WO2007032077A1 - Tcp handler - Google Patents
Tcp handler Download PDFInfo
- Publication number
- WO2007032077A1 WO2007032077A1 PCT/JP2005/017068 JP2005017068W WO2007032077A1 WO 2007032077 A1 WO2007032077 A1 WO 2007032077A1 JP 2005017068 W JP2005017068 W JP 2005017068W WO 2007032077 A1 WO2007032077 A1 WO 2007032077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact
- tcp
- terminal
- terminals
- external
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2891—Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2893—Handling, conveying or loading, e.g. belts, boats, vacuum fingers
Definitions
- the present invention is manufactured using TCP (Tape Carrier Package) and COF (Chip On Film) (hereinafter, TCP, COF, and other TAB (Tape Automated Bonding) mounting technologies, which are one type of IC device. It relates to a TCP handling device that is used to collectively test devices and test "TCP".
- TCP Transmission Carrier Package
- COF Chip On Film
- TAB Tape Automated Bonding
- a test apparatus for TCP is generally composed of a tester body, a test head, and a TCP handling apparatus (hereinafter sometimes referred to as “TCP handler”).
- TCP handler transports a carrier tape on which multiple TCPs are formed on a tape (including the concept of film; the same shall apply hereinafter) and carries the carrier to the probe card probe that is electrically connected to the test head.
- This TCP handler transports a carrier tape on which multiple TCPs are formed on a tape (including the concept of film; the same shall apply hereinafter) and carries the carrier to the probe card probe that is electrically connected to the test head.
- the TCP handler should be connected in advance to ensure that the TCP test pad and each probe of the probe card can be contacted before performing a test in actual operation.
- the initial settings are made for, and the settings are registered.
- the initial setting of the TCP handler is performed as follows, for example. First, after determining the rough position of the TCP and probe card transported to the test position, the probe on the probe card and the TCP test pad are photographed with a camera, and the obtained image is displayed on the display device. The operator visually confirms the image while all the probes on the probe card are TCP. Manually adjust the position of each probe so that it can contact all test pads. The position set in this way is registered as an initial setting and used for alignment during actual operation.
- TCP test pads have become smaller and narrower, so the probes and test pads displayed on the display device are also smaller and more powerful. Yes. For this reason, it is difficult to align the pad and the probe in the initial setting, and the time required for the initial setting becomes longer. Also, the TCP and probe may not always be accurately aligned, which may cause contact failure, unstable contact resistance, short-circuit between adjacent pins, etc. during actual operation. It may occur.
- the present invention has been made in view of such a situation, and provides a TCP handling device capable of accurately and easily aligning a contact terminal of a contact portion with an external terminal of a TCP.
- the purpose is to provide.
- the present invention conveys a carrier tape having a plurality of TCPs formed on the tape, and attaches the carrier tape to a contact portion electrically connected to the test head.
- a plurality of TCPs can be sequentially subjected to the test, and the TCP external terminal and the contact terminal outside the contour are photographed with an imaging device,
- a TCP handling device capable of displaying an obtained image on a display device, wherein the display device can be positioned by specifying a positional relationship between a TCP external terminal and a contact terminal outside the contour.
- a TCP that is characterized by displaying a standard image that displays the entire object captured by the imaging device and an enlarged image that magnifies and displays a portion of the object captured by the imaging device.
- Providing Ndori packaging apparatus (invention 1).
- the imaging device can identify the positional relationship between the external terminal of the TCP and the contact terminal even when displaying an enlarged image, and can position both terminals. It is preferable that the imaging device has a high resolution (Invention 2). By using a high-resolution imaging device, the TCP external terminals and contact terminals can be displayed clearly.
- Alignment work can be performed more accurately.
- the number of images to be taken can be reduced by widening the shooting range at one time, thereby reducing the frequency of moving the image pickup device and mechanical movement. Errors and errors such as multiple image overlay processing can be reduced, and therefore, it is possible to cope with TCP having finer, narrower pitch external terminals.
- the TCP handling device includes an imaging stage for moving the imaging device so that the external terminal of the TCP at a predetermined position and the contact terminal of the contact portion can be photographed. (Invention 3).
- the TCP handling device preferably includes an enlarged display operation unit, and enlarges the standard image according to an operation by the enlarged display operation unit to obtain an enlarged image.
- Invention 3 If an enlarged display operation unit is provided as in the present invention (invention 3), an enlarged image can be easily displayed by operating the enlarged display operation unit, and the operability is excellent.
- the TCP handling device when there is a displacement or a contact failure between the external terminal of the TCP and the contact terminal of the contact part during actual operation, the displacement or contact It is preferable that the defective portion can be automatically displayed on the display device as an enlarged image (Invention 4).
- the position of misalignment or poor contact can be visually recognized as an enlarged image, so that the situation of misalignment or poor contact can be accurately grasped.
- the position of the external terminal of the TCP and the contact terminal of the contact part should be adjusted manually during actual operation. Since it is possible to quickly grasp and deal with the location of misalignment or contact failure, the test throughput can be improved.
- the present invention electrically connects a plurality of contact terminals provided in a contact portion that transmits and receives a test signal, and a plurality of external terminals provided in a TCP to be tested disposed on a carrier tape.
- a TCP handling device that performs a test by contact with air, an imaging device that images a contact terminal and a TCP external terminal corresponding to the contact terminal, a contact terminal imaged by the imaging device, and an external TCP A display device that processes and displays an image of the terminal as desired.
- the imaging device has a zoom function, and in a zoom state, the contact terminal and a TCP external terminal corresponding to the contact terminal.
- a TCP handling device characterized by having a resolution that can identify the positional relationship between the two (invention 6).
- invention 6 it is possible to enlarge and display the TCP external terminal and the contact terminal of the probe card, which are objects of alignment, by bringing the imaging device into a zoom state. Therefore, the alignment between the external terminal of the TCP and the contact terminal of the contact portion can be performed accurately and easily. Therefore, when using a TCP handling device, the initial setting can be performed efficiently in a short time. In addition, when a contact failure occurs during actual operation of the TCP handling device, it is also possible to check the contact failure status using an enlarged display.
- the imaging apparatus can image at least two external terminals located on a diagonal line or at least two external terminals far away from each other among a plurality of external terminals of the TCP.
- the imaging stage is moved as described above, and the positional deviation amount between the at least two external terminals and the contact terminal corresponding to the external terminal is specified based on the image data obtained by the imaging device.
- the carrier tape or the contact terminal group may be moved so as to obtain a stable contact based on the amount of displacement.
- Preferred (Invention 8) According to this invention (Invention 7), it is possible to specify a more accurate displacement correction amount, and in particular, it is possible to correct a deviation in the ⁇ rotation direction.
- the shape of the contact terminal is extracted on the basis of the image data obtained by photographing with the imaging device, and the contact terminal is the TCP of the extracted shape from the extracted shape. Identify the contact point that contacts the external terminal, and secondly, extract the shape of the TCP external terminal based on the image data, identify the center position point of the external terminal from the extracted shape, and A mark indicating the contact point and a mark indicating the position of the central position point of the external terminal may be overlaid on the display device (Invention 9). According to this invention (Invention 9), the operator can clearly grasp the shift state between the center position point of the external terminal and the contact point of the contact terminal, and therefore can perform the alignment adjustment work accurately.
- the contact check function is applied, and the carrier tape or the contact terminal group is moved in the plane direction, and all the contact terminals and TCP corresponding to the contact terminals are moved. An electrical contact state with an external terminal is detected, and an effective movement area where any contact terminal can be contacted effectively without contact failure is determined. Based on the effective movement area, a carrier tape and a contact terminal group It may be possible to specify the best position of the invention (Invention 10). According to this invention (Invention 10), for example, even when the contact terminals vary due to pressing stress, the best positions of the carrier tape and the contact terminal group can be efficiently identified. .
- the contact check function is applied to detect the electrical contact state between all the contact terminals and the TCP external terminals corresponding to the contact terminals, and the control is performed.
- the contact failure part is photographed by moving the imaging device to the position of the contact terminal that caused the contact failure and the position of the external terminal corresponding to the contact terminal.
- An image may be displayed on a display device (Invention 11). According to the present invention (Invention 11), it is possible to accurately grasp the state of the contact failure site by the image.
- the contact terminal and the contact terminal are obtained from non-contact state image data obtained by imaging the contact terminal and the TCP external terminal corresponding to the contact terminal in the non-contact state. From the contact state image data obtained by imaging the contact terminal and the external terminal of the TCP corresponding to the contact terminal in the contact state related to the test. And the external terminal corresponding to the contact terminal are identified, the amount of change of the identified positional relationship is obtained, and the contact terminal and the external terminal corresponding to the contact terminal are determined based on the amount of change. It is also possible to correct the misalignment (Invention 13). According to this invention (Invention 13), since it is possible to perform misalignment correction including the misalignment amount generated in the non-contact state force contact state, it is possible to realize a more stable contact.
- the alignment operation between the contact terminal of the contact portion and the external terminal of the TCP can be performed accurately and easily.
- FIG. 1 is a front view showing a TCP test apparatus using a TCP handler according to an embodiment of the present invention.
- FIG. 2 is a side view of a pusher unit in the TCP handler according to the embodiment.
- FIG. 3 is a plan view of a pusher stage in the TCP handler according to the embodiment.
- FIG. 4 is a plan view of a probe card stage in the TCP handler according to the same embodiment.
- FIG. 5 is a front view of a probe card stage in the TCP handler according to the same embodiment.
- FIG. 6 (a) is a plan view showing an example of a display device in a state where a standard image is displayed.
- FIG. 7 is a flowchart showing the operation of a TCP handler according to an embodiment of the present invention during a test.
- FIG. 1 is a front view showing a TCP test apparatus using a TCP handler according to an embodiment of the present invention
- FIG. 2 is a side view of a pusher unit in the TCP handler according to the embodiment
- 3 is a plan view of a pusher stage in the TCP handler according to the embodiment
- FIG. 4 is a plan view of a probe card stage in the TCP handler according to the embodiment
- FIG. 6 (a) is a plan view showing an example of a display device in which a standard image is displayed
- FIG. 6 (b) is an enlarged image of the probe card stage in the TCP handler
- FIG. 7 is a plan view showing an example of a display device in a displayed state
- FIG. 7 is a flowchart showing an operation at the time of testing a TCP handler according to an embodiment of the present invention.
- the test apparatus 1 for TCP includes a tester body (not shown), a test head 10 electrically connected to the tester body, and a TCP handler 2 provided on the upper side of the test head 10. .
- the TCP handler 2 sequentially attaches a plurality of TCPs formed on the carrier tape 5 to the test.
- each TCP handler is attached to the test. Let's say.
- the present invention is not limited to this, and a plurality of TCPs arranged in the series direction and in the Z or parallel direction on the carrier tape 5 may be simultaneously subjected to the test.
- the TCP handler 2 includes a feeding reel 21 and a take-up reel 22, and a carrier tape 5 before the test is wound around the feed reel 21.
- the carrier tape 5 is also unwound on the take-up reel 21 and is taken up on the take-up reel 22 after being subjected to the test.
- the space between the take-out reel 21 and the take-up reel 22 is composed of three spacer rolls 23a, which bridge the protective tape 51 peeled off from the carrier tape 5 from the take-out reel 21 to the take-up reel 22.
- 23b and 23c are provided.
- Each of the spacer rolls 23a, 23b, 23c is movable up and down so that the tension of the protective tape 51 can be adjusted.
- a tape guide 24a, a feeding limit roller 25a, an inboard subs A procket 25b and an in-side guide roller 25c are provided, and the carrier tape 5 unrolled from the unloading reel 21 is guided by the tape guide 24a while the unloading limit roller 25a, the in-side sub-sprocket 25b and the It is conveyed to the pusher unit 3 via the side guide roller 25c.
- a tape guide 24b, a take-off limit roller 25f, an out-side sub sprocket 25e and an out-side guide roller 25d are provided below the take-up reel 22, and the carrier tape 5 after being subjected to the test is provided. Is wound around the take-up reel 22 while being guided by the tape guide 24b via the out-side guide roller 25d, the out-side sub-sprocket 25e and the take-up limit roller 25f.
- a push unit 3 is provided between the in-side guide roller 25c and the out-side guide roller 25d.
- a servo motor 31 capable of rotating a ball screw 32 is attached to a frame (pusher frame) 36 of the pusher unit 3 via a bracket 361.
- a pusher body 33 to which the ball screw 32 is screwed is attached via two linear motion guides (hereinafter referred to as “LM guides”) 37 in the Z-axis direction.
- the pusher body 33 is movable in the vertical direction (Z-axis direction) while being guided by the re-motion guide 37 by driving the servo motor 31.
- a suction plate 34 that is connected to a negative pressure source (not shown) and can suck and hold the carrier tape 5 is provided.
- a tension sprocket 35a is provided on the front side of the pusher body 33 (left side in FIG. 1), and a main sprocket 35b is provided on the rear side of the pusher body 33 (right side in FIG. 1).
- the carrier tape 5 is held with a desired tension.
- a pusher stage 4 is installed on the back surface side of the pusher main body 33 in the pusher frame 36 so as to be placed on the base 38.
- the top table 48 which is a rotating table, is fixed to the pusher frame 36.
- a ball screw 42a having an axis in the X-axis direction is turned on the base 40 of the pusher stage 4.
- Servo motor 41a for rotating, servo motor 41b for rotating ball screw 42b having an axis in the Y-axis direction, and servo motor 41c for rotating ball screw 42c having an axis in the Y-axis direction are provided. 41b and servo motor 41c are located at both ends on base 40, respectively.
- a sliding block 44a that is guided by LM guides 43a, 43a in the X-axis direction and is slidable in the X-axis direction is screwed into the ball screw 42a.
- a sliding plate 46a is attached to the sliding block 44a via a Y-axis LM guide 45a so as to be slidable in the Y-axis direction.
- a rotating member 47a having a roller ring inside is fixed to the upper side of the sliding plate 46a, and the rotating member 47a is rotatably attached to the top table 48.
- a sliding block 44b that is guided by LM guides 43b, 43b in the Y-axis direction and is slidable in the Y-axis direction is screwed into the ball screw 42b.
- a sliding plate 46b is attached to the sliding block 44b through an LM guide 45b in the X-axis direction so as to be slidable in the X-axis direction.
- a rotating member 47b having a roller ring inside is fixed to the upper side of the sliding plate 46b, and the rotating member 47b is rotatably attached to the top table 48.
- a sliding block 44c that is guided by LM guides 43c, 43c in the Y-axis direction and is slidable in the Y-axis direction is screwed into the ball screw 42c.
- a sliding plate 46c is attached to the sliding block 44c through an LM guide 45c in the X-axis direction so as to be slidable in the X-axis direction.
- a rotating member 47c having a roller ring inside is fixed to the upper side of the sliding plate 46c, and the rotating member 47c is rotatably attached to the top table 48.
- the servo motor 41a is driven to slide the sliding block 44a, the sliding plate 46b, and the sliding plate 46c in the X-axis direction.
- the top table 48 can be moved in the X-axis direction. Also, the top table 48 is moved in the Y-axis direction by driving the servo motor 41b and the servo motor 41c and sliding the sliding block 44b, the sliding block 44c, and the sliding plate 46a in the same direction as the Y-axis. Can be made.
- the servo motor 41a is driven to slide the slide block 44a in the X-axis direction
- the servo motor 41b and the servo motor 41c are driven to make the slide block 44b and the slide block 44c Y Slide the top table 48 in its vertical axis by sliding in the opposite direction and rotating each rotating member 47a, 45b, 45c. Can be rotated.
- the pusher unit 3 can be moved in the X-axis and Y-axis directions and rotated around the vertical axis.
- the pusher stage 4 can move in a shorter time than the probe card stage 7. However, since the pusher stage 4 moves the TCP while the carrier tape 5 is sucked and held, the amount of movement in the X-axis and Y-axis directions and the rotational movement is small, but it can be used practically.
- a probe card stage 7 on which a probe card 8 is mounted is installed below the pusher unit 3 and above the test head 10.
- the probe card stage 7 includes a type that can be moved and controlled by a motor drive mechanism and a type that has only a manual adjustment function.
- the probe card stage 7 has a motor drive mechanism.
- a servo motor 711 that rotates a ball screw 712 having an axis in the X-axis direction, and four LMs in the X-axis direction Guide 713 is provided.
- rectangular X bases 72 are provided which are guided by the LM guides 713 so as to be slidable in the X-axis direction.
- a threaded portion 721 into which a ball screw 712 is threaded is formed on one side of the X base 72.
- a servo motor 722 for rotating a ball screw 723 having an axis in the Y-axis direction and two LM guides 724 in the Y-axis direction are provided on the X base 72.
- a rectangular Y base 73 is provided that is slidably guided in the Y-axis direction by the LM guides 724.
- a ball screw 723 is screwed to one side of the Y base 73 to form a screwed portion 731.
- a servo motor 732 for rotating a ball screw 733 having an axis in the Y-axis direction, and a connection ring 734 for rotatably supporting the card ring 735 are provided on the Y base 73.
- a part of the card ring 735 is formed with a threaded portion 736 into which a ball screw 733 is threaded.
- a probe card 8 with multiple probes 81 is detachably attached to the card ring 735 with four pins 82! / Although not shown in FIGS. 4 and 5, each probe 81 of the probe card 8 is electrically connected to the tester body via the test head 10.
- the probe card stage 7 having such a configuration, by driving the servo motor 711, the X base 72, and hence the probe card 8 can be moved in the X-axis direction, and the servo motor 722 is driven. As a result, the Y base 73 and thus the probe card 8 can be moved in the Y-axis direction. Further, the card ring 735 and the probe card 8 can be rotated around the vertical axis by driving the servo motor 732 to rotate the ball screw 733 and moving the screwing portion 736.
- the first camera 6a force is placed on the front side of the pusher unit 3 (left side in FIG. 1), and the second camera (imaging device) 6b is placed on the lower side of the test head 10.
- a third camera 6c is provided on the rear side of 3 (right side in Fig. 1).
- the test head 10 is formed with a gap through which the second camera 6b can photograph the probe card 8.
- a mark punch 26a and a reject punch 26b are provided between the pusher unit 3 and the third camera 6c. Based on the test results, the mark punch 26a has one or more holes in the specified position in the corresponding TCP, and the reject punch 26b is determined to be defective as a result of the test. It is something that punches out TCP.
- Each camera 6a, 6b, 6c causes the display device 9 to display images taken by these cameras so that the operator can approve the images.
- the first camera 6a and the third force camera 6c are for determining the presence or absence of TCP on the carrier tape 5 and the position and number of holes by the mark punch 26a.
- the second camera 6b is for acquiring positional deviation information between the TCP and the probe card 8, and can acquire positional deviation information for a plurality of objects in the field of view.
- the second camera 6b is mounted on the camera stage 61, and can be moved in the vertical and horizontal directions (X-axis Y-axis direction) and in the vertical direction (Z-axis direction) by an actuator provided in the camera stage 61. It has become.
- the display device 9 has the image processing unit 90 and a standard image (an image that has been enlarged by the image processing unit 90) taken by the second camera 6b or an enlargement processed by the image processing unit 90. Change the display panel 91 that displays the enlarged image and the magnification of the image displayed on the display panel 91. And an area specifying button 93 (area specifying section) for specifying an area to be displayed.
- a touch panel on the display screen and a screen scroll button may be provided.
- the image processing unit 90 is configured by a computer that can digitally process image data.
- the operation button 92 includes an enlargement button 92a with a “+” sign and a reduction button 92b with a “ ⁇ ” sign.
- the image processing unit 90 performs image processing for displaying a part of the standard image in a large size, and the enlarged image is displayed on the display panel 91.
- the reduction button 92b is pressed, the image processing unit 90 performs image processing for displaying an enlarged image in a small size, and an enlarged image or a standard image with a reduced magnification is displayed on the display panel 91.
