WO2007034544A1 - 電動機制御装置の過温検出方式 - Google Patents

電動機制御装置の過温検出方式 Download PDF

Info

Publication number
WO2007034544A1
WO2007034544A1 PCT/JP2005/017395 JP2005017395W WO2007034544A1 WO 2007034544 A1 WO2007034544 A1 WO 2007034544A1 JP 2005017395 W JP2005017395 W JP 2005017395W WO 2007034544 A1 WO2007034544 A1 WO 2007034544A1
Authority
WO
WIPO (PCT)
Prior art keywords
loss
power semiconductor
temperature
igbt
diode
Prior art date
Application number
PCT/JP2005/017395
Other languages
English (en)
French (fr)
Inventor
Yuji Katsuyama
Shigeru Kojima
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CA2603552A priority Critical patent/CA2603552C/en
Priority to CN200580049137A priority patent/CN100589315C/zh
Priority to EP05785164A priority patent/EP1928083A4/en
Priority to AU2005336596A priority patent/AU2005336596B2/en
Priority to JP2007536365A priority patent/JP4642081B2/ja
Priority to US11/817,446 priority patent/US7791300B2/en
Priority to PCT/JP2005/017395 priority patent/WO2007034544A1/ja
Publication of WO2007034544A1 publication Critical patent/WO2007034544A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/923Specific feedback condition or device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/923Specific feedback condition or device
    • Y10S388/934Thermal condition

