structure shown in FIG. 21 (b).
- the fifth stress-containing film 22 is an insulating film having a tensile stress, and is made of, for example, a silicon nitride film formed by a thermochemical vapor deposition method or an atomic layer deposition method.
- a silicon oxide film is thinly formed (about lOnm) under the fifth stress-containing film 22 as a damage protective film in a later etching step. The following may be formed.
- a resist film 48 serving as an etching mask for the fifth stress-provided film 22 is formed using photolithography technology, and the fifth stress-providing element in the region of the p-channel MOSFET 202 is formed by dry etching.
- the film 22 and, if necessary, the damage protection film are removed to obtain the structure shown in FIG.
- a seventh stress-containing film 24 having compressive stress is formed to a thickness equal to or greater than the thickness of the silicon film 7a until the upper portion of the gate electrode 7 is exposed.
- the structure shown in FIG. 21 (d) is obtained by subjecting the seventh stress-containing film 24 to chemical mechanical polishing.
- a resist mask is formed using a known photolithography technique, and dry etching is performed using the resist mask as a mask to remove the seventh stress-containing film 24 in the region of the n- channel MOSFET 102.
- dry etching is performed using the resist mask as a mask to remove the seventh stress-containing film 24 in the region of the n- channel MOSFET 102.
- the seventh stressed film 24 is an insulating film having a compressive stress, and is made of, for example, a silicon nitride film formed by a plasma chemical vapor deposition method.
- a sixth stress-containing film 12 having a compressive stress is formed on the entire surface.
- the sixth stressed film 12 is an insulating film having a compressive stress, and is made of, for example, a silicon nitride film formed by a plasma chemical vapor deposition method.
- the materials mentioned as being applicable for forming the first stress-equipped film 11 in the first embodiment may be appropriately used. It can be appropriately used.
- a thin silicon oxide film (under about lOnm) is formed under the sixth stress-containing film 12 as an etching stopper film in a later step if necessary. Make a film.
- a resist film 49 serving as an etching mask for the sixth stressed film 12 is formed on the sixth stressed film 12, and p channel type is formed by dry etching.
- the sixth stressed film 12 in the region of the MOSFET 202 and, if necessary, the etching stopper film are removed to obtain the structure shown in FIG.
- an eighth stress-containing film 14 having a tensile stress is formed on the entire surface.
- the eighth stress-containing film 14 is chemically and mechanically polished until the sixth stress-containing film 12 and the eighth stress-containing film 14 having a desired thickness remain on the top of the gate electrode 7. According to the figure
- a resist mask is formed using a known photolithography technique, and the eighth stress-containing film 14 in the region of the n-channel MOSFET 102 is removed using the resist mask as a mask.
- the eighth stress-containing film 14 is an insulating film having a tensile stress, and is made of, for example, a silicon nitride film formed by a thermochemical vapor deposition method or an atomic layer deposition method.
- the materials mentioned as being applicable for forming the first stress-containing film 11 in the first embodiment are appropriately used. be able to.
- each stressed film is not limited to this.
- first the seventh stressed film 24 of the p-channel MOSFET 202 second the fifth stressed film 22 of the n-channel MOSFET 102, third, the eighth stress of the p-channel MOSFET 202 It is also possible to form the sixth stress-containing film 12 of the organic film 14 and the fourth n-channel type MOSFET 102.
- the sixth stress-equipped film 12 and the eighth stress-equipped film 14 Can be formed only on each gate electrode 7 of the n-channel MOSFET 102 or the p-channel MOSFET 202.
- the sixth stressed film 12 and the eighth stressed film 14 are entirely formed on the gate electrode 7, the fifth stressed film 22 and the seventh stressed film 24. After the sixth stressed film 12 and the eighth stressed film 14 are formed, the sixth stressed film 12 and the eighth stressed film 14 are left only on the top of each gate electrode 7 by using a photolithography technique. Putter Jung.
- FIG. 23 is a cross-sectional view showing the configuration of the CMOSFET 303 according to the tenth embodiment of the present invention.
- the CMOSFET 303 according to the present embodiment includes the n-channel MOSFET IOI according to the second embodiment shown in FIG. 5B and the p-channel MOSFET 201B.
- the fourth stress-containing film 23 having compressive stress is formed so as to cover the p-channel MOSFET 201.
- a third stress-containing film 21 having a tensile stress is formed so as to cover the p-channel MOSFET 201B. That is, in the CMOSFET 303 according to this embodiment, the third stress-containing film 21 having a tensile stress is formed so as to cover both the n-channel MOSFET IOI and the p-channel MOSFET 201B.
- the CMOSFET 303 according to the present embodiment is shown in Fig. 19 (e) except that the third stressed film 21 is formed instead of the fourth stressed film 23. It has the same structure as the CMOSFET 301 according to the eighth embodiment shown. For this reason, the same components as those of the CMOSFET 301 according to the eighth embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the first stress-containing film 11 having compressive stress formed above the gate electrode 7 gives a tensile stress to the channel.
- the third stress-containing film 21 with tensile stress formed over the electrode 7, sidewall 8 and the source / drain region also applies tensile stress to the channel, so the channel is greatly distorted in the bow I tension direction and the movement of electrons The degree can be greatly improved.
- the step of removing the third stress-containing film 21 having the tensile stress in the region of the p-channel type MO SFET 201, and the fourth having the compressive stress By removing the step of removing the fourth stressed film 23 in the region of the n-channel MOSFETIOI by forming the stressed film 23, the C according to the present embodiment A manufacturing method of the MOSFET 303 can be obtained. That is, the CMOSFET 303 according to the present embodiment can be manufactured by the steps shown in FIGS. 18 (a) and 18 (b).
- the CMOSFET 303 according to the present embodiment has the following three modifications.
- the third stressed film 21 has no stress in the stress relaxation portion, that is, on the first stressed film 11 and the second stressed film 13! / ,.
- the stress relaxation portion is formed by relaxing the stress only in the upper portion of the gate electrode 7 of the third stress-containing film 21 by the ion implantation Iim.
- each gate in the n-channel MOSFET 101 and the p-channel MOSFET 201B is the same as the first modification of the second embodiment shown in Fig. 6 (b). It is also possible to form a notch region in the third stress-containing film 21 as a stress relaxation portion above the electrode 7.
- the third stress-containing film 21 is the first stress-containing film 11
- the second stress-containing film 13 can be formed to have a height that reaches the surface height.
- the third stress-containing film 21 having a tensile stress on the first stress-containing film 11 having a compressive stress is a force that applies compressive strain to the channel.
- the third stressed film 21 on the first stressed film 11 has no stress, or the third stressed film 21 does not exist, so that the channel is not compressively strained.
- these three modified examples can distort the channel much more than the CMOSFET 303 according to the present embodiment, and further improve the electron mobility in the channel region of the n-channel MOSFET. Can be made.
- FIG. 24 is a sectional view showing the structure of the CMOSFET 304 according to the eleventh embodiment of the present invention.
- the CMOSFET 304 according to the present embodiment includes the n-channel MOSFET 102 and the p-channel MOSFET 202A according to the third embodiment shown in FIG. 9 (d).
- the CMOSFET 304 according to the present embodiment is different from the C MOSFET 302 according to the ninth embodiment shown in FIG. 22 (g) in that the p-channel MOSFET 202A has a seventh stress-containing film 24 having a compressive stress. Instead, a fifth stress-containing film 22 having a tensile stress is provided.
- the fifth stress-containing film 22 having a tensile stress is formed so as to cover both the n-channel type MOSFET 102 and the p-channel type MOSFET 202A.
- the CMOSFET 304 according to the present embodiment is related to the ninth embodiment, except that the p-channel MOSFET 202A has a fifth stressed film 22 instead of the seventh stressed film 24. It has the same structure as CMOSFET 302. Therefore, the same components as those of the CMOSFET 302 according to the ninth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the fifth stress-containing film 22 having a tensile stress covering the gate electrode 7, the side wall 8, and the source / drain region is thick, so that a strong tensile force is applied to the channel. Distortion is added. Furthermore, since the sixth stress-containing film 12 having a compressive stress formed on the gate electrode 7 of the n-channel MOSFET 102 promotes the tensile strain of the channel, the electrons in the channel region of the n-channel MOSFET 102 are Mobility can be greatly improved.
- the step of removing the fifth stress-containing film 22 having the tensile stress in the region of the p-channel type MO SFET 202, and the seventh having the compressive stress Deposit the stressed film 24 to the n-channel MOSFET102
- a manufacturing method of the MOSFET 304 can be obtained.
- the steps shown in FIG. 21 (c) and FIG. 21 (d) are omitted, and after the step shown in FIG. 21 (b), FIG. 22 (e), FIG. 22 (f) and FIG.
- the CMOSFET 304 according to this embodiment can be manufactured.
- a sixth stressed film is provided in the same manner as the n- channel MOSFET 102A according to the first modification of the third embodiment shown in FIG.
- the twelfth and eighth stressed films 14 can be formed only on each gate electrode 7.
- FIG. 25 is a sectional view showing the structure of the CMOSFET 305 according to the twelfth embodiment of the present invention.
- the CMOSFET 305 according to the present embodiment includes the n-channel MOSFET 101D and the p-channel MOSFET 201 according to the fifth embodiment shown in FIG.
- the CMOSFET 305 according to the present embodiment is compared with the C MOSFET 303 according to the tenth embodiment shown in FIG. 23 in both the n-channel MOSFET 101D and the p-channel MOS FET 201. It differs in that the fourth stressed film 23 having compressive stress is formed instead of the third stressed film 21 having tensile stress.
- the CMOSFET 305 of this embodiment is the same as that of the tenth embodiment shown in FIG. 23 except that a fourth stressed film 23 is formed instead of the third stressed film 21. It has the same structure as CM OSFET303. Therefore, the same components as those of the CMO SFET 303 according to the tenth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the second stress-containing film 13 having a tensile stress formed above the gate electrode 7 gives a compressive stress to the channel.
- the fourth stress-containing film 23 having compressive stress covering the gate electrode 7, the sidewall 8 and the source / drain region also applies compressive stress to the channel.
- the hole is greatly distorted in the compression direction, and the hole mobility can be greatly improved.
- the method for manufacturing CMOSFET 305 according to the present embodiment is basically the same as the method for manufacturing CMOSFET 303 according to the seventh embodiment shown in FIG. That is, the manufacturing method of the CMOSFET 305 according to the present embodiment is different from the manufacturing method of the CMOSF ET 303 according to the seventh embodiment in that a fourth stress element is provided instead of the material for forming the third stress-containing film 21. The only difference is that the material for forming the film 23 is used.
- the CMOSFET 305 according to the present embodiment further includes the following three modifications.
- the fourth stressed film 23 has no stress in the stress relaxation portion, that is, on the first stressed film 11 and the second stressed film 13! /.
- the stress relaxation portion is formed by relaxing the stress only in the upper portion of the gate electrode 7 of the fourth stress-containing film 23 by the ion implantation Iim.
- each gate in the n-channel MOSFET 101 and the p-channel MOS FET 201 is similar to the first modification of the second embodiment shown in Fig. 6 (b). It is also possible to form a notch region in the fourth stress-bearing film 23 as a stress relaxation portion above the electrode 7.
- the fourth stress-bearing film 23 is the first stress-bearing film 11
- the second stress-containing film 13 can be formed to have a height that reaches the surface height.
- the fourth stress-equipped film 23 having compressive stress on the second stress-equipped film 13 having tensile stress is the force that applies tensile strain to the channel.
- the fourth stressed film 23 on the second stressed film 13 has no stress, or the fourth stressed film 23 exists on the second stressed film 13. Do not give the channel a tensile strain! /.
- these three modified examples can distort the channel of the p-channel MOSFET 201 more greatly than the CMOSFET 305 according to the present embodiment, and the movement of holes in the channel region of the p-channel MOSFET 201 The degree can be further improved.
- CMOSFET manufacturing method according to the first modification is the same as the manufacturing method according to the first modification of the eighth embodiment.
- FIG. 26 is a sectional view showing the structure of the CMOSFET 306 according to the thirteenth embodiment of the present invention.
- the CMOSFET 306 according to the present embodiment includes the n-channel MOSFET 102B and the p-channel MOSFET 202 according to the sixth embodiment shown in FIG.
- the CMOSFET 306 has a fifth stress component in which the n-channel MOSFET 102B and the p-channel MOSFET 202 have tensile stress.
- a seventh stressed film 24 having compressive stress instead of the film 22 is different from the film 22 in that it is different.
- the seventh stress-containing film 24 having a compressive stress is formed so as to cover both the n-channel type MOSFET 102B and the p-channel type MOSFET 202.
- the CM OSFET 306 according to the present embodiment is the 11th except that the n-channel MOSFET 102B and the p-channel MOSFET 202 have a seventh stressed film 24 instead of the fifth stressed film 22.
- This has the same structure as the CMOSFET 304 according to the embodiment. Therefore, the same components as those of the CMOSFET 304 according to the eleventh embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the seventh stress-containing film 24 having compressive stress is thick on the gate electrode 7, the sidewall 8, and the source / drain regions. Strong compression distortion is applied to the other channels. Further, an eighth stress having a tensile stress formed on the gate electrode 7 of the p-channel MOSFET 202. Since the intrinsic film 14 promotes the compressive strain of the channel, the mobility of holes in the channel region of the p-channel MOSFET 202 can be greatly improved.
- the manufacturing method of the CMOSFET 306 according to the present embodiment is basically the same as the manufacturing method of the CMOSFET 304 according to the eleventh embodiment shown in FIG. That is, the manufacturing method of the CMOSFET 306 according to the present embodiment is different from the manufacturing method of the CMOSFET 304 according to the eleventh embodiment in place of the material for forming the fifth stress-containing film 22. The only difference is that the material for forming the film 24 is used.
- the sixth stress-containing film 12 and the second film are the same as the n- channel MOSFET 102A according to the first modification of the third embodiment shown in FIG. Eight stressed films 14 can be formed only on each gate electrode 7.
- FIG. 27 is a cross-sectional view showing the configuration of the CMOSFET 307 according to the fourteenth embodiment of the present invention.
- the CMOSFET 307 according to the present embodiment includes the n-channel MOSFET 101 and the p-channel MOSFET 201C according to the second embodiment shown in FIG. 5 (b).
- the CMOSFET 307 according to the present embodiment has a p-channel MOSFET 201C force tensile stress compared with the CMOSFET 301 according to the eighth embodiment shown in FIG. 19 (e). Instead, the difference is that the first stressed film 11 having compressive stress is provided.
- the CMOSFET 307 according to the present embodiment is shown in Fig. 19 (e) except that the p-channel MOSFET 201C has a first stress-containing film 11 instead of the second stress-containing film 13. It has the same structure as the CMOSFET 301 according to the eighth embodiment. For this reason, the same components as those of the CMOSFET 301 according to the eighth embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the first stress-containing film 11 having compressive stress formed on the gate electrode 7 applies bow I tension stress to the channel. Furthermore, it is formed to cover the gate electrode 7, the sidewall 8, and the source / drain region. Since the third stress-containing film 21 having a tensile stress also applies a tensile stress to the channel, the channel of the n-channel MOSFET 101 is greatly distorted in the tensile direction, and the electron mobility can be greatly improved.
- the step of forming the second stress-containing film 13 having the tensile stress in the region of the p-channel MOSFET 201C [FIG. (b)] and the step of removing the second stress-containing film 13 in the region of the n-channel MOSFET 101 (FIG. 16 (c)) are omitted, thereby producing the CMO SFET 307 according to the present embodiment. Can be obtained.
- the first stress-bearing film 11 and the second stress-bearing film 13 are formed on the n-channel MOSFET 101 and the p-channel MOSFET 201, respectively.
- the first stressed film 11 is formed on the n-channel type MOSFET 101 and the p-channel type MOSFET 201C by a single process. Is possible.
- the CMOSFET 307 according to the present embodiment further includes the following three modifications.
- the third stress-equipped film 21 and the fourth stress-equipped film 23 do not have stress in the stress relaxation portion, that is, on the first stress-equipped film 11.
- the stress relaxation part is formed by relaxing the stress only in the upper part of the gate electrode 7 of the third stress-containing film 21 and the fourth stress-containing film 23 by the ion implantation Iim.
- each gate in the n-channel MOSFET 101 and the p-channel MOS FET 201C is the same as the first modification of the second embodiment shown in FIG. 6 (b).
- the electrode 7 as a stress relaxation part, the third It is also possible to form notched regions in the stressed film 21 and the fourth stressed film 23.
- the third stress-equipped film 21 and the fourth stress-equipped film 23, as in the third modification of the second embodiment shown in FIG. Can be formed so as to reach the height of the surface of the first stressed film 11.
- the third stress-provided film 21 having a tensile stress on the first stress-provided film 11 having a compressive stress in the n-channel MOSFET 101 is a channel.
- the fourth stress-containing film 23 having compressive stress on the first stress-containing film 11 having compressive stress in the p-channel type MOSFET 201C gives tensile strain to the channel.
- the third stressed film 21 and the fourth stressed film 23 on the first stressed film 11 have no stress.
- the third stressed film 21 and the fourth stressed film 23 do not exist on the first stressed film 11! ⁇ So don't compress or strain the channel! /.
- these three modified examples can distort the channel of the n-channel type MOSFET 101 and the p-channel type MOSFET 201C more greatly than the CMOSFET 307 according to the present embodiment.
- the mobility of electrons in the region and the mobility of holes in the channel region of the P-channel MOSFET 201C can be further improved.
- CMOSFET manufacturing method according to the first modification is the same as the manufacturing method according to the first modification of the eighth embodiment.
- FIG. 28 is a sectional view showing the structure of the CMOSFET 308 according to the fifteenth embodiment of the present invention.
- the CMOSFET 308 according to the present embodiment includes the n-channel MOSFET 102 and the p-channel MOSFET 202B according to the third embodiment shown in FIG. 9 (d).
- the CMOSFET 308 according to the present embodiment is different from the C MOSFET 302 according to the ninth embodiment shown in FIG. 22 (g) in the eighth stress-containing film 14 having the p-channel MOSFET 202B force tensile stress. Instead, it has a sixth stress-containing film 12 having compressive stress. Is different.
- both the fifth stressed film 22 formed in the n-channel MOSFET 102 and the seventh stressed film 24 formed in the p-channel MOSFET 202B are covered.
- a sixth stressed film 12 having a compressive stress is formed.
- the CMOSFET 308 according to the present embodiment is shown in FIG. 22 (g) except that the p-channel MOSFET 202B has a sixth stressed film 12 instead of the eighth stressed film 14. It has the same structure as the CMOSFET 302 according to the ninth embodiment. For this reason, the same components as those of the CMOSFET 302 according to the ninth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the fifth stressed film 22 having a tensile stress is thicker covering the gate electrode 7, the sidewall 8, and the source / drain region. Therefore, a stronger tensile strain is applied to the channel of the n-channel MOSFET 102, and carrier (electron) mobility in the n-channel MOSFET 102 can be greatly improved.
- the p-channel MOSFET 202B has a thick seventh stressed film 24 having compressive stress covering the gate electrode 7, the side wall 8, and the source / drain region, there is a large thickness.
- the channel of the p-channel type MOSFET 202B is subjected to a stronger compressive strain, and the carrier (hole) mobility in the ⁇ -channel type MOSFET 202B can be greatly improved.
- the step of removing the sixth stressed film 12 having compressive stress in the region of the p-channel MOSFET 202, and the eighth stressed film 14 having tensile stress 14 And the step of removing the eighth stressed film 14 in the region of the n-channel MOSFET 102 can be omitted, and the manufacturing method of the CMOSFET 308 according to this embodiment can be obtained.
- the method of manufacturing the CMOSFET 302 according to the ninth embodiment a plurality of steps are performed to form the sixth stress-containing film 12 and the eighth stress-containing film 14.
- the manufacturing method of the CMOSFET 308 according to the present embodiment only the sixth stressed film 12 needs to be formed, and therefore the number of processes can be reduced.
- the stress-containing film 12 can be formed only on the gate electrode 7. In the region of the p-channel type MOSFET 202B, the sixth stressed film 12 can be left as it is.
- FIG. 29 is a sectional view showing the structure of the CMOSFET 309 according to the sixteenth embodiment of the present invention.
- the CMOSFET 309 according to the present embodiment includes the n-channel MOSFET 101E and the p-channel MOSFET 201 according to the fifth embodiment shown in FIG.
- the CMOSFET 309 according to the present embodiment has an n-channel MOSFET 101E force compressive stress as compared with the CMOSFET 301 according to the eighth embodiment shown in FIG. 19 (e). Instead, the second stress-containing film 13 having a tensile stress is provided.
- the CMOSFET 309 according to the present embodiment is shown in FIG. 19 (e) except that the n-channel MOSFET 101E has a second stressed film 13 instead of the first stressed film 11. It has the same structure as the CMOSFET 301 according to the eighth embodiment. For this reason, the same components as those of the CMOSFET 301 according to the eighth embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the second stress-containing film 13 having a tensile stress formed on the gate electrode 7 gives a compressive stress to the channel.
- the fourth stress-containing film 23 having compressive stress formed covering the gate electrode 7, the side wall 8 and the source / drain region also applies compressive stress to the channel. The degree can be greatly improved.
