WO2007032047A1 - 再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹脂組成物および樹脂組成物の再生方法 - Google Patents

再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹脂組成物および樹脂組成物の再生方法 Download PDF

Info

Publication number
WO2007032047A1
WO2007032047A1 PCT/JP2005/016710 JP2005016710W WO2007032047A1 WO 2007032047 A1 WO2007032047 A1 WO 2007032047A1 JP 2005016710 W JP2005016710 W JP 2005016710W WO 2007032047 A1 WO2007032047 A1 WO 2007032047A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
producing
recycled
resin composition
recycled resin
Prior art date
Application number
PCT/JP2005/016710
Other languages
English (en)
French (fr)
Inventor
Junya Goto
Masaki Ishikawa
Kazunori Shimoyachi
Original Assignee
Sumitomo Bakelite Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co., Ltd. filed Critical Sumitomo Bakelite Co., Ltd.
Priority to US11/991,729 priority Critical patent/US7851514B2/en
Priority to JP2007535330A priority patent/JP5007671B2/ja
Priority to EP05782364.3A priority patent/EP1956042B1/en
Priority to KR20087008612A priority patent/KR101226414B1/ko
Priority to CA 2622117 priority patent/CA2622117C/en
Priority to PCT/JP2005/016710 priority patent/WO2007032047A1/ja
Priority to CN2005800518804A priority patent/CN101291980B/zh
Publication of WO2007032047A1 publication Critical patent/WO2007032047A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • Recycled resin production method recycled resin, treated and recovered resin composition, recycled resin composition and resin composition regeneration method
  • the present invention relates to a method for producing a recycled resin, a recycled resin, a treated and recovered product of a resin composition, a recycled resin composition, and a method for recycling a resin composition.
  • thermosetting resins are widely used as materials for electrical and electronic parts, automobile parts and the like because they exhibit excellent electrical insulation and heat resistance and mechanical strength. Once a thermosetting resin is cured, it is not softened or melted by heat and does not dissolve in a solvent. Therefore, it is technically difficult to regenerate a valuable chemical raw material from the cured product.
  • the necessity of environmental conservation and the establishment of a resource recycling society has been studied. Recently, various studies have been conducted on the recycling of thermosetting resins.
  • Patent Document 1 discloses that a phenol resin is dissolved in phenol, which is a constituent monomer of a resin, and decomposed to a low molecular weight compound such as phenol.
  • a technique for recovering the material is disclosed.
  • Patent Document 2 discloses a technique for decomposing and recovering a supercritical or subcritical alcohol by contacting it with a phenol resin, and further recovering the phenol resin from the recovered phenol by reaction with formaldehyde. It is described that it can be generated.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-054138
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-055468
  • Patent Document 1 an emphasis is placed on recovering the organic filler, and the optimum conditions for decomposing and recovering the thermosetting resin such as phenol resin are not mentioned.
  • Patent Document 2 although the constituent monomer, phenol, is decomposed, supercritical or subcritical alcohol reacts with phenol. Often, substituted phenol is recovered. For this reason, the phenol resin obtained by using the recovered monomer is not stable in quality, so its use may be limited.
  • the present invention relates to a method for producing a recycled resin capable of efficiently obtaining a recycled resin that can be reused from a resin composition containing a used thermosetting resin, a recycled resin obtained by this production method, and It is an object of the present invention to provide a treated and recovered product of a resin composition, and a method and a recycled resin composition for recycling and treating these recycled resin and resin composition.
  • the inventor of the present invention uses a monomer constituting the thermosetting resin to be decomposed or a derivative thereof (hereinafter sometimes simply referred to as “constitutive monomers”) as a solvent. Is obtained under the condition that the oligomer in the first recovered product has a certain molecular weight distribution and is obtained using the oligomer in the first recovered product. The inventors have found that the recycled resin has a stable quality, and have completed the present invention.
  • the present invention provides:
  • thermosetting resin composition containing the thermosetting resin in a supercritical or subcritical solvent containing a monomer constituting the thermosetting resin or a derivative thereof as an essential component
  • a method for producing a recycled resin comprising a second step of adding and processing a polyfunctional compound
  • the second step includes a component capable of reacting with the polyfunctional compound contained in the first recovered product in the first step, and the polyfunctional compound.
  • the first step is performed in a temperature range of 100 ° C. or higher and 500 ° C. or lower. Manufacturing method
  • the first step The process for producing a recycled resin, which is performed in a pressure range of IMPa to 60 MPa,
  • the second process is performed in a temperature range equal to or lower than the temperature of the first step.
  • the polyfunctional compound is added in an amount of 100% by weight of the first recovered oligomer obtained in the first step. 1 part by weight or more and 50 parts by weight or less of a recycled resin production method,
  • thermosetting resin is selected from among phenol resin, epoxy resin, melamine resin, and urea resin.
  • thermosetting resin contains a phenol resin
  • a treated and recovered product of a resin composition comprising a residue other than the resin component obtained by the method for producing a recycled resin according to any one of (1) to (: 12),
  • the residue is an undecomposed resin component of the resin composition containing the thermosetting resin, a polymerized carbonized product of the resin composition, Resin composition containing one or more selected from fillers contained in the resin composition Processed and recovered materials,
  • a reusable recycled resin can be efficiently obtained from a resin composition containing a used thermosetting resin. Furthermore, the obtained recycled resin and / or the processed and recovered product of the resin composition can be recycled as a raw material for the recycled resin composition.
  • molded products using recycled resin compositions made from recycled resin and resin composition treated materials are more curable and have a higher bending strength and bending strength than molded products obtained by conventional recycling methods. Good mechanical strength such as elastic modulus.
  • the method for producing a recycled resin according to the present embodiment includes a supercritical or subcritical, which contains, as an essential component, constituent monomers constituting the thermosetting resin in the treatment of the resin composition containing the thermosetting resin.
  • a used resin composition having a first step of decomposing a resin composition containing a thermosetting resin in a solvent in a state and a second step of adding a polyfunctional compound for treatment.
  • a reusable recycled resin can be obtained efficiently.
  • the recycled resin and / or the processed and recovered product of the resin composition obtained by the method for producing the recycled resin is applied to a method for recycling a resin composition that is reused as a raw material for the recycled resin composition.
  • a recycled resin composition is obtained.
  • the treatment of the resin composition in the present embodiment includes treatment by chemical decomposition and / or treatment by physical solubilization.
  • the resin composition containing the thermosetting resin to be treated in the present embodiment is a cured resin, a non-cured resin.
  • a cured or semi-cured resin, a varnish containing these resins, or the like may be included.
  • inorganic fillers such as silica fine particles and glass fibers, molding materials or molded articles containing organic fillers such as wood powder, inorganic bases such as glass woven fabrics and glass nonwoven fabrics.
  • Printed circuit obtained by processing laminates made of organic materials such as wood, paper, cloth, etc., metal-laminated laminates made by laminating metal foils such as copper foil, and copper-clad laminates
  • a thermosetting resin product such as a plate may also be included.
  • thermosetting resin applied to the present embodiment is not particularly limited, but phenol resin, epoxy resin, melamine resin, and urea resin can be particularly effectively applied. Furthermore, the strength S including a phenol resin S is more preferable.
  • phenolic resins examples include novolak-type phenolic resins such as phenol novolak resin, cresol novolac resin, bisphenol A novolak resin; Examples thereof include resol type phenol resins such as modified oil-modified resin phenol resins.
  • the shape and size of the resin composition are not restricted in particular, considering the cost and decomposition rate required for the powdered rice cake.
  • the particle diameter is 1000 ⁇ or less, preferably 500 ⁇ or less, and more preferably 250 / im or less.
  • Step of decomposing a resin composition containing a thermosetting resin (first step)
  • thermosetting resin a resin composition containing a thermosetting resin is heated and pressurized in a supercritical or subcritical solvent containing the constituent monomers of the thermosetting resin as essential components.
  • the first recovered material is obtained by decomposition.
  • the constituent monomers of the thermosetting resin used as a solvent in the present embodiment include phenol compounds, urea compounds, urea, melamine compounds, and these monomers that are usually used as monomers of phenol resins, epoxy resins, urea resins, and melamine resins. And derivatives thereof.
  • Examples of such constituent monomers include a small amount of hydrogen bonded to carbon of the aromatic ring. Both of them are substituted with a hydroxyl group, and a phenol compound that functions as a solvent in a supercritical or subcritical state alone or as a mixture with another solvent and can decompose and / or solubilize the resin composition.
  • a phenol compound that functions as a solvent in a supercritical or subcritical state alone or as a mixture with another solvent and can decompose and / or solubilize the resin composition.
  • mononuclear phenol compounds such as phenol, cresol, xylenol, resorcin, and alkyl-substituted phenol, or naphthol compounds such as 1_naphthol and 2_naphthol are preferably used.
  • phenol is preferred from the viewpoint of cost and the effect on the decomposition reaction.
  • examples of these constituent monomers include melamine compounds.
  • a compound in which an amino amine group such as melamine or acetoguanamine or benzoguanamine is substituted with another functional group is preferably used.
  • constituent monomers one or a combination of two or more of these can be used.
  • the constituent monomers may include those obtained by separating and purifying the resin composition after decomposing the resin composition by carrying out the recycled resin production method of the present embodiment.
  • examples of the other solvent include water, alcohols such as methanol and ethanol, ethylene glycol, propylene glycol, and the like. Any solvent that can be used as a solvent in normal chemical reactions, such as glycols, ketones, ethers, esters, organic acids, and acid anhydrides, can be used. Also, multiple solvents can be used. May be. Of these solvents, water is preferable because of its effect on the decomposition reaction and availability.
  • the mixing ratio of the other solvent to the constituent monomers is preferably 1 to 500 parts by weight of the other solvent mixed with 100 parts by weight of the constituent monomers. The ratio is 5 to 50 parts by weight of the other solvent with respect to 100 parts by weight of the monomers.
  • the use ratio of the solvent containing the constituent monomers of the thermosetting resin as an essential component is preferably in the range of 50 to 1000 parts by weight with respect to 100 parts by weight of the resin composition. More preferably, it is in the range of 100 to 400 parts by weight. If the proportion of the solvent used is too small, it may be difficult to cause the decomposition reaction of the resin composition to proceed smoothly. Conversely, if the amount is too large, the amount of heat required to heat the solvent will increase and energy consumption will increase. However, when the proportion of the solvent used is within the above range, the balance between the smoothness of the decomposition reaction and the suppression of energy consumption is excellent. [0024] (b) Processing conditions
  • the decomposition treatment conditions in the present embodiment can be adjusted mainly by temperature and pressure as long as the solvent containing the constituent monomers as an essential component is in a supercritical or subcritical state.
  • This temperature is usually 100 to 500.
  • C range force S is preferred, more preferably in the range of 200-450 ° C. If the temperature is too low, the decomposition rate of the resin composition may decrease, and processing in a short time may be difficult. On the other hand, if the temperature is too high, side reactions such as thermal decomposition and dehydration may occur. Because the chemical structure of the recovered material in 1 may change, it may be difficult to reuse the first recovered material as a chemical raw material. The balance of suppression of side reactions will be excellent.
  • the pressure is usually in the range of 1 to 60 MPa, more preferably 2 to 40 MPa. If the pressure is too low, the solvent will be in the vapor or gas state in the supercritical or subcritical state, so the decomposition rate will decrease, and the process in the first step may be difficult. On the other hand, if it is too high, equipment that can be operated under harsher conditions will be required, and the energy required to maintain high pressure will increase, but on the other hand, the decomposition rate will hardly improve and no special effect will be obtained. In some cases, when the pressure is within the above range, the balance between maintaining a high decomposition rate and suppressing energy consumption is excellent.
  • the first step is continued until the molecular weight distribution (Mw / Mn) of the oligomer contained in the first recovered product generated by decomposing the resin composition reaches a certain value.
  • the reaction time is:! To 60 minutes, preferably about 3 to 30 minutes.
  • the molecular weight distribution (Mw / Mn) of the oligomer at the end of the first step is preferably in the range of 1.0 or more and 3.0 or less, more preferably 1.0 or more and 2.0 or less. Range.
  • Mw / Mn molecular weight distribution
  • the molecular weight distribution (MwZMn) of the oligomer at the end of the first step is preferably measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the separation column is two Tosoh TSKgel GMHXL, Two TSKgel G2000HXL are used, tetrahydrofuran is used as the eluent, a calibration curve is obtained in terms of polystyrene, a differential refractometer is used as the detector, the flow rate is 1 mlZ, and the temperature is 40 ° C. It is done.
  • the first step in the present embodiment is preferably performed in the presence of a basic catalyst from the viewpoint of promoting the treatment speed.
  • the basic catalyst in that case is not particularly limited. For example, it is equivalent to Bronsted base 'Lewis base' or natural inorganic 'organic compound', synthetic inorganic 'organic compound, or metal oxide by hydration reaction. The compound which shows the effect of these is mentioned, These 1 type (s) or 2 or more types can be used.
  • the polyfunctional compound is added in a heat and pressure treatment container in some cases, and a polymerization point with the polyfunctional compound contained in the first recovered product obtained in the first step is obtained.
  • the reaction component By reacting the reaction component with the polyfunctional compound, the oligomer contained in the first recovered product is increased in molecular weight.
  • the conventional resin composition is regenerated, it is decomposed into monomers. Therefore, when it is reused as a resin composition, it is necessary to perform another polymerization reaction.
  • the amount of polyfunctional compounds added in addition to the amount of molecules, and other reaction conditions it is possible to obtain a high-value-added recycled resin that is easy to reuse. .
  • the polyfunctional compound used in the present embodiment reacts with the oligomer contained in the first recovered product obtained in the first step and the constituent monomers constituting Z or the thermosetting resin, thereby converting the oligomer into a high molecular weight. It is a compound that can be converted into a compound.
  • Examples of such polyfunctional compounds include aldehyde compounds, and among them, formaldehyde compounds are preferably used.