Definitions

  • the present invention relates to an overtemperature detection method for an electric motor control device using a high-power semiconductor element.
  • this IPM overheat protection function includes a temperature detector that detects the temperature in the vicinity of the IGBT chip and the diode chip of the semiconductor element for high power, Each chip has a switching speed variable circuit that changes the switching speed according to its temperature.If the temperature of the chip exceeds a certain level, the switching speed of the chip is changed to increase the temperature excessively. There is something to prevent.
  • FIG. 10 shows an example of the internal structure of the intelligent power module (IPM).
  • IPM intelligent power module
  • an IGBT chip, a diode chip 21 and a temperature sensor 22 are installed on an insulating substrate 20, and this insulating substrate 20 is installed on a base plate 23.
  • a control board 24 is installed above, and a gate drive circuit 25 necessary for switching the IGBT is mounted thereon.
  • the outer periphery of all these parts is covered with a case 26.
  • the main circuit terminal 27 for passing current through the IGBT and the diode and the control circuit terminal 28 for passing control signals necessary for switching the IGBT are structured to be led out from the case 26 to the outside.
  • the IPM using a high-power semiconductor element has a temperature sensor 18 installed in the vicinity of the IGBT and diode chip, and the IGBT chip of the high-power semiconductor element, By detecting the temperature in the vicinity of the diode chip, the junction temperature of the IGBT and the diode was estimated, and the junction temperature of the IGBT and the diode itself was not measured.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-96318
  • junction temperature since it is determined by the junction temperature whether or not the high-power semiconductor element fails due to overheating, in order to accurately detect the overpower of the high-power semiconductor element, It is necessary to provide a temperature sensor at the junction (junction)
  • the semiconductor chip of the high-power semiconductor element is a high-voltage part, and when a temperature sensor is provided, it is necessary to insulate it, resulting in an extremely complicated ⁇ expensive structure, which is not practical.
  • the present invention provides an overtemperature detection method capable of performing more accurate overtemperature detection by grasping the junction temperature itself without separately providing a temperature sensor at the junction (junction). With the goal.
  • An overtemperature detection method for an electric motor control device includes an inverter device that controls drive power to an electric motor provided in a vehicle by controlling a high-power semiconductor element, and a direct current of the inverter device.
  • a voltage detection unit for detecting the voltage of the filter capacitor inserted on the side a current detection unit for detecting an output current of the inverter device, a temperature detection unit provided in a cooling means for the high-power semiconductor element,
  • a junction that sequentially calculates the loss associated with the switching operation of the high-power semiconductor device based on the detection signal from each detector, and calculates the junction temperature of the high-power semiconductor device based on the calculated loss value.
  • the temperature calculation unit and a comparison unit that generates an overtemperature detection output when the output of the junction temperature calculation unit reaches a predetermined allowable temperature.
  • An overtemperature detection method for a motor control device is a switch for a high-power semiconductor element.
  • the loss generated by the ching operation is calculated sequentially, and when the junction temperature (junction temperature) of the high-power semiconductor element calculated by this loss reaches the allowable temperature, it is possible to detect overtemperature, so the temperature directly at the junction It has the effect of being able to perform accurate overtemperature detection without providing a sensor.
  • FIG. 1 is a system configuration diagram of an electric motor control apparatus according to Embodiment 1 of the present invention.
  • reference numeral 1 denotes an inverter device which converts DC power supplied from a DC power source 2 into AC and supplies it to the motor 3.
  • the inverter device 1 is composed of six high-power semiconductor elements 4 such as a gate-insulated bipolar transistor (IGBT) and a diode 5 connected in antiparallel thereto, and the IGBT is switching-controlled by a drive control unit 7.
  • a filter capacitor 6 is inserted between the DC power source 2 and the inverter device 1. The voltage of the filter capacitor 6 is detected by the voltage detector 8, and the current flowing through the high power semiconductor element 4 is detected by the current detector 9.
  • a cooling means such as a cooling fin for cooling the high-power semiconductor element is provided with a temperature detection unit 10 for detecting the temperature of the part.
  • Information on the voltage detector 8, the current detector 9, and the temperature detector 10 is input to the junction temperature calculator 11.
  • the junction temperature calculation unit 11 takes the above information and calculates the junction temperature by the method described in detail below.
  • the junction temperature information calculated by the junction temperature calculation unit 11 and the allowable temperature (reference temperature) are compared by the comparison unit 12, and the information of the comparison unit 12 is input to the drive control unit 7, and this drive
  • the output power of the inverter device 1 is controlled by the output signal of the control unit 7.
  • the signal of the drive control unit 7 is also transmitted to the junction temperature calculation unit 11 in order to calculate the junction temperature.
  • the electric motor 3 is a driving power source such as a railway vehicle or an electrically driven automobile.
  • the junction temperature calculation unit 11 includes a signal (Iu, Iv, Iw) from the current detection unit 9 and the temperature detection unit 10. Temperature signal (T) of cooling fin, filter capacitor voltage of voltage detector 8 E and a signal indicating the switching state of the high-power semiconductor element from the drive control unit 7
  • Fig. 2 shows a conceptual diagram of the basic structure of one arm of the high-power semiconductor element that constitutes the inverter device 1.
  • the high-power semiconductor element is composed of IGBT4 and diode 5 as described above. Let I be the current flowing through IGBT4 and I be the current flowing through diode 5. Daiden
  • the voltage between the terminals of the force semiconductor element is V. IGBT4 or high power semiconductor element
  • FIG. 3 (a) shows the current I flowing through the IGBT 4 when the IGBT 4 is turned on and off, and the end of the IGBT.
  • the inter-child voltage V is shown. Multiplying current I and terminal voltage V
  • IGBT CE IGBT CE (IGBT) gives a loss waveform as shown in Fig. 3 (b). The loss that occurs when the IGBT is turned on is called the turn-on loss P. In addition, when the IGBT switching reaches the saturation region, the IGBT
  • a large spike voltage is generated in SAT (IGBT) CE (IGBT).
  • the loss caused by this spike voltage is the turn-off loss P
  • FIG. 4 (a) shows the current I flowing through the diode when the diode is turned on and off
  • the loss that occurs is called the recovery loss P. Also, diode steady-state loss
  • Loss P is caused by the current I flowing through the diode and the saturation voltage V, similar to the IGBT.
  • Figure 5 shows the current detector 9 An example of the detected current waveform is shown.
  • Figure 5 shows the waveform for only one phase, and three motor current signals (I, I, I) with different phases by 120 degrees are obtained by three current detectors.
  • IGBT and diode currents shown in Figs. 3 and 4
  • the voltage waveform is the waveform per pulse.
  • the vehicle control device, the output frequency FS W of the vehicle control device changes in accordance with the rotational speed of the motor.
  • the rotational speed of the motor is small, that is, when the output frequency force is large, the number of pulses increases.
  • the rotational speed of the motor is large, that is, when the output frequency is large, the number of pulses decreases.
  • Figure 5 shows an example of this, and shows the case of 5 pulses.
  • the solid line part shown in Fig. 5 shows the current flowing through the IGBT, and the dotted line part shows the current flowing through the diode.
  • the loss is calculated from the current signal obtained from the current detector 9 below.
  • the phase at which the IGBT is turned on is ⁇ 1 as shown in Fig. 5.
  • the current at phase ⁇ 1 is obtained from the current detector 9, and the current is I. Also, the filter capacitor power at ⁇ 1
  • K is information previously input to the junction calculator.
  • the current detector 9 sequentially obtains current signals from ⁇ 1 to ⁇ 2 and inputs the information to the junction temperature calculator 11.
  • the junction temperature calculation unit 11 sequentially calculates the saturation voltage V of the IGBT from the obtained current signal according to a preset function as shown in FIG.
  • FC ( ⁇ 2) is obtained from the voltage detector 8.
  • the obtained information power turn-on loss is calculated by the following formula.
  • K is information previously input to the junction calculator.
  • IGBT (lPulse) ON (IGNT) SAT (IGBT) OFF (IGBT)
  • the period of energization per pulse of the diode is defined as ⁇ 2 to ⁇ 3. Also, let I be the current flowing in the diode during this period.
  • the current detector 9 sequentially obtains current signals from ⁇ 2 to ⁇ 3 and inputs the information to the junction temperature calculator 11.
  • the junction temperature calculation unit 11 calculates the saturation voltage V of the diode from the obtained current signal by sequential calculation as shown in the following equation.
  • the sensor voltage is given as ⁇ , and this voltage is obtained from the voltage detector 8. Is this information obtained?
  • the turn-on loss is calculated by the following formula.
  • K is information previously input to the junction calculator.
  • the loss per pulse of the diode can be obtained from the following equation.
  • DIODE (lPulse) SAT (DIODE) RR (DIODE)
  • DIODE is as follows.
  • the junction temperature is calculated based on the obtained loss.
  • the loss of the IGBT obtained by the above method is P and the loss of the diode is P, the loss of the high-power semiconductor device
  • junction temperature of these IGBTs and diodes is calculated from the losses of the IGBTs and diodes constituting the above-described high power semiconductor element.
  • the degree difference is calculated from the following formula.
  • R is called thermal resistance and is a characteristic value unique to the device.
  • Figure 7 shows the distribution of thermal resistance piles for temperature calculation.
  • the temperature difference is expressed by the following equation.
  • R like the above, is called a thermal resistance, and is a numerical value specific to the element. Also this
  • the numerical value is also input to the junction temperature calculation unit 11 in advance.
  • the temperature information of the cooler is obtained from the temperature detection unit 10.
  • the temperature of this cooler is T
  • this R is also called thermal resistance and is a numerical value specific to high-power semiconductor devices.
  • junction temperature calculation unit 11 similarly incorporates information on this thermal resistance in advance.
  • the temperature information of the cooler is obtained from the temperature detection unit 10.
  • the temperature of this cooler is T—
  • the junction temperature T of the diode is expressed as follows.
  • junction temperatures of IGBTs and diodes can be obtained. These calculations are performed by a microprocessor.
  • FIG. 8 is a block diagram illustrating a detailed configuration of the comparison unit 12. As described above, the information obtained by the junction temperature calculation unit 11 is input to the comparison unit 12. The comparison unit 12 compares the obtained junction temperature with an allowable value. This comparison unit 12 assumes that the junction temperature T of the IGBT is Al and the allowable junction temperature of the IGBT is B1, and these
  • the diode junction temperature tolerance is set to B2, the comparator 14 to which these are input is provided, and the OR gate 15 to which the outputs of these comparators 13 and 14 are input is provided. is doing.
  • the comparator 13 compares the junction temperature A1 of the IGBT with the allowable value B1 of the junction temperature of the IGBT, and if A1 is equal to or higher than B1, it is determined as overtemperature detection XI.
  • the comparator 14 compares the junction temperature A2 of the diode with the allowable value B2 of the junction temperature of the diode, and when A2 is equal to or higher than B2, it is determined as overheat detection X2.
  • overheat detection X is output from the OR gate 15 as the output of the comparison unit 12. In other words, if either IGBT or diode detects overtemperature, it means that the high-power semiconductor device has detected overtemperature.
  • FIG. 9 is a block diagram illustrating a detailed configuration of the drive control unit 7. The case where the result of overheating detection as described above is used for the output torque limiting operation of the electric motor 3 is shown.
  • 16 is a switch for changing a constant ratio that is multiplied by the maximum torque command value when overheating is detected, and switches from the steady ratio to the reduction ratio in response to the input signal of overtemperature detection X. Is.
  • the reduction ratio is smaller than the steady ratio. This reduction ratio
  • the rate is multiplied by the maximum torque limit value by the multiplier 17 and input to the comparison unit 19 through the first-order lag element 18.
  • the comparison unit 19 compares the signal input through the first-order lag element 18 with the torque command value, and outputs the smaller of the two inputs. This output is the torque control signal. By inputting this signal to the IGBT of the inverter device 1 as a control signal, the output torque of the electric motor 3 is controlled to be suppressed.
  • the first-order lag element 18 returns to the steady ratio when the overtemperature is detected and the torque value decreases and no overtemperature is detected, but when it returns to the steady ratio immediately, a transient current flows to the motor 3 for high power.
  • the semiconductor element may be destroyed by this transient current.
  • the first-order lag element 18 is inserted in order to prevent the torque value from shifting immediately and to prevent the high-power semiconductor element from being destroyed.
  • the switching control of the high-power semiconductor element is performed so that the output torque is reduced based on the detection result of overheating.
  • the present invention is not limited to this.
  • the control can be improved and includes all other applications.
  • FIG. 1 shows a system configuration diagram of a vehicle control device according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a basic configuration for one arm of a high-power semiconductor element constituting the vehicle control apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating current, voltage, and loss flowing in the IGBT of the high-power semiconductor device according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating current, voltage, and loss flowing in a diode of a high power semiconductor device according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a current flowing through a high power semiconductor device according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing V and I according to the embodiment of the present invention.
  • FIG. 7 is a distribution diagram of thermal resistance for calculating temperature according to the embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a detailed configuration of a comparison unit according to the embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a detailed configuration of the drive control unit according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing the internal structure of a conventional intelligent power module (IPM). Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 大電力用半導体素子を含むインバータ装置の直流側に挿入されたフィルタコンデンサの電圧を検出する電圧検出部と、上記インバータ装置の出力電流を検出する電流検出部と、上記大電力用半導体素子の冷却手段に設けられた温度検出部とを備え、上記大電力半導体素子のスイッチング動作により発生する損失を上記検出部出力により逐次計算し、この損失により算出される大電力半導体素子のジャンクション温度が許容温度に達した時に過温検知することを特徴とする車両用制御装置。