- the display device 9 can continuously change the enlargement magnification by pressing the operation button 92.
- the lower limit value (1 ⁇ ) and the upper limit value (for example, 5 ⁇ ) of the enlargement magnification can be obtained. Any magnification can be selected between and.
- the area designation button 93 is composed of four buttons with arrow symbols pointing up, down, left, and right. By pressing these buttons, the area displayed on the display panel 91 is moved up, down, left, and right. It can move in any direction.
- the signal generated by the operation of the area specifying button 93 is input to the image processing unit 90, and the image processing unit 90 displays the image data to be displayed in response to this input. Output to panel 91.
- a method of moving the second camera 6b may be used as a method of moving the region.
- test pad P and the alignment mark 55 are displayed at the same time. Further, on the display panel 91, although omitted in FIG. 6, it is desirable to display information that is easy for the operator to work.
- camera information magnification value, camera XY movement range, current XY position information, etc.
- TCP information to be observed TCP number, distance value in the pressing direction, X-axis coordinate value, Y-axis coordinate value, etc.
- Cross cursor and its intersection coordinate information relative XY coordinate value with reference to alignment mark 55
- cross force close to the intersection of one sol ! number information of test pad P in position, each test pad No position
- XY deviation value indicating the amount of deviation.
- the two images of the standard image and the enlarged image can be displayed at the same time, and the display operation of the two images can facilitate the alignment operation.
- the TCP test pad ⁇ ⁇ ⁇ shown in Fig. 6 is arranged in a straight line.
- the test pad P is formed by a simple staggered arrangement or a complicated arrangement. TCP also exists.
- the second camera 6b is a high-resolution camera or operator that allows the image processing unit 90 to obtain the positional deviation amount of the probe 81 / test node P with a desired accuracy at the maximum magnification. It is desirable that the camera be a high-resolution camera that can grasp the position displacement of the probe 81Z test pad P while viewing the enlarged image by manual operation and can adjust the position of the probe 81.
- the operator operates the magnifying magnification of the image at any time while observing the screen of the display device 9, so that the operator can check the image accurately.
- the contour of the image does not appear jagged.
- the operator can accurately align the probe 81 and the test pad P.
- the test pad P can cope with TCP with a narrower pitch, and the status of the misalignment of many probes 81Z test pad P and their contours can be confirmed accurately.
- the same image data can be used in the rough positioning process and detailed positioning process of many probes 81Z test pad P.
- the mechanical movement error of the probe card stage 7 is reduced, so the future TCP with a fine and narrow-pitch test pad P can be positioned with high accuracy. be able to.
- probe card 8 When using TCP handler 2, move probe card 8 so that all probes 81 of probe card 8 are positioned in the center of corresponding test pad P before operating TCP handler 2. It is necessary to make initial settings. This means that if you change the TPP varieties, test different production lots of TCP, or When the probe card 8 is changed, the reference position of the X-axis position ZY-axis position Z ⁇ rotation angle of the probe card stage 7 is determined so that the TCP test pad P and the probe card 8 probe 81 contact each other. Therefore, it is necessary to register (this position is referred to as “registered position”). Since pusher stage 4 is used during TCP test execution, it is assumed that it remains in the uncontrolled state by default.
- the TCP test pad P and the probe 81 of the probe card 8 are photographed and photographed by the second camera 6b.
- a standard image is displayed on the display panel 91 (see FIG. 6 (a)). Therefore, the operator moves the main sprocket 35b and Z or the probe card stage 7 by manual operation while visually recognizing the image displayed on the display panel 91, so that a plurality of locations (for example, as shown in FIG. 9) Determine the coarse position of the probe 81 and the corresponding test node P.
- the coarse position can be determined automatically instead of manually, if desired!
- the operator manually moves the probe card stage 7 in the X axis direction, the ZY axis direction, and the Z ⁇ rotation direction so that the plurality of probes 81 come into contact with the center position of the test pad P as much as possible. Adjust the position.
- This adjustment work is generally performed for a plurality of test pads P and corresponding probes 81 in the four corners of the TCP.
- the state of the probe force stage 7 that is in the best state for all the probes 81 by this adjustment work is registered as a reference position.
- the contact ends of all the probes 81 are not necessarily at the center position of the test pad P. Therefore, the best condition that all probes 81 can contact the test pad P stably. It is necessary to set to.
- the position coordinates of a predetermined position in the field of view of the second camera 6b are also registered. It is preferable to register three or more position coordinates, especially for distant objects in the camera's field of view. This makes it possible to acquire positional deviation information with high accuracy. For example, alignment mark 55 on carrier tape 5, two or more test pads P or characteristic leads on the diagonal of TCP, two or more probes corresponding to them 81 Etc. can be selected.
- the probe card stage 7 moves the probe card 8 to the registration position registered in the initial setting to be in a fixed state, and corrects misalignment performed before each TCP test that is sequentially transferred.
- This fine adjustment is performed by the pusher stage 4 for fine adjustment.
- this fine adjustment is also possible by moving the probe card stage 7 in place of the pusher stage 4.
- the second camera 6b is moved to the shooting position shown in FIG. 6 (a) (the position where both the alignment mark 55 and the test pad are shot) by the camera stage 61 in the initial stage. It is assumed that all the TCP tests are in a stationary state, and therefore the misalignment is corrected based only on the nine test pads P and the probe 81.
- the probe card stage 7 moves to the registration position registered in the initial setting (step SO1). From this point on, it is necessary to correct small misalignments caused by the transport system for each TCP and others.
- the main sprocket 35b and the tension sprocket 35a rotate by a predetermined angle to move the carrier tape 5 and transport the first TCP to a predetermined position below the suction plate 34 (step S02).
- the servo motor 31 of the pusher unit 3 is driven to move the suction plate 34 downward through the pusher body 33.
- the tension sprocket 35a is given a predetermined tension to the carrier tape 5 by being given a torque in the direction opposite to the traveling direction of the carrier tape 5, the carrier tape 5 is in a state without sagging, The positional accuracy of the carrier tape 5 is improved.
- the suction plate 34 sucks the carrier tape 5 to hold and fix the TCP, and then descends to the photographing position (step S03).
- the second camera 6b performs photographing (step S04), and transmits the obtained image data to the image processing unit 90.
- the image processing unit 90 receives the received image data and displays the standard image on the display panel 91 together with various information (X coordinate value, Y coordinate value, magnification, pusher position information, etc.) (step S05). , Allowing the operator to confirm.
- the image processing unit 90 obtains positional deviation information (the direction of positional deviation (X-axis direction / Y-axis direction) and the amount of positional deviation) between the test pad P and the probe 81 by calculation (step SO 6 ).
- the image processing unit 90 first identifies the alignment mark 55 and obtains position information of the alignment mark 55 from the position of the alignment mark 55 on the image and the stage position of the camera stage 61. From the position information of the alignment mark 55, the displacement of the carrier tape 5 itself in the X-axis direction and the Y-axis direction can be obtained.
- the positional relationship between each test pad P and the probe 81 is relative to the position of the alignment mark 55 as a reference point.
- the positional deviation information is obtained based on the superposition state between the test pad P to be observed and the tip of the probe 81, and it is desirable that the number of observation objects be increased within the range of the processing capability.
- the amount of deformation due to the deformation of the probe 81 is not negligible in the position displacement information and is present to some extent, it is based on a plurality of pieces of position displacement information obtained from a plurality of observation targets. It is also possible to obtain an approximate straight line that can stably contact multiple observation objects and obtain the best correction amount for the X-axis direction and Y-axis direction from the approximate line! /. Note that by applying a high-resolution camera as the second camera 6b, it is possible to clearly obtain a large number of image data to be observed, and as a result, it becomes easy to specify a more accurate correction amount.
- the amount of displacement ⁇ ⁇ ( ⁇ ⁇ , ⁇ ) between the test pad P and the probe 81 in the X-axis direction and the Y-axis direction is the center position of the test pad ⁇ at the position where the probe 81 and the test pad ⁇ contact each other.
- the image processing unit 90 obtains the positional deviation amount ⁇ ⁇ ( ⁇ , Ay) by calculation.
- the positional deviation amount AD includes a deviation amount ⁇ X in the X-axis direction and a deviation amount ⁇ y in the Y-axis direction.
- the positional deviation amount ⁇ ⁇ ( ⁇ , Ay) in the X-axis direction and the Y-axis direction is obtained for each of the nine probes 81 and the corresponding test pads P.
- An approximate straight line may be obtained from the obtained nine position shift amounts ⁇ D, and the most accurate positional shift amount ⁇ D (A x, Ay) may be obtained based on the approximate lines! With this approximate line, the amount of misalignment in the zero rotation direction can be obtained at the same time.
- misalignment correction based on the misalignment amount ⁇ D acquired using the approximate line, a more stable contact state can be obtained for the probe 81 and the test pad P at multiple points.
- step S07 when it is determined that the positional deviation correction ⁇ D is not necessary (No in step S07), the process proceeds to step S10 described later. skip.
- This skip can improve test throughput.
- step S07—Yes the image processing unit 90 displays an enlarged image of the probe 81Z test pad P causing a large misalignment on the display panel 91. Automatically (Step S08).
- the TCP handler 2 then drives the pusher stage 4 after obtaining the optimal amount of movement that can be contacted from the relationship between the probe 81 causing the large positional deviation as described above and the other probes 81.
- misalignment correction is performed (step S09). It is also possible to specify a correction amount for the X-axis direction / ⁇ -axis direction from the above approximate line and execute the correction.
- the servo motors 41a, 41b, 41c of the pusher stage 4 are driven to move the top table 48 and eventually the pusher unit 3, and the suction plate 34 is sucked.
- the carrier tape 5 is moved in the X-axis—Y-axis direction and rotated around the Z or vertical axis.
- the force pusher stage 4 can be controlled to move in a shorter time than the probe card stage 7, so it is advantageous to move the pusher stage 4 from the viewpoint of throughput. is there.
- the servo motor 31 of the pusher unit 3 is driven to move the suction plate 34 further downward in the Z axis via the pusher main body 33.
- the suction plate 34 that sucks the carrier tape 5 descends to the contact position and presses the TCP against the probe 81 of the probe card 8 (step S10).
- the suction plate 34 may be slightly swung back and forth and left and right, or ultrasonic vibrations may be applied to the suction plate 34 in a contact state.
- a process for obtaining a slight contact deviation amount at the time of contact with respect to the positional deviation correction amount at the time of contact with respect to the positional deviation correction amount at the time of non-contact by imaging the positional relationship of the probe 81Z test pad P in the contact state. You may be careful. This additional processing can be performed in parallel with the test execution, so it does not affect the throughput. Further, by adding the obtained slight contact deviation amount to the positional deviation correction amount after the next time, a more stable contact can be realized.
- step Sl l the TCP test pad P contacts the probe 81.
- a minute DC current is applied to each test pad P, and the presence or absence of current flowing through the TCP internal circuit (for example, a protective diode) or voltage Measure the value and check (contact check) whether the test pads are in electrical contact with each other and whether there is a short between adjacent pins (step Sl l). If a contact failure occurs during the contact check, the suction plate 34 can be slightly swayed (scribed) back and forth, left and right in the contact state, ultrasonic vibration can be applied to the suction plate 34, or the pusher body Move part 33 up and down to perform contact operation again. If the contact fails again, the TCP is judged to be defective. Here, it is assumed that it is difficult to confirm whether the contact resistance value at the time of contact is larger than the allowable resistance value that can be normally tested.
- a test signal is applied to the TCP through the test head 10 as well as the tester body force, and the response signal read from the TCP is sent to the tester body through the test head 10 (step S12).
- TCP performance and functions are tested, and TCP is judged as good, defective, and ranked.
- the determination of a defective product may be based on a contact failure between the TCP test pad P and the probe 81.
- the probe 81Z test that may have a contact failure may occur.
- the enlarged image is displayed together with information such as the TCP number, the test pad number, the distance value in the pressing direction, the X-axis coordinate value, and the Y-axis coordinate value. You may make it display automatically. This makes it possible to accurately grasp the state of the IC pin test pad where the contact failure actually occurs.
- step S13 If it is determined that a contact failure has occurred (step S13—Yes), first, the operator adjusts the position of the probe 81 while viewing the enlarged image of the display panel 91 by a manual operation. (Step S14a). Since this position adjustment can be performed while viewing the enlarged image, it can be easily performed.
- a retest can be automatically performed (step S14b).
- the tester body strength also receives the test pad number information related to the determination of defective products, and the test pad P corresponding to the information and the surrounding test pads P are misaligned as described above. If the calculated amount of misalignment is out of the normal contact area force, move it to the non-contact state, move the pusher stage 4 in the direction to correct misalignment, and then enter the contact state. Run the test again. This retest may determine that TCP is good. In addition, the extraction of test pad P that may be a contact failure is obtained based on the above test results and contact check results.
- Step S15 When the probe card stage 7 is applied for misalignment correction, return it to the registration position. Then, the suction plate 34 stops the suction of the carrier tape 5 to release the carrier tape 5, and further moves upward in the Z-axis (step S16).
- the TCP handler 2 determines whether or not the tested TCP is the last device (step S17). If it is determined that the TCP is the last device (step S17—Yes) ), Main operation ends. On the other hand, if it is determined that it is not the last device (step S17—No), the process returns to step S02.
- the image enlargement processing function of the image processing unit 90 may apply a high-resolution power camera as the second camera 6b, and the camera may be provided with the function, or a power provided with an optical zoom function.
- a zoom operation may be performed in accordance with a command from the image processing unit 90 by applying a camera.
- the probe contact point of the probe 81 and the center position point of the test pad P may be displayed on the screen of the display device 9 in an overlay manner. That is, the image data received by the image processing unit 90 is processed, and first, the shape (outer shape or contour) of the probe 81 is extracted, and the position of the protruding end of the probe 81 (from the test pad P) is extracted from the extracted shape. Specify the probe contact point). Here, the positional relationship of the probe contact point with respect to the shape of the probe 81 is assumed to be registered in advance. Second, the shape (outer shape or contour) of the test pad P is extracted, and the center position point of the test pad P is specified from the extracted shape.
- a mark indicating the position of the probe contact point and a mark indicating the position of the center position point of the test pad P are displayed on the display panel 91 in an overlay manner.
- the operator can clearly grasp the deviation state between the center position point of the test pad P and the probe contact point, so that the alignment adjustment work can be performed accurately.
- the probe contact point and the center position point of the test pad P extracted above can be stored in the storage device together with the position information of the alignment mark 55, and used for recognition of deformation of the probe 81 and other statistical processing. You may be able to do it.
- the camera stage 61 is moved to a predetermined position at the first stage (a position where both the alignment mark 55 and the test pad P are photographed as shown in FIG.
- a predetermined position at the first stage a position where both the alignment mark 55 and the test pad P are photographed as shown in FIG.
- the camera stage 61 is stationary until all TCP tests are completed after moving to a known position with reference to the mark 55, but TCP has a very large number of test pads. If there is P or if more precise positioning is required, the camera should be connected to at least two test pads P on the diagonal line of multiple test pads P or at least two test pads P far from each other.
- the stage is moved sequentially, and the amount of positional deviation ⁇ D ( ⁇ X, ⁇ y) between the plurality of probes 81 and the corresponding test pad P is calculated in the same manner as above.
- Each may be obtained.
- the pusher stage 4 or the probe card 8 may be moved in the X-axis direction, the Z-Y-axis direction, and the Z-theta rotation direction in a direction in which stable contact can be obtained based on all the positional deviation amounts AD obtained above. .
- the alignment mark 55 is first specified and then an accurate positioning process is performed has been described.
- the accurate positioning process described above may be omitted from the viewpoint of improving the throughput.
- the position of the alignment mark 55 is specified, a deviation from a previously registered position is calculated, and after positioning based on the positional deviation information, a test form in which a test is executed immediately may be adopted.
- the multiple probes 81 may be deformed with several to tens of thousands of pressing stresses. For this reason, all the probes 81 in contact with the TCP may be in a variation state in which the center position force of each corresponding test node is also shifted. Therefore, the probe card stage 7 is sequentially moved in the X axis direction and the horizontal axis direction until a contact failure is detected by any of the probes 81, and the effective movement region is specified. Based on this, the best position (center position in the XY direction and ⁇ rotation amount) in the current probe 81 is specified. Then, the registered position of the probe card 8 may be specified based on the specified best position.
- the determination of the rough position of the probe 81 and the test pad P corresponding to the probe 81 and the initial setting of the reference position (or reference movement amount) may all be performed automatically. That is, the main sprocket 35b and the probe card stage 7 are moved as required, and the force camera stage 61 is moved, and the position of the alignment mark 55 related to a predetermined TCP is specified by the second camera 6b, and the alignment between the TCP and alignment Based on the predetermined information indicating the positional relationship with the mark 55, the probe 81 at a plurality of locations near the alignment mark 55 (for example, 9 locations shown in FIG. Determine the location. After that, if necessary, the enlarged image state is set as shown in FIG. 6 (b), and as described above, the positional deviation amount is obtained from the multi-point probe 81Z test pad P and the reference position is set. Again Yes. In this case, the best positioning can be performed automatically without operator intervention.
- an effective movement area (effective movement area) for the current probe card 8 may be obtained in advance by applying a contact check function. That is, while moving the probe card 8 or the pusher stage 4 in the XY plane direction by a desired amount of movement, the electrical contact state between all the probes and the corresponding test pads is detected, and either probe is detected. In 81, find the effective movement area that does not cause poor contact.
- the best coarse position between the TCP and the probe card 8 is determined.
- the tolerance in the X-axis direction and the Y-axis direction can be obtained from the effective movement area, the deformation state of all the probes 81 in the probe card 8 can be grasped, and therefore the effective movement area is used as maintenance information for the probe card 8. It can also be used. Note that it is desirable to store information on the effective movement area in a storage device.
- the TCP handling device does not have to include the pusher stage 4 that can be moved and controlled by a motor.
- the displacement correction can be performed by moving the probe card stage 7. it can.
- the TCP handling device of the present invention may be of a manual adjustment mechanism provided with a mechanism by which the probe card stage 7 can be moved and controlled by a motor.
- the operator manually sets the probe card stage 7 to the registration position while viewing the standard image or the enlarged image on the display device 9. Thereafter, the pusher stage 4 can automatically perform misalignment correction.
- the TCP determined to be defective as a result of the test execution was imaged with the positional relationship of the probe 81Z test pad P while maintaining the current contact state. If a misalignment exceeding the maximum allowable deviation in direction is found, information related to the probe 81 (position misalignment, corresponding test pad P number, distance value in the pressing direction, etc.) is displayed on the display panel 91. You may make it display. By doing this, contact failure It is possible to automatically display the probe 81 and the test pad P having a high probability, and to confirm the contact state by an image.
- the TCP handling device is extremely useful for reducing the burden on the operator who performs the alignment work between the contact terminal of the contact portion and the external terminal of the TCP.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
In a TCP handler (2), a means that can display an enlarged image of part of a captured image is used as a display (9) for displaying the image taken by a second camera (6b). With the TCP handler (2), the positional relationship between a test pad (P) of a TCP and a probe (81) of a probe card (8) can be visually checked with the aid of an enlarged image displayed on the display (9). Hence, an easy, precise, and quick positioning is possible in performing alignment for initial setting or the like.
Description
明 細 書 Specification
TCPハンドリング装置 TCP handling equipment
技術分野 Technical field
[0001] 本発明は、 ICデバイスの 1種である TCP (Tape Carrier Package)や COF (Chip On Film) (以下、 TCP、 COF、その他 TAB (Tape Automated Bonding)実装技術によつ て製造されたデバイスを纏めて「TCP」 t\、う。)を試験するのに用いられる TCPハン ドリング装置に関するものである。 [0001] The present invention is manufactured using TCP (Tape Carrier Package) and COF (Chip On Film) (hereinafter, TCP, COF, and other TAB (Tape Automated Bonding) mounting technologies, which are one type of IC device. It relates to a TCP handling device that is used to collectively test devices and test "TCP".
