WO2007032079A1 - 抵抗を用いたハイブリッド回路 - Google Patents

抵抗を用いたハイブリッド回路 Download PDF

Info

Publication number
WO2007032079A1
WO2007032079A1 PCT/JP2005/017072 JP2005017072W WO2007032079A1 WO 2007032079 A1 WO2007032079 A1 WO 2007032079A1 JP 2005017072 W JP2005017072 W JP 2005017072W WO 2007032079 A1 WO2007032079 A1 WO 2007032079A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
resistor
signal
amplifier
transmission line
Prior art date
Application number
PCT/JP2005/017072
Other languages
English (en)
French (fr)
Inventor
Kohtaroh Gotoh
Hirotaka Tamura
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007535359A priority Critical patent/JPWO2007032079A1/ja
Priority to PCT/JP2005/017072 priority patent/WO2007032079A1/ja
Publication of WO2007032079A1 publication Critical patent/WO2007032079A1/ja
Priority to US12/048,946 priority patent/US20080187056A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/03Hybrid circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0292Arrangements specific to the receiver end

Definitions

  • the present invention relates to a high-speed signal transmission method between a plurality of elements and circuit blocks, between boards, or between bodies within an LSI chip or within the same chip.
  • the present invention relates to a hybrid circuit for extracting only a received signal power on a transmission line in which a transmitted signal and a received signal are superimposed in a bidirectional signal transmission system.
  • hybrid circuit In order to perform simultaneous bidirectional signal transmission, a so-called hybrid circuit that separates upstream and downstream signals is required.
  • the hybrid transformer which is the word source, is used for the voice band of the telephone network, and in the Ethernet (registered trademark) technology for UTP-5 such as 100Base-T, resistive hybrid is used. Is used.
  • the data rate is gigabit Z seconds, an inverted circuit using a replica driver has been used.
  • FIG. 13 is an explanatory diagram of a conventional example of a signal transmission system using a resistance node and an hybrid.
  • a 50 ⁇ resistor 103 corresponding to the characteristic impedance Z of the transmission line 100 is provided between the bidirectional transmission line 100 and the output driver 101 for transmitting a signal.
  • Two resistors 102 having the same value R are connected in series between the connection point between the output driver 101 and the resistor 103 and the ground, and the voltage at the connection point between the transmission line 100 and the resistor 103 is 2
  • An amplifier 104 to which the voltage at the connection point of the two resistors 102 is input is provided.
  • the characteristic impedance of the transmission line 100 that is, a resistance of 50 ⁇ is connected to the ground for impedance matching.
  • This system is a bidirectional transmission system, and an output driver for outputting a signal is also connected to the output side of the transmission line 100, that is, the communication partner side.
  • the transmission signal as the output of the output driver 101 is divided by two resistors 102, and the value of 1Z2 of the transmission signal voltage is given to the inverting input terminal of the amplifier 104.
  • the voltage at the connection point between the transmission line 100 and the resistor 103 that is, the voltage obtained by superimposing the 1Z2 voltage of the transmission signal and the reception voltage, is the voltage of 1Z2 of the transmission signal. Is subtracted, and only the amplification result of the received signal is output from the amplifier 104.
  • the value of the resistor 102, that is, R is assumed to be larger than 50 ⁇ .
  • FIG. 14 is a conventional example of a hybrid circuit using a replica driver.
  • the hybrid circuit using this replica driver is disclosed in the following Non-Patent Document 1 and Non-Patent Document 2.
  • Non-Patent Document 1 B. Casper et al. "An 8-Gb / s Simaltaneous Bidirectional Link With On—Die Waveform Capture" IEEE J. Solid—State Circuits, Vol. 38, pp. 211-220, Dec. 2003
  • Non-Patent Document 2 H. Tamura et al. "5GbZs Bidirectional Balanced -Line Link
  • output drivers 101 for bidirectional data transmission are respectively connected to both sides of the bidirectional transmission line 100.
  • the configuration on both sides of the transmission line 100 is basically the same.
  • the transmission signal Txl is supplied to the output driver 101 and the replication driver 107.
  • the replica driver 107 is a replica smaller in size than the output driver 101, for example.
  • the subtractor 108 subtracts the output signal of the replica driver 107 from the signal at the connection point between the transmission line 100 and the output driver 101. That is, the transmission signal as the output of the replica driver 107 is subtracted from the signal on the transmission line on which the transmission signal and the reception signal are superimposed, and the reception signal Rxl is output from the subtractor 108.
  • An object of the present invention is to use a signal on a transmission line in which a transmission signal and a reception signal are superimposed in a high-speed bidirectional data transmission system of, for example, lGbZs or higher without using a replica driver. To provide a hybrid circuit that can accurately extract a received signal.
  • a hybrid circuit of the present invention is a hybrid circuit that also separates a transmission signal force from a reception signal sent from a communication counterpart in a bidirectional signal transmission system, and an output driver and a transmission line for transmitting the signal to the communication counterpart And a received signal extracting unit that extracts only the received signal on the transmission line using a signal obtained from the force obtained at both ends of the resistor.
  • the reception signal extraction unit is configured using V, for example, two transconductance amplifiers. Converting the input voltage into current The output current of two transconductance amplifiers is summed by flowing them through a common resistive load, and only the received signal is extracted.
  • V for example, two transconductance amplifiers.
  • the present invention it is possible to separate and extract only the received signal power on the transmission line without using a replica driver. For this reason, it is possible to reduce the power and area required when using a replica driver first, and secondly, there is no need for highly accurate timing control compared to using a replica driver. This makes it easier to speed up bidirectional data transmission systems.
  • FIG. 1 is a block diagram showing the principle configuration of a no-brid circuit using a resistor of the present invention.
  • FIG. 2 is a basic configuration block diagram of a data transmitting / receiving apparatus using the hybrid circuit of the present invention.
  • FIG. 3 is a diagram for explaining a basic configuration of a bidirectional data transmission system using the hybrid circuit of the present invention.
  • FIG. 4 is an explanatory diagram of a basic configuration of a hybrid circuit of the present invention.
  • FIG. 5 is an explanatory diagram of the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a third embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of a fourth embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a fifth embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of a sixth embodiment of the present invention.
  • FIG. 11 is a detailed configuration circuit diagram of a hybrid circuit corresponding to a sixth embodiment.
  • FIG. 12 is a diagram for explaining the results of simulation for the present invention.
  • FIG. 13 is an explanatory diagram of a conventional example of a resistance hybrid.
  • FIG. 14 is an explanatory diagram of a conventional example of a hybrid circuit using a replica driver.
  • FIG. 1 is an explanatory diagram of the principle of the present invention.
  • the hybrid circuit 1 using resistors is provided between the output driver 2 and the transmission line 3 of the transmitter, connected to the resistor 4 (r) between the output driver 2 and the transmission line 3, and the resistor A reception signal extraction unit 5 connected to both ends of 4 is provided.
  • the reception signal extraction unit 5 extracts a reception signal separated from the transmission signal by using a signal that also obtains the force at both ends of the resistor 4.
  • the received voltage extraction unit amplifies the voltage at both ends of the resistor 4, and the second voltage amplifier amplifies the voltage at the connection point between the resistor 4 and the transmission line 3. And an adder for adding the outputs of the first and second voltage amplifiers.
  • 0 r voltage can also be output.
  • the amplification factor of the first voltage amplifier is g Z Zr, and the second m m 0
  • the amplification factor of the voltage amplifier is g, and the adder outputs a voltage 2g times the received signal voltage V.
  • the transmission line is a differential signal transmission line, and a resistor r is inserted between the differential signal transmission path, that is, between the output driver and the transmission line.
  • the received signal extractor is connected to the resistance r in the normal signal transmission path of the differential signal.
  • the first voltage amplifier that amplifies the difference between the voltage at the connection point of the transmission line and the voltage at the same connection point in the inverted signal transmission path, and the connection between the resistor r and the output driver in the normal signal transmission path Eliminate the second voltage amplifier that amplifies the difference between the voltage at the point and the voltage at the same connection point in the transmission path of the inverted signal, and the adder that adds the outputs of the first and second voltage amplifiers Chisaru
  • FIG. 2 shows the overall system configuration of the data transmitter / receiver on one side of the transmission line in the bidirectional data transmission system.
  • a transmitter 10 including the output driver 2 of FIG. 1 is connected to a transmission line 3 via a resistor 4 (r).
  • the received signal extraction unit 5 connected to both ends of the resistor 4 is connected to the receiver 11.
  • the impedance when looking at the transmitter 10 side from the transmission line 3 side matches the characteristic impedance Z of the transmission line.
  • the resistor 12 with the value Z-r is connected to the output of the transmitter 10
  • the transmitter 10 converts, for example, a 64-bit parallel signal into 4-bit parallel data using, for example, a multiplexer, and serially converts the 4-bit parallel data.
  • the output signal is output to the transmission line 3 side by the output driver 2, and the receiver 11 conversely equalizes the received serial signal by the equalizer and then converts it to, for example, 32-bit parallel data by the demultiplexer.
  • the resistor 12 is also included in the hybrid circuit in addition to the resistor 4 and the received signal extraction unit 5.
  • FIG. 3 is a block diagram of the overall configuration of a bidirectional data transmission system using the hybrid circuit of the present invention.
  • Hybrid circuits composed of an output driver 2 included in a transceiver for transmitting data to the other side, a resistor 4, a received signal extraction unit 5, and a resistor 12 are provided on both sides of the transmission line 3, respectively.
  • the reception signal extraction unit 5 of the circuit outputs reception signals (Rxl, Rx2) transmitted from the other side.
  • FIG. 4 is an explanatory diagram of a basic configuration of the reception signal extraction unit in FIG.
  • the received signal extraction unit 5 includes an amplifier 15 that amplifies the potential difference between both ends of the resistor 4, and a resistor 4 that transmits It comprises an amplifier 16 that amplifies the voltage at the connection point with the line 3, and an adder 17 that calorizes the outputs of the two amplifiers 15 and 16.
  • the impedance when looking at the output driver 2 side inside the transmitter from the transmission line 3 side matches the characteristic impedance Z of the transmission line so that reflection of the received signal, etc.
  • the output driver impedance must be Z-r.
  • the impedance of the output driver 2 As described above, it is actually difficult to make the impedance of the output driver 2 for high-speed signal transmission too small.