- the step of forming the first stress-containing film 11 having compressive stress in the region of the n-channel type MOSFET 101, and the region in the region of the p-channel type MOSFET 20 By omitting the step of removing the first stressed film 11, the method for manufacturing the CMOSFET 309 according to the present embodiment can be obtained.
- the first stress-bearing film 11 and the second stress-bearing film 13 are formed on the n-channel MOSFET 101 and the p-channel MOSFET 201, respectively.
- the second stressed film 13 is formed on the n-channel type MOSFET 101E and the p-channel type MOSFET 201 by a single process. Is possible.
- the CMOSFET 309 according to the present embodiment further includes the following three modifications.
- the n-channel MOSFET 101E and the p-channel MOS FET 201 have their gate electrodes 7 above. It is also possible to form portions of the third stress-equipped film 21 and the fourth stress-equipped film 23 located in the region as stress relaxation portions.
- the third stress-equipped film 21 and the fourth stress-equipped film 23 have no stress in the stress relaxation portion, that is, on the second stress-equipped film 13.
- the stress relaxation part is formed by relaxing the stress only in the upper part of the gate electrode 7 of the third stress-containing film 21 and the fourth stress-containing film 23 by the ion implantation Iim.
- each gate electrode in the n-channel MOSFET 101E and the p-channel MOSFET 201 is similar to the first modification of the second embodiment shown in FIG. 6 (b). Above 7, it is also possible to form a notch region in the third stressed film 21 and the fourth stressed film 23 as a stress relaxation part.
- the third stress-equipped film 21 and the fourth stress-equipped film 23, as in the third modification of the second embodiment shown in FIG. Can be formed such that the height reaches the surface height of the second stress-containing film 13.
- the third stress-containing film 21 having the tensile stress on the second stress-containing film 13 having the tensile stress in the n-channel MOSFET 101E gives compressive strain to the channel.
- tension stress in the p-channel type MOSFET 201 gives tensile strain to the channel.
- the third stressed film 21 and the fourth stressed film 23 on the second stressed film 13 have no stress.
- the third stressed film 21 and the fourth stressed film 23 do not exist on the second stressed film 13! ⁇ So don't compress or strain the channel! /.
- these three modified examples can distort the channel of the n-channel MOSFET 101E and the p-channel MOSFET 201 more greatly than the CMOSFET 309 according to the present embodiment.
- the mobility of electrons in the region and the mobility of holes in the channel region of the P-channel MOSFET 201 can be further improved.
- CMOSFET manufacturing method according to the first modification is the same as the manufacturing method according to the first modification of the eighth embodiment.
- FIG. 30 is a cross-sectional view showing the configuration of the CMOSFET 310 according to the seventeenth embodiment of the present invention.
- the CMOSFET 310 includes the n-channel MOSFET 102C and the p-channel MOSFET 202 according to the sixth embodiment shown in FIG.
- the CMOSFET 310 according to the present embodiment has a sixth stressed film 12 in which the n-channel MOSFET 102C has a compressive stress compared to the CMOSFET 302 according to the ninth embodiment shown in FIG. 22 (g). Instead, a fifth stress-containing film 22 having a tensile stress is provided.
- both the fifth stressed film 22 formed in the n-channel MOSFET 102C and the seventh stressed film 24 formed in the p-channel MOSFET 202 are covered.
- the CMOSFET 310 according to the present embodiment is shown in Fig. 22 (g) except that the n-channel MOSFET 102C has a fifth stressed film 22 instead of the sixth stressed film 12. It has the same structure as the CMOSFET 302 according to the ninth embodiment. For this reason, the same components as those of the CMOSFET 302 according to the ninth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the fifth stress-containing film 22 having a tensile stress is formed so as to cover the gate electrode 7, the sidewall 8, and the source / drain region. Since it is thick, a stronger tensile strain is applied to the channel of the n-channel MOSFET 102C, and the mobility of carriers (electrons) in the n-channel MOSFET 102C can be greatly improved.
- the p-channel MOSFET 202 since the seventh stress-containing film 24 having compressive stress covers the gate electrode 7, the sidewall 8, and the source / drain regions, the p-channel MOSFET 202 has a large thickness. In this channel, stronger compressive strain is applied, and the carrier (hole) mobility in the p-channel MOSFET 202 can be greatly improved.
- the step of removing the eighth stress-containing film 14 having tensile stress in the region of the n-channel type MO SFET 102, and the sixth method having compressive stress By omitting the step of removing the sixth stressed film 12 in the region of the p-channel MOSFET 202 by forming the stressed film 12, the method for manufacturing the CMOSFET 310 according to the present embodiment can be obtained.
- the method of manufacturing the CMOSFET 302 according to the ninth embodiment it is necessary to perform a plurality of steps in order to form the sixth stressed film 12 and the eighth stressed film 14.
- the CMOSFET 310 according to the present embodiment in the same manner as the n-channel MOSFET 102A according to the first modification of the third embodiment shown in FIG.
- the film 14 can also be formed only on the gate electrode 7. In the region of the n-channel MOSFET 102C, the eighth stress-containing film 14 can be left as it is.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
チャネルに強い応力が加わるようにゲート電極周辺の膜の応力および配置を最適化することにより、高移動度化されたnMOSFET及びpMOSを実現する。nMOSFETにおいては、ゲート電極7上に圧縮応力を有する膜11を形成し、さらに、ゲート電極、ゲート電極側壁及びソース・ドレイン領域を覆うように引張応力を有する膜21を形成する。pMOSFETにおいては、膜11に代えて引張応力を有する膜をゲート電極7上に形成し、また、膜21に代えて、圧縮応力を有する膜を形成する。
Description
明 細 書
半導体装置
技術分野
[0001] 本発明は、半導体装置に関し、特に、チャネル領域に歪みが加えられた nチャネル 型 MOSFET半導体装置または pチャネル型 MOSFET半導体装置、あるいは、そ れら両方を有する CMOSFET半導体装置に関する。
背景技術
[0002] 近年、情報通信機器の発達に伴い、 LSIに要求される処理能力はますます高いも のになつており、トランジスタの高速化が図られている。
[0003] 従来、この高速ィ匕は主としてトランジスタ構造の微細化によって進められてきたが、 リソグラフィ技術の限界によりゲート長を短くすることが、さらには、物理的な要因によ りゲート絶縁膜の薄膜ィ匕が困難になってきている。このため、トランジスタ構造の微細 化以外の新 、高性能化技術が必要となって 、る。
[0004] そのような技術の一つとして、応力をカ卩えることによってチャネルを歪ませ、移動度 を向上させる方法 (ピエゾ抵抗効果)が提案されて ヽる。
[0005] チャネルと平行な方向に引張応力をカ卩えて歪ませた場合、電子の移動度は向上し 、正孔の移動度は劣化する。逆に、チャネルと平行な方向に圧縮応力を加えて歪ま せた場合、電子の移動度は劣化し、正孔の移動度は向上する。この現象を利用して MOSFETの高性能化を図る技術力^、くつか提案されて 、る。
[0006] 例えば、特開 2002— 198368号公報(特許文献 1)には、コンタクトホールを開口さ せる際のストッパー膜として窒化珪素膜を用い、この窒化珪素膜に強い引張応力を 持たせることによりチャネルを歪ませて電子の移動度を向上させ、 nチャネル型 MOS FET (以下、「nMOSFET」と記す)の性能を向上させる方法が提案されている。
[0007] また、特開 2003— 86708号公報 (特許文献 2)には、引張応力を有する窒化珪素 膜で nMOSFETを覆 、、圧縮応力を有する窒化珪素膜で pチャネル型 MOSFET ( 以下、「pMOSFET」と記す)を覆うことにより、両キャリアの移動度を向上させ、 nMO SFET及び pMOSFETの双方の性能を向上させる方法が提案されている。
特許文献 1 :特開 2002— 198368号公報
特許文献 2:特開 2003 - 86708号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、上記特許文献に提案されて!、るように、窒化珪素膜をそのまま応力 膜として使用した場合は、チャネルに強い応力(歪み)を加えることは困難である。
[0009] 以下、その理由について説明する。
[0010] 図 31は、窒化珪素膜 109で覆われた MOSFETの断面図である。
[0011] MOSFETは、シリコン基板 101と、シリコン基板 101の表面上に形成された素子分 離領域 102と、素子分離領域 102により区画されたシリコン基板 101の表面上に形 成されたゲート絶縁膜 106と、ゲート絶縁膜 106上に形成されたゲート電極 107と、 ゲート絶縁膜 106及びゲート電極 107の側壁を覆うサイドウォール 108と、シリコン基 板 101の表面領域内に形成され、ソース'ドレイン領域となる不純物拡散層 103及び シリサイド層 105と、力も構成されている。
[0012] 図 31に示すように、 MOSFETはその全体が窒化珪素膜 109により覆われている。
[0013] 図 32は、窒化珪素膜 109の各部位がチャネルに与える応力を示すグラフである。
[0014] 図 32において、窒化珪素膜 109の各部位としては、ゲート電極 107の上方の部位 A、ゲート電極 107の側方の部位 B、ソース'ドレイン領域上の部位 Cの 3つが選定さ れている。
[0015] 窒化珪素膜 109としては、引張応力を有するものを用いた。
[0016] 図 32のグラフにおける縦軸の正の領域は引張応力を示す (従って、縦軸の負の領 域は圧縮応力を示して!/、る)。
[0017] 図 32から明らかなように、チャネルの応力は主にソース'ドレイン領域上に存在する 窒化珪素膜 109 (部位 C)によって印加され、ゲート電極 107の上方の窒化珪素膜 1 09 (部位 A)はそれを打ち消す方向に応力を印加している。ゲート電極 107の側方の 窒化珪素膜 109 (部位 B)は、ソース'ドレイン領域上の窒化珪素膜 109 (部位 C)によ つて印加される応力と比較して、極めて小さな応力をチャネルに印加している。
[0018] このため、応力の打ち消し合いが生じ、実際にチャネルに印加される応力が小さく
なってしまうという問題が起こる。
[0019] 窒化珪素膜 109として圧縮応力を有するものを用いた場合にも同様な現象が起こ る。
[0020] 本発明は以上のような従来の MOSFET及び pMOSFETにおける問題点に鑑み てなされたものであり、チャネルに強い応力(歪み)が加わるようにゲート電極の周辺 の膜の応力と配置を最適化することにより、キャリアの移動度を向上させ、これにより、 nMOSFET及び pMOSFETの性能を向上させることができる半導体装置を提供す ることを目的とする。
課題を解決するための手段
[0021] 上記の目的を達成するため、本発明は、 nチャネル型 MOSFETを有する半導体 装置であって、前記 nチャネル型 MOSFETのゲート電極上に形成され、局所的に圧 縮応力を有する第 1の応力具有膜を備えていることを特徴とする半導体装置を提供 する。
[0022] 本発明は、さらに、 pチャネル型 MOSFETを有する半導体装置であって、前記 pチ ャネル型 MOSFETのゲート電極上に形成され、局所的に引張応力を有する第 2の 応力具有膜を備えていることを特徴とする半導体装置を提供する。
[0023] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのゲート電極上に形成され、局所 的に圧縮応力を有する第 1の応力具有膜と、前記 pチャネル型 MOSFETのゲート電 極上に形成され、局所的に引張応力を有する第 2の応力具有膜と、を備えていること を特徴とする半導体装置を提供する。
[0024] 上記の半導体装置は、前記 nチャネル型 MOSFETを覆 ヽ、引張応力を有する第 3 の応力具有膜をさらに備えて 、ることが好ま 、。
[0025] 上記の半導体装置は、前記 pチャネル型 MOSFETを覆 ヽ、圧縮応力を有する第 4 の応力具有膜をさらに備えて 、ることが好ま 、。
[0026] 本発明は、さらに、 nチャネル型 MOSFETを有する半導体装置であって、前記 nチ ャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 1の応力具有 膜と、前記 nチャネル型 MOSFETのソース'ドレイン領域上に形成され、前記第 1の
応力具有膜の高さとほぼ等しい高さを有し、引張応力を有する第 3の応力具有膜と、 を備えることを特徴とする半導体装置を提供する。
[0027] 本発明は、さらに、 pチャネル型 MOSFETを有する半導体装置であって、前記 pチ ャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 2の応力具有 膜と、前記 pチャネル型 MOSFETのソース'ドレイン領域上に形成され、前記第 2の 応力具有膜の高さとほぼ等しい高さを有し、圧縮応力を有する第 7の応力具有膜と、 を備えることを特徴とする半導体装置を提供する。
[0028] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮 応力を有する第 1の応力具有膜と、前記 nチャネル型 MOSFETのソース'ドレイン領 域上に形成され、前記第 1の応力具有膜の高さとほぼ等しい高さを有し、引張応力を 有する第 3の応力具有膜と、前記 pチャネル型 MOSFETのゲート電極上に形成され 、引張応力を有する第 2の応力具有膜と、前記 pチャネル型 MOSFETのソース'ドレ イン領域上に形成され、前記第 2の応力具有膜の高さとほぼ等しい高さを有し、圧縮 応力を有する第 7の応力具有膜と、を備えることを特徴とする半導体装置を提供する
[0029] 本発明は、さらに、 nチャネル型 MOSFETを有する半導体装置であって、前記 nチ ャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル型 MOSF ETのゲート電極の高さとほぼ等しい高さの引張応力を有する第 5の応力具有膜と、 前記 nチャネル型 MOSFETのゲート電極及び前記第 5の応力具有膜上に全面的に 形成され、圧縮応力を有する第 6の応力具有膜と、を備えることを特徴とする半導体 装置を提供する。
[0030] 本発明は、さらに、 pチャネル型 MOSFETを有する半導体装置であって、前記 pチ ャネル型 MOSFETのソース'ドレイン領域上に形成され、前記 pチャネル型 MOSF ETのゲート電極の高さとほぼ等しい高さの圧縮応力を有する第 7の応力具有膜と、 前記 Pチャネル型 MOSFETのゲート電極及び前記第 7の応力具有膜上に全面的に 形成され、引張応力を有する第 8の応力具有膜と、を備えることを特徴とする半導体 装置を提供する。
[0031] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成さ れ、前記 nチャネル型 MOSFETのゲート電極の高さとほぼ等しい高さを有し、引張 応力を有する第 5の応力具有膜と、前記 nチャネル型 MOSFETのゲート電極及び 前記第 5の応力具有膜上に全面的に形成され、圧縮応力を有する第 6の応力具有 膜と、前記 pチャネル型 MOSFETのソース'ドレイン領域上に形成され、前記 pチヤ ネル型 MOSFETのゲート電極の高さとほぼ等しい高さを有し、圧縮応力を有する第 7の応力具有膜と、前記 pチャネル型 MOSFETのゲート電極及び前記第 7の応力具 有膜上に全面的に形成され、引張応力を有する第 8の応力具有膜と、を備えることを 特徴とする半導体装置を提供する。
[0032] 本発明は、さらに、 nチャネル型 MOSFETを有する半導体装置であって、前記 nチ ャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル型 MOSF ETのゲート電極の高さとほぼ等しい高さの引張応力を有する第 5の応力具有膜と、 前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の応 力具有膜と、を備えることを特徴とする半導体装置を提供する。
[0033] 本発明は、さらに、 pチャネル型 MOSFETを有する半導体装置であって、前記 pチ ャネル型 MOSFETのソース'ドレイン領域上に形成され、前記 pチャネル型 MOSF ETのゲート電極の高さとほぼ等しい高さの圧縮応力を有する第 7の応力具有膜と、 前記 Pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の応 力具有膜と、を備えることを特徴とする半導体装置を提供する。