Description

明 細 書
電動機制御装置の過温検出方式
技術分野
[0001] この発明は大電力半導体素子を用いた電動機制御装置の過温検出方式に関する
背景技術
[0002] 近年、鉄道車両用、電気駆動自動車用等の電動機制御においては、大電力半導 体素子を用いたインバータ装置によって所望の電力制御を行う方式のものが主流で ある。
このような電力制御に用いられる大電力用半導体素子には過熱による故障を防止 するために過温保護機能を有するインテリジェントパワーモジュール (IPM)を用いる場 合が多い。この IPMの過温保護機能は例えば特開 2004— 96318公報 (特許文献 1 参照)に見られるように、大電力用半導体素子の IGBTチップ、ダイオードチップ近傍 の温度を検出する温度検出器と、上記チップの夫々に対しその温度に応じてスイツ チング速度を変化させるスイッチング速度可変回路とを備え、上記チップの温度が一 定レベルを超えた場合にチップのスイッチング速度を変更して、過度の温度上昇を 防止するようにしたものがある。
[0003] 図 10は上記インテリジェントパワーモジュール (IPM)の内部構造図の一例を示して いる。図において、絶縁基板 20上に IGBTチップ、ダイオードチップ 21、温度センサ 2 2が設置され、またこの絶縁基板 20がベース板 23の上に設置される。一方、上方に は制御基板 24が設置され、これに IGBTのスイッチングに必要なゲートドライブ回路 2 5が搭載されている。これら全ての部品の外周はケース 26で覆われている。 IGBT,ダ ィオードに電流を通すための主回路端子 27及び IGBTのスイッチングに必要な制御 信号を通すための制御回路端子 28は上記ケース 26から外部へ導出される構造にな つている。
上記構造力も明らかなように、大電力用半導体素子を用いる IPMは温度センサ 18 を IGBT、ダイオードチップの近傍に設置して、大電力用半導体素子の IGBTチップ、 ダイオードチップ近傍の温度を検出することにより、 IGBT、ダイオードのジャンクション 温度を推定するもので、 IGBT、ダイオードのジャンクション温度そのものを測定するも のではなかった。
[0004] 特許文献 1 :特開 2004— 96318号公報
発明の開示
発明が解決しょうとする課題
[0005] ところが、大電力用半導体素子が過熱によって故障するかどうかの判断はジャンク シヨン温度で決定されるため、大電力用半導体素子の過温検知を正確に行うために は、半導体チップ部分のジャンクション部 (接合部)に温度センサを設ける必要がある
。ところが、大電力用半導体素子の半導体チップは高圧部であり、温度センサを設け るとなると、絶縁を施す必要もあって、極めて複雑《高価な構造となり、実用的ではな かった。
この発明は、ジャンクション部 (接合部)に温度センサを別途設けることなぐジャンク シヨン温度そのものを把握するようにすることにより、より正確な過温検知を行うことが できる過温検知方式を提供することを目的とする。
課題を解決するための手段
[0006] この発明の電動機制御装置の過温検知方式は、大電力用半導体素子の制御によ り車両に設けられた電動機への駆動電力を制御するインバータ装置と、上記インバ ータ装置の直流側に挿入されたフィルタコンデンサの電圧を検出する電圧検出部と 、上記インバータ装置の出力電流を検出する電流検出部と、上記大電力用半導体 素子の冷却手段に設けられた温度検出部と、上記各検出部からの検出信号により、 上記大電力用半導体素子のスイッチング動作に伴う損失を逐次計算し、この損失計 算値をもとに上記大電力用半導体素子のジャンクション温度を計算するジャンクショ ン温度計算部と、上記ジャンクション温度計算部の出力が所定の許容温度に達した ときに過温検知出力を発生する比較部とからなるものである。
発明の効果
[0007] この発明による電動機用制御装置の過温検知方式は、大電力半導体素子のスイツ チング動作により発生する損失を逐次計算を行い、この損失により算出される大電力 半導体素子のジャンクション温度 (接合温度)が許容温度に達した時に過温検知する ことができるので、ジャンクション部に直接温度センサを設けることなぐ正確な過温 検知を行うことができる効果を有する。
発明を実施するための最良の形態
[0008] 実施の形態 1.
図 1はこの発明の実施の形態 1による電動機制御装置のシステム構成図を示すもの である。図中、 1はインバータ装置であり、直流電源 2から供給された直流電力を交流 に変換して電動機 3に供給するものである。インバータ装置 1は 6つの大電力半導体 素子 4例えばゲート絶縁形バイポーラトランジスタ (IGBT)とこれと逆並列に接続され たダイオード 5とからなり、上記 IGBTは駆動制御部 7によりスイッチング制御される。な お、直流電源 2とインバータ装置 1との間にはフィルタコンデンサ 6が挿入されている。 上記フィルタコンデンサ 6の電圧は電圧検出部 8によって検出され、また大電力半導 体素子 4に流れる電流は電流検出部 9によって検出される。
[0009] 大電力半導体素子を冷却するための冷却フィン等の冷却手段(図示していない)に は、当該部分の温度を検知するため、温度検出部 10が設置されている。上記電圧 検出器 8、電流検出部 9、及び温度検出部 10の情報がジャンクション温度計算部 11 に入力される。ジャンクション温度計算部 11は上記情報を取り込んで以下詳細に説 明する方法でジャンクション温度を計算する。このジャンクション温度計算部 11で計 算されたジャンクション温度の情報と許容温度 (基準温度)とを比較部 12にて比較し 、この比較部 12の情報が上記駆動制御部 7に入力され、この駆動制御部 7の出力信 号により上記インバータ装置 1の出力パワーを制御する。
[0010] また、この駆動制御部 7の信号はジャンクション温度を計算するためにジャンクショ ン温度計算部 11にも伝送される。なお、電動機 3は例えば鉄道車両、電気駆動自動 車等の駆動用動力源である。
図 1のように構成された電動機制御装置において、ジャンクション温度を計算するた めに、ジャンクション温度計算部 11には、電流検出部 9からの信号 (Iu,Iv,Iw)、温度 検出部 10の冷却フィンの温度信号 (T )、電圧検出部 8のフィルタコンデンサ電圧 E 、及び、駆動制御部 7からの大電力半導体素子のスイッチングの状態を示す信号
FC
(Sw)及び出力周波数 (Fsw)の情報が入力される。
[0011] 以下、大電力半導体素子に損失が発生するメカニズムについて説明する。
図 2は上記インバータ装置 1を構成する大電力半導体素子一アーム分の基本構成 概念図を示す。大電力半導体素子は上記したように IGBT4とダイオード 5で構成され る。 IGBT4に流れる電流を I 、ダイオード 5に流れる電流を I とする。また、大電
IGBT DIODE
力半導体素子の端子間電圧を V とする。大電力半導体素子の IGBT4、もしくは、ダ
CE
ィオード 5に電流が流れることで、損失 (熱量)を発生する。
[0012] 図 3(a)は、 IGBT4が ONおよび OFFしたときの IGBT4に流れる電流 I 、 IGBTの端
IGBT
子間電圧 V を示している。電流 I と端子間電圧 V を掛け合わせること
CE(IGBT) IGBT CE (IGBT) で図 3(b)に示すような損失波形が得られる。このうち IGBTが ONした時に発生する損 失をターンオン損失 P と呼ぶ。また、 IGBTのスイッチングが飽和領域になると、 IGBT