  • the resistance 12 Is connected between the output point of output driver 2 and the power supply voltage.
  • the reason why it is connected to the power supply voltage here is that, as will be described later, for example, the transconductance amplifier corresponding to the two amplifiers 15 and 16 and the adder 17 in FIG. This is because it is composed of CMOS elements and the power supply voltage is selected as an appropriate connection point.
  • the transmission voltage and current from the output driver 2 are V and I at the connection point between the transmission line 3 and the resistor 4, and the reception voltage and current transmitted from the communication partner are V and I ffrr.
  • the voltage V and current I at the connection point of the resistor 4 and the transmission line 3 are given by the following equations, respectively.
  • V V + V
  • the received voltage is given by the following equation.
  • V (V-Z 1) / 2
  • the input voltage to the amplifier 15 is rl
  • the input voltage to the amplifier 16 is V
  • 2V is obtained
  • the output of the adder 17 corresponds to the received voltage V only.
  • the present invention it is possible to separate and detect only the received signal from the signal on the line on which the transmitted signal and the received signal are superimposed without using the replica driver. This makes it possible to reduce the power and area required for the replica driver as compared with the case of using a replica driver, and to reduce the replica driver output voltage on the transmission line. Timing adjustment when subtracting the signal force is unnecessary, and high-speed signal transmission is facilitated.
  • FIG. 5 is a basic configuration diagram of the first embodiment of the present invention. 4 is different from FIG. 4 in that the gain power of the two amplifiers 18 and 19 in the received signal extraction unit 5 is g times the gain of the amplifiers 15 and 16 in FIG.
  • each of them corresponds to two voltage amplifiers and converts two input voltages into currents.
  • g corresponds to the transconductance value of this transconductor. It is a constant.
  • the adder 17 outputs a voltage 2 g times the reception voltage V.
  • FIG. 6 is a basic explanatory diagram of the second embodiment of the present invention.
  • the received signal extraction unit 5 includes an amplifier 21 whose gain is g (1 + Z Zr) and an amplifier 22 m 0 m 0 whose gain is ⁇ g Z Zr.
  • the input voltage to the amplifier 21 is V
  • the input voltage to the amplifier 22 is V
  • the output of the adder 17 becomes 2 g times the received voltage V as in the first embodiment.
  • FIG. 7 is a basic explanatory diagram of the third embodiment of the present invention.
  • the configuration of the received signal extraction unit 5 is basically the same as that in the second embodiment described in FIG. 6 and corresponds to the transconductance of the transconductor among the gains of the two voltage amplifiers 23 and 24. The difference is that the values of g and g are variable.
  • the gain of a transconductance amplifier used in a voltage amplifier or an actual circuit varies depending on, for example, process variations, and the gains of two voltage amplifiers 23 and 24, or only one of them.
  • the adder 17 outputs a voltage corresponding to the matched transconductance value by compensating for variations.
  • FIG. 8 is a basic explanatory diagram of the fourth embodiment. In the figure, the configuration of the received signal extraction unit 5 is the same as that in the second embodiment of FIG.
  • the resistor 25 is inserted between the connection point between the output driver 2 and the resistor 4 and the voltage amplifier 22 in the fourth embodiment.
  • This resistor 25 has the same value r as that of resistor 4.
  • the input time constants for the two voltage amplifiers 21 and 22 are made the same. You can get closer. That is, the input terminal constants of the two voltage amplifiers 21 and 22 are also expressed as the product of the respective impedance when the signal source is viewed and the input capacitance of the respective voltage amplifiers 21 and 22 as 2
  • the force by which the resistor 25 is inserted to bring the two voltage amplifiers 21 and 22 close to the same will be described in detail later with reference to FIG.
  • FIG. 9 is a basic explanatory diagram of the fifth embodiment of the present invention.
  • the received signal extraction unit has an amplifier 28 with a gain of g Z Zr, an amplifier 22 of -g Z Zr, an amplifier 29 of g, m 0 m 0 m
  • an adder 30 for adding the outputs of these three amplifiers.
  • the input to the voltage amplifier 28 and the voltage amplifier 29 is V
  • the input to the voltage amplifier 22 is V + Ir
  • adding the outputs of the three voltage amplifiers is the same as in the first and second embodiments. The result of addition is obtained.
  • FIG. 10 is a basic explanatory diagram of the sixth embodiment of the present invention.
  • a differential signal is transmitted bidirectionally via a transmission line
  • an operation of extracting only the signal force reception differential signal on the transmission line is executed.
  • the output driver 35 outputs a differential signal to be transmitted to the communication partner side to a normal signal transmission line 37 and an inverted signal transmission line 38. These differential signals are different from each other. It is transmitted to the communication partner via the transmission line 36 of the dynamic signal. The received signal received from the communication partner is superimposed on the forward signal transmission line 37 and the inverted signal transmission line 38.For example, the transmission voltage on the forward signal transmission line 37 is V Z2, and the reception voltage is V Z2. The voltages on the normal signal transmission line 37 and the inverted signal transmission line 38 are input to the two voltage amplifiers 32 and 33, and the outputs of the two voltage amplifiers 32 and 33 are added by the adder 34. As a result of addition, a differential voltage signal 2 g times the reception voltage V is received as in the first embodiment shown in FIG.
  • the fourth embodiment shown in FIG. Similarly, the resistor 25 is inserted between the connection point between the output driver 35 and the resistor 4 and the two input terminals of the voltage amplifier 33. The insertion of this resistor is also for making the input time constants for the two voltage amplifiers 32 and 33 as equal as possible, as described for the fourth embodiment.
  • FIG. 11 is a detailed configuration diagram of a hybrid circuit on one side of a transmission line including an output driver, corresponding to the sixth embodiment of FIG.
  • the differential signal output by the output driver 35 is input to the transmission line 36 by the normal signal transmission line 37 and the inverted signal transmission line 38 and transmitted to the communication partner side. Is done.
  • the voltage at the connection point between the resistor 4 and the transmission line 36 on the forward signal transmission line 37 and the inverted signal transmission line 38 is the first transformer corresponding to the voltage amplifier 32 in FIG. Conductance 'Input to the amplifier.
  • This first transconductance amplifier is composed of nMOS transistors 40 and 41 and a current source 42, which converts an input voltage into a current and supplies it to two load resistors 55.
  • the voltage force at the connection point between the output driver 35 and the resistor 4 on the two transmission lines 37 and 38 is composed of three n-type MOS transistors 45 to 47 and a variable voltage source 48. Input to a second transconductance amplifier corresponding to the voltage amplifier 33. This second transconductance amplifier also converts the input voltage into a current and supplies it to the two load resistors 55 in the same way as the first transconductance amplifier. Current flows through the two load resistors 55, and an operation corresponding to the addition operation by the adder 34 in FIG. 10 is performed.
  • the P-type MOS transistors 50 and 51 inserted between the connection point between the output driver 35 and the resistor 4 and the gates of the n-type MOS transistors 45 and 46 correspond to the resistor 25 in FIG.
  • the value of the equivalent resistance of the p-type MOS transistors 50 and 51 is controlled by the gate voltage output from the variable voltage source 52.
  • Z Z2 is the impedance in parallel with the series combined resistance (Z) with anti-12.
  • the impedance when the signal source side is viewed from the gates of the n-type transistors 45 and 46 is the impedance of the resistance 4 and the output end of the transmission line 36.
  • the amplification factor of the voltage amplifier 32 in FIG. 10, that is, the magnitude of the conductance of the first transconductance 'amplifier in FIG. 11 is 3 g
  • the voltage amplifier 33 that is, the second transconductance' amplifier in FIG. The transconductance is 2g. Since the input capacitance of the transconductance amplifier is proportional to the magnitude of the transconductance, if the input capacitance of the first transconductance amplifier is 3C, the input capacitance of the second transconductance amplifier is 2C. .
  • the input time constant of the first transconductance 'amplifier is 3CZ Z2 and the input of the second transconductance' amplifier
  • the time constant is 3CZ Z4, and the second transconductance 'amplifier time constant is
  • the conductance is half the time constant of the amplifier. To correct for the difference between these time constants, the force that would cause resistor 25 to be inserted as explained in Fig. 10.
  • the gate voltages of the two p-type transistors 50 and 51 should be adjusted. As a result, the reception sensitivity of the received signal can be improved.
  • FIG. 11 illustrates a detailed configuration of a hybrid circuit that basically includes two transconductance amplifiers and a load resistor in a bidirectional transmission system for differential signals.
  • FIG. 5 showing the embodiment, it is of course possible to construct a hybrid circuit using two transconductance amplifiers and a load resistance instead of the two voltage amplifiers 18 and 19 and the calorimeter 17.
  • the simulation result of the extraction of the received signal using the node and the hybrid circuit of the present invention will be described with reference to FIG.
  • the upper two signals Txl and ⁇ 2 indicate the waveforms of the transmission signals sent to the communication partner via the bidirectional transmission line 3 as shown in FIG.
  • this waveform has shown the normal rotation signal among the differential signals, for example.
  • the lower signal Rxl is the extraction result of the reception signal output from the reception signal extraction unit 5 in FIG. 3. From the central voltage waveform V, that is, the signal in which the transmission signal and the reception signal are superimposed, The reception differential signal in a state where only the reception signal is extracted is shown. This shows that the received differential signal is correctly extracted as an inverted signal.
  • the transmission line is a wiring on a printed circuit board with a length of 20 cm, with a signal loss of 5 dB, and transmission data as a pseudo-random signal is sent from both sides of this line by a transmitter! /
  • the amplitude of the signal is 200mVpp, which varies between IV and 1.2V when the signal is sent from a transmitter on one side only. Since the signals from both sides are superimposed, the amplitude is 400 mVpp which varies between 800 mV and 1.2 mV at the maximum as shown in the center waveform.
  • the present invention only the received signal is separated from the signal on the transmission path without using the replica driver, that is, the transmitted signal and the received signal are superimposed! Can be extracted. Therefore, the power and area required when using a replica driver can be reduced, and timing control between the output voltage of the replica driver and the signal on the transmission path is not necessary, and the bidirectional data transmission system can be used. It can easily achieve speeds greater than lGbZs and contributes greatly to improving the performance in signal transmission and reception of information processing equipment such as devices and servers for communication institutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)
  • Bidirectional Digital Transmission (AREA)