[0034] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成さ れ、前記 nチャネル型 MOSFETのゲート電極の高さとほぼ等しい高さを有し、引張 応力を有する第 5の応力具有膜と、前記 nチャネル型 MOSFETのゲート電極上に形 成され、圧縮応力を有する第 6の応力具有膜と、前記 pチャネル型 MOSFETのソー ス 'ドレイン領域上に形成され、前記 pチャネル型 MOSFETのゲート電極の高さとほ ぼ等しい高さを有し、圧縮応力を有する第 7の応力具有膜と、前記 pチャネル型 MO SFETのゲート電極上に形成され、引張応力を有する第 8の応力具有膜と、を備える
ことを特徴とする半導体装置を提供する。
[0035] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのゲート電極上に形成され、局所 的に圧縮応力を有する第 1の応力具有膜と、前記 pチャネル型 MOSFETのゲート電 極上に形成され、局所的に引張応力を有する第 2の応力具有膜と、前記 nチャネル 型 MOSFETを覆い、引張応力を有する第 3の応力具有膜と、前記 pチャネル型 MO SFETを覆い、圧縮応力を有する第 4の応力具有膜と、を備えることを特徴とする半 導体装置を提供する。
[0036] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのゲート電極上及び前記 pチャネル 型 MOSFETのゲート電極上にそれぞれ形成され、局所的に圧縮応力を有する第 1 の応力具有膜と、前記 nチャネル型 MOSFETを覆い、引張応力を有する第 3の応力 具有膜と、前記 pチャネル型 MOSFETを覆い、圧縮応力を有する第 4の応力具有膜 と、を備えることを特徴とする半導体装置を提供する。
[0037] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのゲート電極上及び前記 pチャネル 型 MOSFETのゲート電極上に形成され、局所的に引張応力を有する第 2の応力具 有膜と、前記 nチャネル型 MOSFETを覆い、引張応力を有する第 3の応力具有膜と 、前記 pチャネル型 MOSFETを覆い、圧縮応力を有する第 4の応力具有膜と、備え ることを特徴とする半導体装置を提供する。
[0038] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのゲート電極上に形成され、局所 的に圧縮応力を有する第 1の応力具有膜と、前記 pチャネル型 MOSFETのゲート電 極上に形成され、局所的に引張応力を有する第 2の応力具有膜と、前記 nチャネル 型 MOSFET及び前記 pチャネル型 MOSFETを覆!、、引張応力を有する第 3の応 力具有膜と、を備えることを特徴とする半導体装置を提供する。
[0039] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのゲート電極上に形成され、局所
的に圧縮応力を有する第 1の応力具有膜と、前記 pチャネル型 MOSFETのゲート電 極上に形成され、局所的に引張応力を有する第 2の応力具有膜と、前記 nチャネル 型 MOSFET及び前記 pチャネル型 MOSFETを覆!ヽ、圧縮応力を有する第 4の応 力具有膜と、を備えることを特徴とする半導体装置を提供する。
[0040] 前記第 3の応力具有膜及び前記第 4の応力具有膜の少なくとも何れか一方は、前 記ゲート電極上にぉ 、て、応力が緩和されて 、る部分を備えて 、ることが好ま 、。
[0041] 前記第 3の応力具有膜及び前記第 4の応力具有膜の少なくとも何れか一方は、前 記ゲート電極上にぉ 、て、切欠き領域を備えて 、ることが好ま 、。
[0042] 前記 nチャネル型 MOSFETまたは前記 pチャネル型 MOSFETのソース ·ドレイン 領域上を覆う前記第 3の応力具有膜または前記第 4の応力具有膜は、その表面が、 前記第 1の応力具有膜または前記第 2の応力具有膜の表面と一致する程度の厚さを 有していることが好ましい。
[0043] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 p チャネル型 MOSFETのソース ·ドレイン領域上にそれぞれ形成され、各ゲート電極 の高さとほぼ等しい高さの引張応力を有する第 5の応力具有膜と、前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の応力具有膜と、前 記 pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の応力 具有膜と、を備えることを特徴とする半導体装置を提供する。
[0044] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 p チャネル型 MOSFETのソース ·ドレイン領域上にそれぞれ形成され、各ゲート電極 の高さとほぼ等しい高さの圧縮応力を有する第 7の応力具有膜と、前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の応力具有膜と、前 記 pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の応力 具有膜と、を備えることを特徴とする半導体装置を提供する。
[0045] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成さ
れ、前記 nチャネル型 MOSFETのゲート電極の高さとほぼ等しい高さの引張応力を 有する第 5の応力具有膜と、前記 pチャネル型 MOSFETのソース'ドレイン領域上に 形成され、前記 pチャネル型 MOSFETのゲート電極の高さとほぼ等しい高さの圧縮 応力を有する第 7の応力具有膜と、前記 nチャネル型 MOSFETのゲート電極上及 び前記 pチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の 応力具有膜と、前記 nチャネル型 MOSFETのゲート電極上及び前記 pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の応力具有膜との何 れか一方と、を備えることを特徴とする半導体装置を提供する。
[0046] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 p チャネル型 MOSFETのソース ·ドレイン領域上にそれぞれ形成され、各ゲート電極 の高さとほぼ等しい高さの引張応力を有する第 5の応力具有膜と、前記 nチャネル型 MOSFETを覆って前記第 5の応力具有膜上に形成され、圧縮応力を有する第 6の 応力具有膜と、前記 Pチャネル型 MOSFETを覆って前記第 5の応力具有膜上に形 成され、引張応力を有する第 8の応力具有膜と、を備えることを特徴とする半導体装 置を提供する。
[0047] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 p チャネル型 MOSFETのソース ·ドレイン領域上にそれぞれ形成され、各ゲート電極 の高さとほぼ等しい高さの圧縮応力を有する第 7の応力具有膜と、前記 nチャネル型 MOSFETを覆って前記第 7の応力具有膜上に形成され、圧縮応力を有する第 6の 応力具有膜と、前記 Pチャネル型 MOSFETを覆って前記第 7の応力具有膜上に形 成され、引張応力を有する第 8の応力具有膜と、を備えることを特徴とする半導体装 置を提供する。
[0048] 本発明は、さらに、 nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半 導体装置であって、前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成さ れ、前記 nチャネル型 MOSFETのゲート電極の高さとほぼ等しい高さの引張応力を 有する第 5の応力具有膜と、前記 pチャネル型 MOSFETのソース'ドレイン領域上に
形成され、前記 pチャネル型 MOSFETのゲート電極の高さとほぼ等しい高さの圧縮 応力を有する第 7の応力具有膜と、前記 nチャネル型 MOSFET及び前記 pチャネル 型 MOSFETを覆って前記第 5の応力具有膜及び前記第 7の応力具有膜上に形成 され、圧縮応力を有する第 6の応力具有膜と、前記 nチャネル型 MOSFET及び前記 pチャネル型 MOSFETを覆って前記第 5の応力具有膜及び前記第 7の応力具有膜 上に形成され、引張応力を有する第 8の応力具有膜との何れか一方と、を備えること を特徴とする半導体装置を提供する。
[0049] 上述の半導体装置は、例えば、前記第 1の応力具有膜に代えて、前記 nチャネル 型 MOSFETのゲート電極の上部の少なくとも一部に形成され、圧縮応力を有する 第 1の応力具有導電膜を備えることができる。
[0050] 上述の半導体装置は、例えば、前記第 2の応力具有膜に代えて、前記 pチャネル 型 MOSFETのゲート電極の上部の少なくとも一部に形成され、引張応力を有する 第 2の応力具有導電膜を備えてることができる。
[0051] 前記第 1、第 2、第 6または第 8の応力具有膜が、炭素、酸素若しくは窒素の珪ィ匕物 あるいはそれらの水素添カ卩物、及び、アルミニウム、ハフニウム、タンタル、ジルコ-ゥ ム若しくは珪素の酸ィ匕物あるいはそれらの窒素添加物、の中の少なくとも一つを含む ことが好ましい。
[0052] 前記第 1または第 2の応力具有導電膜が、コバルト、ニッケル若しくはチタンのいず れかを含有するシリサイド、または、タングステン、アルミニウム、銅若しくは白金、の 中の少なくとも何れか一つを含むことが好ましい。
[0053] 前記 nチャネル型 MOSFET及び前記 pチャネル型 MOSFETの少なくとも何れか 一方が、シリコン、ゲルマニウムを含有するシリコン及びカーボンを含有するシリコン の何れか一つからなる基板上に形成されていることが好ましい。
発明の効果
[0054] 本発明に係る半導体装置によれば、 nMOSFETのゲート電極の一部は圧縮応力 を有する応力具有導電膜によって構成されるか、あるいは、ゲート電極上は圧縮応 力を有する応力具有膜によって覆われる。また、 pMOSFETのゲート電極の一部は 引張応力を有する応力具有導電膜によって構成されるか、あるいは、ゲート電極上
は引張応力を有する応力具有膜によって覆われる。
[0055] このため、応力具有膜または応力具有導電膜によってチャネル領域に印加される 応力が弱められることがなくなり、 nMOSFETまたは pMOSFETのチャネルに強い 歪みをカ卩えることが可能になる。
[0056] 従って、本発明に係る半導体装置によれば、キャリアの移動度を高めることが可能 になり、ひいては、 nMOSFET及び pMOSFETの性能を向上させることが可能にな る。
図面の簡単な説明
[0057] [図 1]本発明の第 1の実施の形態に係る nチャネル型 MOSFETの構成を示す断面 図である。
[図 2]圧縮応力を有する第 1の応力具有膜によりチャネルに印加される応力と、第 1の 応力具有膜に代えて、引張応力を有する膜 (従来技術)を形成した場合に、この引張 応力を有する膜によりチャネルに印加される応力とを示すグラフである。
[図 3]本発明の第 1の実施形態に係る nチャネル型 MOSFETの製造方法における各 工程を示す断面図である。
[図 4]第 1の実施の形態の第 1の変更例に係る nチャネル型 MOSFETの断面図であ る。
[図 5]本発明の第 2の実施形態に係る nチャネル型 MOSFETの製造方法における各 工程を示す断面図である。
[図 6]本発明の第 2の実施形態の第 1の変更例に係る nチャネル型 MOSFETの製造 方法における各工程を示す断面図である。
[図 7]本発明の第 2の実施の形態の第 2の変更例に係る nチャネル型 MOSFETの断 面図である。
[図 8]本発明の第 2の実施の形態の第 3の変更例に係る nチャネル型 MOSFETの断 面図である。
[図 9]本発明の第 3の実施の形態に係る nチャネル型 MOSFETの製造方法における 各工程を示す断面図である。
[図 10]本発明の第 3の実施の形態の第 1の変更例に係る nチャネル型 MOSFETの
断面図である。
[図 11]本発明の第 4の実施の形態に係る pチャネル型 MOSFETの構成を示す断面 図である。
[図 12]本発明の第 5の実施の形態に係る pチャネル型 MOSFETの構成を示す断面 図である。
[図 13]本発明の第 5の実施の形態の第 1の変更例に係る pチャネル型 MOSFETの 断面図である。
[図 14]本発明の第 6の実施の形態に係る pチャネル型 MOSFETの断面図である。
[図 15]本発明の第 7の実施の形態に係る CMOSFETの構成を示す断面図である。
[図 16]本発明の第 7の実施形態に係る CMOSFETの製造方法における各工程を示 す断面図である。
[図 17]本発明の第 7の実施の形態の第 1の変更例に係る CMOSFETの断面図であ る。
[図 18]本発明の第 8の実施形態に係る CMOSFETの製造方法における各工程を示 す断面図である。
[図 19]本発明の第 8の実施形態に係る CMOSFETの製造方法における各工程を示 す断面図である。
[図 20]本発明の第 8の実施の形態の第 1の変更例に係る CMOSFETの断面図であ る。
[図 21]本発明の第 9の実施形態に係る CMOSFETの製造方法における各工程を示 す断面図である。
[図 22]本発明の第 9の実施形態に係る CMOSFETの製造方法における各工程を示 す断面図である。
[図 23]本発明の第 10の実施の形態に係る CMOSFETの構成を示す断面図である [図 24]本発明の第 11の実施の形態に係る CMOSFETの構成を示す断面図である [図 25]本発明の第 12の実施の形態に係る CMOSFETの構成を示す断面図である
[図 26]本発明の第 13の実施の形態に係る CMOSFETの構成を示す断面図である
[図 27]本発明の第 14の実施の形態に係る CMOSFETの構成を示す断面図である [図 28]本発明の第 15の実施の形態に係る CMOSFETの構成を示す断面図である [図 29]本発明の第 16の実施の形態に係る CMOSFETの構成を示す断面図である [図 30]本発明の第 17の実施の形態に係る CMOSFETの構成を示す断面図である [図 31]従来の MOSFETの断面図である。
[図 32]図 31に示した従来の MOSFETを覆う窒化珪素膜の各部位がチャネルに与 える応力を示すグラフである。
符号の説明
1 シリコン基板
2 素子分離領域
3 n型不純物層
4 p型不純物層
5 シリサイド層
6 ゲート絶縁膜
7 ゲート電極
7a シリコン膜
7b シリサイド層
7c 圧縮応力を有する応力具有導電膜
7d 引張応力を有する応力具有導電膜
8 サイドウォール
11 第 1の応力具有膜
12 第 6の応力具有膜
13 第 2の応力具有膜
14 第 8の応力具有膜
21 第 3の応力具有膜
21a 応力緩和部
22 第 5の応力具有膜
23 第 4の応力具有膜
24 第 7の応力具有膜
31 層間絶縁膜
32 層間酸化膜
41、 43、 44、 45、 46、 47、 48、 49 レジス卜膜
発明を実施するための最良の形態
[0059] 以下、本発明の実施の形態について図面を参照して説明する。
(第 1の実施の形態)
図 1は、本発明の第 1の実施の形態に係る nチャネル型電界効果トランジスタ(MO SFET) 10の構成を示す断面図である。
[0060] 本実施形態に係る nチャネル型 MOSFET100は、シリコン基板 1と、シリコン基板 1 の表面に形成された素子分離領域 2と、隣接する素子分離領域 2に挟まれた領域内 において、シリコン基板 1の表面上に形成されたゲート絶縁膜 6と、ゲート絶縁膜 6上 に形成されたシリコン膜 7aとシリサイド層 7bの 2層膜からなるゲート電極 7と、シリコン 基板 1の表面領域内に形成され、ソース'ドレイン領域を構成する n型不純物層 3と、 n型不純物層 3の上に形成されたシリサイド層 5と、ゲート電極 7上に形成された圧縮 応力を有する第 1の応力具有膜 11と、ゲート絶縁膜 6、ゲート電極 7及び第 1の応力 具有膜 11の側壁を覆って形成されているサイドウォール 8と、シリコン基板 1上に全面 的に形成された層間絶縁膜 31と、力 構成されて!、る。
[0061] 次に、本実施形態に係る nチャネル型 MOSFET100の効果について説明する。
[0062] 図 2は、圧縮応力を有する第 1の応力具有膜 11によりチャネルに印加される応力と 、第 1の応力具有膜 11に代えて、引張応力を有する膜 (従来技術)を形成した場合
に、この引張応力を有する膜によりチャネルに印加される応力とを示すグラフである。
[0063] なお、図 2の縦軸のチャネル応力の座標は膜がチャネルに印加する応力がゼロで ある場合をゼロとし、引張応力を正で表してある。
[0064] 図 2より、本実施形態に係る nチャネル型 MOSFETIOOの方が従来技術よりもチヤ ネルに強い引張応力が印加されることが分かる。
[0065] これにより、チャネルが引張方向に大きく歪み、 nMOSFETのチャネルにおける電 子の移動度が大きく向上する。
[0066] なお、本実施形態における実試料での効果は、例えば、特開 2000— 9664号公報 に記載されているように、収束電子回折法を用いて確認を行うことが可能である。この 方法は、収束した電子を試料中に照射し、得られた回折図形力 歪み量を求めるも のであり、約 10nmの空間分解能で特定部位の歪みを測定することができる。本実施 形態に係る nチャネル型 MOSFETIOOと、ゲート電極 7上の第 1の応力具有膜 11を 本実施形態に係る nチャネル型 MOSFETIOOから除去したサンプルとを用いて、収 束電子回折法により測定した歪み量を比較することにより、本実施形態に係る nチヤ ネル型 MOSFETIOOの実試料での効果を確認することができる。
[0067] なお、本実施形態に係る nチャネル型 MOSFETIOOにおいては、半導体基板の 材料は、シリコン、あるいは、ゲルマニウム及びカーボンのいずれかを含有するシリコ ンであることが望ましい。
[0068] 図 3 (a) - (c)は、本実施形態に係る nチャネル型 MOSFETIOOの製造方法にお ける各工程を示す断面図である。
[0069] 以下、図 3 (a)一(c)を参照して、本実施形態に係る nチャネル型 MOSFETIOOの 製造方法を説明する。
[0070] まず、従来の MOSFETと同様に、シリコン基板 1の表面領域内に素子分離領域 2 を形成する。
[0071] ここで、素子分離領域 2は、例えば、酸ィ匕珪素膜あるいは窒化珪素膜あるいはこれ らの積層構造力 なる。
[0072] 次に、図 3 (a)に示すように、シリコン基板 1の表面上にゲート絶縁膜 6、シリコン膜 7 a、シリサイド層 7b、圧縮応力を有する第 1の応力具有膜 11をこの順番に順次積層
する。
[0073] ここで、ゲート絶縁膜 6は、例えば、酸化珪素膜、あるいは、窒素、ハフニウム、アル ミニゥム、チタン、ジルコニウムまたはタンタルなどを含有する高誘電率膜、あるいは、 これらの積層構造力 なる。
[0074] シリコン膜 7は、例えば、多結晶シリコン膜、アモルファスシリコン膜、あるいは、これ らの積層膜からなる。
[0075] シリサイド層 7bは、例えば、コバルトやニッケルのような金属を含有する珪ィ匕物から なる。
[0076] 第 1の応力具有膜 11は圧縮応力を有する絶縁膜であり、例えば、プラズマ化学気 相成長法によって成膜された窒化珪素膜からなる。
[0077] 第 1の応力具有膜 11の材料としては、炭素、酸素、窒素のいずれかを含有する珪 化物若しくはそれらに水素を添カ卩したもの、あるいは、アルミニウム、ハフニウム、タン タル、ジルコニウム、珪素のいずれかを含有する酸化物若しくはそれらに窒素ないし 窒素酸ィ匕物を添加したものが挙げられる。
[0078] 次に、ゲート電極 7の形成のためのレジストを塗布し、公知のフォトリソグラフィ技術 を用いて不要なレジストを除去し、レジスト膜 41を形成する。次いで、レジスト膜 41〖こ 覆われていない部分の第 1の応力具有膜 11、シリサイド層 7b、シリコン膜 7a及びゲ ート絶縁膜 6をドライエッチングにより除去し、ゲート電極 7を形成する。この段階にお ける構造が図 3 (b)に示す構造である。
[0079] 次に、レジスト膜 41を除去した後、浅いソース'ドレイン領域としてのシリサイド層 5の 形成のためのイオン注入、サイドウォール 8の形成のための膜成長及びエッチバック 、深いソース'ドレイン領域としての n型不純物層 3の形成のためのイオン注入、不純 物活性化のためのァニール、シリサイド層 5及び n型不純物層 3の形成を経て、図 3 ( c)に示す構造を得る。
[0080] ここで、サイドウォール 8は、例えば、酸ィ匕珪素膜あるいは窒化珪素膜、あるいは、こ れらの積層構造からなる。
[0081] シリサイド層 5は、例えば、コノ レトゃニッケルのような金属を含有するシリサイド膜 からなる。
[0082] 最後に、シリコン基板 1上の全面に層間絶縁膜 31を積層し、図 1に示す構造を得る
[0083] この後、コンタクト孔を開口し、コンタクト孔の内部にコンタクトプラグを形成した後、 コンタクトプラグの上に必要な配線を形成する。
(第 1の実施の形態の第 1の変更例)
図 4は、第 1の実施の形態の第 1の変更例に係る nチャネル型 MOSFET100Aの 断面図である。
[0084] 図 4に示すように、本変更例に係る nチャネル型 MOSFET100Aは、図 1に示した 第 1の実施の形態に係る nチャネル型 MOSFETIOOと比較して、シリサイド層 7b及 び第一の応力具有膜 11に代えて、第 1の応力具有導電膜 7cを有して ヽる。
[0085] シリサイド層 7b及び第一の応力具有膜 11に代えて第 1の応力具有導電膜 7cを有 している点を除いて、本変更例に係る nチャネル型 MOSFET100Aは第 1の実施の 形態に係る nチャネル型 MOSFETIOOと同一の構造を有している。このため、第 1の 実施の形態に係る nチャネル型 MOSFETIOOと同一の構成要素には同一の参照 符号を付し、それらの説明は省略する。
[0086] 第 1の応力具有導電膜 7cは、 nチャネル型 MOSFET100Aのゲート電極 7の上部 の少なくとも一部に形成されており、圧縮応力が付与された高導電率層からなる。
[0087] 第 1の応力具有導電膜 7cは、例えば、コバルト、ニッケル、チタンのいずれかを含 有するシリサイド、あるいは、タングステン、アルミニウム、、銅若しくは白金力も成る。
[0088] また、応力具有導電膜 7cはスパッタ法または化学気相成長法と適当な熱処理との 組み合わせにより形成される。
[0089] 本変更例に係る nチャネル型 MOSFET100Aの製造方法は、成膜とドライエッチ ングの条件を除いて、第 1の実施の形態に係る nチャネル型 MOSFETIOOの製造 方法と同一である。
[0090] 本変更例に係る nチャネル型 MOSFET100Aによっても、第 1の実施の形態に係 る nチャネル型 MOSFETIOOと同様の効果を得ることができる。すなわち、チャネル が引張方向に大きく歪み、 nMOSFETのチャネル領域における電子の移動度を大 きく向上させることができる。
[0091] なお、本変更例に係る nチャネル型 MOSFETIOOAにおいては、第 1の実施形態 に係る nチャネル型 MOSFETIOOと同様に、半導体基板の材料は、シリコン、あるい は、ゲルマニウム及びカーボンの 、ずれかを含有するシリコンであることが望まし 、。 以下に述べる実施の形態及びその変更例についても同様である。
[0092] また、本変更例は第 1の実施形態のみならず、以下に述べる全ての実施形態及び その変更例に対しても適用することが可能である。
(第 2の実施の形態)
図 5 (b)は、本発明の第 2の実施の形態に係る nチャネル型 MOSFET101の構成 を示す断面図である。
[0093] 本実施形態に係る nチャネル型 MOSFET101は、第 1の実施の形態に係る nチヤ ネル型 MOSFETIOOと比較して、ゲート電極 7、サイドウォール 8及びソース'ドレイ ン領域を覆い、引張応力を有する第 3の応力具有膜 21をさらに備えている点である。