ON
には定常損失 P が発生する。これは IGBTに流れる電流 I と IGBTの飽和電
SAT (IGBT) IGBT
圧 V により発生する。更に、 IGBTが OFFになると、 IGBTの両端の電圧 V
SAT(IGBT) CE (IGBT) に大きなスパイク電圧が発生する。このスパイク電圧により発生する損失をターンオフ 損失 P
OFFと呼ぶ。
[0013] 一方、図 4(a)はダイオードが ONおよび OFFした時のダイオードに流れる電流 I 、
DIODE
ダイオードの端子間電圧 V を示している。電流 I と端子間電圧 V
CE (DIODE) DIODE CE (DIODE) を掛け合わせることで図 4(b)に示すような損失波形が得られる。図 4(a)(b)に示すよう に、ダイオードが OFFすると一瞬大きな逆電流が流れる。この電流をリカノリー電流 I
R
と呼び、その時発生する損失をリカバリー損失 P と呼ぶ。また、ダイオードの定常損
R R
失 P は IGBTと同様、ダイオードに流れる電流 I と飽和電圧 V により発生
SAT DIODE SAT (DIODE) する。以上により明らかなように、大電力用半導体素子には、 IGBTに電流が流れる場 合、ターンオン損失 P 、定常損失 P 、ターンオフ損失 P が存在し、ダイォー
ON SAT (IGBT) OFF
ドに電流が流れた場合、定常損失 P 、リカバリー損失 P が存在する。
SAT RR
[0014] 次に、上記損失の算出方法について説明する。
前述したように、電動機に流れる電流は、電流検出部 9により検出され、この検出さ れた電流値はジャンクション温度計算部 11に入力される。図 5にこの電流検出部 9に より検出された電流波形の一例を示している。図 5には 1相分のみの波形を表してお り、それぞれ 3つの電流検出部により位相が 120度ずつ異なる 3つの電動機電流信 号 (I , I , I )が得られる。また、図 3及び図 4に示した IGBT、及びダイオードの電流
U V W
および電圧波形は 1パルス当たりの波形である。
[0015] 車両用制御装置は、電動機の回転速度に応じて車両用制御装置の出力周波数 F SWが変化する。電動機の回転速度が小さい場合、すなわち出力周波数力 、さい場 合、パルス数は多くなり、電動機の回転速度が大きい場合、すなわち出力周波数が 大きい場合、パルス数は少なくなる。図 5はその一例であり、 5パルスの場合を示して いる。
図 5に示す実線部分は IGBTに電流が流れている状態を、点線部分はダイオードに 電流が流れている状態を示している。以下に電流検出部 9から得られた電流信号か ら損失を算出する。
[0016] IGBTのターンオン損失
IGBTがターンオンした位相を図 5に示すように θ 1とする。位相 θ 1時の電流は電流 検出部 9から得られ、その電流を I とする。また、 θ 1時のフィルタコンデンサ電
IGBT( 0 1)
圧を E とし、この電圧は電圧検出部 8から得られる。これら得られた情報からター ンオン損失は以下の式で計算される。
P =Κ X I X Ε
ON (IGBT) 1 IGBT ( 0 1) FC ( fl 1)
Kはジャンクション計算部に予め入力された情報である。
1
[0017] IGBTの定常損失の算出
図 5に示すように IGBTがターンオフするまでの位相を Θ 2とする。電流検出部 9で は θ 1から Θ 2まで逐次に電流信号が得られ、その情報がジャンクション温度計算部 1 1に入力される。ジャンクション温度計算部 11では、その得られた電流信号から図 6 に示されるように予め設定された関数に従って IGBTの飽和電圧 V が逐次計算
SAT (IGBT) により算出される。この関数は予め、ジャンクション温度計算部 11に組み込まれてい る。
V ( =f (I )
SAT (IGBT) SAT IGBT
続いて、下記式に示す計算がジャンクション温度計算部 11で行われ、 IGBTの定常 損失 P
SAT(IGBT)が得られる
[数 1]
Figure imgf000008_0001
[0018] IGBTのターンオフ損失の算出
上記したように、 IGBTがターンオフするまでの位相を Θ 2として、その時得られる電 流値を I とする。また、 Θ 2時のフィルタコンデンサ電圧を E とし、この電圧
IGBT( 8 2) FC ( Θ 2) は電圧検出部 8から得られる。これら得られた情報力 ターンオン損失は以下の式で 計算される。
P =K X I X Ε
OFF (IGBT) 2 IGBT( fl 2) FC ( θ 2)
Kはジャンクション計算部に予め入力された情報である。
2
[0019] IGBTの 1パルス当たりの損失
以上のようにして、 IGBTの 1パルス当たりのターンオン損失、定常損失、ターンオフ 損失が得られる。従って、 IGBTの 1パルス当たりの全損失は下記式より得られる。
P =P +P +P
IGBT(lPulse) ON(IGNT) SAT (IGBT) OFF (IGBT)
IGBTの 1周期間の損失
1周期間にパルス数が Nパルスあると、上記手法は 1周期間に N回繰り返される。従 つて、 1周期間に IGBTで発生ずる損失 P は下記式のようになる。
IGBT
[数 2]
N
■ IGBT = ^ 1 IGBTCkPulse)
[0020] ダイオードの定常損失の算出
ダイオード 1パルス当たりに通電している期間を図 5に示すように Θ 2から Θ 3とする。 またこの期間にダイオードに流れている電流を I とする。
DIODE
電流検出部 9では Θ 2から Θ 3まで逐次に電流信号が得られ、その情報がジャンクショ ン温度計算部 11に入力される。ジャンクション温度計算部 11では、その得られた電 流信号から下記式に示すようにダイオードの飽和電圧 V が逐次計算により算
SAT (DIODE) 出される。
v ( 、=g (I )
SAT (DIODE) SAT DIODE
また、下記式に示す計算がジャンクション温度計算部 11で行われ、ダイオードの定 常常損損 ^失 P
SAT(DIDOE)が得られる
[数 3]
PsAT(DIODE> = 2【DI00E X * SAT(DI0DE) · α 6
[0021] ダイオードのリカバリー損失の算出
次に上記したように、ダイオードがオフする位相を Θ 3として、その時得られる電流 値を I とする。得られた電流値 I を用いる。また、 0 3時のフィルタコンデ
DIODE( 0 3) DIODE( θ 3)
ンサ電圧を Ε とし、この電圧は電圧検出部 8から得られる。これら得られた情報か
FC ( Θ 3)
らターンオン損失は以下の式で計算される。
Ρ =Κ X I X Ε
R (DIODE) 3 DIODE ( 0 3) FC ( θ 3)
Kはジャンクション計算部に予め入力された情報である。
1
[0022] ダイオードの 1パルス当たりの損失
以上より、ダイオードの定常損失、リカノリー損失が得られる。従って、ダイオードの 1パルス当たりの損失は下記式より得られる。
Ρ =Ρ +Ρ
DIODE (lPulse) SAT (DIODE) RR (DIODE)
ダイオードの 1周期間の損失
1周期間にパルス数が Nパルスあると、上記手法は 1周期間に N回繰り返される。従 つて、 1周期間にダイオードで発生ずる損失 P
DIODEは下記式のようになる。
[数 4]
『 DIODE = , >1 DIODE(kPulse)