背景技術 Background art
[0002] ICデバイス等の電子部品の製造過程においては、最終的に製造された ICデバイ スやその中間段階にあるデバイス等の性能や機能を試験する電子部品試験装置が 必要であり、 TCPの場合には、 TCP用の試験装置が使用される。 [0002] In the manufacturing process of electronic components such as IC devices, an electronic component testing device that tests the performance and functions of the final manufactured IC device and devices in its intermediate stage is required. In some cases, test equipment for TCP is used.
[0003] TCP用の試験装置は、一般的にテスタ本体と、テストヘッドと、 TCPハンドリング装 置(以下「TCPハンドラ」という場合がある。)とから構成される。この TCPハンドラは、 テープ (フィルムの概念も含むものとする。以下同じ。)上に TCPが複数形成されたキ ャリアテープを搬送して、テストヘッドに電気的に接続されているプローブカードのプ ローブにキャリアテープを押圧し、 TCPのテストパッドをプローブにコンタクトさせるこ とにより、複数の TCPを順次試験に付す機能を備えている。 A test apparatus for TCP is generally composed of a tester body, a test head, and a TCP handling apparatus (hereinafter sometimes referred to as “TCP handler”). This TCP handler transports a carrier tape on which multiple TCPs are formed on a tape (including the concept of film; the same shall apply hereinafter) and carries the carrier to the probe card probe that is electrically connected to the test head. By pressing the tape and bringing the TCP test pad into contact with the probe, it has the function of attaching multiple TCPs to the test in sequence.
[0004] ところで、 TCPハンドラを使用して効率良く正確に試験を行うためには、 TCPのテス トパッドとプローブカードの各プローブとを確実にコンタクトさせることが必要である。 [0004] By the way, in order to perform an efficient and accurate test using a TCP handler, it is necessary to contact the TCP test pad and each probe of the probe card securely.
[0005] このようなことから、 TCPハンドラを使用する場合には、実稼動させて試験を行う前 に、 TCPのテストパッドとプローブカードの各プローブとを確実にコンタクトできるよう に、予め TCPハンドラについて初期設定を行い、その設定を登録する作業を行って いる。 [0005] For this reason, when using a TCP handler, the TCP handler should be connected in advance to ensure that the TCP test pad and each probe of the probe card can be contacted before performing a test in actual operation. The initial settings are made for, and the settings are registered.
[0006] TCPハンドラの初期設定は、例えば、次のように行われる。まず、試験位置まで搬 送した TCPとプローブカードとの粗位置を定めた後、プローブカードのプローブおよ び TCPのテストパッドをカメラで撮影し、得られた画像を表示装置に表示させる。そし て、オペレータはその画像を視認しながら、プローブカードの全てのプローブが TCP
の全てのテストパッドと接触し得るように、マニュアル操作にて各プローブの位置を調 整する。このようにして設定した位置が初期設定として登録され、実稼動時の位置合 わせに用いられる。 [0006] The initial setting of the TCP handler is performed as follows, for example. First, after determining the rough position of the TCP and probe card transported to the test position, the probe on the probe card and the TCP test pad are photographed with a camera, and the obtained image is displayed on the display device. The operator visually confirms the image while all the probes on the probe card are TCP. Manually adjust the position of each probe so that it can contact all test pads. The position set in this way is registered as an initial setting and used for alignment during actual operation.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] ところが、近年の TCPの多ピン化および小型化に伴い、 TCPのテストパッドが小さく かつ狭ピッチになっているため、表示装置に表示されるプローブおよびテストパッドも 小さく細力べなっている。そのため、初期設定におけるパッドとプローブとの位置合わ せ作業は困難なものになっており、初期設定にかかる作業時間も長くなつている。ま た、 TCPとプローブとの位置合わせを必ずしも正確に行うことができないことがあり、 このようなことが原因で実稼動中にコンタクト不良、接触抵抗の不安定化、隣接ピン 間のショートなどが発生することもある。 [0007] However, along with the recent increase in the number of pins and miniaturization of TCP, TCP test pads have become smaller and narrower, so the probes and test pads displayed on the display device are also smaller and more powerful. Yes. For this reason, it is difficult to align the pad and the probe in the initial setting, and the time required for the initial setting becomes longer. Also, the TCP and probe may not always be accurately aligned, which may cause contact failure, unstable contact resistance, short-circuit between adjacent pins, etc. during actual operation. It may occur.
[0008] 本発明は、このような実状に鑑みてなされたものであり、コンタクト部の接触端子と T CPの外部端子との位置合わせ作業を正確かつ容易に行うことができる TCPハンドリ ング装置を提供することを目的とする。 [0008] The present invention has been made in view of such a situation, and provides a TCP handling device capable of accurately and easily aligning a contact terminal of a contact portion with an external terminal of a TCP. The purpose is to provide.
課題を解決するための手段 Means for solving the problem
[0009] 上記目的を達成するために、第 1に本発明は、テープ上に TCPが複数形成された キャリアテープを搬送して、テストヘッドに電気的に接続されているコンタクト部にキヤ リアテープを押圧し、 TCPの外部端子を前記コンタクト部の接触端子に接触させるこ とにより複数の TCPを順次試験に付すことができるとともに、 TCPの外部端子および コンタ外部の接触端子を撮像装置で撮影し、得られた画像を表示装置に表示する ことができる TCPハンドリング装置であって、前記表示装置には、 TCPの外部端子と コンタ外部の接触端子との位置関係を特定して位置決めができるように、撮像装置 で撮影した撮影対象物の全体を表示する標準画像と、撮像装置で撮影した撮影対 象物の一部分を拡大表示する拡大画像とが表示されることを特徴とする TCPハンドリ ング装置を提供する (発明 1)。 [0009] In order to achieve the above object, first, the present invention conveys a carrier tape having a plurality of TCPs formed on the tape, and attaches the carrier tape to a contact portion electrically connected to the test head. By pressing and bringing the TCP external terminal into contact with the contact terminal of the contact portion, a plurality of TCPs can be sequentially subjected to the test, and the TCP external terminal and the contact terminal outside the contour are photographed with an imaging device, A TCP handling device capable of displaying an obtained image on a display device, wherein the display device can be positioned by specifying a positional relationship between a TCP external terminal and a contact terminal outside the contour. A TCP that is characterized by displaying a standard image that displays the entire object captured by the imaging device and an enlarged image that magnifies and displays a portion of the object captured by the imaging device. Providing Ndori packaging apparatus (invention 1).
[0010] 上記発明(発明 1)によれば、位置合わせの対象である TCPの外部端子とプローブ カードの接触端子との位置関係を拡大画像によって視認できるので、 TCPの外部端
子とコンタクト部の接触端子との位置合わせを、正確かつ容易に行うことができる。し たがって、 TCPハンドリング装置を使用する際、その初期設定を短時間で効率良く行 うことができる。また、 TCPハンドリング装置の実稼動中にコンタクト不良が発生したと きに、拡大画像によってコンタクト不良の状況を視認することも可能である。 [0010] According to the above invention (Invention 1), since the positional relationship between the external terminal of the TCP to be aligned and the contact terminal of the probe card can be visually confirmed by an enlarged image, the external end of the TCP Positioning of the child and the contact terminal of the contact portion can be performed accurately and easily. Therefore, when using a TCP handling device, the initial setting can be performed efficiently in a short time. In addition, when a contact failure occurs during actual operation of the TCP handling device, it is possible to visually check the contact failure status using an enlarged image.
[0011] 上記発明(発明 1)において、前記撮像装置は、拡大画像を表示した場合であって も、 TCPの外部端子と接触端子との位置関係が特定でき、両端子の位置決めを行う ことのできる高解像度の撮像装置であることが好ま 、 (発明 2)。高解像度の撮像装 置を使用することにより、 TCPの外部端子と接触端子とを鮮明に表示することができ [0011] In the above invention (Invention 1), the imaging device can identify the positional relationship between the external terminal of the TCP and the contact terminal even when displaying an enlarged image, and can position both terminals. It is preferable that the imaging device has a high resolution (Invention 2). By using a high-resolution imaging device, the TCP external terminals and contact terminals can be displayed clearly.
、位置合わせ作業をより正確に行うことができる。また、高解像度の撮像装置を使用 することにより、一度に撮影する範囲を広くして撮影する画像の数を低減させることが でき、それにより撮像装置を移動させる頻度が少なくなり、機械的な移動誤差や複数 画像の重ね合わせ処理等の誤差を低減させることができ、したがって、より微細で狭 ピッチな外部端子を有する TCPに対応することができる。 Alignment work can be performed more accurately. In addition, by using a high-resolution image pickup device, the number of images to be taken can be reduced by widening the shooting range at one time, thereby reducing the frequency of moving the image pickup device and mechanical movement. Errors and errors such as multiple image overlay processing can be reduced, and therefore, it is possible to cope with TCP having finer, narrower pitch external terminals.
[0012] 上記発明(発明 1)に係る TCPハンドリング装置は、所定位置の TCPの外部端子お よびコンタクト部の接触端子を撮影可能なように前記撮像装置を移動させる撮像ステ ージを備えて 、ることが好ま ヽ (発明 3)。 [0012] The TCP handling device according to the invention (Invention 1) includes an imaging stage for moving the imaging device so that the external terminal of the TCP at a predetermined position and the contact terminal of the contact portion can be photographed. (Invention 3).
[0013] 上記発明(発明 1)に係る TCPハンドリング装置は、拡大表示操作部を備えており、 前記拡大表示操作部による操作に応じて前記標準画像を拡大して拡大画像とするこ とが好ましい (発明 3)。本発明(発明 3)のように、拡大表示操作部を備えておけば、 拡大表示操作部を操作することによって簡単に拡大画像を表示することができ、操 作性に優れる。 [0013] The TCP handling device according to the above invention (Invention 1) preferably includes an enlarged display operation unit, and enlarges the standard image according to an operation by the enlarged display operation unit to obtain an enlarged image. (Invention 3). If an enlarged display operation unit is provided as in the present invention (invention 3), an enlarged image can be easily displayed by operating the enlarged display operation unit, and the operability is excellent.
[0014] 上記発明(発明 1)に係る TCPハンドリング装置は、実稼動中、 TCPの外部端子と コンタクト部の接触端子との間で位置ずれ又はコンタクト不良があった場合に、当該 位置ずれ又はコンタクト不良の箇所を拡大画像として前記表示装置に自動的に表示 し得るものであることが好ましい (発明 4)。かかる発明(発明 4)によれば、位置ずれ又 はコンタクト不良の箇所を拡大画像として視認することができるため、位置ずれ又はコ ンタクト不良の状況を的確に把握することができる。特に、実稼動中、 TCPの外部端 子とコンタクト部の接触端子との位置合わせをマニュアル操作で行う場合には、位置
ずれ又はコンタクト不良の箇所を迅速に把握し対応することができるため、試験のス ループットを向上させることができる。 [0014] The TCP handling device according to the above invention (Invention 1), when there is a displacement or a contact failure between the external terminal of the TCP and the contact terminal of the contact part during actual operation, the displacement or contact It is preferable that the defective portion can be automatically displayed on the display device as an enlarged image (Invention 4). According to this invention (Invention 4), the position of misalignment or poor contact can be visually recognized as an enlarged image, so that the situation of misalignment or poor contact can be accurately grasped. In particular, the position of the external terminal of the TCP and the contact terminal of the contact part should be adjusted manually during actual operation. Since it is possible to quickly grasp and deal with the location of misalignment or contact failure, the test throughput can be improved.
[0015] 第 2に本発明は、試験信号の授受を行うコンタクト部に設けられた複数の接触端子 と、キャリアテープ上に配設された試験対象の TCPが備える複数の外部端子と、を電 気的に接触させて試験を行う TCPハンドリング装置であって、接触端子と、当該接触 端子に対応する TCPの外部端子とを撮像する撮像装置と、前記撮像装置により撮影 した接触端子および TCPの外部端子の画像を所望により処理して表示する表示装 置と、を備えており、前記撮像装置は、ズーム機能を備え、ズーム状態において、接 触端子と当該接触端子に対応する TCPの外部端子との位置関係が特定可能な解 像度を有する、ことを特徴とする TCPハンドリング装置を提供する (発明 6)。 [0015] Secondly, the present invention electrically connects a plurality of contact terminals provided in a contact portion that transmits and receives a test signal, and a plurality of external terminals provided in a TCP to be tested disposed on a carrier tape. A TCP handling device that performs a test by contact with air, an imaging device that images a contact terminal and a TCP external terminal corresponding to the contact terminal, a contact terminal imaged by the imaging device, and an external TCP A display device that processes and displays an image of the terminal as desired.The imaging device has a zoom function, and in a zoom state, the contact terminal and a TCP external terminal corresponding to the contact terminal There is provided a TCP handling device characterized by having a resolution that can identify the positional relationship between the two (invention 6).
[0016] 上記発明(発明 6)によれば、撮像装置をズーム状態にすることにより、位置合わせ の対象である TCPの外部端子とプローブカードの接触端子とを拡大して表示するこ とができるので、 TCPの外部端子とコンタクト部の接触端子との位置合わせを、正確 かつ容易に行うことができる。したがって、 TCPハンドリング装置を使用する際、その 初期設定を短時間で効率良く行うことができる。また、 TCPハンドリング装置の実稼 動中にコンタクト不良が発生したときに、拡大表示によってコンタクト不良の状況を視 認することも可能である。 [0016] According to the above invention (Invention 6), it is possible to enlarge and display the TCP external terminal and the contact terminal of the probe card, which are objects of alignment, by bringing the imaging device into a zoom state. Therefore, the alignment between the external terminal of the TCP and the contact terminal of the contact portion can be performed accurately and easily. Therefore, when using a TCP handling device, the initial setting can be performed efficiently in a short time. In addition, when a contact failure occurs during actual operation of the TCP handling device, it is also possible to check the contact failure status using an enlarged display.
[0017] 上記発明(発明 6)においては、前記撮像装置が撮影した複数の接触端子および 当該接触端子に対応する TCPの複数の外部端子の画像データに基づ ヽて、前記 複数の接触端子と当該接触端子に対応する複数の外部端子との位置ずれ量を特定 することが好ましい (発明 7)。かかる発明(発明 7)によれば、より正確な位置ずれ補 正量を特定することができる。 [0017] In the above invention (Invention 6), based on the plurality of contact terminals photographed by the imaging device and the image data of the plurality of TCP external terminals corresponding to the contact terminals, It is preferable to specify the amount of positional deviation from the plurality of external terminals corresponding to the contact terminal (Invention 7). According to this invention (Invention 7), a more accurate misalignment correction amount can be specified.
[0018] 上記発明(発明 7)においては、 TCPが有する複数の外部端子のうち、対角線上に 位置する少なくとも 2箇所、または互いに遠く離れた少なくとも 2箇所の外部端子を前 記撮像装置が撮像できるように前記撮像ステージを移動させ、前記撮像装置が撮影 して得られた画像データに基づいて、前記少なくとも 2箇所の外部端子と当該外部端 子に対応する接触端子との位置ずれ量を特定し、前記位置ずれ量に基づいて、安 定したコンタクトが得られるようにキャリアテープまたは接触端子群を移動させることが
好ましい (発明 8)。かかる発明(発明 7)によれば、より正確な位置ずれ補正量を特定 することができ、特に Θ回転方向のずれの補正も可能である。 [0018] In the above invention (Invention 7), the imaging apparatus can image at least two external terminals located on a diagonal line or at least two external terminals far away from each other among a plurality of external terminals of the TCP. The imaging stage is moved as described above, and the positional deviation amount between the at least two external terminals and the contact terminal corresponding to the external terminal is specified based on the image data obtained by the imaging device. The carrier tape or the contact terminal group may be moved so as to obtain a stable contact based on the amount of displacement. Preferred (Invention 8). According to this invention (Invention 7), it is possible to specify a more accurate displacement correction amount, and in particular, it is possible to correct a deviation in the Θ rotation direction.
[0019] 上記発明(発明 6)においては、前記撮像装置により撮影して得られた画像データ に基づいて、第 1に、接触端子の形状を抽出し、抽出した形状から当該接触端子が TCPの外部端子に接触する接触点を特定し、第 2に、前記画像データに基づいて、 TCPの外部端子の形状を抽出し、抽出した形状から当該外部端子の中央位置点を 特定し、前記接触端子の接触点を示すマークと、前記外部端子の中央位置点の位 置を示すマークとを、前記表示装置にオーバーレイ表示するようにしてもよい (発明 9 )。かかる発明(発明 9)によれば、オペレータは、外部端子の中央位置点と接触端子 の接触点とのずれ状態を明瞭に把握できるので、位置合わせの調整作業を的確に 行うことができる。 [0019] In the above invention (Invention 6), first, the shape of the contact terminal is extracted on the basis of the image data obtained by photographing with the imaging device, and the contact terminal is the TCP of the extracted shape from the extracted shape. Identify the contact point that contacts the external terminal, and secondly, extract the shape of the TCP external terminal based on the image data, identify the center position point of the external terminal from the extracted shape, and A mark indicating the contact point and a mark indicating the position of the central position point of the external terminal may be overlaid on the display device (Invention 9). According to this invention (Invention 9), the operator can clearly grasp the shift state between the center position point of the external terminal and the contact point of the contact terminal, and therefore can perform the alignment adjustment work accurately.
[0020] 上記発明(発明 6)においては、コンタクトチェック機能を適用して、キャリアテープま たは接触端子群を平面方向に移動させながら、全ての接触端子と、当該接触端子に 対応する TCPの外部端子との電気的な接触状態を検出し、何れの接触端子でも接 触不良とならず有効にコンタクトできる有効移動領域を求め、前記有効移動領域に 基づ 、て、キャリアテープおよび接触端子群の最良の位置を特定するようにしてもよ い (発明 10)。かかる発明(発明 10)によれば、例えば接触端子が押圧ストレスによつ てばらつ!、た場合であっても、キャリアテープおよび接触端子群の最良の位置を効 率良く特定することができる。 [0020] In the above invention (Invention 6), the contact check function is applied, and the carrier tape or the contact terminal group is moved in the plane direction, and all the contact terminals and TCP corresponding to the contact terminals are moved. An electrical contact state with an external terminal is detected, and an effective movement area where any contact terminal can be contacted effectively without contact failure is determined. Based on the effective movement area, a carrier tape and a contact terminal group It may be possible to specify the best position of the invention (Invention 10). According to this invention (Invention 10), for example, even when the contact terminals vary due to pressing stress, the best positions of the carrier tape and the contact terminal group can be efficiently identified. .
[0021] 上記発明(発明 6)においては、コンタクトチヱック機能を適用して、全ての接触端子 と、当該接触端子に対応する TCPの外部端子との電気的な接触状態を検出し、コン タクト不良が検出された場合に、当該コンタクト不良となった接触端子および当該接 触端子に対応する外部端子の位置へ前記撮像装置を移動させて、当該コンタクト不 良部位を撮影し、得られた画像を表示装置に表示するようにしてもよい (発明 11)。か 力る発明(発明 11)によれば、コンタクト不良部位の状況を画像によって的確に把握 することができる。 [0021] In the above invention (Invention 6), the contact check function is applied to detect the electrical contact state between all the contact terminals and the TCP external terminals corresponding to the contact terminals, and the control is performed. When a tact failure is detected, the contact failure part is photographed by moving the imaging device to the position of the contact terminal that caused the contact failure and the position of the external terminal corresponding to the contact terminal. An image may be displayed on a display device (Invention 11). According to the present invention (Invention 11), it is possible to accurately grasp the state of the contact failure site by the image.