[0094] 引張応力を有する第 3の応力具有膜 21をさらに備えている点を除いて、本実施形 態に係る nチャネル型 MOSFET101は第 1の実施の形態に係る nチャネル型 MOS FET100と同一の構造を有している。このため、第 1の実施の形態に係る nチャネル 型 MOSFETIOOと同一の構成要素には同一の参照符号を付し、それらの説明は省 略する。
[0095] 次に、本実施形態に係る nチャネル型 MOSFET101の効果について説明する。
[0096] 第 1の実施の形態に係る nチャネル型 MOSFETIOOと同様に、ゲート電極 7上に 形成され、圧縮応力を有する第 1の応力具有膜 11はチャネルに引張応力を与え、さ らに、引張応力を有する第 3の応力具有膜 21もチャネルに引張応力を与えるため、 チャネルが引張方向に大きく歪み、 nMOSFETのチャネル領域における電子の移 動度を大きく向上させることができる。
[0097] 図 5 (a)及び図 5 (b)は、本実施形態に係る nチャネル型 MOSFET101の製造方 法における各工程を示す断面図である。
[0098] 以下、図 5 (a) (b)を参照して、本実施形態に係る nチャネル型 MOSFET101の 製造方法を説明する。
[0099] まず、第 1の実施の形態に係る nチャネル型 MOSFETIOOの製造方法における図
3 (a)乃至図 3 (c)に示した製造工程と同様の製造工程を経て、図 5 (a)に示す構造 を得る。
[0100] 次に、図 5 (b)に示すように、引張応力を有する第 3の応力具有膜 21を形成する。
第 3の応力具有膜 21は、ゲート電極、サイドウォール及びソース'ドレイン領域を覆う ように形成される。
[0101] 第 3の応力具有膜 21は引張応力を有する絶縁膜であり、例えば、熱化学気相成長 法または原子層堆積法によって成膜された窒化珪素膜からなる。
[0102] 最後に、層間絶縁膜 31を積層し、図 5 (b)に示すように、本実施形態に係る nチヤ ネル型 MOSFET101を得る。
[0103] この後、コンタクト孔を開口し、コンタクト孔の内部にコンタクトプラグを形成した後、 コンタクトプラグの上に必要な配線を形成する。
(第 2の実施の形態の第 1の変更例)
図 6 (b)は、第 2の実施の形態の第 1の変更例に係る nチャネル型 MOSFET101A の断面図である。
[0104] 本変更例に係る nチャネル型 MOSFET101Aが図 5 (b)に示される第 2の実施の 形態に係る nチャネル型 MOSFET101と相違する点は、第 3の応力具有膜 21の第 1の応力具有膜 11上の部分が応力緩和部 21aとして形成されている点である。すな わち、第 1の応力具有膜 11の上方において、第 3の応力具有膜 21には切欠き領域 が形成されており、第 3の応力具有膜 21は応力緩和部 21aにおいて、すなわち、第 1 の応力具有膜 11上において、応力を有していない。
[0105] 応力緩和部 21aを有している点を除いて、本変更例に係る nチャネル型 MOSFET 101Aは第 2の実施の形態に係る nチャネル型 MOSFET101と同一の構造を有して いる。このため、第 2の実施の形態に係る nチャネル型 MOSFET101と同一の構成 要素には同一の参照符号を付し、それらの説明は省略する。
[0106] 第 2の実施の形態に係る nチャネル型 MOSFET101においては、圧縮応力を有 する第 1の応力具有膜 11上の引張応力を有する第 3の応力具有膜 21はチャネルに 圧縮歪みを与えるが、本変更例に係る nチャネル型 MOSFET101Aによると、第 1の 応力具有膜 11上の第 3の応力具有膜 21の部分は応力を有しないので、チャネルに
圧縮歪みを与えない。従って、第 2の実施の形態に係る nチャネル型 MOSFET101 と比較して、本変更例に係る nチャネル型 MOSFET101Aの方がチャネルを大きく 歪ませることが可能であり、 nチャネル型 MOSFETのチャネル領域における電子の 移動度をさらに向上させることができる。
[0107] 図 6 (a)及び図 6 (b)は、本変更例に係る nチャネル型 MOSFET101Aの製造方法 における各工程を示す断面図である。
[0108] 以下、図 6 (a)及び図 6 (b)を参照して、本変更例に係る nチャネル型 MOSFET10
1Aの製造方法を説明する。
[0109] まず、第 2の実施の形態に係る nチャネル型 MOSFET101の製造方法と同じ製造 方法を用いて、引張応力を有する第 3の応力具有膜 21までを形成した後、ゲート電 極 7の高さ以上の膜厚を有する層間酸化膜 32を成膜する。
[0110] 層間酸ィ匕膜 32は、例えば、酸ィ匕珪素膜からなる。
[0111] 次に、第 1の応力具有膜 11が露出するまで層間酸ィ匕膜 32をィ匕学的機械的研磨 (C
MP)する。この段階における構造が図 6 (a)に示す構造である。
[0112] 次に、シリコン、ゲルマニウム、アルゴンまたはキセノンなどのイオンを用いて、第 3 の応力具有膜 21にイオン注入 Iimを行う。
[0113] ここで、イオン注入エネルギーはイオンの到達深さが第 3の応力具有膜 21の厚み 程度となるようにし、イオン注入量は第 3の応力具有膜 21の応力が十分に緩和する 程度までとする。
[0114] 最後に、層間絶縁膜 31を積層し、図 6 (b)に示す本変更例に係る nチャネル型 MO SFET101Aを得る。
[0115] この後、コンタクト孔を開口し、コンタクト孔の内部にコンタクトプラグを形成した後、 コンタクトプラグの上に必要な配線を形成する。
(第 2の実施の形態の第 2の変更例)
図 7は、第 2の実施の形態の第 2の変更例に係る nチャネル型 MOSFET101Bの 断面図である。
[0116] 本変更例に係る nチャネル型 MOSFET101Bにおいては、図 6に示された第 1の 変更例に係る nチャネル型 MOSFET101Aと同様に、第 3の応力具有膜 21と層間
酸化膜 32とを成膜した後、第 1の応力具有膜 11の表面が露出するまで層間酸化膜
32に対して化学的機械的研磨を行う。
[0117] 本変更例に係る nチャネル型 MOSFET101Bによれば、第 1の応力具有膜 11の 表面に引張応力を有する第 3の応力具有膜 21が存在して 、な 、ので、第 1の変更 例に係る nチャネル型 MOSFET101Aと同様の効果を得ることができる。
[0118] また、第 1の変更例に係る nチャネル型 MOSFET101Aと比較して、イオン注入の 工程を削減することができる。
(第 2の実施の形態の第 3の変更例)
図 8は、第 2の実施の形態の第 3の変更例に係る nチャネル型 MOSFET101Cの 断面図である。
[0119] 本変更例に係る nチャネル型 MOSFET101Cにおいては、第 1の応力具有膜 21 を堆積する際にゲート電極 7の高さよりも高くなるように厚く堆積し、その後、層間酸化 膜 32を堆積することなぐ第 1の応力具有膜 11の表面が露出するまで第 3の応力具 有膜 21に対して化学的機械的研磨を行うものである。
[0120] 本変更例に係る nチャネル型 MOSFET101Cによれば、第 2の変更例に係る nチ ャネル型 MOSFET101Bと同様の効果を得ることができる。
[0121] さらに、第 2の変更例に係る nチャネル型 MOSFET101Bと比較して、層間酸化膜
32を堆積する工程を削減することができる。
(第 2の実施の形態の第 4の変更例)
図 8に示した第 2の実施の形態の第 3の変更例に係る nチャネル型 MOSFET101
Cの構造は pチャネル型 MOSFETに適用することも可能である。
[0122] 第 2の実施の形態の第 4の変更例に係る pチャネル型 MOSFETは、第 1の応力具 有膜 11に代えて、引張応力を有する第 2の応力具有膜 13 (後述する図 11参照)を 有しており、さらに、第 3の応力具有膜 21に代えて、圧縮応力を有する第 7の応力具 有膜 24 (後述する図 14参照)を有する。
(第 2の実施の形態の第 5の変更例)
さらに、第 2の実施の形態の第 3の変更例に係る nチャネル型 MOSFET101Cと第
2の実施の形態の第 4の変更例に係る pチャネル型 MOSFETとを組み合わせて、 C
MOSFETを形成することが可能である。
(第 3の実施の形態)
図 9 (d)は、第 3の実施の形態に係る nチャネル型 MOSFET102の断面図である。
[0123] 本実施形態に係る nチャネル型 MOSFET102は、シリコン基板 1と、シリコン基板 1 の表面に形成された素子分離領域 2と、隣接する素子分離領域 2に挟まれた領域内 において、シリコン基板 1の表面上に形成されたゲート絶縁膜 6と、ゲート絶縁膜 6上 に形成されたシリコン膜 7aとシリサイド層 7bの 2層膜からなるゲート電極 7と、シリコン 基板 1の表面領域内に形成され、ソース'ドレイン領域を構成する n型不純物層 3と、 n型不純物層 3の上に形成されたシリサイド層 5と、ゲート絶縁膜 6及びゲート電極 7の 側壁を覆って形成されているサイドウォール 8と、ゲート電極 7と同じ高さを有し、 nチ ャネル型 MOSFET102のソース ·ドレイン領域を覆って形成されて 、る I張応力を 有する第 5の応力具有膜 22と、ゲート電極 7及び第 5の応力具有膜 22上に形成され 、圧縮応力を有する第 6の応力具有膜 12と、第 6の応力具有膜 12上に全面的に形 成された層間絶縁膜 31と、力 構成されている。
[0124] 本実施形態に係る nチャネル型 MOSFET102においては、ゲート電極 7の高さ程 度まで引張応力を有する第 5の応力具有膜 22が存在し、その上部に圧縮応力を有 する第 6の応力具有膜 12が存在する。このように、本実施形態に係る nチャネル型 M OSFET102においては、ゲート電極 7の側面部およびソース'ドレイン領域上に引 張応力を有する第 6の応力具有膜 22が厚く存在するので、チャネルに、より強い引 張歪みが加わり、 nチャネル型 MOSFETのチャネル領域における電子の移動度を 大きく向上させることができる。
[0125] 図 9 (a)乃至図 9 (d)は、本変更例に係る nチャネル型 MOSFET102の製造方法 における各工程を示す断面図である。
[0126] 以下、図 9 (a)乃至図 9 (d)を参照して、本変更例に係る nチャネル型 MOSFET10 2の製造方法を説明する。
[0127] まず、図 9 (a)に示すように、従来の MOSFETの製造工程と同様に、シリコン基板 1 に素子分離領域 2を設け、素子分離領域 2によって区画された領域の基板上にゲー ト絶縁膜 6を形成し、ゲート絶縁膜 6上にゲート電極パターンのシリコン膜 7aを形成す
る。
[0128] ここで、図 3 (b)に示した第 1の実施の形態における製造工程と相違する点は、シリ コン膜 7a上にシリサイド層 7bや第 1の応力具有膜 11が存在しない点である。
[0129] 次に、浅いソース'ドレイン領域としてのシリサイド層 5の形成のためのイオン注入、 サイドウォール 8の形成、深!、ソース ·ドレイン領域としての n型不純物層 3の形成のた めのイオン注入、不純物活性化のためのァニール、シリサイド層 5、 7bの形成を経て 、図 9 (b)に示す構造を得る。
[0130] シリサイド層 5、 7bは、例えば、コノ レトゃニッケルのような金属を含有するシリサイ ド膜である。
[0131] 次に、引張応力を有する第 5の応力具有膜 22をゲート電極 7の厚み以上の膜厚で 成膜した後、ゲート電極 7の上部が露出するまで、第 5の応力具有膜 22を化学的機 械的研磨する。これにより、図 9 (c)に示す構造を得る。
[0132] ここで、第 5の応力具有膜 22は引張応力を有する絶縁膜であり、例えば、熱化学気 相成長法または原子層堆積法によって成膜された窒化珪素膜からなる。
[0133] 次に、圧縮応力を有する第 6の応力具有膜 12を第 5の応力具有膜 22及びゲート電 極 7上に成膜する。次いで、第 6の応力具有膜 12上に層間絶縁膜 31を積層して、図
9 (d)に示す構造を得る。
[0134] ここで、第 6の応力具有膜 12は圧縮応力を有する絶縁膜であり、例えば、プラズマ 化学気相成長法によって成膜された窒化珪素膜からなる。
[0135] 第 6の応力具有膜 12の材料としては、第 1の実施の形態において、第 1の応力具 有膜 11を形成する材料として採用可能であるとして挙げられたものは適宜用いること ができる。
[0136] この後、コンタクト孔を開口し、コンタクト孔の内部にコンタクトプラグを形成した後、 コンタクトプラグの上に必要な配線を形成する。
(第 3の実施の形態の第 1の変更例)
図 10は、第 3の実施の形態の第 1の変更例に係る nチャネル型 MOSFET102Aの 断面図である。
[0137] 本変更例に係る nチャネル型 MOSFET102Aは、第 3の実施の形態に係る nチヤ
ネル型 MOSFET102と比較して、第 6の応力具有膜 12の形状が異なっている。す なわち、第 3の実施の形態に係る nチャネル型 MOSFET102においては、第 6の応 力具有膜 12はゲート電極 7及び第 5の応力具有膜 22を全面的に覆って形成されて いるが、本変更例に係る nチャネル型 MOSFET102Aにおいては、第 6の応力具有 膜 12はゲート電極 7上にのみ形成されている。
[0138] 本変更例における第 6の応力具有膜 12は、ゲート電極 7及び第 5の応力具有膜 22 上に全面的に第 6の応力具有膜 12を堆積した後、第 6の応力具有膜 12をフォトリソ グラフィ技術を用いてゲート電極 7の上部にのみ残るようにパターユングする。
[0139] 本変更例に係る nチャネル型 MOSFET102Aにおいては、引張応力を有する第 5 の応力具有膜 22の上部には実質的に圧縮応力を有する第 6の応力具有膜 12が存 在して 、な 、ので、第 5の応力具有膜 22の応力が第 6の応力具有膜 12の応力によ つて弱められることがなくなり、チャネルにより強い引張歪みが加わるようにすることが できる。
(第 3の実施の形態の第 2の変更例)
図 10に示した第 3の実施の形態の第 1の変更例に係る nチャネル型 MOSFET10 2Aの構造は pチャネル型 MOSFETに適用することも可能である。
[0140] 第 3の実施の形態の第 2の変更例に係る pチャネル型 MOSFETは、圧縮応力を有 する第 6の応力具有膜 12に代えて、引張応力を有する応力具有膜を有しており、さ らに、引張応力を有する第 5の応力具有膜 22に代えて、圧縮応力を有する応力具有 膜を有する。
(第 4の実施の形態)
図 11は、本発明の第 4の実施の形態に係る pチャネル型電界効果トランジスタ (M OSFET) 200の構成を示す断面図である。
[0141] 本実施形態に係る pチャネル型 MOSFET200は、シリコン基板 1と、シリコン基板 1 の表面に形成された素子分離領域 2と、隣接する素子分離領域 2に挟まれた領域内 において、シリコン基板 1の表面上に形成されたゲート絶縁膜 6と、ゲート絶縁膜 6上 に形成されたシリコン膜 7aとシリサイド層 7bの 2層膜からなるゲート電極 7と、シリコン 基板 1の表面領域内に形成され、ソース'ドレイン領域を構成する p型不純物層 4と、 p
型不純物層 4の上に形成されたシリサイド層 5と、ゲート電極 7上に形成された引張応 力を有する第 2の応力具有膜 13と、ゲート絶縁膜 6、ゲート電極 7及び第 2の応力具 有膜 13の側壁を覆って形成されているサイドウォール 8と、シリコン基板 1上に全面的 に形成された層間絶縁膜 31と、カゝら構成されている。
[0142] 次に、本実施形態に係る pチャネル型 MOSFET200の効果について説明する。
[0143] 本実施形態に係る pチャネル型 MOSFET200は第 1の実施形態に係る nチャネル 型 MOSFETIOOと比較して、第 1の応力具有膜 11と第 2の応力具有膜 13との間の 応力の向きが逆になつているだけであるので、効果の大きさは第 1の実施形態に係る nチャネル型 MOSFETIOOと同じであり、引張応力を有する第 2の応力具有膜 13が チャネルに圧縮歪みを与えるため、 pMOSFETのチャネル領域におけるホールの移 動度を大きく向上させることができる。
[0144] 次に、本実施形態に係る pチャネル型 MOSFET200の製造方法について説明す る。
[0145] 本実施形態に係る pチャネル型 MOSFET200は第 1の実施形態に係る nチャネル 型 MOSFETIOOと比較して、 MOSFETの極性が異なるだけであるので、本実施形 態に係る pチャネル型 MOSFET200の製造方法は第 1の実施形態に係る nチヤネ ル型 MOSFETIOOと基本的に同一である。 MOSFETの極性が異なるように、選定 される半導体材料が異なるだけである。
[0146] 第 2の応力具有膜 13は引張応力を有する絶縁膜であり、例えば、熱化学気相成長 法または原子層堆積法によって成膜された窒化珪素膜からなる。
[0147] 第 2の応力具有膜 13の材料としては、第 1の実施形態に係る nチャネル型 MOSFE T100において、第 1の応力具有膜 11を形成するのに採用可能であるとして挙げら れた材料を適宜用いることができる。
[0148] また、本実施形態に係る pチャネル型 MOSFET200においては、第 1の実施形態 に係る nチャネル型 MOSFETIOOの第 1の変更例と同様に、図 11における第 2の応 力具有膜 13及びシリサイド層 7bに代えて、引張応力を有する導電膜を用いることも 可能である。
[0149] ここで用いる応力具有導電膜 (図 4に示した応力具有導電膜 7cに対応する)は、コ
ノ レト、ニッケル、チタンのいずれかを含有するシリサイド、あるいは、タングステン、 アルミニウム、銅あるいは白金を用いて形成される。
[0150] また、この応力具有導電膜はスパッタ法または化学気相成長法と適当な熱処理と により形成される。
[0151] なお、第 2の応力具有膜 13及びシリサイド層 7bに代えて応力具有導電膜を備える pチャネル型 MOSFETの製造方法は、ゲート部の成膜とドライエッチングの条件を 除 、て、本実施形態に係る pチャネル型 MOSFET200の製造方法と同一である。
[0152] 第 2の応力具有膜 13及びシリサイド層 7bに代えて応力具有導電膜を用いることに よっても、本実施形態に係る Pチャネル型 MOSFET200と同様な効果を得ることが できる。すなわち、チャネルが圧縮方向に大きく歪み、 pMOSFETのチャネル領域 におけるホールの移動度を大きく向上させることができる。
[0153] なお、以下に述べる実施形態及びその変更例に係る pチャネル型 MOSFETにお いても、第 2の応力具有膜 13及びシリサイド層 7bに代えて応力具有導電膜を用いる ことが可能である。
(第 5の実施の形態)
図 12は、本発明の第 5の実施の形態に係る pチャネル型 MOSFET201の構成を 示す断面図である。
[0154] 本実施形態に係る pチャネル型 MOSFET201は、図 11に示した第 4の実施形態 に係る Pチャネル型 MOSFET200と比較して、ゲート電極 7、サイドウォール 8及びソ ース'ドレイン領域上を覆って圧縮応力を有する第 4の応力具有膜 23をさらに備えて V、る点にお 、て相違して 、る。
[0155] 圧縮応力を有する第 4の応力具有膜 23をさらに備えている点を除いて、本実施形 態に係る pチャネル型 MOSFET201は第 4の実施形態に係る pチャネル型 MOSFE T200と同一の構造を有している。このため、第 4の実施の形態に係る pチャネル型 M OSFET200と同一の構成要素には同一の参照符号を付し、それらの説明は省略す る。
[0156] 次いで、本実施形態に係る pチャネル型 MOSFET201の効果について説明する。
[0157] 第 4の実施の形態に係る pチャネル型 MOSFET200と同様に、ゲート電極 7上に
形成されている引張応力を有する第 2の応力具有膜 13はチャネルに圧縮応力を与 え、さらに、ゲート電極 7、サイドウォール 8及びソース'ドレイン領域を覆って形成され ている圧縮応力を有する第 4の応力具有膜 23もチャネルに圧縮応力を与えるため、 チャネルが圧縮方向に大きく歪み、 pMOSFETのチャネル領域におけるホールの移 動度を大きく向上させることができる。
[0158] 本実施形態に係る pチャネル型 MOSFET201は、第 2の実施の形態に係る nチヤ ネル型 MOSFET101と比較して、 MOSFETの極性が異なるだけであるので、本実 施形態に係る pチャネル型 MOSFET201の製造方法は第 2の実施の形態に係る n チャネル型 MOSFET101の製造方法と基本的に同一である。 MOSFETの極性が 異なるように、選定される半導体材料が異なるだけである。
[0159] 第 4の応力具有膜 23は圧縮応力を有する絶縁膜であり、例えば、プラズマ化学気 相成長法によって成膜された窒化珪素膜からなる。
(第 5の実施の形態の第 1の変更例)
図 13は、第 5の実施の形態の第 1の変更例に係る pチャネル型 MOSFET201Aの 断面図である。
[0160] 本変更例に係る pチャネル型 MOSFET201Aが図 12に示される第 5の実施の形 態に係る pチャネル型 MOSFET201と相違する点は、第 4の応力具有膜 23の第 2の 応力具有膜 13上の部分が応力緩和部 23aとして形成されている点である。すなわち 、第 2の応力具有膜 13の上方において、第 4の応力具有膜 23には切欠き領域が形 成されており、第 4の応力具有膜 23は応力緩和部 23aにおいて、すなわち、第 2の応 力具有膜 13上において、応力を有していない。
[0161] 応力緩和部 23aを有している点を除いて、本変更例に係る pチャネル型 MOSFET 201Aは第 5の実施の形態に係る pチャネル型 MOSFET201と同一の構造を有して いる。このため、第 5の実施の形態に係る pチャネル型 MOSFET201と同一の構成 要素には同一の参照符号を付し、それらの説明は省略する。
[0162] 第 5の実施の形態に係る pチャネル型 MOSFET201においては、引張応力を有す る第 2の応力具有膜 13上の圧縮応力を有する第 4の応力具有膜 23はチャネルに引 張歪みを与えるが、本変更例に係る pチャネル型 MOSFET201Aによると、第 2の応
力具有膜 13上の第 4の応力具有膜 23の部分は応力を有しないので、チャネルに引 張歪みを与えない。従って、第 5の実施の形態に係る pチャネル型 MOSFET201と 比較して、本変更例に係る pチャネル型 MOSFET201Aの方がチャネルを大きく歪 ませることが可能であり、 pチャネル型 MOSFETのチャネル領域におけるホールの 移動度をさらに向上させることができる。
[0163] 本変更例に係る pチャネル型 MOSFET201Aは、第 5の実施の形態に係る pチヤ ネル型 MOSFET201と比較して、 MOSFETの極性が異なるだけであるので、本変 更例に係る Pチャネル型 MOSFET201Aの製造方法は第 5の実施の形態に係る p チャネル型 MOSFET201の製造方法と基本的に同一である。 MOSFETの極性が 異なるように、選定される半導体材料が異なるだけである。
[0164] なお、第 5の実施の形態に係る pチャネル型 MOSFET201の変更例として、第 2の 実施の形態に係る nチャネル型 MOSFET101の第 2及び第 3の変更例と同様の変 更例を形成することが可能である。
[0165] すなわち、第 2の実施の形態の第 2の変更例に係る nチャネル型 MOSFET101B ( 図 7)と同様に、第 2の応力具有膜 13を越える第 4の応力具有膜 23の部分を化学的 機械的研磨により除去することができる。
[0166] また、第 2の実施の形態の第 3の変更例に係る nチャネル型 MOSFET101C (図 8 )と同様に、第 4の応力具有膜 23を第 2の応力具有膜 13の表面高さ以上に厚く形成 した後、第 2の応力具有膜 13の表面が露出するように、第 4の応力具有膜 23を研磨 することも可會である。
(第 6の実施の形態)
図 14は、第 6の実施の形態に係る pチャネル型 MOSFET202の断面図である。