IGBTのジャンクション温度の算出
得られた損失を基にジャンクション温度を算出する。ここで、上記手法により得られ た IGBTの損失を P 、ダイオードの損失を P とすると、大電力半導体素子の損失
Pは下記の式で得られる。 P=P +P
IGBT DIODE
次に、上記した大電力半導体素子を構成する IGBT、ダイオードの損失から、これら IGBT及びダイオードのジャンクション温度を算出する。
ここで、 IGBTのジャンクションからケースまでの温度差を ΔΤ とすると、この温
J-C (IGBT)
度差は下記式より算出される。
ΔΤ =P XR
J- C (IGBT) IGBT TH (J-C)IGBT
式中、 R は熱抵抗と呼ばれ、素子固有の特性値であり、この数値は予め、
TH (J-C) IGBT
ジャンクション温度計算部 11に組み込まれて 、る。図 7に温度算出するための熱抵 杭の分布図を示す。
[0024] 次に、大電力用半導体素子のケースから冷却器までの温度差を ΔΤ とすると、こ
C-F
の温度差は下記式で示される。
ΔΤ =P XR
C-F TH (C-F)
ここで、 R 上記と同様、熱抵抗と呼ばれ、素子固有の数値である。また、この
TH (C-F)
数値もジャンクション温度計算部 11に予め、入力されて 、る。
更に、温度検出部 10から冷却器の温度情報が得られる。この冷却器の温度を T
FIN
とする。
これら計算もしくは得られた情報より、 IGBTのジャンクション温度 T
J (IGBT)は下記式で 示される。
Τ =Τ + ΔΤ + ΔΤ
J (IGBT) FIN C-F J-C (IGBT)
[0025] ダイオードのジャンクション温度
続いて、ダイオードのジャンクション力 ケースまでの温度差を ΔΤ とすると
J-C (DIODE)
、この温度差は下記式のように表される。
ΔΤ =P XR
J-C (DIODE) DIODE TH (J-C) DIODE
ここで、この R も熱抵抗と呼ばれ、大電力用半導体素子固有の数値で
TH (J-C) DIODE
あり、ジャンクション温度計算部 11には、同様に予めこの熱抵抗の情報が組み込ま れている。
[0026] 次に、ダイオードのケース力 冷却器までの温度差を ΔΤ とすると、この温度差は
C-F
下記式で示される。 ΔΤ =P XR
C-F TH (C-F)
更に、温度検出部 10から冷却器の温度情報が得られる。この冷却器の温度を T—
FIN
とする。
よって、ダイオードのジャンクション温度 T は以下のように示される。
J (DIODE)
T = ΔΤ + ΔΤ +Τ
J (DIODE) J- C (DIODE) C-F FIN
このようにして IGBT及びダイオードのジャンクション温度が得られる。またこれら 計算はマイクロプロセッサで計算される。
[0027] 図 8は比較部 12の詳細構成を説明するブロック図である。上述したようにジャンクシ ヨン温度計算部 11で得られた情報が比較部 12に入力される。この比較部 12では、 得られたジャンクション温度と許容値との比較が行われる。この比較部 12は IGBTの ジャンクション温度 T を Al、 IGBTのジャンクション温度の許容値を B1とし、これら
J (IGBT)
がそれぞれ入力される比較器 13と、ダイオードのジャンクション温度 T を A2、
J (DIODE) ダイオードのジャンクション温度の許容値を B2とし、これらがそれぞれ入力される比 較器 14とを備え、さらにこれら比較器 13、 14のそれぞれの出力を入力とする ORゲー ト 15を有している。
[0028] 図 8に示すように、比較器 13では IGBTのジャンクション温度 A1と IGBTのジャンクシ ヨン温度の許容値 B1とを比較し、 A1が B1以上である場合は過温検知 XIと判定する。 一方、比較器 14ではダイオードのジャンクション温度 A2とダイオードのジャンクション 温度の許容値 B2とを比較し、 A2が B2以上である場合は過温検知 X2と判定する。 上記過温検知 XIある ヽは X2の ヽずれかが検出された場合、比較部 12の出力とし て過温検知 Xが ORゲート 15から出力されることになる。すなわち、 IGBT,もしくはダイ オードがどちらか一方でも過温検知した場合、大電力用半導体素子は過温検知した ことになる。
[0029] 図 9は駆動制御部 7の詳細構成を説明するブロック図である。上述のように過温検知 された結果を電動機 3の出力トルク制限動作に利用する場合を示している。図中、 1 6は過温検知した場合における最大トルク指令値に掛けられる一定の比率を変更す るためのスィッチであり、過温検知 Xの入力信号に伴い、定常比率から低減比率に切 替えるものである。低減比率は定常比率との比率ではり小さい値である。この低減比 率は掛算器 17にて最大トルク制限値と掛け算され、一次遅れ要素 18を通じて比較 部 19に入力される。
[0030] 比較部 19では、上記一次遅れ要素 18を通じて入力された信号とトルク指令値とが 比較され、 2つの入力に対して小さい方を出力するようになっている。この出力がトル ク制御信号である。この信号をインバータ装置 1の IGBTに制御信号として入力するこ とにより、電動機 3の出力トルクが抑制されるように制御される。
なお、一次遅れ要素 18は、過温検知してトルク値が下がり、過温検知しなくなった 場合、定常比率に戻るが、即座に定常比率に戻ると電動機 3へ過渡電流が流れ、大 電力用半導体素子がこの過渡電流によって、破壊する可能性がある。
[0031] 上記一次遅れ要素 18はこのようにトルク値が即座に移行するのを防止し、大電力 用半導体素子の破壊を防止するために挿入されたものである。
上記図 9では、過温検知した結果を出力トルクが低減するように大電力用半導体素 子のスイッチング制御を行った例を説明したが、これに限らず、過温検知した結果を スイッチング速度を向上させるような制御とすることもでき、その他あらゆる応用例を含 むものである。
図面の簡単な説明
[0032] [図 1]この発明の実施の形態による車両用制御装置のシステム構成図を示す。
[図 2]この発明の実施の形態による車両用制御装置を構成する大電力半導体素子一 アーム分の基本構成概念図を示す。
[図 3]この発明の実施の形態に係わる大電力半導体素子の IGBTに流れる電流、電 圧、及び損失を説明した図である。
[図 4]この発明の実施の形態に係わる大電力半導体素子のダイオードに流れる電流 、電圧、及び損失を説明した図である。
[図 5]この発明の実施の形態に係わる大電力半導体素子に流れる電流を説明した図 である。
[図 6]この発明の実施の形態に係わる V と I を示した図である。
SAT (IGBT) IGBT
[図 7]この発明の実施の形態に係わる温度算出するための熱抵抗の分布図を示す。
[図 8]この発明の実施の形態に係わる比較部の詳細構成を説明するブロック図である 圆 9]この発明の実施の形態に係わる駆動制御部の詳細構成を説明するブロック図 である。
[図 10]従来のインテリジェントパワーモジュール (IPM)の内部構造を示す図である。 符号の説明
1 インバータ装置、 2 直流電源電圧、 3 電動機、
4 大電力半導体素子、 5 ダイオード、 6 フィルタコンデンサ
7 駆動制御部、 8 電圧検出部、 9 電流検出部、
10 温度検出部、 11 ジャンクション温度計算部、
12 比較部、 13、 14 比較器、 15 ORゲート、
16 スィッチ、 17 掛算器、 18 —次遅れ要素、
19 比較部。