  • Preferred examples of the formaldehyde compound include formaldehyde, paraform, trioxane, formaldehyde derivative compounds such as hexamethylenetetramine, and aqueous solutions thereof. One or more of these may be used. Used.
  • the usage ratio of the polyfunctional compound to be added is 1 part by weight or more with respect to 100 parts by weight of the oligomer contained in the first recovered product obtained in the first step.
  • the amount is preferably 2 parts by weight or less and more preferably 25 parts by weight or less. If the amount of polyfunctional compound used is too small, the oligomeric high molecular weight reaction may proceed, and if too much, the product obtained by the oligomeric high molecular weight reaction proceeds. In some cases, however, the recovery efficiency of the recycled resin may be lowered.
  • the treatment conditions with the polyfunctional compound in this embodiment can be adjusted mainly by temperature and pressure.
  • the temperature under the treatment conditions with the polyfunctional compound is usually 100 ° C or more and preferably the temperature of the first step, more preferably 150 ° C or more and 200 ° C or less. If the treatment temperature is too high, the rate of the high molecular weight reaction may be too high, which may promote gelation of the recycled resin component. Conversely, if the treatment temperature is too low, the high molecular weight of the recycled resin may be reduced in a short time. However, when the reaction temperature is within the above range, the reaction can be carried out at a high molecular weight rate so fast that gelling does not accelerate.
  • the pressure under the treatment conditions with the polyfunctional compound is usually preferably not less than atmospheric pressure and not more than the pressure in the first step, more preferably not less than atmospheric pressure and not more than 5 MPa. If the treatment pressure is too high, the speed of high molecular weight may be too high, and the gelation of the resin component may be promoted. In some cases, there is an excellent balance between maintaining the decomposition rate as fast as not to gel and suppressing energy consumption.
  • the atmosphere of the second step can be selected from either an open system, a sealed system or an air system, or an inert gas atmosphere such as nitrogen.
  • the treatment time for the second step can be adjusted in the range of :! to 60 minutes, but it is usually preferable to set it for about 3 to 30 minutes.
  • thermosetting resin a novolak type phenol resin in which the nuclei of the phenol skeleton are bonded by a methylene bond
  • thermosetting resin a melamine resin in which the melamine skeleton nuclei are bonded by a methylene bond
  • thermosetting resin is a urea resin
  • a urea resin in which the nucleus of the urea skeleton is bonded by a methylene bond is exemplified.
  • thermosetting resin is an epoxy resin
  • a compound having a structure in which the nuclei of the main skeleton of the epoxy resin are bonded by a methylene bond such as bisphenol A, bisphenol F, phenol novolac resin, and creso novolac resin.
  • epichlorohydrin is further added to the regenerated resin obtained from the epoxy resin and allowed to react
  • a compound having a structure in which the regenerated resin is converted to an epoxy is exemplified.
  • the raw thermosetting resin contains phenol resin, melamine resin, urea resin, or epoxy resin
  • examples include a structure in which nuclei are copolymerized with methylene bonds.
  • these chemical structures are examples, and the chemical structure of the obtained recycled resin is not limited at all.
  • the regenerated resin thus obtained usually has a molecular weight of 200 to 100,000, and the molecular weight distribution (Mw / Mn) is preferably in the range of 2.0 to 15 and more preferably. Is in the range of 3.0 to 10.
  • the molecular weight of the main component of the recycled resin means the weight average molecular weight (Mw).
  • the molecular weight of 200 to 100,000 is the same as that of the chemical raw material (prepolymer) used in the production of the resin composition containing the thermosetting resin. Therefore, purification should be performed as necessary. Can be reused as a prepolymer.
  • having a resin component having a molecular weight of 200 to 100,000 as a main component means that the resin component having the molecular weight shown here is contained in an amount of 50% by weight or more. Resin components with a molecular weight exceeding 100,000 are also included.
  • the resin component having a molecular weight of 200 to 100,000 is about 2 to 1,000 nuclei of the raw material monomer in the case of a normal thermosetting resin.
  • the compound mainly composed of the resin component having a molecular weight of 200 to 100,000 is not only a component obtained from the thermosetting resin in the resin composition, but also an organic filler contained in the resin composition. In some cases, it may contain components obtained from the substrate.
  • the recycled resin can be reused as a raw material of the recycled resin composition after separating the solvent, the residue, and the like from those treated in the second step. Examples of this separation method include, but are not limited to, methods such as cyclone, filtration, and gravity sedimentation that are used in ordinary solid-liquid separation.
  • a mixture containing a recycled resin mainly composed of a resin component having a molecular weight of 200 to 100,000 obtained by the treatment in the second step and a treatment recovered product of a resin composition described later is organically used. After diluting with a solvent, you may perform solid-liquid separation operations such as cyclone filtration and gravity sedimentation.
  • the constituent monomers of the thermosetting resin which is an unreacted solvent
  • the regenerated resin mainly composed of the resin component having a molecular weight of 200 to 100,000 is subjected to a method such as distillation or extraction to separate and recover the constituent monomers of the resin and reuse it as a solvent. Can do. In reusing them, resin constituent monomers and water may be newly added as necessary.
  • the method for separating the unreacted solvent is not particularly limited, and it is also possible to use a method of deviation or misalignment such as flash distillation, vacuum distillation or solvent extraction.
  • the obtained recycled resin contains a small amount of an unreacted reaction solvent such as a resin constituent monomer and water. Also good.
  • the treated and recovered product of the resin composition of the present embodiment corresponds to a residue other than the recycled resin component obtained by the method of the above embodiment, and the resin composition containing the thermosetting resin is not yet obtained.
  • examples of such fillers include inorganic fillers such as calcium hydroxide, calcium carbonate, magnesium oxide, talc, silica and alumina.
  • the regenerated resin according to the embodiment is used.
  • Recycled resin and / or thermosetting resin treated and recovered products obtained by the above production method are each used alone or mixed and reused as a raw material for a new recycled resin composition.
  • the recycled resin and Z or a processed and recovered product of the resin composition are mixed with other raw materials and are known.
  • only recycled resin recovered without using raw materials corresponding to new recycled resin and resin composition treated recovered materials may be used as raw materials. It may be used in combination with chemical raw materials and / or fillers.
  • the content of the recycled resin and / or the processed and recovered product of the resin composition to be reused is not particularly limited, but is preferably 2 to 80% by weight with respect to the entire new thermosetting resin molding material. Is 5-60% by weight.
  • the chemical raw material used in combination is not particularly limited.
  • a novolac type phenol resin a resol type phenol is used.
  • Resins such as resin, epoxy resin, melamine resin and urea resin are listed.
  • hexamethylenetetramine is usually used as a curing agent.
  • the force of hexamethylenetetramine is preferably 10 to 25 parts by weight with respect to a total of 100 parts by weight of the recycled resin and the novolak type phenolic resin, as in the case of a normal thermosetting resin molding material.
  • the total content of the recycled resin and the novolak type phenol resin is 20 to 80% by weight with respect to the entire thermosetting resin molding material, including hexamethylenetetramine as a curing agent. More preferably, it is 30 to 60% by weight.
  • magnesium oxide, calcium hydroxide, or the like can be used as a curing aid as necessary.
  • the filler used in combination is not particularly limited, but is a normal thermosetting Inorganic base material and / or organic base material used as a filler Can be used.
  • the inorganic substrate include glass fiber, calcium carbonate, calcined clay, talc, silica, diatomaceous earth, alumina, and magnesium oxide. These inorganic base materials can be selected as necessary depending on the use of the molded product.
  • the organic substrate include wood powder, pulp, plywood powder, paper pulverized powder, and cloth pulverized powder.
  • a resin composition a cured product of phenol resin molding material (containing phenol resin and filler: PM-8200 manufactured by Sumitomo Bakelite Co., Ltd.) is pulverized and sieved to a particle size of 250 ⁇ m or less What was adjusted to was used.
  • the molecular weight distribution (MwZMn) of the oligomer contained in the first recovered material obtained was measured from the time when the above cured product started to dissolve in phenol, and the molecular weight distribution became constant after the molecular weight distribution became constant. One process was completed.
  • the molecular weight distribution (Mw / Mn) of the oligomer at this time was 1.5.
  • the molecular weight distribution (MwZMn) of the oligomer component was measured using gel permeation chromatography (GPC). The separation column at this time is Tosoh TSKgel
  • Tetrahydrofuran is used as the eluent
  • the calibration curve is obtained in terms of polystyrene
  • the detector uses a differential refractometer
  • the flow rate is 1 ml / min
  • the temperature is 40 ° C. It was.
  • the amount of oligomer recovered after the completion of the first step was 8 lg when the oligomer was quantified by the above GPC analysis.
  • honoremarin containing 37% honoremuanolide
  • the reactor internal pressure set to 0. IMPa. 6 g was injected and held for 20 minutes, and after the treatment with the polyfunctional compound according to the second step, it was air-cooled and returned to room temperature and normal pressure. From the mixture of the product obtained in the second step and the unreacted solvent, the solvent (phenol, water) was separated by heating under normal pressure and reduced pressure to obtain 150 g of a recovered product.
  • This recovered material was dissolved in tetrahydrofuran (THF), and then filtered through a filter having a pore size of 1. O xm to obtain a THF soluble component.
  • THF insoluble residue remaining on the filter after filtration was weighed after drying at 100 ° C. for 12 hours.
  • THF-insoluble residue was calcium hydroxide added as a basic catalyst with the inorganic filler in the cured product, and the rest of the recovered product was almost 100% without gelation. % was confirmed to be THF soluble.
  • the product obtained from this THF-soluble component was analyzed by gas chromatography (detector FID: flame ionization detector) (GC—FID). There were almost no by-products such as xylenol, trimethylphenol, and xanthenes other than remaining in the reaction.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the product obtained from the THF-soluble matter were measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Tosoh TSKgel GMHXL and TSKgel G2000HXL are used as separation columns
  • tetrahydrofuran is used as an eluent
  • a calibration curve is converted to polystyrene
  • a differential refractometer is used as a detector
  • a flow rate is 1 ml / min
  • a temperature is 40 ° C. It was.
  • the recovered product obtained from the THF-soluble component was a resin component of Mn: 1,000 and Mw: 5, 100, and a recycled resin was detected.
  • the above recycled resin 43 parts by weight, hexamethylenetetramine (Wako Pure Chemicals, special grade): 7 parts by weight, wood flour: 40 parts by weight, calcium carbonate (Wako Pure Chemicals): 10 parts by weight
  • the parts were dry mixed with a cooking mill (manufactured by Matsushita Electric Industrial Co., Ltd., fiber mixer) to obtain a phenol resin molding material.
  • This was molded by a press molding machine (temperature: 175 ° C., pressure: 10 MPa, molding time: 3 minutes) to prepare a specimen having a bending strength and a flexural modulus.
  • the bending strength and flexural modulus were measured according to JIS-K6911 “General Test Method for Thermosetting Plastics”. As a result, a bending strength of 120 MPa and a flexural modulus of 8,000 MPa were obtained.
  • Example 1 except that the treatment temperature in the second step was set to 100 ° C., the treatment was performed in the same manner as in Example 1 to obtain a recycled phenolic resin molding material.
  • the results are summarized in Table 1.
  • Example 1 except that the treatment temperature in the second step was 250 ° C., the treatment was performed in the same manner as in Example 1 to obtain a recycled phenolic resin molding material. The results are summarized in Table 1.
  • Example 1 treatment was performed in the same manner as in Example 1 except that the amount of formalin injected in the second step was changed from 4.6 g to 2.3 g, to obtain a recycled phenolic resin molding material.
  • the results are summarized in Table 1.
  • Example 1 except that the amount of formalin injected in the second step was changed to 4.6 g force and 57.5 g, a treatment was performed in the same manner as in Example 1 to obtain a recycled phenolic resin molding material. The results are summarized in Table 1.
  • Example 1 except that paraform 1.7 g was used instead of formalin 4.6 g in the second step, the treatment was performed in the same manner as in Example 1, and the recycled phenolic resin molding material was obtained. Obtained. The results are summarized in Table 1.
  • Example 1 instead of formalin 4.6 g in the second step, treatment was performed in the same manner as in Example 1 except that 1.7 g of trioxane was used, and a recycled phenolic resin molding material was obtained. .
  • Table 1 The results are summarized in Table 1.
  • Example 1 the same procedure as in Example 1 was performed, except that 1.7 g of hexamethylenetetramine (HMTA) was used instead of formalin 4.6 g in the second step. A recycled phenolic resin molding material was obtained. The results are summarized in Table 1.
  • HMTA hexamethylenetetramine
  • Example 1 the same procedure as in Example 1 was used, except that a solid residue was separated from the treated recovered material in the same manner, and a recycled resin that was treated under the same conditions after separation was used. A recycled phenolic resin molding material was obtained. The results are summarized in Table 1.
  • Example 1 instead of 10 g of calcium carbonate as an inorganic filler, recycled phenolic resin molding was performed in the same manner as in Example 1 except that 1 Og of the solid residue component of the recovered material obtained in Example 1 was used. Obtained material. The results are summarized in Table 1.
  • Example 1 treatment was performed in the same manner as in Example 1 except that the amount of formalin injected in the second step was changed from 4.6 g to 69 g, to obtain a recycled phenolic resin molding material.
  • the results are summarized in Table 1.
  • Example 1 a regenerated phenol resin molding material was obtained in the same manner as in Example 1 except that calcium hydroxide as a basic catalyst was not added in the first step. The results are summarized in Table 1.
  • Example 1 as a resin composition to be processed, an epoxy resin for semiconductor encapsulation Except for using 58.3 g of molding material (orthocresol novolac type epoxy resin cured with novolac type phenolic resin, including silica: EME-630 0H manufactured by Sumitomo Bakelite Co., Ltd.) The treatment was performed in the same manner as in Example 1 to obtain a resin component: 12 Og.
  • molding material orthocresol novolac type epoxy resin cured with novolac type phenolic resin, including silica: EME-630 0H manufactured by Sumitomo Bakelite Co., Ltd.
  • Example 1 In Example 1, except that the second step was not provided, processing was performed in the same manner as in Example 1 to obtain a recycled phenolic resin molding material. The results are summarized in Table 1.
  • Example 1 formalin injection, which was performed in the second step, was performed in the first step to obtain a recycled phenolic resin molding material. The results are summarized in Table 1.
  • the curability, bending strength and elastic modulus of the molded product using the recycled resin composition starting from the first recovered material obtained in the first step are It can be seen that this is an improvement over that of the conventional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