[0022] 上記発明 (発明 6)にお 、ては、前記撮像装置の位置情報、前記撮像装置のズー ム倍率情報、および前記撮像装置が撮像している TCPに関する情報の少なくとも 1
種の情報を表示装置に表示するようにしてもよ!、(発明 12)。 [0022] In the above invention (Invention 6), at least one of the positional information of the imaging device, the zoom magnification information of the imaging device, and the information related to the TCP imaged by the imaging device. Species information may be displayed on the display device! (Invention 12).
[0023] 上記発明(発明 6)においては、非コンタクト状態において接触端子および当該接 触端子に対応する TCPの外部端子を撮像して得られる非コンタクト状態画像データ から、前記接触端子と当該接触端子に対応する外部端子との位置関係を特定し、試 験実施に係るコンタクト状態において接触端子および当該接触端子に対応する TC Pの外部端子を撮像して得られるコンタクト状態画像データから、前記接触端子と当 該接触端子に対応する外部端子との位置関係を特定し、前記特定した両位置関係 の変化量を求め、当該変化量に基づいて、接触端子と当該接触端子に対応する外 部端子との位置ずれを補正するようにしてもよい (発明 13)。かかる発明(発明 13)に よれば、非コンタクト状態力 コンタクト状態にかけて生じる位置ずれ量を含めて位置 ずれ補正を行うことができるため、より一層安定したコンタクトを実現することができる [0023] In the above invention (Invention 6), the contact terminal and the contact terminal are obtained from non-contact state image data obtained by imaging the contact terminal and the TCP external terminal corresponding to the contact terminal in the non-contact state. From the contact state image data obtained by imaging the contact terminal and the external terminal of the TCP corresponding to the contact terminal in the contact state related to the test. And the external terminal corresponding to the contact terminal are identified, the amount of change of the identified positional relationship is obtained, and the contact terminal and the external terminal corresponding to the contact terminal are determined based on the amount of change. It is also possible to correct the misalignment (Invention 13). According to this invention (Invention 13), since it is possible to perform misalignment correction including the misalignment amount generated in the non-contact state force contact state, it is possible to realize a more stable contact.
[0024] 上記発明(発明 6)にお 、ては、試験実行の結果不良品であると判断された TCPに 対して、現状のコンタクト状態を維持したままで、全ての接触端子および当該接触端 子に対応する外部端子を撮像し、得られた画像データから各々の位置ずれ量を特 定し、予め定めておいた位置ずれ量の最大許容偏差を超える接触端子および当該 接触端子に対応する外部端子を前記表示装置に表示するようにしてもよい (発明 14 )。力かる発明(発明 14)によれば、コンタクト不良の蓋然性の高い接触端子および外 部端子を自動的に表示することができ、それらのコンタクト状態を画像によって確認 することが可能である。 [0024] In the above invention (Invention 6), all the contact terminals and the contact terminals are maintained while maintaining the current contact state with respect to the TCP determined to be defective as a result of the test execution. The external terminal corresponding to the child is imaged, and each positional deviation amount is identified from the obtained image data. The contact terminal that exceeds the predetermined maximum allowable deviation of the positional deviation amount and the external terminal corresponding to the contact terminal The terminal may be displayed on the display device (Invention 14). According to the strong invention (Invention 14), it is possible to automatically display the contact terminals and the external terminals having a high probability of contact failure, and it is possible to confirm the contact state by an image.
発明の効果 The invention's effect
[0025] 本発明の TCPハンドリング装置によれば、コンタクト部の接触端子と TCPの外部端 子との位置合わせ作業を正確にかつ容易に行うことができる。 [0025] According to the TCP handling device of the present invention, the alignment operation between the contact terminal of the contact portion and the external terminal of the TCP can be performed accurately and easily.
図面の簡単な説明 Brief Description of Drawings
[0026] [図 1]本発明の一実施形態に係る TCPハンドラを用いた TCP試験装置を示す正面 図である。 FIG. 1 is a front view showing a TCP test apparatus using a TCP handler according to an embodiment of the present invention.
[図 2]同実施形態に係る TCPハンドラにおけるプッシャユニットの側面図である。 FIG. 2 is a side view of a pusher unit in the TCP handler according to the embodiment.
[図 3]同実施形態に係る TCPハンドラにおけるプッシャステージの平面図である。
[図 4]同実施形態に係る TCPハンドラにおけるプローブカードステージの平面図であ る。 FIG. 3 is a plan view of a pusher stage in the TCP handler according to the embodiment. FIG. 4 is a plan view of a probe card stage in the TCP handler according to the same embodiment.
[図 5]同実施形態に係る TCPハンドラにおけるプローブカードステージの正面図であ る。 FIG. 5 is a front view of a probe card stage in the TCP handler according to the same embodiment.
[図 6] (a)は、標準画像が表示された状態の表示装置の一例を示す平面図であり、 (b [FIG. 6] (a) is a plan view showing an example of a display device in a state where a standard image is displayed.
)は、拡大画像が表示された状態の表示装置の一例を示す平面図である。 ) Is a plan view showing an example of a display device in a state where an enlarged image is displayed.
[図 7]本発明の一実施形態に係る TCPハンドラの試験時の動作を示すフローチヤ一 ト図である。 FIG. 7 is a flowchart showing the operation of a TCP handler according to an embodiment of the present invention during a test.
符号の説明 Explanation of symbols
1 TCP用の試験装置 1 Test equipment for TCP
2 TCPハンドラ 2 TCP handler
3 プッシャユニット 3 Pusher unit
4 プッシャステージ 4 Pusher stage
5 キャリアテープ 5 Carrier tape
6b 第 2カメラ (撮像装置) 6b Second camera (imaging device)
7 プローブカードステージ 7 Probe card stage
8 プローブカード 8 Probe card
81 プローブ (接触端子) 81 Probe (Contact terminal)
9 表示装置 9 Display device
90 画像処理部 90 Image processor
91 表示ノ ネノレ 91 Display No Nenore
92 操作ボタン (拡大表示操作部) 92 Operation buttons (enlarged display operation section)
93 領域指定ボタン 93 Area specification button
10 テストヘッド 10 Test head
21 卷出リール 21 brewing reel
22 卷取リール 22 Toray reel
P TCPのテストパッド (外部端子) P TCP test pad (external terminal)
発明を実施するための最良の形態
[0028] 以下、本発明の実施形態を図面に基づいて詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0029] 図 1は、本発明の一実施形態に係る TCPハンドラを用いた TCP試験装置を示す正 面図であり、図 2は、同実施形態に係る TCPハンドラにおけるプッシャユニットの側面 図であり、図 3は、同実施形態に係る TCPハンドラにおけるプッシャステージの平面 図であり、図 4は、同実施形態に係る TCPハンドラにおけるプローブカードステージ の平面図であり、図 5は、同実施形態に係る TCPハンドラにおけるプローブカードス テージの正面図であり、図 6 (a)は、標準画像が表示された状態の表示装置の一例 を示す平面図であり、図 6 (b)は、拡大画像が表示された状態の表示装置の一例を 示す平面図であり、図 7は、本発明の一実施形態に係る TCPハンドラの試験時の動 作を示すフローチャート図である。 FIG. 1 is a front view showing a TCP test apparatus using a TCP handler according to an embodiment of the present invention, and FIG. 2 is a side view of a pusher unit in the TCP handler according to the embodiment. 3 is a plan view of a pusher stage in the TCP handler according to the embodiment, FIG. 4 is a plan view of a probe card stage in the TCP handler according to the embodiment, and FIG. FIG. 6 (a) is a plan view showing an example of a display device in which a standard image is displayed, and FIG. 6 (b) is an enlarged image of the probe card stage in the TCP handler. FIG. 7 is a plan view showing an example of a display device in a displayed state, and FIG. 7 is a flowchart showing an operation at the time of testing a TCP handler according to an embodiment of the present invention.
[0030] まず、本発明の実施形態に係るハンドラを備えた TCP用の試験装置の全体構成に ついて、図 1を参照しつつ説明する。 [0030] First, an overall configuration of a test apparatus for TCP including a handler according to an embodiment of the present invention will be described with reference to FIG.
[0031] TCP用の試験装置 1は、図示しないテスタ本体と、テスタ本体に電気的に接続され たテストヘッド 10と、テストヘッド 10の上側に設けられた TCPハンドラ 2とから構成さ れている。 [0031] The test apparatus 1 for TCP includes a tester body (not shown), a test head 10 electrically connected to the tester body, and a TCP handler 2 provided on the upper side of the test head 10. .
[0032] TCPハンドラ 2は、キャリアテープ 5上に複数形成された各 TCPを順次試験に付す ものであり、本実施形態では、説明の簡略ィ匕のために TCPを 1個ごと試験に付すも のとする。ただし、本発明はこれに限定されるものではなぐキャリアテープ 5上におい て直列方向および Zまたは並列方向に並んだ複数の TCPを同時に試験に付すよう にしてもよい。 [0032] The TCP handler 2 sequentially attaches a plurality of TCPs formed on the carrier tape 5 to the test. In this embodiment, for simplicity of explanation, each TCP handler is attached to the test. Let's say. However, the present invention is not limited to this, and a plurality of TCPs arranged in the series direction and in the Z or parallel direction on the carrier tape 5 may be simultaneously subjected to the test.
[0033] TCPハンドラ 2は、卷出リール 21と卷取リール 22とを備えており、卷出リール 21に は試験前のキャリアテープ 5が巻き取られている。キャリアテープ 5は、卷出リール 21 力も巻き出され、試験に付された後に卷取リール 22に巻き取られる。 The TCP handler 2 includes a feeding reel 21 and a take-up reel 22, and a carrier tape 5 before the test is wound around the feed reel 21. The carrier tape 5 is also unwound on the take-up reel 21 and is taken up on the take-up reel 22 after being subjected to the test.
[0034] 卷出リール 21と卷取リール 22との間〖こは、キャリアテープ 5から剥離した保護テー プ 51を卷出リール 21から卷取リール 22に架け渡す 3個のスぺーサロール 23a, 23b , 23cが設けられている。各スぺーサロール 23a, 23b, 23cは、保護テープ 51の張 力を調整することができるように、それぞれ上下可動となって 、る。 [0034] The space between the take-out reel 21 and the take-up reel 22 is composed of three spacer rolls 23a, which bridge the protective tape 51 peeled off from the carrier tape 5 from the take-out reel 21 to the take-up reel 22. 23b and 23c are provided. Each of the spacer rolls 23a, 23b, 23c is movable up and down so that the tension of the protective tape 51 can be adjusted.
[0035] 卷出リール 21の下側には、テープガイド 24a、卷出リミットローラ 25a、イン側サブス
プロケット 25bおよびイン側ガイドローラ 25cが設けられており、卷出リール 21から卷 き出されたキャリアテープ 5は、テープガイド 24aによってガイドされつつ、卷出リミット ローラ 25a、イン側サブスプロケット 25bおよびイン側ガイドローラ 25cを経てプッシャ ユニット 3に搬送される。 [0035] On the lower side of the feeding reel 21, a tape guide 24a, a feeding limit roller 25a, an inboard subs A procket 25b and an in-side guide roller 25c are provided, and the carrier tape 5 unrolled from the unloading reel 21 is guided by the tape guide 24a while the unloading limit roller 25a, the in-side sub-sprocket 25b and the It is conveyed to the pusher unit 3 via the side guide roller 25c.
[0036] 卷取リール 22の下側には、テープガイド 24b、卷取リミットローラ 25f、アウト側サブ スプロケット 25eおよびアウト側ガイドローラ 25dが設けられており、試験に付された後 のキャリアテープ 5は、アウト側ガイドローラ 25d、アウト側サブスプロケット 25eおよび 卷取リミットローラ 25fを経て、テープガイド 24bによってガイドされつつ、卷取リール 2 2に巻き取られる。 [0036] A tape guide 24b, a take-off limit roller 25f, an out-side sub sprocket 25e and an out-side guide roller 25d are provided below the take-up reel 22, and the carrier tape 5 after being subjected to the test is provided. Is wound around the take-up reel 22 while being guided by the tape guide 24b via the out-side guide roller 25d, the out-side sub-sprocket 25e and the take-up limit roller 25f.
[0037] そして、イン側ガイドローラ 25cと、アウト側ガイドローラ 25dとの間には、プッシャュ ニット 3が設けられている。 [0037] A push unit 3 is provided between the in-side guide roller 25c and the out-side guide roller 25d.
[0038] 図 1および図 2に示すように、プッシャユニット 3のフレーム(プッシャフレーム) 36に は、ボールねじ 32を回転させることのできるサーボモータ 31がブラケット 361を介し て取り付けられているとともに、ボールねじ 32が螺合しているプッシャ本体部 33が 2 本の Z軸方向のリニアモーションガイド(以下「LMガイド」 t\、う。) 37を介して取り付 けられている。このプッシャ本体部 33は、サーボモータ 31を駆動させることにより、リ ユアモーションガイド 37にガイドされながら上下方向(Z軸方向)に移動可能となって いる。 As shown in FIGS. 1 and 2, a servo motor 31 capable of rotating a ball screw 32 is attached to a frame (pusher frame) 36 of the pusher unit 3 via a bracket 361. A pusher body 33 to which the ball screw 32 is screwed is attached via two linear motion guides (hereinafter referred to as “LM guides”) 37 in the Z-axis direction. The pusher body 33 is movable in the vertical direction (Z-axis direction) while being guided by the re-motion guide 37 by driving the servo motor 31.
[0039] このプッシャ本体部 33の下端部には、負圧源(図示省略)に接続されてキャリアテ ープ 5を吸着保持することのできる吸着プレート 34が設けられている。 [0039] At the lower end of the pusher main body 33, a suction plate 34 that is connected to a negative pressure source (not shown) and can suck and hold the carrier tape 5 is provided.
プッシャ本体部 33の前段側(図 1中左側)には、テンションスプロケット 35aが設けら れており、プッシャ本体部 33の後段側(図 1中右側)には、メインスプロケット 35bが設 けられており、所望の張力でキャリアテープ 5を保持するようになっている。 A tension sprocket 35a is provided on the front side of the pusher body 33 (left side in FIG. 1), and a main sprocket 35b is provided on the rear side of the pusher body 33 (right side in FIG. 1). The carrier tape 5 is held with a desired tension.
[0040] 図 2および図 3に示すように、プッシャフレーム 36におけるプッシャ本体部 33の背 面側には、基台 38に載せられるようにしてプッシャステージ 4が設置されており、プッ シャステージ 4の回転台であるトップテーブル 48はプッシャフレーム 36に固定されて いる。 As shown in FIG. 2 and FIG. 3, a pusher stage 4 is installed on the back surface side of the pusher main body 33 in the pusher frame 36 so as to be placed on the base 38. The top table 48, which is a rotating table, is fixed to the pusher frame 36.
[0041] プッシャステージ 4のベース 40上には、 X軸方向に軸を有するボールねじ 42aを回
転させるサーボモータ 41aと、 Y軸方向に軸を有するボールねじ 42bを回転させるサ ーボモータ 41bと、 Y軸方向に軸を有するボールねじ 42cを回転させるサーボモータ 41cとが設けられており、サーボモータ 41bおよびサーボモータ 41cは、それぞれべ ース 40上の両端部に位置している。 [0041] A ball screw 42a having an axis in the X-axis direction is turned on the base 40 of the pusher stage 4. Servo motor 41a for rotating, servo motor 41b for rotating ball screw 42b having an axis in the Y-axis direction, and servo motor 41c for rotating ball screw 42c having an axis in the Y-axis direction are provided. 41b and servo motor 41c are located at both ends on base 40, respectively.
[0042] ボールねじ 42aには、 X軸方向の LMガイド 43a, 43aにガイドされて X軸方向に摺 動可能な摺動ブロック 44aが螺合している。摺動ブロック 44aには、 Y軸方向の LMガ イド 45aを介して摺動板 46aが Y軸方向に摺動可能に取り付けられて 、る。摺動板 4 6aの上側には、内部にローラリングを有する回転部材 47aが固定されており、回転部 材 47aは、トップテーブル 48に回転自在に取り付けられて 、る。 [0042] A sliding block 44a that is guided by LM guides 43a, 43a in the X-axis direction and is slidable in the X-axis direction is screwed into the ball screw 42a. A sliding plate 46a is attached to the sliding block 44a via a Y-axis LM guide 45a so as to be slidable in the Y-axis direction. A rotating member 47a having a roller ring inside is fixed to the upper side of the sliding plate 46a, and the rotating member 47a is rotatably attached to the top table 48.
[0043] ボールねじ 42bには、 Y軸方向の LMガイド 43b, 43bにガイドされて Y軸方向に摺 動可能な摺動ブロック 44bが螺合している。摺動ブロック 44bには、 X軸方向の LMガ イド 45bを介して摺動板 46bが X軸方向に摺動可能に取り付けられて 、る。摺動板 4 6bの上側には、内部にローラリングを有する回転部材 47bが固定されており、回転部 材 47bは、トップテーブル 48に回転自在に取り付けられて 、る。 [0043] A sliding block 44b that is guided by LM guides 43b, 43b in the Y-axis direction and is slidable in the Y-axis direction is screwed into the ball screw 42b. A sliding plate 46b is attached to the sliding block 44b through an LM guide 45b in the X-axis direction so as to be slidable in the X-axis direction. A rotating member 47b having a roller ring inside is fixed to the upper side of the sliding plate 46b, and the rotating member 47b is rotatably attached to the top table 48.
[0044] ボールねじ 42cには、 Y軸方向の LMガイド 43c, 43cにガイドされて Y軸方向に摺 動可能な摺動ブロック 44cが螺合している。摺動ブロック 44cには、 X軸方向の LMガ イド 45cを介して摺動板 46cが X軸方向に摺動可能に取り付けられて 、る。摺動板 4 6cの上側には、内部にローラリングを有する回転部材 47cが固定されており、回転部 材 47cは、トップテーブル 48に回転自在に取り付けられて 、る。 [0044] A sliding block 44c that is guided by LM guides 43c, 43c in the Y-axis direction and is slidable in the Y-axis direction is screwed into the ball screw 42c. A sliding plate 46c is attached to the sliding block 44c through an LM guide 45c in the X-axis direction so as to be slidable in the X-axis direction. A rotating member 47c having a roller ring inside is fixed to the upper side of the sliding plate 46c, and the rotating member 47c is rotatably attached to the top table 48.
[0045] このような構成を有するプッシャステージ 4においては、サーボモータ 41aを駆動し て、摺動ブロック 44a、摺動板 46bおよび摺動板 46cを X軸方向に摺動させることによ り、トップテーブル 48を X軸方向に移動させることができる。また、サーボモータ 41b およびサーボモータ 41cを駆動して、摺動ブロック 44b、摺動ブロック 44cおよび摺動 板 46aを Y軸同方向に摺動させることにより、トップテーブル 48を Y軸方向に移動さ せることができる。さらには、サーボモータ 41aを駆動して、摺動ブロック 44aを X軸方 向に摺動させるとともに、サーボモータ 41bおよびサーボモータ 41cを駆動して、摺 動ブロック 44bおよび摺動ブロック 44cを互いに Y軸反対方向に摺動させ、そして各 回転部材 47a, 45b, 45cを回転させることにより、トップテーブル 48をその垂直軸回
りに回転させることができる。このようなプッシャステージ 4によれば、プッシャユニット 3 を X軸 Y軸方向に移動させること、および垂直軸回りに回転移動させることができる In the pusher stage 4 having such a configuration, the servo motor 41a is driven to slide the sliding block 44a, the sliding plate 46b, and the sliding plate 46c in the X-axis direction. The top table 48 can be moved in the X-axis direction. Also, the top table 48 is moved in the Y-axis direction by driving the servo motor 41b and the servo motor 41c and sliding the sliding block 44b, the sliding block 44c, and the sliding plate 46a in the same direction as the Y-axis. Can be made. Furthermore, the servo motor 41a is driven to slide the slide block 44a in the X-axis direction, and the servo motor 41b and the servo motor 41c are driven to make the slide block 44b and the slide block 44c Y Slide the top table 48 in its vertical axis by sliding in the opposite direction and rotating each rotating member 47a, 45b, 45c. Can be rotated. According to such a pusher stage 4, the pusher unit 3 can be moved in the X-axis and Y-axis directions and rotated around the vertical axis.