[0167] 本実施形態に係る pチャネル型 MOSFET202は、シリコン基板 1と、シリコン基板 1 の表面に形成された素子分離領域 2と、隣接する素子分離領域 2に挟まれた領域内 において、シリコン基板 1の表面上に形成されたゲート絶縁膜 6と、ゲート絶縁膜 6上 に形成されたシリコン膜 7aとシリサイド層 7bの 2層膜からなるゲート電極 7と、シリコン 基板 1の表面領域内に形成され、ソース'ドレイン領域を構成する p型不純物層 4と、 p 型不純物層 4の上に形成されたシリサイド層 5と、ゲート絶縁膜 6及びゲート電極 7の
側壁を覆って形成されているサイドウォール 8と、ゲート電極 7と同じ高さを有し、 pチ ャネル型 MOSFET202のソース'ドレイン領域を覆って形成されている圧縮応力を 有する第 7の応力具有膜 24と、ゲート電極 7及び第 7の応力具有膜 24上に形成され 、引張応力を有する第 8の応力具有膜 14と、第 8の応力具有膜 14上に全面的に形 成された層間絶縁膜 31と、力 構成されている。
[0168] 本実施形態に係る pチャネル型 MOSFET202においては、ゲート電極 7の高さ程 度まで圧縮応力を有する第 7の応力具有膜 24が存在し、その上部に引張応力を有 する第 8の応力具有膜 14が存在する。このように、本実施形態に係る pチャネル型 M OSFET202においては、ゲート電極 7の側面部およびソース'ドレイン領域上に圧 縮応力を有する第 7の応力具有膜 24が厚く存在するので、チャネルに、より強い引 張歪みが加わり、 pチャネル型 MOSFETのチャネル領域におけるホールの移動度 を大きく向上させることができる。
[0169] 本実施形態に係る pチャネル型 MOSFET202は、第 3の実施の形態に係る nチヤ ネル型 MOSFET102と比較して、 MOSFETの極性が異なるだけであるので、本実 施形態に係る Pチャネル型 MOSFET202の製造方法は第 3の実施の形態に係る n チャネル型 MOSFET102の製造方法と基本的に同一である。 MOSFETの極性が 異なるように、選定される半導体材料が異なるだけである。
[0170] 第 7の応力具有膜 24は圧縮応力を有する絶縁膜であり、例えば、プラズマ化学気 相成長法によって成膜された窒化珪素膜からなる。
[0171] 第 8の応力具有膜 14は引張応力を有する絶縁膜あり、例えば、熱化学気相成長法 または原子層堆積法によって成膜された窒化珪素膜からなる。
[0172] 第 7の応力具有膜 24及び第 8の応力具有膜 14の材料としては、第 1の実施の形態 に係る nチャネル型 MOSFET100において、第 1の応力具有膜 11を形成するのに 採用可能であるとして挙げられた材料を適宜用いることができる。
[0173] 図 10に示した第 3の実施形態の第 1の変更例に係る nチャネル型 MOSFET102A と同様に、第 8の応力具有膜 14はゲート電極 7上にのみ形成することもできる。
[0174] 第 8の応力具有膜 14をゲート電極 7上にのみ形成する場合には、ゲート電極 7及び 第 7の応力具有膜 24上に全面的に第 8の応力具有膜 14を堆積した後、第 8の応力
具有膜 14をフォトリソグラフィ技術を用いてゲート電極 7の上部にのみ残るようにバタ 一二ングする。
[0175] この変更例においては、圧縮応力を有する第 7の応力具有膜 24の上部には実質 的に引張応力を有する第 8の応力具有膜 14が存在していないので、第 7の応力具 有膜 24の応力が第 8の応力具有膜 14の応力によって弱められることがなくなり、チヤ ネルにより強い引張歪みが加わるようにすることができる。
(第 7の実施の形態)
図 15は、本発明の第 7の実施の形態に係る CMOSFET300の構成を示す断面図 である。
[0176] 本実施形態に係る CMOSFET300は、図 1に示した第 1の実施形態に係る nチヤ ネル型 MOSFET100と、図 11に示した第 4の実施形態に係る pチャネル型 MOSF ET200とを備えて!/ヽる。
[0177] すなわち、本実施形態に係る CMOSFET300を構成する nチャネル型 MOSFET 100は、シリコン基板 1と、シリコン基板 1の表面に形成された素子分離領域 2と、隣 接する素子分離領域 2に挟まれた領域内において、シリコン基板 1の表面上に形成 されたゲート絶縁膜 6と、ゲート絶縁膜 6上に形成されたシリコン膜 7aとシリサイド層 7 bの 2層膜からなるゲート電極 7と、シリコン基板 1の表面領域内に形成され、ソース'ド レイン領域を構成する n型不純物層 3と、 n型不純物層 3の上に形成されたシリサイド 層 5と、ゲート電極 7上に形成された圧縮応力を有する第 1の応力具有膜 11と、ゲー ト絶縁膜 6、ゲート電極 7及び第 1の応力具有膜 11の側壁を覆って形成されているサ イドウォール 8と、シリコン基板 1上に全面的に形成された層間絶縁膜 31と、から構成 されており、本実施形態に係る CMOSFET300を構成する pチャネル型 MOSFET 200は、シリコン基板 1と、シリコン基板 1の表面に形成された素子分離領域 2と、隣 接する素子分離領域 2に挟まれた領域内において、シリコン基板 1の表面上に形成 されたゲート絶縁膜 6と、ゲート絶縁膜 6上に形成されたシリコン膜 7aとシリサイド層 7 bの 2層膜からなるゲート電極 7と、シリコン基板 1の表面領域内に形成され、ソース'ド レイン領域を構成する P型不純物層 4と、 p型不純物層 4の上に形成されたシリサイド 層 5と、ゲート電極 7上に形成された引張応力を有する第 2の応力具有膜 13と、ゲー
ト絶縁膜 6、ゲート電極 7、第 2の応力具有膜 13の側壁を覆って形成されているサイド ウォール 8と、シリコン基板 1上に全面的に形成された層間絶縁膜 31と、から構成され ている。
[0178] 以下、実施形態に係る CMOSFET300の効果について説明する。
[0179] nチャネル型 MOSFET100においては、第 1の実施の形態と同様に、ゲート電極 7 上に形成され、圧縮応力を有する第 1の応力具有膜 11がチャネルに引張応力を与 えるため、チャネルが引張方向に歪み、電子の移動度を向上させることができる。ま た、 pチャネル型 MOSFET200においては、第 4の実施の形態と同様に、ゲート電 極 7上に形成され、引張応力を有する第 2の応力具有膜 13がチャネルに圧縮応力を 与えるため、チャネルが圧縮方向に歪み、ホールの移動度を向上させることができる
[0180] 図 16 (a)乃至図 16 (e)は、実施形態に係る CMOSFET300の製造方法における 各工程を示す断面図である。
[0181] 以下、図 16 (a)乃至図 16 (e)を参照して、実施形態に係る CMOSFET300の製 造方法を説明する。
[0182] まず、従来の CMOSFETの場合と同様に、シリコン基板 1の表面領域内に素子分 離領域 2を形成する。
[0183] ここで、素子分離領域 2は、例えば、酸ィ匕珪素膜あるいは窒化珪素膜あるいはこれ らの積層構造力 なる。
[0184] 次に、図 16 (a)に示すように、シリコン基板 1上にゲート絶縁膜 6、シリコン膜 7a、シ リサイド層 7b、圧縮応力を有する第 1の応力具有膜 11をこの順番に順次積層する。
[0185] ここで、ゲート絶縁膜 6は、例えば、酸化珪素膜、または、窒素、ハフニウム、アルミ ユウム、チタン、ジルコニウム、タンタルなどを含有する高誘電率膜、もしくは、これら の積層構造からなる。
[0186] シリコン膜 7aは、例えば、多結晶シリコン膜、アモルファスシリコン膜、あるいは、こ れらの積層膜からなる。
[0187] シリサイド層 7bは、例えば、コバルトやニッケルのような金属を含有している。
[0188] 第 1の応力具有膜 11は圧縮応力を有する絶縁膜であり、例えば、プラズマ化学気
相成長法によって成膜された窒化珪素膜からなる。第 1の応力具有膜 11の材料とし ては、第 1の実施の形態において、第 1の応力具有膜 11を形成するのに採用可能で あるとして挙げられた材料を適宜用いることができる。
[0189] 次に、公知のフォトリソグラフィ技術を用いて、第 1の応力具有膜 11のエッチングマ スクとなるレジスト膜 43を形成する。
[0190] 次いで、ドライエッチングにより、 pチャネル型電界効果トランジスタ 200の領域内に ある第 1の応力具有膜 11を除去する。この段階における構造が図 16 (b)に示す構造 である。
[0191] 次に、レジスト膜 43を除去し、引張応力を有する第 2の応力具有膜 13を全面に成 膜する。
[0192] ここで、第 2の応力具有膜 13は引張応力を有する絶縁膜であり、例えば、熱化学気 相成長法または原子層堆積法によって成膜された窒化珪素膜からなる。
[0193] 第 2の応力具有膜 13の材料としては、第 1の実施の形態において、第 1の応力具 有膜 11を形成するのに採用可能であるとして挙げられた材料を適宜用 ヽることがで きる。
[0194] 次に、図 16 (c)に示すように、公知のフォトリソグラフィ技術を用いて、第 2の応力具 有膜 13のエッチングマスクとなるレジスト膜 44を pチャネル型電界効果トランジスタ 20
09の全領域を覆うように形成する。
[0195] 次いで、ドライエッチングにより nチャネル型電界効果トランジスタ 100の領域内の 第 2の応力具有膜 13を除去し、引き続いて、レジスト膜 44を除去する。この段階にお ける構造が図 16 (d)に示す構造である。
[0196] 次に、ゲート電極 7の形成のためのマスクとなるレジスト膜 45をフォトリソグラフィ技 術を用いて形成し、ドライエッチングにより、マスクによって保護されていない部分の 第 1の応力具有膜 11、第 2の応力具有膜 13、シリサイド層 7b、シリコン膜 7aおよびゲ ート絶縁膜 6を除去し、図 16 (e)に示す構造を得る。
[0197] 次に、レジスト膜 45を除去した後、浅いソース'ドレイン形成のためのイオン注入、 サイドウォール 8の形成、深いソース'ドレイン形成のためのイオン注入、不純物活性 ィ匕のためのァニール、シリサイド層 5の形成を行う。
[0198] ここで、サイドウォール 8は、例えば、酸ィ匕珪素膜もしくは窒化珪素膜またはこれらの 積層構造からなる。
[0199] シリサイド層 5は、例えば、コノ レトゃニッケルのような金属を含有するシリサイド膜 からなる。
[0200] 最後に、層間絶縁膜 31を積層し、図 15に示す構造を得る。
[0201] この後、コンタクト孔を開口し、コンタクト孔の内部にコンタクトプラグを形成した後、 コンタクトプラグの上に必要な配線を形成する。
[0202] なお、本製造方法においては、最初に、 nチャネル型電界効果トランジスタ 100の 第 1の応力具有膜 11を形成し、次いで、 pチャネル型電界効果トランジスタ 200の第
2の応力具有膜 13を形成したが、最初に第 2の応力具有膜 13を形成し、次いで、第
1の応力具有膜 11を形成することも可能である。
(第 7の実施の形態の第 1の変更例)
図 17は、第 7の実施の形態の第 1の変更例に係る CMOSFET300Aの断面図で ある。
[0203] 本変更例に係る CMOSFET300Aは、図 4に示した第 1の実施の形態の第 1の変 更例に係る nチャネル型 MOSFETIOOAと、 pチャネル型 MOSFET200Aとから構 成されている。
[0204] nチャネル型 MOSFETIOOAにおいては、図 1に示した第 1の実施の形態に係る n チャネル型 MOSFET100と比較して、シリサイド層 7b及び第 1の応力具有膜 11に 代えて、圧縮応力を有する第 1の応力具有導電膜 7cが形成されている。
[0205] また、 pチャネル型 MOSFET200Aにお!/、ては、図 11に示した第 4の実施の形態 に係る Pチャネル型 MOSFET200と比較して、シリサイド層 7b及び第 2の応力具有 膜 13に代えて、引張応力を有する第 2の応力具有導電膜 7dが形成されている。
[0206] シリサイド層 7b及び第一の応力具有膜 11または第 2の応力具有膜 13に代えて第 1 の応力具有導電膜 7cまたは第 2の応力具有導電膜 7dを有して ヽる点を除 ヽて、本 変更例に係る CMOSFET300Aは第 7の実施の形態に係る CMOSFET300と同 一の構造を有している。このため、第 7の実施の形態に係る CMOSFET300と同一 の構成要素には同一の参照符号を付し、それらの説明は省略する。
[0207] ここで、応力具有導電膜 7c、 7dは、コバルト、ニッケル、チタンの!/ヽずれかを含有す るシリサイド、あるいは、タングステン、アルミニウム、銅または白金力も成る。
[0208] また、応力具有導電膜 7c、 7dはスパッタ法または化学気相成長法と適当な熱処理 とにより形成される。
[0209] 本変更例に係る CMOSFET300Aの製造方法は、シリサイド層 7bが存在しない点 、第 1の応力具有膜 11及び第 2の応力具有膜 13の代わりに第 1の応力具有導電膜 7c及び第 2の応力具有導電膜 7dである点を除いて、第 7の実施の形態に係る CMO SFET300の製造方法と同様である。
[0210] さらに、本変更例によっても、第 7の実施の形態に係る CMOSFET300と同様な効 果を得ることができる。すなわち、 nチャネル型 MOSFET100Aにおいては、チヤネ ルが引張方向に歪み、 pチャネル型 MOSFET200Aにおいては、チャネルが圧縮 方向に歪み、 nチャネル型 MOSFET100A及び pチャネル型 MOSFET200Aの双 方のチャネル領域におけるキャリアの移動度を向上させることができる。
(第 8の実施の形態)
図 19 (e)は、本発明の第 8の実施の形態に係る CMOSFET301の構成を示す断 面図である。
[0211] 本実施形態に係る CMOSFET301は、図 5 (b)に示した第 2の実施形態に係る n チャネル型 MOSFETIOIと、図 12に示した第 5の実施形態に係る pチャネル型 MO SFET201とを備えている。
[0212] 本実施形態に係る CMOSFET301は、第 7の実施形態に係る CMOSFET300 ( 図 15)と比較して、 nチャネル型 MOSFETIOIの領域においては、第 1の応力具有 膜 11、サイドウォール 8及びソース'ドレイン領域を覆って形成され、引張応力を有す る第 3の応力具有膜 21が形成されており、 pチャネル型 MOSFET201の領域にお いては、第 2の応力具有膜 13、サイドウォール 8及びソース'ドレイン領域を覆って形 成され、圧縮応力を有する第 4の応力具有膜 23が形成されている点が相違している
[0213] これらの点を除いて、本実施形態に係る CMOSFET301は第 7の実施形態に係る CMOSFET300と同一の構造を有している。このため、第 7の実施の形態に係る C
MOSFET300と同一の構成要素には同一の参照符号を付し、それらの説明は省略 する。
[0214] 以下、本実施形態に係る CMOSFET301の効果について説明する。
[0215] nチャネル型 MOSFET101においては、第 2の実施の形態と同様に、ゲート電極 7 上に形成され、圧縮応力を有する第 1の応力具有膜 11がチャネルに引張応力を与 え、さらに、第 1の応力具有膜 11、サイドウォール 8及びソース'ドレイン領域を覆って 形成され、引張応力を有する第 3の応力具有膜 21もチャネルに引張応力を与えるた め、チャネルが引張方向に大きく歪み、電子の移動度を大きく向上させることができ る。
[0216] また、 pチャネル型 MOSFET201においては、第 5の実施の形態と同様に、ゲート 電極 7上に形成され、引張応力を有する第 2の応力具有膜 13がチャネルに圧縮応 力を与え、さらに、第 2の応力具有膜 13、サイドウォール 8及びソース'ドレイン領域を 覆って形成され、圧縮応力を有する第 4の応力具有膜 23もチャネルに圧縮応力を与 えるため、チャネルが圧縮方向に大きく歪み、ホールの移動度を大きく向上させるこ とがでさる。
[0217] 図 18 (a)乃至図 18 (c)及び図 19 (d)及び図 19 (e)は、本実施形態に係る CMOS FET301の製造方法における各工程を示す断面図である。
[0218] 以下、図 18 (a)乃至図 18 (c)及び図 19 (d)及び図 19 (e)を参照して、本実施形態 に係る CMOSFET301の製造方法を説明する。
[0219] まず、第7の実施の形態に係るCMOSFET300の製造方法を示す図16 (a)から 図 16 (e)までと同様の製造工程を経て、更に、レジスト膜の除去、浅いソース'ドレイ ン形成のためのイオン注入、サイドウォール 8の形成、深いソース'ドレイン形成のた めのイオン注入、不純物活性ィ匕のためのァニール、シリサイド層 5の形成の各工程を 経て、図 18 (a)に示す構造を得る (なお、図 18 (a)に示す構造は第 7の実施の形態 に係る CMOSFET300と同一の構造である)。
[0220] 次に、図 18 (b)に示すように、引張応力を有する第 3の応力具有膜 21を全面に形 成する。
[0221] ここで、第 3の応力具有膜 21は引張応力を有する絶縁膜であり、例えば、熱化学気
相成長法または原子層堆積法によって成膜された窒化珪素膜からなる。
[0222] また、図示して ヽな 、が、必要であれば、後のエッチング工程のダメージ保護膜とし て、第 3の応力具有膜 21の下に、例えば、酸化珪素膜を薄く(lOnm程度以下)成膜 してちよい。
[0223] 次に、公知のフォトリソグラフィ技術を用いて、第 3の応力具有膜 21のエッチングマ スクとなるレジスト膜 46を形成し、ドライエッチングにより、 pチャネル型 MOSFET20 1の領域における第 3の応力具有膜 21と、必要であれば、ダメージ保護膜を除去す る。この段階における構造が図 18 (c)に示す構造である。
[0224] 次に、レジスト膜 46を除去した後、圧縮応力を有する第 4の応力具有膜 23を全面 に成膜する。
[0225] 第 4の応力具有膜 23は圧縮応力を有する絶縁膜であり、例えば、プラズマ化学気 相成長法によって成膜された窒化珪素膜からなる。
[0226] ここで、図示していないが、必要であれば、後工程のエッチングストッパー膜として、 第 4の応力具有膜 23の下に、例えば、酸ィ匕珪素膜を薄く(lOnm程度以下)成膜して ちょい。
[0227] 次に、フォトリソグラフィ技術により、第 4の応力具有膜 23のエッチングマスクとなるレ ジスト膜 47を形成し、ドライエッチングにより、 nチャネル型 MOSFET101の領域に おける第 4の応力具有膜 23を除去する。この段階における構造が図 19 (d)に示す構 造である。
[0228] 次に、レジスト膜 47を除去した後、層間絶縁膜 31を積層し、図 19 (e)に示す構造 を得る。
[0229] この後、コンタクト孔を開口し、コンタクト孔の内部にコンタクトプラグを形成した後、 コンタクトプラグの上に必要な配線を形成する。
[0230] なお、本製造方法においては、最初に、 nチャネル型電界効果トランジスタ 101の 第 3の応力具有膜 21を形成し、次いで、 pチャネル型電界効果トランジスタ 201の第
4の応力具有膜 23を形成したが、最初に第 4の応力具有膜 23を形成し、次いで、第
3の応力具有膜 21を形成することも可能である。
(第 8の実施の形態の第 1の変更例)
図 20は、第 8の実施の形態の第 1の変更例に係る CMOSFET301Aの断面図で ある。
[0231] 本変更例に係る CMOSFET301Aが図 19 (e)に示される第 8の実施の形態に係る CMOSFET301と相違する点は、第 3の応力具有膜 21の第 1の応力具有膜 11上の 部分及び第 4の応力具有膜 23の第 2の応力具有膜 13上の部分がそれぞれ応力緩 和部として形成されている点である。第 3の応力具有膜 21及び第 4の応力具有膜 23 は各応力緩和部において、すなわち、第 1の応力具有膜 11上及び第 2の応力具有 膜 13上において、応力を有していない。
[0232] 応力緩和部は、図 20に示すように、イオン注入 Iimにより第 3の応力具有膜 21及び 第 4の応力具有膜 23のうちゲート電極 7の上部の部分のみ応力を緩和させることによ り、形成される。
[0233] 応力緩和部を有している点を除いて、本変更例に係る CMOSFET301Aは第 8の 実施の形態に係る CMOSFET301と同一の構造を有している。このため、第 8の実 施の形態に係る CMOSFET301と同一の構成要素には同一の参照符号を付し、そ れらの説明は省略する。
[0234] 第 8の実施の形態に係る CMOSFET301においては、圧縮応力を有する第 1の応 力具有膜 11上の引張応力を有する第 3の応力具有膜 21はチャネルに圧縮歪みを 与え、引張応力を有する第 2の応力具有膜 13上の圧縮応力を有する第 4の応力具 有膜 23はチャネルに引張歪みを与える。
[0235] これに対して、本変更例に係る CMOSFET301Aにおいては、第 1の応力具有膜 11及び第 2の応力具有膜 13上の第 3の応力具有膜 21及び第 4の応力具有膜 23は 応力を有して ヽな 、ので、チャネルに圧縮歪みまたは引張歪みを与えな 、。
[0236] 従って、第 8の実施の形態に係る CMOSFET301と比較して、本変更例に係る C MOSFET301Aの方がチャネルを大きく歪ませることが可能であり、 nチャネル型 M OSFET101においては、電子の移動度をさらに向上させ、 pチャネル型 MOSFET 201にお!/、ては、ホールの移動度をさらに向上させることが可能である。
[0237] なお、本変更例に係る CMOSFET301Aの製造方法は、第 2の実施の形態の第 1 の変更例および第 5の実施の形態の第 1の変更例と同様である。
[0238] なお、第 8の実施の形態に係る CMOSFET301の他の変更例として、第 2の実施 の形態に係る nチャネル型 MOSFET101の第 2及び第 3の変更例と同様の変更例 を形成することが可能である。
[0239] すなわち、第 2の実施の形態の第 2の変更例に係る nチャネル型 MOSFET101B ( 図 7)と同様に、第 1の応力具有膜 11及び第 2の応力具有膜 13を越える第 3の応力 具有膜 21及び第 4の応力具有膜 23の部分をィ匕学的機械的研磨により除去すること ができる。
[0240] また、第 2の実施の形態の第 3の変更例に係る nチャネル型 MOSFET101C (図 8 )と同様に、第 3の応力具有膜 21及び第 4の応力具有膜 23を第 1の応力具有膜 11 及び第 2の応力具有膜 13の表面高さ以上に厚く形成した後、第 1の応力具有膜 11 及び第 2の応力具有膜 13の表面が露出するように、第 3の応力具有膜 21及び第 4の 応力具有膜 23を研磨することも可能である。
(第 9の実施の形態)
図 22 (g)は、本発明の第 9の実施の形態に係る CMOSFET302の構成を示す断 面図である。
[0241] 本実施形態に係る CMOSFET302は、図 9 (d)に示した第 3の実施形態に係る n チャネル型 MOSFET102と、図 14に示した第 6の実施形態に係る pチャネル型 MO SFET202とを備えて!/、る。
[0242] 本実施形態に係る CMOSFET302を構成する nチャネル型 MOSFET102は、シ リコン基板 1と、シリコン基板 1の表面に形成された素子分離領域 2と、隣接する素子 分離領域 2に挟まれた領域内において、シリコン基板 1の表面上に形成されたゲート 絶縁膜 6と、ゲート絶縁膜 6上に形成されたシリコン膜 7aとシリサイド層 7bの 2層膜か らなるゲート電極 7と、シリコン基板 1の表面領域内に形成され、ソース'ドレイン領域 を構成する n型不純物層 3と、 n型不純物層 3の上に形成されたシリサイド層 5と、ゲー ト絶縁膜 6及びゲート電極 7の側壁を覆って形成されて 、るサイドウォール 8と、ゲート 電極 7と同じ高さを有し、 nチャネル型 MOSFET102のソース'ドレイン領域を覆って 形成されている引張応力を有する第 5の応力具有膜 22と、ゲート電極 7及び第 5の応 力具有膜 22上に形成され、圧縮応力を有する第 6の応力具有膜 12と、第 6の応力
具有膜 12上に全面的に形成された層間絶縁膜 31と、カゝら構成されている。