Abstract

 レプリカドライバを使用することなく、例えば1Gb/s以上の双方向高速データ伝送システムにおいて、送信信号と受信信号とが重畳された伝送路上の信号から受信信号のみを正確に抽出するために、本発明のハイブリッド回路は、信号を送信するための出力ドライバと伝送線路との間にシリアルに挿入される抵抗と、その抵抗の両端から得られる信号を用いて、伝送路上の信号から受信信号のみを抽出する受信信号抽出部を備え、受信信号抽出部は、例えば入力電圧を電流に変換する2つのトランスコンダクタンス・アンプと、2つのアンプの出力する電流が加算されて流れる負荷抵抗とによって構成される。

Description

明 細 書
抵抗を用いたハイブリッド回路
技術分野
[0001] 本発明は LSIのチップ間や同一チップ内で、複数の素子や回路ブロックの間、ある いはボード間や匡体間における高速信号の伝送方式に係り、さらに詳しくは高速信 号を双方向に伝送する信号伝送システムにお 、て、送信信号と受信信号が重畳され た伝送路上の信号力 受信信号だけを抽出するためのハイブリッド回路に関する。 背景技術
[0002] 近年、コンピュータやその他の情報処理機器を構成する部品の性能は大きく向上 しており、例えば DRAM (Dynamic Random Access Memory)等の半導体記 憶装置やプロセッサ等の性能向上は目を見張るものがある。そして、この半導体記憶 装置やプロセッサ等の性能向上に伴って、各部品あるいは要素間の信号伝送速度 を向上させなければ、システムの性能を向上させることができないという事態になって きている。具体的に、例えば、 DRAM等の主記憶装置とプロセッサとの間の信号伝 送速度がコンピュータ全体の性能向上の妨げになりつつある。さらに、サーバと主記 憶装置あるいはネットワークを介したサーバ間と 、つた、匡体やボード (プリント配線 基板)間の信号伝送だけでなぐ半導体チップの高集積ィ匕ならびに大型化等により L SI (Large Scale Integration)チップ間の信号伝送や同一チップ内における素子 や回路ブロック間での信号伝送においても信号伝送速度の向上が必要となってきて いる。また、これらボード間や匡体間、あるいは、 LSIチップ間や同一チップ内の複数 の素子や回路ブロック間における信号伝送では、信号線や配線パターン等の数を低 減して伝送路の使用効率を増カロさせることが求められている。そして、よりいつそうの 高精度で双方向に高速の信号伝送が可能な信号伝送システム、信号伝送方法、お よび、トランシーバ回路の提供が要望されている。
[0003] 通信基幹向け装置やサーバ等の情報処理機器の性能向上に伴い、装置内外での 信号送受信のデータレートを高くする必要がある。マルチプロセッサのサーバにおけ るプロセッサ間通信の場合にはリンクの双方向に通信が行われるため、ケーブルの 双方向に同時に信号を送る双方向信号伝送のメリットが高い。
[0004] 同時双方向の信号伝送を行うためには、上りと下りの信号を分離するいわゆるノ、ィ ブリツド回路が必要である。ノ、イブリツド回路としては、その語源となっているハイプリ ッドトランスが電話網の音声帯域に対して使われており、また 100Base— T等の UTP — 5向けのイーサネット (登録商標)技術では抵抗ハイブリッドなどが使われて 、る。さ らにデータレートがギガビット Z秒となるとレプリカドライバを用いたノ、イブリツド回路が 使われるようになつてきた。
[0005] 図 13は、抵抗ノ、イブリツドを用いた信号伝送システムの従来例の説明図である。同 図において、双方向の伝送線路 100と信号を送信するための出力ドライバ 101との 間に、例えば伝送線路 100の特性インピーダンス Zに相当する 50 Ωの抵抗 103が
0
挿入されている。そして出力ドライバ 101と抵抗 103との接続点とグランドとの間に、 同一の値 Rを持つ 2つの抵抗 102が直列に接続され、また伝送線路 100と抵抗 103 との接続点の電圧と、 2つの抵抗 102の接続点の電圧とが入力される増幅器 104が 備えられている。そして伝送線路 100の出力端側には、伝送線路 100の特性インピ 一ダンス、すなわち 50 Ωの抵抗がインピーダンスマッチングのためにグランドとの間 に接続されている。なおこのシステムは双方向伝送システムであり、伝送線路 100の 出力側、すなわち通信相手側にも信号を出力するための出力ドライバが接続される。
[0006] 図 13において、出力ドライバ 101の出力としての送信信号は 2つの抵抗 102によつ て分圧され、送信信号電圧の 1Z2の値が増幅器 104の反転入力端子に与えられる 。これは出力ドライバ 101の出力電圧が、同時に抵抗 103と伝送線路 100の出力側 のインピーダンスマッチング用の抵抗とによって分圧されることに相当し、伝送線路 1 00と抵抗 103との接続点の電圧を増幅器 104の正転入力端子に与えることによって 、伝送線路 100と抵抗 103の接続点の電圧、すなわち送信信号の 1Z2の電圧と受 信電圧とが重畳された電圧から、送信信号の 1Z2の電圧が減算されて、受信信号 の増幅結果だけが増幅器 104から出力されることになる。なおここで抵抗 102の値、 すなわち Rは 50 Ωよりずつと大き 、ものとする。
[0007] し力しながら図 13で説明した抵抗ノヽイブリツドを用いたノヽイブリツド回路では、出力 ドライバのインピーダンスを低くすることが必要となる。出力ドライバのインピーダンス を下げるために出力ドライバに対するフィードバック動作などが用いられる力 このよ うに低インピーダンスを実現するために、出力ドライバから出力される信号の速度は 数百 MHz以下に限定されてしま 、、高速データ伝送に用いることはできな ヽと 、う問 題点があった。
[0008] 図 14は、レプリカドライバを用いたハイブリッド回路の従来例である。このレプリカド ライバを用いたハイブリッド回路については、次の非特許文献 1、および非特許文献 2に開示されている。
非特許文献 1 : B. Casper他 "An 8-Gb/s Simaltaneous Bidirectional Li nk With On— Die Waveform Capture" IEEE J. Solid— State Circuits , Vol. 38, pp. 211 - 220, Dec. 2003
非特許文献 2 : H. Tamura他 "5GbZs Bidirectional Balanced -Line Link
Compliant with Plesiochronous Clocking IEEE Int. Solid— State Circuits Conf. High-Speed Digital Interfaces 4. 4 Feb. 2001
[0009] 図 14において双方向伝送線路 100の両側に、双方向データ伝送のための出力ド ライバ 101がそれぞれ接続されている。伝送線路 100の両側の構成は基本的に同じ であり、例えば伝送線路 100の左側では、送信信号 Txlが出力ドライバ 101とレプリ 力ドライバ 107に与えられる。ここでレプリカドライバ 107は、例えば出力ドライバ 101 よりサイズの小さいレプリカである。そして伝送線路 100と出力ドライバ 101との接続 点の信号から、レプリカドライバ 107の出力信号が減算器 108によって減算される。 すなわち送信信号と受信信号が重畳された伝送路上の信号から、レプリカドライバ 1 07の出力としての送信信号が減算され、受信信号 Rxlが減算器 108から出力される