[0046] なお、プッシャステージ 4は、プローブカードステージ 7よりも短時間で移動可能であ る。但し、プッシャステージ 4は、キャリアテープ 5を吸着保持した状態で TCPを移動 させるため、 X軸 Y軸方向の移動及び回転移動の移動量は微少となるものの、実 用的に使用可能である。 Note that the pusher stage 4 can move in a shorter time than the probe card stage 7. However, since the pusher stage 4 moves the TCP while the carrier tape 5 is sucked and held, the amount of movement in the X-axis and Y-axis directions and the rotational movement is small, but it can be used practically.
[0047] 一方、図 1に示すように、プッシャユニット 3の下側であって、テストヘッド 10の上部 には、プローブカード 8を搭載したプローブカードステージ 7が設置されている。ここで 、プローブカードステージ 7は、モーター駆動機構で移動制御できるものと、手動調 整機能のみを有するものとがあるが、本実施形態では、モーター駆動機構を有するも のとする。 On the other hand, as shown in FIG. 1, a probe card stage 7 on which a probe card 8 is mounted is installed below the pusher unit 3 and above the test head 10. Here, the probe card stage 7 includes a type that can be moved and controlled by a motor drive mechanism and a type that has only a manual adjustment function. In this embodiment, the probe card stage 7 has a motor drive mechanism.
[0048] 図 4および図 5に示すように、プローブカードステージ 7の基台 71上には、 X軸方向 に軸を有するボールねじ 712を回転させるサーボモータ 711と、 4つの X軸方向の L Mガイド 713とが設けられている。それら 4つの LMガイド 713上には、各 LMガイド 7 13により X軸方向に摺動可能にガイドされる矩形の Xベース 72が設けられている。こ の Xベース 72の一側部には、ボールねじ 712が螺合している螺合部 721が形成され ている。 As shown in FIGS. 4 and 5, on the base 71 of the probe card stage 7, a servo motor 711 that rotates a ball screw 712 having an axis in the X-axis direction, and four LMs in the X-axis direction Guide 713 is provided. On these four LM guides 713, rectangular X bases 72 are provided which are guided by the LM guides 713 so as to be slidable in the X-axis direction. A threaded portion 721 into which a ball screw 712 is threaded is formed on one side of the X base 72.
[0049] Xベース 72上には、 Y軸方向に軸を有するボールねじ 723を回転させるサーボモ ータ 722と、 2本の Y軸方向の LMガイド 724とが設けられている。それら 2本の LMガ イド 724上には、各 LMガイド 724により Y軸方向に摺動可能にガイドされる矩形の Y ベース 73が設けられている。この Yベース 73の一側部には、ボールねじ 723が螺合 して 、る螺合部 731が形成されて!、る。 [0049] On the X base 72, a servo motor 722 for rotating a ball screw 723 having an axis in the Y-axis direction and two LM guides 724 in the Y-axis direction are provided. On these two LM guides 724, a rectangular Y base 73 is provided that is slidably guided in the Y-axis direction by the LM guides 724. A ball screw 723 is screwed to one side of the Y base 73 to form a screwed portion 731.
[0050] Yベース 73上には、 Y軸方向に軸を有するボールねじ 733を回転させるサーボモ ータ 732と、カードリング 735を回転自在に支持する接続リング 734とが設けられてい る。カードリング 735の一部には、ボールねじ 733が螺合している螺合部 736が形成 されている。複数のプローブ 81を備えたプローブカード 8は、 4本のピン 82によって カードリング 735に着脱自在に取り付けられて!/、る。
[0051] なお、図 4および図 5には示さないが、プローブカード 8の各プローブ 81は、テスト ヘッド 10を介してテスタ本体に電気的に接続されている。 [0050] On the Y base 73, a servo motor 732 for rotating a ball screw 733 having an axis in the Y-axis direction, and a connection ring 734 for rotatably supporting the card ring 735 are provided. A part of the card ring 735 is formed with a threaded portion 736 into which a ball screw 733 is threaded. A probe card 8 with multiple probes 81 is detachably attached to the card ring 735 with four pins 82! / Although not shown in FIGS. 4 and 5, each probe 81 of the probe card 8 is electrically connected to the tester body via the test head 10.
[0052] このような構成を有するプローブカードステージ 7においては、サーボモータ 711を 駆動することにより、 Xベース 72、ひいてはプローブカード 8を X軸方向に移動させる ことができ、サーボモータ 722を駆動することにより、 Yベース 73、ひいてはプローブ カード 8を Y軸方向に移動させることができる。また、サーボモータ 732を駆動してボ ールねじ 733を回転させ、螺合部 736を移動させることにより、カードリング 735およ びプローブカード 8をその垂直軸回りに回転させることができる。 [0052] In the probe card stage 7 having such a configuration, by driving the servo motor 711, the X base 72, and hence the probe card 8 can be moved in the X-axis direction, and the servo motor 722 is driven. As a result, the Y base 73 and thus the probe card 8 can be moved in the Y-axis direction. Further, the card ring 735 and the probe card 8 can be rotated around the vertical axis by driving the servo motor 732 to rotate the ball screw 733 and moving the screwing portion 736.
[0053] また、図 1に示されるように、プッシャユニット 3の前段側(図 1中左側)に第 1カメラ 6a 力 テストヘッド 10の下側に第 2カメラ (撮像装置) 6bが、プッシャユニット 3の後段側( 図 1中右側)に第 3カメラ 6cが、それぞれ設けられている。なお、テストヘッド 10には、 第 2カメラ 6bがプローブカード 8を撮影することのできる間隙が形成されている。 In addition, as shown in FIG. 1, the first camera 6a force is placed on the front side of the pusher unit 3 (left side in FIG. 1), and the second camera (imaging device) 6b is placed on the lower side of the test head 10. A third camera 6c is provided on the rear side of 3 (right side in Fig. 1). The test head 10 is formed with a gap through which the second camera 6b can photograph the probe card 8.
[0054] プッシャユニット 3と第 3カメラ 6cとの間には、マークパンチ 26aおよびリジェクトパン チ 26bが設けられている。マークパンチ 26aは、試験の結果に基づいて、該当する T CPにっき所定の位置に 1個または複数個の孔を開けるものであり、リジェクトパンチ 2 6bは、試験の結果不良品であると判断された TCPを打ち抜くものである。 A mark punch 26a and a reject punch 26b are provided between the pusher unit 3 and the third camera 6c. Based on the test results, the mark punch 26a has one or more holes in the specified position in the corresponding TCP, and the reject punch 26b is determined to be defective as a result of the test. It is something that punches out TCP.
[0055] 各カメラ 6a, 6b, 6cは、これらカメラによって撮影した画像を、オペレータが視認可 能なように表示装置 9に表示させる。これらのカメラのうち、第 1カメラ 6aおよび第 3力 メラ 6cは、キャリアテープ 5上における TCPの有無やマークパンチ 26aによる孔の位 置や数を判断するためのものである。そして、第 2カメラ 6bは、 TCPとプローブカード 8との間の位置ずれ情報を取得するためのものであり、視野内の複数の対象につい て位置ずれ情報を取得できるようになって 、る。 [0055] Each camera 6a, 6b, 6c causes the display device 9 to display images taken by these cameras so that the operator can approve the images. Among these cameras, the first camera 6a and the third force camera 6c are for determining the presence or absence of TCP on the carrier tape 5 and the position and number of holes by the mark punch 26a. The second camera 6b is for acquiring positional deviation information between the TCP and the probe card 8, and can acquire positional deviation information for a plurality of objects in the field of view.
[0056] また、第 2カメラ 6bは、カメラステージ 61上に搭載されており、カメラステージ 61が 有するァクチユエータによって平面視縦横方向(X軸 Y軸方向)および上下方向(Z 軸方向)に移動可能となっている。 [0056] The second camera 6b is mounted on the camera stage 61, and can be moved in the vertical and horizontal directions (X-axis Y-axis direction) and in the vertical direction (Z-axis direction) by an actuator provided in the camera stage 61. It has become.
[0057] そして、表示装置 9は、画像処理部 90と、第 2カメラ 6bが撮影した標準画像 (画像 処理部 90で拡大処理されて ヽな ヽ画像)または画像処理部 90で拡大処理された拡 大画像を表示する表示パネル 91と、表示パネル 91に表示する画像の拡大倍率を変
化させるための操作ボタン 92 (拡大表示操作部)と、表示する領域を指定する領域 指定ボタン 93 (領域指定部)とを有している。なお、図示はしないが、その他の操作 手段、例えば表示画面上のタツチパネルや、画面スクロール用のボタン等を備えて いてもよい。画像処理部 90は、画像データをデジタル処理することのできるコンビュ ータによって構成されている。 [0057] Then, the display device 9 has the image processing unit 90 and a standard image (an image that has been enlarged by the image processing unit 90) taken by the second camera 6b or an enlargement processed by the image processing unit 90. Change the display panel 91 that displays the enlarged image and the magnification of the image displayed on the display panel 91. And an area specifying button 93 (area specifying section) for specifying an area to be displayed. Although not shown, other operation means such as a touch panel on the display screen and a screen scroll button may be provided. The image processing unit 90 is configured by a computer that can digitally process image data.
[0058] 操作ボタン 92は、「 +」記号が付された拡大ボタン 92aと、「―」記号が付された縮 小ボタン 92bとを備えている。拡大ボタン 92aが押されると、画像処理部 90において 標準画像の一部を大きく表示する画像処理がなされ、表示パネル 91に拡大画像が 表示される。一方、縮小ボタン 92bが押されると、画像処理部 90において拡大画像 を小さく表示する画像処理がなされ、表示パネル 91に倍率の小さくなつた拡大画像 または標準画像が表示される。このように、表示装置 9では、操作ボタン 92を押すこと で拡大倍率を連続的に変化させることができるようになっており、拡大倍率の下限値 (1倍)と上限値 (例えば 5倍)との間で、任意の拡大倍率を選択できるようになつてい る。 The operation button 92 includes an enlargement button 92a with a “+” sign and a reduction button 92b with a “−” sign. When the enlarge button 92a is pressed, the image processing unit 90 performs image processing for displaying a part of the standard image in a large size, and the enlarged image is displayed on the display panel 91. On the other hand, when the reduction button 92b is pressed, the image processing unit 90 performs image processing for displaying an enlarged image in a small size, and an enlarged image or a standard image with a reduced magnification is displayed on the display panel 91. As described above, the display device 9 can continuously change the enlargement magnification by pressing the operation button 92. The lower limit value (1 ×) and the upper limit value (for example, 5 ×) of the enlargement magnification can be obtained. Any magnification can be selected between and.
[0059] 領域指定ボタン 93は、上下左右に向いた矢印の記号が付された 4つのボタンから なるものであり、これらのボタンを押すことで、表示パネル 91に表示される領域を上下 左右の任意の方向に移動できるようになつている。本実施例では、領域指定ボタン 9 3の操作により発生した信号が画像処理部 90に入力されるようになっており、画像処 理部 90は、この入力に応じ、表示させるべき画像データを表示パネル 91に出力する ようになつている。なお、領域を移動させる方法としては、この方法以外にも、例えば 、第 2カメラ 6bを移動させる方法などを用いてもよい。 [0059] The area designation button 93 is composed of four buttons with arrow symbols pointing up, down, left, and right. By pressing these buttons, the area displayed on the display panel 91 is moved up, down, left, and right. It can move in any direction. In this embodiment, the signal generated by the operation of the area specifying button 93 is input to the image processing unit 90, and the image processing unit 90 displays the image data to be displayed in response to this input. Output to panel 91. In addition to this method, for example, a method of moving the second camera 6b may be used as a method of moving the region.
[0060] ここで、図 6 (a)の標準画像においては、テストパッド Pとァライメントマーク 55が同時 に表示されることが望ましい。また、表示パネル 91においては、図 6では省略されて いるが、オペレータが作業し易い情報が表示されることが望ましい。例えば、カメラ情 報 (倍率値、カメラの XY移動範囲、現在の XY位置情報等)、観測対象の TCP情報( TCP番号、押圧方向の距離値、 X軸座標値、 Y軸座標値等)、クロスカーソル及びそ の交点座標情報 (ァライメントマーク 55を基準とした相対的な XY座標値)、クロス力 一ソルの交点に近!、位置にあるテストパッド Pの番号情報、各テストパッド毎の位置ず
れ量を示す XY偏差値などが表示されることが望ましい。また、表示パネル 91におい ては、標準画像および拡大画像の 2画像を同時に表示可能としてもよぐかかる 2画 像の表示によって、位置合わせ作業が容易になり得る。 Here, in the standard image of FIG. 6 (a), it is desirable that the test pad P and the alignment mark 55 are displayed at the same time. Further, on the display panel 91, although omitted in FIG. 6, it is desirable to display information that is easy for the operator to work. For example, camera information (magnification value, camera XY movement range, current XY position information, etc.), TCP information to be observed (TCP number, distance value in the pressing direction, X-axis coordinate value, Y-axis coordinate value, etc.), Cross cursor and its intersection coordinate information (relative XY coordinate value with reference to alignment mark 55), cross force close to the intersection of one sol !, number information of test pad P in position, each test pad No position It is desirable to display an XY deviation value indicating the amount of deviation. In the display panel 91, the two images of the standard image and the enlarged image can be displayed at the same time, and the display operation of the two images can facilitate the alignment operation.
[0061] なお、図 6に示す TCPのテストパッド Ρの配列例は、直線状一列に配列されている 単純な配列例である力 千鳥配列や複雑な配列でテストパッド Pが形成されて 、る T CPも存在する。 [0061] The TCP test pad テ ス ト shown in Fig. 6 is arranged in a straight line. The test pad P is formed by a simple staggered arrangement or a complicated arrangement. TCP also exists.
[0062] 第 2カメラ 6bは、最大拡大倍率時において、画像処理部 90がプローブ 81/テスト ノ^ド Pの位置ずれ量を所望の精度で求めることができる高解像度のカメラ、又はォ ペレータがマニュアル操作により拡大画像を見ながらプローブ 81Zテストパッド Pの 位置ずれの状況を把握でき、かつプローブ 81の位置調整を行うことが可能な高解像 度のカメラであることが望ましい。また、オペレータは、表示装置 9の画面を見ながら、 図 6 (a) , (b)に示すように、画像の拡大倍率を任意に変化させて的確に確認できる ように随時操作するため、拡大表示 (デジタルズーム)の処理をするときに、画像の輪 郭がギザギザ表示とならないように、画像処理部 90で、スムージング処理をすること が好ましい。このように高解像度のカメラにより鮮明な輪郭で表示することにより、オペ レータによるプローブ 81およびテストパッド Pの位置合わせ作業が正確にできる。ま た、高解像度のカメラを適用することで、テストパッド Pがより狭ピッチの TCPにも対応 でき、多数のプローブ 81Zテストパッド Pの位置ずれの状況やそれらの輪郭が的確 に確認できる。また、多数のプローブ 81Zテストパッド Pの概略の位置決め処理およ び詳細な位置決め処理において、同一の画像データを利用できる。また、高解像度 のカメラを適用することで、プローブカードステージ 7の機械的な移動誤差が低減さ れるため、将来の微細で狭ピッチなテストパッド Pを有する TCPにお 、ても精度良く 位置決めすることができる。 [0062] The second camera 6b is a high-resolution camera or operator that allows the image processing unit 90 to obtain the positional deviation amount of the probe 81 / test node P with a desired accuracy at the maximum magnification. It is desirable that the camera be a high-resolution camera that can grasp the position displacement of the probe 81Z test pad P while viewing the enlarged image by manual operation and can adjust the position of the probe 81. In addition, as shown in FIGS. 6 (a) and 6 (b), the operator operates the magnifying magnification of the image at any time while observing the screen of the display device 9, so that the operator can check the image accurately. When performing display (digital zoom) processing, it is preferable to perform smoothing processing in the image processing unit 90 so that the contour of the image does not appear jagged. Thus, by displaying the image with a clear outline by a high-resolution camera, the operator can accurately align the probe 81 and the test pad P. In addition, by applying a high-resolution camera, the test pad P can cope with TCP with a narrower pitch, and the status of the misalignment of many probes 81Z test pad P and their contours can be confirmed accurately. In addition, the same image data can be used in the rough positioning process and detailed positioning process of many probes 81Z test pad P. In addition, by applying a high-resolution camera, the mechanical movement error of the probe card stage 7 is reduced, so the future TCP with a fine and narrow-pitch test pad P can be positioned with high accuracy. be able to.
[0063] 次に、 TCPハンドラ 2の使用方法および動作について説明する。 Next, the usage method and operation of TCP handler 2 will be described.
TCPハンドラ 2を使用する場合には、 TCPハンドラ 2を実稼動させる前に、予めプロ ーブカード 8の全てのプローブ 81が、対応するテストパッド Pの中央位置へ位置決め されるようにプローブカード 8を移動させる初期設定を行う必要がある。すなわち、 TC Pの品種を変更した場合や、異なる生産ロットの TCPを試験する場合、あるいはプロ
ーブカード 8を変更した場合には、 TCPのテストパッド Pとプローブカード 8のプロ一 ブ 81とがコンタクトするように、プローブカードステージ 7の X軸位置 ZY軸位置 Z Θ 回転角の基準位置を決定し、登録する必要がある(この位置を「登録位置」という)。 なお、プッシャステージ 4は、 TCPの試験実行時に使用するので、初期設定では非 制御状態のままと仮定する。 When using TCP handler 2, move probe card 8 so that all probes 81 of probe card 8 are positioned in the center of corresponding test pad P before operating TCP handler 2. It is necessary to make initial settings. This means that if you change the TPP varieties, test different production lots of TCP, or When the probe card 8 is changed, the reference position of the X-axis position ZY-axis position Z Θ rotation angle of the probe card stage 7 is determined so that the TCP test pad P and the probe card 8 probe 81 contact each other. Therefore, it is necessary to register (this position is referred to as “registered position”). Since pusher stage 4 is used during TCP test execution, it is assumed that it remains in the uncontrolled state by default.
[0064] プローブカード 8の初期設定では、まず、基準となる TCPを試験位置まで搬送する と、第 2カメラ 6bによって、 TCPのテストパッド Pおよびプローブカード 8のプローブ 81 が撮影され、撮影された標準画像が表示パネル 91に表示される(図 6 (a)参照)。そ こで、オペレータが表示パネル 91に表示された画像を視認しながら、マニュアル操 作によってメインスプロケット 35bおよび Zまたはプローブカードステージ 7を移動さ せて、複数箇所 (例えば図 6 (a)に示す 9箇所)のプローブ 81とそれに対応するテスト ノ ッド Pの粗位置を定める。なお、粗位置の決定は、所望により、マニュアル操作では なく自動制御で行ってもよ!ヽ。 [0064] In the initial setting of the probe card 8, first, when the reference TCP is transported to the test position, the TCP test pad P and the probe 81 of the probe card 8 are photographed and photographed by the second camera 6b. A standard image is displayed on the display panel 91 (see FIG. 6 (a)). Therefore, the operator moves the main sprocket 35b and Z or the probe card stage 7 by manual operation while visually recognizing the image displayed on the display panel 91, so that a plurality of locations (for example, as shown in FIG. 9) Determine the coarse position of the probe 81 and the corresponding test node P. The coarse position can be determined automatically instead of manually, if desired!