  樹脂組成物の処理において、熱硬化性樹脂を構成するモノマーまたはこれの誘導体を必須成分とする超臨界または亜臨界状態の溶媒中で、当該熱硬化性樹脂を含む樹脂組成物を分解する第一の工程と、多官能化合物を添加して処理する第二の工程とを有することを特徴とする再生樹脂の製造方法、前記製造方法により得られる再生樹脂または処理回収物、およびこれら再生樹脂および/または樹脂組成物の処理回収物を用いてなる再生樹脂組成物、ならびにこれら再生樹脂および/または樹脂組成物の処理回収物を再生樹脂組成物の原料として再利用する樹脂組成物の再生方法。

Description

明 細 書
再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹脂 組成物および樹脂組成物の再生方法
技術分野
[0001] 本発明は、再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹 脂組成物および樹脂組成物の再生方法に関するものである。
背景技術
[0002] プラスチックの中でも熱硬化性樹脂は、優れた電気絶縁性 ·耐熱性'機械的強度を 示すため、電気'電子部品、 自動車部品等の材料として広く用いられている。熱硬化 性樹脂は、一旦、硬化すると、熱により軟化'融解せず、溶剤にも溶解しないため、そ の硬化物から有価な化学原料を再生することは、技術的に困難であった。しかし、環 境保全と資源循環型社会構築の必要性が検討されてレ、る昨今、熱硬化性樹脂のリ サイクルに関しても様々な研究が行われている。
[0003] これらの課題を克服するため、特許文献 1には、フエノール樹脂を樹脂の構成モノ マーであるフエノールに溶解させて、フエノールなどの低分子量ィヒ合物まで分解する 一方で、有機充填材を回収する技術が開示されている。また、特許文献 2には、超臨 界または亜臨界状態のアルコールをフエノール樹脂に接触させてフエノールに分解 、回収する技術が開示され、さらに、回収されたフエノールからはホルムアルデヒドと の反応によりフエノール樹脂を生成することができる旨記載されてレ、る。
特許文献 1 :特開 2005— 054138号公報
特許文献 2:特開 2001— 055468号公報
発明の開示
[0004] ところで、特許文献 1においては、有機充填材を回収することに重点が置かれてい て、フヱノール樹脂などの熱硬化性樹脂を分解、回収する最適な条件などについて は触れられていない。
[0005] 一方で、特許文献 2においては、構成モノマーであるフエノールまで分解されるもの の、超臨界または亜臨界状態のアルコールがフエノールと反応してしまい、実際には 置換フエノールが回収されることが多レ、。このため、回収されたモノマーを用いて得ら れるフエノール樹脂は、品質が安定しないため、用途が限定されたものとなることがあ つた。
[0006] 本発明は、使用済みの熱硬化性樹脂を含む樹脂組成物から再利用可能な再生樹 脂を効率よく得ることが可能な再生樹脂の製造方法、この製法により得られる再生樹 脂および樹脂組成物の処理回収物、およびこれら再生樹脂および樹脂組成物の処 理回収物の再生方法および再生樹脂組成物を提供することを目的としている。
[0007] 本発明者は、分解対象となる熱硬化性樹脂を構成するモノマーまたはこの誘導体( 以下、単に「構成モノマー類」とレ、うこともある)を溶媒として用いてこの熱硬化性樹脂 を一定の条件にて分解したときに、得られる第 1の回収物中のオリゴマーが一定の分 子量分布を有すること、およびこのような第 1の回収物中のオリゴマーを用いて得られ る再生樹脂が安定した品質を有することを見出して、本発明を完成させるに至った。
[0008] 即ち、本発明は、
(1)熱硬化性樹脂を構成するモノマーまたはこれの誘導体を必須成分とする超臨界 または亜臨界状態の溶媒中で、当該熱硬化性樹脂を含む樹脂組成物を分解する第 一の工程と、多官能化合物を添加して処理する第二の工程とを有することを特徴とす る再生樹脂の製造方法、
(2) (1)項に記載の再生樹脂の製造方法において、前記第二の工程は、前記第一 の工程における第 1の回収物に含まれる多官能化合物と反応し得る成分と、該多官 能化合物とを反応させるものである再生樹脂の製造方法、
(3) (1)項または(2)項に記載の再生樹脂の製造方法において、前記モノマーまた はこれの誘導体が、フエノール類化合物であることを特徴とする再生樹脂の製造方 法、
(4) (1)〜(3)項のいずれかに記載の再生樹脂の製造方法において、前記第一のェ 程を塩基性触媒の存在下で行うことを特徴とする再生樹脂の製造方法、
(5) (1)〜(4)項のいずれかに記載の再生樹脂の製造方法において、前記第一のェ 程は、 100°C以上 500°C以下の温度範囲で行うものである再生樹脂の製造方法、
(6) (1)〜(5)項のいずれかに記載の再生樹脂の製造方法において、前記第一のェ 程は、 IMPa以上 60MPa以下の圧力範囲で行うものである再生樹脂の製造方法、
(7) (1)〜(6)項のいずれかに記載の再生樹脂の製造方法において、前記第二のェ 程は、前記第一の工程の温度以下の温度範囲で行うものである再生樹脂の製造方 法、
(8) (1)〜(7)項のいずれかに記載の再生樹脂の製造方法において、第二の工程は 、第一の工程の圧力以下の圧力範囲で行うものである再生樹脂の製造方法、
(9) (1)〜(8)項のいずれかに記載の再生樹脂の製造方法において、前記多官能 化合物は、ホルムアルデヒド、パラホルム、トリオキサン、へキサメチレンテトラミンから 選ばれる再生樹脂の製造方法、
(10) (1)〜(9)項のいずれかに記載の再生樹脂の製造方法において、前記多官能 化合物の添加量が、前記第一の工程で得られる第 1の回収物のオリゴマー 100重量 部に対して、 1重量部以上 50重量部以下である再生樹脂の製造方法、
(11) (1)〜(: 10)項のいずれかに記載の再生樹脂の製造方法において、前記熱硬 化性樹脂は、フエノール樹脂、エポキシ樹脂、メラミン樹脂及びユリア樹脂の中力 選 択された 1種又は 2種以上である再生樹脂の製造方法、
(12) (1)〜(: 11)項のいずれかに記載の再生樹脂の製造方法において、前記熱硬 化性樹脂は、フエノール樹脂を含むものである再生樹脂の製造方法、
(13) (1)〜(: 12)項のいずれかに記載の再生樹脂の製造方法により得られる再生樹 脂、
(14) (13)項に記載の再生樹脂において、分子量分布(Mw/Mn)が 2. 0以上 15 以下であることを特徴とする再生樹脂、
(15) (13)項または(14)項に記載の再生樹脂において、前記重量平均分子量 (M w)力 200以上 100,000以下である樹脂成分を主成分とする再生樹脂、
(16) (1)〜(: 12)項のいずれかに記載の再生樹脂の製造方法により得られる樹脂成 分以外の残渣からなる樹脂組成物の処理回収物、
(17) (16)項に記載の樹脂組成物の処理回収物において、前記残渣は、前記熱硬 化性樹脂を含む樹脂組成物の未分解樹脂成分、該樹脂組成物の重合炭化生成物 、該樹脂組成物に含有される充填材から選ばれる 1種又は 2種以上を含む樹脂組成 物の処理回収物、
(18) (13)〜(: 15)項のいずれかに記載の再生樹脂および Zまたは(16)または(17 )項に記載の樹脂組成物の処理回収物を、原料として得られる再生樹脂組成物、
(19) (13)〜(: 15)項のいずれかに記載の再生樹脂および Zまたは(16)または(17 )項に記載の樹脂組成物の処理回収物を、新たな再生樹脂組成物の原料として再 利用することを特徴とする樹脂組成物の再生方法、
を提供するものである。
[0009] 本発明によれば、使用済みの熱硬化性樹脂を含む樹脂組成物から再利用可能な 再生樹脂を効率よく得ることができる。さらに得られた再生樹脂および/または樹脂 組成物の処理回収物を再生樹脂組成物の原料としてリサイクルすることができる。ま た、再生樹脂や樹脂組成物の処理回収物を原料に製造した再生樹脂組成物を用い た成形品は、従来のリサイクル法により得られた成型品よりも、硬化性や曲げ強度'曲 げ弾性率などの機械的強度が良好である。 発明を実施するための最良の形態
[0010] 以下、本発明の再生樹脂の製造方法、再生樹脂および樹脂組成物の処理回収物
、ならびに再生樹脂組成物および樹脂組成物の再生方法の実施形態について説明 する。
[0011] 本実施形態に係る再生樹脂の製造方法は、熱硬化性樹脂を含む樹脂組成物の処 理において、この熱硬化性樹脂を構成する構成モノマー類を必須成分とする超臨界 又は亜臨界状態の溶媒中で、熱硬化性樹脂を含む樹脂組成物を分解する第一の 工程と、多官能化合物を添加して処理する第二の工程を有するものであり、使用済 みの樹脂組成物から再利用可能な再生樹脂を効率よく得ることができるものである。 また、この再生樹脂の製造方法により得られた再生樹脂および/または樹脂組成物 の処理回収物は、再生樹脂組成物の原料として再利用する樹脂組成物の再生方法 に適用され、またこの再生方法により再生樹脂組成物が得られる。なお、本実施形態 における樹脂組成物の処理とは、化学的な分解による処理、および/または、物理的 な可溶化による処理を含むものである。
[0012] 本実施形態で処理される熱硬化性樹脂を含む樹脂組成物は、硬化した樹脂、未 硬化もしくは半硬化の樹脂、これらの樹脂を含有するワニスなどを含んでもよい。また 、単独の熱硬化性樹脂の他に、シリカ微粒子、ガラス繊維等の無機充填材ゃ、木粉 等の有機充填材を含む成形材料もしくは成形品、ガラス織布、ガラス不織布のような 無機基材や、紙、布等の有機基材を用いた積層板、これに銅箔等の金属箔を張り合 わせた金属張り積層板、さらには銅張り積層板などを加工して得られるプリント回路 板のような熱硬化性樹脂製品も含んでもよい。
[0013] 本実施形態に適用される熱硬化性樹脂としては、特に限定されるものではないが、 フエノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂について、特に効果的に適 応できる。更には、フエノール樹脂を含むもの力 S、より好ましい。