[0010] し力しながらこのようにレプリカドライバを用いたノ、イブリツド回路では、まず第 1にレ プリカドライバの消費電力や回路サイズが大きくなるという問題点がある。第 2にレプリ 力ドライバを用いた回路では連続時間、あるいは離散時間の通信方式に関わらず、 レプリカドライバの出力する出力信号と、伝送路上の信号、すなわち伝送線路 100と 出力ドライバ 101の接続点の信号とのタイミングを正確に合わせるために、精度の高 Vヽタイミング設計が必要となり、例えば 5GbZs以上の高速ィ匕が難 、と 、う問題点が あった。
発明の開示
[0011] 本発明の目的は、レプリカドライバなどを使用することなぐ例えば lGbZs以上の 高速度の双方向データ伝送システムにお 、て、送信信号と受信信号が重畳された 伝送線路上の信号から、受信信号を正確に抽出することができるハイブリッド回路を 提供することである。
[0012] 本発明のハイブリッド回路は、双方向信号伝送システムにおいて通信相手側から 送られる受信信号を送信信号力も分離するハイブリッド回路であり、信号を通信相手 側に送信するための出力ドライバと伝送線路との間にシリアルに挿入される抵抗と、 その抵抗の両端力 得られる信号を用いて、伝送線路上の信号力 受信信号のみを 抽出する受信信号抽出部とを備える。
[0013] 本発明においては、受信信号抽出部を、例えば 2つのトランスコンダクタンス'アン プを用 Vヽて構成する。入力電圧を電流に変換する 2つのトランスコンダクタンス ·アン プの出力電流を共通の抵抗負荷に流すことによって加算し、受信信号のみを抽出す る。これらのトランスコンダクタンス 'アンプとして CMOS差動対を使うことによって、高 速の受信信号抽出部を実現することが可能となる。
[0014] このように本発明によれば、レプリカドライバを使用することなぐ伝送線路上の信号 力 受信信号のみを分離して抽出することが可能となる。このため、第 1にレプリカド ライバを使用する場合に必要な電力と面積を削減することが可能となり、第 2にレプリ 力ドライバを使用する場合と比較して、高精度のタイミング制御が不必要となり、双方 向データ伝送システムの高速化が容易となる。
図面の簡単な説明
[0015] [図 1]本発明の抵抗を用いたノ、イブリツド回路の原理構成ブロック図である。
[図 2]本発明のハイブリッド回路を用いるデータ送受信装置の基本構成ブロック図で ある。
[図 3]本発明のハイブリッド回路を用いる双方向データ伝送システムの基本構成を説 明する図である。
[図 4]本発明のハイブリッド回路の基本構成の説明図である。 [図 5]本発明の第 1の実施例の説明図である。
[図 6]本発明の第 2の実施例の説明図である。
[図 7]本発明の第 3の実施例の説明図である。
[図 8]本発明の第 4の実施例の説明図である。
[図 9]本発明の第 5の実施例の説明図である。
[図 10]本発明の第 6の実施例の説明図である。
[図 11]第 6の実施例に対応するハイブリッド回路の詳細構成回路図である。
[図 12]本発明に対するシミュレーションの結果を説明する図である。
[図 13]抵抗ハイブリッドの従来例の説明図である。
[図 14]レプリカドライバを用いたハイブリッド回路の従来例の説明図である。
発明を実施するための最良の形態
[0016] 図 1は、本発明の原理説明図である。同図において抵抗を用いたハイブリッド回路 1は、トランスミッタの出力ドライバ 2と伝送線路 3の間に設けられ、出力ドライバ 2と伝 送線路 3との間に接続される抵抗 4 (r)と、抵抗 4の両端に接続される受信信号抽出 部 5を備えている。そして受信信号抽出部 5は、抵抗 4の両端力も得られる信号を用 Vヽて、送信信号から分離された受信信号を取り出すものである。
[0017] 本発明においては、受信信号抽出部が抵抗 4の両端の電圧を増幅する第 1の電圧 増幅器と、抵抗 4と伝送線路 3との接続点の電圧を増幅する第 2の電圧増幅器と、第 1、および第 2の電圧増幅器の出力を加算する加算器とを備えることもできる。
[0018] この場合、伝送線路のインピーダンスを Zとするとき、第 1の電圧増幅器の増幅率
0
力 Zr、第 2の電圧増幅器の増幅率が 1であり、加算器が受信信号電圧 Vの 2倍の
0 r 電圧を出力することもできる。
[0019] あるいは gを定数とするとき、第 1の電圧増幅器の増幅率が g Z Zrであり、第 2の m m 0
電圧増幅器の増幅率が gであり、加算器が受信信号電圧 Vの 2g倍の電圧を出力 m r m
することちでさる。
[0020] また本発明においては、伝送線路が差動信号の伝送線路であり、差動信号の伝送 経路上のそれぞれの同一位置、すなわち出力ドライバと伝送線路の間に抵抗 rが挿 入され、受信信号抽出部が、差動信号のうちの正転信号の伝送経路における抵抗 r と伝送線路の接続点の電圧と、反転信号の伝送経路における同一接続点の電圧と の差を増幅する第 1の電圧増幅器と、正転信号の伝送経路における抵抗 rと出力ドラ ィバの接続点の電圧と、反転信号の伝送経路における同一接続点の電圧との差を 増幅する第 2の電圧増幅器と、第 1、第 2の電圧増幅器の出力を加算する加算器とを 備免ることちでさる。
[0021] 続いて図 2以降を用いて、本発明の実施形態についてさらに詳細に説明する。図 2 は、双方向データ伝送システムにおける伝送線路の片側のデータ送受信装置の全 体システム構成図である。同図において、図 1の出力ドライバ 2を含むトランスミッタ 10 は、抵抗 4 (r)を介して伝送線路 3に接続されている。そして抵抗 4の両端に接続され た受信信号抽出部 5はレシーバ 11に接続されて!、る。なお伝送線路 3側からトランス ミッタ 10側を見るときのインピーダンスが伝送線路の特性インピーダンス Zと一致す
0
るように、 Z—rの値を持つ抵抗 12が、トランスミッタ 10の出力端と、例えば電源電圧
0
との間に接続されている。これは後述するように図 1の出力ドライバ 2のインピーダンス が大きい場合に対応する。
[0022] 本発明の内容と直接の関係はないが、トランスミッタ 10は、例えば 64ビットパラレル の信号を、例えばマルチプレクサによって 4ビットパラレルのデータに変換し、さらに その 4ビットパラレルのデータをシリアルイ匕して、出力ドライバ 2によって伝送線路 3側 に出力するものであり、レシーバ 11は、逆に受信シリアル信号をイコライザによって等 ィ匕した後に、デマルチプレクサによって、例えば 32ビットのパラレルデータに変換し て必要なデータ処理に使用するものである。なお図 2において抵抗 4、受信信号抽出 部 5に加えて、抵抗 12もハイブリッド回路に含まれるものと考えることができる。
[0023] 図 3は、本発明のハイブリッド回路を用いる双方向データ伝送システムの全体構成 ブロック図である。伝送線路 3の両側に、それぞれ相手側にデータ伝送を行うための トランシーバに含まれる出力ドライバ 2と、抵抗 4、受信信号抽出部 5、および抵抗 12 で構成されるハイブリッド回路がそれぞれ備えられ、ハイブリッド回路の受信信号抽 出部 5からは相手側から伝送される受信信号 (Rxl、 Rx2)が出力される。
[0024] 図 4は、図 1における受信信号抽出部の基本構成の説明図である。同図において 受信信号抽出部 5は、抵抗 4の両端の電位差を増幅する増幅器 15と、抵抗 4と伝送 線路 3との接続点の電圧を増幅する増幅器 16と、 2つの増幅器 15、 16の出力をカロ 算する加算器 17から構成されている。