Claims

請求の範囲
[1] 大電力用半導体素子の制御により車両に設けられたモータへの駆動電力を制御す るインバータ装置と、上記インバータ装置の直流側に挿入されたフィルタコンデンサ の電圧を検出する電圧検出部と、上記インバータ装置の出力電流を検出する電流検 出部と、上記大電力用半導体素子の冷却手段に設けられた温度検出部と、上記各 検出部からの検出信号により、上記大電力用半導体素子のスイッチング動作に伴う 損失を逐次計算し、この損失計算値をもとに上記大電力用半導体素子のジャンクシ ヨン温度を計算するジャンクション温度計算部と、上記ジャンクション温度計算部の出 力が所定の許容温度に達したときに過温検知出力を発生する比較部とから構成され ることを特徴とする電動機制御装置の過温検知方式。
[2] 上記ジャンクション温度計算部による損失の計算は、大電力用半導体素子を構成す るスイッチング素子に電流が流れる場合のターンオン損失、定常損失、ターンオフ損 失のパルス毎の積算と、ダイオードに電流が流れる場合の定常損失、リカバリー損失 のパルス毎の積算との合算によりなされることを特徴とする請求項 1に記載の電動機 制御装置の過温検知方式。
[3] 上記ジャンクション温度計算部によるジャンクション温度は、上記大電力用半導体素 子のジャンクションから上記温度検出部までの温度差を、上記大電力用半導体素子 のジャンクション力 上記温度検出部までの熱抵抗値と上記損失計算値とを用いて 導出することにより得るようにしたことを特徴とする請求項 2に記載の電動機制御装置 の過温検知方式。
[4] 上記比較部は上記スイッチング素子の過温検知を行う第一の比較器と、上記ダイォ 一ドの過温検知を行う第二の比較器と、上記第一の比較器及び第二の比較器のい ずれか一方の過温検知を検出して過温検知出力とする ORゲートとから構成されるこ とを特徴とする請求項 1に記載の電動機制御装置の過温検知方式。
[5] 上記過温検知出力によりモータの出力トルクを制限するように上記大電力用半導体 素子をスイッチング制御する駆動制御部を備えたことを特徴とする請求項 4に記載の 電動機制御装置の過温検知方式。
PCT/JP2005/017395 2005-09-21 2005-09-21 電動機制御装置の過温検出方式 WO2007034544A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2603552A CA2603552C (en) 2005-09-21 2005-09-21 Excessive temperature detecting system of electric motor controller
CN200580049137A CN100589315C (zh) 2005-09-21 2005-09-21 具有过热检测功能的电动机控制装置
EP05785164A EP1928083A4 (en) 2005-09-21 2005-09-21 DETECTION SYSTEM FOR EXCESSIVE TEMPERATURE OF A MOTOR CONTROLLER
AU2005336596A AU2005336596B2 (en) 2005-09-21 2005-09-21 Excessive-temperature detection system of motor controller
JP2007536365A JP4642081B2 (ja) 2005-09-21 2005-09-21 電動機制御装置の過温検知方式
US11/817,446 US7791300B2 (en) 2005-09-21 2005-09-21 Excessive temperature detecting system of electric motor controller
PCT/JP2005/017395 WO2007034544A1 (ja) 2005-09-21 2005-09-21 電動機制御装置の過温検出方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017395 WO2007034544A1 (ja) 2005-09-21 2005-09-21 電動機制御装置の過温検出方式

Publications (1)

Publication Number Publication Date
WO2007034544A1 true WO2007034544A1 (ja) 2007-03-29

Family

ID=37888605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017395 WO2007034544A1 (ja) 2005-09-21 2005-09-21 電動機制御装置の過温検出方式

Country Status (7)