[0014] このようなフエノール樹脂としては、フエノールノボラック樹脂,クレゾ一ルノボラック 樹脂,ビスフエノール Aノボラック樹脂等のノボラック型フエノール樹脂;未変性のレゾ ールフエノール樹脂,および桐油,アマ二油,タルミ油等で変性した油変性のレゾー ルフエノール樹脂等のレゾール型フエノール樹脂等が挙げられる。
[0015] また、処理に供する樹脂組成物が固形状である場合、その形状や大きさには、特 に制限はなぐ粉碎に要するコスト、分解速度を考慮して、適当な大きさに粉碎すれ ばよいが、通常は、粒子径 1000 μ ΐη以下であり、好ましくは 500 μ ΐη以下、さらに好 ましくは 250 /i m以下である。
[0016] (再生樹脂の製造方法)
(1)熱硬化性樹脂を含む樹脂組成物を分解する工程 (第一の工程)
第一の工程では、熱硬化性樹脂を含む樹脂組成物を、加熱加圧処理容器中で、 当該熱硬化性樹脂の構成モノマー類を必須成分とする超臨界または亜臨界状態の 溶媒中で、分解することにより第 1の回収物が得られる。
[0017] (a)溶媒
本実施形態に溶媒として用いる熱硬化性樹脂の構成モノマー類は、通常フエノー ル樹脂,エポキシ樹脂,ユリア樹脂,メラミン樹脂のモノマーとして用いられるフエノー ル類化合物,尿素,メラミン類化合物,およびこれらのモノマーの誘導体が挙げられ る。
[0018] このような構成モノマー類としては、例えば芳香環の炭素に結合する水素の少なく とも一つが水酸基に置換しており、単独又は他の溶媒との混合物として、超臨界また は亜臨界状態で溶媒として機能し、樹脂組成物を分解および/または可溶化処理し 得るフエノール類化合物が挙げられ、例えばフエノール、クレゾール、キシレノール、 レゾルシン、及びアルキル置換フエノールなどの単核フエノール化合物、または、 1 _ ナフトール、 2_ナフトールなどのナフトール類化合物が好適に用いられる。これらの 内、コスト面および分解反応に与える効果から、フエノールが好ましい。
[0019] あるいは、これらの構成モノマー類としては、メラミン類化合物が挙げられ、例えばメ ラミン,あるいはァセトグアナミン,ベンゾグアナミン等のメラミンのァミノ基が他の官能 基で置換された化合物が好適に用いられる。
[0020] 構成モノマー類としては、これらの 1種又は 2種以上組合せ用いることができる。
[0021] また、この構成モノマー類は、本実施形態の再生樹脂の製造方法を実施して、榭 脂組成物を分解した後、分離 '精製して得られるものを含んでいてもよい。
[0022] 前記溶媒として、前記構成モノマー類と他の溶媒との混合物を用いる場合、他の溶 媒としては、水をはじめとして、メタノールおよびエタノール等のアルコール類、ェチレ ングリコールおよびプロピレングリコール等のグリコール類、ケトン類、エーテル類、ェ ステル類、有機酸類、酸無水物類など、通常の化学反応において溶媒として用いら れるものは、いずれを用いても良ぐまた、複数の溶媒を使用しても良い。これらの溶 媒のうち、分解反応に与える効果、および、入手の容易さ等から水が好ましい。また、 構成モノマー類に対する他の溶媒の混合割合としては、構成モノマー類 100重量部 に対して他の溶媒 1〜500重量部の割合で混合して用いることが好ましぐさらに好ま しくは、構成モノマー類 100重量部に対して他の溶媒 5〜50重量部の割合である。
[0023] また、本実施形態における、熱硬化性樹脂の構成モノマー類を必須成分とする溶 媒の使用割合は、樹脂組成物 100重量部に対して、 50〜: 1000重量部の範囲が好 ましぐさらに好ましくは 100〜400重量部の範囲である。溶媒の使用割合が少なす ぎると、樹脂組成物の分解反応を円滑に進行させるのが困難になることがあり、逆に 多すぎると溶媒を加熱するために必要な熱量が多大になり、エネルギー消費が多く なるところ、溶媒の使用割合を上記範囲とすることで分解反応の円滑性およびエネル ギー消費の抑制のバランスに優れるものとなる。 [0024] (b)処理条件
本実施形態における分解処理条件は、前記構成モノマー類を必須成分とする溶媒 を超臨界又は亜臨界状態にすればよぐ主に温度及び圧力により調整することがで きる。
[0025] この温度としては、通常、 100〜500。Cの範囲力 S好ましく、より好ましくは 200〜450 °Cの範囲である。温度が低すぎると、樹脂組成物の分解速度が低下し、短時間での 処理が困難になる場合があり、逆に高すぎると、熱分解や脱水反応などの副反応が 併発して、第 1の回収物の化学構造が変化するため、この第 1の回収物の化学原料 としての再利用が困難になる場合があるところ、温度を上記範囲とすることで、速い分 解速度の維持および副反応の抑制のバランスに優れるものとなる。
[0026] また、圧力としては、通常、 l〜60MPaが好ましぐより好ましくは 2〜40MPaの範 囲である。圧力が低すぎると、溶媒が超臨界または亜臨界状態ではなぐ蒸気または 気体の状態となるため、分解速度が低下してしまい、第一の工程での処理自体が困 難になる場合があり、逆に高すぎると、より過酷な条件で運転可能な設備が必要とな り、高圧を維持するために必要なエネルギーが増加する反面、分解速度はほとんど 向上せず、格別な効果が得られない場合があるところ、圧力を上記範囲とすることで 、速い分解速度の維持およびエネルギー消費の抑制のバランスに優れるものとなる。
[0027] また、第一の工程は、樹脂組成物が分解されて生成される第 1の回収物に含まれる オリゴマーの分子量分布 (Mw/Mn)が一定の値になるまで続けられる。その反応 時間としては、:!〜 60分、好ましくは 3〜30分程度である。
[0028] 第一の工程終了時のオリゴマーの分子量分布(Mw/Mn)は、好ましくは、 1. 0以 上 3. 0以下の範囲であり、より好ましくは、 1. 0以上 2. 0以下の範囲である。このよう に、本実施形態では、一定の分子量分布を有するオリゴマーを第一の工程にて得ら れるため、このオリゴマーを用いた第二の工程での処理にて得られる再生樹脂の品 質が安定するようになる。
[0029] なお、第一の工程終了時におけるオリゴマーの分子量分布(MwZMn)は、ゲル パーミエーシヨンクロマトグラフィ(GPC)を用いて測定するのが好適である。このとき の測定装置,条件の具体例としては、分離カラムは東ソー TSKgel GMHXL2本, TSKgel G2000HXL2本を使用し、溶離液としてはテトラヒドロフランを使用し、検 量線はポリスチレン換算にて得て、検出器は示差屈折計を使用し、流量 lmlZ分、 温度 40°Cとすることが挙げられる。
[0030] 本実施形態における第一の工程は、処理速度を促進するという観点からは、塩基 性触媒の存在下で行うことが好ましい。その場合の塩基性触媒としては、特に限定は 無いが、例えば、ブレンステッド塩基'ルイス塩基、あるいは、天然無機'有機化合物 、合成無機'有機化合物、さらには金属酸化物で水和反応等によって同等の効果を 示す化合物などが挙げられ、これらの 1種又は 2種以上を用いることができる。
[0031] (2)多官能化合物による処理工程 (第二の工程)
第二の工程においては、場合によっては加熱加圧処理容器中で、多官能化合物 を添加して、前記第一の工程で得られる第 1の回収物に含まれる多官能化合物との 重合点となる反応成分と、該多官能化合物とを反応させることにより、この第 1の回収 物に含まれるオリゴマーを高分子量ィ匕する。これにより、従来の樹脂組成物の再生に 際してはモノマーにまで分解されるため、樹脂組成物として再利用するとなると再度 の重合反応を行う必要があつたところ、回収物が樹脂として高収率で得られる上に分 子量なども追加する多官能化合物の量,その他の反応条件で調節することができ、 再利用の容易さなども備えた付加価値の高い再生樹脂を得ることができる。
[0032] (a)多官能化合物
本実施形態に用いる多官能化合物は、第一の工程で得られる第 1の回収物に含ま れるオリゴマーおよび Zまたは熱硬化性樹脂を構成する構成モノマー類と反応する ことで、前記オリゴマーを高分子量化させ得る化合物である。このような多官能化合 物としては、例えばアルデヒド類化合物が挙げられ、中でもホルムアルデヒド類化合 物が好適に使用される。このホルムアルデヒド類化合物としては、例えばホルムアル デヒド、パラホルム、トリオキサンのほ力、へキサメチレンテトラミンのようなホルムァノレ デヒド源となる化合物及びそれらの水溶液が好適に挙げられ、これらの 1種または 2 種以上が用いられる。
[0033] 本実施形態における、添加する多官能化合物の使用割合としては、第一の工程で 得られる第 1の回収物に含まれるオリゴマー 100重量部に対して、 1重量部以上 50 重量部以下が好ましぐ更に好ましくは 2重量部以上 25重量部以下である。多官能 化合物の使用割合が少なすぎると、オリゴマーの高分子量ィヒ反応が進まなレ、場合が あり、逆に多すぎると、オリゴマーの高分子量ィヒ反応で得られる生成物のゲルィヒが進 行し再生樹脂の回収効率が低下する場合があるところ、多官能化合物の使用割合を 上記範囲とすることで、オリゴマーの高分子量ィ匕反応の進行を好適な範囲で留める ことが可能になる。すなわち、得られる再生樹脂の分子量を所望する範囲に収めるこ とがでさる。
[0034] (b)処理条件
本実施形態における多官能化合物による処理条件は、主に温度と圧力により調整 できる。
[0035] 多官能化合物による処理条件における温度としては、通常、 100°C以上、前記第 一の工程の温度以下であることが好ましぐより好ましくは 150°C以上 200°C以下で ある。処理温度が高すぎると、高分子量化反応の速度が大きすぎるため、再生樹脂 成分のゲル化が促進されてしまう場合があり、逆に低すぎると、短時間で再生樹脂の 高分子量ィ匕を行うことが困難になる場合があるところ、反応温度が上記範囲とするこ とで、ゲルイ匕が促進しない程度に速い高分子量ィ匕速度にて反応させることができる。