[0025] 伝送線路 3側からトランスミッタの内部の出力ドライバ 2側を見るときのインピーダン スが伝送線路の特性インピーダンス Zと一致するようにして、受信信号の反射などを
0
防止するために、出力ドライバのインピーダンスは Z—rとなっていることが必要であ
0
る力 前述のように高速信号伝送用の出力ドライバ 2のインピーダンスをあまり小さく することは実際には困難であり、この出力ドライバ 2のインピーダンスが大きい場合に は、図 2で説明したように抵抗 12が出力ドライバ 2の出力点と電源電圧との間に接続 される。ここで電源電圧との間に接続される理由は、後述するように実際の回路構成 として、例えば図 4の 2つの増幅器 15、 16、および加算器 17に対応するトランスコン ダクタンス'アンプが、例えば CMOS素子によって構成され、電源電圧が適切な接続 点として選択されるためである。
[0026] 出力ドライバ 2による送信電圧、および電流を伝送線路 3と抵抗 4との接続点におい て V、および Iとし、通信相手側から伝送される受信電圧、および電流を V、および I f f r r とすれば、抵抗 4と伝送線路 3の接続点の電圧 Vと電流 Iはそれぞれ次式によって与 えられる。
[0027] V=V +V
Figure imgf000009_0001
これらの式から受信電圧 ま次式によって与えられる。
[0028] V = (V-Z 1) /2
r 0
ここで増幅器 15に対する入力電圧は— rl、増幅器 16に対する入力電圧は Vとなり 、 2つの増幅器 15、 16の出力電圧を加算すると 2Vが得られ、加算器 17の出力は受 信電圧 Vのみに対応したものとなり、受信信号電圧を送信信号から分離して取り出 すことが可能となる。
[0029] このように本発明においては、レプリカドライバを使用することなぐ送信信号と受信 信号とが重畳されている線路上の信号から、受信信号のみを分離して検出すること が可能となる。これによつてレプリカドライバを使用する場合と比較して、レプリカドライ バに必要な電力と面積を削減でき、またレプリカドライバの出力電圧を伝送線路上の 信号力 差し引く場合のタイミング調整が不必要となり、信号伝送の高速ィ匕が容易と なる。
[0030] 図 5は、本発明の第 1の実施例の基本構成図である。同図を図 4と比較すると、受 信信号抽出部 5の内部の 2つの増幅器 18、 19のゲイン力 図 4の増幅器 15、 16の ゲインのそれぞれ g倍となっている点が異なっている。後述するように実際の回路構 成においては、図 5のように 2つの電圧増幅器と加算器を用いるよりも、 2つの電圧増 幅器にそれぞれ相当し、入力電圧を電流に変換する 2つのトランスコンダクタ(トラン スコンダクタンス.アンプ)を用い、 2つのトランスコンダクタの出力する電流を電流的 に加算する回路を用いる方が回路構成が容易であり、 g はこのトランスコンダクタの 相互コンダクタンスの値に相当する定数である。そして加算器 17は受信電圧 Vの 2g 倍の電圧を出力することになる。
[0031] 図 6は、本発明の第 2の実施例の基本説明図である。同図において受信信号抽出 部 5は、そのゲインが g (1 +Z Zr)である増幅器 21と、— g Z Zrである増幅器 22 m 0 m 0
と、これらの 2つの増幅器の出力を加算する加算器 17から構成されている。
[0032] 図 6において増幅器 21への入力電圧は Vであり、増幅器 22に対する入力電圧は V
+Irである。これらの入力に対する増幅器 21、 22の出力を加算することによって、加 算器 17の出力は第 1の実施例におけると同様に受信電圧 Vの 2g倍となる。
r m
[0033] 図 7は、本発明の第 3の実施例の基本説明図である。同図において受信信号抽出 部 5の構成は図 6で説明した第 2の実施例におけると基本的に同様である力 2つの 電圧増幅器 23、 24のゲインの中で、トランスコンダクタの相互コンダクタンスに相当 する g 、g の値が可変とされる点が異なっている。
ml m2
[0034] 一般に電圧増幅器、あるいは実際の回路に利用されるトランスコンダクタンス'アン プのゲインは、例えばプロセス変動などによってばらつくものであり、 2つの電圧増幅 器 23、 24のゲインの両方、あるいは一方だけを変化させ、第 2の実施例で説明した ように相互コンダクタンスの値が一致するようにばらつきの補償を行えば、アンプのば らつきによる受信信号検出感度の劣化を補償することが可能になる。そして加算器 1 7からはばらつきの補償によって一致した相互コンダクタンスの値に相当する電圧が 出力されること〖こなる。 [0035] 図 8は、第 4の実施例の基本説明図である。同図において受信信号抽出部 5の構 成は、図 6の第 2の実施例におけると同じである。第 2の実施例との相違点は、第 4の 実施例では出力ドライバ 2と抵抗 4との接続点と電圧増幅器 22との間に、抵抗 25が 挿入されていることだけが異なっている。この抵抗 25は、抵抗 4と同じ値 rを持つもの であり、この抵抗 25を挿入することによって、 2つの電圧増幅器 21、 22 (トランスコン ダクタンス'アンプに相当)に対する入力の時定数を同一に近づけることができる。す なわち、 2つの電圧増幅器 21、 22の入力端子力も信号源を見たときのそれぞれのィ ンピーダンスと、それぞれの電圧増幅器 21、 22の入力容量との積としての入力時定 数を、 2つの電圧増幅器 21、 22の間で同一に近づけるために抵抗 25が挿入される 力 その詳細については図 11でさらに後述する。
[0036] 図 9は、本発明の第 5の実施例の基本説明図である。同図において受信信号抽出 部は、そのゲインが g Z Zrの増幅器 28、 -g Z Zrの増幅器 22、 g の増幅器 29、 m 0 m 0 m
およびこれらの 3つの増幅器の出力を加算する加算器 30によって構成されている。 電圧増幅器 28、および電圧増幅器 29への入力は Vであり、電圧増幅器 22への入力 は V+Irであり、 3つの電圧増幅器の出力を加算すると、第 1、第 2の実施例における と同様の加算結果が得られる。
[0037] 図 10は、本発明の第 6の実施例の基本説明図である。この第 6の実施例において は、差動信号が伝送線路を介して双方向に伝送される場合に、伝送線路上の信号 力 受信差動信号のみを抽出する動作が実行される。
[0038] 図 10において出力ドライバ 35は通信相手側に対して伝送すべき差動信号を、正 転信号の伝送線 37と反転信号の伝送線 38に出力するが、これらの差動信号は差動 信号の伝送線路 36を介して通信相手側に送信される。通信相手側から受信した受 信信号は正転信号伝送線 37、反転信号伝送線 38上に重畳されるが、例えば正転 信号の伝送線 37上の送信電圧を V Z2、受信電圧を V Z2のように表し、 2つの電 圧増幅器 32、 33に正転信号の伝送線 37、反転信号の伝送線 38上の電圧を入力さ せ、 2つの電圧増幅器 32、 33の出力を加算器 34によって加算することによって、図 5 の第 1の実施例などにおけると同様に受信電圧 Vの 2g倍の差動電圧信号が受信 r m