[0243] また、本実施形態に係る CMOSFET302を構成する pチャネル型 MOSFET202 は、シリコン基板 1と、シリコン基板 1の表面に形成された素子分離領域 2と、隣接する 素子分離領域 2に挟まれた領域内において、シリコン基板 1の表面上に形成された ゲート絶縁膜 6と、ゲート絶縁膜 6上に形成されたシリコン膜 7aとシリサイド層 7bの 2 層膜からなるゲート電極 7と、シリコン基板 1の表面領域内に形成され、ソース'ドレイ ン領域を構成する P型不純物層 4と、 p型不純物層 4の上に形成されたシリサイド層 5 と、ゲート絶縁膜 6及びゲート電極 7の側壁を覆って形成されて 、るサイドウォール 8と 、ゲート電極 7と同じ高さを有し、 pチャネル型 MOSFET202のソース'ドレイン領域 を覆って形成されている圧縮応力を有する第 7の応力具有膜 24と、ゲート電極 7及 び第 7の応力具有膜 24上に形成され、引張応力を有する第 8の応力具有膜 14と、 第 8の応力具有膜 14上に全面的に形成された層間絶縁膜 31と、から構成されてい る。
[0244] 本実施形態に係る CMOSFET302を構成する nチャネル型 MOSFET102にお いては、ゲート電極 7の高さまで引張応力を有する第 5の応力具有膜 22が存在し、そ の上部に圧縮応力を有する第 6の応力具有膜 12が存在している。
[0245] また、本実施形態に係る CMOSFET302を構成する pチャネル型 MOSFET202 にお 、ては、ゲート電極 7の高さまで圧縮応力を有する第 7の応力具有膜 24が存在 し、その上部に引張応力を有する第 8の応力具有膜 14が存在している。
[0246] このように、本実施形態に係る CMOSFET302においては、ゲート電極 7の側面部 およびソース'ドレイン領域上に引張応力を有する第 5の応力具有膜 22及び圧縮応 力を有する第 7の応力具有膜 24が厚く存在するので、チャネルに対して、より強い引 張歪み及び圧縮歪みが加わり、 nチャネル型 MOSFET102及び pチャネル型 MOS FET202のチャネル領域にお!、てキャリア(電子及びホール)の移動度を大きく向上 させることがでさる。
[0247] 図 21 (a)乃至図 21 (d)及び図 22 (e)及び図 22 (g)は、本実施形態に係る CMOS
FET302の製造方法における各工程を示す断面図である。
[0248] 以下、図 21 (a)乃至図 21 (d)及び図 22 (e)及び図 22 (g)を参照して、本実施形態
に係る CMOSFET302の製造方法を説明する。
[0249] まず、従来の CMOSFETの製造工程と同様に、シリコン基板 1に素子分離領域 2 を設け、素子分離領域 2によって区画された領域の基板上にゲート絶縁膜 6を形成 する。ゲート絶縁膜 6上にゲート電極パターンのシリコン膜 7aを形成した後、浅いソー ス 'ドレイン形成のためのイオン注入、サイドウォール 8の形成、深いソース'ドレイン 形成のためのイオン注入、不純物活性化のためのァニール、シリサイド層 5、 7bの形 成を経て、図 21 (a)に示す構造を得る。
[0250] 次に、引張応力を有する第 5の応力具有膜 22をシリコン膜 7aの厚み以上の膜厚に 成膜する。
[0251] 次いで、ゲート電極 7の上部が露出するまで第 5の応力具有膜 22をィ匕学的機械的 研磨することにより、図 21 (b)に示す構造を得る。
[0252] ここで、第 5の応力具有膜 22は引張応力を有する絶縁膜であり、例えば、熱化学気 相成長法または原子層堆積法によって成膜された窒化珪素膜からなる。
[0253] また、図示して ヽな 、が、必要であれば、後のエッチング工程のダメージ保護膜とし て、第 5の応力具有膜 22の下に、例えば、酸化珪素膜を薄く(lOnm程度以下)成膜 してちよい。
[0254] 次に、フォトリソグラフィ技術を用いて、第 5の応力具有膜 22のエッチングマスクとな るレジスト膜 48を形成し、ドライエッチングにより、 pチャネル型 MOSFET202の領域 にある第 5の応力具有膜 22と、必要であれば、ダメージ保護膜を除去し、図 21 (c)に 示す構造を得る。
[0255] 次に、レジスト膜 48を除去した後、圧縮応力を有する第 7の応力具有膜 24をシリコ ン膜 7aの厚み以上の膜厚に成膜し、ゲート電極 7の上部が露出するまで第 7の応力 具有膜 24を化学的機械的研磨することにより、図 21 (d)に示す構造を得る。
[0256] また、公知のフォトリソグラフィ技術を用いて、レジストマスクを形成し、これをマスクと してドライエッチングを行 、、 nチャネル型 MOSFET102の領域内の第 7の応力具 有膜 24を除去して、図 21 (d)に示す構造を得ることもできる。
[0257] ここで、第 7の応力具有膜 24は圧縮応力を有する絶縁膜であり、例えば、プラズマ 化学気相成長法によって成膜された窒化珪素膜からなる。
[0258] 次に、圧縮応力を有する第 6の応力具有膜 12を全面に成膜する。
[0259] ここで、第 6の応力具有膜 12は圧縮応力を有する絶縁膜であり、例えば、プラズマ 化学気相成長法によって成膜された窒化珪素膜からなる。
[0260] 第 6の応力具有膜 12の材料としては、第 1の実施の形態において第 1の応力具有 膜 11を形成するのに採用可能であるとして挙げられた材料を適宜用 ヽることができる
[0261] ここで、図示していないが、必要であれば、後工程のエッチングストッパー膜として、 第 6の応力具有膜 12の下に、例えば、酸ィ匕珪素膜を薄く(lOnm程度以下)成膜して ちょい。
[0262] 次に、フォトリソグラフィ技術を用いて、第 6の応力具有膜 12のエッチングマスクとな るレジスト膜 49を第 6の応力具有膜 12上に形成し、ドライエッチングにより、 pチヤネ ル型 MOSFET202の領域内の第 6の応力具有膜 12と、必要であれば、エッチング ストッパー膜を除去し、図 22 (e)に示す構造を得る。
[0263] 次に、レジスト膜 49を除去した後、引張応力を有する第 8の応力具有膜 14を全面 に成膜する。
[0264] 次いで、ゲート電極 7の上部に所望の厚さの第 6の応力具有膜 12及び第 8の応力 具有膜 14が残るまで、第 8の応力具有膜 14を化学的機械的研磨することにより、図
22 (f)に示す構造を得る。
[0265] また、公知のフォトリソグラフィ技術を用いてレジストマスクを形成し、これをマスクと して nチャネル型 MOSFET102の領域内の第 8の応力具有膜 14を除去して図 22 (f
)に示す構造を得ることもできる。
[0266] ここで、第 8の応力具有膜 14は引張応力を有する絶縁膜であり、例えば、熱化学気 相成長法または原子層堆積法によって成膜された窒化珪素膜からなる。
[0267] 第 8の応力具有膜 14の材料としては、第 1の実施の形態において、第 1の応力具 有膜 11を形成するのに採用可能であるとして挙げられた材料を適宜用 ヽることがで きる。
[0268] 最後に、層間絶縁膜 31を積層し、図 22 (g)に示す構造を得る。
[0269] この後、コンタクト孔を開口し、コンタクト孔の内部にコンタクトプラグを形成した後、
コンタクトプラグの上に必要な配線を形成する。
[0270] 本製造方法においては、最初に nチャネル型 MOSFET102の第 5の応力具有膜 22、 2番目に pチャネル型 MOSFET202の第 7の応力具有膜 24、 3番目に nチヤネ ル型電 MOSFET102の第 6の応力具有膜 12、 4番目〖こ pチャネル型 MOSFET20 2の第 8の応力具有膜 14を形成したが、各応力具有膜の形成順序はこれには限定さ れない。
[0271] 第 5の応力具有膜 22と第 7の応力具有膜 24との間で形成順序を入れ替えることが 可能であり、さらに、第 6の応力具有膜 12と第 8の応力具有膜 14との間で形成順序 を入れ替えることが可能である。
[0272] 例えば、最初に pチャネル型 MOSFET202の第 7の応力具有膜 24、 2番目に nチ ャネル型 MOSFET102の第 5の応力具有膜 22、 3番目に pチャネル型 MOSFET2 02の第 8の応力具有膜 14、 4番目に nチャネル型電 MOSFET102の第 6の応力具 有膜 12を形成することも可能である。
[0273] また、本実施形態に係る CMOSFET302においては、図 10に示した第 3の実施形 態の第 iの変更例と同様に、第 6の応力具有膜 12及び第 8の応力具有膜 14を nチヤ ネル型 MOSFET102または pチャネル型 MOSFET202の各ゲート電極 7上にのみ 形成することも可能である。
[0274] この場合には、第 6の応力具有膜 12及び第 8の応力具有膜 14は、ゲート電極 7、 第 5の応力具有膜 22及び第 7の応力具有膜 24上に全面的に第 6の応力具有膜 12 及び第 8の応力具有膜 14を形成した後、第 6の応力具有膜 12及び第 8の応力具有 膜 14をフォトリソグラフィ技術を用いて各ゲート電極 7の上部にのみ残るようにパター ユングする。
(第 10の実施の形態)
図 23は、本発明の第 10の実施の形態に係る CMOSFET303の構成を示す断面 図である。
[0275] CMOSFETにおいては、用途に応じて、 nチャネル型 MOSFETまたは pチャネル 型 MOSFETの一方の特性を他方より上げたい場合がある。あるいは、製造工程の 簡易さと MOSFETの性能とのトレードオフの関係に照らして、一方の MOSFETの
性能を犠牲にしても製造工程の簡易さを優先したいことがある。
[0276] 第 10の実施の形態及びそれ以降の実施の形態はこのような用途に対応するもの である。
[0277] 本実施形態に係る CMOSFET303は、図 5 (b)に示した第 2の実施形態に係る n チャネル型 MOSFETIOIと、 pチャネル型 MOSFET201Bとを備えている。
[0278] 図 19 (e)に示した第 8の実施形態に係る CMOSFET301においては、 pチャネル 型 MOSFET201を覆って圧縮応力を有する第 4の応力具有膜 23が形成されている 力 本実施形態に係る CMOSFET303においては、 pチャネル型 MOSFET201B を覆って引張応力を有する第 3の応力具有膜 21が形成されている。すなわち、本実 施形態に係る CMOSFET303においては、引張応力を有する第 3の応力具有膜 21 は nチャネル型 MOSFETIOI及び pチャネル型 MOSFET201Bの双方を覆うように 形成されている。
[0279] pチャネル型 MOSFET201Bにおいて、第 4の応力具有膜 23に代えて第 3の応力 具有膜 21が形成されている点を除いて、本実施形態に係る CMOSFET303は図 1 9 (e)に示した第 8の実施形態に係る CMOSFET301と同一の構造を有している。こ のため、第 8の実施の形態に係る CMOSFET301と同一の構成要素には同一の参 照符号を付し、それらの説明は省略する。
[0280] 以下、本実施形態に係る CMOSFET303の効果について説明する。
[0281] チャネル型 MOSFETIOIにおいては、第 8の実施の形態と同様に、ゲート電極 7 の上方に形成された圧縮応力を有する第 1の応力具有膜 11はチャネルに引張応力 を与え、さらに、ゲート電極 7、サイドウォール 8及びソース'ドレイン領域を覆って形成 された引張応力を有する第 3の応力具有膜 21もチャネルに引張応力を与えるため、 チャネルが弓 I張方向に大きく歪み、電子の移動度を大きく向上させることができる。
[0282] 次に、本実施形態に係る CMOSFET303の製造方法について説明する。
[0283] 第 8の実施の形態に係る CMOSFET301の製造方法において、 pチャネル型 MO SFET201の領域内の引張応力を有する第 3の応力具有膜 21を除去する工程と、 圧縮応力を有する第 4の応力具有膜 23を成膜し、 nチャネル型 MOSFETIOIの領 域内の第 4の応力具有膜 23を除去する工程とを省くことにより、本実施形態に係る C
MOSFET303の製造方法を得ることができる。すなわち、図 18 (a)及び図 18 (b)に 示した工程により、本実施形態に係る CMOSFET303を製造することができる。
[0284] 本実施形態に係る CMOSFET303に対しては以下の 3つの変更例がある。
[0285] 本実施形態に係る CMOSFET303においては、図 20に示した第 8の実施の形態 の第 1の変更例と同様に、 nチャネル型 MOSFET101及び pチャネル型 MOSFET 201Bにおける各ゲート電極 7の上方に位置する第 3の応力具有膜 21の部分を応力 緩和部として形成することも可能である。
[0286] 第 3の応力具有膜 21は応力緩和部において、すなわち、第 1の応力具有膜 11上 及び第 2の応力具有膜 13上にぉ 、て、応力を有しな!/、。
[0287] 応力緩和部は、イオン注入 Iimにより第 3の応力具有膜 21のゲート電極 7の上部の 部分のみ応力を緩和させることにより、形成される。
[0288] あるいは、本実施形態に係る CMOSFET303においては、図 6 (b)に示した第 2の 実施形態の第 1の変更例と同様に、 nチャネル型 MOSFET101及び pチャネル型 M OSFET201Bにおける各ゲート電極 7の上方において、応力緩和部として、第 3の 応力具有膜 21に切欠き領域を形成することも可能である。
[0289] また、本実施形態に係る CMOSFET303においては、図 8に示した第 2の実施形 態の第 3の変更例と同様に、第 3の応力具有膜 21が第 1の応力具有膜 11及び第 2 の応力具有膜 13の表面高さに到達する高さになるように形成することができる。
[0290] 本実施形態に係る CMOSFET303においては、圧縮応力を有する第 1の応力具 有膜 11上の引張応力を有する第 3の応力具有膜 21はチャネルに圧縮歪みを与える 力 上記の 3つの変更例においては、第 1の応力具有膜 11上の第 3の応力具有膜 2 1は応力を有しないか、あるいは、第 3の応力具有膜 21が存在しないのでチャネルに 圧縮歪みを与えない。
[0291] 従って、これら 3つの変更例の方が本実施形態に係る CMOSFET303よりもチヤネ ルを大きく歪ませることが可能であり、 nチャネル型 MOSFETのチャネル領域におけ る電子の移動度をさらに向上させることができる。
[0292] なお、 1番目の変更例に係わる CMOSFETの製造方法は、第 8の実施の形態の第 1の変更例の製造方法と同様である。
(第 11の実施の形態)
図 24は、本発明の第 11の実施の形態に係る CMOSFET304の構成を示す断面 図である。
[0293] 本実施形態に係る CMOSFET304は、図 9 (d)に示した第 3の実施形態に係る n チャネル型 MOSFET102と、 pチャネル型 MOSFET202Aとを備えて!/、る。
[0294] 本実施形態に係る CMOSFET304は、図 22 (g)に示した第 9の実施形態に係る C MOSFET302と比較して、 pチャネル型 MOSFET202Aが圧縮応力を有する第 7 の応力具有膜 24に代えて引張応力を有する第 5の応力具有膜 22を有している点に おいて相違している。
[0295] すなわち、本実施形態に係る CMOSFET304においては、 nチャネル型 MOSFE T102と pチャネル型 MOSFET202Aの双方を覆って引張応力を有する第 5の応力 具有膜 22が形成されている。
[0296] pチャネル型 MOSFET202Aが第 7の応力具有膜 24に代えて第 5の応力具有膜 2 2を有している点を除いて、本実施形態に係る CMOSFET304は第 9の実施形態に 係る CMOSFET302と同一の構造を有している。このため、第 9の実施の形態に係 る CMOSFET302と同一の構成要素には同一の参照符号を付し、それらの説明は 省略する。
[0297] 以下、本実施形態に係る CMOSFET304の効果を説明する。
[0298] 本実施形態に係る CMOSFET304においては、ゲート電極 7、サイドウォール 8及 びソース'ドレイン領域を覆って、引張応力を有する第 5の応力具有膜 22が厚く存在 するため、チャネルに強い引張歪みが加わる。さらに、 nチャネル型 MOSFET102 のゲート電極 7上に形成されている圧縮応力を有する第 6の応力具有膜 12がチヤネ ルの引張歪みを助長するため、 nチャネル型 MOSFET102のチャネル領域におけ る電子の移動度を大きく向上させることができる。
[0299] 次に、本実施形態に係る CMOSFET304の製造方法について説明する。
[0300] 第 9の実施の形態に係る CMOSFET302の製造方法において、 pチャネル型 MO SFET202の領域内の引張応力を有する第 5の応力具有膜 22を除去する工程と、 圧縮応力を有する第 7の応力具有膜 24を成膜し、 nチャネル型 MOSFET102の領
域内の第 7の応力具有膜 24を除去する工程とを省くことにより、本実施形態に係る C
MOSFET304の製造方法を得ることができる。
[0301] すなわち、図 21 (c)及び図 21 (d)に示した工程を省略し、図 21 (b)に示した工程 の後、図 22 (e)、図 22 (f)及び図 22 (g)に示した工程を実施することにより、本実施 形態に係る CMOSFET304を製造することができる。
[0302] また、本実施形態に係る CMOSFET304においては、図 10に示した第 3の実施形 態の第 1の変更例に係る nチャネル型 MOSFET102Aと同様に、第 6の応力具有膜
12及び第 8の応力具有膜 14は各ゲート電極 7上にのみ形成することもできる。
(第 12の実施の形態)
図 25は、本発明の第 12の実施の形態に係る CMOSFET305の構成を示す断面 図である。
[0303] 本実施形態に係る CMOSFET305は、 nチャネル型 MOSFET101Dと、図 12に 示した第 5の実施形態に係る pチャネル型 MOSFET201とを備えている。
[0304] 本実施形態に係る CMOSFET305は、図 23に示した第 10の実施の形態に係る C MOSFET303と比較して、 nチャネル型 MOSFET101Dおよび pチャネル型 MOS FET201の両方の領域にぉ 、て、引張応力を有する第 3の応力具有膜 21に代えて 、圧縮応力を有する第 4の応力具有膜 23が形成されて ヽる点にお ヽて相違して ヽる
[0305] 第 3の応力具有膜 21に代えて第 4の応力具有膜 23が形成されて ヽる点を除 ヽて、 本実施形態に係る CMOSFET305は図 23に示した第 10の実施の形態に係る CM OSFET303と同一の構造を有している。このため、第 10の実施の形態に係る CMO SFET303と同一の構成要素には同一の参照符号を付し、それらの説明は省略する
[0306] 以下、本実施形態に係る CMOSFET305の効果について説明する。
[0307] pチャネル型 MOSFET201においては、第 8の実施の形態と同様に、ゲート電極 7 の上方に形成された引張応力を有する第 2の応力具有膜 13がチャネルに圧縮応力 を与え、さらに、ゲート電極 7、サイドウォール 8及びソース'ドレイン領域を覆っている 圧縮応力を有する第 4の応力具有膜 23もチャネルに圧縮応力を与えるため、チヤネ
ルが圧縮方向に大きく歪み、ホールの移動度を大きく向上させることができる。
[0308] なお、本実施形態に係る CMOSFET305の製造方法は、図 23に示した第 7の実 施の形態に係る CMOSFET303の製造方法と基本的に同一である。すなわち、本 実施形態に係る CMOSFET305の製造方法は、第 7の実施の形態に係る CMOSF ET303の製造方法と比較して、第 3の応力具有膜 21の形成材料に代えて第 4の応 力具有膜 23の形成材料を用いる点にぉ 、てのみ異なる。
[0309] 本実施形態に係る CMOSFET305に対しては、さらに、以下の 3つの変更例があ る。
[0310] 本実施形態に係る CMOSFET305においては、図 20に示した第 8の実施の形態 の第 1の変更例と同様に、 nチャネル型 MOSFET101及び pチャネル型 MOSFET 201における各ゲート電極 7の上方に位置する第 4の応力具有膜 23の部分を応力 緩和部として形成することも可能である。
[0311] 第 4の応力具有膜 23は応力緩和部において、すなわち、第 1の応力具有膜 11上 及び第 2の応力具有膜 13上にぉ 、て、応力を有しな!/、。
[0312] 応力緩和部は、イオン注入 Iimにより第 4の応力具有膜 23のゲート電極 7の上部の 部分のみ応力を緩和させることにより、形成される。
[0313] あるいは、本実施形態に係る CMOSFET305においては、図 6 (b)に示した第 2の 実施形態の第 1の変更例と同様に、 nチャネル型 MOSFET101及び pチャネル型 M OSFET201における各ゲート電極 7の上方において、応力緩和部として、第 4の応 力具有膜 23に切欠き領域を形成することも可能である。
[0314] また、本実施形態に係る CMOSFET305においては、図 8に示した第 2の実施形 態の第 3の変更例と同様に、第 4の応力具有膜 23が第 1の応力具有膜 11及び第 2 の応力具有膜 13の表面高さに到達する高さになるように形成することができる。
[0315] 本実施形態に係る CMOSFET305においては、引張応力を有する第 2の応力具 有膜 13上の圧縮応力を有する第 4の応力具有膜 23はチャネルに引張歪みを与える 力 上記の 3つの変更例においては、第 2の応力具有膜 13上の第 4の応力具有膜 2 3は応力を有しないか、あるいは、第 2の応力具有膜 13上には第 4の応力具有膜 23 が存在しな 、のでチャネルに引張歪みを与えな!/、。
[0316] 従って、これら 3つの変更例の方が本実施形態に係る CMOSFET305よりも pチヤ ネル型 MOSFET201のチャネルを大きく歪ませることが可能であり、 pチャネル型 M OSFET201のチャネル領域におけるホールの移動度をさらに向上させることができ る。
[0317] なお、 1番目の変更例に係わる CMOSFETの製造方法は、第 8の実施の形態の第 1の変更例の製造方法と同様である。
(第 13の実施の形態)
図 26は、本発明の第 13の実施の形態に係る CMOSFET306の構成を示す断面 図である。
[0318] 本実施形態に係る CMOSFET306は、 nチャネル型 MOSFET102Bと、図 14に 示した第 6の実施形態に係る pチャネル型 MOSFET202とを備えている。
[0319] 本実施形態に係る CMOSFET306は、図 24に示した第 11の実施形態に係る CM OSFET304と比較して、 nチャネル型 MOSFET102B及び pチャネル型 MOSFET 202が引張応力を有する第 5の応力具有膜 22に代えて圧縮応力を有する第 7の応 力具有膜 24を有して 、る点にぉ 、て相違して 、る。
[0320] すなわち、本実施形態に係る CMOSFET306においては、 nチャネル型 MOSFE T102Bと pチャネル型 MOSFET202の双方を覆って圧縮応力を有する第 7の応力 具有膜 24が形成されて ヽる。
[0321] nチャネル型 MOSFET102B及び pチャネル型 MOSFET202が第 5の応力具有 膜 22に代えて第 7の応力具有膜 24を有している点を除いて、本実施形態に係る CM OSFET306は第 11の実施形態に係る CMOSFET304と同一の構造を有している 。このため、第 11の実施の形態に係る CMOSFET304と同一の構成要素には同一 の参照符号を付し、それらの説明は省略する。
[0322] 以下、本実施形態に係る CMOSFET306の効果を説明する。
[0323] 本実施形態に係る CMOSFET306によれば、ゲート電極 7、サイドウォール 8及び ソース ·ドレインの領域上に圧縮応力を有する第 7の応力具有膜 24が厚く存在するた め、 ρチャネル型 MOSFET202のチャネルに強い圧縮歪みが加わる。さらに、 pチヤ ネル型 MOSFET202のゲート電極 7上に形成された引張応力を有する第 8の応力
具有膜 14がチャネルの圧縮歪みを助長するので、 pチャネル型 MOSFET202のチ ャネル領域におけるホールの移動度を大きく向上させることができる。