Country Link
US (1) US7791300B2 (ja)
EP (1) EP1928083A4 (ja)
JP (1) JP4642081B2 (ja)
CN (1) CN100589315C (ja)
AU (1) AU2005336596B2 (ja)
CA (1) CA2603552C (ja)
WO (1) WO2007034544A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083152A (ja) * 2009-10-09 2011-04-21 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置
JP2013014096A (ja) * 2011-07-05 2013-01-24 Ricoh Co Ltd インクジェット式印刷装置、および、インクジェット式印刷装置の過熱エラー検出方法
WO2013014798A1 (ja) * 2011-07-28 2013-01-31 三菱電機株式会社 モータ制御装置
JP2014507110A (ja) * 2011-02-28 2014-03-20 ゼネラル・エレクトリック・カンパニイ 電子デバイスの電力操作を改善するシステムおよび方法
JP2014132829A (ja) * 2014-04-18 2014-07-17 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置
JP2015517787A (ja) * 2012-05-11 2015-06-22 ゼネラル・エレクトリック・カンパニイ 熱サイクルを制御するための方法および装置
US9357217B2 (en) 2010-04-13 2016-05-31 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
JP2020065386A (ja) * 2018-10-18 2020-04-23 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
JP6995700B2 (ja) 2018-06-14 2022-01-17 株式会社日立産機システム 電力変換器
JP7385538B2 (ja) 2020-07-31 2023-11-22 株式会社安川電機 電力変換装置、温度推定方法及びプログラム

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233198B2 (ja) * 2007-08-06 2013-07-10 富士電機株式会社 半導体装置
US8556011B2 (en) * 2007-11-01 2013-10-15 GM Global Technology Operations LLC Prediction strategy for thermal management and protection of power electronic hardware
US8125177B2 (en) * 2008-06-13 2012-02-28 Baker Hughes Incorporated System and method for adding voltages of power modules in variable frequency drives
FR2946477B1 (fr) * 2009-06-04 2014-02-21 Schneider Toshiba Inverter Procede de commande destine a la gestion de la temperature dans un convertisseur de puissance
JP5443946B2 (ja) * 2009-11-02 2014-03-19 株式会社東芝 インバータ装置
JP5549505B2 (ja) 2010-09-28 2014-07-16 日産自動車株式会社 温度保護装置、モータ制御装置及び温度保護方法
US9815193B2 (en) 2011-06-27 2017-11-14 Delaware Capital Formation, Inc. Electric motor based holding control systems and methods
FR2978628B1 (fr) * 2011-07-27 2013-09-20 Peugeot Citroen Automobiles Sa Procede de protection de cables contre les echauffements dans un vehicule automobile hybride ou electrique
JP5500136B2 (ja) * 2011-08-18 2014-05-21 三菱電機株式会社 半導体電力変換装置
JP5786571B2 (ja) * 2011-09-07 2015-09-30 富士電機株式会社 パワー半導体装置の温度測定装置
JP5974548B2 (ja) * 2012-03-05 2016-08-23 富士電機株式会社 半導体装置
GB201302407D0 (en) * 2013-02-12 2013-03-27 Rolls Royce Plc A thermal controller
US8829839B1 (en) * 2013-03-12 2014-09-09 Rockwell Automation Technologies, Inc. System and method for temperature estimation in an integrated motor drive
KR101526680B1 (ko) * 2013-08-30 2015-06-05 현대자동차주식회사 절연 게이트 양극성 트랜지스터 모듈의 온도 센싱 회로
US10356854B2 (en) 2013-12-19 2019-07-16 Neturen Co., Ltd. Power conversion apparatus and power conversion method
CN103701105A (zh) * 2013-12-31 2014-04-02 深圳市英威腾电气股份有限公司 一种电力电子设备的热过载保护方法、装置及系统
US9575113B2 (en) * 2014-02-07 2017-02-21 Infineon Technologies Ag Insulated-gate bipolar transistor collector-emitter saturation voltage measurement
DE102014202717B3 (de) * 2014-02-14 2015-06-11 Robert Bosch Gmbh System zur Kapazitätsbestimmung eines Zwischenkreiskondensators und Verfahren zum Ansteuern eines Wechselrichters
US9991792B2 (en) * 2014-08-27 2018-06-05 Intersil Americas LLC Current sensing with RDSON correction
CN105811375B (zh) * 2014-12-31 2018-07-20 国家电网公司 一种可控电压源型子模块保护方法
JP5920492B2 (ja) * 2015-01-20 2016-05-18 ダイキン工業株式会社 温度推定装置および半導体装置
US9444389B2 (en) 2015-01-29 2016-09-13 GM Global Technology Operations LLC Derating control of a power inverter module
US10247616B2 (en) * 2015-03-05 2019-04-02 Renesas Electronics Corporation Electronics device
JP6408938B2 (ja) * 2015-03-06 2018-10-17 日立オートモティブシステムズ株式会社 インバータの故障診断装置及び故障診断方法
US9698722B2 (en) * 2015-06-19 2017-07-04 Deere & Company Method and inverter with thermal management for controlling an electric machine
CN107534016B (zh) * 2015-11-19 2020-03-24 富士电机株式会社 过热检测装置及半导体装置
CN105577069B (zh) * 2016-01-11 2018-02-27 湖南大学 一种电动汽车驱动系统的主动热优化控制方法及装置
US10811985B2 (en) 2016-08-26 2020-10-20 General Electric Company Power conversion system and an associated method thereof
JP6825975B2 (ja) * 2017-04-21 2021-02-03 株式会社日立製作所 電力変換装置、その診断システム、診断方法、及びそれを用いた電動機制御システム
KR102220860B1 (ko) * 2017-07-28 2021-02-26 닛산 지도우샤 가부시키가이샤 기기 보호 장치 및 기기 보호 방법
CN112042099A (zh) * 2018-04-11 2020-12-04 日产自动车株式会社 仪器保护装置以及仪器保护方法
CN108647436A (zh) * 2018-05-10 2018-10-12 海信(山东)空调有限公司 功率器件损耗测算方法及结温测算方法
CN110875710B (zh) * 2018-08-29 2021-08-10 比亚迪股份有限公司 逆变器中功率模块的过温保护方法、装置及车辆
JP7472663B2 (ja) * 2020-06-05 2024-04-23 富士電機株式会社 電力変換装置
CN112350584B (zh) * 2020-09-17 2022-02-01 珠海格力电器股份有限公司 一种功率器件的散热控制装置、方法和电器设备
CN113050724B (zh) * 2021-03-24 2021-10-15 株洲中车时代电气股份有限公司 基于igbt器件运行实时结温的列车牵引控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134839A (ja) * 2001-10-26 2003-05-09 Mitsubishi Electric Corp 電力変換装置
JP2005124387A (ja) * 2003-09-26 2005-05-12 Fuji Electric Systems Co Ltd 同期電動機駆動装置の制御方法
JP2005143232A (ja) * 2003-11-07 2005-06-02 Yaskawa Electric Corp 電力半導体素子の保護方式