信号抽出部 5から出力される。またこの第 6の実施例でも、図 8の第 4の実施例におけ ると同様に、出力ドライバ 35と抵抗 4との接続点と、電圧増幅器 33の 2つの入力端子 との間に抵抗 25が挿入されている。この抵抗の挿入も、第 4の実施例に対して説明し たように、 2つの電圧増幅器 32、 33に対する入力時定数をできるだけ等しくするため のものである。
[0039] 図 11は、図 10の第 6の実施例に対応する、出力ドライバを含む伝送線路の片側に おけるハイブリッド回路の詳細構成図である。同図においては、図 10におけると同様 に出力ドライバ 35によって出力される差動信号が、正転信号の伝送線 37、反転信号 の伝送線 38によって伝送線路 36に入力され、通信相手側に送信される。
[0040] 図 11において正転信号の伝送線 37、反転信号の伝送線 38上の、抵抗 4と伝送線 路 36との接続点の電圧が図 10の電圧増幅器 32に相当する第 1のトランスコンダクタ ンス 'アンプに入力される。この第 1のトランスコンダクタンス 'アンプは、 nMOSトラン ジスタ 40、 41、および電流源 42によって構成され、入力電圧を電流に変換して 2つ の負荷抵抗 55に与えるものである。
[0041] また出力ドライバ 35と抵抗 4との、 2つの伝送線 37、 38上の接続点の電圧力 3つ の n型 MOSトランジスタ 45から 47、および可変電圧源 48から構成され、図 10の電 圧増幅器 33に相当する第 2のトランスコンダクタンス ·アンプに入力される。この第 2 のトランスコンダクタンス ·アンプも第 1のトランスコンダクタンス ·アンプと同様に入力電 圧を電流に変換して、その電流を 2つの負荷抵抗 55に与えるものであり、 2つのトラン スコンダクタンス.アンプの電流は 2つの負荷抵抗 55にそれぞれ加算されて流れ、図 10の加算器 34による加算動作に相当する動作が行われる。
[0042] このようにトランスコンダクタンス ·アンプとして CMOS差動対を用いることによって高 速動作が実現される。さらに出力ドライバとして高速動作に適した定電流ドライバを使 用することにより、例えば lOGbZs以上の高速動作が可能となる。
[0043] 出力ドライバ 35と抵抗 4との接続点と、 n型 MOSトランジスタ 45、 46のゲートとの間 に挿入されている P型 MOSトランジスタ 50、 51は、図 10における抵抗 25に相当する 。 p型 MOSトランジスタ 50、 51の等価抵抗の値は、可変電圧源 52によって出力され るゲート電圧によって制御される。
[0044] この 2つのトランスコンダクタンス 'アンプの入力端子から信号源を見た場合のインピ 一ダンスについて説明する。まず、トランジスタ 40、 41のそれぞれのゲートから信号 源側を見たインピーダンスは、伝送線路 36の出力端に、図 13で説明したようにイン ピーダンスマッチングのためにアースとの間に接続される抵抗の値 Zと、抵抗 4と抵
0
抗 12との直列合成抵抗 (Z )との並列のインピーダンスとして Z Z2となる。
0 0
[0045] これに対して p型トランジスタ 50、 51が存在しない場合に、 n型トランジスタ 45、 46 のゲートから信号源側を見た場合のインピーダンスは、抵抗 4と伝送線路 36の出力 端のインピーダンス整合用の抵抗との和としての 3Z Z2と、抵抗 12、すなわち Z /2
0 0 との並列の値となり、その値は 3Z Z8となる。
0
[0046] 一方図 10における電圧増幅器 32の増幅率、すなわち図 11では第 1のトランスコン ダクタンス'アンプのコンダクタンスの大きさは 3g 、電圧増幅器 33、すなわち図 11の 第 2のトランスコンダクタンス'アンプのトランスコンダクタンスの大きさは 2g となる。トラ ンスコンダクタンス'アンプの入力容量はトランスコンダクタンスの大きさに比例するた め、第 1のトランスコンダクタンス'アンプの入力容量を 3Cとすると、第 2のトランスコン ダクタンス ·アンプの入力容量は 2Cとなる。
[0047] したがって p型トランジスタ 50、 51を挿入しない状態では、第 1のトランスコンダクタ ンス 'アンプの入力時定数は 3CZ Z2、第 2のトランスコンダクタンス 'アンプの入力
0
時定数は 3CZ Z4となり、第 2のトランスコンダクタンス 'アンプの時定数は第 1のトラ
0
ンスコンダクタンス.アンプの時定数の半分になる。これらの時定数の差を補正するた めに図 10で説明したように抵抗 25を挿入することになる力 この抵抗 25の値を Z /
0
2とすると第 2のトランスコンダクタンス 'アンプの入力時定数は 7CZ Z4となる。 2つ
0
のトランスコンダクタンス.アンプの入力時定数をさらに近づけるためには 2つの p型ト ランジスタ 50、 51のゲート電圧を調整すれば良いことになる。これによつて受信信号 の受信感度を向上させることができる。
[0048] 図 11では、差動信号の双方向伝送システムにおいて、基本的に 2つのトランスコン ダクタンス'アンプと負荷抵抗とによって構成されるハイブリッド回路の詳細構成を説 明したが、例えば第 1の実施例を示す図 5において、 2つの電圧増幅器 18、 19とカロ 算器 17の代わりに、 2つのトランスコンダクタンス 'アンプと負荷抵抗とを用いてハイブ リツド回路を構成することも当然可能である。 [0049] 最後に本発明のノ、イブリツド回路を用いた受信信号の抽出のシミュレーション結果 について図 12を用いて説明する。図 12において上の 2つの信号 Txl、 Τχ2は図 3に 示すように双方向の伝送線路 3を介して通信相手側に送られる送信信号の波形を示 す。なお、この波形は差動信号のうちで、例えば正転信号を示している。
[0050] 中央の信号 Vは図 4で説明したように抵抗 4と伝送線路 3との接続点における電圧 V=V +Vであり、送信差動信号と受信差動信号が重畳された差動電圧信号を示し ている。
[0051] 下の信号 Rxlは図 3において受信信号抽出部 5から出力される受信信号の抽出結 果であり、中央の電圧波形 V、すなわち送信信号と受信信号とが重畳された信号か ら、受信信号のみが抽出された状態の受信差動信号を示している。これによつて受 信差動信号は上下に反転した信号として正しく抽出されていることがわかる。
[0052] なお、このシミュレーションにおいては、伝送線路は長さ 20cmのプリント基板上の 配線で、信号損失 5dBのものとし、この線路の両側からトランスミッタで擬似ランダム 信号としての送信データを送るものとして!/、る。信号の振幅は片側だけのトランスミツ タから信号を送ったときには、 IVから 1. 2Vの間で変化する 200mVppの振幅となつ ている。両側からの信号が重畳されるため、中央の波形のように、最大で 800mVか ら 1. 2mVの間で変化する 400mVppの振幅となる。
[0053] 以上詳細に説明したように本発明によれば、レプリカドライバを使用することなぐ伝 送路上の信号、すなわち送信信号と受信信号が重畳されて!、る信号から受信信号 のみを分離して抽出することが可能となる。このためレプリカドライバを使用する場合 に必要となる電力や面積を削減することができ、またレプリカドライバの出力電圧と伝 送路上の信号とのタイミング制御が不必要となり、双方向データ伝送システムにおい て lGbZs以上の速度が容易に実現でき、例えば通信機関向けの装置やサーバな どの情報処理機器の信号送受信における性能向上に寄与するところが大きい。