[0036] また、多官能化合物による処理条件における圧力としては、通常、大気圧以上、前 記第一の工程での圧力以下で行うことが好ましぐより好ましくは大気圧以上 5MPa 以下である。処理圧力が大きすぎると、高分子量化の速度が大きすぎるため、樹脂 成分のゲル化が促進してしまう場合があり、逆に小さすぎると、樹脂成分の高分子量 化に格段の効果が得られない場合があるところ、ゲル化しない程度の早さの分解速 度の維持およびエネルギー消費の抑制のバランスに優れるものとなる。
[0037] さらに、第二の工程の雰囲気としては、空気雰囲気下、窒素などの不活性ガス雰囲 気下のどちらを選択してもよぐ開放系でも密封系でもどちらの系でも行うことができ、 特に限定されることはない。また、第二の工程の処理時間は、:!〜 60分の範囲で調 整できるが、通常は 3〜30分程度で設定することが好ましい。
[0038] (再生樹脂および処理回収物)
前記実施形態に係る再生樹脂の製造方法により得られる再生樹脂の化学構造の 代表的な例としては、原料の熱硬化性樹脂がフエノール樹脂である場合、フエノール 骨格の核間がメチレン結合で結合した、ノボラック型フエノール樹脂が挙げられる。熱 硬化性樹脂がメラミン樹脂である場合、メラミン骨格の核間がメチレン結合で結合した メラミン樹脂が挙げられる。熱硬化性樹脂がユリア樹脂である場合、ユリア骨格の核 間がメチレン結合で結合したユリア樹脂が挙げられる。熱硬化性樹脂がエポキシ樹 脂である場合、ビスフエノール A、ビスフエノール F、フエノールノボラック樹脂、クレゾ 一ルノボラック樹脂などの、前記エポキシ樹脂の主骨格の核間がメチレン結合で結 合した構造の化合物が挙げられる。なお、前記エポキシ樹脂から得られる再生樹脂 に、さらにェピクロロヒドリンを加えて反応させた場合は、前記再生樹脂をエポキシィ匕 した構造の化合物が挙げられる。また、原料の熱硬化性樹脂がフエノール樹脂、メラ ミン樹脂、ユリア樹脂、エポキシ樹脂を含む場合、これらそれぞれの樹脂や、フエノー ル骨格、メラミン骨格、ユリア骨格、あるいはエポキシ樹脂の主骨格、それぞれの核 間がメチレン結合で共重合した構造などが挙げられる。ただし、これらの化学構造は 一例であり、得られる再生樹脂の化学構造は何ら限定されるものではない。
[0039] このようにして得られる再生樹脂は、通常、 200〜100, 000の分子量を有し、分子 量分布(Mw/Mn)が好ましくは 2. 0以上 15以下の範囲であり、より好ましくは 3. 0 以上 10以下の範囲である。ここで、再生樹脂の主成分の分子量とは、重量平均分子 量(Mw)を意味するものとする。
[0040] 200〜: 100, 000の分子量は、熱硬化性樹脂を含有する樹脂組成物を製造する際 に用いられる化学原料 (プレボリマー)と同程度であるため、必要に応じて精製を行う ことによりプレポリマーとして再利用することができる。ここで、 200〜100, 000の分 子量を有する樹脂成分を主体とするとは、ここで示した分子量の樹脂成分が 50重量 %以上含まれることを言うが、主体とする分子量の他に、分子量 100, 000を超える 樹脂成分も含まれる。また、 200〜: 100, 000の分子量を有する樹脂成分としては、 通常の熱硬化性樹脂の場合は、原料モノマーの 2〜: 1 , 000核体程度である。また、 前記 200〜: 100, 000の分子量を有する樹脂成分を主体とする化合物は、樹脂組成 物中の熱硬化性樹脂から得られる成分だけでなく、樹脂組成物中に含まれる有機質 系充填材ゃ基材から得られる成分を含む場合がある。 [0041] ここで、再生樹脂は、前記第二の工程により処理したものから、溶媒及び残渣など を分離した後、再生樹脂組成物の原料として再利用することができる。この分離の方 法としては、特に限定されるものではなぐ通常の固液分離で用いられる、サイクロン 、ろ過、重力沈降などの方法が挙げられる。また、前記第二の工程での処理で得られ た前記 200〜: 100, 000の分子量を有する樹脂成分を主体とする再生樹脂、後述す る樹脂組成物の処理回収物を含む混合物を、有機溶媒で希釈した後に、サイクロン •ろ過 '重力沈降などの固液分離操作をしても良い。
[0042] また、本実施形態にぉレ、ては、未反応の溶媒である熱硬化性樹脂の構成モノマー 類を分離し、これを新たな溶媒として、熱硬化性樹脂を含む樹脂組成物の処理に再 利用することができる。さらには、前記 200〜100, 000の分子量を有する樹脂成分 を主体とする再生樹脂に、蒸留や抽出などの方法を施し、樹脂の構成モノマー類を 分離'回収して、溶媒として再利用することができる。これらの再利用においては、必 要に応じて、新たに樹脂の構成モノマーや水をカ卩えても良い。ここで、未反応の溶媒 を分離する方法には、特に限定はなぐフラッシュ蒸留、減圧蒸留、溶媒抽出など、 レ、ずれの方法を用いても良レ、。
[0043] また、得られる再生樹脂には、上記の前記 200〜100, 000の分子量を有する樹 脂成分以外に、樹脂の構成モノマー、水などの、未反応の反応溶媒が少量含まれて いても良い。
[0044] 本実施形態の樹脂組成物の処理回収物は、前記実施形態の方法で得られた再生 樹脂成分以外の残渣に相当するものであり、前記熱硬化性樹脂を含む樹脂組成物 の未分解樹脂成分、該樹脂組成物の重合炭化生成物、該樹脂組成物に含有される 充填材および場合によっては前記第一の工程に用いた塩基性触媒の 1種または 2種 以上を含み、特にこの充填材は再生樹脂組成物の充填材として再利用することがで きるものである。このような充填材としては、例えば、水酸化カルシウム、炭酸カルシゥ ム、酸化マグネシウム、タルク、シリカ及びアルミナなどの無機充填材などが挙げられ る。
[0045] (樹脂組成物の再生方法および再生樹脂組成物)
本実施形態の樹脂組成物の再生方法においては、前記実施形態に係る再生樹脂 の製造方法により得られた、再生樹脂および/または熱硬化性樹脂の処理回収物を 、それぞれ単独または混合して、新たな再生樹脂組成物の原料として再利用するも のである。
[0046] この再利用の方法としては、例えば、熱硬化性樹脂成形材料の原材料として再利 用する場合、前記再生樹脂および Zまたは樹脂組成物の処理回収物を他の原材料 と混合して公知の製造方法により再利用できるが、その際、新たな再生樹脂および 樹脂組成物の処理回収物に相当する原材料を用いることなぐ回収された再生樹脂 などのみを原材料として用いても良いし、他の化学原料および/または充填材と併 用して用いても良い。再利用される再生樹脂および/または樹脂組成物の処理回収 物の含有量としては、特に限定されないが、新たな熱硬化性樹脂成形材料全体に対 して、 2〜80重量%であり、好ましくは 5〜60重量%である。
[0047] 前記熱硬化性樹脂成形材料の化学原料として、前記再生樹脂を他の化学原料と 併用する場合、併用する化学原料としては、特に限定されないが、例えば、ノボラック 型フエノール樹脂、レゾール型フエノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア 樹脂などの樹脂が挙げられる。
[0048] ここで、例えば前記再生樹脂としてノボラック型フエノール樹脂を用い、前記他の化 学原料である樹脂としてノボラック型フエノール樹脂を併用する場合、通常、硬化剤と してへキサメチレンテトラミンを使用する力 へキサメチレンテトラミンの含有量として は、通常の熱硬化性樹脂成形材料と同様に、前記再生樹脂とノボラック型フエノール 樹脂の合計 100重量部に対して、 10〜25重量部が好ましい。前記再生樹脂とノボラ ック型フエノール樹脂の合計の含有量は、硬化剤としてへキサメチレンテトラミンを使 用する場合はそれも含めて、熱硬化性樹脂成形材料全体に対して 20〜80重量%と することが好ましぐさらに好ましくは 30〜60重量%である。また、熱硬化性樹脂成形 材料の硬化速度を調整するために、必要に応じて酸化マグネシウム、水酸化カルシ ゥムなどを硬化助剤として用いることができる。
[0049] また、熱硬化性樹脂成形材料の原材料として、前記樹脂組成物の処理回収物を通 常の充填材と併用する場合、併用する充填材としては、特に限定されないが、通常 の熱硬化性樹脂成形材料で用いる、無機基材および/または有機基材を充填材と して用いることができる。前記無機基材としては、例えば、ガラス繊維、炭酸カルシゥ ム、焼成クレー、タルク、シリカ、ケイソゥ土、アルミナおよび酸化マグネシウムなどが 挙げられる。これらの無機基材は、成形品の用途等により必要に応じて選択すること ができる。また、有機基材としては、例えば、木粉、パルプ、合板粉、紙粉砕粉および 布粉砕粉などが挙げられる。
(実施例)
[0050] 以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これによつて何ら限 定されるものではない。
[0051] [実施例 1]
(1)フエノール樹脂成形材料の硬化物の処理
樹脂組成物として、フエノール樹脂成形材料 (フエノール樹脂と充填材とを含有する :住友ベークライト (株)製 PM— 8200)の硬化物を粉砕後、篩わけして、粒子径を 2 50 μ m以下に調整したものを用いた。
上記の硬化物: 58. 3gと、フエノーノレ: 85. 6gと水: 21. 3gの混合物からなる溶媒と を混合する際に、塩基性触媒として、粉末状の水酸化カルシウム(関東化学社製) 3 . Ogをカ卩えた。上記の混合物を、オートクレープ(日東高圧 (株)製 内容積 200cm3 )に仕込んだのち、 300i"pmで攪拌しながら、内温を 300°Cとすることで、反応器内圧 を 6. OMPaまで上昇させ、 20分保持して第一の工程に係る分解処理を行った。
[0052] ここで、上記の硬化物がフエノールに溶解し始めた時点より、得られる第 1の回収物 に含まれるオリゴマーの分子量分布(MwZMn)を測定し、分子量分布が一定にな つたで第一の工程を終了した。この時点でのオリゴマーの分子量分布(Mw/Mn) は、 1. 5であった。オリゴマー成分の分子量分布(MwZMn)は、ゲルパーミエーシ ヨンクロマトグラフィ(GPC)を用いて測定した。このときの分離カラムは東ソー TSKgel