[0065] 次に、表示パネル 91に表示されているプローブ 81Zテストパッド P中の所望のプロ ーブ 81Zテストパッド Pが表示パネル 91の中央に表示されるように、領域指定ボタン 93を使って表示領域を移動させる。そして、拡大ボタン 92aを押して表示パネル 91 に拡大画像を表示し、選択したプローブ 81Zテストパッド Pを拡大表示する(図 6 (b) 参照)。 [0065] Next, by using the region designation button 93 so that the desired probe 81Z test pad P in the probe 81Z test pad P displayed on the display panel 91 is displayed in the center of the display panel 91. Move the display area. Then, the enlarged button 92a is pressed to display an enlarged image on the display panel 91, and the selected probe 81Z test pad P is enlarged and displayed (see FIG. 6 (b)).
[0066] この状態で、オペレータは、複数のプローブ 81がテストパッド Pのできるだけ中央の 位置に接触するように、マニュアル操作によってプローブカードステージ 7を X軸方向 ZY軸方向 Z Θ回転方向へ移動させながら位置調整を行う。この調整作業は、一般 的には、 TCPの 4角にある複数のテストパッド Pとそれに対応するプローブ 81に対し て行う。この調整作業により全てのプローブ 81に対して最良状態となったプローブ力 ードステージ 7の状態を、基準位置として登録する。 [0066] In this state, the operator manually moves the probe card stage 7 in the X axis direction, the ZY axis direction, and the Z Θ rotation direction so that the plurality of probes 81 come into contact with the center position of the test pad P as much as possible. Adjust the position. This adjustment work is generally performed for a plurality of test pads P and corresponding probes 81 in the four corners of the TCP. The state of the probe force stage 7 that is in the best state for all the probes 81 by this adjustment work is registered as a reference position.
[0067] ここで、プローブ 81は多数回の押圧に伴って変形してくる。すなわち、各プローブ 8 Here, the probe 81 is deformed with many times of pressing. That is, each probe 8
1は、 X軸方向 ZY軸方向 ZZ方向(押圧方向)の位置ばらつきが存在し得る。従って 、全てのプローブ 81の接触端が必ずしもテストパッド Pの中央位置になるとはならな い。このため、全てのプローブ 81が安定してテストパッド Pにコンタクトできる最良状態
にセットする必要がある。 1 may have positional variations in the X-axis direction, the Z-axis direction, and the ZZ direction (pressing direction). Therefore, the contact ends of all the probes 81 are not necessarily at the center position of the test pad P. Therefore, the best condition that all probes 81 can contact the test pad P stably. It is necessary to set to.
[0068] 上記のように表示パネル 91に拡大画像を表示することにより、標準画像ではプロ一 ブ 81およびテストパッド Pが小さく細力べなっていて視認難い場合であっても、プロ一 ブ 81およびテストパッド Pが大きく表示されて視認し易くなるため、テストパッド Pに対 するプローブ 81の位置合わせ作業を容易にかつ正確に行うことができるようになる。 [0068] By displaying an enlarged image on the display panel 91 as described above, even if the standard image has the probe 81 and the test pad P small and weak, it is difficult to see the probe 81. Further, since the test pad P is displayed in a large size and is easy to see, the alignment operation of the probe 81 with respect to the test pad P can be performed easily and accurately.
[0069] 上記初期設定において、第 2カメラ 6bの視野内の所定位置の位置座標を併せて登 録する。位置座標は、複数箇所、特にカメラの視野内の離れた対象について 3箇所 以上登録するのが好ましい。これにより、位置ずれ情報を高い精度で取得することが 可能となる。所定の対象としては、例えば、キャリアテープ 5におけるァライメントマー ク 55、 TCPの対角線上にある 2つ以上のテストパッド Pまたは特徴のあるリード、それ らに対応する 2つ以上のプローブ 81先端部等を選択することができる。 [0069] In the initial setting, the position coordinates of a predetermined position in the field of view of the second camera 6b are also registered. It is preferable to register three or more position coordinates, especially for distant objects in the camera's field of view. This makes it possible to acquire positional deviation information with high accuracy. For example, alignment mark 55 on carrier tape 5, two or more test pads P or characteristic leads on the diagonal of TCP, two or more probes corresponding to them 81 Etc. can be selected.
[0070] 次に、 TCPハンドラ 2を実稼動させて数千個の TCPを順次試験に付す場合の TCP ハンドラ 2の主動作を、図 7のフローチャートを参照しながら説明する。なお、本実施 形態では、プローブカードステージ 7は、上記初期設定で登録した登録位置へプロ ーブカード 8を移動して固定状態にするものとし、順次移送される TCPの各試験前に 行う位置ずれ補正の微調整は、微調整用のプッシャステージ 4により行うものとする。 ただし、この微調整は、プッシャステージ 4の代わりにプローブカードステージ 7を微 動させる方法でも可能である。また、第 2カメラ 6bは、最初の段階で、図 6 (a)に示す 撮影位置 (ァライメントマーク 55とテストパッドの両方が撮影される位置)へカメラステ ージ 61により移動させた後、全ての TCPの試験が完了するまで不動の状態とし、従 つて、当該 9点のテストパッド Pとプローブ 81のみに基づいて、位置ずれを補正するも のと仮定する。 Next, the main operation of TCP handler 2 when TCP handler 2 is actually operated and thousands of TCPs are sequentially subjected to the test will be described with reference to the flowchart of FIG. In this embodiment, the probe card stage 7 moves the probe card 8 to the registration position registered in the initial setting to be in a fixed state, and corrects misalignment performed before each TCP test that is sequentially transferred. This fine adjustment is performed by the pusher stage 4 for fine adjustment. However, this fine adjustment is also possible by moving the probe card stage 7 in place of the pusher stage 4. In addition, the second camera 6b is moved to the shooting position shown in FIG. 6 (a) (the position where both the alignment mark 55 and the test pad are shot) by the camera stage 61 in the initial stage. It is assumed that all the TCP tests are in a stationary state, and therefore the misalignment is corrected based only on the nine test pads P and the probe 81.
[0071] TCPハンドラ 2が主動作を開始すると、プローブカードステージ 7は、上記初期設定 で登録した登録位置に移動する(ステップ SO 1)。これ以降においては、各 TCP毎の 移送系やその他に起因する微小な位置ずれを補正する必要がある。次いで、メイン スプロケット 35bとテンションスプロケット 35aが所定角度回転することによりキャリアテ ープ 5を移動させ、 1個目の TCPを吸着プレート 34の下側の所定位置まで搬送する (ステップ S02)。
[0072] TCPが吸着プレート 34の下側まで搬送されてきたら、プッシャユニット 3のサーボモ ータ 31が駆動し、プッシャ本体部 33を介して吸着プレート 34を Z軸下方向に移動さ せる。ここで、テンションスプロケット 35aは、キャリアテープ 5の走行方向と逆方向のト ルクが付与されることにより、キャリアテープ 5に所定のテンションをかけているので、 キャリアテープ 5はたるみが無い状態となり、キャリアテープ 5の位置精度が向上する 。吸着プレート 34は、キャリアテープ 5を吸着して TCPを保持固定状態にし、その後 、撮影位置まで下降する (ステップ S03)。 [0071] When the TCP handler 2 starts the main operation, the probe card stage 7 moves to the registration position registered in the initial setting (step SO1). From this point on, it is necessary to correct small misalignments caused by the transport system for each TCP and others. Next, the main sprocket 35b and the tension sprocket 35a rotate by a predetermined angle to move the carrier tape 5 and transport the first TCP to a predetermined position below the suction plate 34 (step S02). [0072] When the TCP is transported to the lower side of the suction plate 34, the servo motor 31 of the pusher unit 3 is driven to move the suction plate 34 downward through the pusher body 33. Here, since the tension sprocket 35a is given a predetermined tension to the carrier tape 5 by being given a torque in the direction opposite to the traveling direction of the carrier tape 5, the carrier tape 5 is in a state without sagging, The positional accuracy of the carrier tape 5 is improved. The suction plate 34 sucks the carrier tape 5 to hold and fix the TCP, and then descends to the photographing position (step S03).
[0073] この状態で第 2カメラ 6bは撮影を行 、 (ステップ S04)、得られた画像データを画像 処理部 90に送信する。画像処理部 90は、受信した画像データを受けて、標準画像 を各種の情報 (X座標値、 Y座標値、倍率、プッシャの位置情報等)と共に表示パネ ル 91に表示させて (ステップ S05)、オペレータが確認できるようにする。 In this state, the second camera 6b performs photographing (step S04), and transmits the obtained image data to the image processing unit 90. The image processing unit 90 receives the received image data and displays the standard image on the display panel 91 together with various information (X coordinate value, Y coordinate value, magnification, pusher position information, etc.) (step S05). , Allowing the operator to confirm.
[0074] そして、画像処理部 90は、テストパッド Pとプローブ 81との位置ずれ情報 (位置ずれ の方向(X軸方向 · Y軸方向)および位置ずれの量)を演算により求める (ステップ SO 6)。そのために、画像処理部 90は、先ず、ァライメントマーク 55を特定し、当該ァライ メントマーク 55の画像上の位置とカメラステージ 61のステージ位置とから当該ァラィメ ントマーク 55の位置情報を求める。このァライメントマーク 55の位置情報から、キヤリ ァテープ 5自身の X軸方向及び Y軸方向のずれを求めることができる。なお、各々の テストパッド Pとプローブ 81との位置関係は、ァライメントマーク 55の位置を基準点と した相対的なものである。 [0074] Then, the image processing unit 90 obtains positional deviation information (the direction of positional deviation (X-axis direction / Y-axis direction) and the amount of positional deviation) between the test pad P and the probe 81 by calculation (step SO 6 ). For this purpose, the image processing unit 90 first identifies the alignment mark 55 and obtains position information of the alignment mark 55 from the position of the alignment mark 55 on the image and the stage position of the camera stage 61. From the position information of the alignment mark 55, the displacement of the carrier tape 5 itself in the X-axis direction and the Y-axis direction can be obtained. The positional relationship between each test pad P and the probe 81 is relative to the position of the alignment mark 55 as a reference point.
[0075] 位置ずれ情報は、観測対象であるテストパッド Pとプローブ 81先端部との重合状態 に基づいて求めるが、観測対象の個数は、処理能力の範囲内で多くすることが望ま しい。なお、 Θ回転方向のずれも検出したい場合には、標準画像において TCPの対 角線上に位置する少なくとも 2箇所、または互 、に遠く離れた少なくとも 2箇所のテス トパッド Pを対象とするのが望まし 、。 The positional deviation information is obtained based on the superposition state between the test pad P to be observed and the tip of the probe 81, and it is desirable that the number of observation objects be increased within the range of the processing capability. In addition, when it is desired to detect a shift in the Θ rotation direction, it is desirable to target at least two test pads P located on the diagonal line of TCP in the standard image, or at least two test pads P far away from each other. Better ,.
[0076] ここで、位置ずれ情報に、プローブ 81の変形に伴う変形ずれ量が無視できな 、程 度に存在する場合には、複数個の観測対象から得られる複数の位置ずれ情報に基 づき、複数個の観測対象が安定してコンタクトできる近似直線を求め、その近似直線 から X軸方向及び Y軸方向に対する最良の補正量を得るようにしてもよ!/、。
[0077] なお、第 2カメラ 6bとして、高解像度のカメラを適用することで、多数の観測対象の 画像データを明瞭に取得できる結果、より正確な補正量を特定することが容易となる 。また、高解像度のカメラを適用することで、 TCPの広い領域を同時に撮像できるの で、従来のようにカメラステージ 61を移動して撮像する必要性を低減することができ、 移動時間に伴うスループットの低下を改善することができる。ここで、もしも従来の低 解像度のカメラを適用した場合には、画像認識性を確保するために視野角の狭 、力 メラを適用する必要性があるが、視野角が狭いと複数の画像の撮影が必要になり、そ の結果、得られた複数画像の重ね合わせ処理やレンズ歪み等の画像補正に伴う誤 差要因が生じる。そこで、高解像度のカメラを適用することで、広視野角の画像を得 ることができ、上記誤差要因を低減することができる結果、狭ピッチの TCPにも対応 することが可能である。 [0076] Here, if the amount of deformation due to the deformation of the probe 81 is not negligible in the position displacement information and is present to some extent, it is based on a plurality of pieces of position displacement information obtained from a plurality of observation targets. It is also possible to obtain an approximate straight line that can stably contact multiple observation objects and obtain the best correction amount for the X-axis direction and Y-axis direction from the approximate line! /. Note that by applying a high-resolution camera as the second camera 6b, it is possible to clearly obtain a large number of image data to be observed, and as a result, it becomes easy to specify a more accurate correction amount. In addition, by applying a high-resolution camera, it is possible to simultaneously capture a wide TCP area, reducing the need to move the camera stage 61 as in the past, and the throughput associated with the travel time. Can be reduced. Here, if a conventional low-resolution camera is applied, it is necessary to apply a narrow viewing angle and a power camera to ensure image recognition. As a result, it is necessary to shoot, and as a result, error factors associated with image correction such as overlay processing and lens distortion of the obtained multiple images occur. Therefore, by applying a high-resolution camera, an image with a wide viewing angle can be obtained and the above error factors can be reduced. As a result, it is possible to cope with narrow pitch TCP.
[0078] テストパッド Pとプローブ 81の X軸方向及び Y軸方向の位置ずれ量 Δ ϋ ( Δ χ, Δγ) は、プローブ 81とテストパッド Ρとが接触する位置の、テストパッド Ρの中心位置からの 相対的なずれ量であり、画像処理部 90は、この位置ずれ量 Δ ϋ ( Δ χ, Ay)を演算 により求める。図 6 (b)の拡大画像に示すように、位置ずれ量 A Dとして、 X軸方向の ずれ量 Δ Xと Y軸方向のずれ量 Δ yと力ある。プローブ 81にばらつきが存在する場合 には、例えば 9点のプローブ 81及びそれに対応するテストパッド Pの各々について X 軸方向及び Y軸方向の位置ずれ量 Δ ϋ ( Δ χ, Ay)を求め、得られた 9点の位置ず れ量 Δ Dから近似直線を求め、その近似直線に基づ!/ヽて最も的確な位置ずれ量 Δ D ( A x, Ay)を取得してもよい。この近似直線により、 0回転方向の位置ずれ量も同 時に得られる。近似直線を利用して取得した位置ずれ量 Δ Dに基づ ヽて位置ずれ補 正を行うことにより、複数点のプローブ 81とテストパッド Pについて、より安定したコンタ タト状態が得られる。 [0078] The amount of displacement Δ ϋ (Δ χ, Δγ) between the test pad P and the probe 81 in the X-axis direction and the Y-axis direction is the center position of the test pad Ρ at the position where the probe 81 and the test pad Ρ contact each other. The image processing unit 90 obtains the positional deviation amount Δ ϋ (Δχ, Ay) by calculation. As shown in the enlarged image in FIG. 6 (b), the positional deviation amount AD includes a deviation amount ΔX in the X-axis direction and a deviation amount Δy in the Y-axis direction. If there is variation in the probe 81, for example, the positional deviation amount Δ ϋ (Δχ, Ay) in the X-axis direction and the Y-axis direction is obtained for each of the nine probes 81 and the corresponding test pads P. An approximate straight line may be obtained from the obtained nine position shift amounts ΔD, and the most accurate positional shift amount Δ D (A x, Ay) may be obtained based on the approximate lines! With this approximate line, the amount of misalignment in the zero rotation direction can be obtained at the same time. By performing misalignment correction based on the misalignment amount ΔD acquired using the approximate line, a more stable contact state can be obtained for the probe 81 and the test pad P at multiple points.
[0079] 次に、上記で得られた位置ずれ量 Δ Dにお 、て、第 1に、位置ずれ補正の必要が ないと判断した場合 (ステップ S07— No)は、後述するステップ S 10にスキップする。 このスキップにより、試験のスループットが改善できる。第 2に、位置ずれ補正の必要 があると判断した場合 (ステップ S07— Yes)には、画像処理部 90は、大きな位置ず れを起こしているプローブ 81Zテストパッド Pの拡大画像を表示パネル 91に自動的
に表示する(ステップ S08)。そして、 TCPハンドラ 2は、上記のような大きな位置ずれ を起こしているプローブ 81と、その他のプローブ 81との関係から、コンタクト可能な最 適な移動量を求めた後、プッシャステージ 4を駆動して、位置ずれ補正を実行する( ステップ S09)。なお、上述の近似直線から X軸方向 ·Υ軸方向に対する補正量を特 定し、その補正を実行してもよい。 [0079] Next, in the first case, when it is determined that the positional deviation correction ΔD is not necessary (No in step S07), the process proceeds to step S10 described later. skip. This skip can improve test throughput. Second, if it is determined that misalignment correction is necessary (step S07—Yes), the image processing unit 90 displays an enlarged image of the probe 81Z test pad P causing a large misalignment on the display panel 91. Automatically (Step S08). The TCP handler 2 then drives the pusher stage 4 after obtaining the optimal amount of movement that can be contacted from the relationship between the probe 81 causing the large positional deviation as described above and the other probes 81. Then, misalignment correction is performed (step S09). It is also possible to specify a correction amount for the X-axis direction / Υ-axis direction from the above approximate line and execute the correction.
[0080] 位置ずれを補正して位置合わせをするには、プッシャステージ 4のサーボモータ 41 a, 41b, 41cを駆動させてトップテーブル 48、ひいてはプッシャユニット 3を動かし、 吸着プレート 34で吸着しているキャリアテープ 5を X軸— Y軸方向に移動および Zま たは垂直軸回りに回転移動させる方法を用いる。なお、プローブカードステージ 7の サーボモータ 711, 722, 732を駆動させて Xベース 72、 Yベース 73またはカードリ ング 735を動かし、プローブカード 8を X軸— Y軸方向に移動および Zまたは垂直軸 回り( Θ回転方向)に回転移動させる方法を用いることもできる力 プッシャステージ 4 は、プローブカードステージ 7よりも短時間に移動制御ができるので、プッシヤステー ジ 4を移動させる方がスループットの観点で有利である。 [0080] To correct the misalignment and align the position, the servo motors 41a, 41b, 41c of the pusher stage 4 are driven to move the top table 48 and eventually the pusher unit 3, and the suction plate 34 is sucked. The carrier tape 5 is moved in the X-axis—Y-axis direction and rotated around the Z or vertical axis. Drive the servo motors 711, 722, and 732 of the probe card stage 7 to move the X base 72, Y base 73, or card ring 735, and move the probe card 8 in the X axis—Y axis direction and around the Z or vertical axis. The force pusher stage 4 can be controlled to move in a shorter time than the probe card stage 7, so it is advantageous to move the pusher stage 4 from the viewpoint of throughput. is there.
[0081] 上記のように、第 2カメラ 6bとして高解像度のものを適用することにより、カメラステ ージ 61が固定状態であっても、より多くの観測対象を明瞭に撮像することができるの で、狭ピッチの TCPであっても高精度の位置決めを行うことが可能である。なお、位 置ずれを起こして 、るプローブ 81Zテストパッド Pの拡大画像を表示パネル 91に表 示することにより、テストパッド Pとプローブ 81との位置ずれの状況や形状の輪郭を的 確に把握 ·特定することができるとともに、位置ずれの補正を確実に確認することがで きる。また、本実施形態では、位置ずれ補正は自動的に行っているが、マ-ユアル操 作で行うこともできる。この場合には、拡大画像の自動表示により、位置ずれ箇所を 迅速に把握し、位置ずれ補正を確実にかつ容易に行うことができるため、試験のスル 一プットを向上させることができる。 [0081] As described above, by applying a high-resolution second camera 6b, it is possible to clearly capture more observation targets even when the camera stage 61 is in a fixed state. Therefore, it is possible to perform highly accurate positioning even with a narrow pitch TCP. In addition, by displaying a magnified image of the probe 81Z test pad P on the display panel 91 with a displacement, it is possible to accurately grasp the position displacement and the contour of the shape between the test pad P and the probe 81. · It can be specified and the correction of misalignment can be confirmed reliably. Further, in this embodiment, the misalignment correction is automatically performed, but it can also be performed by a manual operation. In this case, the automatic display of the enlarged image allows the position of the misalignment to be quickly grasped and the misalignment correction can be performed reliably and easily, so that the test throughput can be improved.