Claims

請求の範囲
[1] 双方向信号伝送システムにお ヽて通信相手側から送られる受信信号を送信信号 力も分離するハイブリッド回路であって、
信号を送信するための出力ドライバと伝送線路との間にシリアルに挿入される抵抗 と、
該抵抗の両端力 得られる信号を用いて、伝送路上の信号力 受信信号のみを抽 出する受信信号抽出部とを備えることを特徴とする抵抗を用いたハイブリッド回路。
[2] 前記受信信号抽出部が、
前記抵抗の両端の電圧を増幅する第 1の電圧増幅器と、
前記抵抗と伝送線路との接続点の電圧を増幅する第 2の電圧増幅器と、 該第 1の電圧増幅器と第 2の電圧増幅器の出力を加算する加算器とを備えることを 特徴とする請求項 1記載の抵抗を用いたノ、イブリツド回路。
[3] 前記伝送線路の特性インピーダンスを Z、前記抵抗の値を rとするとき、
0
前記第 1の電圧増幅器の増幅率が Z Zrであり、
0
前記第 2の電圧増幅器の増幅率が 1であり、
前記加算器が受信信号電圧 Vの 2倍の電圧を出力することを特徴とする請求項 2 記載の抵抗を用いたノ、イブリツド回路。
[4] 前記伝送線路の特性インピーダンスを Z、前記抵抗の値を rとし、 gを定数とすると
0 m
さ、
前記第 1の電圧増幅器の増幅率が g Z Zr
m 0 であり、
前記第 2の電圧増幅器の増幅率が gであり、
前記加算器が受信信号電圧 Vの 2g倍の電圧を出力することを特徴とする請求項 r m
2記載の抵抗を用いたハイブリッド回路。
[5] 前記伝送線路の特性インピーダンスを Z、前記抵抗の値を rとし、 gを定数とすると
0 m
さ、
前記受信信号抽出部が、
前記抵抗と伝送線路の接続点の電圧を g (l +Z Zr)倍する第 1の電圧増幅器と 前記抵抗と出力ドライバとの接続点の電圧を(一 g Z Zr)倍する第 2の電圧増幅器 m 0
と、
該第 1、第 2の電圧増幅器の出力を加算して受信信号電圧 Vの 2g倍の電圧を出 r m
力する加算器とを備えることを特徴とする請求項 1記載の抵抗を用いたハイブリッド回 路。
[6] 前記第 1の電圧増幅器に対応する g の値を可変数 g 、第 2の電圧増幅器に対応 m m
する g の値を可変数 g とするとき、
該 g 、g の
ml m2 両方、もしくは一方を調整して g =g =g
ml m2 mとするとき、前記加算器 が受信信号電圧 Vの 2g倍の電圧を出力することを特徴とする請求項 5記載の抵抗 r m
を用いたハイブリッド回路。
[7] 前記抵抗と出力ドライバとの接続点と、前記第 2の電圧増幅器との間に抵抗!:がさら に挿入されることを特徴とする請求項 5記載の抵抗を用いたハイブリッド回路。
[8] 前記伝送線路の特性インピーダンスを Z、抵抗の値を rとし、 gを定数とするとき、
0 m
前記受信信号抽出部が、
前記抵抗と伝送線路との接続点の電圧を g Z Zr
m 0 倍する第 1の電圧増幅器と、 該接続点の電圧を g倍する第 2の電圧増幅器と、
該抵抗と前記出力ドライバとの接続点の電圧を(一 g Z Zr)
m 0 倍する第 3の電圧増幅 器と、
該第 1の電圧増幅器、第 2の電圧増幅器、および第 3の電圧増幅器の出力を加算 して受信電圧 Vの 2g倍を出力する加算器とを備えることを特徴とする請求項 1記載 r m
の抵抗を用いたノ、イブリツド回路。
[9] 前記伝送線路が差動信号の伝送線路であり、該差動信号の正転信号の伝送経路 と反転信号の伝送経路上で、前記出力ドライバと伝送線路との間にそれぞれシリア ルに前記抵抗が挿入されるとともに、
該伝送線路の特性インピーダンスを Z、前記抵抗の値を rとし、 gを定数とするとき
0 m 前記受信信号抽出部が、
前記正転信号の伝送経路における前記抵抗と伝送線路の接続点の電圧と、反転 信号の伝送経路における同一接続点の電圧との差を g (1 +Z Zr)倍する第 1の電 m 0
圧増幅器と、
該正転信号の伝送経路における前記抵抗と出力ドライバとの接続点の電圧と、反 転信号の伝送経路における同一接続点との電圧との差を(一 g Z Zr)倍する第 2の m 0
電圧増幅器と、
該第 1の電圧増幅器の出力と第 2の電圧増幅器の出力とを加算して、該正転信号 と反転信号の伝送経路における受信信号電圧 Vの 2g倍を出力する加算器とを備 r m
えることを特徴とする請求項 1記載の抵抗を用いたハイブリッド回路。
[10] 前記伝送線路が差動信号の伝送線路であり、該差動信号の正転信号の伝送経路 と反転信号の伝送経路上で、前記出力ドライバと伝送線路との間にそれぞれシリア ルに前記抵抗が挿入されるとともに、
前記受信信号抽出部が、
前記正転信号の伝送経路における前記抵抗と伝送線路との接続点の電圧と、反転 信号の伝送経路における同一接続点の電圧とが差動入力として与えられ、該差動入 力に対応した電流を出力する第 1のトランスコンダクタンス 'アンプと、
該正転信号の伝送経路における前記抵抗と出力ドライバとの接続点の電圧と、反 転信号の伝送経路における同一接続点の電圧とが差動入力として与えられ、該差動 入力に対応した電流を出力する第 2のトランスコンダクタンス ·アンプと、
該第 1のトランスコンダクタンス'アンプと第 2のトランスコンダクタンス'アンプの出力 する電流を加算した電流が流れる負荷抵抗とを備えることを特徴とする請求項 1記載 の抵抗を用いたノ、イブリツド回路。
[11] 前記正転信号の伝送経路における前記抵抗と出力ドライバとの接続点と前記第 2 のトランスコンダクタンス.アンプの正転入力端子との間、および前記反転信号の伝 送経路における同一位置の接続点と前記第 2のトランスコンダクタンス 'アンプの反転 入力との間に、それぞれ該第 2のトランスコンダクタンス'アンプの入力時定数調整用 の抵抗が接続されることを特徴とする請求項 10記載の抵抗を用いたノ、イブリツド回路
[12] 前記伝送線路の特性インピーダンスを Z、前記抵抗の値を rとし、前記出力ドライバ のインピーダンス Zが Z> >Z—rの条件を満たすとき、
0
該出力ドライバの出力端と該出力ドライバの電源電圧との間に Z— rの値を持つ抵
0
抗がさらに接続されることを特徴とする請求項 10記載の抵抗を用いたノ、イブリツド回 路。
[13] 前記伝送線路の特性インピーダンスを Z、前記抵抗の値を rとするとき、
0
前記出力ドライバのインピーダンスが Z— rであることを特徴とする請求項 1記載の
0
抵抗を用いたハイブリッド回路。
[14] 前記伝送線路の特性インピーダンスを Z、前記抵抗の値を rとし、前記出力ドライバ
0
のインピーダンス Zが Z〉〉Z—rの条件を満たすとき、
0
該出力ドライバの出力端と該出力ドライバの電源電圧との間に Z— rの値を持つ抵
0
抗がさらに接続されることを特徴とする請求項 1記載の抵抗を用いたノ、イブリツド回路
[15] 前記受信信号抽出部が、
前記抵抗の両端の電圧が入力され、該入力電圧に対応する電流を出力する第 1の トランスコンダクタンス ·アンプと、
前記抵抗と伝送経路との接続点の電圧が入力され、該入力電圧に対応する電流を 出力する第 2のトランスコンダクタンス ·アンプと、
該第 1のトランスコンダクタンス'アンプと第 2のトランスコンダクタンス'アンプとが出 力する電流を加算した電流が流れる負荷抵抗とを備えることを特徴とする請求項 1記 載の抵抗を用いたノ、イブリツド回路。
PCT/JP2005/017072 2005-09-15 2005-09-15 抵抗を用いたハイブリッド回路 WO2007032079A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007535359A JPWO2007032079A1 (ja) 2005-09-15 2005-09-15 抵抗を用いたハイブリッド回路
PCT/JP2005/017072 WO2007032079A1 (ja) 2005-09-15 2005-09-15 抵抗を用いたハイブリッド回路
US12/048,946 US20080187056A1 (en) 2005-09-15 2008-03-14 Hybrid circuit using resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017072 WO2007032079A1 (ja) 2005-09-15 2005-09-15 抵抗を用いたハイブリッド回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/048,946 Continuation US20080187056A1 (en) 2005-09-15 2008-03-14 Hybrid circuit using resistor