GMHXL2本, TSKgel G2000HXL2本を使用し、溶離液としてはテトラヒドロフ ランを使用し、検量線はポリスチレン換算にて得て、検出器は示差屈折計を使用し、 流量 lml/分、温度 40°Cとした。
また、上記 GPCでの分析により、オリゴマーを定量したところ、第一の工程終了後 のオリゴマー回収量は 8 lgであった。 [0053] さらに、内温を 150°Cに低下させることによって、反応器内圧を 0. IMPaとした状 態で、ホノレマリン(ホノレムァノレデヒド 37%含有)(和光純薬製)を 4. 6g注入して 20分 保持して、第二の工程に係る多官能化合物での処理を行った後、空冷して、常温常 圧に戻した。第二の工程で得られた生成物および未反応溶媒の混合物から、常圧及 び減圧条件下で、加熱することで、溶媒(フエノール、水)を分離して、回収物 150gを 得た。この回収物を、テトラヒドロフラン (THF)に溶解させたのち、孔径 1. O x mのフ ィルターでろ過して、ろ液を THF可溶分とした。ろ過した後のフィルターに残存する T HF不溶残渣は、 100°Cで 12時間乾燥させたのち、秤量した。
[0054] その結果、 THF不溶残渣のほとんどは、上記の硬化物中の無機充填材と塩基性 触媒として添カ卩した水酸化カルシウムであり、回収物のその他は、ゲルィ匕することなく ほぼ 100%が THF可溶分であることを確認した。この THF可溶分より得られた生成 物をガスクロマトグラフィー(検出器 FID : flame ionization detector:水素炎イオン化検 出器)(GC— FID)により分析を行ったところ、溶媒として加えたフエノールが未反応 で残存する以外には、キシレノール、トリメチルフエノール及びキサンテン類などの副 生成物はほとんど存在しなかった。
[0055] 上記で得られた回収物を、再生材料として用いるために、分子量及び硬化性を評 価した。
[0056] THF可溶分より得られた生成物の数平均分子量(Mn)及び重量平均分子量(Mw )について、ゲルパーミエーシヨンクロマトグラフィ(GPC)を用いて測定した。このとき の分離カラムは東ソー TSKgel GMHXL2本、 TSKgel G2000HXL2本を使用し 、溶離液としてはテトラヒドロフラン、検量線はポリスチレン換算、検出器は示差屈折 計を使用し、流量は lml/分、温度 40°Cとした。その結果、 THF可溶分で得られた 回収物が、 Mn : 1,000、 Mw : 5, 100の樹脂成分であることを確認し、再生樹脂を検 出した。
[0057] さらに、硬化性の目安として、 THF可溶分より得られた生成物(再生樹脂) 100重 量部を粉砕し、へキサメチレンテトラミン 15重量部を配合して、 150°Cの熱盤上でゲ ル化するまでの時間(ゲルタイム)を測定し、 70秒を得た。
[0058] (2)再生樹脂組成物の作製 上記の方法によって得られた再生樹脂を用いて、再生樹脂組成物である再生フエ ノール樹脂成形材料を作製し、曲げ強度及び曲げ弾性率を評価した。
[0059] 上記の再生樹脂: 43重量部に対して、へキサメチレンテトラミン (和光純薬製、特級 ) : 7重量部、木粉: 40重量部、炭酸カルシウム(和光純薬製): 10重量部を、クッキン グミル (松下電器製、ファイバーミキサー)で乾式混合してフエノール樹脂成形材料を 得た。これを、プレス成形機(温度: 175°C、圧力: 10MPa、成形時間: 3分間)により 、成形し、曲げ強度'曲げ弾性率の試験片を作製した。曲げ強度及び曲げ弾性率の 測定は、 JIS—K6911「熱硬化性プラスチック一般試験方法」に準拠して行った。そ の結果、曲げ強度: 120MPa、曲げ弾性率: 8,000MPaを得た。
[0060] [実施例 2]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程の処理温度を 100°Cとした以外は、実施例 1と同様 な操作で処理を行い、再生フエノール樹脂成形材料を得た。結果を、表 1にまとめて 示した。
[0061] [実施例 3]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程の処理温度を 250°Cとした以外は、実施例 1と同様 な操作で処理を行い、再生フエノール樹脂成形材料を得た。結果を、表 1にまとめて 示した。
[0062] [実施例 4]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程で注入するホルマリン量を 4. 6gから 2. 3gに代えた 以外は、実施例 1と同様な操作で処理を行い、再生フエノール樹脂成形材料を得た 。結果を、表 1にまとめて示した。
[0063] [実施例 5]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程で注入するホルマリン量を 4. 6g力ら 57. 5gに代え た以外は、実施例 1と同様な操作で処理を行い、再生フエノール樹脂成形材料を得 た。結果を、表 1にまとめて示した。
[0064] [実施例 6]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程でホルマリン 4. 6gに代えて、パラホルム 1. 7gを用 いた以外は、実施例 1と同様な操作で処理を行い、再生フエノール樹脂成形材料を 得た。結果を、表 1にまとめて示した。
[0065] [実施例 7]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程でホルマリン 4. 6gに代えて、トリオキサン 1. 7gを用 いた以外は、実施例 1と同様な操作で処理を行レ、、再生フエノール樹脂成形材料を 得た。結果を、表 1にまとめて示した。
[0066] [実施例 8]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程でホルマリン 4. 6gに代えて、へキサメチレンテトラミ ン (HMTA) 1. 7gを用いた以外は、実施例 1と同様な操作で処理を行レ、、再生フエ ノール樹脂成形材料を得た。結果を、表 1にまとめて示した。
[0067] [実施例 9]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、処理した回収物から同様の操作で固体残渣を分離し、分離し た後に同様の条件下で処理を行った再生樹脂を用いた以外は、実施例 1と同様な操 作で再生フエノール樹脂成形材料を得た。結果を、表 1にまとめて示した。
[0068] [実施例 10]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、無機充填材として炭酸カルシウム 10gに代えて、実施例 1で得 られた回収物の固体残渣成分 1 Ogを用いた以外は、実施例 1と同様な操作で再生フ ヱノール樹脂成形材料を得た。結果を、表 1にまとめて示した。
[0069] [実施例 11]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程で注入するホルマリン量を 4. 6gから 69gに代えた 以外は、実施例 1と同様な操作で処理を行い、再生フエノール樹脂成形材料を得た 。結果を、表 1にまとめて示した。
[0070] [実施例 12]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第一の工程にて塩基性触媒である水酸化カルシウムを添加し ない以外は、実施例 1と同様な操作で処理を行い、再生フエノール樹脂成形材料を 得た。結果を、表 1にまとめて示した。
[0071] [実施例 13]エポキシ樹脂成形材料の硬化物の処理と、再生フエノール樹脂成形材 料の作製
実施例 1において、処理対象の樹脂組成物として、半導体封止用のエポキシ樹脂 成形材料 58. 3g (オルソクレゾールノボラック型エポキシ樹脂を、ノボラック型フエノー ル樹脂で硬化したものであって、シリカを含む:住友ベークライト(株)製 EME-630 0H)の硬化物を用いた以外は、実施例 1と同様な操作で処理を行レ、、樹脂成分: 12 Ogを得た。
[0072] [比較例 1]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程を設けない以外は、実施例 1と同様な操作で処理 を行い、再生フエノール樹脂成形材料を得た。結果を、表 1にまとめて示した。
[0073] [比較例 2]フエノール樹脂成形材料の硬化物の処理及び再利用
実施例 1において、第二の工程で行っていたホルマリンの注入を第一の工程中に 行い、再生フエノール樹脂成形材料を得た。結果を、表 1にまとめて示した。
Figure imgf000019_0001
表 1- フエノール樹脂成形材料の改質処理結果及び再利用結果
Figure imgf000019_0002
[GG75] 表 フヱノ一ル樹脂成形材料の改質処理結果及び再利用結果(続き)
Figure imgf000020_0001
* )樹脂組成物に含有される有機フィラー成分、及び溶媒のフエノール化合物が結 合するため、樹脂分回収量は仕込み熱硬化性樹脂量より増量する。
[0076] 表 1に示した結果からわかるように、多官能性化合物を添加しない場合 (比較例 1) は、回収できる再生樹脂の分子量が小さい。また、第一の工程中に多官能性化合物 を添加した場合 (比較例 2)は、得られる回収物中の樹脂のゲルィヒが進行して回収率 が低い。
これに対して、実施例:!〜 13に示した、多官能性化合物を添加して処理する第 2の 工程を設けることで、高分子量の再生樹脂をゲル化することなぐ効率よく回収するこ とができることがわかる。
[0077] さらに、第二の工程を設けることによって、第一の工程で得られる第 1の回収物を原 料とする再生樹脂組成物を用いた成形品の硬化性や曲げ強度 ·弾性率は従来法の それよりも向上することがわかる。