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075303B2 (ja) * 1991-09-06 2000-08-14 株式会社安川電機 電力用半導体素子の保護方式
US5712802A (en) * 1996-04-16 1998-01-27 General Electric Company Thermal protection of traction inverters
JP3695023B2 (ja) * 1996-11-27 2005-09-14 日産自動車株式会社 電気自動車の過負荷防止装置
US6203191B1 (en) * 1998-10-28 2001-03-20 Speculative Incorporated Method of junction temperature determination and control utilizing heat flow
US6483271B1 (en) * 2000-11-14 2002-11-19 Otis Elevator Company Motor drive parameters
JP2003018861A (ja) * 2001-06-27 2003-01-17 Nissan Motor Co Ltd インバータの冷却制御装置
US7071649B2 (en) * 2001-08-17 2006-07-04 Delphi Technologies, Inc. Active temperature estimation for electric machines
JP2004096318A (ja) 2002-08-30 2004-03-25 Mitsubishi Electric Corp 電力用半導体装置
AT412693B (de) * 2002-09-20 2005-05-25 Siemens Ag Oesterreich Verfahren zum steuern des abschaltens bei überlastzuständen eines schaltnetzteils
DE10250731A1 (de) * 2002-10-31 2004-05-19 Daimlerchrysler Ag Verfahren zur Überwachung der Sperrschichttemperatur von Leistungshalbleitern in mehrphasigen Wechselrichtern oder Gleichrichtern
JP2004208450A (ja) * 2002-12-26 2004-07-22 Sanden Corp モータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134839A (ja) * 2001-10-26 2003-05-09 Mitsubishi Electric Corp 電力変換装置
JP2005124387A (ja) * 2003-09-26 2005-05-12 Fuji Electric Systems Co Ltd 同期電動機駆動装置の制御方法
JP2005143232A (ja) * 2003-11-07 2005-06-02 Yaskawa Electric Corp 電力半導体素子の保護方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1928083A4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083152A (ja) * 2009-10-09 2011-04-21 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置
US10306243B2 (en) 2010-04-13 2019-05-28 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US9357217B2 (en) 2010-04-13 2016-05-31 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US11297336B2 (en) 2010-04-13 2022-04-05 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US11252419B2 (en) 2010-04-13 2022-02-15 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10306242B2 (en) 2010-04-13 2019-05-28 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US11128875B2 (en) 2010-04-13 2021-09-21 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US11095906B2 (en) 2010-04-13 2021-08-17 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10341668B2 (en) 2010-04-13 2019-07-02 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US9699467B2 (en) 2010-04-13 2017-07-04 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10462474B2 (en) 2010-04-13 2019-10-29 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US9998741B2 (en) 2010-04-13 2018-06-12 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10021404B2 (en) 2010-04-13 2018-07-10 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10123025B2 (en) 2010-04-13 2018-11-06 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10129549B2 (en) 2010-04-13 2018-11-13 Ge Video Compression, Llp Coding of significance maps and transform coefficient blocks
US10148968B2 (en) 2010-04-13 2018-12-04 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US11070822B2 (en) 2010-04-13 2021-07-20 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US11032556B2 (en) 2010-04-13 2021-06-08 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US11025926B2 (en) 2010-04-13 2021-06-01 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US9894368B2 (en) 2010-04-13 2018-02-13 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10477223B2 (en) 2010-04-13 2019-11-12 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10587884B2 (en) 2010-04-13 2020-03-10 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10855999B2 (en) 2010-04-13 2020-12-01 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
US10750191B2 (en) 2010-04-13 2020-08-18 Ge Video Compression, Llc Coding of significance maps and transform coefficient blocks
JP2014507110A (ja) * 2011-02-28 2014-03-20 ゼネラル・エレクトリック・カンパニイ 電子デバイスの電力操作を改善するシステムおよび方法
JP2013014096A (ja) * 2011-07-05 2013-01-24 Ricoh Co Ltd インクジェット式印刷装置、および、インクジェット式印刷装置の過熱エラー検出方法
WO2013014798A1 (ja) * 2011-07-28 2013-01-31 三菱電機株式会社 モータ制御装置
JPWO2013014798A1 (ja) * 2011-07-28 2015-02-23 三菱電機株式会社 モータ制御装置
JP5546687B2 (ja) * 2011-07-28 2014-07-09 三菱電機株式会社 モータ制御装置
JP2015517787A (ja) * 2012-05-11 2015-06-22 ゼネラル・エレクトリック・カンパニイ 熱サイクルを制御するための方法および装置
JP2014132829A (ja) * 2014-04-18 2014-07-17 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置
JP6995700B2 (ja) 2018-06-14 2022-01-17 株式会社日立産機システム 電力変換器
JP2020065386A (ja) * 2018-10-18 2020-04-23 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
JP7085453B2 (ja) 2018-10-18 2022-06-16 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
JP7385538B2 (ja) 2020-07-31 2023-11-22 株式会社安川電機 電力変換装置、温度推定方法及びプログラム

Also Published As

Publication number Publication date
AU2005336596A1 (en) 2007-03-29
AU2005336596B2 (en) 2009-06-11
JPWO2007034544A1 (ja) 2009-03-19
EP1928083A1 (en) 2008-06-04
US20090051307A1 (en) 2009-02-26
CA2603552C (en) 2011-04-26
US7791300B2 (en) 2010-09-07
CN101142737A (zh) 2008-03-12
CA2603552A1 (en) 2007-03-29
CN100589315C (zh) 2010-02-10
JP4642081B2 (ja) 2011-03-02
EP1928083A4 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
WO2007034544A1 (ja) 電動機制御装置の過温検出方式
US9903765B2 (en) Apparatus for detecting temperature of semiconductor elements for power conversion
JP6274077B2 (ja) モータ制御装置
US7112935B2 (en) Current sensor using mirror MOSFET and PWM inverter incorporating the same
US10090832B2 (en) Controller for power converter having a delaying unit
JP5987974B2 (ja) 電子装置
US9728488B2 (en) Onboard electronic device
US8829838B2 (en) Power converter
US8604732B2 (en) Inverter unit
US20130038140A1 (en) Switching circuit
US9242564B2 (en) Converter for an electrical machine, controller and method for operating a converter
CN107112922B (zh) 变流器和用于运行变流器的方法
JP6277114B2 (ja) 電力変換装置
JP2016208770A (ja) 電力変換器
JP4706130B2 (ja) 電力用半導体素子のゲート駆動回路
US20230396198A1 (en) Electrical power conversion apparatus
CN114008901A (zh) 电流测量器和电力转换装置
JP2020141457A (ja) 電力変換装置および電力変換装置の温度検出方法
CN116114161A (zh) 逆变器装置及具备该逆变器装置的车辆用电动压缩机
WO2020240744A1 (ja) 並列駆動装置及び電力変換装置
JP4631575B2 (ja) インバータ装置
JP7167319B2 (ja) 電力変換装置
CN116073692A (zh) 确定逆变器的半导体结构元件的损耗功率的方法和装置
Graovac et al. Power stage for permanent magnet synchronous motors in high current automotive applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007536365

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11817446

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005336596

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005785164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580049137.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 4130/CHENP/2007

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005336596

Country of ref document: AU

Date of ref document: 20050921

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005336596

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2603552

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005785164

Country of ref document: EP