[0324] 本実施形態に係る CMOSFET306の製造方法は、図 24に示した第 11の実施形 態に係る CMOSFET304の製造方法と基本的に同一である。すなわち、本実施形 態に係る CMOSFET306の製造方法は、第 11の実施の形態に係る CMOSFET3 04の製造方法と比較して、第 5の応力具有膜 22の形成材料に代えて第 7の応力具 有膜 24の形成材料を用いる点にぉ 、てのみ異なる。
[0325] また、本実施形態に係る CMOSFET306においては、図 10に示した第 3の実施形 態の第 1の変更例に係る nチャネル型 MOSFET102Aと同様に、第 6の応力具有膜 12及び第 8の応力具有膜 14は各ゲート電極 7上にのみ形成することもできる。
(第 14の実施の形態)
図 27は、本発明の第 14の実施の形態に係る CMOSFET307の構成を示す断面 図である。
[0326] 本実施形態に係る CMOSFET307は、図 5 (b)に示した第 2の実施形態に係る n チャネル型 MOSFET101と、 pチャネル型 MOSFET201Cとを備えている。
[0327] 本実施形態に係る CMOSFET307は、図 19 (e)に示した第 8の実施の形態に係 る CMOSFET301と比較して、 pチャネル型 MOSFET201C力 引張応力を有する 第 2の応力具有膜 13に代えて、圧縮応力を有する第 1の応力具有膜 11を有してい る点にお 、て相違して 、る。
[0328] pチャネル型 MOSFET201Cが第 2の応力具有膜 13に代えて第 1の応力具有膜 1 1を有している点を除いて、本実施形態に係る CMOSFET307は図 19 (e)に示した 第 8の実施の形態に係る CMOSFET301と同一の構造を有している。このため、第 8の実施の形態に係る CMOSFET301と同一の構成要素には同一の参照符号を付 し、それらの説明は省略する。
[0329] 以下、本実施形態に係る CMOSFET307の効果について説明する。
[0330] nチャネル型 MOSFET101においては、第 8の実施の形態と同様に、ゲート電極 7 上に形成された圧縮応力を有する第 1の応力具有膜 11はチャネルに弓 I張応力を与 え、さらに、ゲート電極 7、サイドウォール 8及びソース'ドレイン領域を覆って形成され
た引張応力を有する第 3の応力具有膜 21もチャネルに引張応力を与えるため、 nチ ャネル型 MOSFET101のチャネルが引張方向に大きく歪み、電子の移動度を大き く向上させることができる。
[0331] 次に、本実施形態に係る CMOSFET307の製造方法について説明する。
[0332] 図 19 (e)に示した第 8の実施形態に係る CMOSFET301の製造方法において、 p チャネル型 MOSFET201Cの領域内の引張応力を有する第 2の応力具有膜 13を 形成する工程〔図 16 (b)〕と、 nチャネル型 MOSFET101の領域内の第 2の応力具 有膜 13を除去する工程〔図 16 (c)〕とを省略することにより、本実施形態に係る CMO SFET307の製造方法を得ることができる。
[0333] すなわち、第 8の実施形態に係る CMOSFET301の製造方法においては、 nチヤ ネル型 MOSFET101及び pチャネル型 MOSFET201にそれぞれ第 1の応力具有 膜 11及び第 2の応力具有膜 13を形成するために複数の工程を必要としていたが、 本実施形態に係る CMOSFET307の製造方法においては、単一の工程により、 nチ ャネル型 MOSFET101及び pチャネル型 MOSFET201Cに第 1の応力具有膜 11 を形成することが可能である。
[0334] 本実施形態に係る CMOSFET307に対しては、さらに、以下の 3つの変更例があ る。
[0335] 本実施形態に係る CMOSFET307においては、図 20に示した第 8の実施の形態 の第 1の変更例と同様に、 nチャネル型 MOSFET101及び pチャネル型 MOSFET 201Cにおける各ゲート電極 7の上方に位置する第 3の応力具有膜 21及び第 4の応 力具有膜 23の部分を応力緩和部として形成することも可能である。
[0336] 第 3の応力具有膜 21及び第 4の応力具有膜 23は応力緩和部において、すなわち 、第 1の応力具有膜 11上において、応力を有しない。
[0337] 応力緩和部は、イオン注入 Iimにより第 3の応力具有膜 21及び第 4の応力具有膜 2 3のゲート電極 7の上部の部分のみ応力を緩和させることにより、形成される。
[0338] あるいは、本実施形態に係る CMOSFET307においては、図 6 (b)に示した第 2の 実施形態の第 1の変更例と同様に、 nチャネル型 MOSFET101及び pチャネル型 M OSFET201Cにおける各ゲート電極 7の上方において、応力緩和部として、第 3の
応力具有膜 21及び第 4の応力具有膜 23に切欠き領域を形成することも可能である。
[0339] また、本実施形態に係る CMOSFET307においては、図 8に示した第 2の実施形 態の第 3の変更例と同様に、第 3の応力具有膜 21及び第 4の応力具有膜 23が第 1 の応力具有膜 11の表面高さに到達する高さになるように形成することができる。
[0340] 本実施形態に係る CMOSFET307にお!/、ては、 nチャネル型 MOSFET101にお ける圧縮応力を有する第 1の応力具有膜 11上の引張応力を有する第 3の応力具有 膜 21はチャネルに圧縮歪みを与え、 pチャネル型 MOSFET201Cにおける圧縮応 力を有する第 1の応力具有膜 11上の圧縮応力を有する第 4の応力具有膜 23はチヤ ネルに引張歪みを与える。
[0341] これに対して、上記の 3つの変更例においては、第 1の応力具有膜 11上の第 3の 応力具有膜 21及び第 4の応力具有膜 23は応力を有していないので、あるいは、第 1 の応力具有膜 11上に第 3の応力具有膜 21及び第 4の応力具有膜 23が存在してい な!ヽので、チャネルに圧縮歪みまたは引張歪みを与えな!/、。
[0342] 従って、これら 3つの変更例の方が本実施形態に係る CMOSFET307よりも nチヤ ネル型 MOSFET101及び pチャネル型 MOSFET201Cのチャネルを大きく歪ませ ることが可能であり、 nチャネル型 MOSFET101のチャネル領域における電子の移 動度及び Pチャネル型 MOSFET201Cのチャネル領域におけるホールの移動度を さらに向上させることができる。
[0343] なお、 1番目の変更例に係わる CMOSFETの製造方法は、第 8の実施の形態の第 1の変更例の製造方法と同様である。
(第 15の実施の形態)
図 28は、本発明の第 15の実施の形態に係る CMOSFET308の構成を示す断面 図である。
[0344] 本実施形態に係る CMOSFET308は、図 9 (d)に示した第 3の実施形態に係る n チャネル型 MOSFET102と、 pチャネル型 MOSFET202Bとを備えて!/、る。
[0345] 本実施形態に係る CMOSFET308は、図 22 (g)に示した第 9の実施形態に係る C MOSFET302と比較して、 pチャネル型 MOSFET202B力 引張応力を有する第 8 の応力具有膜 14に代えて、圧縮応力を有する第 6の応力具有膜 12を有している点
において相違している。
[0346] すなわち、本実施形態に係る CMOSFET308においては、 nチャネル型 MOSFE T102に形成された第 5の応力具有膜 22及び pチャネル型 MOSFET202Bに形成 された第 7の応力具有膜 24の双方を覆って圧縮応力を有する第 6の応力具有膜 12 が形成されている。
[0347] pチャネル型 MOSFET202Bが第 8の応力具有膜 14に代えて第 6の応力具有膜 1 2を有している点を除いて、本実施形態に係る CMOSFET308は図 22 (g)に示した 第 9の実施形態に係る CMOSFET302と同一の構造を有している。このため、第 9 の実施の形態に係る CMOSFET302と同一の構成要素には同一の参照符号を付 し、それらの説明は省略する。
[0348] 以下、本実施形態に係る CMOSFET308の効果を説明する。
[0349] 本実施形態に係る CMOSFET308によれば、 nチャネル型 MOSFET102におい ては、ゲート電極 7、サイドウォール 8及びソース'ドレイン領域を覆って、引張応力を 有する第 5の応力具有膜 22が厚く存在するので、 nチャネル型 MOSFET102のチ ャネルには、より強い引張歪みが加わり、 nチャネル型 MOSFET102におけるキヤリ ァ (電子)の移動度を大きく向上させることができる。
[0350] また、 pチャネル型 MOSFET202Bにお!/ヽては、ゲート電極 7、サイドウォール 8及 びソース'ドレイン領域を覆って、圧縮応力を有する第 7の応力具有膜 24が厚く存在 するので、 pチャネル型 MOSFET202Bのチャネルには、より強い圧縮歪みが加わり 、 ρチャネル型 MOSFET202Bにおけるキャリア(ホール)の移動度を大きく向上させ ることがでさる。
[0351] 第 9の実施の形態の製造方法において、 pチャネル型 MOSFET202の領域内の 圧縮応力を有する第 6の応力具有膜 12を除去する工程と、引張応力を有する第 8の 応力具有膜 14を成膜し、 nチャネル型 MOSFET102の領域内の第 8の応力具有膜 14を除去する工程とを省くことにより、本実施形態に係る CMOSFET308の製造方 法を得ることができる。
[0352] すなわち、第 9の実施の形態に係る CMOSFET302の製造方法においては、第 6 の応力具有膜 12及び第 8の応力具有膜 14を形成するために複数の工程を実施す
る必要があった力 本実施形態に係る CMOSFET308の製造方法においては、第 6の応力具有膜 12のみを形成すればよいため、工程数を削減することが可能である
[0353] また、本実施形態に係る CMOSFET308においては、図 10に示した第 3の実施形 態の第 1の変更例に係る nチャネル型 MOSFET102Aと同様に、 nチャネル型 MOS FET102において、第 6の応力具有膜 12はゲート電極 7上にのみ形成することもで きる。 pチャネル型 MOSFET202Bの領域においては、第 6の応力具有膜 12はその まま残しておくことが可能である。
(第 16の実施の形態)
図 29は、本発明の第 16の実施の形態に係る CMOSFET309の構成を示す断面 図である。
[0354] 本実施形態に係る CMOSFET309は、 nチャネル型 MOSFET101Eと、図 12に 示した第 5の実施形態に係る pチャネル型 MOSFET201とを備えている。
[0355] 本実施形態に係る CMOSFET309は、図 19 (e)に示した第 8の実施の形態に係 る CMOSFET301と比較して、 nチャネル型 MOSFET101E力 圧縮応力を有する 第 1の応力具有膜 11に代えて、引張応力を有する第 2の応力具有膜 13を有してい る点にお 、て相違して 、る。
[0356] nチャネル型 MOSFET101Eが第 1の応力具有膜 11に代えて第 2の応力具有膜 1 3を有している点を除いて、本実施形態に係る CMOSFET309は図 19 (e)に示した 第 8の実施の形態に係る CMOSFET301と同一の構造を有している。このため、第 8の実施の形態に係る CMOSFET301と同一の構成要素には同一の参照符号を付 し、それらの説明は省略する。
[0357] 以下、本実施形態に係る CMOSFET309の効果について説明する。
[0358] pチャネル型 MOSFET201においては、第 8の実施の形態と同様に、ゲート電極 7 上に形成された引張応力を有する第 2の応力具有膜 13はチャネルに圧縮応力を与 え、さらに、ゲート電極 7、サイドウォール 8及びソース'ドレイン領域を覆って形成され ている圧縮応力を有する第 4の応力具有膜 23もチャネルに圧縮応力を与えるため、 チャネルが圧縮方向に大きく歪み、ホールの移動度を大きく向上させることができる。
[0359] 以下、本実施形態に係る CMOSFET309の製造方法について説明する。
[0360] 第 8の実施の形態に係る CMOSFET301の製造方法において、 nチャネル型 MO SFET101の領域内の圧縮応力を有する第 1の応力具有膜 11を形成する工程と、 p チャネル型 MOSFET20の領域内の第 1の応力具有膜 11を除去する工程とを省くこ とにより、本実施形態に係る CMOSFET309の製造方法を得ることができる。
[0361] すなわち、第 8の実施形態に係る CMOSFET301の製造方法においては、 nチヤ ネル型 MOSFET101及び pチャネル型 MOSFET201にそれぞれ第 1の応力具有 膜 11及び第 2の応力具有膜 13を形成するために複数の工程を必要としていたが、 本実施形態に係る CMOSFET309の製造方法においては、単一の工程により、 nチ ャネル型 MOSFET101E及び pチャネル型 MOSFET201に第 2の応力具有膜 13 を形成することが可能である。
[0362] 本実施形態に係る CMOSFET309に対しては、さらに、以下の 3つの変更例があ る。
[0363] 本実施形態に係る CMOSFET309においては、図 20に示した第 8の実施の形態 の第 1の変更例と同様に、 nチャネル型 MOSFET101E及び pチャネル型 MOSFE T201における各ゲート電極 7の上方に位置する第 3の応力具有膜 21及び第 4の応 力具有膜 23の部分を応力緩和部として形成することも可能である。
[0364] 第 3の応力具有膜 21及び第 4の応力具有膜 23は応力緩和部において、すなわち 、第 2の応力具有膜 13上において、応力を有しない。
[0365] 応力緩和部は、イオン注入 Iimにより第 3の応力具有膜 21及び第 4の応力具有膜 2 3のゲート電極 7の上部の部分のみ応力を緩和させることにより、形成される。
[0366] あるいは、本実施形態に係る CMOSFET309においては、図 6 (b)に示した第 2の 実施形態の第 1の変更例と同様に、 nチャネル型 MOSFET101E及び pチャネル型 MOSFET201における各ゲート電極 7の上方において、応力緩和部として、第 3の 応力具有膜 21及び第 4の応力具有膜 23に切欠き領域を形成することも可能である。
[0367] また、本実施形態に係る CMOSFET309においては、図 8に示した第 2の実施形 態の第 3の変更例と同様に、第 3の応力具有膜 21及び第 4の応力具有膜 23が第 2 の応力具有膜 13の表面高さに到達する高さになるように形成することができる。
[0368] 本実施形態に係る CMOSFET309においては、 nチャネル型 MOSFET101Eに おける引張応力を有する第 2の応力具有膜 13上の引張応力を有する第 3の応力具 有膜 21はチャネルに圧縮歪みを与え、 pチャネル型 MOSFET201における弓 |張応 力を有する第 2の応力具有膜 13上の圧縮応力を有する第 4の応力具有膜 23はチヤ ネルに引張歪みを与える。
[0369] これに対して、上記の 3つの変更例においては、第 2の応力具有膜 13上の第 3の 応力具有膜 21及び第 4の応力具有膜 23は応力を有していないので、あるいは、第 2 の応力具有膜 13上に第 3の応力具有膜 21及び第 4の応力具有膜 23が存在してい な!ヽので、チャネルに圧縮歪みまたは引張歪みを与えな!/、。
[0370] 従って、これら 3つの変更例の方が本実施形態に係る CMOSFET309よりも nチヤ ネル型 MOSFET101E及び pチャネル型 MOSFET201のチャネルを大きく歪ませ ることが可能であり、 nチャネル型 MOSFET101Eのチャネル領域における電子の 移動度及び Pチャネル型 MOSFET201のチャネル領域におけるホールの移動度を さらに向上させることができる。
[0371] なお、 1番目の変更例に係わる CMOSFETの製造方法は、第 8の実施の形態の第 1の変更例の製造方法と同様である。
(第 17の実施の形態)
図 30は、本発明の第 17の実施の形態に係る CMOSFET310の構成を示す断面 図である。
[0372] 本実施形態に係る CMOSFET310は、 nチャネル型 MOSFET102Cと、図 14に 示した第 6の実施形態に係る pチャネル型 MOSFET202とを備えている。
[0373] 本実施形態に係る CMOSFET310は、図 22 (g)に示した第 9の実施形態に係る C MOSFET302と比較して、 nチャネル型 MOSFET102Cが、圧縮応力を有する第 6の応力具有膜 12に代えて、引張応力を有する第 5の応力具有膜 22を有している 点において相違している。
[0374] すなわち、本実施形態に係る CMOSFET310においては、 nチャネル型 MOSFE T102Cに形成された第 5の応力具有膜 22及び pチャネル型 MOSFET202に形成 された第 7の応力具有膜 24の双方を覆って引張応力を有する第 8の応力具有膜 14
が形成されている。
[0375] nチャネル型 MOSFET102Cが第 6の応力具有膜 12に代えて第 5の応力具有膜 2 2を有している点を除いて、本実施形態に係る CMOSFET310は図 22 (g)に示した 第 9の実施形態に係る CMOSFET302と同一の構造を有している。このため、第 9 の実施の形態に係る CMOSFET302と同一の構成要素には同一の参照符号を付 し、それらの説明は省略する。
[0376] 以下、本実施形態に係る CMOSFET310の効果を説明する。
[0377] 本実施形態に係る CMOSFET310によれば、 nチャネル型 MOSFET102Cにお いては、ゲート電極 7、サイドウォール 8及びソース'ドレイン領域を覆って、引張応力 を有する第 5の応力具有膜 22が厚く存在するので、 nチャネル型 MOSFET102Cの チャネルには、より強い引張歪みが加わり、 nチャネル型 MOSFET102Cにおけるキ ャリア (電子)の移動度を大きく向上させることができる。
[0378] また、 pチャネル型 MOSFET202においては、ゲート電極 7、サイドウォール 8及び ソース ·ドレイン領域を覆って、圧縮応力を有する第 7の応力具有膜 24が厚く存在す るので、 pチャネル型 MOSFET202のチャネルには、より強い圧縮歪みが加わり、 p チャネル型 MOSFET202におけるキャリア(ホール)の移動度を大きく向上させるこ とがでさる。
[0379] 以下、本実施形態に係る CMOSFET310の製造方法を説明する。
[0380] 第 9の実施の形態に係る CMOSFET302の製造方法において、 nチャネル型 MO SFET102の領域内の引張応力を有する第 8の応力具有膜 14を除去する工程と、 圧縮応力を有する第 6の応力具有膜 12を成膜し、 pチャネル型 MOSFET202の領 域内の第 6の応力具有膜 12を除去する工程とを省略することにより、本実施形態に 係る CMOSFET310の製造方法を得ることができる。
[0381] すなわち、第 9の実施の形態に係る CMOSFET302の製造方法においては、第 6 の応力具有膜 12及び第 8の応力具有膜 14を形成するために複数の工程を実施す る必要があった力 本実施形態に係る CMOSFET310の製造方法においては、第 8の応力具有膜 14のみを形成すればよいため、工程数を削減することが可能である
また、本実施形態に係る CMOSFET310においては、図 10に示した第 3の実施形 態の第 1の変更例に係る nチャネル型 MOSFET102Aと同様に、 pチャネル型 MOS FET202において、第 8の応力具有膜 14はゲート電極 7上にのみ形成することもで きる。 nチャネル型 MOSFET102Cの領域においては、第 8の応力具有膜 14はその まま残しておくことが可能である。
Claims
[1] nチャネル型 MOSFETを有する半導体装置であって、
前記 nチャネル型 MOSFETのゲート電極上に形成され、局所的に圧縮応力を有 する第 1の応力具有膜を備えていることを特徴とする半導体装置。
[2] pチャネル型 MOSFETを有する半導体装置であって、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、局所的に引張応力を有 する第 2の応力具有膜を備えていることを特徴とする半導体装置。
[3] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのゲート電極上に形成され、局所的に圧縮応力を有 する第 1の応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、局所的に引張応力を有 する第 2の応力具有膜と、
を備えて ヽることを特徴とする半導体装置。
[4] 前記 nチャネル型 MOSFETを覆い、引張応力を有する第 3の応力具有膜を備えて いることを特徴とする請求項 1または 3に記載の半導体装置。
[5] 前記 pチャネル型 MOSFETを覆 ヽ、圧縮応力を有する第 4の応力具有膜を備えて いることを特徴とする請求項 2または 3に記載の半導体装置。
[6] nチャネル型 MOSFETを有する半導体装置であって、
前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 1の 応力具有膜と、
前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記第 1の応力 具有膜の高さとほぼ等しい高さを有し、引張応力を有する第 3の応力具有膜と、 を備えることを特徴とする半導体装置。
[7] pチャネル型 MOSFETを有する半導体装置であって、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 2の 応力具有膜と、
前記 Pチャネル型 MOSFETのソース'ドレイン領域上に形成され、前記第 2の応力 具有膜の高さとほぼ等しい高さを有し、圧縮応力を有する第 7の応力具有膜と、
を備えることを特徴とする半導体装置。
[8] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 1の 応力具有膜と、
前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記第 1の応力 具有膜の高さとほぼ等しい高さを有し、引張応力を有する第 3の応力具有膜と、 前記 Pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 2の 応力具有膜と、
前記 Pチャネル型 MOSFETのソース'ドレイン領域上に形成され、前記第 2の応力 具有膜の高さとほぼ等しい高さを有し、圧縮応力を有する第 7の応力具有膜と、 を備えることを特徴とする半導体装置。
[9] nチャネル型 MOSFETを有する半導体装置であって、
前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの引張応力を有する第 5の応力 具有膜と、
前記 nチャネル型 MOSFETのゲート電極及び前記第 5の応力具有膜上に全面的 に形成され、圧縮応力を有する第 6の応力具有膜と、
を備えることを特徴とする半導体装置。
[10] pチャネル型 MOSFETを有する半導体装置であって、
前記 Pチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 pチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの圧縮応力を有する第 7の応力 具有膜と、
前記 Pチャネル型 MOSFETのゲート電極及び前記第 7の応力具有膜上に全面的 に形成され、引張応力を有する第 8の応力具有膜と、
を備えることを特徴とする半導体装置。
[11] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さを有し、引張応力を有する第 5の
応力具有膜と、
前記 nチャネル型 MOSFETのゲート電極及び前記第 5の応力具有膜上に全面的 に形成され、圧縮応力を有する第 6の応力具有膜と、
前記 Pチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 pチャネル 型 MOSFETのゲート電極の高さとほぼ等 、高さを有し、圧縮応力を有する第 7の 応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極及び前記第 7の応力具有膜上に全面的 に形成され、引張応力を有する第 8の応力具有膜と、