Claims

請求の範囲
[1] 熱硬化性樹脂を構成するモノマーまたはこれの誘導体を必須成分とする超臨界ま たは亜臨界状態の溶媒中で、当該熱硬化性樹脂を含む樹脂組成物を分解する第一 の工程と、多官能化合物を添加して処理する第二の工程とを有することを特徴とする 再生樹脂の製造方法。
[2] 請求項 1に記載の再生樹脂の製造方法において、
前記第二の工程は、前記第一の工程における第 1の回収物に含まれる多官能化 合物と反応し得る成分と、該多官能化合物とを反応させるものである再生樹脂の製 造方法。
[3] 請求項 1または 2に記載の再生樹脂の製造方法において、
前記モノマーまたはこれの誘導体力 フエノール類化合物であることを特徴とする 再生樹脂の製造方法。
[4] 請求項 1〜3のいずれかに記載の再生樹脂の製造方法において、
前記第一の工程を塩基性触媒の存在下で行うことを特徴とする再生樹脂の製造方 法。
[5] 請求項 1〜4のいずれかに記載の再生樹脂の製造方法において、
前記第一の工程は、 100°C以上 500°C以下の温度範囲で行うものである再生樹脂 の製造方法。
[6] 請求項 1〜5のいずれかに記載の再生樹脂の製造方法において、
前記第一の工程は、 IMPa以上 60MPa以下の圧力範囲で行うものである再生樹 脂の製造方法。
[7] 請求項 1〜6のいずれかに記載の再生樹脂の製造方法において、
前記第二の工程は、前記第一の工程の温度以下の温度範囲で行うものである再 生樹脂の製造方法。
[8] 請求項 1〜7のいずれかに記載の再生樹脂の製造方法において、
前記第二の工程は、前記第一の工程の圧力以下の圧力範囲で行うものである再 生樹脂の製造方法。
[9] 請求項 1〜8のいずれかに記載の再生樹脂の製造方法において、 前記多官能化合物は、ホルムアルデヒド、パラホルム、トリオキサン、へキサメチレン テトラミンから選ばれる再生樹脂の製造方法。
[10] 請求項 1〜9のいずれかに記載の再生樹脂の製造方法において、
前記多官能化合物の添加量が、前記第一の工程で得られる第 1の回収物のオリゴ マー 100重量部に対して、 1重量部以上 50重量部以下である再生樹脂の製造方法
[11] 請求項 1〜: 10のいずれかに記載の再生樹脂の製造方法において、
前記熱硬化性樹脂は、フエノール樹脂、エポキシ樹脂、メラミン樹脂及びユリア樹脂 の中から選択された 1種又は 2種以上である再生樹脂の製造方法。
[12] 請求項 1〜: 11のいずれかに記載の再生樹脂の製造方法において、
前記熱硬化性樹脂は、フエノール樹脂を含むものである再生樹脂の製造方法。
[13] 請求項 1〜: 12のいずれかに記載の再生樹脂の製造方法により得られる再生樹脂。
[14] 請求項 13に記載の再生樹脂において、
分子量分布(Mw/Mn)が 2. 0以上 15以下であることを特徴とする再生樹脂。
[15] 請求項 13または 14に記載の再生樹脂において、
前記重量平均分子量 (Mw)力 200以上 100,000以下である樹脂成分を主成分 とする再生樹脂。
[16] 請求項 1〜: 12のいずれかに記載の再生樹脂の製造方法により得られる樹脂成分 以外の残渣からなる樹脂組成物の処理回収物。
[17] 請求項 16に記載の樹脂組成物の処理回収物において、
前記残渣は、前記熱硬化性樹脂を含む樹脂組成物の未分解樹脂成分、該樹脂組 成物の重合炭化生成物、該樹脂組成物に含有される充填材から選ばれる 1種又は 2 種以上を含む樹脂組成物の処理回収物。
[18] 請求項 13〜: 15のいずれかに記載の再生樹脂および Zまたは請求項 16または 17 に記載の樹脂組成物の処理回収物を、原料として得られる再生樹脂組成物。
[19] 請求項 13〜: 15のいずれかに記載の再生樹脂および Zまたは請求項 16または 17 に記載の樹脂組成物の処理回収物を、新たな再生樹脂組成物の原料として再利用 することを特徴とする樹脂組成物の再生方法。
PCT/JP2005/016710 2005-09-12 2005-09-12 再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹脂組成物および樹脂組成物の再生方法 WO2007032047A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/991,729 US7851514B2 (en) 2005-09-12 2005-09-12 Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
JP2007535330A JP5007671B2 (ja) 2005-09-12 2005-09-12 再生樹脂の製造方法
EP05782364.3A EP1956042B1 (en) 2005-09-12 2005-09-12 Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
KR20087008612A KR101226414B1 (ko) 2005-09-12 2005-09-12 재생 수지의 제조 방법, 재생 수지, 수지 조성물의 처리회수물, 재생 수지 조성물 및 수지 조성물의 재생 방법
CA 2622117 CA2622117C (en) 2005-09-12 2005-09-12 Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
PCT/JP2005/016710 WO2007032047A1 (ja) 2005-09-12 2005-09-12 再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹脂組成物および樹脂組成物の再生方法
CN2005800518804A CN101291980B (zh) 2005-09-12 2005-09-12 再生树脂的生产工艺、再生树脂、树脂组合物的处理回收物、再生树脂组合物及再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/016710 WO2007032047A1 (ja) 2005-09-12 2005-09-12 再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹脂組成物および樹脂組成物の再生方法