[0082] 次いで、プッシャユニット 3のサーボモータ 31が駆動され、プッシャ本体部 33を介し て吸着プレート 34をさらに Z軸下方向に移動させる。キャリアテープ 5を吸着した吸着 プレート 34は、コンタクト位置まで下降し、 TCPをプローブカード 8のプローブ 81に対 して押圧する(ステップ S 10)。
[0083] 押圧後において、所望により、コンタクト状態のまま、吸着プレート 34を前後左右へ 微少に揺動 (スクライブ)させたり、吸着プレート 34に超音波振動を与えたりしてもよ い。また、この段階で、所望により、コンタクト状態におけるプローブ 81Zテストパッド Pの位置関係を撮像して非コンタクト時の位置ずれ補正量に対して、コンタクト時にお ける微少なコンタクトずれ量を求める処理を追カ卩してもよい。この追加処理は、試験 実施と並行して実施できるため、スループットには影響しない。そして、得られた微少 なコンタクトずれ量を、次回以降の位置ずれ補正量に加えることで、より一層安定した コンタクトを実現することができる。 Next, the servo motor 31 of the pusher unit 3 is driven to move the suction plate 34 further downward in the Z axis via the pusher main body 33. The suction plate 34 that sucks the carrier tape 5 descends to the contact position and presses the TCP against the probe 81 of the probe card 8 (step S10). [0083] After pressing, if desired, the suction plate 34 may be slightly swung back and forth and left and right, or ultrasonic vibrations may be applied to the suction plate 34 in a contact state. Also, at this stage, if desired, a process for obtaining a slight contact deviation amount at the time of contact with respect to the positional deviation correction amount at the time of contact with respect to the positional deviation correction amount at the time of non-contact by imaging the positional relationship of the probe 81Z test pad P in the contact state. You may be careful. This additional processing can be performed in parallel with the test execution, so it does not affect the throughput. Further, by adding the obtained slight contact deviation amount to the positional deviation correction amount after the next time, a more stable contact can be realized.
[0084] TCPのテストパッド Pがプローブ 81にコンタクトしたら、先ず、微少な直流電流を各 テストパッド Pに印加して、 TCPの内部回路 (例えば保護用のダイオード)に流れる電 流の有無や電圧値を測定し、全てのテストパッドが電気的に接触しているカゝ否カゝ、お よび隣接ピン間のショートの有無、を確認 (コンタクトチェック)する (ステップ Sl l)。そ のコンタクトチェックでコンタクト不良が発生した場合には、コンタクト状態のまま、吸着 プレート 34を前後左右へ微少に揺動 (スクライブ)させたり、吸着プレート 34に超音 波振動を与えたり、プッシャ本体部 33を上下させて再コンタクト動作を行ったりする。 それによつても再度コンタクト不良となる場合には、その TCPは不良品であると判断 する。ここでは、コンタクト時の接触抵抗値が正常に試験可能な許容抵抗値より大き いか否かは、確認困難であるものと仮定する。 [0084] When the TCP test pad P contacts the probe 81, first, a minute DC current is applied to each test pad P, and the presence or absence of current flowing through the TCP internal circuit (for example, a protective diode) or voltage Measure the value and check (contact check) whether the test pads are in electrical contact with each other and whether there is a short between adjacent pins (step Sl l). If a contact failure occurs during the contact check, the suction plate 34 can be slightly swayed (scribed) back and forth, left and right in the contact state, ultrasonic vibration can be applied to the suction plate 34, or the pusher body Move part 33 up and down to perform contact operation again. If the contact fails again, the TCP is judged to be defective. Here, it is assumed that it is difficult to confirm whether the contact resistance value at the time of contact is larger than the allowable resistance value that can be normally tested.
[0085] その後、 TCPにはテスタ本体力もテストヘッド 10を通じてテスト信号が印加され、 T CPから読み出された応答信号は、テストヘッド 10を通じてテスタ本体に送られる (ス テツプ S12)。これにより TCPの性能や機能等が試験され、 TCPについて良品、不良 品、ランク分け等の判定がなされる。そして、良品と判定された TCPは、マークパンチ 26aの位置まで搬送されたときに、マークパンチ 26aによって良品であるマークが付 与され、不良品と判定された TCPは、リジェクトパンチ 26bの位置まで搬送されたとき に、リジェクトパンチ 26bによって打ち抜かれることとなる。なお、マークパンチ 26aゃリ ジェタトパンチ 26bは、運用形態により、動作させないようにする場合もある。 Thereafter, a test signal is applied to the TCP through the test head 10 as well as the tester body force, and the response signal read from the TCP is sent to the tester body through the test head 10 (step S12). As a result, TCP performance and functions are tested, and TCP is judged as good, defective, and ranked. When the TCP determined to be non-defective is transported to the position of the mark punch 26a, the mark punch 26a is given a non-defective mark, and the TCP determined to be defective is to the position of the reject punch 26b. When it is transported, it will be punched out by reject punch 26b. Note that the mark punch 26a and the reject punch 26b may not be operated depending on the operation mode.
[0086] 不良品の判定は、 TCPのテストパッド Pとプローブ 81とのコンタクト不良に基づく場 合があり、この場合には、コンタクト不良となっている可能性のあるプローブ 81Zテス
トパッド Pへカメラステージ 61を移動させた後、当該 TCPの番号、当該テストパッドの 番号、押圧方向の距離値、 X軸座標値、 Y軸座標値等の情報と共に、その拡大画像 を表示パネル 91に自動的に表示するようにしてもよい。これにより、実際にコンタクト 不良が生じている ICピンのテストパッドの状態を的確に把握することができる。 [0086] The determination of a defective product may be based on a contact failure between the TCP test pad P and the probe 81. In this case, the probe 81Z test that may have a contact failure may occur. After moving the camera stage 61 to the top pad P, the enlarged image is displayed together with information such as the TCP number, the test pad number, the distance value in the pressing direction, the X-axis coordinate value, and the Y-axis coordinate value. You may make it display automatically. This makes it possible to accurately grasp the state of the IC pin test pad where the contact failure actually occurs.
[0087] コンタクト不良が生じていると判断された場合には (ステップ S13— Yes)、第 1に、 オペレータが、マ-ユアル操作により、表示パネル 91の拡大画像を見ながらプローブ 81の位置調整を行うようにすることができる (ステップ S 14a)。この位置調整は、拡大 画像を見ながら行うことができるため、容易に行うことができる。 [0087] If it is determined that a contact failure has occurred (step S13—Yes), first, the operator adjusts the position of the probe 81 while viewing the enlarged image of the display panel 91 by a manual operation. (Step S14a). Since this position adjustment can be performed while viewing the enlarged image, it can be easily performed.
[0088] 第 2に、自動的に再試験を行うようにすることができる (ステップ S14b)。この場合に は、テスタ本体力も不良品の判定に関係するテストパッドの番号情報を受け、その情 報に対応するテストパッド Pおよびその周辺のテストパッド Pに対して、上記と同様に 位置ずれ量を求め、求めた位置ずれ量が正常なコンタクト領域力 外れている場合 には、ー且非コンタクト状態にして、プッシャステージ 4を位置ずれ補正する方向へ移 動させた後、コンタクト状態にして、再度試験を実行する。この再試験により、 TCPが 良品と判断される場合がある。なお、コンタクト不良となっている可能性のあるテストパ ッド Pの抽出は、上記の試験結果やコンタクトチェックの結果に基づいて得られる。 [0088] Second, a retest can be automatically performed (step S14b). In this case, the tester body strength also receives the test pad number information related to the determination of defective products, and the test pad P corresponding to the information and the surrounding test pads P are misaligned as described above. If the calculated amount of misalignment is out of the normal contact area force, move it to the non-contact state, move the pusher stage 4 in the direction to correct misalignment, and then enter the contact state. Run the test again. This retest may determine that TCP is good. In addition, the extraction of test pad P that may be a contact failure is obtained based on the above test results and contact check results.
[0089] 上記のようにして TCPの試験が終了すると、プッシャユニット 3のサーボモータ 31が 駆動し、プッシャ本体部 33を介して吸着プレート 34を Z軸上方向に移動させ、初期 状態にする (ステップ S15)。プローブカードステージ 7を位置ずれ補正に適用した場 合は、登録位置へ戻しておく。そして、吸着プレート 34は、キャリアテープ 5の吸着を 停止してキャリアテープ 5を解放するとともに、さらに Z軸上方向に移動する (ステップ S16)。 [0089] When the TCP test is completed as described above, the servo motor 31 of the pusher unit 3 is driven, and the suction plate 34 is moved upward in the Z-axis direction via the pusher main body 33 to be in the initial state ( Step S15). When the probe card stage 7 is applied for misalignment correction, return it to the registration position. Then, the suction plate 34 stops the suction of the carrier tape 5 to release the carrier tape 5, and further moves upward in the Z-axis (step S16).
[0090] その後、 TCPハンドラ 2は、試験を行った TCPが最後のデバイスであるカゝ否かを判 断し (ステップ S17)、最後のデバイスであると判断した場合には (ステップ S17— Yes )、主動作を終了する。一方、最後のデバイスでないと判断した場合には (ステップ S 17— No)、ステップ S02に戻る。 [0090] After that, the TCP handler 2 determines whether or not the tested TCP is the last device (step S17). If it is determined that the TCP is the last device (step S17—Yes) ), Main operation ends. On the other hand, if it is determined that it is not the last device (step S17—No), the process returns to step S02.
[0091] 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであ つて、本発明を限定するために記載されたものではない。したがって、上記実施形態
に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物を も含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, the above embodiment Each element disclosed in the above is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[0092] 例えば、画像処理部 90の画像拡大処理機能は、第 2カメラ 6bとして高解像度の力 メラを適用し、そのカメラに当該機能を持たせてもよいし、光学ズーム機能を備えた力 メラを適用して、画像処理部 90からの指令によってズーム動作を行うようになってい てもよい。 [0092] For example, the image enlargement processing function of the image processing unit 90 may apply a high-resolution power camera as the second camera 6b, and the camera may be provided with the function, or a power provided with an optical zoom function. A zoom operation may be performed in accordance with a command from the image processing unit 90 by applying a camera.
[0093] また、表示装置 9の画面上には、プローブ 81のプローブ接触点と、テストパッド Pの 中央位置点とをオーバーレイ表示するようにしてもよい。すなわち、画像処理部 90が 受信した画像データを処理して、第 1に、プローブ 81の形状 (外形または輪郭)を抽 出し、抽出した形状から当該プローブ 81の突出端の位置 (テストパッド Pに接触する プローブ接触点)を特定する。ここで、プローブ接触点のプローブ 81の形状に対する 位置関係は、予め登録されているものとする。第 2に、テストパッド Pの形状 (外形また は輪郭)を抽出し、抽出した形状から当該テストパッド Pの中央位置点を特定する。そ して、撮像した画像と共に、プローブ接触点の位置を示すマークとテストパッド Pの中 央位置点の位置を示すマークを表示パネル 91へオーバーレイ表示する。これにより 、オペレータは、テストパッド Pの中央位置点とプローブ接触点とのずれ状態を明瞭 に把握できるので、位置合わせの調整作業を的確に行うことができる。なお、所望に より、上記で抽出したプローブ接触点およびテストパッド Pの中央位置点を、ァラィメ ントマーク 55の位置情報と共に記憶装置に保存して、プローブ 81の変形の認識や その他の統計処理に利用できるようにしてもよい。 Further, the probe contact point of the probe 81 and the center position point of the test pad P may be displayed on the screen of the display device 9 in an overlay manner. That is, the image data received by the image processing unit 90 is processed, and first, the shape (outer shape or contour) of the probe 81 is extracted, and the position of the protruding end of the probe 81 (from the test pad P) is extracted from the extracted shape. Specify the probe contact point). Here, the positional relationship of the probe contact point with respect to the shape of the probe 81 is assumed to be registered in advance. Second, the shape (outer shape or contour) of the test pad P is extracted, and the center position point of the test pad P is specified from the extracted shape. Then, along with the captured image, a mark indicating the position of the probe contact point and a mark indicating the position of the center position point of the test pad P are displayed on the display panel 91 in an overlay manner. As a result, the operator can clearly grasp the deviation state between the center position point of the test pad P and the probe contact point, so that the alignment adjustment work can be performed accurately. If desired, the probe contact point and the center position point of the test pad P extracted above can be stored in the storage device together with the position information of the alignment mark 55, and used for recognition of deformation of the probe 81 and other statistical processing. You may be able to do it.
[0094] また、上述の実施例では、カメラステージ 61を最初の段階で所定の位置(図 6 (a) に示すようにァライメントマーク 55とテストパッド Pの両方が撮影される位置、またはァ ライメントマーク 55を基準とする既知の位置)に移動させた後、全ての TCPの試験が 完了するまで、カメラステージ 61を不動とする単純な場合を説明したが、 TCPに非常 に多数のテストパッド Pがある場合や、更なる高精度な位置決めが要求される場合に は、複数のテストパッド Pの対角線上の少なくとも 2箇所、または互いに遠端にある少 なくとも 2箇所のテストパッド Pへカメラステージを順次移動させて、上記と同様にして 複数のプローブ 81とそれに対応するテストパッド Pの位置ずれ量 Δ D ( Δ X, Δ y)を
各々求めるようにしてもよい。ここで、ァライメントマーク 55が複数箇所に存在する場 合には、ァライメントマーク 55のある位置を撮像することが望ましい。そして、上記で 求めた全ての位置ずれ量 A Dに基づいて、安定したコンタクトが得られる方向へプッ シャステージ 4またはプローブカード 8を X軸方向 ZY軸方向 Z Θ回転方向へ移動さ せてもよい。 In the above-described embodiment, the camera stage 61 is moved to a predetermined position at the first stage (a position where both the alignment mark 55 and the test pad P are photographed as shown in FIG. We have explained the simple case where the camera stage 61 is stationary until all TCP tests are completed after moving to a known position with reference to the mark 55, but TCP has a very large number of test pads. If there is P or if more precise positioning is required, the camera should be connected to at least two test pads P on the diagonal line of multiple test pads P or at least two test pads P far from each other. The stage is moved sequentially, and the amount of positional deviation Δ D (Δ X, Δ y) between the plurality of probes 81 and the corresponding test pad P is calculated in the same manner as above. Each may be obtained. Here, when the alignment mark 55 exists at a plurality of locations, it is desirable to image the position where the alignment mark 55 is located. Then, the pusher stage 4 or the probe card 8 may be moved in the X-axis direction, the Z-Y-axis direction, and the Z-theta rotation direction in a direction in which stable contact can be obtained based on all the positional deviation amounts AD obtained above. .
[0095] また、上述の実施例では、先ずァライメントマーク 55の位置を特定した後、正確な 位置決め処理を行う例を説明したが、正確な位置決めが要求されな 、大きなテストパ ッド等を有する TCP品種の場合には、スループットの向上の関係から、上述した正確 な位置決め処理を省略してもよい。すなわち、ァライメントマーク 55の位置を特定し、 予め登録してある位置とのずれを算出し、その位置ずれ情報に基づいて位置決めし た後、直ちに、試験実行する試験形態としてもよい。 In the above-described embodiment, an example in which the alignment mark 55 is first specified and then an accurate positioning process is performed has been described. However, there is a large test pad or the like that does not require accurate positioning. In the case of the TCP type, the accurate positioning process described above may be omitted from the viewpoint of improving the throughput. In other words, the position of the alignment mark 55 is specified, a deviation from a previously registered position is calculated, and after positioning based on the positional deviation information, a test form in which a test is executed immediately may be adopted.
[0096] また、多数本のプローブ 81は、数千回〜数万回の押圧ストレスに伴って、変形して くる場合がある。このため、 TCPと接触する全てのプローブ 81が、対応する各テスト ノ ッドの中央位置力もずれたばらつき状態になってくる場合がある。そこで、何れか のプローブ 81で接触不良が検出されるまで、プローブカードステージ 7を X軸方向及 ひ Ύ軸方向へ順次移動させて、有効移動領域を特定する。これに基づいて、現状の プローブ 81における最良の位置 (XY方向における中心位置と Θ回転量)を特定す る。そして、特定した最良位置に基づいて、プローブカード 8の登録位置を特定する ようにしてもよい。 [0096] In addition, the multiple probes 81 may be deformed with several to tens of thousands of pressing stresses. For this reason, all the probes 81 in contact with the TCP may be in a variation state in which the center position force of each corresponding test node is also shifted. Therefore, the probe card stage 7 is sequentially moved in the X axis direction and the horizontal axis direction until a contact failure is detected by any of the probes 81, and the effective movement region is specified. Based on this, the best position (center position in the XY direction and Θ rotation amount) in the current probe 81 is specified. Then, the registered position of the probe card 8 may be specified based on the specified best position.
[0097] また、プローブ 81とそれに対応するテストパッド Pの粗位置の決定および基準位置( 又は基準移動量)の初期設定は、全て自動で行うようにしてもよい。すなわち、メイン スプロケット 35bおよび所望によりプローブカードステージ 7を移動させるとともに、力 メラステージ 61を移動させて、第 2カメラ 6bによって所定の TCPに係るァライメントマ ーク 55の位置を特定し、 TCPとァライメントマーク 55との位置関係を示す既定の情 報に基づいて、当該ァライメントマーク 55の近傍の複数箇所 (例えば図 6 (a)に示す 9箇所)のプローブ 81とそれに対応するテストパッド Pの粗位置を定める。その後、必 要に応じて図 6 (b)に示すように拡大画像の状態にし、上述したように、複数点のプロ ーブ 81Zテストパッド Pから位置ずれ量を求めて基準位置を設定するようにしてもよ
い。この場合には、オペレータが介入することなぐ自動的に最良な位置決めを行うこ とがでさる。 [0097] The determination of the rough position of the probe 81 and the test pad P corresponding to the probe 81 and the initial setting of the reference position (or reference movement amount) may all be performed automatically. That is, the main sprocket 35b and the probe card stage 7 are moved as required, and the force camera stage 61 is moved, and the position of the alignment mark 55 related to a predetermined TCP is specified by the second camera 6b, and the alignment between the TCP and alignment Based on the predetermined information indicating the positional relationship with the mark 55, the probe 81 at a plurality of locations near the alignment mark 55 (for example, 9 locations shown in FIG. Determine the location. After that, if necessary, the enlarged image state is set as shown in FIG. 6 (b), and as described above, the positional deviation amount is obtained from the multi-point probe 81Z test pad P and the reference position is set. Anyway Yes. In this case, the best positioning can be performed automatically without operator intervention.