を備えることを特徴とする半導体装置。
[12] nチャネル型 MOSFETを有する半導体装置であって、
前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの引張応力を有する第 5の応力 具有膜と、
前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の 応力具有膜と、
を備えることを特徴とする半導体装置。
[13] pチャネル型 MOSFETを有する半導体装置であって、
前記 Pチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 pチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの圧縮応力を有する第 7の応力 具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の 応力具有膜と、
を備えることを特徴とする半導体装置。
[14] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さを有し、引張応力を有する第 5の 応力具有膜と、
前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の
応力具有膜と、
前記 Pチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 pチャネル 型 MOSFETのゲート電極の高さとほぼ等 、高さを有し、圧縮応力を有する第 7の 応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の 応力具有膜と、
を備えることを特徴とする半導体装置。
[15] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのゲート電極上に形成され、局所的に圧縮応力を有 する第 1の応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、局所的に引張応力を有 する第 2の応力具有膜と、
前記 nチャネル型 MOSFETを覆 、、引張応力を有する第 3の応力具有膜と、 前記 Pチャネル型 MOSFETを覆 ヽ、圧縮応力を有する第 4の応力具有膜と、 を備えることを特徴とする半導体装置。
[16] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのゲート電極上及び前記 pチャネル型 MOSFETのゲ ート電極上にそれぞれ形成され、局所的に圧縮応力を有する第 1の応力具有膜と、 前記 nチャネル型 MOSFETを覆 、、引張応力を有する第 3の応力具有膜と、 前記 Pチャネル型 MOSFETを覆 ヽ、圧縮応力を有する第 4の応力具有膜と、 を備えることを特徴とする半導体装置。
[17] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのゲート電極上及び前記 pチャネル型 MOSFETのゲ ート電極上に形成され、局所的に引張応力を有する第 2の応力具有膜と、
前記 nチャネル型 MOSFETを覆 、、引張応力を有する第 3の応力具有膜と、 前記 Pチャネル型 MOSFETを覆 ヽ、圧縮応力を有する第 4の応力具有膜と、 を備えることを特徴とする半導体装置。
[18] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、
前記 nチャネル型 MOSFETのゲート電極上に形成され、局所的に圧縮応力を有 する第 1の応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、局所的に引張応力を有 する第 2の応力具有膜と、
前記 nチャネル型 MOSFET及び前記 pチャネル型 MOSFETを覆 、、引張応力を 有する第 3の応力具有膜と、
を備えることを特徴とする半導体装置。
[19] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのゲート電極上に形成され、局所的に圧縮応力を有 する第 1の応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、局所的に引張応力を有 する第 2の応力具有膜と、
前記 nチャネル型 MOSFET及び前記 pチャネル型 MOSFETを覆!、、圧縮応力を 有する第 4の応力具有膜と、
を備えることを特徴とする半導体装置。
[20] 前記第 3の応力具有膜及び前記第 4の応力具有膜の少なくとも何れか一方は、前 記ゲート電極上にぉ 、て、応力が緩和されて 、る部分を備えて 、ることを特徴とする 請求項 4、 5及び 15乃至 19の何れか一項に記載の半導体装置。
[21] 前記第 3の応力具有膜及び前記第 4の応力具有膜の少なくとも何れか一方は、前 記ゲート電極上において、切欠き領域を備えていることを特徴とする請求項 4、 5及び 15乃至 19の何れか一項に記載の半導体装置。
[22] 前記 nチャネル型 MOSFETまたは前記 pチャネル型 MOSFETのソース ·ドレイン 領域上を覆う前記第 3の応力具有膜または前記第 4の応力具有膜は、その表面が、 前記第 1の応力具有膜または前記第 2の応力具有膜の表面と一致する程度の厚さを 有していることを特徴とする請求項 4、 5及び 15乃至 21の何れか一項に記載の半導 体装置。
[23] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 pチャネル型 MOS
FETのソース'ドレイン領域上にそれぞれ形成され、各ゲート電極の高さとほぼ等し い高さの引張応力を有する第 5の応力具有膜と、
前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の 応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の 応力具有膜と、
を備えることを特徴とする半導体装置。
[24] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 pチャネル型 MOS FETのソース'ドレイン領域上にそれぞれ形成され、各ゲート電極の高さとほぼ等し い高さの圧縮応力を有する第 7の応力具有膜と、
前記 nチャネル型 MOSFETのゲート電極上に形成され、圧縮応力を有する第 6の 応力具有膜と、
前記 Pチャネル型 MOSFETのゲート電極上に形成され、引張応力を有する第 8の 応力具有膜と、
を備えることを特徴とする半導体装置。
[25] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの引張応力を有する第 5の応力 具有膜と、
前記 Pチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 pチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの圧縮応力を有する第 7の応力 具有膜と、
前記 nチャネル型 MOSFETのゲート電極上及び前記 pチャネル型 MOSFETのゲ ート電極上に形成され、圧縮応力を有する第 6の応力具有膜と、前記 nチャネル型 M OSFETのゲート電極上及び前記 pチャネル型 MOSFETのゲート電極上に形成さ れ、引張応力を有する第 8の応力具有膜との何れか一方と、
を備えることを特徴とする半導体装置。
[26] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 pチャネル型 MOS FETのソース'ドレイン領域上にそれぞれ形成され、各ゲート電極の高さとほぼ等し い高さの引張応力を有する第 5の応力具有膜と、
前記 nチャネル型 MOSFETを覆って前記第 5の応力具有膜上に形成され、圧縮 応力を有する第 6の応力具有膜と、
前記 Pチャネル型 MOSFETを覆って前記第 5の応力具有膜上に形成され、引張 応力を有する第 8の応力具有膜と、
を備えることを特徴とする半導体装置。
[27] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上及び前記 pチャネル型 MOS FETのソース'ドレイン領域上にそれぞれ形成され、各ゲート電極の高さとほぼ等し い高さの圧縮応力を有する第 7の応力具有膜と、
前記 nチャネル型 MOSFETを覆って前記第 7の応力具有膜上に形成され、圧縮 応力を有する第 6の応力具有膜と、
前記 Pチャネル型 MOSFETを覆って前記第 7の応力具有膜上に形成され、引張 応力を有する第 8の応力具有膜と、
を備えることを特徴とする半導体装置。
[28] nチャネル型 MOSFETと pチャネル型 MOSFETとを有する半導体装置であって、 前記 nチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 nチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの引張応力を有する第 5の応力 具有膜と、
前記 Pチャネル型 MOSFETのソース ·ドレイン領域上に形成され、前記 pチャネル 型 MOSFETのゲート電極の高さとほぼ等しい高さの圧縮応力を有する第 7の応力 具有膜と、
前記 nチャネル型 MOSFET及び前記 pチャネル型 MOSFETを覆って前記第 5の 応力具有膜及び前記第 7の応力具有膜上に形成され、圧縮応力を有する第 6の応 力具有膜と、前記 nチャネル型 MO SFET及び前記 pチャネル型 MO SFETを覆つて
前記第 5の応力具有膜及び前記第 7の応力具有膜上に形成され、引張応力を有す る第 8の応力具有膜との何れか一方と、
を備えることを特徴とする半導体装置。
[29] 前記第 1の応力具有膜に代えて、前記 nチャネル型 MOSFETのゲート電極の上 部の少なくとも一部に形成され、圧縮応力を有する第 1の応力具有導電膜を備えて いることを特徴とする請求項 1、 3、 15、 16、 18、 19及び 20の何れか一項に記載の 半導体装置。
[30] 前記第 2の応力具有膜に代えて、前記 pチャネル型 MOSFETのゲート電極の上部 の少なくとも一部に形成され、引張応力を有する第 2の応力具有導電膜を備えている ことを特徴とする請求項 2、 3、 15、 17、 18、 19及び 20の何れか一項に記載の半導 体装置。
[31] 前記第 1、第 2、第 6または第 8の応力具有膜が、炭素、酸素若しくは窒素の珪ィ匕物 あるいはそれらの水素添カ卩物、及び、アルミニウム、ハフニウム、タンタル、ジルコ-ゥ ム若しくは珪素の酸ィ匕物あるいはそれらの窒素添加物、の中の少なくとも一つを含む ことを特徴とする請求項 1、 2、 3、 6乃至 19、 23乃至 28の何れか一項に記載の半導 体装置。
[32] 前記第 1または第 2の応力具有導電膜が、コバルト、ニッケル若しくはチタンのいず れかを含有するシリサイド、または、タングステン、アルミニウム、銅若しくは白金、の 中の少なくとも何れか一つを含むことを特徴とする請求項 1、 2、 3、 15乃至 19及び 2 2の何れか一項に記載の半導体装置。
[33] 前記 nチャネル型 MOSFET及び前記 pチャネル型 MOSFETの少なくとも何れか 一方が、シリコン、ゲルマニウムを含有するシリコン及びカーボンを含有するシリコン の何れか一つからなる基板上に形成されていることを特徴とする 1乃至 32の何れか 一項に記載の半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007536462A JP5109660B2 (ja) | 2005-09-21 | 2006-09-13 | 半導体装置 |
US12/067,619 US20090045466A1 (en) | 2005-09-21 | 2006-09-13 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005273117 | 2005-09-21 | ||
JP2005-273117 | 2005-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007034718A1 true WO2007034718A1 (ja) | 2007-03-29 |
Family
ID=37888769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/318140 WO2007034718A1 (ja) | 2005-09-21 | 2006-09-13 | 半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090045466A1 (ja) |
JP (1) | JP5109660B2 (ja) |
WO (1) | WO2007034718A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294971A (ja) * | 2006-04-24 | 2007-11-08 | Toshiba Corp | トランジスタのゲート上面での応力緩和 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8729635B2 (en) * | 2006-01-18 | 2014-05-20 | Macronix International Co., Ltd. | Semiconductor device having a high stress material layer |
US8154107B2 (en) * | 2007-02-07 | 2012-04-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and a method of fabricating the device |
CN101641792B (zh) | 2007-02-22 | 2012-03-21 | 富士通半导体股份有限公司 | 半导体器件及其制造方法 |
JP5569243B2 (ja) * | 2010-08-09 | 2014-08-13 | ソニー株式会社 | 半導体装置及びその製造方法 |
US8372705B2 (en) | 2011-01-25 | 2013-02-12 | International Business Machines Corporation | Fabrication of CMOS transistors having differentially stressed spacers |
CN103730416A (zh) * | 2012-10-10 | 2014-04-16 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法 |
US9537007B2 (en) | 2015-04-07 | 2017-01-03 | Qualcomm Incorporated | FinFET with cut gate stressor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08321612A (ja) * | 1995-05-26 | 1996-12-03 | Ricoh Co Ltd | 半導体装置及びその製造方法 |
JP2002093921A (ja) * | 2000-09-11 | 2002-03-29 | Hitachi Ltd | 半導体装置の製造方法 |
WO2002043151A1 (en) * | 2000-11-22 | 2002-05-30 | Hitachi, Ltd | Semiconductor device and method for fabricating the same |
JP2003086708A (ja) * | 2000-12-08 | 2003-03-20 | Hitachi Ltd | 半導体装置及びその製造方法 |
JP2005005633A (ja) * | 2003-06-16 | 2005-01-06 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173312B2 (en) * | 2004-12-15 | 2007-02-06 | International Business Machines Corporation | Structure and method to generate local mechanical gate stress for MOSFET channel mobility modification |
US7589385B2 (en) * | 2005-07-26 | 2009-09-15 | United Microelectronics Corp. | Semiconductor CMOS transistors and method of manufacturing the same |
-
2006
- 2006-09-13 JP JP2007536462A patent/JP5109660B2/ja not_active Expired - Fee Related
- 2006-09-13 US US12/067,619 patent/US20090045466A1/en not_active Abandoned
- 2006-09-13 WO PCT/JP2006/318140 patent/WO2007034718A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08321612A (ja) * | 1995-05-26 | 1996-12-03 | Ricoh Co Ltd | 半導体装置及びその製造方法 |
JP2002093921A (ja) * | 2000-09-11 | 2002-03-29 | Hitachi Ltd | 半導体装置の製造方法 |
WO2002043151A1 (en) * | 2000-11-22 | 2002-05-30 | Hitachi, Ltd | Semiconductor device and method for fabricating the same |
JP2003086708A (ja) * | 2000-12-08 | 2003-03-20 | Hitachi Ltd | 半導体装置及びその製造方法 |
JP2005005633A (ja) * | 2003-06-16 | 2005-01-06 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
TSUNG YI LU ET AL.: "Mobility Enhancement in Local Strain Channel nMOSFETs by Stacked a-Si/Poly-Si Gate and Capping Nitride", IEEE ELECTRON DEVICE LETTERS, vol. 26, no. 4, April 2005 (2005-04-01), pages 267 - 269, XP001230459 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294971A (ja) * | 2006-04-24 | 2007-11-08 | Toshiba Corp | トランジスタのゲート上面での応力緩和 |
Also Published As
Publication number | Publication date |
---|---|
US20090045466A1 (en) | 2009-02-19 |
JPWO2007034718A1 (ja) | 2009-03-19 |
JP5109660B2 (ja) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7528028B2 (en) | Super anneal for process induced strain modulation | |
US7763510B1 (en) | Method for PFET enhancement | |
US8017469B2 (en) | Dual high-k oxides with sige channel | |
WO2007034718A1 (ja) | 半導体装置 | |
US7776732B2 (en) | Metal high-K transistor having silicon sidewall for reduced parasitic capacitance, and process to fabricate same | |
US20090072312A1 (en) | Metal High-K (MHK) Dual Gate Stress Engineering Using Hybrid Orientation (HOT) CMOS | |
US20110212579A1 (en) | Fully Depleted SOI Multiple Threshold Voltage Application | |
JP5357269B2 (ja) | ゲート・スタックを形成する方法 | |
JP2007311796A (ja) | シリコン・ナイトライド・キャップを用いて内因性の応力を加えられたシリサイドを有するcmosデバイスを形成するための構造および方法 | |
JP2009514248A (ja) | 高共有半径の原子を含む埋め込まれた半導体層を利用したシリコンベースのトランジスタに歪みを生成する技術 | |
KR20080037666A (ko) | 응력이 가해진 게이트 금속 실리사이드층을 포함하는고성능 mosfet 및 그 제조 방법 | |
KR20110031103A (ko) | PFET 채널 SiGe를 갖는 금속 게이트 및 하이-케이 유전체 디바이스들 | |
US7384833B2 (en) | Stress liner for integrated circuits | |
US7781844B2 (en) | Semiconductor device having a stressor film | |
CN107818946A (zh) | 具有阈值电压不同的晶体管的cmos电路及其制造方法 | |
KR100702006B1 (ko) | 개선된 캐리어 이동도를 갖는 반도체 소자의 제조방법 | |
CN101262009B (zh) | 场效应晶体管的制造方法 | |
US8502325B2 (en) | Metal high-K transistor having silicon sidewalls for reduced parasitic capacitance | |
US20090179308A1 (en) | Method of Manufacturing a Semiconductor Device | |
US9281246B2 (en) | Strain adjustment in the formation of MOS devices | |
US20110309452A1 (en) | Methods of manufacturing semiconductor devices | |
US20130109186A1 (en) | Method of forming semiconductor devices using smt | |
JPWO2008096587A1 (ja) | 半導体装置 | |
WO2011010407A1 (ja) | 半導体装置及びその製造方法 | |
SG194326A1 (en) | Increased transistor performance by implementing an additional cleaning process in a stress liner approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2007536462 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12067619 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06810097 Country of ref document: EP Kind code of ref document: A1 |