Publications (1)

Publication Number Publication Date
WO2007032079A1 true WO2007032079A1 (ja) 2007-03-22

Family

ID=37864685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017072 WO2007032079A1 (ja) 2005-09-15 2005-09-15 抵抗を用いたハイブリッド回路

Country Status (3)

Country Link
US (1) US20080187056A1 (ja)
JP (1) JPWO2007032079A1 (ja)
WO (1) WO2007032079A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281570A (ja) * 2006-04-03 2007-10-25 Kawasaki Microelectronics Kk シリアル通信回路
WO2008117363A1 (ja) * 2007-03-23 2008-10-02 Fujitsu Limited 信号伝送方法、送信/受信回路及びこれを備えた装置
JP2010103703A (ja) * 2008-10-22 2010-05-06 Hitachi Ltd 鉄道車両用通信装置
EP2222040A4 (en) * 2007-11-22 2016-04-06 Sony Corp INTERFACE CIRCUIT

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159074A1 (ja) * 2016-03-14 2017-09-21 ソニー株式会社 送信装置、送信方法、および通信システム
DE102019007379A1 (de) * 2019-10-23 2021-04-29 Emz-Hanauer Gmbh & Co. Kgaa Sensor zum Einbau in ein elektrisches Haushaltsgerät

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121837A (ja) * 1982-01-14 1983-07-20 Nec Corp 2線4線変換回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2898165B2 (ja) * 1993-04-16 1999-05-31 シャープ株式会社 ハイブリッド回路
JP2882266B2 (ja) * 1993-12-28 1999-04-12 株式会社日立製作所 信号伝送装置及び回路ブロック
DE10137687B4 (de) * 2000-08-04 2007-01-18 Matsushita Electric Industrial Co., Ltd., Kadoma Notfallinformationsendgerät und Notfallinformationssystem mit Endgerät

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121837A (ja) * 1982-01-14 1983-07-20 Nec Corp 2線4線変換回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281570A (ja) * 2006-04-03 2007-10-25 Kawasaki Microelectronics Kk シリアル通信回路
WO2008117363A1 (ja) * 2007-03-23 2008-10-02 Fujitsu Limited 信号伝送方法、送信/受信回路及びこれを備えた装置
JP4818432B2 (ja) * 2007-03-23 2011-11-16 富士通株式会社 信号伝送方法、送信/受信回路及びこれを備えた装置
US8798568B2 (en) 2007-03-23 2014-08-05 Fujitsu Limited Signal transmission method, transmission circuit and apparatus
EP2222040A4 (en) * 2007-11-22 2016-04-06 Sony Corp INTERFACE CIRCUIT
US9667369B2 (en) 2007-11-22 2017-05-30 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
US10033553B2 (en) 2007-11-22 2018-07-24 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
JP2010103703A (ja) * 2008-10-22 2010-05-06 Hitachi Ltd 鉄道車両用通信装置

Also Published As

Publication number Publication date
JPWO2007032079A1 (ja) 2009-03-19
US20080187056A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US7042254B2 (en) Differential signal receiving device and differential signal transmission system
EP0955728B1 (en) Method and apparatus for performing data pulse detection
WO2007032079A1 (ja) 抵抗を用いたハイブリッド回路
US20060291552A1 (en) Decision feedback equalizer
US8599966B2 (en) Coupling system for data receivers
KR20110119744A (ko) 차동 드라이버를 위한 고속 공통 모드 피드백 제어
EP2638673B1 (en) Adjustable finite impulse response transmitter
US20040116160A1 (en) Simultaneous bidirectional differential signalling interface
Tomita et al. A 20-Gb/s Simultaneous Bidirectional Transceiver Using a Resistor-Transconductor Hybrid in 0.11-$\mu {\hbox {m}} $ CMOS
JP5057585B2 (ja) 電磁気結合器を用いて高速バスのアナログバリデーションを行う方法及び装置
JP4588781B2 (ja) 高速/高周波数の差動信号伝送で用いる電磁結合器のための無部品終端
Rao et al. Current-mode full-duplex (CMFD) signaling for high-speed chip-to-chip interconnect
US6944239B2 (en) CMOS receiver for simultaneous bi-directional links
Duvvuri et al. A new hybrid circuit topology for simultaneous bidirectional signaling over on-chip interconnects
US9099970B2 (en) Class AB differential line drivers
JP3948849B2 (ja) レシーバ回路および信号伝送システム
WO2000045507A1 (en) Data pulse receiver
TWI407689B (zh) 信號處理裝置、等化裝置及其方法
CN109891758B (zh) 用于全双工传输的虚拟混合的电路和方法
JP4163628B2 (ja) 双方向通信のための送受信装置
US6445220B1 (en) Method and apparatus for fully-differential half-circulator for bi-directional small-signal signaling
WO1998010527A1 (en) Transistor ratio controlled cmos transmission line equalizer
US9754638B1 (en) Sense amplifier
Zhong et al. A 2$\times $56 Gb/s 0.78-pJ/b PAM-4 Crosstalk Cancellation Receiver With Active Crosstalk Extraction Technique in 28-nm CMOS
JPH09275328A (ja) 可変容量回路及びそれを用いたアナログフィルタ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535359

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05783592

Country of ref document: EP

Kind code of ref document: A1