Publications (1)

Publication Number Publication Date
WO2007032047A1 true WO2007032047A1 (ja) 2007-03-22

Family

ID=37864653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016710 WO2007032047A1 (ja) 2005-09-12 2005-09-12 再生樹脂の製造方法、再生樹脂、樹脂組成物の処理回収物、再生樹脂組成物および樹脂組成物の再生方法

Country Status (7)

Country Link
US (1) US7851514B2 (ja)
EP (1) EP1956042B1 (ja)
JP (1) JP5007671B2 (ja)
KR (1) KR101226414B1 (ja)
CN (1) CN101291980B (ja)
CA (1) CA2622117C (ja)
WO (1) WO2007032047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029733A1 (ja) 2008-09-12 2010-03-18 住友ベークライト株式会社 高分子材料の分解処理方法、再生樹脂の製造方法、無機充填材の回収方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854466B2 (ja) * 2012-01-10 2016-02-09 学校法人帝京大学 高温・高圧メタノールによる磁気テープのケミカルリサイクル方法
JP6422666B2 (ja) * 2014-04-25 2018-11-14 日鉄ケミカル&マテリアル株式会社 狭分散フェノールノボラック樹脂の製造方法、及びその製造方法から得られる狭分散フェノールノボラック樹脂
TWI744750B (zh) * 2019-12-23 2021-11-01 財團法人工業技術研究院 熱固型樹脂的降解方法、所使用的觸媒組合物及所得的樹脂組成物
CN115181327A (zh) * 2022-08-30 2022-10-14 湖北恒驰电子科技有限公司 一种亚临界技术回收废弃多相挠性覆铜板的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096233A (ja) * 2001-09-21 2003-04-03 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2004161983A (ja) * 2002-09-27 2004-06-10 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2004231695A (ja) * 2003-01-28 2004-08-19 Asahi Organic Chem Ind Co Ltd 熱硬化性樹脂及び/又はその硬化物の分解方法並びにそれによって得られた分解生成物を用いた熱硬化性樹脂の製造方法
JP2005126667A (ja) * 2003-03-19 2005-05-19 Sumitomo Bakelite Co Ltd プラスチックの処理方法、リサイクル方法、プラスチックの処理回収物およびリサイクルプラスチック

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926034B2 (ja) * 1998-06-10 2007-06-06 住友ベークライト株式会社 樹脂の合成方法
JP2000198826A (ja) * 1998-12-28 2000-07-18 Sumitomo Bakelite Co Ltd ハイオルソ型フェノ―ル樹脂の合成方法
JP4385470B2 (ja) * 1999-07-08 2009-12-16 住友ベークライト株式会社 フェノール樹脂の合成方法
JP2001055468A (ja) 1999-08-19 2001-02-27 Gun Ei Chem Ind Co Ltd フェノール樹脂またはエポキシ樹脂の分解方法と製造方法
JP3693869B2 (ja) 1999-11-29 2005-09-14 住友ベークライト株式会社 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2005054138A (ja) 2003-08-07 2005-03-03 Hitachi Chem Co Ltd 有機質充填材の分離方法
JP2005113096A (ja) * 2003-10-10 2005-04-28 Sumitomo Bakelite Co Ltd プラスチックの可溶化処理方法及びリサイクル方法並びにプラスチック成形材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096233A (ja) * 2001-09-21 2003-04-03 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2004161983A (ja) * 2002-09-27 2004-06-10 Sumitomo Bakelite Co Ltd 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2004231695A (ja) * 2003-01-28 2004-08-19 Asahi Organic Chem Ind Co Ltd 熱硬化性樹脂及び/又はその硬化物の分解方法並びにそれによって得られた分解生成物を用いた熱硬化性樹脂の製造方法
JP2005126667A (ja) * 2003-03-19 2005-05-19 Sumitomo Bakelite Co Ltd プラスチックの処理方法、リサイクル方法、プラスチックの処理回収物およびリサイクルプラスチック

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029733A1 (ja) 2008-09-12 2010-03-18 住友ベークライト株式会社 高分子材料の分解処理方法、再生樹脂の製造方法、無機充填材の回収方法
KR20110070854A (ko) 2008-09-12 2011-06-24 스미토모 베이클리트 컴퍼니 리미티드 고분자 재료의 분해 처리 방법, 재생 수지의 제조 방법, 무기 충전재의 회수 방법
JP2013249477A (ja) * 2008-09-12 2013-12-12 Sumitomo Bakelite Co Ltd 無機充填材の回収方法
JP5605224B2 (ja) * 2008-09-12 2014-10-15 住友ベークライト株式会社 高分子材料の分解処理方法、再生樹脂の製造方法
US9085666B2 (en) 2008-09-12 2015-07-21 Sumitomo Bakelite Co., Ltd. Method for decomposing polymer material, method for producing recycled resin, and method for recovering inorganic filler
EP2987823A1 (en) 2008-09-12 2016-02-24 Sumitomo Bakelite Co., Ltd. Method for recovering inorganic filler
CN105778150A (zh) * 2008-09-12 2016-07-20 住友电木株式会社 分解聚合物材料的方法、制备再生树脂的方法以及回收无机填料的方法
US9822209B2 (en) 2008-09-12 2017-11-21 Sumitomo Bakelite Co., Ltd. Method for decomposing polymer material, method for producing recycled resin, and method for recovering inorganic filler

Also Published As

Publication number Publication date
CA2622117A1 (en) 2007-03-22
EP1956042A1 (en) 2008-08-13
KR101226414B1 (ko) 2013-01-24
EP1956042A4 (en) 2009-12-23
KR20080055906A (ko) 2008-06-19
US20090318576A1 (en) 2009-12-24
EP1956042B1 (en) 2016-11-09
CN101291980B (zh) 2012-04-04
CN101291980A (zh) 2008-10-22
JPWO2007032047A1 (ja) 2009-03-19
JP5007671B2 (ja) 2012-08-22
US7851514B2 (en) 2010-12-14
CA2622117C (en) 2013-01-29

Similar Documents

Publication Publication Date Title
JP5874692B2 (ja) 無機充填材の回収方法
JP5007671B2 (ja) 再生樹脂の製造方法
JP5920069B2 (ja) リグニン樹脂組成物およびリグニン樹脂成形材料
JP3693869B2 (ja) 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2006233141A (ja) フェノール樹脂成形材料
JP2015048361A (ja) リグニン樹脂組成物、樹脂成形体、プリプレグおよび成形材料
JP4581607B2 (ja) プラスチックの処理方法、リサイクル方法、プラスチックの処理回収物およびリサイクルプラスチック
JP4317696B2 (ja) 熱硬化性樹脂及び/又はその硬化物の分解方法並びにそれによって得られた分解生成物を用いた熱硬化性樹脂の製造方法
JP2006124480A (ja) プラスチックの再生方法、処理再生物、リサイクル方法およびリサイクルプラスチック
JP2005281429A (ja) プラスチックの処理方法、処理回収物、リサイクル方法およびリサイクルプラスチック
JP4792750B2 (ja) 再生樹脂の製造方法
JP2005113096A (ja) プラスチックの可溶化処理方法及びリサイクル方法並びにプラスチック成形材料
JP3888979B2 (ja) 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP3922625B2 (ja) 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2005126667A (ja) プラスチックの処理方法、リサイクル方法、プラスチックの処理回収物およびリサイクルプラスチック
JP2005126669A (ja) プラスチックのリサイクル方法、プラスチックの処理回収物、熱硬化性樹脂成形材料ならびにリサイクルプラスチック
JP2006160794A (ja) プラスチックの処理方法、リサイクル方法、処理回収物およびリサイクルプラスチック
JP2005281427A (ja) プラスチックの処理方法、リサイクル方法、処理回収物およびリサイクルプラスチック
JP2003096233A (ja) 熱硬化性樹脂の分解処理方法およびリサイクル方法
JP2014133817A (ja) リグニン誘導体法の製造方法、およびリグニン樹脂成形体
JP2003183475A (ja) フェノール樹脂リサイクル組成物
JP5508025B2 (ja) 熱硬化性樹脂の分解および分解生成物の回収方法
JP5822596B2 (ja) リグニン樹脂成形材料
JP2015048360A (ja) リグニン樹脂組成物、樹脂成形体および成形材料
JP2004115744A (ja) フェノール系樹脂複合材料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580051880.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535330

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2622117

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005782364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005782364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087008612

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005782364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11991729

Country of ref document: US