[0098] また、コンタクトチェック機能を適用して、現状のプローブカード 8に対する有効な移 動領域 (有効移動領域)を予め求めてもよい。すなわち、プローブカード 8またはプッ シャステージ 4を X— Y平面方向に所望の移動量で移動させながら、全てのプローブ とそれに対応するテストパッドとの電気的な接触状態を検出し、何れかのプローブ 81 で接触不良とならない有効移動領域を求める。ここで、所望の移動量を固定の微少 単位移動量とすることも可能であるが、二分探索 (バイナリサーチ)を行って、少ない 移動回数で有効移動領域を求めることが望ましい。なお、プローブ 81が TCPの凸部 に当たってそれらの損傷を招力ないように、移動範囲の制限を予め設定しておくこと が望ましい。求めた有効移動領域に基づいて、 TCPとプローブカード 8との最良の粗 位置が決められる。また、有効移動領域から X軸方向および Y軸方向に対する裕度 も得られるので、プローブカード 8における全プローブ 81の変形状態が把握でき、し たがって有効移動領域を当該プローブカード 8のメンテナンス情報として利用するこ ともできる。なお、有効移動領域の情報は記憶装置に保存しておくことが望ましい。 Further, an effective movement area (effective movement area) for the current probe card 8 may be obtained in advance by applying a contact check function. That is, while moving the probe card 8 or the pusher stage 4 in the XY plane direction by a desired amount of movement, the electrical contact state between all the probes and the corresponding test pads is detected, and either probe is detected. In 81, find the effective movement area that does not cause poor contact. Here, it is possible to set the desired movement amount to a fixed minute unit movement amount, but it is desirable to perform a binary search (binary search) and obtain an effective movement region with a small number of movements. It is desirable to set the movement range limit in advance so that the probe 81 does not hit the TCP protrusions and cause damage to them. Based on the obtained effective movement area, the best coarse position between the TCP and the probe card 8 is determined. In addition, since the tolerance in the X-axis direction and the Y-axis direction can be obtained from the effective movement area, the deformation state of all the probes 81 in the probe card 8 can be grasped, and therefore the effective movement area is used as maintenance information for the probe card 8. It can also be used. Note that it is desirable to store information on the effective movement area in a storage device.
[0099] また、本発明における TCPハンドリング装置は、モーター駆動で移動制御できるプ ッシャステージ 4を備えていなくてもよぐその場合には、プローブカードステージ 7の 移動制御により位置ずれ補正を行うことができる。 [0099] In addition, the TCP handling device according to the present invention does not have to include the pusher stage 4 that can be moved and controlled by a motor. In this case, the displacement correction can be performed by moving the probe card stage 7. it can.
[0100] また、本発明の TCPハンドリング装置は、プローブカードステージ 7がモーター駆動 で移動制御できる機構を備えて 、な 、手動調整機構のものであってもよ 、。この場 合、初期の登録作業において、オペレータは、表示装置 9にて標準画像または拡大 画像を見ながら、プローブカードステージ 7を手作業で登録位置へセットする。以後 は、プッシャステージ 4により自動的に位置ずれ補正を行うことができる。 [0100] Further, the TCP handling device of the present invention may be of a manual adjustment mechanism provided with a mechanism by which the probe card stage 7 can be moved and controlled by a motor. In this case, in the initial registration work, the operator manually sets the probe card stage 7 to the registration position while viewing the standard image or the enlarged image on the display device 9. Thereafter, the pusher stage 4 can automatically perform misalignment correction.
[0101] また、試験実行の結果、不良品であると判断された TCPについて、現状のコンタク ト状態を維持したままで、プローブ 81Zテストパッド Pの位置関係を撮像し、予め定め ておいた XY方向の最大許容偏差を超える位置ずれが見出された場合には、当該プ ローブ 81に係る情報 (位置ずれ量、対応するテストパッド Pの番号、押圧方向の距離 値等)を表示パネル 91に表示するようにしてもよい。こうすることにより、コンタクト不良
の蓋然性の高いプローブ 81およびテストパッド Pを自動的に表示することができ、そ れらのコンタクト状態を画像によって確認することが可能である。 [0101] Also, the TCP determined to be defective as a result of the test execution was imaged with the positional relationship of the probe 81Z test pad P while maintaining the current contact state. If a misalignment exceeding the maximum allowable deviation in direction is found, information related to the probe 81 (position misalignment, corresponding test pad P number, distance value in the pressing direction, etc.) is displayed on the display panel 91. You may make it display. By doing this, contact failure It is possible to automatically display the probe 81 and the test pad P having a high probability, and to confirm the contact state by an image.
産業上の利用可能性 Industrial applicability
本発明に係る TCPハンドリング装置は、コンタクト部の接触端子と TCPの外部端子 との位置合わせ作業を行うオペレータの負担を軽減するのに極めて有用である。
The TCP handling device according to the present invention is extremely useful for reducing the burden on the operator who performs the alignment work between the contact terminal of the contact portion and the external terminal of the TCP.
Claims
[1] テープ上に TCPが複数形成されたキャリアテープを搬送して、テストヘッドに電気 的に接続されているコンタクト部にキャリアテープを押圧し、 TCPの外部端子を前記 コンタクト部の接触端子に接触させることにより複数の TCPを順次試験に付すことが できるとともに、 TCPの外部端子およびコンタクト部の接触端子を撮像装置で撮影し 、得られた画像を表示装置に表示することができる TCPハンドリング装置であって、 前記表示装置には、 TCPの外部端子とコンタクト部の接触端子との位置関係を特 定して位置決めができるように、撮像装置で撮影した撮影対象物の全体を表示する 標準画像と、撮像装置で撮影した撮影対象物の一部分を拡大表示する拡大画像と が表示されることを特徴とする TCPハンドリング装置。 [1] A carrier tape having a plurality of TCPs formed on the tape is transported, the carrier tape is pressed against the contact part electrically connected to the test head, and the external terminal of the TCP is used as the contact terminal of the contact part. A TCP handling device that allows multiple TCPs to be sequentially subjected to the test by bringing them into contact with each other, as well as photographing the external terminals of the TCP and the contact terminals of the contact section with an imaging device, and displaying the obtained image on the display device. In the display device, a standard image for displaying the entire object to be photographed by the imaging device so that the positional relationship between the external terminal of the TCP and the contact terminal of the contact portion can be specified and positioned. And a magnified image in which a part of the object photographed by the imaging device is enlarged and displayed.
[2] 前記撮像装置は、拡大画像を表示した場合であっても、 TCPの外部端子と接触端 子との位置関係が特定でき、両端子の位置決めを行うことのできる高解像度の撮像 装置である請求項 1に記載の TCPハンドリング装置。 [2] The imaging device is a high-resolution imaging device capable of specifying the positional relationship between the TCP external terminal and the contact terminal and positioning both terminals even when an enlarged image is displayed. The TCP handling device according to claim 1.
[3] 前記 TCPハンドリング装置は、所定位置の TCPの外部端子およびコンタクト部の接 触端子を撮影可能なように前記撮像装置を移動させる撮像ステージを備えて!/ヽる請 求項 1に記載の TCPハンドリング装置。 [3] The TCP handling device includes an imaging stage that moves the imaging device so that the external terminal of the TCP at a predetermined position and the contact terminal of the contact portion can be photographed. TCP handling equipment.
[4] 前記 TCPハンドリング装置は、拡大表示操作部を備えており、前記拡大表示操作 部による操作に応じて前記標準画像を拡大して拡大画像とする請求項 1に記載の τ CPハンドリング装置。 4. The τ CP handling device according to claim 1, wherein the TCP handling device includes an enlarged display operation unit, and enlarges the standard image into an enlarged image according to an operation by the enlarged display operation unit.
[5] 前記 TCPハンドリング装置は、実稼動中、 TCPの外部端子とコンタクト部の接触端 子との間で位置ずれ又はコンタクト不良があった場合に、当該位置ずれ又はコンタク ト不良の箇所を拡大画像として前記表示装置に自動的に表示し得る請求項 1に記載 の TCPハンドリング装置。 [5] When the TCP handling device is in actual operation and there is a misalignment or contact failure between the external terminal of the TCP and the contact terminal of the contact part, the location of the misalignment or contact failure is expanded. The TCP handling device according to claim 1, wherein the TCP handling device can be automatically displayed as an image on the display device.
[6] 試験信号の授受を行うコンタクト部に設けられた複数の接触端子と、キャリアテープ 上に配設された試験対象の TCPが備える複数の外部端子と、を電気的に接触させ て試験を行う TCPハンドリング装置であって、 [6] The test is performed by electrically contacting a plurality of contact terminals provided in the contact portion for sending and receiving the test signal and a plurality of external terminals provided in the TCP to be tested provided on the carrier tape. A TCP handling device to perform,
接触端子と、当該接触端子に対応する TCPの外部端子とを撮像する撮像装置と、 前記撮像装置により撮影した接触端子および TCPの外部端子の画像を所望により
処理して表示する表示装置と、を備えており、 An imaging device that images a contact terminal and a TCP external terminal corresponding to the contact terminal, and images of the contact terminal and the TCP external terminal captured by the imaging device as desired. A display device for processing and displaying,
前記撮像装置は、ズーム機能を備え、ズーム状態において、接触端子と当該接触 端子に対応する TCPの外部端子との位置関係が特定可能な解像度を有する、 ことを特徴とする TCPハンドリング装置。 The TCP handling device having a zoom function, and having a resolution capable of specifying a positional relationship between a contact terminal and a TCP external terminal corresponding to the contact terminal in a zoom state.
[7] 前記撮像装置が撮影した複数の接触端子および当該接触端子に対応する TCPの 複数の外部端子の画像データに基づいて、前記複数の接触端子と当該接触端子に 対応する複数の外部端子との位置ずれ量を特定する、ことを特徴とする請求項 6〖こ 記載の TCPハンドリング装置。 [7] Based on image data of a plurality of contact terminals photographed by the imaging device and a plurality of TCP external terminals corresponding to the contact terminals, the plurality of contact terminals and a plurality of external terminals corresponding to the contact terminals; The TCP handling device according to claim 6, wherein the amount of positional deviation is specified.
[8] TCPが有する複数の外部端子のうち、対角線上に位置する少なくとも 2箇所、また は互いに遠く離れた少なくとも 2箇所の外部端子を前記撮像装置が撮像できるように 前記撮像ステージを移動させ、 [8] The imaging stage is moved so that the imaging apparatus can image at least two external terminals located on a diagonal line or at least two external terminals far away from each other among a plurality of external terminals of the TCP.
前記撮像装置が撮影して得られた画像データに基づいて、前記少なくとも 2箇所の 外部端子と当該外部端子に対応する接触端子との位置ずれ量を特定し、 Based on the image data obtained by imaging by the imaging device, the amount of displacement between the at least two external terminals and the contact terminals corresponding to the external terminals is specified,
前記位置ずれ量に基づいて、安定したコンタクトが得られるようにキャリアテープま たは接触端子群を移動させる、 Based on the amount of displacement, the carrier tape or the contact terminal group is moved so as to obtain a stable contact.
ことを特徴とする請求項 7に記載の TCPハンドリング装置。 The TCP handling device according to claim 7, wherein:
[9] 前記撮像装置により撮影して得られた画像データに基づいて、第 1に、接触端子の 形状を抽出し、抽出した形状から当該接触端子が TCPの外部端子に接触する接触 点を特定し、第 2に、前記画像データに基づいて、 TCPの外部端子の形状を抽出し[9] Based on the image data obtained by imaging with the imaging device, first, the shape of the contact terminal is extracted, and the contact point where the contact terminal contacts the TCP external terminal is identified from the extracted shape. Second, the shape of the external terminal of TCP is extracted based on the image data.
、抽出した形状力 当該外部端子の中央位置点を特定し、 , Extracted shape force Identify the center position point of the external terminal,
前記接触端子の接触点を示すマークと、前記外部端子の中央位置点の位置を示 すマークとを、前記表示装置にオーバーレイ表示する、 A mark indicating the contact point of the contact terminal and a mark indicating the position of the center position point of the external terminal are overlaid on the display device;
ことを特徴とする請求項 6に記載の TCPハンドリング装置。 The TCP handling device according to claim 6, wherein
[10] コンタクトチェック機能を適用して、キャリアテープまたは接触端子群を平面方向に 移動させながら、全ての接触端子と、当該接触端子に対応する TCPの外部端子との 電気的な接触状態を検出し、何れの接触端子でも接触不良とならず有効にコンタクト できる有効移動領域を求め、 [10] Apply contact check function to detect electrical contact status between all contact terminals and TCP external terminals corresponding to the contact terminals while moving carrier tape or contact terminals in the plane direction. In addition, an effective moving area where any contact terminal can be contacted effectively without contact failure is obtained.
前記有効移動領域に基づ!、て、キャリアテープおよび接触端子群の最良の位置を
特定する、 Based on the effective movement area, the best position of the carrier tape and contact terminal group is determined. Identify,
ことを特徴とする請求項 6記載の TCPハンドリング装置。 The TCP handling device according to claim 6, wherein:
[11] コンタクトチェック機能を適用して、全ての接触端子と、当該接触端子に対応する T[11] Applying the contact check function, all contact terminals and T corresponding to the contact terminals
CPの外部端子との電気的な接触状態を検出し、 Detects electrical contact with CP external terminals,
コンタクト不良が検出された場合に、当該コンタクト不良となった接触端子および当 該接触端子に対応する外部端子の位置へ前記撮像装置を移動させて、当該コンタ クト不良部位を撮影し、得られた画像を表示装置に表示する、 When a contact failure is detected, the contact failure location is obtained by moving the imaging device to the position of the contact terminal that caused the contact failure and the external terminal corresponding to the contact terminal. Display images on a display device,
ことを特徴とする請求項 6記載の TCPハンドリング装置。 The TCP handling device according to claim 6, wherein:
[12] 前記撮像装置の位置情報、前記撮像装置のズーム倍率情報、および前記撮像装 置が撮像している TCPに関する情報の少なくとも 1種の情報を表示装置に表示する ことを特徴とする請求項 6記載の TCPハンドリング装置。 [12] The display device displays at least one type of information on the position of the imaging device, zoom magnification information on the imaging device, and information on the TCP imaged by the imaging device. 6. The TCP handling device described in 6.
[13] 非コンタクト状態において接触端子および当該接触端子に対応する TCPの外部端 子を撮像して得られる非コンタクト状態画像データから、前記接触端子と当該接触端 子に対応する外部端子との位置関係を特定し、 [13] The position of the contact terminal and the external terminal corresponding to the contact terminal from non-contact state image data obtained by imaging the contact terminal and the TCP external terminal corresponding to the contact terminal in the non-contact state. Identify relationships,
試験実施に係るコンタクト状態において接触端子および当該接触端子に対応する Corresponding to the contact terminal and the contact terminal in the contact state related to the test execution
TCPの外部端子を撮像して得られるコンタクト状態画像データから、前記接触端子と 当該接触端子に対応する外部端子との位置関係を特定し、 From the contact state image data obtained by imaging the external terminal of TCP, the positional relationship between the contact terminal and the external terminal corresponding to the contact terminal is specified,
前記特定した両位置関係の変化量を求め、当該変化量に基づいて、接触端子と当 該接触端子に対応する外部端子との位置ずれを補正する、 Obtaining a change amount of the specified positional relationship, and correcting a positional deviation between the contact terminal and the external terminal corresponding to the contact terminal based on the change amount;
ことを特徴とする請求項 6記載の TCPハンドリング装置。 The TCP handling device according to claim 6, wherein:
[14] 試験実行の結果不良品であると判断された TCPに対して、現状のコンタクト状態を 維持したままで、全ての接触端子および当該接触端子に対応する外部端子を撮像し[14] For TCP determined to be defective as a result of test execution, all contact terminals and external terminals corresponding to the contact terminals are imaged while maintaining the current contact state.
、得られた画像データから各々の位置ずれ量を特定し、予め定めておいた位置ずれ 量の最大許容偏差を超える接触端子および当該接触端子に対応する外部端子を前 記表示装置に表示する、 Identifying each displacement amount from the obtained image data, and displaying on the display device contact terminals exceeding a predetermined maximum allowable deviation of the displacement amount and external terminals corresponding to the contact terminals;
ことを特徴とする請求項 6記載の TCPハンドリング装置。
The TCP handling device according to claim 6, wherein:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/017068 WO2007032077A1 (en) | 2005-09-15 | 2005-09-15 | Tcp handler |
JP2007535357A JP4885139B2 (en) | 2005-09-15 | 2005-09-15 | TCP handling device |
TW095130794A TW200720682A (en) | 2005-09-15 | 2006-08-22 | Tcp handler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/017068 WO2007032077A1 (en) | 2005-09-15 | 2005-09-15 | Tcp handler |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007032077A1 true WO2007032077A1 (en) | 2007-03-22 |
Family
ID=37864683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/017068 WO2007032077A1 (en) | 2005-09-15 | 2005-09-15 | Tcp handler |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4885139B2 (en) |
TW (1) | TW200720682A (en) |
WO (1) | WO2007032077A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05326675A (en) * | 1992-03-23 | 1993-12-10 | Tokyo Electron Ltd | Probe device |
JPH10206491A (en) * | 1996-09-30 | 1998-08-07 | Ando Electric Co Ltd | Method for verifying probe contact trace |
JPH11344538A (en) * | 1998-05-29 | 1999-12-14 | Hioki Ee Corp | Circuit board inspection device |
JP2001033520A (en) * | 1999-07-26 | 2001-02-09 | Advantest Corp | Ic contact part of ic handler device |
JP2002181889A (en) * | 2000-12-13 | 2002-06-26 | Ando Electric Co Ltd | Device for positioning probe card and tab |
-
2005
- 2005-09-15 WO PCT/JP2005/017068 patent/WO2007032077A1/en active Application Filing
- 2005-09-15 JP JP2007535357A patent/JP4885139B2/en not_active Expired - Fee Related
-
2006
- 2006-08-22 TW TW095130794A patent/TW200720682A/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05326675A (en) * | 1992-03-23 | 1993-12-10 | Tokyo Electron Ltd | Probe device |
JPH10206491A (en) * | 1996-09-30 | 1998-08-07 | Ando Electric Co Ltd | Method for verifying probe contact trace |
JPH11344538A (en) * | 1998-05-29 | 1999-12-14 | Hioki Ee Corp | Circuit board inspection device |
JP2001033520A (en) * | 1999-07-26 | 2001-02-09 | Advantest Corp | Ic contact part of ic handler device |
JP2002181889A (en) * | 2000-12-13 | 2002-06-26 | Ando Electric Co Ltd | Device for positioning probe card and tab |
Also Published As
Publication number | Publication date |
---|---|
TW200720682A (en) | 2007-06-01 |
TWI346210B (en) | 2011-08-01 |
JP4885139B2 (en) | 2012-02-29 |
JPWO2007032077A1 (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101048191B1 (en) | Re-registration method of alignment object and recording medium recording the method | |
JP5047188B2 (en) | TCP handling apparatus and connection terminal positioning method in the apparatus | |
KR100915128B1 (en) | Control method for mounting parts, mounting tester and mounting system | |
JP4871234B2 (en) | Abnormality detection method and apparatus for component mounting apparatus | |
JP5941715B2 (en) | DIE PICKUP DEVICE AND DIE PICKUP METHOD | |
JP2007200934A (en) | Evaluation method of needle track of probe needle of probe card | |
JPWO2008120518A1 (en) | TCP handling equipment | |
JP7094282B2 (en) | Anti-board work equipment | |
JP4098306B2 (en) | TCP handling device and misalignment correction method in the device | |
JP4926075B2 (en) | TCP handling device and connection terminal positioning method in TCP handling device | |
JP2007189029A (en) | Mounting system, mounting machine, mounting method of printer and electronic component | |
KR100597026B1 (en) | A method of detecting a pattern and an apparatus thereof | |
JP4885139B2 (en) | TCP handling device | |
JP4927776B2 (en) | Component mounting method | |
KR100820752B1 (en) | Probe test apparatus of flat pannel display and probe test method using it | |
JP4829889B2 (en) | TCP handling device | |
EP3370493B1 (en) | Base plate position searching device and component mounting machine | |
JP4313162B2 (en) | Alignment mark detection method and inspection apparatus | |
JPWO2008126173A1 (en) | TCP handling equipment | |
KR20080053495A (en) | Tcp handler | |
JP2010185784A (en) | Substrate inspection apparatus and method of aligning the same | |
US20240155821A1 (en) | Component mounting apparatus, component mounting method, and component positional relationship information acquiring method | |
KR20080082999A (en) | Tcp handler and method of aligning connector in tcp handler | |
JPWO2008132936A1 (en) | TCP handling equipment | |
JP2011237387A (en) | Tcp handling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007535357 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580051587.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087008553 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05783530 Country of ref document: EP Kind code of ref document: A1 |